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Abstract: Membrane separation systems require no or very little chemicals compared to 

standard unit operations. They are also easy to scale up, energy efficient, and already 

widely used in various gas and liquid separation processes. Different types of membranes 

such as common polymers, microporous organic polymers, fixed-site-carrier membranes, 

mixed matrix membranes, carbon membranes as well as inorganic membranes have been 

investigated for CO2 capture/removal and other energy processes in the last two decades. 

The aim of this work is to review the membrane systems applied in different energy 

processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas 

sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) 

recovery and pressure retarded osmosis for power generation. Although different 

membranes could probably be used in a specific separation process, choosing a suitable 

membrane material will mainly depend on the membrane permeance and selectivity, 

process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream 

(such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a 

membrane system are also being discussed to illustrate the membrane process feasibility 

for a specific application based on process simulation and economic cost estimation.  

Keywords: membrane; CO2 capture; flues gas; natural gas sweetening; biogas upgrading; 

hydrogen production; VOC recovery; pressure retarded osmosis  
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1. Introduction 

In the International Energy Outlook 2011 (IEO2011) Reference case, world energy consumption is 

expected to increase by 53% from 2008 to 2035 [1], and the world energy-related carbon dioxide 

emissions will rise from 30.2 billion metric tons in 2008 to 35.2 billion metric tons in 2020, and  

43.2 billion metric tons in 2035, followed by a strong economic growth and continued heavy reliance 

on fossil fuels. Control of anthropogenic emissions of greenhouse gases (GHG) such as CO2 and 

hydrocarbons (e.g., CH4, and volatile organic compounds (VOC)) is one of the most challenging 

environmental issues related to global climate change. Reduction of CO2 emissions from large CO2 

point sources, especially fossil-fired power plants, based on CO2 capture and sequestration (CCS) 

technology could be a potential approach for the fight against global warming. The key motivation for 

CCS is that fossil fuels can be continuously used without causing significant CO2 emissions, and the 

captured CO2 could be further processed in different ways, such as injected into oil wells and gas fields 

for sequestration [2], converted to important products such as methanol [3] or producing  

third-generation biofuels (algae) based on photosynthesis [4]. Development of renewable energy forms 

such as wind power, solar energy, hydrogen energy, and biogas may become another feasible option 

for the reduction of CO2 emissions. Renewable energy is one of the fastest-growing sources for world 

energy consumption with a 2.8% increase every year due to the relatively high oil prices, as well as the 

concern for the environmental impacts of fossil fuel uses and strong government incentives for 

increasing the use of renewable energy, as reported in IEO2011 [1]. However, in order to satisfy the 

energy demand for the present and future, the existing alternative energy production technologies must 

be advanced beyond their current limitations [5], and additional sources of sustainable energy must be 

explored. Pressure retarded osmosis (PRO) for power generation could be another viable source of 

renewable energy [6,7]. In addition, the increasing demands of clean and renewable energy have 

resulted in an increased global willingness to embrace the proposed “hydrogen economy” as a 

potential long term solution for sustainable development [8]. 

Membranes are becoming a competitive technology compared to the conventional separation unit 

operations, e.g., cryogenic distillation, chemical and physical absorption. Membrane gas separation has 

played an important role in various environmental and energy processes, such as CO2  

capture [9–14], VOC recovery [15], natural gas sweetening [16,17], biogas upgrading [18,19], 

hydrogen production [20–22] during the last two decades, and can potentially compete with some 

traditional separation methods in terms of energy requirements and economic costs. Different types of 

membrane materials such as common polymers, microporous organic polymers (MOPs),  

fixed-site-carrier (FSC) membranes, mixed matrix membranes (MMMs), carbon molecular sieve 

membranes (CMSMs), as well as inorganic (ceramic, metallic, zeolites) membranes, have been reported 

to be used in various gas separation processes [9,11,12,14,16,23–31]. Moreover, proton exchange 

membranes (PEM) electrolyzers have been used for H2 production [32–34]. Recently, pressure retarded 

osmosis (PRO) technology for power generation (based on knowledge about reverse osmosis (RO)) or 

forward osmosis (FO) membranes show a great potential for sustainable energy production [35–38]. 

Figure 1 shows an overview of membrane systems for environmentally friendly energy processes from 

materials to applications. Choosing a suitable membrane material for a specific application will mainly 

depend on feed gas composition, process conditions as well the separation requirements. Bernardo et al. 
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conducted a review on the status of membrane materials (typically focused on O2/N2, CO2/N2 and 

CO2/CH4 membranes), relevant industrial applications, and future opportunities [30]. Their 

contribution addressed the state-of-the-art materials and the major efforts in the development of the 

membrane gas separation field. In this paper, an extended review of currently used membrane systems 

for different applications in energy processes has been conducted, and here we focus more on the 

challenges, process feasibility and economic costs of membrane gas separations. 

Figure 1. An overview of membrane systems used in different energy processes. 

 

2. CO2 Capture from Power Plants 

The existing fossil fuel power plants for electricity generation without the CO2 capture process 

could be challenging due to the implication of anthropogenic emissions of CO2 for global warming. A 

potential solution to reduce CO2 emissions is to develop an efficient CO2 capture technology that can 

be used to retrofit the existing power plants or design a new combustion process with a high efficiency 

CO2 capture unit. Carbon capture and sequestration (CCS) could be an effective way to mitigate the 

emissions of CO2 into atmosphere from fossil fuel power plants, which can be classified as three 

different scenarios: post-combustion, pre-combustion and oxyfuel combustion as shown in Figure 2 [39].  

2.1. Post-Combustion CO2 Capture 

Different techniques such as chemical absorption (e.g., MEA, MDEA) and physical absorption 

(e.g., Selexol, Rectisol), physical adsorption (e.g., molecular sieves, metal organic frameworks) and 

gas separation membranes can be used for CO2 capture from flue gas in post-combustion processes. 

Membrane separation is energy saving, space saving, easy to scale up, and can be a promising 

technique for CO2 capture as suggested by Yang et al. [14]. However, there are some challenges 

related to the potential applications of membrane systems in post-combustion CO2 capture processes as 
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summarized in Table 1 [10,40]. According to these challenges, a low cost, highly CO2-permeable, and 

highly CO2-selective membrane is required for a membrane system to compete with a traditional 

chemical absorption method. Choosing a suitable membrane material is mainly dependent on the 

process conditions and separation requirements. If high purity of the product is required, a higher 

selectivity membrane is preferred. If large gas quantities need to be treated, a high permeance 

membrane will be preferred.  

Figure 2. Three options for CO2 capture from fossil fuel power plants [39]. 

 

Table 1. Challenges related to standard membrane systems used in post combustion process. 

Flue gas 
characteristic 

Challenges related to membrane 
process 

Potential solution 
Membrane 
requirement 

Low CO2 
concentration 

Large quantities of gas need to be 
treated 

Scaling up of membrane unit 
High CO2 selectivity 
and permeance, low 
cost 

Low pressure Low driving force 
Compression in feed or 
vacuum in permeate streams 

High CO2 selectivity 
and permeance 

High 
temperature 

Most polymer membrane cannot 
be used at >100 °C 

Cooling down 40–60 °C High thermal resistance 

Harmful 
components 
in flue gas 

SO2, NOx 
Removal of containments or 
developing chemically 
resistant membranes 

High chemical and 
aging resistance 

Water 
Water can pass through the 
membranes, corrosion of pipeline 
during CO2 transportation 

Drying of flue gas 
Low H2O/CO2 
selectivity 

A large EU project (NanoGLOWA) was launched in 2006, which mainly focused on the 

investigation of potential membrane materials for CO2 capture from flue gas. The project was based on 

Power & Heat

Power & Heat

Power & Heat

CO2 separation

Air separation

Gasification, 
WGS + CO2 
separation

CO2 
compression, 
transport and 

storage

Air separation

Air

Air

Air

Fuel

N2, O2, H2O...

Fuel

Fuel

Air

N2, O2, H2O...

H2

N2

CO2

CO2

CO2

Recycling
(CO2+H2O)

Flue gas

N2

O2

O2

Post-combustion 

Pre-combustion 

Oxyfuel combustion 



Membranes 2012, 2              

 

 

710

the cooperation between 27 European companies, universities, institutes and power plants 

(www.nanoglowa.com), and in 2011, two small pilot-scale membrane modules were installed at EDP’s 

power plant in Sines (Portugal) and EON’s power plant in Scholven (Germany) to demonstrate the 

potential of CO2 capture using polymeric membranes. The testing in Portugal was performed over  

~6 months, and separation properties and durability of the fixed-site-carrier (FSC) membranes were 

demonstrated in an actual flue gas stream. The performance of this FSC-membrane has since then been 

greatly improved with a permeance of ~5 m3 (STP)/(m2 h bar), and selectivity CO2/N2 > 1000 [41].  

Many research activities on the investigations of different membranes for CO2 capture have been 

conducted, some examples are given in [9–14]. He et al. investigated the application of hollow fiber 

carbon membranes for CO2 capture from flue gas [28,42–44]. They reported a capital cost of  

100 $/tonne CO2 avoided using carbon membrane [42], which is still higher than traditional chemical 

absorption method of MEA (59 $/tonne CO2 avoided reported by Rao and Rubin [45]), but the  

referred carbon membranes had a clear potential for further optimization. Merkel et al. [46]  

reported that a membrane with a CO2/N2 selectivity above 50 and a 4000 GPU permeance  

(1 GPU = 2.736 × 10−3 m3 (STP)/(m2 h bar)) could offer a capture cost below 15 $/tonne CO2, which is 

lower than the US Department of Energy’s (DOE) target of 20 $/tonne CO2 [47]. Their innovative 

process solution to the CO2 capture is also contributing strongly to their conclusion where they also 

pointed out that improving membrane permeance is more important than increasing selectivity (given 

selectivity is >30) in order to further reduce the membrane unit’s cost. Hussain et al. conducted a 

feasibility analysis by HYSYS integrated with an in-house membrane program (ChemBrane, 

developed by Grainger [48]) to investigate the influence of process parameters on energy demands and 

cost using a novel CO2-selective FSC membrane [13]. Their results indicated that a membrane system 

using high performance FSC membranes was feasible for CO2 capture, even at a low CO2 

concentration (~10%) in a flue gas, compared to amine absorption in terms of energy requirement, and 

it was also possible to achieve more than 90% CO2 recovery and >95% CO2 purity in permeate stream. 

In any case, this environmentally friendly technology with improved membrane performance could 

promote membrane systems as a promising candidate for CO2 capture from flue gas in  

post-combustion process if all the challenges (shown in Table 1) can be well addressed.  

Liquid membranes have also been investigated for CO2 separation [49–53], and most of these works 

use non-volatile liquids of room temperature ionic liquids (RTILs) as the carriers to transport CO2. A 

review on the development of liquid membranes for gas/vapor separation has been conducted by  

Krull et al. [54]. They pointed out that the use of ionic liquids could improve the liquid membrane 

stability. However, ionic liquids are still in a minority and not commercially available. Another 

challenge of liquid membranes is the lack of long-term stability when faced with CO2 capture in 

industrial application. Membrane contactors, which combine gas separation membranes and solvents, 

offer a unique way to perform gas-liquid absorption and provide high operational flexibility [55]. 

There has been strong interest focused on the improvement of membrane contactor efficiency for CO2 

capture [55–62]. Yeon et al. [60] reported the use of a polyvinylidene difluoride (PVDF) hollow fiber 

membrane contactor for absorption and a stripper column as desorber for CO2/N2 separation, which 

presented a higher CO2 removal efficiency than the conventional absorption column. Feron et al. have 

investigated the potential application of CO2 capture from flue gas using a membrane contactor 

composed of porous polypropylene hollow fiber membranes and a dedicated absorption liquid 
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(CORAL) [59]. Their results indicated that a membrane contactor could be an interesting candidate for 

CO2 capture from flue gas in post-combustion power plants. In conclusion, for post-combustion CO2 

capture, the indications are that the only membranes which will have a potential of being economically 

viable will need to be polymers with high flux, and moderate to high selectivity (CO2/N2) and can 

tolerate impurities such as SO2, NOx and H2O. The new membrane contactors containing stable 

carriers are also promising candidates. Innovative energy-saving process solutions will likewise help to 

promote membranes for this application. 

2.2. Pre-Combustion CO2 Capture 

Pre-combustion CO2 capture is often referred to as CO2/H2 separation at high temperature and 

pressure. Both CO2-selective and H2-selective membranes can be used for this application. For a  

CO2-selective membrane, H2 will be kept in the retentate stream with high concentration and pressure, 

and can be directly combusted in the turbine. While for H2-selective membranes, CO2 will remain in 

the retentate stream with high pressure and can be conveniently compressed for transportation and 

storage. While a CO2-selective membrane at high temperature is rare for this gas pair, several  

H2-selective membranes have been widely investigated. Membrane is then usually integrated with 

water-gas shift (WGS) reaction as a membrane reactor for driving the production of H2. Scholes et al. 

conducted a comprehensive review on membranes for CO2 capture from pre-combustion  

processes [63]. They reviewed various types of membranes and membrane reactors as well as 

membrane processes and economics. Here we mainly have focused on the process feasibility of 

different membranes for pre-combustion CO2 capture. 

Choosing a suitable membrane material is mainly dependent on process design, operating 

conditions, and the location of a membrane system in a pre-combustion process since each type of 

membrane material has its own optimal operating temperature range and limitations. Palladium (Pd) 

membrane is typically used for H2 separation and purification in combination with a reactor in water 

gas shift (WGS). Pd-membrane has an extremely high selectivity for H2 over the other gas molecules. 

However, Pd membranes may suffer poisoning problems due to interactions with sulfur compounds, 

CO and unsaturated hydrocarbons which are present in syngas of pre-combustion processes. Some  

Pd-alloys such as Pd-Au and Pd-Cu membranes have been developed and showed more resistance to 

sulfur poisoning [64,65]. Pd membranes also undergo phase change below their critical point of 571 K 

and 2 MPa leading to boundary defects and hydrogen embrittlements [66], which can be partly reduced 

by adding some other metals, such as Ag, Cu, or Ni. Another challenge of Pd membranes is their short 

lifetime under harsh conditions, which may hinder their commercial applications [63,66].  

Ceramic membranes can also be used for high temperature applications, especially in the 

chemically aggressive environment of a pre-combustion process. However, the main challenge of 

ceramic membranes is the stability of the selective layer in a hot stream. Polybenzimidazole (PBI) is a 

thermally stable polymer with a reported glass transition temperature of 420 °C, and PBI-based 

membranes can be operated at high temperature (200–400 °C). Krishnan et al. [67] conducted process 

simulation of CO2 capture from syngas using H2-selective PBI membranes in an integrated gasification 

combined cycle (IGCC) process. They simulated four scenarios including IGCC without CO2 capture 

(scenario 1), CO2 capture using Selexol (scenario 2), CO2 and H2S capture using PBI membranes 
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(scenario 4A), CO2 capture using PBI membranes and H2S capture using Selexol (scenario 4B). A CO2 

avoidance cost of 39 $/tonne CO2 was found for scenario 4A to attain 90% CO2 removal, which is 

much lower compared to the other scenarios (scenario 2 and scenario 4B are 50 and 54 $/tonne CO2, 
respectively) reported in their simulation results.  

A highly selective CO2/H2 facilitated transport membrane in an IGCC power plant was also 

investigated by Grainger et al. [68]. Their membranes comprised a thin polyvinylamine (PVAm) 

selective layer coated on a ultrafiltration (UF) polysulfone support, which showed a superior 

separation performance with a CO2 permeance of 0.1 m3 (STP)/(m2 h bar), and CO2/H2 selectivity over 

100, based on the mixed gas tests. Their simulation results indicated that the modified process with 

sour shift process could achieve 85% CO2 removal at an acceptable purity for sequestration. The plant 

cost was calculated to be 2320 €/kW with an electricity production cost of 7.6 € cents/kWh and a CO2 

avoidance cost of 39 €/tonne CO2. The gas separation performance of these FSC membranes has lately 

been significantly improved as documented in [41] (with a high CO2 permeance ~5 m3 (STP)/(m2 h 

bar) and a selectivity >1000 for CO2/N2), which indicates that the mechanically stronger PVAm/PVA 

blend FSC membranes could become a promising candidate for pre-combustion CO2 capture where 

pressure is high if the operating temperature can be brought down.  

2.3. Oxyfuel Combustion CO2 Capture 

Oxyfuel (oxygen-enriched) combustion technology provides a promising option based on the 

combustion using high purity O2 produced from an air separation unit (ASU), thus resulting in a flue 

gas containing mostly CO2 and water. Water can then be easily removed via condensation, thereby 

generating high purity CO2 for transportation and storage. One challenge for oxyfuel combustion 

process is the high combustion temperature with rich O2. Habib et al. reported to recycle part of flue 

gas back into the combustion chamber to moderate the combustor temperature [69]. Another challenge 

is to get the high purity O2 source to make oxyfuel combustion process as a competitive CO2 capture 

technology. Conventional O2 purification is currently utilizing cryogenic distillation which is an 

energetically expensive process. An alternative way is to use a membrane system, in which high purity 

O2 can be produced by a two-stage membrane unit. Strong interests have been focused on the 

development of new membrane materials with high O2 permeance and selectivity (O2/N2) to produce 

high purity oxygen from air using a single stage membrane unit. Ceramic membranes made from 

mixed ion-electronic conducting oxides (high temperature ion transport membrane (ITM) [70,71]) 

have received increasing attention because of their potential to reduce the cost of O2 production, which 

could promote the development of this clean energy process. A commercial ITM membrane module 

for pure O2 production from air has been developed by Air Products [72]. Their ITM oxygen unit can 

attribute a 48% less capital cost and a 68% energy saving compared to cryogenic ASU. Moreover, 

pressurized oxyfuel combustion systems could be another potential solution to achieve a high purity 

CO2 in flue gas and reduce the energy penalties, which provides a better performance over 

conventional atmospheric oxyfuel combustion power cycles [73,74]. CANMET Energy Technology 

Centre and ThermoEnergy Corp. have conducted the techno-economic evaluations on the pressurized 

oxyfuel combustion systems [75–77]. Their results showed an improved net efficiency and the 

reduction of capital and electricity costs using high pressure oxyfuel combustion technology. The 
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oxyfuel combustion is a very smart way of capturing CO2. The main challenge, however, seems to be 

the development of a good module and sealing design based on the ceramic oxides which can tolerate 

the high operating temperatures without leakage and cracks. 

3. Natural Gas Sweetening 

CO2 removal from natural gas (natural gas sweetening) is mandatory to meet the specifications of a 

natural gas grid since CO2 reduces the heating values of natural gas, is corrosive, and easily forms 

hydrates to clog equipment or damage pump [30]. Choosing a suitable technology for CO2 removal 

from natural gas is mainly dependent on process conditions and crude natural gas composition. 

Traditional chemical (amine) absorption is well known and has been commercially used for CO2 

removal in various processes, and is still considered as a state-of-the-art technology. However, a 

membrane system possesses many advantages such as small footprint, low capital and operating costs, 

is environmentally friendly and exhibits process flexibility [29]. It shows a great potential for natural 

gas sweetening even though it has only 5% of the market today. Two key parameters—membrane unit 

cost and CH4 loss—are mainly dependent on the membrane performance and process design, which 

are usually employed to evaluate the efficiency of a membrane process. Cellulose acetate is still widely 

used in UOP’s membrane system [16] and, recently, Cynara-NATCO installed a cellulose triacetate 

membrane system using 16-inch hollow fiber modules in Thailand [78]. Although common polymer 

membranes for natural gas sweetening are still using cellulose acetate/triacetate and polyimide, the 

novel, high performance composite FSC membranes showed great potential for CO2/CH4  

separation [79]. Membrane systems are preferred for high CO2 concentration gas streams (enhanced oil 

recovery, ca. 50% CO2, and high pressure) and amine units are preferred for relatively  

low-concentration gas streams. Moreover, membrane systems are also favorable for processing small 

gas flows (typically for offshore platforms, <6000 Nm3/h) because of their simple flow schemes, while 

amine units are more complex and require careful, well-monitored operating procedures, as 

documented by Baker et al. [16].  

High pressure operation is the main challenge for natural gas processing with membrane systems. 

Plasticization is indeed always a limited factor for high pressure CO2 rich gas to be separated with 

membranes [80,81], while for FSC membranes, carrier saturation at a high CO2 concentration and low 

water content in high pressure feed gas stream cause a significant decrease of CO2 permeance as well 

as selectivity of CO2/CH4 due to reduced contribution by the facilitated transport mechanism. The 

possible strategies to overcome membrane plasticization are crosslinking of membrane material [82] 

and fabrication of mechanical strength enhanced membranes, such as the mixed matrix membrane by 

adding inorganic fillers to the polymer matrix. Adams et al. prepared a 50% (vol.) Zeolite 4A/poly 

(vinyl acetate) (PVAc) MMM for CO2 separation from natural gas [83]. They found that the prepared 

MMMs can approach the Robeson CO2/CH4 upper bound, and at low CO2 partial pressures, CO2 

permeability roughly doubled with a nearly 50% increase in selectivity versus pure PVAc under the 

same conditions. While at high CO2 partial pressure, CO2 permeability remained effectively 

unchanged with a 63% increase in selectivity comparing to pure PVAc. Their membranes showed 

promise for application in high pressure natural gas sweetening. He et al. reported that carbon 

nanotubes (CNTs) reinforced with the PVAm/PVA blend FSC membrane presented a good CO2/CH4 



Membranes 2012, 2              

 

 

714

separation performance with a CO2 permeance of 0.11 m3 (STP)/(m2 h bar) and a CO2/CH4 selectivity 

of 22 at 30 bar [84]. It shows a more secure mechanical strength to maintain a good separation 

performance even at high pressure.  

Process design for CO2 removal by membrane system from natural gas depends on the membrane 

permeance and selectivity, CO2 concentration in feed stream, specific separation requirement, as well 

as the location of the plant. Peters et al. conducted process design, simulation, and optimization for 

CO2 removal from natural gas using HYSYS integrated with an in-house membrane programme [17]. 

They reported that a two-stage membrane system with a CO2 permeance 0.3 m3 (STP)/(m2 h bar) and a 

CO2/CH4 selectivity 40 is comparable to that of an amine process. Although the CH4 purity (98%) of 

the sweet gas is lower compared to amine method (99.5%), it can achieve n gas sales standard  

(<2% CO2 in natural gas). However, CO2 purity (90%) in the permeate stream needs to be further 

improved for pipeline transportation and storage since 10% non-CO2 gas is needlessly compressed and 

will cost extra energy—this can be achieved by process design and optimization. A combination of 

hybrid process comprising a membrane system for bulk removal of CO2 from crude natural gas feed 

with an amine unit for final purification to reach the pipeline specification (<2% CO2) was designed by 

Bhide et al. [85]. Baker et al. also pointed out that a combination of a membrane system with an amine 

unit could offer a low-cost alternative to all-amine or all-membrane plants [16]. The future direction of 

natural gas sweetening using membrane systems will be the development of high performance 

membranes with an active layer on the order of 0.1 μm in order to compete with other separation 

methods. In addition, membranes should also have to be: resistant to warm and high pressure operating 

conditions and mechanically strong. Membrane plasticization and long-term compaction at high 

pressure should be further investigated. Moreover, how to predict the long-term performance in 

commercial application based on the short-term lab-scale tests could be a continuing challenge of a 

membrane system for high pressure natural gas sweetening. A few studies have been conducted on this 

issue where the researchers are studying the long-term performance of a polymeric PVAm/PVA 

membrane when exposed to H2S, MEG, TEG and higher hydrocarbons (HHC) which are usually 

present in natural gas. Their membranes seemed to tolerate the impurities relatively well, but were 

vulnerable to HHC [86,87]. 

4. Biogas Upgrading 

Biogas is considered to be one of the most efficient means of utilizing renewable energy and 

reducing greenhouse gas emissions. The composition of biogas varies depending on the origin of the 

anaerobic digestion process, and the main components are methane (CH4) and carbon dioxide (CO2) as 

shown in Table 2 [88]. 

Table 2. Typical biogas composition from different sources [88]. 

Process 
Composition (vol %) * H2S/SO2 

(ppm) CO2 CH4 N2 O2 H2O 

Farm biogas plant 37–38 55–58 <2 <1 4–7 32–169 
Sewage digester 38.6 57.8 3.7 0 4–7 62.9 

Landfill 37–41 47–57 <1 <1 4–7 36–115 

* Siloxane is not included. 
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Biogas can be used as a renewable energy source for heating, vehicle fuel, combined heat and 

power (CHP) generation, fuel cell and substitute natural gas. However, depending on the different end 

uses, specific biogas treatment should be executed. For applications such as vehicle fuel and natural 

gas grid injection, the acid gases of CO2 and H2S should be removed from raw biogas, i.e., biogas 

upgrading. High content of CO2 in biogas will cause the risks of corrosion of pipeline and decrease the 

Wobbe index which is directly proportional to the methane concentration. Therefore, CO2 removal 

from natural gas is mandatory in all natural gas processing plants. However, biogas upgrading 

processes will add extra costs to biogas production, so it is important to find an optimized upgrading 

technology in terms of lower energy consumption and higher efficiency. Moreover, methane losses 

during upgrading should be minimized since methane has a greenhouse effect around 24 times higher 

than that of CO2. 

Different techniques such as pressure swing adsorption (PSA), physical absorption (e.g., water 

scrubbing) [89], chemical absorption (e.g., amines) [90,91] and membrane separation [18,19] can be 

used for biogas upgrading. The choice of a suitable technology is mainly dependent on the specific 

conditions at a plant, such as availability of low price for heating, electricity and water, as well as the 

amount of gas to be handled. Today, most biogas upgrading plants in Sweden are using PSA. The 

upgraded gas has a typical methane concentration around 96% while methane loss is quite high  

(3%–10%). Plants using water scrubbing will produce a lot of waste water, and electricity consumption 

is also quite high. Membrane systems could be favorable for biogas upgrading due to a series of 

advantages, including safety and simplicity of operation, and easy maintenance and operation without 

hazardous chemicals [18]. Compression of upgraded biogas may vary depending on whether it goes to 

natural gas grid or will be used for vehicle fuel. Biomethane for vehicle fuel must be compressed up to 

around 200 bar, while the pressure can be lower if injected into a natural gas pipeline network  

(<80 bar). The main challenge for a membrane system is pre-treatment of biogas to remove H2S and 

water vapor to protect the membranes, especially for sewage treatment plants and landfill sites where 

the produced biogases contain high number of malicious gas components such as siloxanes (siloxanes 

will be a serious problem for some polymeric membranes, e.g., PVDF). Deng et al. reported to use 

composite FSC membranes for biogas upgrading [19]. Their results indicated that membrane process 

with a CH4 recovery of 99% at a low operation cost could be designed to achieve natural gas grid 

specification, which made this environmentally friendly technique more competitive compared to the 

other conventional technologies currently used. Makaruk et al. pointed out that a membrane system 

provides enough flexibility for heat integration within biogas plants [18]. The expected energy 

requirement for a single produced cubic meter of natural gas substitute is around 0.3 kWh, which is 

close to the values that were reported in an industrial scale technology demonstration for membrane 

biogas upgrading plant at Bruck/Leitha in Austria [92]. Moreover, a new carbon membrane company 

MemfoACT (www.memfoact.no) was launched in 2008 in Norway, which mainly focuses on biogas 

upgrading using carbon membranes. Their contributions could be promising to bring this technique 

into commercial application in the near future.  
  



Membranes 2012, 2              

 

 

716

5. Hydrogen Production/Recovery 

Hydrogen energy composes the promise of zero emissions as well as energy independence and 

safety in the transportation sector, which can be produced and recovered from different processes using 

membrane systems, as summarized in Table 3. Hydrogen can be generated from a readily available 

source: water electrolysis based on a proton-exchange membrane (PEM). PROTON developed a PEM 

electrolyzer FuelGen® to produce high purity hydrogen fuels [20]. Norsk Hydro built a wind/hydrogen 

energy demonstration system using a PEM electrolyzer and fuel cells at the island of Utsira in Norway 

2004, as shown in Figure 3 [21]—this is, however, no longer operational. This system provided two to 

three days of full energy autonomy for 10 households on the island, and was the first of its kind in the 

world as reported by Ulleberg et al. [93].  

Table 3. Main applications of membrane system for H2 production and recovery. 

Separation Process Membrane  Status  

H2 production by water 
electrolysis 

H2 PEM electrolyzer PEM, FuelGen® 
Commercial 
production 

Wind/H2 power system PEM electrolyzer and fuel cells PEM 
Pilot-scale 
demonstration 

H2/CO 
Methanol steam reforming 
membrane reactors 

Pd and CMS 
membrane 

Lab-scale 

H2/CO 
Adjustment of H2/CO ratio in 
syngas 

Silicon rubber, 
polyimide 

Plant installed 

H2/N2 Ammonia purge gas Prism® Plant installed 

H2/Hydrocarbon H2 recovery in refineries 
Silicon rubber, 
polyimide 

Plant installed 

H2/CH4 
Natural gas network 
transportation 

Carbon molecular 
sieve membranes 

Lab-scale 

Figure 3. Utsira wind/hydrogen demonstration plant based on proton-exchange membrane 

(PEM) electrolyzer [21]. 
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Hydrogen can also be produced from some industrial processes using membrane systems. The first 

commercial application of a membrane system for gas separation is hydrogen recovery from the 

ammonia purge gas using Prism® system produced by Air Products [94]. Hydrogen has a very high 

permeance compared to other gases such as nitrogen and argon, and the high purge pressure  

(136 bar) in the ammonia process provides enough driving force for gas permeation. This system can 

achieve a 95% hydrogen recovery, and the recovered hydrogen can reach a high purity of 98% either 

for the recycle to synthesis loop or in other processes. Industrial hydrogen recovery in refinery plants is 

mainly carried out by pressure swing adsorption (PSA) and cryogenic separation, while recent 

membrane systems attract great interest in this area due to their low capital cost and low energy 

demands. Brunette et al. conducted a review on the comparison between PSA, cryogenics and 

membrane systems for H2 recovery from refineries based on their process flexibility, reliability, ease of 

response to the variations, and expansion capability [95]. They concluded that choosing a suitable 

technique will mainly depend on feed composition, feed pressure, product flow rate as well as the 

requirements of product purity. The membrane system showed a lower energy intensity and smaller 

footprint compared to the other two processes. Recently, H2 production using two types of membranes 

(Palladium (Pd) and carbon molecular sieve (CMS) membranes) in a methanol steam reforming 

membrane reactor (MR) was reported by Sá et al. [22]. Their results indicated that CMS membranes 

presented higher permeability, higher hydrogen recovery, and lower selectivity, while Pd membranes 

were more expensive but exhibited much higher selectivity towards hydrogen. A combined CMS + Pd 

membrane reactor revealed some advantages compared to either CMS-MR or Pd-MR. 

If a hydrogen energy-based society is realized, a hydrogen distribution system must be built for 

hydrogen transportation which will take a long time. A feasible solution is to use the existing natural 

gas pipeline networks to transport a H2 and natural gas mixture, which was proposed by NaturalHy 

project (6th EU framework) [96]. In that project, Grainger et al. studied the separation performance of 

H2/CH4 with carbon molecular sieve membranes based on experiments and process simulation [97]. 

Their techno-economic evaluation results indicated that carbon molecular sieve membranes can offer a 

great potential for hydrogen separation from hydrocarbon, and high purity hydrogen can be recovered 

from leaner streams in natural gas networks with a low energy consumption.  

6. Volatile Organic Compounds Recovery 

Volatile organic compounds (VOC) might be recovered, instead of being released to atmosphere 

since some of these compounds are involved in atmospheric pollutions and are strong greenhouse 

gases. Different techniques such as condensation, absorption, adsorption and vapor permeation, etc., 

can be used for VOC recovery [98]. Among them, vapor permeation membranes attract great interest 

for VOC recovery from gas streams in various industrial processes, such as polyolefin plant resin 

degassing and gasoline vapor recovery in large retail gasoline stations [15,99,100]. The main 

application of vapor separation membranes is the recovery of hydrocarbon monomers from ethylene 

and polyethylene and polypropylene plants. Following the development of vapor/gas separation 

membranes, more and more polyolefin plants have installed hydrocarbon recovery units. A schematic 

process flow diagram of a typical membrane system integrated into a polyolefin plant is shown in 

Figure 4 [15]. The vapor-enriched permeate stream is recycled to the compressor’s inlet, while high 
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purity N2 is sent to the second stage membrane unit for further purification. Membrane Technology 

and Research, Inc. (MTR) developed a VaporSep® system for propylene recovery from polypropylene 

(PP) production plants, which has been installed in many petrochemical plants around the world during 

the last 10 years.  

Figure 4. A schematic process flow diagram of a membrane propylene recovery system [15]. 

 

Gasoline vapor recovery is becoming another important business for membrane gas separation 

systems. Many gasoline retail stations have installed membrane systems to recover hydrocarbon vapor 

when it was transferred from trucks to tanks. Some representative companies such as GKSS [101] and 

MTR [102] have developed gasoline vapor recovery systems for reduction of hydrocarbon emissions. 

The OPW VaporsaverTM system [103], fitted with MTR’s membranes, is used for recovery of gasoline 

vapors and can reduce hydrocarbon emissions by 95%–99%.  

7. Pressure Retarded Osmosis 

Pressure retarded osmosis (PRO) has the potential to produce renewable energy from natural and 

anthropogenic salinity gradients [7]. In a PRO system, water from a low salinity solution permeates 

through a membrane into a pressurized, high salinity solution; power is generated by depressurizing 

the permeate through a hydroturbine, as shown in Figure 5 [35]. The concept of energy production 

from the mixing of fresh water and salt water was first proposed by Pattle [104]. The continuous 

availability of both natural water resources (sea water) and anthropogenic waste streams showed a 

great potential of PRO technology for renewable energy production. However, development of PRO 

technology has been hindered due to the lack of a suitable membrane. Traditional reverse osmosis 

(RO) membranes cause a severe internal concentration polarization (ICP) phenomenon, which could 

decrease the water flux significantly. Thus, RO membranes can only achieve a low power density 

(power produced per membrane area) in a PRO operation unit. Another type of membrane: forward 

osmosis (FO), suffers less ICP influence, but the relatively low water flux also restricts a PRO system 

from attaining a high power density [35,36]. Statkraft built the world’s first prototype osmosis power 

plant in Norway to demonstrate PRO technology (power density <0.5 W/m2) [105], and today’s 

membranes can produce close to 3 W/m2. Although power density is still lower than the requirement 
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for commercial viability (power density of 4–6 W/m2 [106]), development of higher performance FO 

membranes could promote PRO technology to be commercialized for renewable energy production in 

the near future.  

Figure 5. A schematic diagram for pressure retarded osmosis (PRO) power generation system [35]. 

 

8. Future Directions 

Membrane technology shows strong potentials in various energy processes including CO2 capture 

from flue gas in power plants, natural gas sweetening, biogas upgrading, H2 recovery, VOC recovery 

as well as power PRO generation. However, for any kind of suitable application, a high performance 

membrane material is required, while taking into consideration some key parameters such as transport 

properties, durability and mechanical strength. The following aspects can be further investigated to 

achieve a high efficiency membrane process:  

 Membrane transport properties (pemeance and selectivity) 

 Mechanical strength, chemical and thermal stability under a specific operating condition 

 Membrane durability over the long term by being exposed to real process conditions 

 Membrane module design 

 Process design, simulation, optimization and integration 

Three specific parameters—environmental, economic and social indicators—are usually employed 

to compare membrane systems with the other traditional unit operations towards sustainability, and 

evaluate which technique could be more suitable for a specific application. However, for any specific 

application, process conditions need to be carefully considered before making a decision. Nevertheless, 

the prediction is that membrane systems, which require no or very little chemicals compared to 

standard unit operations, in addition to being easy to scale up and having low energy consumption, will 

be an environmentally friendly technology for application in energy processes in the future. 
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