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ABSTRACT

The performance and robustness of the Smith predictor controller has been
tested for first and second order processes with time-delay by comparing with
PI and PID control. It was assumed that the performance would obviously
be better when the time-delay is known.

Pareto optimal PI and PID controller tuning curves has been found. The
processes studied is divided between five first-order-plus-time-delay and nine
second-order-plus-time-delay models. Performance have been defined as a
weighted average of the integrated absolute error for a step load change in
input and output disturbances. Robustness has been defined in terms of the
maximum peak of the sensitivity function (MS).

The Pareto optimal Smith predictor tuning curves have been found. De-
terioration in performance and robustness have been evaluated when the
process time-delay deviate from the nominal time-delay for which the con-
trollers are optimal.

SIMC tuning curves have been compared to the Pareto optimal PI and
PID tuning curves, and a method for applying SIMC tuning to Smith predic-
tor controllers have been suggested.

The Smith predictor have proven to yield small performance enhance-
ments compared to optimal PI and PID control on second-order processes.
For first-order processes the optimal PI and PID controllers have perfor-
mance superior to the Smith predictor. When the process time-delay varies,
even Smith predictor controllers with modest MS values tend to destabilise.
No reason are found for utilising a Smith predictor PI or PID controller over
a Pareto optimal PI or PID controller. One will have to tune the Smith predic-
tor to yield very low MS values to avoid the instability issues when modelling
error in the time-delay parameter occurs. The potential increase in perfor-
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ii Abstract

mance achieved is easy to compensate with a regular PI or PID controller by
tuning it a little tighter.



PREFACE

“A sleeping student commits no sin. A sleeping student doesn’t learn a
darn thing about thermodynamics either.”

— Tore Haug Warberg
Associate professor, NTNU

How do you explain to your mother the concept of optimisation, and why
it is difficult to find global solutions in a non-convex world?

If you drop a small rubber ball in the bathtub, you know exactly
where it will end up ––– in the drain. Your bathtub is convex;
all descent paths lead to the drain, which is the optimal point.
Otherwise, it’s a really incompetent bathtub. Now, imagine you
are on a plane, flying over some mountain range. You close your
eyes, and you throw out the rubber ball somewhere on the way.
What do you think are the chances of that ball finding its way to
the absolute deepest valley?

This thesis is the result of fabulous teamwork. It started out as a mis-
sion to quantify how much performance one would loose by not applying a
Smith predictor to processes with time-delay. It ended up being somewhat of
a slaughter of the Smith predictor, based on its instability when modelling
error in the time-delay parameters occur.

To the reader: Beware! The amount of graphical results in this thesis is
too large. Have patience when reading.

On my way through this process, I have fought battles against myself and
my motivation, but mainly against MATLAB. The program does indeed carry
a lot of convenient tools for simulation and analysis of control problems. But
it has its limitations. This became very evident when I asked my everyday
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supervisor what one would name a stable process that oscillate to infinity.
His answer was “a contradiction”, and it was discovered that MATLAB didn’t
return the correct gain and phase margins for the obviously unstable system.

I am forever grateful for the superb guidance and utmost impressive level
of patience exercised by my everyday supervisor, Chriss Grimholt. This work
had not been possible to carry out without him. I would also thank my main
supervisor Sigurd Skogestad for his impressive level of knowledge. When-
ever questions arose that were difficult to answer, an explanation were al-
ways to be found in his office. Vinicius de Oliveira has helped me out several
times, even though I’m not his responsibility.

Hanne Sørgård, being a “sivilingeniør” in biotechnology, and still helping
me out proofreading this thesis in process system theory; thank you for being
strict on my language!

I would never have been at this point in life, completing a Master of Sci-
ence, without my guardian angels in high school: Kristoffer Hellton, a fel-
low student and now PhD candidate at the University in Oslo, and Cathrine
Tellefsen, my maths and physics teacher. You encouraged me to pursue my
curiosity towards the natural phenomena, and you demanded that I worked
with the science subjects. Thank you!

My social life and personal development have been covered by the chem-
istry union at Gløshaugen, Høiskolens Chemikerforening. I will always re-
turn.

Last, but not least: my partner, Kaja Sørgård Eriksen, deserve a prize. I
have spent a lot of hours in the office, and a lot of hours having MATLAB or
LATEX on my mind. Even so, she has listened to my complaints, thoughts,
frustration and delights, and also proofread a lot of my material. You were
right: I couldn’t have done this without you. I will be forever thankful.
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CHAPTER 1

INTRODUCTION

Outset

The Russian American engineer Nicolas Minorsky published in 1922 an arti-
cle on automatic steering of ships. His analysis was based on observations of
a helmsman, where Minorsky noted that the helmsman controlled the ship
not only based on the current error, but also on previous error and the ship’s
current rate of change. His goal was stability, and while proportional con-
trol provides stability against small disturbances, dealing with steady-state
disturbance require an integral term. A derivative term was later added to
enhance the control. Minorsky was with Maxwell, Routh, and Hurwitz one of
the pioneers in the discussion of control theory — he theoretically showed the
value of what today is known as the proportional-integral-derivative (PID)
controller structure (Bennet, 1984, 1993).

When a driver drives his car, he is aware of the oncoming curve of the
road. He then performs the necessary control actions, and safely maneuvers
the car through the curve. A Smith predictor uses a similar concept for the
prediction of future behaviour of a process with time-delay. If the prediction
of the behaviour of the car is misleading, the result can be quite disastrous for
both the driver and the car. Predicting the process behaviour should improve
the overall performance, but could this lead to robustness issues? What will
happen if the velocity of the car differs from what the driver anticipates?

1
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Thesis Scope

Grimholt and Skogestad (2012) have assessed the optimality of the Simple
Internal Model Control (SIMC)a tuning rules (Skogestad, 2003) for proportional-
integral (PI) control of a set of first-order-plus-time-delay (FOPTD) processes.
By evaluating the trade-off between performance and robustness for both op-
timal PI tuning the PI controller achieved by applying the SIMC tuning rules,
the optimality of the SIMC tuning rules have been quantified. The utilised
system was a one-degree-of-freedom negative feedback control scheme. Per-
formance was evaluated by considering a weighted average of the absolute
integrated error (IAE), while the robustness was measured in terms of the
maximum peak value of the sensitivity function for the system (MS). The
feedback control system was then tested for disturbance rejection of a step
load change in input and output. Grimholt and Skogestad (2012) report the
SIMC tuning rule to yield good settings for disturbance rejection, except for
pure time-delay processes.

This thesis is a natural extension of the work of Grimholt and Skogestad,
expanding the scope to second-order-plus-time-delay (SOPTD) processes. Op-
timal PI and PID controller solutions are found for a set of first and second
order process models with time-delay. Corresponding PI and PID controller
tunings are found from the SIMC tuning rule. A previous project in the field
have been performed by Foss (2012).

In industry, the cascade controller parameterisation is extensively used.
Different parameterisations are inspected to quantify potential deviation from
optimality when using a cascade parameterisation over a parallel.

The performance and robustness of a Smith predictor is tested for pro-
cesses with time-delay, by comparing it with Pareto optimal PI and PID con-
trol. The performance is assumed better if the time-delay is known. Opti-
mal PI and PID controllers are determined for the Smith predictor, and the
closed-loop stability when modelling error in the time-delay parameters oc-
curs is investigated. The illustrative example used by Adam, Latchman, and
Crisalle (2000) to illustrate discontinuities in the Smith predictor stability
domain is discussed, and possible instability is examined for a range of time-
delay errors. Previous work on the topic has been carried out by Paulsen
(2012). This work is perceived as unaccomplished, and will not be further
addressed.

The possibility of using the SIMC tuning rules for Smith predictor tuning
is studied, and the SIMC tuning rules is compared with a set of robust tuning
rules given by Normey-Rico and Camacho (2007).

a) The “S” could also denote “Skogestad”.
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The performance and robustness definitions in (Grimholt and Skogestad,
2012) is pursued. The phase margin is used to quantify the maximum al-
lowed extra dead-time before instability occurs for the Smith predictor tun-
ing cases.

The objective of this work is to compare the performance of optimal PI
and PID control with the performance of optimal Smith predictive control.
How optimal is the Smith predictor compared to the regular PI and PID
control? What are the benefits and disadvantages of utilising the Smith pre-
dictor control structure over the simple and safe PID control structure? Will
the SIMC tuning rules yield good results when tuning a Smith predictor?

Stay tuned!

Process Control and Optimisation

The phenomena of process control is ancient. Actually, it is as old as life
itself. Regulatory mechanisms are essential in biological systems, and one
could ask how human interactions would be possible without the concept of
feedback?

From an industrial point of view, most processes need to be controlled.
Without some sort of regulatory mechanism one cannot guarantee neither
product quality, safety for humans, equipment or environment, nor good eco-
nomic outcome for the process. With regards to economy, one would always
like to operate a process at its optimum, whether that may be the optimal
pressure and temperature for a reactor, or the optimal airplane speed with
respect to fuel consumption and the fact that “time is money”. The airplane
example introduces an optimisation concept presented in Chapter 3. The
overall optimality of a problem is here governed by two (or more) conflicting
objectives. This is called multi-objective optimisation, with the resulting so-
lutions called Paretob optimal solutions. Such a problem arises when tuning
PID controllers: a robust controller will not have the response necessary to
yield high performance. Simultaneously, a high performance controller have
low robustness to disturbances. Thus one will always have to make a trade-
off between performance and robustness when tuning PID controllers.

b) After Vilfredo Pareto (1848-1923), an Italian economist who applied the concept in eco-
nomic efficiency and income distribution studies.
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PID Control

The PID controller is a structure with Proportional, Integral and Deriva-
tive action, and is almost universally used in industrial control (Goodwin,
Graebe, and Salgado, 2001; Normey-Rico and Camacho, 2007). The controller
has three parameters associated with it: gain (Kc), integral time (τI ) and
derivative time (τD). The PID controller design is built for simplicity, and its
effect on the signal are concepts which are easy to understand.

Proportional action Often referred to as controller gainc, is proportional
to the error signal. Sensitivity to deviation between reference and out-
put is adjusted with the gain.

Integral action The controller output depends on the integral of the error
over time, and is necessary for eliminating steady-state offset.

Derivative action Anticipating the future behaviour of the error signal by
evaluating the time derivative of the error signal.

The mentioned parameters impose a distinct effect on the controller in-
put signal, while the overall output signal is also dependent on the internal
signal structure of the controller. Common parameterisations are parallel
and series signal processing. The series controller is also known as a cascade
controller.

The different parameterisations of the PID controller can yield different
tuning solutions. While the zerosd of a parallel PID controller can have both
real and complex solutions, the zeros of the cascade controller can only be lo-
cated in the set of real numbers. This is proven in Appendix J. If the optimal
controller for a given process problem is located in the complex subdomain
of a parallel controller configuration, and a cascade controller structure is
used for the optimisation procedure, the resulting controller cannot be truly
optimal.

The Smith Predictor

The main problem with controlling dead-time systems is associated with the
time lapse before the effect of the disturbances, or the control actions, are
experienced. The controller will be attempting to correct a situation that
happened backwards in time. The performance of closed-loop systems with

c) This depends on the controller parameterisation, further studied in Chapter 2.3.
d) Zeros: values for s such that K(s)→ 0. Poles: values for s such that K(s)→∞
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significant time-delay can be improved by applying a predictor correction
structure (Normey-Rico and Camacho, 2007).

The Smith predictor consists of a regular controller and a model of the
dead time process that is to be controlled. The purpose of the Smith predictor
is to allow the controller to observe the expected process response before it
occurs, thus cancelling the effect of the delay on the closed loop dynamics.

Adam et al. (2000) has examined the robustness of the Smith predictor
with respect to uncertainty in the time-delay parameter. While the Smith
predictor can achieve improved control of processes with delay, some unintu-
itive behaviour is observed when there is modelling mismatch between the
time-delay in the process and the process model used by the Smith predictor.
Instability is reported in some cases when the real time-delay is less than
the modelled time-delay. As Smith predictors often are designed using an
overestimated delay, discontinuities in the stability domain can pose serious
service problems.

SIMC Tuning Rules

Although the PID controller has only the three mentioned parameters, find-
ing good tuning values proves challenging; Skogestad (2003) claims that a
large number of PID controllers in the industry are poorly tuned. In his
article “Simple Analytic Rules for Model Reduction and PID Controller Tun-
ing” he proposes a set of analytically derived tuning rules which yield good
responses for setpoint changes and disturbance rejection in both integrat-
ing and pure time-delay processes. The only tuning parameter in the SIMC
tuning rules, the closed-loop time constant denoted τc, is by Skogestad rec-
ommended to be set equal to the time-delay to yield a controller with fast
response and good robustness. This assertion is examined and put in context
with the proposed measures of performance and robustness in this thesis.
The SIMC rules are also modified with the aim of tuning the Smith predictor
controller structure.

Thesis Structure

Feedback Control

The necessary theory for this study is introduced in this chapter. The feed-
back scheme used throughout this thesis is declared, and the corresponding
loop functions are defined. Definitions for controller parameterisations are
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proclaimed, and the Smith predictor controller structure is given. The SIMC
tuning rules are finally accounted for.

Pareto Optimisation

This chapter describes the concept of multi-objective optimisation. The def-
initions of controller performance and robustness is introduced and put in
context with frequency domain controller analysis. The complete optimisa-
tion problem is formulated, and simulations and algorithms are summarised.
The objective function is graphically represented for several cases to give an
impression of the nature of the optimisation problem.

First Order Processes

In this chapter, the Pareto optimal tuning curves for the first-order processes
are found. Deviation from optimality when using a cascade PID controller
over a parallel PID controller is discussed. An analysis of the Pareto optimal
controller stability when variations in the process time-delay are introduced,
is performed. The SIMC tuning parameters for the processes are found, and
compared to the Pareto optimal PI controller solutions.

Second Order Processes

This chapter resembles the “First Order Processes” chapter. The scope is
expanded to yield second-order processes.

Optimality of the Smith Predictor

In this chapter, the Pareto optimal Smith predictor PI and PID tuning curves
are found. The stability of the Smith predictor controllers are examined
when there is time-delay modelling error, and the true time delay of the pro-
cesses differs from the nominal time-delay.

Smith Predictor Tuning Rules

In this chapter, the SIMC tuning rules are evaluated in terms of being used
for tuning the Smith predictor. A set of robust tuning rules given in Normey-
Rico and Camacho (2007) have been compared to the suggested SIMC rules.

Conclusion

Conclusion are drawn, and suggestions for further work are given.
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Appendices

The appendices are the main source of plots in this thesis. There are a lot of
them, so have patience.





CHAPTER 2

FEEDBACK CONTROL

“Learn from the past, set vivid, detailed goals for the future, and
live in the only moment of time over which you have any control:
now.”

— Denis Waitly
Author and motivator

2.1 Outset

The water level in the cistern of the traditional water flush toilet is controlled
by a floating device which controls the inflow of water through a valve. In an-
cient Greece, The Greek Ktesibios started using this type of feedback struc-
ture for water-level control as early as 250 B.C. (Mayr, 1970). The purpose
of the regulator was to keep the water level in a tank constant, such that the
outflow of the tank would fill a second tank at a constant rate. The water
level in the second tank then depend only on the time elapsed. In this way
an accurate method for time measurement was achieved. (Lewis, 1992).

2.2 Principles of Feedback Control

In control theory, one distinguishes between open-loop (feed-forward) and
closed-loop (feedback) arrangements. The open-loop scheme has the advan-
tage of the question of system stability being trivial: the system is stable
when both the controller and the process are stable. The fundamental rea-
sons for using feedback control, as described by, amongst others, Skogestad
and Postlethwaite (2005), are summarised to be the presence of signal uncer-

9
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Figure 2.1 – Block diagram of the feedback control system described in (Skogestad
and Postlethwaite, 2005)

tainty in the form of unknown disturbances, process model uncertainty and
a potentially unstable plant.

In this work, a one-degree-of-freedom negative feedback control scheme,
illustrated in Figure 2.1, is applied as described by Skogestad and Postleth-
waite (2005). The controller input is e i = r − ym, where ym = y+ n is the
measured input, r is the reference or setpoint, y is the system output and
n is the measurement noise. In the figure, K denotes the controller transfer
function, while G, Gdi and Gdo denotes the transfer functions for the process,
the input disturbance and the output disturbance, respectively. The Laplace
transform variable s is omitted from the transfer functions for convenience.
The controller output is p, the process input is u, and the process input and
output disturbances are di and do, respectively. The error is regarded as the
true output offset from the reference, e = y− r.

The output disturbance can be regarded as a type of setpoint change,
and is often treated as such. Often, a reference filter is applied to enhance
setpoint performance. The focus of this work is disturbance rejection, and
as a setpoint filter removes the disturbance influence in the feedback loop,
reference filter is disregarded and the notation of the output disturbance is
retained.

It is assumed that the disturbance transfer functions, Gdi and Gdo equal
unity and do not affect the disturbance signals, di and do. Thus the closed-
loop response of the plant model with a one-degree-of-freedom controller can
be written as Equation (2.1). The corresponding block diagram is illustrated



2.3. PID Controllers 11

in Figure 2.3, and represents the system scheme used throughout this thesis.

y= 1
1+GK︸ ︷︷ ︸

S

do +
G

1+GK︸ ︷︷ ︸
GS

di +
GK

1+GK︸ ︷︷ ︸
T

r− GK
1+GK︸ ︷︷ ︸

T

n. (2.1)

Defining the functions

S ,
1

1+GK
and T ,

GK
1+GK

, (2.2)

where S is the sensitivity transfer function and T is the complementary sen-
sitivity transfer function. The influence of the disturbance, the reference and
the noise signals on the output is identified as

u = Sdi +KS (r−n−do) . (2.3)

The equivalent expression for the error is

e = Sdo +GSdi −Sr−Tn (2.4)

The reference influences the plant input through the product KS and the
error off-set through S. The complementary sensitivity indicate the noise
amplification in the feedback loop. Consequently, if T > 1, the noise will
eventually dominate the error. A schematic illustration of the frequency do-
main behaviour of S and T, along with a controller and the product KG, is
given in Figure 2.2. In the figure, the controller is not ideal, as the refer-
ence tracking is poor and the noise is amplified (T > S). With regards to
controller action, the KS line indicate that the controller is working heavily
in the high-frequency region.

2.3 PID Controllers

The differential equation for the parallel form PID control algorithm in the
time domain is

K(t)= p̄+K?
c

(
e i(t)+

1
τ?I

∫ t

0
e i(t)dt+τ?D

de i(t)
dt

)
, (2.5)

where p̄ is the steady-state value, K?
c is the controller gain, τ?I is the con-

troller integral time and τ?D is the controller derivative time. The steady-
state value is often set to zero as it only scales the values, and is further
omitted.
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Figure 2.3 – Block diagram of the feedback control system utilised in this thesis.
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e i
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1

τ?D s

K?
c p++

+

Figure 2.4 – Block diagram of the parallel form of PID control without derivative
filter.

Controllers are usually displayed as a transfer function in the Laplace
domain. For this thesis, the controller definition is

L {K(t)} (s)= K(s),
p(s)
e i(s)

, (2.6)

where L {·} is the Laplace transform. The Laplace transform variable, s, is
further omitted for convenience when denoting a controller in the Laplace
domain.

Standard Parallel Controller

The block diagram representation of the standard parallel controller in the
Laplace domain is given in Figure 2.4, with the corresponding transfer func-
tion given in Equation (2.7)

p
e i

= K?
c

(
1+ 1

τ?I s
+τ?D s

)
. (2.7)

Alternative Parallel Controller

An alternative representation of the parallel controller with a different set
of tuning parameters is illustrated in Figure 2.5. The corresponding transfer
function is

p
e i

=K
(
P+ I

s
+Ds

)
, (2.8a)

P= 1− I−D≥ 0, (2.8b)

I≥ 0, (2.8c)

D≥ 0. (2.8d)
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Here, K, P, I and D represent the controller gain, proportional action, in-
tegral time and derivative time, respectively. The alternative configuration
is motivated by the ability to produce pure I, D or ID-controllers without
having the gain approach zero to remove the proportional term. Another ad-
vantage is that the integral term never approach infinity, which can be the
case with the standard or cascade parameterisation. The parameterisation
also carries the advantage of avoiding having the integral term approach in-
finity. The proportional term of the controller action is set by the integral and
derivative time parameters, and the overall gain is used to adjust the sensi-
tivity of the controller. The alternative parallel controller parameterisation
can be transformed to the parallel controller parameterisation according to
Appendix K.

e i I
s

1− I−D

Ds

K u++
+

Figure 2.5 – Block diagram of an alternative parallel form of PID control without
derivative filter.

Cascade Controller

In times past, when all controllers were analogue, it was convenient to have
the PI and the PD element in series. This is the case for the series, or cas-
cade, controller. This parameterisation is very common in industry. A block
diagram representation of the controller is given in Figure 2.6, and the cor-
responding transfer function is

u
e i

= Kc

(
τI s+1
τI s

)
(τD s+1). (2.9)

Here, Kc, τI and τD are controller gain, integral time and derivative time,
respectively.

Derivative filter

The aim of having derivative action in a controller, is to improve the dynamic
response of the controlled variable and decrease the time necessary to reach
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e i Kc
τI s+1
τI s τD s+1 p

Figure 2.6 – Block diagram of a cascade form of PID control without derivative fil-
ter.

steady state. The derivative action is increasing the phase margin, and thus
increasing robustness of the controller. This increase in robustness can be
traded with a more aggressive tuning, which improves performance. The
controller derivative action adds a zero to the system, which can increase
the system sensitivity at high frequency. To avoid having the derivative
of the measured variable alter excessively when experiencing the high fre-
quent, random fluctuations of measurement noise, a filter can be added to
the derivative action in the controller. The filter introduces an extra pole to
the system, and “brings down” the high frequency sensitivity.

The cascade controller as presented in Equation (2.9) is physically un-
realisable without a derivative filter. When using cascade PI control on a
first-order process or cascade PID control on a second order process, the loop
function will have more zeros than poles. A derivative filter is used to add
one more pole, realizing the controller. The transfer function of the cascade
form PID controller with derivative filter is given in Equation (2.10),

u
e i

= Kc

(
τI s+1
τI s

)(
τD s+1
τF s+1

)
, (2.10)

where τF is the derivative filter time constant. τF is often written as a prod-
uct of some factor and the derivative time constant, τF = ατD , where α is
called the derivative filter constant.

Solution Domain

As presented in the earlier sections, controllers are usually handled in the
Laplace domain, and are often a ratio between two Laplace variable polyno-
mials, that is, polynomials in s. When the numerator or the denominator
of the controller transfer function approach zero, the value of the function
approach either zero or infinity. The values for s where K → 0 are denoted
“zeros” while the values for s where K →∞ are named “poles”. Therefore, by
collecting the terms in Equations (2.7), (2.8) and (2.9), respectively, and fac-
torizing, the controller solution domain in s for each parameterisation can be
described. This is shown extensively in Appendix J. The cascade controller
is limited to the real subdomain of the controller solutions for standard par-
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allel and the alternative parallel PID controller parameterisation. For PI
controllers, the solution domains are equal.

2.4 Smith Predictor

“Time-delay is control’s worst enemy!”a. Time-delay adds phase lag, which
affects the the closed-loop stability. Advanced techniques for the compensa-
tion of significant time-delay exists. The Smith predictor is a method where
the time-delay theoretically is eliminated from the closed-loop transfer func-
tion. The Smith predictor utilises a model of the process to predict the sys-
tem behaviour, and thus improve controller performance. The basis for the
improved performance is that the controller doesn’t have to “wait” to expe-
rience the system response, assuming a perfect prediction model. A block
diagram of the Smith Predictor is given in Figure 2.7.

The derivation of the Smith predictor is based on the complementary
sensitivity function T, with a preferred first order closed-loop response to
setpoint changes. The Smith predictor is derived in Appendix H.

The model can for a FOPDT or SOPTD process be defined as

G ,G◦e−θs, (2.11)

where G◦ contains the non-delayed dynamics of the model. For the Smith
predictor, the model is defined as

G̃ , G̃◦e−θ◦s, (2.12)

where G̃ is the nominal Smith predictor model with the underlying plant
behavior given by G̃◦, and θ◦ is the nominal time-delay model. The Smith
predictor controller, denoted K̃ , is a two-degree-of-freedom-controller with
transfer function

K̃ = K
1+KG̃◦

(
1+ e−θ◦s

) . (2.13)

K is some controller configuration, also called the primary controller. By
assuming a perfect plant model G̃◦ = G◦ and θ◦ = θ (i.e. no modelling error),
no disturbance and no measurement noise, the error between the process
output and the model output is zero, and the primary controller can be tuned
as if there is no time-delay in the process (Normey-Rico and Camacho, 2007).

a) Quote Sigurd Skogestad, Process Control Course Notes, and many others.
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−

+
−

+
−

K̃

Figure 2.7 – Block diagram of the Smith Predictor

2.5 Simple Analytic Tuning Rules

Skogestad (2003) presented analytic rules for PID controller tuning based
on the Internal Model Control approach (Rivera, Morari, and Skogestad,
1986). His aim was for the rules to be simple and yield good closed-loop
behaviour. Simple analytic rules for model reduction to a first-order-plus-
time-delay (FOPTD) or second-order-plus-time-delay (SOPTD) model was in-
troduced, using the “half rule” for obtaining the effective time-delay. The
tuning rules are in (Skogestad, 2001) claimed to be “probably the best tun-
ing rules in the world”, and are in short denoted SIMC for “Skogestad” or
“simple” internal model control.

The SIMC method is a two-step procedure, as described in (Skogestad,
2003):

Step 1. Obtain a FOPTD or SOPTD model. The effective delay in the model
may be obtained using the “half rule”.

Step 2. Derive model-based controller settings. PI settings are derived from
the FOPTD model and PID settings are derived from the SOPTD
model.

A general experssion for of a FOPTD and a SOPTD model are given in
Equations (2.14) and (2.15), respectively.

G(s)= k
τs+1

e−θs (2.14)

G(s)= k
(τ1s+1)(τ2s+1)

e−θs (2.15)
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Here, G is the process transfer function, k is the process gain, τ, τ1 and τ2 are
process lag time constants, θ is the effective time-delay and s is the Laplace
variable.

Step 1: Model Approximation To obtain models on the form of Equa-
tions (2.14) and (2.15), Skogestad and Grimholt (2012) states that the follow-
ing model information needs to be estimated :

• The plant gain, k

• Dominant lag-time constant, τ1

• Effective time-delay, θ

• Second-order lag time constant, τ2

The parameters may be obtained in several ways. Examples are the Ziegler-
Nichols open-loop step response and closed-loop setpoint response with P-
controller methods (Ziegler and Nichols, 1942), an open loop step response
experiment (Skogestad, 2003; Skogestad and Grimholt, 2012), the setpoint
overshoot method (Shamsuzzoha and Skogestad, 2010) or approximation of
the effective delay from a detailed higher order model using the “half rule”
(Skogestad, 2003).

The “half rule” is based on a first order Taylor approximation of e−θs ≈
1−θs, which is used to approximate negative numerator time constants and
small time constants as time-delay. Since these time-delay approximations
are conservative in terms of control, the rule is to distribute the largest
neglected denominator time constant evenly to the effective delay and the
smallest retained time constant. For a model in its original form

∏
j

(
−τinv

j◦
s+1

)
∏

i
(
τi◦s+1

) , (2.16)

the lag constants (τi◦) are sorted in descending order, and τinv
j◦

> 0 denote
the inverse response time constants. The model reduction of a higher order
process is

τ1 = τ1◦ +
τ2◦

2
; θ = θ◦+

τ2◦

2
+

∑
i≥3

τi◦ +
∑

j
τinv

j◦ , (2.17a)

τ1 = τ1◦ ; τ2 = τ2◦ +
τ3◦

2
; θ = θ◦+

θ3

2
+

∑
i≥4

τi◦ +
∑

j
τinv

j◦ , (2.17b)
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for a first order and second order model reduction target, respectively.
Positive numerator time constants (T◦s+1) are proposed cancelled by a

“neighboring” denominator term (τ◦s+1), where the approximations

T◦s+1
τ◦s+1

≈



T◦/τ◦ for T◦ ≥ τ◦ ≥ θ,
T◦/θ for T◦ ≥ θ ≥ τ◦,
1 for θ ≥ T◦ ≥ τ◦,
T◦/τ◦ for τ◦ ≥ T◦ ≥ 5θ,

τ̃◦/τ◦
(τ̃◦−τ◦)s+1 for τ̃◦ ,min(τ◦,5θ)≥ T◦,

(2.18)

apply. Here, θ is the effective delay.

Step 2: Model Based Controller Settings The PID tuning derivation
makes use of the Internal Model Control (IMC) approach for setpoints (Rivera
et al., 1986) and the first order Taylor approximation of e−θs to yield a cas-
cade parameterisation PID controller. The integral time was modified to give
better disturbance rejection, and the resulting SIMC PID tuning rules for a
SOPTD model is given in Equation (2.19). For FOPTD models, the derivative
time term is set to zero, τD = 0.

Kc =
1
k

τ1

(τc +θ)
, (2.19a)

τI =min[τ1,4(τc +θ)] , (2.19b)

τD = τ2. (2.19c)

The closed-loop time constant, τc, is in Skogestad’s original article recom-
mended set equal to the time-delay to yield a robust controller with fast re-
sponse, τc = θ.





CHAPTER 3

PARETO OPTIMISATION

“Premature optimization is the root of all evil”

— Donald E. Knuth
Computer scientist,

creator of TEX

3.1 Basic Principles

When performing optimisation of a nontrivial problem with multiple conflict-
ing objectives, there doesn’t exist a single solution that can optimise each of
the conflicting objectives simultaneously. If none of the objective functions
can be improved without a reduction of optimality in the other, the solution
is said to be Pareto optimal. This trade-off is illustrated in Figure 3.1, where
two conflicting objectives generate a Pareto optimal curve. The region above
the curve contains the feasible set of solutions, while the region below the
curve contains the set of infeasible solutions for the optimisation problem.
As the optimisation problems are defined as minimising some objective, the
optimality is increasing towards the origin for both objectives. Optimisation
problems with multiple conflicting are called multi-objective or Pareto opti-
misation problems.

The tuning parameters for PID controllers can be adjusted as to yield
high performance or high degree of robustness towards disturbances. How-
ever, combining these two objectives proves difficult as high performance is
achieved at the expense of high robustness. One would prefer to find con-
troller tunings that exercise good trade-off between the two competing objec-
tives, thus the Pareto optimal controller solutions are essential. The goal of

21
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Figure 3.1 – An illustration of a Pareto-optimal curve with two conflicting objective
functions. The “Uninteresting region” denotes a subset of solutions
where a decrease in optimality in Objective function 1 does not result
in an increase in optimality in Objective function 2.

this procedure is to quantify the trade-off between performance and robust-
ness.

3.2 Performance

The output performance of the controller tuning is quantified as done by
Grimholt and Skogestad (2012). The purpose of the objective function is
to give a scalar, well balanced appearance of the trade-off between distur-
bance rejection and setpoint tracking. The controller tunings are evaluated
by performing a positive step load in the input and output disturbance. The
response behaviour may be oscillatory, and the magnitude of the integrated
absolute error (IAE), defined in Equation (3.1), is set as a basis for the per-
formance objective function. The IAE integrates the offset form reference
for a given timespan. Zero steady-state error is assumed, that is, the con-
troller is required to have integral action unless a pure integrating process
is simulated.

IAE,
∫ ∞

0
|y(t)− r(t)|dt. (3.1)

Considering a weighted average of IAE for a step input load disturbance, di,
and IAE for a step output load disturbance, do, the cost function is defined
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as

J(K),
1
2

[
IAEdo (K)

IAE◦
do

+ IAEdi (K)
IAE◦

di

]
, (3.2)

where the reference weighting factors IAE◦
do

and IAE◦
di

are for given refer-
ence PID controllers. The reference weighting factors are found separately
by performing a step load change in input and output for a given process,
and finding the corresponding optimal controller. Thus, the reference values
IAE◦

do
and IAE◦

di
are obtained from different optimal controllers, while the

values IAEdo and IAEdi are given from the single controller yielding optimal
trade-off between performance and robustness.

The reference PID controller is set to have a maximum sensitivity peak
(MS) valuea of MS = 1.59 originating from Grimholt and Skogestad (2012)
reporting it to be the resulting MS value for a SIMC PI controller with τc =
θ = τ= 1 and for the process G = 1

τs+1 e−θs.
The reason for weighting the objective function is to provide relative val-

ues for the IAE resulting from the input and output step load change, respec-
tively. Disturbance rejection performance is often rather poor compared to
setpoint tracking performance, which may result in the output disturbance
rejection completely dominating the cost function.

The weighting factors also causes the objective function to be indepen-
dent of the size of the step load change and the process gain.

To be able to compare the Pareto optimal solutions for different controller
structures and parameterisations, the IAE weights found for the Pareto op-
timal PID controller with the alternative parallel parameterisation was set
as a fixed basis for all cost calculations.

As the weights in the cost function are found at MS = 1.59, the optimal
solution for MS = 1.59 equals unity. By observing the deviation from J = 1
for MS = 1.59, the optimality loss caused by the tuning compromise between
performance and robustness is quantified. Further, the distance from the
Pareto optimal curve to the tuning curve is denoted non-optimality loss. The
loss definitions are illustrated in Figure 3.2.

3.3 Robustness

The robustness of a controller can be defined from its stability margins, that
is, how close a stable closed-loop system is to instability (Skogestad and

a) Premature notation. MS is defined as the maximum sensitivity peak; the topic is covered
in Chapter 3.3.
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Figure 3.2 – An illustration of the performance-robustness compromise loss and the
loss due to non-optimality of controller tuning.

Postlethwaite, 2005). To evaluate the controller robustness, gain margin
(GM) and phase margin (PM) are introduced.

The gain margin is defined as

GM,
1

|L(iω180)| , (3.3)

where L(s) = L(iω) is the closed loop transfer function of a stable system
with negative feedback, and ω180 is the phase crossover frequency where the
Nyquist plot of L(iω) crosses the negative real axis between Re(iω)=−1 and
Re(iω)= 0.

The phase margin is defined as

PM,∠L(iωc)+180°, (3.4)

where ωc is the gain crossover frequency defined such that |L(iωc)| = 1. The
requirements for gain and phase margins are typically of magnitude GM> 2
and PM > 30◦, respectively. A schematic illustration of a Nyquist plot of a
possible L with corresponding gain and phase margins, and gain and phase
crossover frequencies, are given in Figure 3.3.

The gain and phase margins are related to the stability transfer function
S and complementary stability transfer function T through the maximum
peak criteria. The maximum peaks of S and T are defined as

MS ,max
ω

|S(iω)| = ‖S‖∞, (3.5a)

MT ,max
ω

|T(iω)| = ‖T‖∞, (3.5b)
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respectively, where ‖·‖∞ is the H∞-norm. From the definition of S and T, the
relation S+T = 1 is true, and it follows that MT is bounded by the selected
MS value by

MT ≤ MS +1. (3.6)

The boundary relation in Equation (3.6) is not absolute. For stable systems,
MT is often less than MS (Skogestad and Postlethwaite, 2005).

In the Nyquist plot, 1/MS is the closest distance between L(iωc) and the
critical point Re(L(iω))=−1. The relationship between MS and MT , and the
gain and phase margins are

GM≥ MS

MS −1
and GM≥ 1+ 1

MT
, (3.7a)

PM≥ 1
MS

and PM≥ 1
MT

. (3.7b)

Large values for MS and MT indicates poor robustness. MS is used as the
main criteria for the evaluation of robustness in terms of gain margin, with
the complementary sensitivity being a measurement of the degree of oscil-
latory behaviour in the system. The recommended lower stability bound,
and the upper maximum sensitivity peak value, is MS = 2, which guarantees
GM≥ 2 and PM≥ 29° (Skogestad and Postlethwaite, 2005).

Closed loop instability occurs at the phase frequency ωc =−180°. As the
phase margin quantifies how much phase lag that may be tolerated before
this point is reached, the maximum additional time-delay before instability,
θmax, is reached is given by

θmax =
PM
ωc

. (3.8)

While MS is a quantification of the distance to the instability limit, the com-
plementary sensitivity peak, MT , represents the sensitivity to modelling er-
rors of zeros and time-delay, and the worst-case noise amplification (Grimholt
and Skogestad, 2013).

3.4 Optimisation Problem Formulation

Based on the previous chapters, the overall problem formulation for solving
the Pareto optimal solutions is

min
K

J(K)= 1
2

[
IAEdo (K)

IAE◦
do

+ IAEdi (K)
IAE◦

di

]
, (3.9a)

s.t. MS = m m ∈MS, (3.9b)
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Figure 3.3 – A schematic Nyquist plot of a closed loop system with feedback trans-
fer function (L(s)) with gain and phase margins (GM, PM) and the
maximum sensitivity peak (MS) of the system sensitivity transfer
function (S). Re and Im denote the real and imaginary axes, respec-
tively.

where K is a P, PI, PID or Smith predictor controller and MS is a set of MS
values where m is the MS value currently of interest. The process gain used
for all models are positive (k > 0), thus providing the inequality constraint of
the controller parameters being greater than zero,

Kc, τI τD ≥ 0. (3.10)

3.5 Optimal Plot Examples

The shape of the cost function described in Chapter 3.2 can be graphically
presented by “brute force” evaluation. As good initial points for the optimi-
sation routine are essential to obtain preferably global minima, knowledge
about the curvature of the objective function proves helpful. Figure 3.4 il-
lustrate the contour plot of the cost function surface for case 1 and case 14,
respectively. The cost function for the SOPTD process is less non-convex com-
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Figure 3.4 – “Brute force” evaluation of the objective function for a SOPTD and
FOPTD model.

pared to the FOPTD process cost function. The latter will be more prone to
erroneous optimisation, as the optimal point probably is located in a non-
convex valley bottom in the area south west in the plot. The south eastern
part of the plot is almost completely flat, which makes it very difficult for
gradient based optimisation routines to find a descent direction.

3.6 Simulations

MATLAB was used to find the data necessary to perform the analysis. Ap-
pendix L extensively documents the approach and code used. It should be
noted that the requirements for the programming structure changed through-
out this work, and the documented structure is not optimal for continued
research.

To simulate the step responses, two approaches is used.

1. Using MATLAB’s native step function to return error and time values,
which then is integrated by the MATLAB native trapz function.
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2. A SIMULINK flow sheet, returning the integrated signal (Appendix N).

The simulation time for both approaches is set to a fixed value of tSimTime =
50s to ensure production of comparable results for all simulations. For cas-
cade PID controllers, the derivative filter constant was set to τF = 0.001τD .
The set of robustness values for the Pareto optimal PI and PID controllers is
set to MS = [1.25, . . . ,3.00] with a resolution of MS i+1 −MS i = 0.025. For the
Smith predictor the corresponding values are MS = [1.25, . . . ,2], with a reso-
lution of MS i+1−MS i = 0.01. When investigating the sensitivity to time-delay
modelling error, the modelling error resolution was set to θi+1 −θi = 0.01s.

3.7 Algorithm

The workflow for finding the Pareto optimal solutions for the problem formu-
lated in Chapter 3.4 is outlined in Algorithm 1. The main MATLAB script
used in the procedure is given in Appendix L, with appropriate support func-
tions given in Appendix M. The optimisation routine consists of a primary
and a secondary solver, called through the functions fmincon and fminsearch

. The basic idea is that fmincon will perform a search for a solution controller
K . If this solution is non-optimal based on the convergence criteria returned
by the function, fminsearch will be invoked. If fminsearch returns a non-
optimal solution, the complete run is terminated with an error message.

If fmincon or fminsearch consider the solution optimal, fmincon is finally
invoked with “hot start” in the presumed optimal solution for confirmation.

fmincon is a native MATLAB-function which makes use of gradient based
optimisation routines to solve a nonlinear constrained optimisation prob-
lem (Mathworks). The solver chosen is sequential quadratic programming
(SQP). This optimisation method is more efficient than Nelder-Mead, used
by fminsearch, with respect to computation time, but requires good initial
points to converge to a global solution.

fminsearch is a native MATLAB-function which can be used for solving non-
linear unconstrained optimisation problems. It makes use of the
Nelder−Mead simplex direct search method (Mathworks). As fminsearch

is unconstrained, an fzero function is added within the cost calculations
(noGrad.m in Appendix M.10) to find the appropriate controller gain yielding
the desired MS value. fminsearch performs a search for a minima in the
plane spanned by the integral and derivative time.
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Details on the mathematical aspect of the SQP and Nelder-Mead optimi-
sation routines is extensively documented in the literature on numerical op-
timisation. An example is “Numerical Optimization” by Nocedal and Wright
(2006).

Algorithm 1 Find Pareto optimal tuning curve.
1: for model in set of models do
2: if Controller configuration equal po:pid:alternative then
3: for MS = 1.59 do
4: Find K that minimizes J for a step input load disturbance (di)

→ IAEdi

5: Find K that minimizes J for a step output load disturbance (do)
→ IAEdo

6: end for
7: else
8: Load IAE reference weighting factors for model
9: end if

10: for all MS in MS do
11: Find K that (globally) minimizes J for a combined step in di and do.
12: end for
13: Plot J = f (MS)
14: end for





CHAPTER 4

FIRST ORDER PROCESSES

4.1 Introduction

In this chapter, the results of the study of Pareto optimal PI controllers found
by Grimholt and Skogestad (2012) for a set of FOPTD process models are
reproduced. Pareto optimal PI controller solutions are found and compared
with the SIMC tuning rules. Reference points for different choices for the
closed-loop time constant (τc) are demonstrated, and the behaviour in these
points are discussed. The results found by Grimholt and Skogestad (2013)
in their study of Pareto optimal PID controllers on the same processes are
also confirmed. The question of optimality and controller parameterisation
is addressed and discussed.

One should always consider the occurrence of uncertainty. Numerical un-
certainty is always present, and the optimisation routines may find solutions
that are close to optimality, but not truly the global optimum. The integra-
tion step size for the SIMULINK block diagram was set to a constant value of
10−3, which yield a 1 % loss in the cost function compared to the trapz inte-
gration of the values returned by the step function. Thus, when discussing
the performance, all figures are rounded downwards to an integer value. The
lower bound integer values have been chosen to provide conservative results.

The complete set of Pareto optimal tuning curves, PI and PID tuning ex-
amples, and reference SIMC tuning parameters can be found in Appendix A.

31
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Table 4.1 – Process descriptions for the first-order-plus-delay processes investi-
gated.

Case Process description Transfer function

10 Integrating process G10(s)= e−s

s
11 Time-delay dominated process G11(s)= e−s

(s+1)
12 Lag dominated process G12(s)= e−s

(8s+1)
13 Pure time-delay process G13(s)= e−s

14 High lag-time process G14(s)= e−s

20s+1

4.1.1 Cases

Five FOPTD models have been investigated. The cases are presented in Ta-
ble 4.1. The cases are divided between a pure integrating process, a time-
delay dominated and a lag-time dominated process, a pure time-delay pro-
cess, and a process with high lag-time. The lag dominated process with time
constant τ= 8 is interesting as this is the “breaking point” for the SIMC tun-
ing rule for the integral time, while the last process with τ= 20 holds a highly
integrating behaviour. The reason for the somewhat unintuitive numbering
and internal ordering of the cases is that the FOPTD cases were the last to
be investigated. In addition, the number of cases was originally four; the
fifth case was added to confirm a trend in the Pareto optimal Smith predic-
tor tuning observed. As a consequence, the SOPTD cases are numbered 1–9
while the FOPTD cases are numbered 10–14.

For a pure time-delay process, the SIMC tuning yields Kc = 0 and τI =
0. To provide non-zero SIMC tuning, the pure time-delay process has been
approximated to yield a FOPTD model with a minor lag-time constant,

G13 ≈
1

0.005s+1
e−s =G?

13, (4.1)

denoted G?
13.

4.2 Pareto Optimal PI and PID Controllers

The Pareto optimal PI and PID controller solutions were found according to
Algorithm 1, described in Chapter 3.7. Table 4.2 summarise the controller
tuning at MS = 1.59, with the corresponding IAE trade-off values and the
cost function values. The complete set of Pareto optimal plots with comple-
mentary sensitivity are listed in Appendix A. The Pareto optimal PI tuning
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curves are listed in Figure A.1(a) through A.5(a). The corresponding plots for
the Pareto optimal PID controllers are given in Figure A.1(b) through A.5(b).

4.2.1 Optimality of Controller Parameterisation

The Pareto optimal PI and PID tuning curves are given in Figure 4.1(a) for
case 10, and in Figures 4.3 through 4.6, for case 11–14. The alternative par-
allel and cascade controller parameterisations are included. Only in case 11
the alternative and cascade controller parameterisation have unequal Pareto
optimal PID tuning — the curves don’t overlap completely in the MS region
investigated. The non-optimality of the cascade controller is confirmed by
the alternative controller having complex zeros in the given MS domain. For
all the other cases, the controller zeros are real, indicating that a cascade
controller can achieve Pareto optimal trade-off. This is also evident from the
IAE values. Equal values yield identical controller.

In case 11, the deviation observed is at its maximum at very high or
very low robustness. At low robustness the deviation becomes significant
outside the Pareto optimal region. At high robustness the performance can
be improved by 12 % by switching from optimal cascade to optimal parallel
controller parameterisation. In the trade-off region where 2 ≥ MS ≥ 1.4, the
performance deviation is practically nil.

4.2.2 Sensitivity of the Pareto Optimal Controllers

Systems experience disturbances not only in the form of input and output
disturbances, but also in the process itself. The controller optimality will
deteriorate if the system dynamics are shifted. Consequently, the optimality
of the tuning should be exposed to system disturbances to investigate their
behaviour. This work focus on time-delay modelling error, and the Pareto
optimal solutions have been exposed to time-delay error to provide a basis
of comparison for the stability analysis of the Smith predictor structure in
Chapter 6.4. The time-delay error tested is ±90%, such that the time delay
of the process is 0.1θ◦ ≤ θ ≤ 0.9θ◦.

The Pareto optimal controller tuning sensitivity to variations in time-
delay has been evaluated in terms of change in performance and robustness,
respectively. The results for the FOPTD models are given in Figures C.10
through C.14 in Appendix C.1. The plots have been produced by extracting a
Pareto optimal controller for a given robustness target, and then evaluate the
performance of the controller when the time-delay parameter for the process
model is changed.
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(b) Complementary sensitivity peak value as a function of the sensitivity peak
value, MT = f (MS). MT = MS is represented by the dashed line.

Figure 4.1 – SIMC tuning controllers compared to Pareto optimal PI and PID con-
trollers for Case 10, integrating process: G10(s)= e−s

s .
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Figure 4.2 – Pareto optimal PI controller sensitivity to time-delay modelling error
for G14(s) = e−s

20s+1 . θ◦ is the nominal modelled time-delay for the con-
troller design.
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Table 4.2 – Optimal PI and PID controllers for MS = 1.59.

Process minK J(K)

Cascade parameterisation
Kc τI τD J IAEdo IAEdi

P
I

G10(s)= e−s

s 0.41 6.13 - 2.55 4.35 15.24
G11(s)= e−s

(s+1) 0.54 1.10 - 1.39 2.08 2.04
G12(s)= e−s

(8s+1) 3.44 3.96 - 1.96 3.12 1.15
G13(s)= e−s 0.20 0.32 - 1.03 1.62 1.62
G14(s)= e−s

20s+1 8.34 5.04 - 2.24 3.70 0.61

P
ID

G10(s)= e−s

s 0.54 3.27 0.48 1.47 3.02 6.83
G11(s)= e−s

(s+1) 0.42 0.61 0.61 1.02 1.56 1.47
G12(s)= e−s

(8s+1) 4.35 2.54 0.48 1.27 2.35 0.63
G13(s)= e−s 0.19 0.31 0.02 1.00 1.59 1.59
G14(s)= e−s

20s+1 10.87 2.95 0.48 1.38 2.70 0.30

Alternative parallel parameterisation
K I D J IAEdo IAEdi

P
ID

G10(s)= e−s

s 1.05 0.16 0.25 1.47 3.02 6.83
G11(s)= e−s

(s+1) 1.91 0.40 0.15 1.01 1.58 1.43
G12(s)= e−s

(8s+1) 8.97 0.19 0.23 1.27 2.35 0.63
G13(s)= e−s 0.84 0.75 0.00 1.00 1.59 1.59
G14(s)= e−s

20s+1 21.48 0.17 0.24 1.38 2.70 0.30

The sensitivity to time-delay error is as expected for the Pareto optimal
PI controllers. Case 14 is used as an illustrative example, with performance
variations in Figure 4.2(a) and robustness efficiency in 4.2(b). High MS value
yields better performance compared to low MS values. The controller per-
formances are decreasing at approximately equivalent rates when the true
time-delay (θ) is minor the nominal (θ◦). When θ > θ◦, the controllers at
high nominal MS value deteriorates before the controllers at low nominal
MS value, and the performance reduction rate is increasing more rapidly for
the high MS controllers. The same holds for the robustness efficiency for all
cases.
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4.2.3 PI vs. PID Control

The quantitative evaluation of potential performance improvements when
switching from PI to PID control is performed at the robustness reference
point MS = 1.59. The data is collected from Table 4.2. For the PID controller,
the cascade parameterisation is used as basis.

It can be observed that the PID controller outperform the PI controller
by 42 % for the integrating process in case 10. For the time-delay dominant
process in case 11, the improvement is 27 %. In the lag-dominated process
in case 12, the performance improvement is 35 %, while for the highly lag
dominated process in case 14 the improvement is 38 %.

For the pure time-delay process in case 13, the performance can be im-
proved by 3 % according to the parameter values in Table 4.2. The IAE values
for G13 are equal, which implies that there are no trade-off between input
and output disturbance rejection. According to the IMC rules, optimal con-
trol is then achieved by zero-pole cancellation in G13 (Rivera et al., 1986),
which for G13 implies that τI = τ1 = 0. Consider the controller parameterisa-
tion

K = K I

s
(τI s+1)(τD s+1), (4.2)

where the integral gain term K I is defined by

K I ,
Kc

τI
=

1
k

τ1
τc+θ
τI

τI=τ1−−−−→ 1
k

1
τc +θ

6= 0 for τI = 0. (4.3)

If τI = 0, the controller expression is reduced to

K = K I

s
(τD s+1)︸ ︷︷ ︸

ID

= K IτD + K I

s︸ ︷︷ ︸
PI

, (4.4)

which indicates that the parameterisation of a PI controller is equal to that
of an ID controller.

Usually the integral term cancels a pole in the model, whereas it in G13
is cancelling the dead-time expression (e−θs ≈ 1

1+θs ). Thus a two-term con-
troller is optimal for the pure time-delay. It should then be expected that the
PID controller wouldn’t obtain a better performance than the PI controller.
However, as G?

13 has dynamics in form of the added pole, the derivative ac-
tion will improve the system response. Figure 4.5 also indicates that the
offset between the Pareto optimal PI and PID curve is constant throughout
the trade-off region.

In the non-robust region (MS ≥ 2), both the PID cascade controllers and
PID parallel controllers yield almost constant performance. This differs from
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Figure 4.3 – Pareto optimal tuning curve for PI and PID controllers for G11(s) =
e−s

(s+1) .

the results obtained by Grimholt and Skogestad (2013), where the Pareto
optimal PID tuning curve experiences a decrease in performance in the non-
robust region. Evaluation of the sensitivity function show that the MS target
value is indeed met; MS = 1.925 at about ω = 1.3 ·103 rad s−1. For MS =
1.9 the corresponding frequency is ω = 2.2rad s−1. The sensitivity function
is experiencing severe oscillation in the high frequency domain caused by
the time-delay of the process, which yield heavy gain oscillations at high
frequency. Preferably one would have MATLAB pick one of the first peaks of
the sensitivity function to compute the MS value. A possible explanation of
the difference with Grimholt’s work can be if he defined his MS domain on a
smaller range of frequencies. A search for the maximum peak value limited
to, for instance, ω ∈ [10−2,102] will obviously record the time-delay oscillatory
response of the sensitivity function at ω> 102.

The complementary sensitivity, MT , is equal for the cascade and parallel
parameterisation in cases 10, 12 and 13, while the parallel PID controller
yield a slightly smaller MT value in case 11. This indicates that noise ampli-
fication at high frequencies may pose a problem in this robustness region.
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4.3 SIMC Control

The SIMC tuning rules are given in Equation (2.19) in Chapter 2.5. The
closed loop time constant, τc, is the only degree of freedom. The SIMC tun-
ing curves in Figures 4.1, and Figure 4.3 through 4.5 was generated by eval-
uating the system robustness and performance for a wide range of τc val-
ues. The points τc = 2θ (excessively robust tuning), τc = 3/2θ (smooth tun-
ing), τc = θ (tight tuning), and τc = 1/2θ (aggressive tuning) have been marked
for reference. The recommended setting is τc = θ for good trade-off between
robustness and performance. The algorithm followed to retrieve the SIMC
controller tuning is outlined in Algorithm 2.

For an integrating process, τ can be approximated to be close to infinity.
Thus, when applying the SIMC tuning rules for an integrating process, the
integral time will always be given by the second term in Equation (2.19b).
For case 10 (G = e−s

s ), to achieve nonzero SIMC tuning parameters, the pure
time-delay process was estimated as described in Chapter 5.1.1.
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Algorithm 2 Determine SIMC tuning curve.
1: for model in set of models do
2: Load IAE reference weighting factors for model.
3: if PI control and SOPTD model then
4: Apply half rule
5: end if
6: for all τc in span of τc do
7: Generate SIMC controller
8: Calculate J for a combined step in di and do.
9: Calculate MS value

10: end for
11: plot J = f (MS)
12: end for

4.3.1 Optimality of SIMC Tuning

For case 10, 11 and 12, the SIMC tuning rules achieve tuning close to opti-
mal. As reported by Grimholt and Skogestad (2012), the SIMC tuning rules
are observed to be non-optimal for pure time-delay processes. The achieved
cost at MS = 1.59 is about 36 % less optimal compared to the Pareto opti-
mal PI or PID performance. Grimholt and Skogestad (2012) report that the
optimal PI controller for a pure time-delay process has an integral time at
approximately τI = θ/3. This value concur with the results obtained in this
study, where the optimal integral time is τI = 0.32. They propose a simple
change to the SIMC tuning rule to achieve better performance for pure time-
delay processes. This suggestion has not been evaluated further.

4.3.2 The Closed Loop Constant

The reference points for values of τc/θ ∈ [1/2 1 3/2 2] for the FOPTD models are
listed in Table 4.3. The MS value for a given τc does not vary excessively, but
is almost constant regardless of process. The internal model control principle
of designing the controller to cancel out dynamics in the system stabilises
the MS value. The exception is the integrating process in case 10, where the
process gain and lag-time constant can be assumed to be infinitely large, and
the SIMC tuning rules yield an integral time given by 4(τc+θ). Consequently,
the τc values are shifted towards higher MS values.

Choosing tight tuning (τc = θ) for the SIMC rules yields robustness val-
ues in the range 1.7≥ MS ≥ 1.59, where the high robustness levels are for the
processes where τ1 < 4(τc +θ). Increasing the closed-loop constant to smooth
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Table 4.3 – SIMC PI tuning reference points for τc/θ ∈ [1/2 1 3/2 2].

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G10(s)= e−s

s

1/2 0.50 0.67 6.00 1.76 2.18 3.40 9.00
1 1.00 0.50 8.00 2.47 1.70 3.92 15.99
3/2 1.50 0.40 10.00 3.36 1.50 4.51 24.97
2 2.00 0.33 12.00 4.41 1.39 5.14 35.87

G11(s)= e−s

(s+1)

1/2 0.50 0.67 1.00 1.30 1.92 2.13 1.73
1 1.00 0.50 1.00 1.41 1.59 2.17 2.03
3/2 1.50 0.40 1.00 1.68 1.44 2.50 2.50
2 2.00 0.33 1.00 2.02 1.35 3.00 3.00

G12(s)= e−s

(8s+1)

1/2 0.50 5.33 6.00 1.70 1.97 2.37 1.12
1 1.00 4.00 8.00 2.38 1.59 2.17 2.00
3/2 1.50 3.20 8.00 2.91 1.44 2.50 2.49
2 2.00 2.67 8.00 3.49 1.35 3.00 2.99

G13(s)= e−s

1/2 0.50 0.00 0.01 1.34 1.92 2.13 2.13
1 1.00 0.00 0.01 1.36 1.59 2.17 2.17
3/2 1.50 0.00 0.01 1.57 1.44 2.50 2.50
2 2.00 0.00 0.01 1.88 1.35 3.00 3.00

G14(s)= e−s

20s+1

1/2 0.50 13.33 6.00 1.74 2.08 2.98 0.45
1 1.00 10.00 8.00 2.43 1.65 3.20 0.80
3/2 1.50 8.00 10.00 3.30 1.47 3.43 1.25
2 2.00 6.67 12.00 4.33 1.36 3.68 1.78

tuning (τc = 3/2θ) yields 1.5 ≥ MS ≥ 1.44. The recommended settings for tight
tuning give robustness well within the recommended limit of MS ≤ 2, and
there should be no reason for reducing the performance by applying the
closed-loop constant value for smooth tuning.

4.4 Summary: First Order Processes

The difference between the alternative parallel controller parameterisation
and the cascade parameterisation is zero for all but one process. As the po-
tential performance improvement for this process is very small, it is con-
cluded that there are no reasons for switching from cascade to parallel con-
troller parameterisation for the PID controller.

Considering the difference observed between the Pareto optimal PID con-
troller curve in Figure 4.5 and the result Grimholt and Skogestad (2013)
obtained for PID control of a pure time-delay process, where the PI and
PID tuning curves are superimposed in the entire MS region. As explained
in Chapter 3.6, the frequency region chosen for this study was set to ω ∈
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[10−4,104]. A plausible explanation of the deviation is that Grimholt had
a smaller frequency region defining the MS value. For further studies, the
significant frequency region for each case should be examined prior to per-
forming optimisation to ensure sensible MS values being obtained.

For the FOPTD with dynamics, that is, all cases studied except the pure
time-delay process in case 13, there are substantial potential for performance
improvement by switching from PI to PID control. Several cases displays
improvements in performance of more than 30 %.

The SIMC tuning rules are displaying very good results for the FOPTD
processes, except for the pure dead-time process. The improvement sug-
gested by Grimholt and Skogestad (2012) was not further examined. Tight
tuning of the SIMC tuning rules does indeed give good trade-off between ro-
bustness and performance, as claimed by Skogestad (2003).





CHAPTER 5

SECOND ORDER
PROCESSES

5.1 Introduction

Foss (2012) found in his follow up project of Grimholt and Skogestad (2012)
Pareto optimal PID controllers for a set of SOPTD processes. In this chapter,
the results found by Foss (2012) are reproduced. The Pareto optimal PI and
PID controller tunings are found for nine SOPTD models. Pareto optimal
parallel and cascade controller parameterisations are compared. The sensi-
tivity of the Pareto optimal tuning solutions towards variations in the process
time-delay is investigated and discussed. The SIMC PI and PID tuning are
retrieved for a wide range of τc values, with the corresponding reference tun-
ing values for τc/θ ∈ [1/2 1 3/2 2] being listed. Derivative filter was not applied
to the SIMC PID controllers.

The potential loss of optimality when using a cascade controller parame-
terisation over a parallel controller is discussed in Section 5.2.1. The optimal-
ity of the SIMC tuning rules are compared to the Pareto optimal solutions.
The choice of τc for time-delay dominated and lag-time dominated processes
are treated in Section 5.3.

The complete set of Pareto optimal tuning curves, PI and PID tuning ex-
amples, and reference SIMC tuning parameters can be found in Appendix B.

45
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Table 5.1 – Model descriptions for the second-order-plus-delay processes investi-
gated.

Case k τ1 τ2 θ Transfer function

1 1 1 0.5τ1 1 G1(s)= e−s

(s+1)(0.5s+1)
2 1 1 0.8τ1 1 G2(s)= e−s

(s+1)(0.8s+1)
3 1 1 0.3τ1 1 G3(s)= e−s

(s+1)(0.3s+1)

4 1 1 0.5τ1 τ2/1.5 G4(s)= e−
1
3 s

(s+1)(0.5s+1)

5 1 1 0.8τ1 τ2/1.5 G5(s)= e−
8

15 s

(s+1)(0.8s+1)

6 1 1 0.3τ1 τ2/1.5 G6(s)= e−
1
5 s

(s+1)(0.3s+1)

7 1 1 0.5τ1 τ2/2 G7(s)= e−
1
4 s

(s+1)(0.5s+1)

8 1 1 0.8τ1 τ2/2 G8(s)= e−
2
5 s

(s+1)(0.8s+1)

9 1 1 0.3τ1 τ2/2 G9(s)= e−
3

20 s

(s+1)(0.3s+1)

5.1.1 Cases

Nine SOPTD models have been investigated. The three first cases are time-
delay dominated processes with θ > τ2, while the six latter are lag dominated
with τ2 > θ. The model data and process transfer functions are given in
Table 5.1.

5.2 Pareto Optimal PI and PID Control

The Pareto optimal PI and PID controllers were found by applying the proce-
dure presented in Chapter 3.7. A review of PI controllers at a given robust-
ness, MS = 1.59, with corresponding IAE trade-off values and cost function
values is given in Table 5.2. A similar review of the PID controllers is given
in Table 5.3, including the alternative parallel parameterisation and the cas-
cade parameterisation. The obtained cost values differs slightly from the val-
ues reported by Foss (2012), with a general deviation of less than 5 %. Foss
(2012) never clarifies whether he apply a derivative filter to his controllers.
It is assumed that no derivative filter was used by (Foss, 2012), which can
explain the deviation.

The Pareto optimal PI and PID tuning curve for case 3 is given in Fig-
ure 5.1(a). The alternative parallel parameterisation and the cascade pa-
rameterisation is included for the PID controller. The SIMC PI and PID is
also included, with reference points marked as circles. Figure 5.1(b) show
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Table 5.2 – Optimal PI cascade controllers for MS = 1.59

minK J(K)
Process Kc τI J IAEdo IAEdi

G1 0.48 1.34 1.50 2.82 2.77
G2 0.52 1.56 1.60 3.09 3.02
G3 0.48 1.21 1.44 2.58 2.54
G4 0.98 1.29 2.29 1.48 1.31
G5 0.78 1.55 2.04 2.15 1.99
G6 1.38 1.07 2.63 0.98 0.77
G7 1.17 1.28 2.76 1.31 1.09
G8 0.93 1.56 2.39 1.87 1.67
G9 1.62 1.04 3.25 0.88 0.64

how the MT value varies as a function of MS for case 3.

5.2.1 Optimality of Controller Parameterisation

Considering a robustness level of MS = 1.59, the deviation from optimality
when using a cascade controller parameterisation instead of a parallel con-
troller parameterisation is virtually nil. Table 5.3 indicates that the perfor-
mance improvement varies from 4 % to zero at this robustness. In the robust
solution domain, MS ≤ 1.59, the cascade controller is notably less optimal. In
case 1, a performance improvement of approximately 25% can be achieved by
replacing an optimal cascade controller with an optimal parallel controller
at MS = 1.25 . This holds for the time-delay dominated cases, where the im-
provement at high robustness ranges from 20 % to 25 %. At low robustness
(MS ≥ 2), the difference is notable. Importantly, the difference between the
parameterisations are close to minimal in the region where 1.4≤ MS ≤ 1.9.

For the lag-time dominated processes, the optimality loss is negligible for
values of MS less than 2.

The complementary sensitivity peak value plots are smooth for all cases,
with MT < MS. There is in general no loss in MT due to parameterisation,
though the alternative parallel parameterisation yields a slightly smaller
MT value in the non-robust region.

5.2.2 Sensitivity of the Pareto Optimal Controller

As in Chapter 4.2.2, the sensitivity of the Pareto optimal controllers have
been evaluated with respect to variations in the process time-delay. The pro-
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Figure 5.1 – SIMC tuning controllers compared to Pareto optimal PI and PID con-
trollers for G3(s)= e−s

(s+1)(0.3s+1) .
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Table 5.3 – Optimal PID controllers for MS = 1.59

Process minK J(K)

Cascade parameterisation
Kc τI τD J IAEdo IAEdi

G1 0.42 0.82 0.82 1.05 1.96 1.95
G2 0.47 0.96 0.96 1.06 2.05 2.03
G3 0.40 0.73 0.73 1.04 1.86 1.83
G4 1.12 0.68 0.68 1.12 0.76 0.61
G5 0.84 0.90 0.90 1.09 1.15 1.07
G6 1.63 0.47 0.47 1.18 0.53 0.29
G7 1.52 0.63 0.63 1.17 0.63 0.41
G8 1.13 0.88 0.88 1.12 0.89 0.78
G9 2.24 0.42 0.42 1.24 0.44 0.19

Alternative parameterisation
K I D J IAEdo IAEdi

G1 1.91 0.30 0.24 1.01 1.93 1.83
G2 2.13 0.26 0.28 1.02 2.00 1.90
G3 1.81 0.34 0.21 1.01 1.85 1.74
G4 4.79 0.36 0.17 1.11 0.78 0.59
G5 3.55 0.28 0.24 1.06 1.16 1.02
G6 7.56 0.47 0.10 1.18 0.53 0.29
G7 6.60 0.39 0.15 1.16 0.64 0.40
G8 4.70 0.30 0.23 1.10 0.92 0.72
G9 10.89 0.50 0.09 1.24 0.44 0.19

cess time-delay is 0.1θ◦ ≤ θ ≤ 0.9θ◦, while the controllers are Pareto optimal
for θ = θ◦. Figure 5.2 and 5.3 illustrate how the performance and robustness
efficiency varies with changes in the process time-delay for a SOPTD and
FOPTD, respectively. The behaviour is as expected, with less time-delay the
performance and robustness of the controller increase, while they deterio-
rate for increasing time-delay. The system does not reach instability in the
simulated time-delay error domain.

The complete set of plots for the Pareto optimal PID controller sensitiv-
ity to time-delay variations are listed in Figures C.15 through C.28 in Ap-
pendix C.1.
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5.2.3 PI vs. PID Control

Time-delay dominated processes For the time-delay dominated processes
in case 1, 2 and 3, the improvement in performance when using a PID con-
troller over a PI controller is 30 %, 34 % and 27 %, respectively, for the cascade
controller at MS = 1.59.

Lag-time dominated processes The performance can be vastly improved
by switching from PI to PID controller for the lag dominated processes. When
the ratio between the time-delay and lag-time constant decrease, the im-
provement seem to increase. On average, an improvement in performance
of 53 % with cascade PID controller is observed for the lag-time dominated
processes. For the alternative parallel parameterisation, the improvement
is 54 %, which confirms that the cascade controller is not underperforming
mentionably compared to the alternative parallel controller parameterisa-
tion.

The complementary sensitivity function peak value, MT , is less than MS
for all cases. The parallel parameterisation yield a slightly better MT value,
though without dramatic variations.

5.3 SIMC Control

An illustrative example of the SIMC PI and PID tuning curves is given in Fig-
ure 5.1(a). The complete set of SIMC tuning curves for the SOPTD cases are
given in Figure B.1(a) through B.9(a) in Appendix B. The tuning curves was
found by computing the SIMC tuning for a given τc and evaluating perfor-
mance and robustness for the system. Both PI and PID SIMC tuning rules
was found, where the “half rule” method was used for model reduction to
yield the FOPTD processes necessary to find SIMC PI tuning. The algorithm
is outlined in Algorithm 2 in Chapter 4.3. Reference points was calculated
for τc/θ ∈ [1/2 1 3/2 2]. Tuning, cost and IAE trade-off values for the reference
points are listed in Table B.3 and B.4. A summary for the SIMC PI reference
points are given in Table 5.4, while a summary for the SIMC PID reference
points are given in Table 5.5.

5.3.1 SIMC PI Control

The SIMC PI controller tuning achieves in general close to Pareto optimal
performance in the extremely robust region (MS ≤ 1.4). Apart from this, the
performance can be divided between the time-delay dominated processes and
the lag-time dominated processes. Larger time-delay generally deteriorates
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Table 5.4 – SIMC PI tuning summary for SOPTD models.

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)
1 1.25 0.44 1 1.59 1.79 3.14 2.8
3/2 1.88 0.35 1 1.7 1.56 3.24 3.1

G2(s)= e−s

(s+1)(0.8s+1)
1 1.4 0.42 1 1.83 1.84 3.74 3.3
3/2 2.1 0.32 1 1.91 1.59 3.78 3.57

G3(s)= e−s

(s+1)(0.3s+1)
1 1.15 0.47 1 1.46 1.73 2.73 2.46
3/2 1.72 0.37 1 1.6 1.53 2.89 2.81

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1 0.58 1.09 1 2.25 1.89 1.69 1.11
3/2 0.87 0.83 1 2.45 1.62 1.68 1.32

G5(s)= e−
8

15 s

(s+1)(0.8s+1)

1 0.93 0.68 1 2.32 1.89 2.7 2.07
3/2 1.4 0.52 1 2.45 1.62 2.69 2.33

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1 0.35 1.82 1 2.25 1.89 1.01 0.55
3/2 0.52 1.38 1 2.57 1.62 1.01 0.72

G7(s)= e−
1
4 s

(s+1)(0.5s+1)
1 0.5 1.33 1 2.64 1.9 1.49 0.89
3/2 0.75 1 1 2.91 1.63 1.48 1.09

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1 0.8 0.83 1 2.7 1.9 2.38 1.69
3/2 1.2 0.62 1 2.89 1.63 2.37 1.94

G9(s)= e−
3

20 s

(s+1)(0.3s+1)

1 0.3 2.22 1 2.71 1.9 0.89 0.45
3/2 0.45 1.67 1 3.14 1.63 0.89 0.6

the performance of the SIMC PI tuning, with a maximal loss at approxi-
mately 30 % for case 8 compared to Pareto optimal PI control.

Time-delay dominated processes The SIMC PI tuning achieves close to
Pareto optimal tuning at high robustness (MS ≤ 1.4). The optimality deteri-
orates with increasing magnitude of the minor lag-time constant.

The difference in performance when choosing τc = 3/2θ (smooth tuning)
over the recommended setting of τc = θ (robust tuning) is small for the time-
delay dominated processes. The increase in performance when τc = θ is 6 %,
4 % and 8 %, respectively for case 1, 2 and 3, when compared to τc = 3/2θ. The
deterioration in robustness is −14 %, −15 %, and −13 %. However, all MS
values for τc = θ are within the recommended limit of MS ≤ 2.

Lag-time dominated processes The decrease of optimality in the lag-
time dominated processes resembles that of the time-delay dominated pro-
cesses, except that the MS values are shifted to a slightly higher value for
τc.
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Table 5.5 – SIMC PID tuning summary for SOPTD models.

Process τc/θ τc Kc τI τD J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)

1/2 0.5 0.67 1 0.5 1.02 1.92 2.13 1.67
1 1 0.5 1 0.5 1.12 1.59 2.17 2.02

G2(s)= e−s

(s+1)(0.8s+1)

1/2 0.5 0.67 1 0.8 0.97 1.92 2.13 1.59
1 1 0.5 1 0.8 1.09 1.59 2.17 2.01

G3(s)= e−s

(s+1)(0.3s+1)

1/2 0.5 0.67 1 0.3 1.08 1.92 2.13 1.71
1 1 0.5 1 0.3 1.18 1.59 2.17 2.03

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1/2 0.17 2 1 0.5 0.98 1.92 0.71 0.5
1 0.33 1.5 1 0.5 1.14 1.59 0.72 0.67

G5(s)= e−
8
15 s

(s+1)(0.8s+1)

1/2 0.27 1.25 1 0.8 0.94 1.92 1.14 0.8
1 0.53 0.94 1 0.8 1.09 1.59 1.16 1.07

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1/2 0.1 3.33 1 0.3 1.07 1.92 0.43 0.3
1 0.2 2.5 1 0.3 1.27 1.59 0.43 0.4

G7(s)= e−
1
4 s

(s+1)(0.5s+1)

1/2 0.12 2.67 1 0.5 1.03 1.92 0.53 0.38
1 0.25 2 1 0.5 1.21 1.59 0.54 0.5

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1/2 0.2 1.67 1 0.8 0.96 1.92 0.85 0.6
1 0.4 1.25 1 0.8 1.13 1.59 0.87 0.8

G9(s)= e−
3
20 s

(s+1)(0.3s+1)

1/2 0.07 4.44 0.9 0.3 1.12 1.94 0.34 0.2
1 0.15 3.33 1 0.3 1.39 1.59 0.33 0.3

Almost optimal tuning is achieved in case 6 and 9, that is, when the
minor lag-time constant is small. Small minor lag-time constants produces
less additional time-delay added through the “half rule”, and the nominal
time-delay of these processes are in general small.

The SIMC PI tuning achieves practically identical robustness levels for
the different tuning parameters τc/θ ∈ [1/2 1 3/2 2], all with the recommended
tight tuning (τc = θ) attaining robustness levels of MS < 1.9. The more ag-
gressive tuning with τc = 1/2 are outside the recommended robustness region.
The loss when applying τc = 3/2θ over τc = θ is increasing with increasing
τ2/θ ratio. A potential trend of increasing loss with decreasing time-delay is
observed, indicating a more aggressive tuning is favorable.

5.3.2 SIMC PID Control

For all values of τc/θ ∈ [1/2 1 3/2 2], the reported robustness is within the rec-
ommended limits of MS ≤ 2. As this is not the case for the PI tuning, the
increased robustness can be explained by the added derivative action. The
general trend is that the SIMC PID tuning is close to the Pareto optimal
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tuning for a cascade controller.

Time-delay dominated processes For the lag-time dominated processes,
the SIMC PID tuning optimality is increasing with greater values of the mi-
nor lag-time constant. For case 2, the SIMC tuning with a closed-loop time
constant of τc = θ is practically coinciding with the Pareto optimal solution.
For case 3, where the minor lag-time constant is small compared to the ma-
jor, and the ratio τ2/θ is small, the deviation from optimality for the SIMC
rule is at its highest.

The more aggressive tuning with τc = 1/2θ is within the stability limit of
MS ≤ 2. The potential improvement in performance compared to τc = θ is
9 %, 11 % and 8 % for case 1, 2 and 3, respectively, with a corresponding
deterioration in robustness of −20 % for all cases.

Lag-time dominated processes The SIMC tuning achieves high degree
of optimality compared to the Pareto optimal controllers for the lag-time dom-
inated processes. The trend of discrepancy between SIMC and Pareto optimal
tuning for processes with small minor lag-time constants and low τ2/θ ratio
is visible. The point with least fortunate performance for the SIMC rule is
for case 9, where the SIMC tuning underperform by 10 % compared to the
Pareto optimal tuning.

By switching to more aggressive tuning, the performance can be im-
proved by between 13 % (case 5) and 19 % (case 9).

5.3.3 SIMC PI vs. SIMC PID Control

The general trend is that the SIMC PI tuning is close to the Pareto opti-
mal PI tuning. The performance of the tuning rule deteriorates with in-
creasing second-order dynamics of the system, independent of dominance of
time-delay in the process. This is expected, as greater second-order dynamics
implies a higher degree of process approximation.

For the time-delay dominated processes, there is less improvement when
switching from PI to PID control compared to the lag-time dominated pro-
cesses. This is according to the improvement observed when switching from
Pareto optimal PI to PID control.

The robustness achieved with SIMC PI control and τc = 3/2θ equals the
robustness of τc = θ for SIMC PID control. By comparing the performance of
the SIMC PI and PID rules it is observed that the increase in performance for
the time-delay dominated processes in cases 1, 2 and 3 is 34 %, 42 % and 26 %,
respectively. For the lag-dominated processes the increase in performance is
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56 % on average, with the minimal improvement of 50 % in case 6, and the
highest improvement of 64 % in case 9.

5.3.4 Complementary Sensitivity

The complementary robustness is generally reduced by a value of 0.2 when
using SIMC PID rules over PI tuning. Both the SIMC PI and PID have
slightly less optimal MT values compared to the Pareto optimal values. In
cases 6 through 9 the SIMC PID tuning achieve better MT values in certain
ranges for MS, compared to the Pareto optimal controllers.

5.4 Summary: Second Order Processes

In the performance-robustness trade-off region, the difference between the
cascade and parallel PID controller is negligible. At extremely high robust-
ness, the potential increase in performance is approximately 10−20 %.

For the time-delay dominated processes, the improvement when switch-
ing from PI to PID control was found to be approximately 30 %. For the
lag-time dominated processes, the increase was at approximately 50 %. For
second-order processes it may seem as PID control is the proper way to pro-
vide good control.

The SIMC PI tuning are close to optimal for small second-order lag-time
constants (τ2), while the performance deteriorate with higher τ2. The worst-
case scenario is observed in case 8, where the SIMC PI underperform by
30 % compared to Pareto optimal PI. Choosing τc = θ for SIMC PI provide
somewhat aggressive tuning with MS ≈ 1.9, though the robustness is within
the recommended limit of MS ≤ 2.

The SIMC PID tuning rules are displaying practically optimal perfor-
mance. The closed-loop constant for tight tuning provide an almost con-
stant level of robustness with MS ≈ 1.6 for τc = θ. This is true as long as
τ1 < 4(τc +θ), as this for the SIMC rules yields zero-pole cancellation, thus
stabilising the robustness.



CHAPTER 6

OPTIMALITY OF THE
SMITH PREDICTOR

6.1 Introduction

In this chapter, the Smith predictor controller structure described in Chap-
ter 2.4 is evaluated. Pareto optimal tuning curves for PI and PID Smith pre-
dictor controllers are found and compared to the Pareto optimal PI and PID
tuning curves for the FOPTD and SOPTD models. Both the primary con-
troller in the Smith predictor structure and the Pareto optimal PI and PID
controllers are of cascade parameterisation. A general robustness bound-
ary for the Smith predictor is found. The controller gain, integral time and
derivative time found from the optimisation is put in context with the robust-
ness.

During the optimisation routine, the question of stability was not directly
assessed. It was assumed that the IAE calculations in combination with the
robustness target would provide closed-loop stable Pareto optimal solutions.
This proved true as all of the Pareto optimal controllers produced closed-
loop systems with non-negative gain and phase margins. However, Adam
et al. (2000) reports in his article that the Smith predictor can display some
unintuitive stability behaviour when modelling errors in the time-delay pa-
rameter occur. He claim that a closed-loop system with a Smith predictor
controller structure can become unstable if the true time-delay of the process
is less of what the Smith predictor model time-delay is. From an heuris-
tic point of view controllers would be tuned for a worst-case modelling error
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scenario. The allegation of having reduced time-delay being associated with
instability could pose some serious challenges if there is a high degree of
uncertainty or expected variances in the time-delay parameter.

The stability issues concerning time-delay modelling errors discussed by
Adam et al. (2000) are investigated. The sensitivity to time-delay modelling
errors in the Smith predictor structure are compared to the behaviour of
the Pareto optimal PI and PID controllers when they undergo an equivalent
time-delay modelling error. The analysis is based on modelling errors as-
sumed to be within ±90% of the nominal time-delay, and is performed for
all FOPTD and SOPTD processes. Variations in performance and robust-
ness when modelling errors occur are investigated and instability issues are
discussed.

To avoid referring to “the robustness of the robustness” or “the robustness
performance” when the MS values are changing due to time-delay error, the
term “robustness efficiency” is introduced. High robustness efficiency equals
low MS value, and vica versa.

6.2 Pareto Optimal Smith Predictor

The Pareto optimal Smith predictor PI and PID controller tunings for case
1–14 was found by following the principle outlined in Algorithm 1 in Chap-
ter 3.7. The cascade controller parameterisation was used. For the Smith
predictor Pareto optimal PID controller optimisation, the SQP routine used
by fmincon proved inefficient. It repeatedly found local solutions which usu-
ally displayed the expected curvature of a Pareto optimal curve, but which
proved to be non-optimal. The fminsearch routine tended to be more robust,
but less efficient with respect to computation time. Supplying good initial
values for the optimisation routine was crucial regardless of routine. The
complete set of initial values used can be found in Appendix M.6.

A summary of the Pareto optimal controllers with corresponding IAE
weights and cost function values for a given robustness target is presented in
Table 6.1. The complete set of Pareto optimal Smith predictor plots are listed
in Appendix D. Figure D.1(a) through D.14(a) illustrate the performance as
a function of robustness. Figure D.1(b) through D.14(b) show how the maxi-
mum additional time-delay before instability occur (θmax) varies with chang-
ing robustness. θmax is defined according to Equation (3.8) in Chapter 3.3.

In Appendix E the sensitivity to modelling error in the time-delay param-
eter is presented. In Section E.1 the sensitivity of the Pareto optimal Smith
predictor PI controller is illustrated, while the Pareto optimal Smith pre-
dictor PID controller sensitivity is presented in Section E.2. Figures E.1(a)
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through E.14(a) and Figures E.15(a) through E.28(a) show how the perfor-
mance of the controller changes when modelling error is introduced. In Fig-
ure E.1(b) through E.14(b) and Figure E.15(b) through E.28(b) the robust-
ness’ variations to time-delay modelling errors are illustrated. It should be
noted that the MS domain investigated is not completely consistent; for some
of the investigated cases the point MS = 2.00 is included, while for some the
last robustness frontier is MS = 1.99 a. Whenever instability occurs, θmax is
set to zero. In this way, discontinuities in stability domain are clearly visible.
The alternative of letting θmax = NaN provided single points in the plot, which
is graphically less visible.

Pareto optimal Smith predictor PI and PID controllers are compared to
Pareto optimal PI and PID controllers in Figure D.1(a) through D.13(a). Fig-
ure D.1(b) through D.13(b) illustrates the maximum additional time-delay
that can be added before the system reaches instability according to Equa-
tion (3.8) in Chapter 3.3.

The robustness of the Smith predictor is bounded by MS ≤ 2. This limit
originates from the definition of the Smith predictor, and the existence and
value of the boundary is proven in Appendix H. Consequently, the Smith
predictor controllers have not been attempted evaluated at MS values higher
than 2, as this is an unfeasible domain.

6.2.1 Smith Predictor PI Control

Consider the Pareto optimal Smith predictor tuning curves for the FOPTD
processes, given in Figure D.10(a) through D.14(a) in Appendix D. The Smith
predictor PI controller are performing lesser for the integrating process in
case 10 than for the regular PI controller. The behaviour of case 14 is given
in Figure 6.1, where the Smith predictor is displaying a small performance
improvement near MS ≈ 1.25. Decreasing the lag-time constant is improving
Smith predictor performance, and performs slightly better compared to the
Pareto optimal PI controller for case 12. In case 11, the increase in perfor-
mance compared to Pareto optimal PI is about 18 %. Case 11, 12 and 14 have
increasing integrating behaviour, while case 10 is a pure integrator. It may
look as though the Smith predictor is not optimal for integrating processes,
or processes that have a high degree of integrating behaviour. From the θmax
plots, the systems are in general phase margin stable (θmax > 0) in the ex-
amined robustness region, where MS = 1.99 is the highest value evaluated.

a) The optimisation routines for the Smith predictor was extremely time consuming. The
last MS value was disregarded as it proved cumbersome to achieve convergence for some
cases.
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Table 6.1 – Optimal Smith predictor PI and PID cascade controllers for MS = 1.59.

minK J(K)
Process Kc τI τD J IAEdo IAEdi

P
I-

co
nt

ro
l G1(s)= e−s

(s+1)(0.5s+1) 0.85 1.15 - 1.27 2.37 2.37
G2(s)= e−s

(s+1)(0.8s+1) 0.86 1.35 - 1.35 2.58 2.58
G3(s)= e−s

(s+1)(0.3s+1) 0.89 1.02 - 1.21 2.15 2.15

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 1.64 1.28 - 1.90 1.20 1.12

G5(s)= e−
8

15 s

(s+1)(0.8s+1) 1.31 1.52 - 1.70 1.75 1.70

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 2.29 1.06 - 2.24 0.80 0.69

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 1.87 1.29 - 2.34 1.08 0.95

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 1.52 1.56 - 2.01 1.53 1.44

G9(s)= e−
3

20 s

(s+1)(0.3s+1) 2.59 1.06 - 2.84 0.73 0.58
G10(s)= e−s

s 1.10 3.57 - 4.92 2.40 53.20
G11(s)= e−s

(s+1) 1.37 0.93 - 1.14 1.70 1.69
G12(s)= e−s

(8s+1) 9.43 2.90 - 1.78 2.03 1.33
G13(s)= e−s 0.72 0.32 - 0.92 1.47 1.47
G14(s)= e−s

20s+1 22.28 3.15 - 2.63 2.23 1.08

P
ID

-c
on

tr
ol G1(s)= e−s

(s+1)(0.5s+1) 1.16 0.75 0.74 0.90 1.68 1.67
G2(s)= e−s

(s+1)(0.8s+1) 1.29 0.90 0.88 0.89 1.72 1.71
G3(s)= e−s

(s+1)(0.3s+1) 1.14 0.65 0.65 0.90 1.61 1.59

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 3.88 0.79 0.51 0.94 0.59 0.56

G5(s)= e−
8

15 s

(s+1)(0.8s+1) 2.56 0.90 0.75 0.89 0.92 0.89

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 5.10 0.44 0.36 1.01 0.53 0.41

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 4.75 0.60 0.50 0.98 0.58 0.46

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 3.08 0.77 0.81 0.99 0.77 0.69

G9(s)= e−
3

20 s

(s+1)(0.3s+1) 6.97 0.39 0.33 1.10 0.50 0.39
G10(s)= e−s

s 1.36 1.07 0.72 4.38 1.95 55.84
G11(s)= e−s

(s+1) 1.48 0.52 0.50 0.92 1.43 1.38
G12(s)= e−s

(8s+1) 11.54 0.94 0.58 1.41 1.66 1.17
G13(s)= e−s 0.69 0.30 0.01 0.90 1.43 1.43
G14(s)= e−s

20s+1 7.39 0.47 2.37 2.39 1.70 1.04
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Several of the performance curves have a small “bend” in the upper end of
the MS domain, which also is depicted in the corresponding θmax plot.

For the pure time-delay process, case 13, the Smith predictor show a
small increase in performance compared to the Pareto optimal PI controller.
An interesting behaviour is observed around MS ≈ 1.92 where the phase
margin indicate that the system is unstable, while the performance starts
deteriorating. By solely looking to the performance, one could assume the
controller is leaving the Pareto optimal region. At around MS ≈ 1.95 the
performance of the controller literally crashes (MATLAB returned J > 1010),
while the system appears stable again at MS = 2.00.

A similar stability behaviour is also noticed for case 11, e−s

(s+1) , where the
phase margin is negative for MS = 1.99 and positive for MS = 2.00. The
performance, however, is displaying an increase in optimality relative to the
Pareto optimal PI controller towards the point where the phase margin turns
negative. Except from the relative increase, the performance never indicate
the instability of the system. The stability of the last point has not been
further verified.

Time-delay dominated processes The Pareto optimal Smith predictor
PI controller display a 15 % gain in performance for cases 1 and 2, and 16 %
for case 3, for a given robustness of MS = 1.59. At high MS values, the Smith
predictor PI controller is approaching the Pareto optimal PID controller in
performance, and outperforming it in case 3. Its performance at low robust-
ness seems dependent on the amount of second-order dynamics, as it out-
performs the Pareto optimal PID in cases 1 and 3. In the robust region, the
improvement of performance compared to the Pareto optimal PI controller is
fairly constant, which is also confirmed by Table 6.1.

For the first-order time-delay dominated process, case 11, the increase in
performance is 18 %. The controller renders an increase in performance when
MS → 2, where it performs better than the Pareto optimal PID controller.

Lag-time dominated processes The lag-time dominated processes dis-
played an increase in optimality of between 12 % and 17 % for the SOPTD
cases. The performance improvement tend to grow with increasing MS val-
ues.

6.2.2 Smith Predictor PID Control

The Pareto optimal Smith predictor PID controller display behaviour similar
to that of the Smith predictor PI controller. For the integrating cases, the
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Figure 6.1 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for
the process G14(s)= e−s

20s+1 .
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Smith predictor PID controller is performing worse than the Pareto optimal
PID controller. In the SOPTD models, the Smith predictor is in general dis-
playing a small performance improvement compared to the Pareto optimal
PID controllers. Case 4 is used as an illustrative example, given in Fig-
ure 6.2.

Time-delay dominated processes For the time-delay dominated processes,
the increase in performance for the Pareto optimal Smith predictor PID con-
trollers compared to the Pareto optimal PID controllers is 15 % for cases 1
and 2, and 9 % for case 3 for MS = 1.59.

Lag-time dominated processes The increase in performance varies be-
tween 11 % and 18 % for the lag-time dominated cases. The increase in per-
formance with respect to the Pareto optimal PID tuning is not as evident as
for the Smith predictor PI controller.

6.3 Controller Action

The controller parameters for the Pareto optimal PI and PID controllers
have been compared to those of the Pareto optimal Smith predictor con-
troller. Through graphical representation it is possible to qualitatively eval-
uate convergence of the optimisation routines, and easier assess the optimal
controller structure.

For the time-delay dominated second-order processes the gain, integral
and derivative time of the Pareto optimal PID controller are displaying a
homogeneous behaviour throughout the studied robustness region. The in-
tegral and derivative time are identical, which is what Ziegler and Nichols
(1942) recommends, and concur with the results of Grimholt and Skogestad
(2013). For the Pareto optimal Smith predictor the behaviour is different,
with gain increasing with increasing MS, and approaching infinity when MS
is approaching it’s upper boundary for the system. This trend is consistent
for the FOPTD processes. The integral time and derivative time are almost
equal and fairly constant.

For the SOPTD dominated processes the Pareto optimal PI controller
gain and integral time behaviour can be divided between the region of high
robustness, and the remaining MS region. A non-smooth buckling point is
observed at MS ≈ 1.4. For the Pareto optimal Smith predictors, the buckling
point is shifted slightly to the right in the robustness region.

For the Pareto optimal PID controllers, the gain, integral time and deriva-
tive action display smooth behaviour. The Smith predictor Pareto optimal so-
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Figure 6.2 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G4(s)= e−
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lutions are displaying two-parted behaviour. The gain increases to a certain
MS value, where it suddenly decreases. The integral time is usually quite
constant and experience an increase which start at about MS = 1.8, while
the derivative time decrease in the same region.

By using a Smith predictor, the time-delay is eliminated from the closed-
loop behaviour, which should increase robustness. The Smith predictor should
be able to have a higher controller gain compared to a normal PI or PID con-
troller at the same MS value. Higher gain will yield better performance.
From the gain plots, it seems as this is the case. The difference in gain be-
tween the Pareto optimal PI and PID controllers and the Smith predictor
PI and PID controllers are distinct, while the integral and derivative time
mainly are proportional.

An important difference between the Smith predictor plots and the reg-
ular controller plots, are the lack of smooth behaviour in Smith controller
parameters. The trend in the plots are clear, but non-smooth variations are
present. This illustrates that the optimisation routines may not have con-
verged to the true optimum for all MS values, but have found some local
optimum close to the global optimum. When the MS values are calculated,
the entire MS region of interest is gridded and the maximum peak value in
the grid is found. This gives a good indication of where the MS value is, but
not necessarily a value with high numerical precision. For the Smith pre-
dictor, small fluctuations in MS result in huge variations in controller gain.
Thus the Smith predictor curves may not be the true Pareto optimal curves,
but they give a good representation of the Pareto optimal behaviour.

6.4 Stability of the Smith Predictor

The stability of the Smith predictor has been investigated based on modelling
error in the time-delay parameter. It has been assumed that the non-delay
dynamics of the process model is completely known, such that G̃◦ = G◦. The
uncertainty in the time-delay parameter is given by

Q ,
{
θ ∈R : θ ≥ 0, θ◦+δθ− ≤ θ ≤ θ◦+δθ+

}
, (6.1)

where θ◦ is the nominal modelled time-delay for the Smith predictor process
model (G̃), δθ− and δθ+ are lower and upper boundary limits, respectively, for
the model error, and θ is the true time-delay of the process (G). It has been
assumed that the true time-delay may differ from the modelled time-delay
with ±90%, such that Q = [0.1θ◦,1.9θ◦].

Stability was quantified by positive gain margin and phase margin, and
was evaluated at different levels of closed-loop robustness. The set of MS
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values evaluated is given by

MS = [
1.3 1.6 1.7 1.9

]
. (6.2)

The Pareto optimal Smith predictor controllers were assumed for the study,
while the time-delay for the process models (case 1 through 13) was varied
according to Q given in Equation (6.1). The results were visualised as J =
f (θ) and MS = f (θ). For PI control, the results are given in Figure E.1(a)
through E.14(a) and Figure E.1(b) through E.14(b) in Appendix E.1. The
equivalent results for PID control are given in Figure E.15(a) through E.28(a)
for performance, and Figure E.15(b) throught E.28(b) for robustness.

When finding J, MS and θmax for a given θ, the close-loop system was
tested for stability by examining the phase and gain margins, which should
be greater than zero for a stable system. Whenever the system proved unsta-
ble, the values for MS returned by MATLAB was surprisingly good. Typically,
the MS value could approach infinity for a given θ, and stabilise at MS ≤ 1.5
for θ+ ε, where ε¿ θ. The definition of MS depends on closed-loop stability,
as steady-state behaviour is necessary to achieve a bounded peak value. For
some reason, MATLAB returns some value for MS even though the peak is at
infinity. The exact reason for this behaviour has not been pursued, though it
is returning issue that MATLAB doesn’t always handle unstable systems in
an easy and intuitive way.

6.4.1 Smith Predictor PI Controller Sensitivity

The Smith predictor performance when time-delay modelling error is intro-
duced are graphically presented in Appendix E.1 for the PI controller, and in
Appendix E.2 for the PID controller. The corresponding plots for the Pareto
optimal PI and PID controllers are illustrated in Appendix C, Sections C.1
and C.2. The robustness efficiency plots are presented along with the associ-
ated performance plots.

The performance of the Smith predictor PI controller and the Pareto op-
timal PI controller are showing similar behaviour for most of the SOPTD
processes. Both the performance and the robustness are increasing in op-
timality when the time delay is reduced, and the values increase when the
time-delay modelling error yields an increase in process time-delay. This be-
haviour matches the intuitive understanding of robustness — a controller
will not perform worse than some worst-case situation. This is the case for
the regular PI and PID controllers, illustrated in Figure 6.4.

One exception is case 3 (Figure 6.4), where the MS = 1.9 target curve is
displaying a tendency to increase when the true time-delay is about half of
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delay parameter for a Pareto optimal Smith predictor PI controller for
a set of target MS values for model G3(s)= e−s

(s+1)(0.3s+1) .
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the nominal time-delay. The corresponding robustness plot shows the MS
value is violently increasing at this point. The closed-loop behaviour is illus-
trated in Figure 6.5(a), where a step in both the process with nominal delay
and with reduced delay are plotted. Notice how the optimised system yields
a smooth response for the nominal time-delay, θ = θ◦, while the reduction in
time delay to θ = 0.4θ◦ give a highly oscillatory response. The response for
the disturbed system is actually very good until the first oscillation occurs.
This causes the overall performance in terms of IAE to be surprisingly good,
but with a robustness of MS = 4.46. The Bode plot of the disturbed system
is given in Figure 6.5(b), which show that even though the phase margin is
excellent, the gain margin of the disturbed system is small. This also reflect
the high MS value.

For the FOPTD processes, the sensitivity of the Smith predictor PI con-
troller is illustrated at a more extreme level compared to the SOPTD process
in case 3. For the pure integrating process in case 10 ( e−s

s ), the robustness ef-
ficiency is starting to oscillate around θ = 0.4θ◦ at MS = 1.6. At MS = 1.7 the
oscillation is obvious, and at MS = 1.9 the system is unstable. However, at
θ = 0.5θ◦, MATLAB report the system to be stable in terms of gain and phase
margins. However, The system response amplitude is increasing with time,
and thus seems unstable. A closer look at the Bode plot of the system reveals
that MATLAB is not picking up the first crossing of the absolute magnitude
unity line, and thus report the unstable system to be stable. As the step re-
sponse never reach zero off-set, the cost function value is dependent on the
simulation time, and is achieving very high values for the apparently stable
regions. As of this, one need to evaluate the performance plot together with
the robustness efficiency plot — if the robustness seems too good to be true,
it probably isn’t.

A similar robustness-performance pattern as described above is observed
for all the FOPTD processes.

For the pure time-delay process, the only MS target displaying a pre-
dictable (stable) behaviour is found for MS = 1.3. Even though one could use
MS = 1.6, the robustness deteriorates almost instantly to MS ≈ 4, yielding
small robustness margins. The IAE does, as previously described, not really
depict the closeness to instability because of a good initial response to the
step load change, but for θ = 1/2θ◦ and θ > 3/2θ◦ there is an obvious deterioration
of performance. At MS = 1.7 the system is stable within θ = [−0.01θ◦,0.06θ◦],
which in practice means it is almost marginally to time-delay disturbances.
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with the Bode plot for the disturbed process.
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error. Discontinuities in the plot are caused by instability. The process
plotted is G1(s)= e−s

(s+1)(0.5s+1)

6.4.2 Smith Predictor PID Controller Sensitivity

Figure 6.6 illustrates how the performance of a Pareto optimal Smith pre-
dictor PID controller can deteriorate when time-delay modelling error is in-
troduced. The corresponding robustness plot is given in Figure 6.7. MAT-
LAB’s issues with providing the correct gain and phase margins for unstable
systems are affecting the plots as discussed in Section 6.4.1. In Figure 6.6
and 6.7 this behaviour have manually been removed, but are still evident in
the complete set of plots in Appendix E. One must always consider both the
performance plot and the robustness efficiency plot in order to achieve the
correct stability picture. If a surprisingly good value for MS occur while the
performance are not visible in the plotted scope, the system is unstable. A
small value for MS in a stable system have proven to always yield decent
performance.
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6.5 Summary: Smith Predictor

The Pareto optimal Smith predictor PI and PID tuning plots illustrate a rel-
atively limited performance improvement compared to the Pareto optimal PI
and PID controller tuning curves. The maximum additional dead-time that
can be added before instability occur is steadily decreasing with increasing
MS value, and has a higher deterioration rate compared to regular PI and
PID controllers.

For the majority of the FOPTD processes, the Smith predictor is less op-
timal compared to regular PI and PID controllers. This probably originates
from the fact that the Smith predictor is derived for a first-order set-point
response. With increasing integrating behaviour, the input disturbances are
conducting the system response, and the Smith predictor fails the task of
disturbance rejection compared to a regular PI or PID controller.

For the robust region, MS ≤ 1.4 the Smith predictor proves stable with re-
spect to disturbances in the time-delay parameter. The sensitivity behaviour
resembles that of the regular PI and PID controller. Thus, if one are to op-
erate a SOPTD process in this very robust region, the potential performance
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improvement compared to regular PI or PID controller can be realised. How-
ever, the performance improvement is not very high and can be realised by a
regular PI or PID controller by tuning it slightly more aggressive. Typically,
a robustness decrease from MS = 1.4 to MS = 1.5 for the Pareto optimal PID
controller will yield performance equal to the Smith predictor.

For the less robust region, MS ≥ 1.6, or even as low as MS ≥ 1.4 for the
FOPTD processes, the Smith predictor is highly sensitive to variations in the
time-delay parameter. The sensitivity function (S) are starting to oscillate
prior to observable deterioration in performance. When the oscillating be-
haviour is initiated, the MS value increase rapidly, and the gain margin of
the Smith predictor controller is decreasing. Importantly, reduction in the
time-delay of the process tend to yield unstable controllers. Even for Smith
predictor PID controllers tuned to a modest robustness level of MS = 1.7, the
MS value quickly are pushed to values higher than 2 for small changes in
the time-delay parameter.

It is also evident from the stability analysis that θmax is valid for a strictly
positive direction. Several of the Smith predictor sensitivity plots show that
the Smith predictor appear stable when the time-delay is increased more
than θmax.

The question of using MS as a quantification of robustness for the Smith
predictor naturally occurs when studying the behaviour of MS = f (θmax).
When disregarding MATLAB’s inability of providing proper MS values for un-
stable systemsb,it appears as if MS is monotonically decreasing with increas-
ing robustness in the same way as for regular PI and PID controllers. Where
the regular PI and PID controller have only an upper robustness boundary of
MS = 1 when designing the controller, the Smith predictor has a well defined
upper MS limit. This limit only applies for optimal tuning; it has been veri-
fied multiple times that the MS value for systems operating with non-optimal
Smith predictors easily exceed MS = 2.

In the illustrative example used by Adam et al. (2000), the process is
equivalent to case 11 in this thesis. Adam’s controller is a P controller with
Kc = 4. The proportional controllers are always optimal as they have only one
degree of freedom, thus Adam is using an optimal controller. A proportional
controller will never achieve zero steady-state offset, except for integrating
processes, and the value of the cost function is dependent on the simulation
time used. The MS value for Adam’s example system is MS ≈ 1.7. In light
of the previous discussion on sensitivity to time-delay modelling error, the
discontinuous stability domain described by Adam is not surprising. In ad-

b) Skogestad denoted the low MS value for unstable systems as the system being “robustly
unstable”.
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dition, Adam is applying a primary controller structure which should not
be used in the Smith predictor. Neither the Smith predictor PI nor PID con-
troller perform very well on the simple FOPTD in case 11, possibly due to the
design basis of the Smith predictor. As a proportional controller is optimal
for integrating processes only, an extensive analysis of the optimality and
sensitivity of a Smith predictor P controller on purely integrating processes
should be performed.



CHAPTER 7

SMITH PREDICTOR
TUNING

7.1 Introduction

In this chapter, two approaches for the tuning of a Smith predictor controller
structure is investigated:

i) “Robust Tuning” of Smith predictors (Normey-Rico and Camacho, 2007),

ii) SIMC tuning rules (Skogestad, 2003).

The rules given in the “Robust Tuning” will further be referred to as robust
tuning rules.

7.1.1 Robust Tuning

The robust tuning rules given by Normey-Rico and Camacho (2007) is achieved
by considering only time-delay error, assuming that the maximum dead-
time-estimation error and underlaying process behaviour is known. The
rules are based on the assumption that the process can be described by an
FOPTD model. There are four parameters to be tuned, namely K¦

c , Ti, T◦
and T1. There is only one degree of freedom if the process model is set.

The controller used is a two-degree-of-freedom dead-time-compensator
with a PI controller. The structure is illustrated in Figure 7.1. This scheme
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uses a reference signal filter, F, defined as

F(s),
1+ sβTi

1+ sTi
, (7.1)

where β is a factor which in the tuning rules is chosen such that βTi = T◦.
From a condition of robust performance, T◦ = 1.7∆θ, where ∆θ = θ−θ◦ is the
maximum time-delay error. As this study investigates disturbance loads in
input and output, the reference filter for the robust tuning rules won’t influ-
ence the results, and is disregarded from further study. The robust tuning
rules then has one degree of freedom, namely ∆θ, and the rules are sum-
marised in Table 7.1.

Table 7.1 – Robust tuning rules for the Smith predictor structure, using T◦ = 1.7∆θ

Predictor model Controller Filter K¦
c Ti T1

k
1+sT e−θs K¦

c (1+Ti s)
Ti s

1+T◦s
1+T1s

1
k

T
T◦

T T1 ∈ [T,T◦]

e−θ◦s

Fr K G

G̃◦

y+
−

+
−

+
−

K̃

Figure 7.1 – Block diagram of the two-degree-of-freedom Smith predictor used by
Normey-Rico and Camacho (2007).

7.1.2 SIMC Tuning

In Grimholt (2013), appliance of the SIMC tuning rules on a Smith predictor
is analysed. The analysis is confirmed in Appendix I.

When applying the SIMC rules to a PID controller in the Smith predictor
structure, the process governing the tuning is the SP model, G̃, which have



7.2. Smith Predictor Tuning Results 77

no time-delay. Thus, the rules may be redefined to yield

Kc ,
1
k
τ1

τc
, (7.2a)

τI ,min[τ1,4τc] , (7.2b)

τD , τ2, (7.2c)

where ∆θ is the maximum time-delay error one wish to consider and it is
required that τc >∆θ > 0.

7.1.3 Analysis

Comparing the robust tuning rules with the SIMC tuning rules yields the
relations given in Equation (7.3).

Kc =
1
k
τ1

τc
= 1

k
T
T◦

, (7.3a)

τI =min[τ1,4(τc)]= T, (7.3b)

τD = τ2 = 0. (7.3c)

As the robust tuning rules are only given for PI control, the derivative term
is compared with zero. From the comparison of the rules, T◦ = τc and T =
τ1 which relate the robust tuning rules and the SIMC tuning rules. The
robust tuning rule differs from SIMC rules only in the minimum term in the
integral time. Otherwise, the rules are equal in terms of only having different
parameterisations, but the same solutions as long as τ1 ≤ 4(τc).

7.2 Smith Predictor Tuning Results

The maximum dead-time-estimation error used is given by δθ+ = 0.9 from
Q, defined in Chapter 6.4. When finding PI tuning, the SOPTD models were
reduced to FOPTD models by using the “half-rule” defined in Chapter 2.5.

For the study of the potential for using the SIMC tuning rules as tuning
rules for the Smith predictor structure, the tuning parameters were calcu-
lated as for normal PI and PID tuning procedures (Chapter 8). The com-
plete plot results are given in Appendix F. An illustrative case is given in
Figure 7.2. The SIMC tuning rules provides tuning curves close to Pareto
optimality. The reference points are
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7.3 Summary: SIMC Tuning Rules for Smith
Predictor

Analytically, the SIMC tuning rules are suited for tuning a Smith predictor.
The tuning curves prove to be very close to the Pareto optimal Smith predic-
tor tuning curves. The question of modelling error has not been addressed
beyond the discussion in Chapter 6.



CHAPTER 8

CONCLUSION

Pareto Optimal Controllers

The cascade controller parameterisation for PID controllers are slightly less
optimal compared to parallel PID controllers. The reduction in optimality is
not severe in the MS region which yield good trade-off between performance
and robustness.

SIMC Tuning Rules

The SIMC tuning rules are achieving surprisingly good results for both FOPTD
and SOPTD processes, considering the simplicity of the tuning rules.

The Smith Predictor

Assuming one operate the process in a highly robust region (MS ≤ 1.5), the
Smith predictor display an increase in performance for SOPTD processes.
The performance improvement is limited, and can be realised with regular
PI or PID controllers by tuning the controller slightly less robust. For the
FOPTD processes, the Smith predictor is mainly less optimal compared to
regular PI and PID controller.

At lower robustness, equivalent with higher MS values, the Smith pre-
dictor is extremely sensitive to time-delay modelling error. Importantly, for a
Smith predictor aggressively tuned towards a robustness target of MS ≥ 1.6,
the system is at risk of rendering unstable when the real time-delay of the
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process is smaller than the nominal time-delay used in the Smith predictor
model.

There are absolutely no reason for using a Smith predictor PI or PID con-
troller over a Pareto optimal PI or PID controller. One will have to tune the
Smith predictor extremely robust to avoid the instability issues when mod-
elling error in the time-delay parameter occurs. The potential increase in
performance achieved is easy to compensate with a regular PI or PID con-
troller by tuning it a little tighter. If one insist on using a Smith predictor,
the SIMC tuning rules can be applied when the maximum time-delay error
is known.

Recommendations for Further Work

The stability of the Smith predictor controller when modelling errors in the
process lag-time constants should be analysed. For modelling errors in the
gain, time-delay parameter and lag-time constants, a wide range of process
models should be investigated.

Alternative structures for the primary controller should be investigated
to find more optimal stability behaviour.

The step response in the time domain has not been evaluated beyond the
integrated absolute error in the evaluation of performance. The time domain
response should be evaluated further.
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APPENDIX A

FIRST ORDER PLOT
RESULTS

Tuning example values for the Pareto optimal controllers are given in Chap-
ter A.1. SIMC tuning reference points are listed in Chapter A.2. The Pareto
optimal PI and PID tuning curves for the FOPTD process models are graph-
ically represented by J = f (MS), with the complementary sensitivity plotted
as MT = f (MS). The Pareto optimal tuning curves are given in Chapter A.3.

A.1 Pareto Optimal Tuning Example Values

Examples of tuning values for the Pareto optimal PI and PID cascade tuning
is given in Table A.1 and A.2.

Table A.1 – Pareto optimal PI cascade tuning examples for FOPTD models.

Process Kc τI J MS IAEdo IAEdi

G10(s)= e−s

s 0.41 6.07 2.51 1.60 4.31 14.88
G11(s)= e−s

(s+1) 0.55 1.10 1.37 1.60 2.07 2.01
G12(s)= e−s

(8s+1) 3.48 3.93 1.94 1.60 3.11 1.13
G13(s)= e−s 0.20 0.32 1.00 1.60 1.60 1.59
G14(s)= e−s

20s+1 8.43 5.00 2.22 1.60 3.69 0.60

83



84 First Order Plot Results

Table A.2 – Pareto optimal PID cascade tuning examples for FOPTD models.

Process Kc τI τD J MS IAEdo IAEdi

G10(s)= e−s

s 0.55 3.25 0.48 1.46 1.60 2.99 6.71
G11(s)= e−s

(s+1) 0.43 0.61 0.61 1.01 1.60 1.55 1.46
G12(s)= e−s

(8s+1) 4.39 2.53 0.48 1.26 1.60 2.34 0.62
G13(s)= e−s 0.20 0.31 0.01 0.99 1.60 1.58 1.58
G14(s)= e−s

20s+1 10.98 2.94 0.48 1.36 1.60 2.68 0.30

Table A.3 – SIMC tuning parameters for the τc reference points for models 10 to 14.
The closed-loop time constant values are τc/θ ∈ [1/2 1 3/2 2].

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G10(s)= e−s

s

1/2 0.50 0.67 6.00 1.76 2.18 3.40 9.00
1 1.00 0.50 8.00 2.47 1.70 3.92 15.99
3/2 1.50 0.40 10.00 3.36 1.50 4.51 24.97
1 2.00 0.33 12.00 4.41 1.39 5.14 35.87

G11(s)= e−s

(s+1)

1/2 0.50 0.67 1.00 1.30 1.92 2.13 1.73
1 1.00 0.50 1.00 1.41 1.59 2.17 2.03
3/2 1.50 0.40 1.00 1.68 1.44 2.50 2.50
2 2.00 0.33 1.00 2.02 1.35 3.00 3.00

G12(s)= e−s

(8s+1)

1/2 0.50 5.33 6.00 1.70 1.97 2.37 1.12
1 1.00 4.00 8.00 2.38 1.59 2.17 2.00
3/2 1.50 3.20 8.00 2.91 1.44 2.50 2.49
2 2.00 2.67 8.00 3.49 1.35 3.00 2.99

G13(s)= e−s

1/2 0.50 0.00 0.01 1.34 1.92 2.13 2.13
1 1.00 0.00 0.01 1.36 1.59 2.17 2.17
3/2 1.50 0.00 0.01 1.57 1.44 2.50 2.50
2 2.00 0.00 0.01 1.88 1.35 3.00 3.00

G14(s)= e−s

20s+1

1/2 0.50 13.33 6.00 1.74 2.08 2.98 0.45
1 1.00 10.00 8.00 2.43 1.65 3.20 0.80
3/2 1.50 8.00 10.00 3.30 1.47 3.43 1.25
2 2.00 6.67 12.00 4.33 1.36 3.68 1.78

A.2 SIMC Tuning Reference Points

The tuning reference points for the SIMC tuning rules are given for SIMC PI
controllers in Table A.3. The closed-loop time constant values for the refer-
ence points are given by τc/θ ∈ [1/2 1 3/2 2].
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A.3 Pareto Optimal PI Performance and SIMC
Tuning

The Pareto optimal PI controller tuning are represented in Figure A.1(a)
through A.5(a), where the tuning performance (J) is plotted as a function
of robustness (MS). The SIMC tuning curve is included, with the τc refer-
ence points marked as circles. Figure A.1(b) through A.5(b) illustrates the
correpsonding MS-MT relation.
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Figure A.1 – SIMC controller tuning compared to Pareto optimal PI and PID con-
troller tuning curve for Case 10, integrating process: G10(s)= e−s

s .
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Figure A.2 – SIMC controller tuning compared to Pareto optimal PI and PID
controller tuning curve for Case 11, time delay dominated process:
G11(s)= e−s

(s+1) .
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Figure A.3 – SIMC controller tuning compared to Pareto optimal PI and PID con-
troller tuning curve for Case 12, lag dominated process: G12(s) =

e−s

(8s+1) .
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Figure A.4 – SIMC controller tuning compared to Pareto optimal PI and PID con-
troller tuning curve for Case 13, pure time delay process: G13(s)= e−s.
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APPENDIX B

SECOND ORDER PLOT
RESULTS

Tuning example values for the Pareto optimal controllers are given in Chap-
ter B.1. SIMC tuning reference points are listed in Chapter B.2. The Pareto
optimal PI and PID tuning curves for the FOPTD process models are graph-
ically represented by J = f (MS), with the complementary sensitivity plotted
as MT = f (MS). The Pareto optimal tuning curves are given in Chapter B.3.

B.1 Pareto Optimal Tuning Example Values

Example tuning values are given for the Pareto optimal PI and PID con-
trollers in Table B.1 and B.2, respectively. The examples are given for the
cascade parameterisation of the PI and PID controllers.

B.2 SIMC Tuning Reference Points

The tuning reference points for the SIMC tuning rules are given for SIMC
PI controllers in Table B.3, while the reference points for the SIMC PID con-
trollers are given in Table B.4. The closed-loop time constant values for the
reference points are given by τc/θ ∈ [1/2 1 3/2 2].
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Table B.1 – Pareto optimal PI cascade tuning examples for SOPTD models.

Process Kc τI J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1) 0.49 1.35 1.49 1.6 2.8 2.75
G2(s)= e−s

(s+1)(0.8s+1) 0.53 1.57 1.58 1.6 3.07 2.99
G3(s)= e−s

(s+1)(0.3s+1) 0.48 1.2 1.42 1.6 2.56 2.49

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 1 1.29 2.27 1.6 1.48 1.29

G5(s)= e−
8

15 s

(s+1)(0.8s+1) 0.79 1.56 2.02 1.6 2.14 1.97

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 1.4 1.07 2.61 1.6 0.98 0.76

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 1.19 1.29 2.73 1.6 1.3 1.08

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 0.93 1.54 2.36 1.6 1.87 1.64

G9(s)= e−
3

20 s

(s+1)(0.3s+1) 1.65 1.05 3.22 1.6 0.87 0.64

Table B.2 – Pareto optimal PID cascade tuning examples for SOPTD models.

Process Kc τI τD J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1) 0.42 0.82 0.82 1.04 1.6 1.94 1.93
G2(s)= e−s

(s+1)(0.8s+1) 0.48 0.96 0.96 1.05 1.6 2.04 2.01
G3(s)= e−s

(s+1)(0.3s+1) 0.4 0.73 0.73 1.03 1.6 1.84 1.81

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 1.14 0.69 0.69 1.11 1.6 0.76 0.6

G5(s)= e−
8

15 s

(s+1)(0.8s+1) 0.85 0.9 0.9 1.08 1.6 1.14 1.06

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 1.65 0.47 0.47 1.17 1.6 0.52 0.29

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 1.54 0.63 0.63 1.16 1.6 0.63 0.41

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 1.14 0.88 0.88 1.11 1.6 0.88 0.77

G9(s)= e−
3

20 s

(s+1)(0.3s+1) 2.27 0.42 0.42 1.23 1.6 0.43 0.19
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Table B.3 – SIMC PI tuning for SOPTD models. The closed-loop time constant val-
ues are τc/θ ∈ [1/2 1 3/2 2].

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)

1/2 0.62 0.62 1 1.7 2.37 3.53 2.81
1 1.25 0.44 1 1.59 1.79 3.14 2.8
3/2 1.88 0.35 1 1.7 1.56 3.24 3.1
2 2.5 0.29 1 1.91 1.44 3.58 3.55

G2(s)= e−s

(s+1)(0.8s+1)

1/2 0.7 0.59 1 2 2.5 4.32 3.37
1 1.4 0.42 1 1.83 1.84 3.74 3.3
3/2 2.1 0.32 1 1.91 1.59 3.78 3.57
2 2.8 0.26 1 2.1 1.46 4.07 3.99

G3(s)= e−s

(s+1)(0.3s+1)

1/2 0.57 0.63 1 1.5 2.23 2.97 2.38
1 1.15 0.47 1 1.46 1.73 2.73 2.46
3/2 1.72 0.37 1 1.6 1.53 2.89 2.81
2 2.3 0.3 1 1.86 1.41 3.31 3.3

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1/2 0.29 1.6 1 2.34 2.64 1.98 0.99
1 0.58 1.09 1 2.25 1.89 1.69 1.11
3/2 0.87 0.83 1 2.45 1.62 1.68 1.32
2 1.17 0.67 1 2.74 1.48 1.77 1.56

G5(s)= e−
8

15 s

(s+1)(0.8s+1)

1/2 0.47 1 1 2.48 2.64 3.16 1.97
1 0.93 0.68 1 2.32 1.89 2.7 2.07
3/2 1.4 0.52 1 2.45 1.62 2.69 2.33
2 1.87 0.42 1 2.68 1.48 2.84 2.64

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1/2 0.17 2.67 1 2.24 2.64 1.19 0.44
1 0.35 1.82 1 2.25 1.89 1.01 0.55
3/2 0.52 1.38 1 2.57 1.62 1.01 0.72
2 0.7 1.11 1 2.96 1.48 1.06 0.9

G7(s)= e−
1
4 s

(s+1)(0.5s+1)

1/2 0.25 2 1 2.68 2.67 1.74 0.75
1 0.5 1.33 1 2.64 1.9 1.49 0.89
3/2 0.75 1 1 2.91 1.63 1.48 1.09
2 1 0.8 1 3.28 1.49 1.56 1.3

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1/2 0.4 1.25 1 2.82 2.67 2.78 1.54
1 0.8 0.83 1 2.7 1.9 2.38 1.69
3/2 1.2 0.62 1 2.89 1.63 2.37 1.94
2 1.6 0.5 1 3.18 1.49 2.49 2.23

G9(s)= e−
3

20 s

(s+1)(0.3s+1)

1/2 0.15 3.33 1 2.6 2.67 1.04 0.33
1 0.3 2.22 1 2.71 1.9 0.89 0.45
3/2 0.45 1.67 1 3.14 1.63 0.89 0.6
2 0.6 1.33 1 3.65 1.49 0.93 0.75
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Table B.4 – SIMC PID tuning for SOPTD models. The closed-loop time constant
values are τc/θ ∈ [1/2 1 3/2 2].

Process τc/θ τc Kc τI τD J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)

1/2 0.5 0.67 1 0.5 1.02 1.92 2.13 1.67
1 1 0.5 1 0.5 1.12 1.59 2.17 2.02
3/2 1.5 0.4 1 0.5 1.34 1.44 2.5 2.5
2 2 0.33 1 0.5 1.61 1.35 3 3

G2(s)= e−s

(s+1)(0.8s+1)

1/2 0.5 0.67 1 0.8 0.97 1.92 2.13 1.59
1 1 0.5 1 0.8 1.09 1.59 2.17 2.01
3/2 1.5 0.4 1 0.8 1.3 1.44 2.5 2.5
2 2 0.33 1 0.8 1.56 1.35 3 3

G3(s)= e−s

(s+1)(0.3s+1)

1/2 0.5 0.67 1 0.3 1.08 1.92 2.13 1.71
1 1 0.5 1 0.3 1.18 1.59 2.17 2.03
3/2 1.5 0.4 1 0.3 1.41 1.44 2.5 2.5
2 2 0.33 1 0.3 1.69 1.35 3 3

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1/2 0.17 2 1 0.5 0.98 1.92 0.71 0.5
1 0.33 1.5 1 0.5 1.14 1.59 0.72 0.67
3/2 0.5 1.2 1 0.5 1.38 1.44 0.84 0.83
2 0.67 1 1 0.5 1.65 1.35 1 1

G5(s)= e−
8
15 s

(s+1)(0.8s+1)

1/2 0.27 1.25 1 0.8 0.94 1.92 1.14 0.8
1 0.53 0.94 1 0.8 1.09 1.59 1.16 1.07
3/2 0.8 0.75 1 0.8 1.31 1.44 1.34 1.33
2 1.07 0.62 1 0.8 1.57 1.35 1.6 1.6

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1/2 0.1 3.33 1 0.3 1.07 1.92 0.43 0.3
1 0.2 2.5 1 0.3 1.27 1.59 0.43 0.4
3/2 0.3 2 1 0.3 1.54 1.44 0.5 0.5
2 0.4 1.67 1 0.3 1.84 1.35 0.6 0.6

G7(s)= e−
1
4 s

(s+1)(0.5s+1)

1/2 0.12 2.67 1 0.5 1.03 1.92 0.53 0.38
1 0.25 2 1 0.5 1.21 1.59 0.54 0.5
3/2 0.38 1.6 1 0.5 1.46 1.44 0.63 0.63
2 0.5 1.33 1 0.5 1.75 1.35 0.75 0.75

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1/2 0.2 1.67 1 0.8 0.96 1.92 0.85 0.6
1 0.4 1.25 1 0.8 1.13 1.59 0.87 0.8
3/2 0.6 1 1 0.8 1.36 1.44 1 1
2 0.8 0.83 1 0.8 1.63 1.35 1.2 1.2

G9(s)= e−
3
20 s

(s+1)(0.3s+1)

1/2 0.07 4.44 0.9 0.3 1.12 1.94 0.34 0.2
1 0.15 3.33 1 0.3 1.39 1.59 0.33 0.3
3/2 0.22 2.67 1 0.3 1.68 1.44 0.38 0.37
2 0.3 2.22 1 0.3 2.02 1.35 0.45 0.45
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B.3 Pareto Optimal PI and PID Tuning Curves
and SIMC Tuning

The Pareto optimal PI and PID controllers have been found as described in
Chapter 3.7, while the SIMC tuning curves have been found as given in
Chapter 4.3. The cases studied are the second-order-plus-time-delay mod-
els in case 1 to case 9. Figures B.1(a) through B.9(a) depict the performance
(J) as a function of robustness (MS) while Figures B.1(b) through B.9(b).
The SIMC reference values are denoted as circles for τc/θ ∈ [1/2 1 3/2 2]. Fig-
ures B.1(b) through B.9(b) depict the MS-MT relation.
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MT = f (MS). MT = MS is represented by the dashed line.

Figure B.1 – SIMC tuning controllers compared to Pareto optimal PI and PID con-
trollers for G1(s)= e−s

(s+1)(0.5s+1) .
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(b) Complementary sensitivity peak value as a function of the sensitivity peak
value, MT = f (MS). MT = MS is represented by the dashed line.

Figure B.2 – SIMC tuning controllers compared to Pareto optimal PI and PID con-
trollers for G2(s)= e−s

(s+1)(0.8s+1) .
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Figure B.3 – SIMC tuning controllers compared to Pareto optimal PI and PID con-
trollers for G3(s)= e−s

(s+1)(0.3s+1) .
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Figure B.4 – SIMC tuning controllers compared to Pareto optimal PI and PID con-

trollers for G4(s)= e−
1
3 s

(s+1)(0.5s+1) .
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value, MT = f (MS). MT = MS is represented by the dashed line.

Figure B.6 – SIMC tuning controllers compared to Pareto optimal PI and PID con-

trollers for G6(s)= e−
1
5 s

(s+1)(0.3s+1) .
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(b) Complementary sensitivity peak value as a function of the sensitivity peak
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Figure B.7 – SIMC tuning controllers compared to Pareto optimal PI and PID con-

trollers for G7(s)= e−
1
4 s

(s+1)(0.5s+1) .
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(a) Cost value as a function of robustness, J = f (MS).
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(b) Complementary sensitivity peak value as a function of the sensitivity peak
value, MT = f (MS). MT = MS is represented by the dashed line.

Figure B.8 – SIMC tuning controllers compared to Pareto optimal PI and PID con-

trollers for G8(s)= e−
2
5 s

(s+1)(0.8s+1) .
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Figure B.9 – SIMC tuning comcontrollers compared to Pareto optimal PI and PID

controllers for G9(s)= e−
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APPENDIX C

PARETO OPTIMAL
SENSITIVITY TO
TIME-DELAY MODELLING
ERROR

The Pareto optimal PI and PID controllers for the process models in cases
1–14 have been evaluated when the real process time-delay (θ) is different
from the nominal modelled time-delay (θ◦). The real process time-delay have
been changed within ±90% of the nominal time-delay. Performance and ro-
bustness efficiency have been plotted as functions of the real time-delay.

C.1 PI Controller Sensitivity

The sensitivity of the Pareto optimal PI controller for in terms of performance
are given in Figure C.1(a) through C.14(a). The robustness efficiency is given
in Figure C.1(b) through C.14(b). Cases 1–14 have been investigated.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.1 – Pareto optimal PI controller sensitivity to time-delay modelling error
for G1(s) = e−s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.2 – Pareto optimal PI controller sensitivity to time-delay modelling error
for G2(s) = e−s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.3 – Pareto optimal PI controller sensitivity to time-delay modelling error
for G3(s) = e−s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.4 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G4(s) = e−
1
3 s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.5 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G5(s) = e−
8
15 s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.6 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G6(s) = e−
1
5 s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.7 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G7(s) = e−
1
4 s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.8 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G8(s) = e−
2
5 s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay for the
controller design.



114 Pareto Optimal Sensitivity to Time-Delay Modelling Error

0 1
2θ◦ θ◦ 3

2θ◦ 2θ◦

1

2

3

4

5

6

Real process time-delay

Pe
rf

or
m

an
ce

,J

Case 9, G9(s)= e−
3
20 s

(s+1)(0.3s+1)

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.9 – Pareto optimal PI controller sensitivity to time-delay modelling error

for G9(s) = e−
3
20 s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.10 – Pareto optimal PI controller sensitivity to time-delay modelling er-
ror for G10(s) = e−s

s . θ◦ is the nominal modelled time-delay for the
controller design.
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.11 – Pareto optimal PI controller sensitivity to time-delay modelling er-
ror for G11(s) = e−s

(s+1) . θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.12 – Pareto optimal PI controller sensitivity to time-delay modelling er-
ror for G12(s) = e−s. θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.13 – Pareto optimal PI controller sensitivity to time-delay modelling er-
ror for G13(s) = e−s. θ◦ is the nominal modelled time-delay for the
controller design.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.14 – Pareto optimal PI controller sensitivity to time-delay modelling er-
ror for G14(s) = e−s

20s+1 . θ◦ is the nominal modelled time-delay for the
controller design.
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C.2 PID Controller Sensitivity

The sensitivity of the Pareto optimal PID controllers for cases 1–14, in terms
of performance, are given in Figure C.15(a) through C.28(a). The correspond-
ing robustness efficiency is given in Figure C.15(b) through C.28(b).
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.15 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G1(s) = e−s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.16 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G2(s) = e−s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.17 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G3(s) = e−s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay.
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.18 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G4(s) = e−
1
3 s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.19 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G5(s) = e−
8

15 s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.20 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G6(s) = e−
1
5 s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.21 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G7(s) = e−
1
4 s

(s+1)(0.5s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.22 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G8(s) = e−
2
5 s

(s+1)(0.8s+1) . θ◦ is the nominal modelled time-delay.



C.2. PID Controller Sensitivity 129

0 1
2θ◦ θ◦ 3

2θ◦ 2θ◦
0

2

4

6

Real process time-delay

Pe
rf

or
m

an
ce

,J
Case 9, G9(s)= e−

3
20 s

(s+1)(0.3s+1)

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90

(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.23 – Pareto optimal PID controller sensitivity to time-delay modelling er-

ror for G9(s) = e−
3

20 s

(s+1)(0.3s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.24 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G10(s)= e−s

s . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.25 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G11(s)= e−s

(s+1) . θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.26 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G12(s)= e−s. θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.27 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G13(s)= e−s. θ◦ is the nominal modelled time-delay.
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(a) Cost function value as a function of time-delay modeling error for a set of target MS values,
J = f (θ).
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(b) Robustness as function of the real process time-delay when modelling error occur, plotted for a
set of target MS values, MS = f (θ)

Figure C.28 – Pareto optimal PID controller sensitivity to time-delay modelling er-
ror for G14(s)= e−s

20s+1 . θ◦ is the nominal modelled time-delay.



APPENDIX D

SMITH PREDICTOR
PARETO OPTIMAL
SOLUTIONS

The Pareto optimal Smith predictor tuning curves have been found according
to Algorithm 1 as described in Chapter 3.7. Case 1–14 have been investigate.
The results are given in Chapter D.2. The controller tuning performance
is represented as a function of robustness, along with the maximum addi-
tional time-delay before instability occur (θmax). Tuning examples are given
in Chapter D.1.

D.1 Smith Predictor Pareto Optimal Tuning
Examples

Example tuning values are given for the Pareto optimal Smith Predictor PI
and PID controllers in Table D.1 and D.2, respectively. The examples are
given for the cascade controller parameterisation.

D.2 Smith Predictor Pareto Optimal Performance

Where they come from.
Figure D.10(a), D.12(a) and D.14(a), that is, the plots for case 10, 12 and

14, have another ordinate scale compared to the rest of the plots. This is be-

135



136 Smith Predictor Pareto Optimal Solutions

Table D.1 – Pareto optimal Smith PI cascade tuning examples.

Process Kc τI J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1) 0.86 1.15 1.26 1.60 2.33 2.33
G2(s)= e−s

(s+1)(0.8s+1) 0.88 1.35 1.33 1.60 2.54 2.54
G3(s)= e−s

(s+1)(0.3s+1) 0.91 1.02 1.20 1.60 2.11 2.11

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 1.68 1.28 1.88 1.60 1.18 1.10

G5(s)= e−
8
15 s

(s+1)(0.8s+1) 1.34 1.53 1.68 1.60 1.73 1.67

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 2.34 1.06 2.22 1.60 0.77 0.65

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 1.92 1.29 2.31 1.60 1.05 0.92

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 1.55 1.57 1.98 1.60 1.51 1.40

G9(s)= e−
3
20 s

(s+1)(0.3s+1) 2.65 1.06 2.81 1.60 0.70 0.55
G10(s)= e−s

s 1.14 3.58 4.90 1.60 2.36 53.13
G11(s)= e−s

(s+1) 1.42 0.93 1.12 1.60 1.67 1.67
G12(s)= e−s

(8s+1) 9.44 2.67 1.76 1.60 2.04 1.32
G13(s)= e−s 0.75 0.32 0.91 1.60 1.45 1.45
G14(s)= e−s

20s+1 23.10 3.14 2.61 1.60 2.19 1.08

Table D.2 – Pareto optimal Smith PID cascade tuning examples.

Process Kc τI τD J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1) 1.20 0.76 0.75 0.89 1.60 1.66 1.65
G2(s)= e−s

(s+1)(0.8s+1) 1.34 0.90 0.88 0.88 1.60 1.70 1.69
G3(s)= e−s

(s+1)(0.3s+1) 1.18 0.65 0.65 0.89 1.60 1.60 1.57

G4(s)= e−
1
3 s

(s+1)(0.5s+1) 3.98 0.79 0.51 0.93 1.60 0.58 0.55

G5(s)= e−
8

15 s

(s+1)(0.8s+1) 2.65 0.90 0.75 0.88 1.60 0.91 0.88

G6(s)= e−
1
5 s

(s+1)(0.3s+1) 5.26 0.43 0.36 1.00 1.60 0.39 0.29

G7(s)= e−
1
4 s

(s+1)(0.5s+1) 4.91 0.60 0.50 0.97 1.60 0.47 0.37

G8(s)= e−
2
5 s

(s+1)(0.8s+1) 3.16 0.76 0.82 0.98 1.60 0.77 0.68

G9(s)= e−
3

20 s

(s+1)(0.3s+1) 7.77 0.42 0.30 1.09 1.60 0.31 0.21
G10(s)= e−s

s 1.40 1.07 0.74 4.38 1.60 1.59 49.47
G11(s)= e−s

(s+1) 1.51 0.50 0.49 0.91 1.60 1.38 1.33
G12(s)= e−s

(8s+1) 12.19 0.98 0.59 1.40 1.60 1.52 1.08
G13(s)= e−s 0.77 0.32 0.01 0.88 1.60 1.42 1.41
G14(s)= e−s

20s+1 7.24 0.46 2.50 2.38 1.60 1.68 1.04
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cause the performance for these cases are significantly poorer than for cases
1-9, 11 and 13. To sustain readability of the latter cases, and make the plots
for case 10, 12 and 14 easily comparable, the maximum ordinate value is set
to 8.
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.1 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for
the process G1(s)= e−s

(s+1)(0.5s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.2 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for
the process G2(s)= e−s

(s+1)(0.5s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.3 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for
the process G3(s)= e−s

(s+1)(0.5s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.4 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G4(s)= e−
1
3 s

(s+1)(0.5s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.5 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G5(s)= e−
8

15 s

(s+1)(0.8s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)
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Figure D.6 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G6(s)= e−
1
5 s

(s+1)(0.3s+1) .
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Figure D.7 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G7(s)= e−
1
4 s

(s+1)(0.5s+1) .
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Figure D.8 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G8(s)= e−
2
5 s

(s+1)(0.8s+1) .



146 Smith Predictor Pareto Optimal Solutions

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

2

3

4

5

Robustness, MS

Pe
rf

or
m

an
ce

,J
Case 9, G9(s)= e−

3
20 s

(s+1)(0.3s+1)

po:pid
po:pi
smith:pid
smith:pi
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Figure D.9 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maximum
additional time-delay (θmax) before instability occur. Both are plots for

the process G9(s)= e−
3

20 s

(s+1)(0.3s+1) .
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.10 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maxi-
mum additional time-delay (θmax) before instability occur. Both are
plots for the process G10(s)= e−s

s .
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.11 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maxi-
mum additional time-delay (θmax) before instability occur. Both are
plots for the process G11(s)= e−s

(s+1) .
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(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.12 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maxi-
mum additional time-delay (θmax) before instability occur. Both are
plots for the process G12(s)= e−s

(8s+1) .
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(a) Pareto optimal Smith predictor solutions, J = f (MS)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

Robustness, MS

M
ax

ad
di

ti
on

al
ti

m
e-

de
la

y,
θ

m
ax

Case 13, G13(s)= e−s

po:pid
po:pi
smith:pid
smith:pi

(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
θmax = f (MS)

Figure D.13 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maxi-
mum additional time-delay (θmax) before instability occur. Both are
plots for the process G13(s)= e−s.



D.2. Smith Predictor Pareto Optimal Performance 151

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

2

4

6

8

Robustness, MS

Pe
rf

or
m

an
ce

,J

Case 14, G14(s)= e−s

20s+1

po:pid
po:pi
smith:pid
smith:pi

(a) Pareto optimal Smith predictor solutions, J = f (MS)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

Robustness, MS

M
ax

ad
di

ti
on

al
ti

m
e-

de
la

y,
θ

m
ax

Case 14, G14(s)= e−s

20s+1

po:pid
po:pi
smith:pid
smith:pi

(b) Maximum additional time-delay for Pareto optimal Smith predictor controllers,
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Figure D.14 – Pareto optimal Smith predictor solutions for PI and PID controllers
compared to Pareto optimal PI and PID controller. Also, the maxi-
mum additional time-delay (θmax) before instability occur. Both are
plots for the process G14(s)= e−s

20s+1 .





APPENDIX E

SMITH PREDICTOR
SENSITIVITY TO
TIME-DELAY MODELLING
ERROR

The Pareto optimal Smith predictor PI and PID controllers for the process
models in cases 1–14 have been evaluated when the real process time-delay
(θ) is different from the nominal modelled time-delay (θ◦). The real process
time-delay have been changed within ±90% of the nominal time-delay. Per-
formance and robustness efficiency have been plotted as functions of the real
time-delay.

E.1 Smith Predictor PI Control Sensitivity

The sensitivity plots for the Pareto optimal Smith predictor PI controller
tunings are given in terms of performance in Figure E.1(a) through E.14(a).
The corresponding robustness efficiency plots are displayed in Figure E.1(b)
through E.1(b).
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Figure E.1 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for
a set of target MS values for model G1(s)= e−s

(s+1)(0.5s+1) .
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(b) Robustness sensitivity, MS = f (θ).

Figure E.2 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for
a set of target MS values for model G2(s)= e−s

(s+1)(0.8s+1) .
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Figure E.3 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for
a set of target MS values for model G3(s)= e−s

(s+1)(0.3s+1) .
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Figure E.4 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for

a set of target MS values for model G4(s)= e−
1
3 s

(s+1)(0.5s+1) .
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Figure E.5 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for

a set of target MS values for model G5(s)= e−
8

15 s
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Figure E.6 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for

a set of target MS values for model G6(s)= e−
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Figure E.7 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for

a set of target MS values for model G7(s)= e−
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Figure E.8 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for
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Figure E.9 – Performance and robustness sensitivity to modelling error in the time-
delay parameter for a Pareto optimal Smith predictor PI controller for
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Figure E.10 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PI con-
troller for a set of target MS values for model G10(s)= e−s
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Figure E.11 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PI con-
troller for a set of target MS values for model G11(s)= e−s
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Figure E.12 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PI con-
troller for a set of target MS values for model G12(s)= e−s.
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Figure E.13 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PI con-
troller for a set of target MS values for model G13(s)= e−s.



E.1. Smith Predictor PI Control Sensitivity 167

0 1
2θ◦ θ◦ 3

2θ◦ 2θ◦

5

10

15

Real process time-delay, θ

Pe
rf

or
m

an
ce

,J
Case 14, G14(s)= e−s

20s+1

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90

(a) Performance sensitivity, J = f (θ).

0 1
2θ◦ θ◦ 3

2θ◦ 2θ◦
1

2

3

4

5

Real process time-delay, θ

R
ob

us
tn

es
s,

M
S

Case 14, G14(s)= e−s

20s+1

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90

(b) Robustness sensitivity, MS = f (θ).

Figure E.14 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PI con-
troller for a set of target MS values for model G14(s)= e−s

20s+1 .
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E.2 Smith Predictor PID Control Sensitivity

The sensitivity plots for the Pareto optimal Smith predictor PI controller
tunings are given in terms of performance in Figure E.1(a) through E.14(a).
The corresponding robustness efficiency plots are displayed in Figure E.1(b)
through E.1(b).
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Figure E.15 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G1(s)= e−s

(s+1)(0.5s+1) .
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Figure E.16 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G2(s)= e−s

(s+1)(0.8s+1) .
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Figure E.17 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G3(s)= e−s

(s+1)(0.3s+1) .
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Figure E.18 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G4(s)= e−
1
3 s

(s+1)(0.5s+1) .
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Figure E.19 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G5(s)= e−
8

15 s

(s+1)(0.8s+1) .
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Figure E.20 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G6(s)= e−
1
5 s

(s+1)(0.3s+1) .
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Figure E.21 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G7(s)= e−
1
4 s

(s+1)(0.5s+1) .
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Figure E.22 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G8(s)= e−
2
5 s

(s+1)(0.8s+1) .



E.2. Smith Predictor PID Control Sensitivity 177

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

Time-delay error, ∆θ

Pe
rf

or
m

an
ce

,J
Case 9, G9(s)= e−

3
20 s

(s+1)(0.3s+1)

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90

(a) Performance sensitivity, J = f (θ).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

2

3

4

Time-delay error, ∆θ

R
ob

us
tn

es
s,

M
S

Case 9, G9(s)= e−
3
20 s

(s+1)(0.3s+1)

Ms = 1.30
Ms = 1.60
Ms = 1.70
Ms = 1.90

(b) Robustness sensitivity, MS = f (θ).

Figure E.23 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-

troller for a set of target MS values for model G9(s)= e−
3

20 s

(s+1)(0.3s+1) .
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(b) Robustness sensitivity, MS = f (θ).

Figure E.24 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G10(s)= e−s

s .
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(b) Robustness sensitivity, MS = f (θ).

Figure E.25 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G11(s)= e−s

(s+1) .
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Figure E.26 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G12(s)= e−s

(8s+1) .



E.2. Smith Predictor PID Control Sensitivity 181

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

Time-delay error, ∆θ

Pe
rf

or
m

an
ce

,J

Case 13, G13(s)= e−s
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(b) Robustness sensitivity, MS = f (θ).

Figure E.27 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G13(s)= e−s.
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Figure E.28 – Performance and robustness sensitivity to modelling error in the
time-delay parameter for a Pareto optimal Smith predictor PID con-
troller for a set of target MS values for model G14(s)= e−s

20s+1 .



APPENDIX F

SMITH SIMC TUNING
PLOTS

The SIMC tuning rules for the Smith predictor have been derived from the
standard SIMC tuning rules in Appendix I, and are

Kc =
1
k
τ1

τc
, (F.1a)

τI =min[τ1,4τc] , (F.1b)

τD = τ2. (F.1c)

The rules have been appended to models 1–14 by defining some span of τc
values based on the set of expected time-delay disturbances defined in Chap-
ter 6.4, Q, and then computing the corresponding controller tuning. The re-
sponse of the system defined by the model and the controller was computed,
and the system robustness was calculated. The results were plotted and are
displayed in Figure F.1–F.13. For the PI tuning of second-order models the
“half rule” was used for model reduction. Reference points for the closed-loop
constant are given from the set τc/θ = [1/2δθ+ δθ+ 3/2δθ+ 2δθ+], where δθ+ is
the maximum time-delay error factor. Tables F.1, F.2 and F.3 show the ref-
erence points with the corresponding cost function and MS value, along with
the IAE values for the step response.
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Table F.1 – Smith SIMC PI tuning for model 1, 2 and 3. The closed-loop time con-
stant values are τc/θ = [1/2δθ+ δθ+ 3/2δθ+ 2δθ+].

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)

1/2 0.62 0.62 1.00 1.70 2.37 3.53 2.81
1 1.25 0.44 1.00 1.59 1.79 3.14 2.80
3/2 1.88 0.35 1.00 1.70 1.56 3.24 3.10
2 2.50 0.29 1.00 1.91 1.44 3.58 3.55

G2(s)= e−s

(s+1)(0.8s+1)

1/2 0.70 0.59 1.00 2.00 2.50 4.32 3.37
1 1.40 0.42 1.00 1.83 1.84 3.74 3.30
3/2 2.10 0.32 1.00 1.91 1.59 3.78 3.57
2 2.80 0.26 1.00 2.10 1.46 4.07 3.99

G3(s)= e−s

(s+1)(0.3s+1)

1/2 0.57 0.63 1.00 1.50 2.23 2.97 2.38
1 1.15 0.47 1.00 1.46 1.73 2.73 2.46
3/2 1.72 0.37 1.00 1.60 1.53 2.89 2.81
2 2.30 0.30 1.00 1.86 1.41 3.31 3.30

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

1/2θδθ+
θδθ+

3/2θδθ+
2θδθ+

1/2θδθ+
θδθ+

3/2θδθ+

Robustness, MS

Pe
rf

or
m

an
ce

,J

Case 1,G1(s)= e−s

(s+1)(0.5s+1)

smith:pid
smith:pi
smith:simc:pid
smith:simc:pi

Figure F.1 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC
PI and PID tuning for G1(s)= e−s

(s+1)(0.5s+1) .
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Table F.2 – Smith SIMC PI tuning for model 4 through 13. The closed-loop time
constant values are τc/θ = [1/2δθ+ δθ+ 3/2δθ+ 2δθ+].

Process τc/θ τc Kc τI J MS IAEdo IAEdi

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1/2 0.29 1.60 1.00 2.34 2.64 1.98 0.99
1 0.58 1.09 1.00 2.25 1.89 1.69 1.11
3/2 0.87 0.83 1.00 2.45 1.62 1.68 1.32
2 1.17 0.67 1.00 2.74 1.48 1.77 1.56

G5(s)= e−
8
15 s

(s+1)(0.8s+1)

1/2 0.47 1.00 1.00 2.48 2.64 3.16 1.97
1 0.93 0.68 1.00 2.32 1.89 2.70 2.07
3/2 1.40 0.52 1.00 2.45 1.62 2.69 2.33
2 1.87 0.42 1.00 2.68 1.48 2.84 2.64

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1/2 0.17 2.67 1.00 2.24 2.64 1.19 0.44
1 0.35 1.82 1.00 2.25 1.89 1.01 0.55
3/2 0.52 1.38 1.00 2.57 1.62 1.01 0.72
2 0.70 1.11 1.00 2.96 1.48 1.06 0.90

G7(s)= e−
1
4 s

(s+1)(0.5s+1)

1/2 0.25 2.00 1.00 2.68 2.67 1.74 0.75
1 0.50 1.33 1.00 2.64 1.90 1.49 0.89
3/2 0.75 1.00 1.00 2.91 1.63 1.48 1.09
2 1.00 0.80 1.00 3.28 1.49 1.56 1.30

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1/2 0.40 1.25 1.00 2.82 2.67 2.78 1.54
1 0.80 0.83 1.00 2.70 1.90 2.38 1.69
3/2 1.20 0.62 1.00 2.89 1.63 2.37 1.94
2 1.60 0.50 1.00 3.18 1.49 2.49 2.23

G9(s)= e−
3
20 s

(s+1)(0.3s+1)

1/2 0.15 3.33 1.00 2.60 2.67 1.04 0.33
1 0.30 2.22 1.00 2.71 1.90 0.89 0.45
3/2 0.45 1.67 1.00 3.14 1.63 0.89 0.60
2 0.60 1.33 1.00 3.65 1.49 0.93 0.75

G10(s)= e−s

s

1/2 0.50 0.67 6.00 1.76 2.18 3.40 9.00
1 1.00 0.50 8.00 2.47 1.70 3.92 15.99
3/2 1.50 0.40 10.00 3.36 1.50 4.51 24.97
2 2.00 0.33 12.00 4.41 1.39 5.14 35.87

G11(s)= e−s

(s+1)

1/2 0.50 0.67 1.00 1.30 1.92 2.13 1.73
1 1.00 0.50 1.00 1.41 1.59 2.17 2.03
3/2 1.50 0.40 1.00 1.68 1.44 2.50 2.50
2 2.00 0.33 1.00 2.02 1.35 3.00 3.00

G12(s)= e−s

(8s+1)

1/2 0.50 5.33 6.00 1.70 1.97 2.37 1.12
1 1.00 4.00 8.00 2.38 1.59 2.17 1.99
3/2 1.50 3.20 8.00 2.91 1.44 2.51 2.49
2 2.00 2.67 8.00 3.50 1.35 3.00 2.99

G13(s)= e−s

1/2 0.50 0.00 0.01 1.33 1.92 2.13 2.12
1 1.00 0.00 0.01 1.36 1.59 2.17 2.16
3/2 1.50 0.00 0.01 1.57 1.44 2.50 2.49
2 2.00 0.00 0.01 1.88 1.35 3.00 2.99

G14(s)= e−s

1/2 0.50 13.33 6.00 1.74 2.08 2.98 0.45
1 1.00 10.00 8.00 2.43 1.65 3.20 0.80
3/2 1.50 8.00 10.00 3.30 1.47 3.43 1.25
2 2.00 6.67 12.00 4.33 1.36 3.68 1.78
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Table F.3 – Smith SIMC PID tuning for all models. The closed-loop time constant
values are τc/θ = [1/2δθ+ δθ+ 3/2δθ+ 2δθ+].

Process τc/θ τc Kc τI τD J MS IAEdo IAEdi

G1(s)= e−s

(s+1)(0.5s+1)

1/2 0.50 0.67 1.00 0.50 1.02 1.92 2.13 1.67
1 1.00 0.50 1.00 0.50 1.12 1.59 2.17 2.02
3/2 1.50 0.40 1.00 0.50 1.34 1.44 2.50 2.50
2 2.00 0.33 1.00 0.50 1.61 1.35 3.00 3.00

G2(s)= e−s

(s+1)(0.8s+1)

1/2 0.50 0.67 1.00 0.80 0.97 1.92 2.13 1.59
1 1.00 0.50 1.00 0.80 1.09 1.59 2.17 2.01
3/2 1.50 0.40 1.00 0.80 1.30 1.44 2.50 2.50
2 2.00 0.33 1.00 0.80 1.56 1.35 3.00 3.00

G3(s)= e−s

(s+1)(0.3s+1)

1/2 0.50 0.67 1.00 0.30 1.08 1.92 2.13 1.71
1 1.00 0.50 1.00 0.30 1.18 1.59 2.17 2.03
3/2 1.50 0.40 1.00 0.30 1.41 1.44 2.50 2.50
2 2.00 0.33 1.00 0.30 1.69 1.35 3.00 3.00

G4(s)= e−
1
3 s

(s+1)(0.5s+1)

1/2 0.17 2.00 1.00 0.50 0.98 1.92 0.71 0.50
1 0.33 1.50 1.00 0.50 1.14 1.59 0.72 0.67
3/2 0.50 1.20 1.00 0.50 1.38 1.44 0.84 0.83
2 0.67 1.00 1.00 0.50 1.65 1.35 1.00 1.00

G5(s)= e−
8
15 s

(s+1)(0.8s+1)

1/2 0.27 1.25 1.00 0.80 0.94 1.92 1.14 0.80
1 0.53 0.94 1.00 0.80 1.09 1.59 1.16 1.07
3/2 0.80 0.75 1.00 0.80 1.31 1.44 1.34 1.33
2 1.07 0.62 1.00 0.80 1.57 1.35 1.60 1.60

G6(s)= e−
1
5 s

(s+1)(0.3s+1)

1/2 0.10 3.33 1.00 0.30 1.07 1.92 0.43 0.30
1 0.20 2.50 1.00 0.30 1.27 1.59 0.43 0.40
3/2 0.30 2.00 1.00 0.30 1.54 1.44 0.50 0.50
2 0.40 1.67 1.00 0.30 1.84 1.35 0.60 0.60

G7(s)= e−
1
4 s

(s+1)(0.5s+1)

1/2 0.12 2.67 1.00 0.50 1.03 1.92 0.53 0.38
1 0.25 2.00 1.00 0.50 1.21 1.59 0.54 0.50
3/2 0.38 1.60 1.00 0.50 1.46 1.44 0.63 0.63
2 0.50 1.33 1.00 0.50 1.75 1.35 0.75 0.75

G8(s)= e−
2
5 s

(s+1)(0.8s+1)

1/2 0.20 1.67 1.00 0.80 0.96 1.92 0.85 0.60
1 0.40 1.25 1.00 0.80 1.13 1.59 0.87 0.80
3/2 0.60 1.00 1.00 0.80 1.36 1.44 1.00 1.00
2 0.80 0.83 1.00 0.80 1.63 1.35 1.20 1.20

G9(s)= e−
3
20 s

(s+1)(0.3s+1)

1/2 0.07 4.44 0.90 0.30 1.12 1.94 0.34 0.20
1 0.15 3.33 1.00 0.30 1.39 1.59 0.33 0.30
3/2 0.22 2.67 1.00 0.30 1.68 1.44 0.38 0.37
2 0.30 2.22 1.00 0.30 2.02 1.35 0.45 0.45
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Figure F.2 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC
PI and PID tuning for G2(s)= e−s

(s+1)(0.8s+1) .
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Figure F.3 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC
PI and PID tuning for G3(s)= e−s

(s+1)(0.3s+1) .
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Case 4, G4(s)= e−
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Figure F.4 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G4(s)= e−
1
3 s

(s+1)(0.5s+1) .
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Figure F.5 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G5(s)= e−
8
15 s

(s+1)(0.8s+1) .
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Figure F.6 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G6(s)= e−
1
5 s

(s+1)(0.3s+1) .
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Case 7, G7(s)= e−
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Figure F.7 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G7(s)= e−
1
4 s

(s+1)(0.5s+1) .



190 Smith SIMC Tuning Plots

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

1/2θδθ+
θδθ+

3/2θδθ+
2θδθ+

1/2θδθ+
θδθ+

3/2θδθ+

Robustness, MS

Pe
rf

or
m

an
ce

,J
Case 8, G8(s)= e−

2
5 s

(s+1)(0.8s+1)

smith:pid
smith:pi
smith:simc:pid
smith:simc:pi

Figure F.8 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G8(s)= e−
2
5 s

(s+1)(0.8s+1) .
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Case 9, G9(s)= e−
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Figure F.9 – Pareto optimal Smith PI and PID tuning compared with Smith SIMC

PI and PID tuning for G9(s)= e−
3
20 s

(s+1)(0.3s+1) .
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Figure F.10 – Pareto optimal Smith PI tuning compared with Smith SIMC PI tun-
ing for G10(s)= e−s

s .
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Figure F.11 – Pareto optimal Smith PI tuning compared with Smith SIMC PI tun-
ing for G11(s)= e−s

(s+1) .
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Case 12, G12(s)= e−s
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Figure F.12 – Pareto optimal Smith PI tuning compared with Smith SIMC PI tun-
ing for G12(s)= e−s

(8s+1) .
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Case 13, G13(s)= e−s
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Figure F.13 – Pareto optimal Smith PI tuning compared with Smith SIMC PI tun-
ing for G13(s)= e−s.
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Figure F.14 – Pareto optimal Smith PI tuning compared with Smith SIMC PI tun-
ing for G14(s)= e−s

20s+1 .





APPENDIX G

CONTROLLER ACTION

The controller parameters gain (Kc), integral time (τI ) and derivative time
(τD) is graphically represented as functions of robustness (MS) for the Pareto
optimal PI and PID controllers, together with the Pareto optimal Smith pre-
dictor PI and PID controllers. The purpose is to evaluate convergence of
the optimisation routines and easily compare Pareto optimal PI and PID
controller tuning with the Pareto optimal Smith predictor controller tuning.
Case 1 through 14 has been evaluated. The plots are given in Figures G.1
through G.13. It should be noted that the ordinate are of unequal scale for
the different cases to increase readability of the plots.

195



196 Controller Action
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.1 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G1 = e−s

(s+1)(0.5s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.2 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G2 = e−s

(s+1)(0.8s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.3 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G3 = e−s

(s+1)(0.3s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.4 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G4 = e−
1
3 s

(s+1)(0.5s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.5 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G5 = e−
8

15 s

(s+1)(0.8s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.6 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G6 = e−
1
5 s

(s+1)(0.3s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.7 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G7 = e−
1
4 s

(s+1)(0.5s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.8 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G8 = e−
2
5 s

(s+1)(0.8s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto opti-
mal PI controller (dashed line) and the Pareto optimal Smith predictor PI controller, as
functions of robustness (MS).
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(b) Controller gain (Kc, blue color), integral time (τI , red color) and derivative time (τD ,
green color) for the Pareto optimal PID controller (dashed line) and the Pareto optimal
Smith predictor PID controller, as functions of robustness (MS).

Figure G.9 – Compared controller action for the Pareto optimal PI, PID and Smith

predictor PI and PID controller for G9 = e−
3
20 s

(s+1)(0.3s+1) .
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(a) Controller gain (Kc, blue color) and integral time (τI , red color) for the Pareto optimal PI
controller (dashed line) and the Pareto optimal Smith predictor PI controller, as functions
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Figure G.10 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G10 = e−s
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Figure G.11 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G11 = e−s
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Figure G.13 – Compared controller action for the Pareto optimal PI, PID and Smith
predictor PI and PID controller for G13 = e−s.
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APPENDIX H

DERIVATION OF SMITH
PREDICTOR

H.1 Introduction

In this Chapter the Smith predictor controller is derived and analysed for
first-order-plus-time-delay (FOPTD) and second-order-plus-time-delay (SOPTD)
process models. The lower limit for robustness measured by the maximum
peak value (MS) of the sensitivity function (S) is derived. A small example
to illustrate the limit when applying a primary P controller is then given.

Consider a controller, K , and a process, G, which yield the first-order
closed loop response

K̃G
1+ K̃G

= T != 1
τcs+1

e−θs, (H.1)

where the first-order response has gain k = 1, lag time parameter τc and a
time delay of θ. Solving for the controller yields

K̃ = T
G−GT

. (H.2)

Assuming G has a time delay equal to T, G may be expressed as G =G◦e−θs.
Thus, the expression in Equation (H.2) can be written

K̃ =
1

τcs+1

G◦−G◦ 1
τcs+1 e−θs

=
1

G◦
1
τcs

1+ 1
τcs

(
1− e−θs

) . (H.3)

If G is a first-order process, then the numerator of Equation (H.3) is a PI
controller, and for a second-order process G the numerator is a cascade PID
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212 Derivation of Smith Predictor

Table H.1 – Processes and their respective PI or PID internal Smith predictor cas-
cade controller given from the derivation of the Smith predictor.

Process, G Controller, K τI τD

k
τs+1 e−θs =⇒ k τs+1

τcs τI = τc = τ τD = 0
k

(τ1s+1)(τ2s+1) e−θs =⇒ k (τ1s+1)(τ2s+1)
τcs τI = τc = τ1 τD = τ2

controller, given in Table H.1. This controller is often denoted the primary
controller of the Smith predictor.

From Equation (H.3), the complete controller structure for the Smith pre-
dictor is achieved by recognising that KG◦ = 1

τcs and denoting the process
model to be the Smith predictor model, G̃. Then,

K̃ = K
1+KG̃◦

(
1+ e−θ◦s

) . (H.4)

It is noteworthy to observe that from the specification of the controller re-
sponse, the sensitivity and complementary sensitivity peak values are bounded
to

MT −1≤ MS ≤ MT +1, MT = 1 for G = 1
τcs+1

e−θs. (H.5)

Thus the values of MS for the Smith predictor is limited to MS ≤ 2. This
is illustrated for a pure time delay process with a proportional controller in
Section H.1.1.

H.1.1 Smith P Control Robustness Limit Example

Consider the pure time delay process G10(s)= e−s. The corresponding Smith
predictor controller structure with a P-controller is

K̃ = Kc

1+Kc (1− e−s)
, (H.6)

where Kc is the P-controller gain and the process model G̃ = 1. The sensitiv-
ity function for the closed-loop system is

S = 1
1+GK̃

= 1+Kc (1− e−s)
1+Kc

. (H.7)

As s = iω, the following relation yields from Euler’s formula

e−s = e−iω = cos(ω)− isin(ω), (H.8)
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which substituted for S yields

S = 1+Kc −Kc
(
cos(ω)− isin(ω)

)
1+Kc

. (H.9)

By collecting the complex terms and applying some trigonometric identities,
the norm of S may be expressed as

‖S‖ = Kc

1+Kc

[
1

K2
c
+ 2

Kc

(
1+cos(ω)

)+2cos(ω)+2
] 1

2
. (H.10)

As an increase in controller gain increases the response time, but reduces ro-
bustness of the system, the limit where Kc →∞ is of interest. Consequently,
the MS value for G(s)= e−s is

MS =max
ω

(
lim

Kc→∞
‖S‖

)
= 2. (H.11)

The complementary sensitivity for the pure time delay process can in a sim-
ilar manner be shown to always be

MT =max
ω

(
lim

Kc→∞
‖T‖

)
= 1, (H.12)

independent of the frequence ω. From the relation S+T = 1, it is confirmed
that for the pure time delay process and a Smith predictor structure with
P-control, MS ≤ 2 for all ω.





APPENDIX I

SIMC TUNING RULES FOR
THE SMITH PREDICTOR

I.1 Introduction

An analysis to find boundaries for the closed-loop time constant (τc) when
applying the SIMC tuning rules for the purpose of tuning a Smith predictor,
is performed. The SIMC tuning rules are given in Equation (I.1). Routh’s
stability criterion is assumed to perform a stability analysis of the Smith
predictors internal non-delayed feedback system. The analysis is based on
(Grimholt, 2013).

Kc =
1
k

τ1

(τc +θ)
, (I.1a)

τI =min[τ1,4(τc +θ)] , (I.1b)

τD = τ2. (I.1c)

Kc is the controller gain and τI and τD are the integral and derivative time.
k, τ1, τ2 and θ are the process gain, first and second order lag time constants
and the time-delay, respectively.

The Smith predictor controller structure is derived in Appendix H and is

K̃ = K
1+KG̃◦

(
1+ e−θ◦s

) . (I.2)

Here, K̃ is the complete Smith predictor controller structure, K denote the
primary controller, and the process model is G̃ = G̃◦e−θ◦s.
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216 SIMC Tuning Rules for the Smith Predictor

I.2 Analysis

Suppose the underlaying process behaviour is known such that the dynamic
part of the model is perfect, then G̃◦ =G◦. The modelled time-delay is θ◦ and
the real process time delay is e−θs. Assume the first-order Taylor approxi-
mation of e−θs ≈ 1−θs. The closed-loop transfer function for a one-degree-of-
freedom feedback scheme is

CL= K̃G
1+ K̃G

. (I.3)

Substituting K̃ from Equation (I.2) and rearranging, results in the closed
loop function

CL= K̃G
1+ K̃G

= KG
1+KG◦

(
1+ e−θs − e−θ◦s

) = KG
1+KG◦(1+θ◦s−θs︸ ︷︷ ︸

−∆θs

)
, (I.4)

where the deviation between the modelled time-delay and the true time-
delay is ∆θ = θ−θ◦.

I.2.1 Lag Dominated Process

Consider a second-order-plus-time-delay (SOPTD) lag dominated nominal
process model

G =G◦e−θs = k
(τ1s+1)(τ2s+1)

e−θs (I.5)

The SIMC rules are to control G◦, which yield the cascade controller settings

Kc =
1
k
τ1

τc
, (I.6a)

τI = 4τc, (I.6b)

τD = τ2. (I.6c)

Then,

KG◦ =
(

1
k
τ1

τc

[
4τcs+1

4τcs

])(
k

(τ1s+1)(τ2s+1)

)
= τ1(4τcs+1)

4τ2
c(τ1s+1)

. (I.7)

Note that it does not matter whether one consider PI control of a first-order-
plus-time-delay (FOPTD) process or PID control of a SOPTD process, as the
derivative term cancels the second-order term of the process model.
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The general stability criterion states that a closed-loop system will be
stable only if all of the roots in the characteristic equation have negative
real parts. Routh’s stability criterion states that “a necessary and sufficient
condition for all roots of the characteristic equation to have negative real
parts is that all of the elements in the left column of the Routh array are
positive” (Seborg, Edgar, and Mellichamp, 2004). The characteristic equation
is in this context the denominator of Equation (I.4),

1+KG◦(1−∆θs). (I.8)

Substituting Equation (I.7) into Equation (I.8), yields(
4τ1τ

2
c −4τ1τc∆θ

)︸ ︷︷ ︸
a2

s2 + (
4τ2

c +4τ1τc −τ1∆θ
)︸ ︷︷ ︸

a1

s+ τ1︸︷︷︸
a0

, (I.9)

where a2,a1 and a0 are the Routh coefficients, assumed to be strictly positive.
This also follows from the Routh array, and the stability criterion thus is

4τ1τ
2
c −4τ1τc∆θ > 0, (I.10a)

4τ2
c +4τ1τc −τ1∆θ > 0, (I.10b)

τ1 > 0. (I.10c)

Equations (I.10a) and (I.10c) yields τc > ∆θ > 0. Equation (I.10b) is solved
explicit in terms of τc, and a graphical illustration of τc > f (τ1,∆θ) with
∆θ,τ1 ∈ [0,5] is given in Figure I.1. The blue plane is τc =∆θ, which is added
for reference. It is clear that Equation (I.10b) holds if τc >∆θ.

I.2.2 Time-Delay Dominated Process

Following the approach of Chapter I.2.1, the cascade controller produced by
the SIMC rules is

Kc =
1
k
τ1

τc
, (I.11a)

τI = τ1, (I.11b)

τD = τ2, (I.11c)

which yield the characteristic equation

(τc −∆θ)s+1. (I.12)

To achieve a stable system, τc −∆θ > 0, thus τc >∆θ.
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Figure I.1 – Graphical illustration of the solution of Equation (I.10b) expressed on
the form τc > f (τ1,∆θ) (red surface) with τc = ∆θ (blue surface) for
reference.

I.3 Smith Predictor SIMC Rules Summary

The SIMC tuning rules can be used to tune a Smith predictor structure with
a FOPTD or SOPTD process model. By determine the maximum time-delay
modelling error, ∆θ, and letting the closed-loop time constant τc > ∆θ, the
SIMC tuning rules for a Smith predictor is

Kc =
1
k
τ1

τc
, (I.13a)

τI =min[τ1,4τc] , (I.13b)

τD = τ2. (I.13c)



APPENDIX J

CONTROLLER SOLUTIONS

J.1 Alternative Parallel Controller

The controller transfer function in the Laplace domain is
u
e i

=K
(
(1− I−D)+ I

s
+Ds

)
. (J.1)

By gathering of the terms, the controller transfer function takes the form of
a second order polynomial in s. Solving for for s yields

s = −(1−τI −τD)±
√

(1−τI −τD)2 −4τIτD

2τD
, (J.2)

where squared term (τI−τD−1)2−4τD represents a parabolic cylinder. f (τI ,τD).
A plot of f (τI ,τD), (τI ,τD) ∈ [0,1] is given in Figure J.1, and it is evident that
the given domain yields negative solutions. Thus the controller solutions
may be complex, that is s ∈C.

J.2 Cascade Controller

The controller transfer function in the Laplace domain is
u
e i

= Kc

(
τI s+1
τI s

)
(τD s+1). (J.3)

From the same arguments as in Section J.1, the square term in the solu-
tion of the second order polynomial contains a parabolic cylinder, g(τI ,τD) =
(τI − τD)2. A plot of g(τI ,τD), (τI ,τD) ∈ [−1,1] is given in Figure J.2. As
g ≥ 0∀(τI ,τD), the solutions of s are always real, that is, s ∈R.
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Figure J.1 – Plot of the parabolic cylinder f (τI ,τD), (τI ,τD) ∈ [0,1].
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Figure J.2 – Plot of the parabolic cylinder g(τI ,τD), (τI ,τD) ∈ [−1,1].



APPENDIX K

CONTROLLER
CONVERSION

The different parameterisations of the controllers yield different tuning. Even
so, the controllers should be equal independent of the parameterisation cho-
sen. This is not the case when the zeros of the parallel controllers are com-
plex, as the cascade controller parameterisation doesn’t allow for complex
controller solutions, see Appendix J.

To transform one controller into the other, the controller parameterisa-
tions are compared. The following chapters clarifies the conversion rules.

Parallel to alternative parallel parameterisation Conversion between
the tuning parameters for the standard parallel PID-controller and the alter-
native configuration is done by

K?
c =K(1− I−D), (K.1a)

τ?I = 1− I−D
I , (K.1b)

τ?D = D
1− I−D . (K.1c)

Conversion from Cascade Parameterisation The basis for the calcu-
lations are the equality of the alternative parallel parameterisation and the
cascade parameterisations

K
(
(1− I−D)+ I

s
+Ds

)
= Kc

(
τI s+1
τI s

)
(τD s+1), (K.2)
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222 Controller Conversion

where (K, I,D) and (Kc,τI ,τD) are controller gain and integral and derivative
time for the alternative parallel and cascade parameterisations, respectively.
By solving Equation (K.2) with respect to the alternative parallel parame-
ters, the following relations yield:

K= Kc

(
1+ τD +τIτD +1

τI

)
(K.3a)

I= Kc

K
1
τI

(K.3b)

D= Kc

K τD (K.3c)



APPENDIX L

MATLAB MAIN SCRIPT

The main MATLAB script used to perform all computations in this thesis
were too long for LATEX to handlea, but the optimisation routine is listed in
Listing L.1. The basic idea of the main script is to provide the target (Pareto
optimisation, SIMC computation, disturbance computation, etc.) along with
the controller structure (P, PI or PID) and its parameterisation. The “Chriss”
parameterisation in the program correspond to the alternative parallel con-
troller described in Chapter 2.3. Further, the derivative filter and the filter
constant should be set, along with several other parameters. Together they
form the parm parameter struct, which guides MATLAB through several of
the functions used. For instance, the initial value function, initValues.m,
is using the parameters to navigate through several switch statements to
find the correct initial values for a given problem.

Listing L.1 – Main MATLAB script

1 while exitFlag
2 for Ms_s = Ms_span
3 parm.Ms_s = Ms_s ; % Updating Ms setpoint

value
4 Jfun = @(ctrl)costFun(ctrl,parm) ; % Updating

cost
5 cFun = @(ctrl)conFun(ctrl,parm); % Updating

constraints

a) Well, actually it’s limitations in the framed evnironment in mcode that’s the source of
the problem.
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224 MATLAB Main Script

6 initial(i,:) = ctrl ; % Saving starting point for
optimization

7 runOpt = true ;
8 if ctrlr == 3 % Just for P−control
9 sNum = 5 ;
10 % try
11 % tic ;
12 % [ctrl J optFlag] = fmincon(Jfun,ctrl,[],[],[],...
13 % [],lb,[],cFun,opt) ;
14 % % Optimizing from last optimal point
15 % sTime(i) = toc ; % Ending CPU time measurement
16 % if optFlag < 1
17 % sNum = 5 ;
18 % end
19 % catch
20 % sNum = 5
21 % end
22 if sNum == 5
23 tic ;
24 MsFun = @(ctrl) parm.Ms_s − Ms(ctrl,parm) ;
25 opt = optimset('Display','off',...
26 'UseParallel','Always') ;
27 [ctrl dmy optFlag] = fzero(MsFun, ctrl, opt) ;
28 J = costFun(ctrl, parm) ;
29 % [ctrl J optFlag] = fmincon(Jfun,ctrl,[],[],[],...
30 % [],lb,[],cFun,opt);
31 sTime(i) = sTime(i) + toc ; % Ending CPU time
32 end % if sNum
33 else
34 if runGradientfree
35 runOpt = false ; % No standard opt. routine
36 Kc = ctrl(1); ID = ctrl(2:end);
37 Jfun = @(ID)noGrad([Kc ID], parm) ;
38 try
39 tic ;
40 [ID J optFlag] = ...
41 fminsearch(Jfun, ID, sOpt) ;
42 sTime(i) = toc ;
43 catch
44 pFlag = false ;
45 end % try
46 if pFlag
47 fprintf('Success! (%.2f s)\n', sTime(i))
48 MsFun = @(Kc) Ms_s − Ms([Kc ID], parm) ;
49 tic
50 Kc = fzero(MsFun, Kc) ;
51 sTime(i) = sTime(i) + toc ;
52 ctrl = [Kc ID] ;
53 else
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54 % Running standard opt routine. Keep the faith!
55 pFlag = true ;
56 runOpt = true ;
57 end % pFlag
58 end % runGradientfree
59 while runOpt
60 while sNum < 3
61 try
62 if runTomlab
63 tic ;
64 Prob = ProbDef ;
65 Prob.Warning = 0; % Turning off warnings.
66 % Prob.Solver.Tomlab = 'npsol' ;
67 [ctrl J optFlag] = fmincon(@Jfunc, ...
68 ctrl,[],[], [],[],lb,[],@conFunc,...
69 opt,Prob) ;
70 sTime(i) = toc ;
71 else % if not Tomlab
72 % ctrl = simc(G.theta,parm) ; % setting simc as

initial point
73 tic ;
74 [ctrl J optFlag] = fmincon(Jfun,ctrl,[],[],[],...
75 [],lb,[],cFun,opt);
76 % Optimizing from last optimal point
77 sTime(i) = toc ; % Ending CPU time measurement
78 end % tomLab
79 if optFlag < sFlags{sNum}
80 fprintf('%s failed. Error: %s \n', ...
81 solvers{sNum}, lasterr)
82 sNum = sNum + 1 ;
83 elseif min(ctrl) < 1e−3 && modelId < 10
84 name = {'Kc' 'I' 'D'} ;
85 fprintf('%s failed. ', solvers{sNum})
86 fprintf('Error: %s approx zero.\n', ...
87 name{find(ctrl==min(ctrl))})
88 % Hot start from previous working values
89 if i == 1; ctrl = init(3,:) ;
90 else; ctrl = minTune(i−1,:); end;
91 sNum = sNum + 1 ;
92 else % this is done anyway
93 tic ;
94 [ctrl J optFlag] = fmincon(Jfun,ctrl,...
95 [],[],[],[],lb,[],...
96 cFun,opt);
97 % Optimizing from last optimal point
98 sTime(i) = sTime(i) + toc ;
99 if optFlag < sFlags{sNum}
100 fprintf('%s failed. ', ...
101 solvers{sNum})
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102 sNum = sNum + 1 ;
103 else
104 runOpt = false ; % Opt success. Ending while
105 break
106 end
107 end % optFlag < sFlags
108 catch
109 fprintf('%s failed. Error: %s',solvers{sNum},...
110 lasterr)
111 sNum = sNum + 1 ;
112 end
113 end % while
114 if sNum == 3
115 fprintf('Using %s... ', solvers{sNum})
116 Kc = ctrl(1); ID = ctrl(2:end);
117 Jfun = @(ID)noGrad([Kc ID], parm) ;
118 try
119 tic ;
120 [ID J optFlag] = ...
121 fminsearch(Jfun, ID, sOpt) ;
122 extrat = toc ;
123 sTime(i) = sTime(i) + extrat ;
124 catch
125 pFlag = false ;
126 fprintf('fminsearch failed.\nGiving up.\n')
127 fprintf('Error message:\n'); disp(lasterr)
128 runOpt = false ;
129 exitFlag = false ;
130 break
131 end % try
132 if pFlag
133 fprintf('Success! (%.2f s)\n', extrat)
134 sTime(i) = sTime(i) + extrat ;
135 else
136 pFlag = true ;
137 end % if pFlag
138 MsFun = @(Kc) Ms_s − Ms([Kc ID], parm) ;
139 Kc = fzero(MsFun, Kc) ;
140 ctrl = [Kc ID] ;
141 Jfun = @(ctrl)costFun(ctrl, parm) ; % Updating cost
142 cFun = @(ctrl)conFun(ctrl, parm); % Updating cons.
143 try
144 fprintf('Second run sqp start... ')
145 tic ;
146 [ctrl J optFlag] = fmincon(Jfun, ctrl, [], ...
147 [], [], [], lb,...
148 [], cFun, opt) ;
149 extrat = toc ;
150 catch
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151 pFlag = false ;
152 fprintf('Second run sqp failed\n')
153 ctrl = [Kc ID];
154 end
155 if pFlag
156 tic ;
157 [ctrl J optFlag] = fmincon(Jfun, ctrl, [], ...
158 [], [], [], lb,...
159 [], cFun, opt) ;
160 extrat = extrat + toc ;
161 fprintf('Success! (%.2f s)\n', extrat)
162 sTime(i) = sTime(i) + extrat ;
163 else
164 pFlag = true ;
165 end % if pFlag
166 C = controller(ctrl, parm) ;
167 MsCalc = Ms(ctrl, parm) ;
168 if (MsCalc > Ms_s + 1e−4)||(MsCalc < Ms_s − 1e−4)
169 fprintf('Ms values differ at control calculation.\n')
170 fprintf('Ms_s = %0.5f, Ms = %.5f\n', Ms_s, MsCalc)
171 end
172 runOpt = false ; % Opt success. Ending while.
173 end % if sNum == 3
174 end % while runOpt
175 end % if ctrlr == 3
176 if exitFlag == false; break; end;
177 C = controller(ctrl, parm) ; %

Controller
178 minTune(i,:) = ctrl ; % Storing controller

tuning
179 Msc(i) = Ms(ctrl, parm) ; % Calculating Ms

value
180 Mtc(i) = Mt(ctrl, parm) ; % Corresponding Mt−

value
181 ctrlRoot{i} = zero(C.tf) ; % Find controller

zeros
182 IAEtune(i,:) = iae(ctrl, parm) ; % Saving IAE

weights
183 Jtune(i,:) = J ; % Storing cost function

value
184 flags(i,:) = optFlag ; % Storing exit

flag
185 timeleft = sum(sTime)/i*(length(Ms_span)−i)/60 ;
186 % Estimation of time left for computations [min

]
187 if ctrlr == 1
188 fprintf('%.2f\t%.2f\t%.2f\t%.2f\t%.3f\t%.3f\t%d\t%d\t%0.2f\

t\t%0.2f',...
189 J,ctrl,Ms_s,Msc(i), optFlag, ...
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190 length(Ms_span)−i,sTime(i),timeleft)
191 elseif ctrlr == 2
192 fprintf('%.2f\t%.2f\t%.2f\t%.3f\t%.3f\t%d\t%d\t%0.2f\t\t%0

.2f',...
193 J,ctrl,Ms_s,Msc(i), optFlag, ...
194 length(Ms_span)−i,sTime(i),timeleft)
195 else
196 fprintf('%.2f\t%.2f\t%.3f\t%.3f\t%d\t%d\t%0.2f\t\t%0.2f',

...
197 J,ctrl,Ms_s,Msc(i),optFlag, ...
198 length(Ms_span)−i,sTime(i),timeleft)
199 end
200 fprintf('\n')
201 i = i + 1 ; % Incrementing counter
202 sNum = sNum_s ;
203 end % Ending for−loop
204 exitFlag = false ;
205 end % Ending while−loop



APPENDIX M

MATLAB SUPPORT
FUNCTIONS

M.1 Optimisation Constraints Function: conFun.m

Function computing and returning the constraints needed for fmincon op-
timisation. conFun accepts a vector with controller tunings (ctrl) and the
parameter struct (parm) as arguments and returns inequality and equality
constraints for the problem.

Listing M.1 – Function providing constraints to fmincon.

1 %% Header
2 % Purpose: Creating the process transfer function G (struct).
3 % Author: Axel Lodemel Holene (based on work done by Martin
4 % Foss (2012)).
5 % E−mail: axel.holene@gmail.com
6 % Date: February 2013
7 % About: h nonlinear inequality constraints
8 % h_eq nonlinear equality constraints
9 % Ms_s Setpoint value for Ms

10 %
11

12 function [h h_eq] = conFun(ctrl, parm)
13 h = [] ; % No nonlinear inequality

constraints
14 G = parm.G ;
15 C = controller(ctrl, parm) ;
16 h_eq = parm.Ms_s − max(abs(freqresp(1/(1 + G.tf*C.tf), ...

229
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17 logspace(−4,4,40000)))) ;
18 end

M.2 Controller Function: controller.m

Function computing the controller transfer function. controller.m accepts
either one single argument, the parm struct, or a combination of controller
tuning vector (ctrl) and the parameter struct. The first of the two are added
for convenience when finding SIMC tunings, as an initial set of tuning pa-
rameters is unnecessary for this purpose. To navigate to the correct con-
troller configuration, the parameters cType, ctrlr and cNum are used to nav-
igate through a set of nested switch statements. The returned variable is a
struct with the controller tunings and the controller transfer function in sep-
arate fields. If a Smith predictor controller is generated, the struct also will
contain the transfer function for the controller within the Smith predictor
controller structure.

Listing M.2 – Controller function for generating struct with controller tunings and
transfer functions as separate fields.

1 %% Header
2 % Purpose: Creating the process transfer function G (struct).
3 % Author: Axel Lodemel Holene (based on work done by Martin
4 % Foss (2012)).
5 % E−mail: axel.holene@gmail.com
6 % Date: February 2013
7 % About: h nonlinear inequality constraints
8 % h_eq nonlinear equality constraints
9 % Ms_s Setpoint value for Ms
10 %
11

12 function [h h_eq] = conFun(ctrl, parm)
13 h = [] ; % No nonlinear inequality

constraints
14 G = parm.G ;
15 C = controller(ctrl, parm) ;
16 h_eq = parm.Ms_s − max(abs(freqresp(1/(1 + G.tf*C.tf), ...
17 logspace(−4,4,40000)))) ;
18 end
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M.3 Cost Function: costFun.m

Function for computing the cost scalar of the objective function for the op-
timisation problem are given in Listing M.3. The function accepts a con-
troller tuning vector and the parameter struct as arguments, and returns
the weighted cost.

Listing M.3 – Cost function calculation routine.
1 %% Header
2 % Purpose: Cost function
3 % Author: Axel Lodemel Holene
4 % E−mail: axel.holene@gmail.com
5 % Date: February 2013
6 % About: J = [Jw_y Jw_d]*[IAE_y IAE_d]./[IAEw_y IAEw_d]
7 % ctrl = struct of controller starting

points
8 % Jweights ([Jw_y Jw_d]) Cost function

weights
9 % IAEweights ([IAEw_y IAEw_d]) IAE

weighting
10

11 function J = costFun(ctrl, parm)
12 iae0 = iae(ctrl,parm) ;
13 J = parm.Jweights*(iae0./parm.IAEweights) ;
14 end

M.4 Half Rule Implementation: halfrule.m

The halfrule function given in Listing M.4 applies the “half rule” to a sec-
ond order system and returns a struct with the reduced and original system
parameters and transfer functions.

Listing M.4 – “Half rule” system reduction of second order systems.
1 %% Header
2 % Purpose: Using the half−rule to reduce second order tfs to
3 % first order tfs
4 % Author: Axel Lodemel Holene.
5 % E−mail: axel.holene@gmail.com
6 % Date: March 2013
7 % About: G: second order model
8 % H: reduced first order model
9

10 function H = halfrule(G)
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11 s = zpk('s') ;
12 if G.case > 9 % No half rule for 1st order

systems
13 H = G ;
14 else
15 H.ordG = G ;
16 H.k = G.k ;
17 H.tau1 = G.tau1 + G.tau2/2 ;
18 H.theta = G.theta + G.tau2/2 ;
19 H.tfnd = H.k/(H.tau1*s + 1) ;
20 H.tf = H.tfnd*exp(−H.theta*s) ;
21 end
22 end

M.5 Integrated Absolute Error Calculation: iae.m

The iae function computes the absolute integrated error given a set of con-
troller tunings and the parameter struct, by applying either the MATLAB na-
tive step function or the SIMULINK block diagram given in Appendix N.

Listing M.5 – Integrated absolute error response for a given controller tuning and
set of parameters.

1 %% Header
2 % Purpose: Function calculating the integrated absolute error
3 % as a function of controller tuning.
4 % Author: Axel Lodemel Holene
5 % E−mail: axel.holene@gmail.com
6 % Date: February 2013
7 % About:
8

9 function iae0 = iae(ctrl, parm)
10 G = parm.G ;
11 C = controller(ctrl, parm);
12 try
13 S = 1/(1+G.tf*C.tf) ; % Output feedback loop tf(do−>e

)
14 Sd = −G.tf/(1+G.tf*C.tf);% Input feedback loop tf(di−>e

)
15 catch
16 fprintf('This is iae. Error in loop TFs.\n')
17 end
18 %% Output response
19 if parm.simCost == 0 % Don't use Simulink
20 try
21 [e t] = step([S; Sd], parm.simTime) ;
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22 iae0 = trapz(t, abs(e))' ;
23 catch
24 iae0 = [100; 100] ;% Penalize bad tuning from

solver
25 if parm.dispErrors
26 fprintf('This is costFun catch. ')
27 fprintf('Error in step function: %s\n', ...
28 lasterr) ;
29 end
30 end
31 else % Use simulink
32 try
33 simOut = sim('simulink/iaeBlock', ...
34 'SrcWorkspace', 'current') ;
35 iae_y = get(simOut,'iae_y') ;
36 iae_d = get(simOut,'iae_d') ;
37 catch
38 iae_y = 100 ; % Penalize bad tuning from

solver
39 iae_d = 100 ;
40 if parm.dispErrors
41 fprintf('This is costFun catch. ')
42 fprintf('Error in simulink simulation: %s\n',

...
43 lasterr) ;
44 end
45 end
46 iae0 = [iae_y(end); iae_d(end)] ;
47 end
48 end

M.6 Initial Values for Optimisation: initValues.m

The function is accepting the parameter struct as argument, returning the
corresponding initial values.

Listing M.6 – Initial values function

1 %% Header
2 % Purpose: Returning initvalues for optimization from modelId
3 % Author: Axel Lodemel Holene
4 % E−mail: axel.holene@gmail.com
5 % Date: 13. February 2013
6 % About: init = [iae_y ; iae_d ; pareto]
7

8 function init = initValues(parm)
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9 modelId = parm.modelId ;
10 cType = parm.cType ;
11 ctrlr = parm.ctrlr ;
12 cNum = parm.cNum ;
13

14 switch cType
15 case 1 % PO
16 switch ctrlr
17 case 1 % PID
18 switch cNum
19 case 1 % Chriss values
20 switch modelId
21 case 1
22 init = [1.8486 0.2976 0.2321 ;
23 1.9974 0.3233 0.2406 ;
24 1.1194 0.3275 0.2638 ] ;
25 case 2
26 init = [2.0566 0.2547 0.2699 ;
27 2.2294 0.2809 0.2795 ;
28 1.2524 0.2873 0.3027 ] ;
29 case 3
30 init = [1.7468 0.3312 0.1996 ;
31 1.8863 0.3572 0.2076 ;
32 1.0546 0.3603 0.2309 ] ;
33 case 4
34 init = [4.4974 0.3266 0.1800 ;
35 5.2921 0.4244 0.1505 ;
36 2.6581 0.4077 0.1645 ] ;
37 case 5
38 init = [3.4497 0.2689 0.2434 ;
39 3.8393 0.3371 0.2224 ;
40 2.0308 0.3374 0.2361 ] ;
41 case 6
42 init = [6.3862 0.3774 0.1251 ;
43 9.0004 0.5500 0.0867 ;
44 4.0203 0.4907 0.1032 ] ;
45 case 7
46 init = [5.9076 0.3270 0.1773 ;
47 7.4737 0.4608 0.1316 ;
48 3.4348 0.4083 0.1532 ] ;
49 case 8
50 init = [4.5005 0.2719 0.2371 ;
51 5.1083 0.3579 0.2007 ;
52 2.5717 0.3410 0.2186 ] ;
53 case 9
54 init = [8.4814 0.3796 0.1219 ;
55 13.0195 0.5817 0.0740 ;
56 5.4169 0.5027 0.0941 ] ;
57 case 10
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58 init = [0.8216 0.0003 0.2429 ;
59 1.1 0.2 0.25 ;
60 0.5 0.1 0.3 ] ;
61 case 11
62 init = [1.8106 0.3767 0.1508 ;
63 2.0336 0.4223 0.1568 ;
64 1.3500 0.4500 0.1350 ] ;
65 case 12
66 init = [7.3804 0.0842 0.2155 ;
67 9.7846 0.2457 0.2261 ;
68 4.6914 0.1757 0.2437 ] ;
69 case 13
70 init = [0.8378 0.7484 0.0044 ;
71 0.8237 0.7521 0.0015 ;
72 0.8250 0.7576 0 ] ;
73 case 14
74 init = [10.5351 0.0475 0.0019 ;
75 23.1852 0.2174 0.2357 ;
76 10.98 0.14 0.26 ] ;
77 end % end switch modelId
78 case 2 % Parallel values
79 switch modelId
80 case 1
81 init = [0.8540 0.4185 ;
82 0.8287 0.4377 ;
83 0.4180 0.4398 ] ;
84 case 2
85 init = [0.8647 0.3781 ;
86 0.8324 0.4001 ;
87 0.4158 0.4039 ] ;
88 case 3
89 init = [0.8803 0.4439 ;
90 0.8579 0.4622 ;
91 0.4338 0.4640 ] ;
92 case 4
93 init = [1.7960 0.4054 ;
94 1.7024 0.4602 ;
95 0.8020 0.4633 ] ;
96 case 5
97 init = [1.3179 0.3681 ;
98 1.2454 0.4088 ;
99 0.5983 0.4145 ] ;
100 case 6
101 init = [2.7077 0.4360 ;
102 2.6025 0.5145 ;
103 1.2037 0.5038 ] ;
104 case 7
105 init = [2.1404 0.4022 ;
106 2.0171 0.4645 ;
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107 0.9347 0.4627 ] ;
108 case 8
109 init = [1.5827 0.3608 ;
110 1.4804 0.4117 ;
111 0.6990 0.4152 ] ;
112 case 9
113 init = [3.2223 0.4276 ;
114 3.0833 0.5222 ;
115 1.4053 0.5020 ] ;
116 end % end switch modelId
117 case 3 % AltParallel values
118 switch modelId
119 case 1
120 end % end switch modelId
121 case 4 % Cascade values
122 switch modelId
123 case 1
124 init = [1 1 1 ;
125 1 1 1 ;
126 0.2106 0.7913 0.7913] ;
127 case 2
128 init = [1 1 1 ;
129 1 1 1 ;
130 0.2349 0.9275 0.9287] ;
131 case 3
132 init = [1 1 1 ;
133 1 1 1 ;
134 0.2018 0.7017 0.7018] ;
135 case 4
136 init = [1 1 1 ;
137 1 1 1 ;
138 0.5570 0.6607 0.6605] ;
139 case 5
140 init = [1 1 1 ;
141 1 1 1 ;
142 0.4077 0.8463 0.8464] ;
143 case 6
144 init = [1 1 1 ;
145 1 1 1 ;
146 0.8140 0.4777 0.4775] ;
147 case 7
148 init = [1 1 1 ;
149 1 1 1 ;
150 0.7461 0.6356 0.6351] ;
151 case 8
152 init = [1 1 1 ;
153 1 1 1 ;
154 0.5475 0.8286 0.8284] ;
155 case 9
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156 init = [1 1 1 ;
157 1 1 1 ;
158 1.0920 0.4499 0.4492] ;
159 case 10
160 init = [1 1 1;
161 1 1 1;
162 0.3258 5.8437 0.4221 ] ;
163 case 11
164 init = [1 1 1;
165 1 1 1;
166 0.4503 1.0024 0.4198 ] ;
167 case 12
168 init = [1 1 1;
169 1 1 1;
170 2.7234 3.3003 0.4207 ] ;
171 case 13
172 init = [0.2 0.32 0 ;
173 0.2 0.32 0 ;
174 % 2.7235 3.3011 0.4206 ] ;
175 0.12 0.35 0.01 ] ;
176 case 14
177 init = [1 1 1;
178 1 1 1;
179 5.8980 3.8552 0.4780 ] ;
180 end % end switch modelId
181 end % end switch cNum
182 case 2 % PI
183 switch cNum
184 case 1 % Chriss
185 switch modelId
186 case 1
187 init = [0.8540 0.4185 ;
188 0.8287 0.4377 ;
189 0.4180 0.4398 ] ;
190 case 2
191 init = [0.8647 0.3781 ;
192 0.8324 0.4001 ;
193 0.4158 0.4039 ] ;
194 case 3
195 init = [0.8803 0.4439 ;
196 0.8579 0.4622 ;
197 0.4338 0.4640 ] ;
198 case 4
199 init = [1.7960 0.4054 ;
200 1.7024 0.4602 ;
201 0.8020 0.4633 ] ;
202 case 5
203 init = [1.3179 0.3681 ;
204 1.2454 0.4088 ;
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205 0.5983 0.4145 ] ;
206 case 6
207 init = [2.7077 0.4360 ;
208 2.6025 0.5145 ;
209 1.2037 0.5038 ] ;
210 case 7
211 init = [2.1404 0.4022 ;
212 2.0171 0.4645 ;
213 0.9347 0.4627 ] ;
214 case 8
215 init = [1.5827 0.3608 ;
216 1.4804 0.4117 ;
217 0.6990 0.4152 ] ;
218 case 9
219 init = [3.2223 0.4276 ;
220 3.0833 0.5222 ;
221 1.4053 0.5020 ] ;
222 case 10
223 init = [1 0.1 ;
224 0.6 0.2 ;
225 0.24 0.07 ] ;
226 case 11
227 init = [1.04 0.47 ;
228 1.02 0.49 ;
229 0.51 0.49 ] ;
230 case 12
231 init = [4.5 0.11 ;
232 4.23 0.21 ;
233 2.14 0.16 ] ;
234 case 13
235 init = [0.19 3.14 ;
236 0.1 2 ;
237 0.44 0.74 ] ;
238 case 14
239 init = [1 1 ;
240 1 1 ;
241 4.8989 0.1186 ] ;
242 end % end switch modelId
243 case 2
244 switch modelId
245 case 1
246 init = [0.8540 0.4185 ;
247 0.8287 0.4377 ;
248 0.4180 0.4398 ] ;
249 case 2
250 init = [0.8647 0.3781 ;
251 0.8324 0.4001 ;
252 0.4158 0.4039 ] ;
253 case 3
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254 init = [0.8803 0.4439 ;
255 0.8579 0.4622 ;
256 0.4338 0.4640 ] ;
257 case 4
258 init = [1.7960 0.4054 ;
259 1.7024 0.4602 ;
260 0.8020 0.4633 ] ;
261 case 5
262 init = [1.3179 0.3681 ;
263 1.2454 0.4088 ;
264 0.5983 0.4145 ] ;
265 case 6
266 init = [2.7077 0.4360 ;
267 2.6025 0.5145 ;
268 1.2037 0.5038 ] ;
269 case 7
270 init = [2.1404 0.4022 ;
271 2.0171 0.4645 ;
272 0.9347 0.4627 ] ;
273 case 8
274 init = [1.5827 0.3608 ;
275 1.4804 0.4117 ;
276 0.6990 0.4152 ] ;
277 case 9
278 init = [3.2223 0.4276 ;
279 3.0833 0.5222 ;
280 1.4053 0.5020 ] ;
281 case 10
282 init = [1 0.1 ;
283 0.6 0.2 ;
284 0.24 0.07 ] ;
285 case 11
286 init = [1.04 0.47 ;
287 1.02 0.49 ;
288 0.51 0.49 ] ;
289 case 12
290 init = [4.5 0.11 ;
291 4.23 0.21 ;
292 2.14 0.16 ] ;
293 case 13
294 init = [0.19 3.14 ;
295 0.1 2 ;
296 0.44 0.74 ] ;
297 end % end switch modelId
298 case 3
299 % Option never used.
300 case 4
301 switch modelId
302 case 1
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303 init = [0.8540 0.4185 ;
304 0.8287 0.4377 ;
305 0.4180 0.4398 ] ;
306 case 2
307 init = [0.8647 0.3781 ;
308 0.8324 0.4001 ;
309 0.4158 0.4039 ] ;
310 case 3
311 init = [0.8803 0.4439 ;
312 0.8579 0.4622 ;
313 0.4338 0.4640 ] ;
314 case 4
315 init = [1.7960 0.4054 ;
316 1.7024 0.4602 ;
317 0.8020 0.4633 ] ;
318 case 5
319 init = [1.3179 0.3681 ;
320 1.2454 0.4088 ;
321 0.5983 0.4145 ] ;
322 case 6
323 init = [2.7077 0.4360 ;
324 2.6025 0.5145 ;
325 1.2037 0.5038 ] ;
326 case 7
327 init = [2.1404 0.4022 ;
328 2.0171 0.4645 ;
329 0.9347 0.4627 ] ;
330 case 8
331 init = [1.5827 0.3608 ;
332 1.4804 0.4117 ;
333 0.6990 0.4152 ] ;
334 case 9
335 init = [3.2223 0.4276 ;
336 3.0833 0.5222 ;
337 1.4053 0.5020 ] ;
338 case 10
339 init = [1 0.1 ;
340 0.6 0.2 ;
341 0.2101 10.7132 ] ;
342 case 11
343 init = [1.04 0.47 ;
344 1.02 0.49 ;
345 0.51 0.49 ] ;
346 case 12
347 init = [4.5 0.11 ;
348 4.23 0.21 ;
349 0.5 0.8 ] ;
350 case 13
351 init = [0.19 3.14 ;
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352 0.1 2 ;
353 0.15 0.40 ] ;
354 case 14
355 init = [1.04 0.47 ;
356 1.02 0.49 ;
357 0.51 0.49 ] ;
358 end % end switch modelId
359 end % end switch cNum
360 case 3 % P
361 switch modelId
362 case 1
363 init = [1 ; 1 ; 0.4232] ;
364 case 2
365 init = [1 ; 1 ; 1] ;
366 case 3
367 init = [1 ; 1 ; 1] ;
368 case 4
369 init = [1 ; 1 ; 1] ;
370 case 5
371 init = [1 ; 1 ; 1] ;
372 case 6
373 init = [1 ; 1 ; 1] ;
374 case 7
375 init = [1 ; 1 ; 1] ;
376 case 8
377 init = [1 ; 1 ; 1] ;
378 case 9
379 init = [1 ; 1 ; 1] ;
380 case 10
381 init = [1 ; 1 ; 1] ;
382 case 11
383 init = [1 ; 1 ; 1] ;
384 case 12
385 init = [1 ; 1 ; 1] ;
386 case 13
387 init = [1 ; 1 ; 1] ;
388 end % end switch modelId
389 end % end switch ctrlr
390 case 2 % SIMC
391 init = 0 ;
392 case 3 % Smith
393 switch ctrlr
394 case 1 % PID
395 switch cNum
396 case 1
397 switch modelId
398 case 1
399 init = [1 1 1 ;
400 1 1 1 ;
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401 1.7929 0.3563 0.2657 ] ;
402 case 2
403 init = [1 1 1 ;
404 1 1 1 ;
405 1.9816 0.3145 0.3023 ] ;
406 case 3
407 init = [1 1 1 ;
408 1 1 1 ;
409 1.72 0.39 0.23 ] ;
410 case 4
411 init = [1 1 1 ;
412 1 1 1 ;
413 4.4767 0.4695 0.1505 ] ;
414 case 5
415 init = [1 1 1 ;
416 1 1 1 ;
417 3.2484 0.3752 0.2279 ] ;
418 case 6
419 init = [6.3862 0.3774 0.1251 ;
420 9.0004 0.5500 0.0867 ;
421 4.0203 0.4907 0.1032 ] ;
422 case 7
423 init = [5.9076 0.3270 0.1773 ;
424 7.4737 0.4608 0.1316 ;
425 3.4348 0.4083 0.1532 ] ;
426 case 8
427 init = [4.5005 0.2719 0.2371 ;
428 5.1083 0.3579 0.2007 ;
429 2.5717 0.3410 0.2186 ] ;
430 case 9
431 init = [8.4814 0.3796 0.1219 ;
432 13.0195 0.5817 0.0740 ;
433 5.4169 0.5027 0.0941 ] ;
434 case 10
435 init = [0.8216 0.0003 0.2429 ;
436 1.1 0.2 0.25 ;
437 0.5 0.1 0.3 ] ;
438 case 11
439 init = [1.8106 0.3767 0.1508 ;
440 2.0336 0.4223 0.1568 ;
441 1.3500 0.4500 0.1350] ;
442 case 12
443 init = [7.3804 0.0842 0.2155 ;
444 9.7846 0.2457 0.2261 ;
445 4.6914 0.1757 0.2437 ] ;
446 case 13
447 init = [0.8378 0.7484 0.0044 ;
448 0.8237 0.7521 0.0015 ;
449 0.8250 0.7576 0 ] ;
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450 end % end switch modelId
451 case 2
452 % Not used
453 case 3
454 switch modelId
455 case 1
456 init = [1 1 1 ;
457 1 1 1 ;
458 0.4570 0.8034 0.6488 ] ;
459 case 2
460 init = [1 1 1 ;
461 1 1 1 ;
462 0.5134 0.7011 0.7388 ] ;
463 case 3
464 init = [1 1 1 ;
465 1 1 1 ;
466 0.4312 0.8811 0.5645 ] ;
467 case 4
468 init = [1 1 1 ;
469 1 1 1 ;
470 1.1372 0.9777 0.3882 ] ;
471 case 5
472 init = [1 1 1 ;
473 1 1 1 ;
474 0.8662 0.7902 0.5529 ] ;
475 case 6
476 init = [1 1 1 ;
477 1 1 1 ;
478 1.6325 1.1884 0.2538 ] ;
479 case 7
480 init = [1 1 1 ;
481 1 1 1 ;
482 1.5061 0.9707 0.3521 ] ;
483 case 8
484 init = [1 1 1 ;
485 1 1 1 ;
486 1.1327 0.7859 0.4992 ] ;
487 case 9
488 init = [1 1 1 ;
489 1 1 1 ;
490 1.5 0.2 0.2 ] ;
491 case 10
492 init = [1 1 1;
493 1 1 1;
494 0.3256 0.1811 0.4291] ;
495 case 11
496 init = [1 1 1;
497 1 1 1;
498 0.4503 0.9976 0.4199] ;
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499 case 12
500 init = [1 1 1;
501 1 1 1;
502 2.7235 0.3029 0.4205 ] ;
503 case 13
504 init = [1 1 1;
505 1 1 1;
506 0.1176 2.7928 0.0170 ] ;
507 end
508 case 4
509 switch modelId
510 case 1
511 init = [1 1 1 ;
512 1 1 1 ;
513 0.3154 0.8509 0.7143] ;
514 case 2
515 init = [1 1 1 ;
516 1 1 1 ;
517 0.3459 1.0056 0.8345] ;
518 case 3
519 init = [1 1 1 ;
520 1 1 1 ;
521 0.3083 0.7493 0.6326] ;
522 case 4
523 init = [1 1 1 ;
524 1 1 1 ;
525 0.7966 0.7662 0.5323] ;
526 case 5
527 init = [1 1 1 ;
528 1 1 1 ;
529 0.5723 0.9376 0.7306] ;
530 case 6
531 init = [1 1 1 ;
532 1 1 1 ;
533 1.2396 0.6113 0.3534] ;
534 case 7
535 init = [1 1 1 ;
536 1 1 1 ;
537 1.0713 0.7802 0.4870] ;
538 case 8
539 init = [1 1 1 ;
540 1 1 1 ;
541 0.7553 0.9415 0.6836] ;
542 case 9
543 init = [1 1 1 ;
544 1 1 1 ;
545 1.6304 0.5997 0.3237] ;
546 case 10
547 init = [1 1 1;
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548 1 1 1;
549 % 0.2971 5.0103 0.4748 ] ;
550 % 0.4249 3.1270 0.5373 ] ;
551 0.3258 5.8437 0.4221 ] ;
552 case 11
553 init = [1 1 1;
554 1 1 1;
555 0.4503 1.0024 0.4198 ] ;
556 case 12
557 init = [1 1 1;
558 1 1 1;
559 2.7234 3.3003 0.4207 ] ;
560 case 13
561 init = [1 1 1;
562 1 1 1;
563 0.19 0.31 0.02 ];
564 % 2.7235 3.3011 0.4206 ] ;
565 case 14
566 init = [1 1 1;
567 1 1 1;
568 7.9709 2.0882 0.6502];
569 end
570 end % end switch cNum
571 case 2 % PI
572 switch cNum
573 case 1
574 switch modelId
575 case 1
576 init = [0.8540 0.4185 ;
577 0.8287 0.4377 ;
578 0.30 0.83 ];
579 case 2
580 init = [0.8647 0.3781 ;
581 0.8324 0.4001 ;
582 0.3281 0.6769 ] ;
583 case 3
584 init = [0.8803 0.4439 ;
585 0.8579 0.4622 ;
586 0.3218 0.8720 ] ;
587 case 4
588 init = [1.7960 0.4054 ;
589 1.7024 0.4602 ;
590 0.8020 0.4633 ] ;
591 case 5
592 init = [1.3179 0.3681 ;
593 1.2454 0.4088 ;
594 0.5983 0.4145 ] ;
595 case 6
596 init = [2.7077 0.4360 ;
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597 2.6025 0.5145 ;
598 1.2037 0.5038 ] ;
599 case 7
600 init = [2.1404 0.4022 ;
601 2.0171 0.4645 ;
602 0.9347 0.4627 ] ;
603 case 8
604 init = [1.5827 0.3608 ;
605 1.4804 0.4117 ;
606 0.6990 0.4152 ] ;
607 case 9
608 init = [3.2223 0.4276 ;
609 3.0833 0.5222 ;
610 1.4053 0.5020 ] ;
611 case 10
612 init = [1 0.1 ;
613 0.6 0.2 ;
614 0.24 0.07 ] ;
615 case 11
616 init = [1.04 0.47 ;
617 1.02 0.49 ;
618 0.51 0.49 ] ;
619 case 12
620 init = [4.5 0.11 ;
621 4.23 0.21 ;
622 2.14 0.16 ] ;
623 case 13
624 init = [0.19 3.14 ;
625 0.1 2 ;
626 0.44 0.74 ] ;
627 end
628 case 2
629 % Never used
630 case 3
631 switch modelId
632 case 1
633 init = [0.8540 0.4185 ;
634 0.8287 0.4377 ;
635 0.30 0.83 ] ;
636 case 2
637 init = [0.8647 0.3781 ;
638 0.8324 0.4001 ;
639 0.3281 0.6769 ] ;
640 case 3
641 init = [0.8803 0.4439 ;
642 0.8579 0.4622 ;
643 0.3218 0.8720 ] ;
644 case 4
645 init = [1.7960 0.4054 ;
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646 1.7024 0.4602 ;
647 0.55 0.85 ] ;
648 case 5
649 init = [1.3179 0.3681 ;
650 1.2454 0.4088 ;
651 0.4305 0.7243 ] ;
652 case 6
653 init = [2.7077 0.4360 ;
654 2.6025 0.5145 ;
655 1.2037 0.5038 ] ;
656 case 7
657 init = [2.1404 0.4022 ;
658 2.0171 0.4645 ;
659 0.6162 0.8535 ] ;
660 case 8
661 init = [1.5827 0.3608 ;
662 1.4804 0.4117 ;
663 0.6990 0.4152 ] ;
664 case 9
665 init = [3.2223 0.4276 ;
666 3.0833 0.5222 ;
667 0.8475 1.0090 ] ;
668 case 10
669 init = [1 0.1 ;
670 0.6 0.2 ;
671 0.3 0.14] ;
672 case 11
673 init = [1.04 0.47 ;
674 1.02 0.49 ;
675 0.51 0.49 ] ;
676 case 12
677 init = [4.5 0.11 ;
678 4.23 0.21 ;
679 2.14 0.16 ] ;
680 case 13
681 init = [0.19 3.14 ;
682 0.1 2 ;
683 0.44 0.74 ] ;
684 end
685 case 4
686 switch modelId
687 case 1
688 init = [0.8540 0.4185 ;
689 0.8287 0.4377 ;
690 0.30 0.83 ];
691 case 2
692 init = [0.8647 0.3781 ;
693 0.8324 0.4001 ;
694 0.3281 0.6769 ] ;
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695 case 3
696 init = [0.8803 0.4439 ;
697 0.8579 0.4622 ;
698 0.3218 0.8720 ] ;
699 case 4
700 init = [1.7960 0.4054 ;
701 1.7024 0.4602 ;
702 0.55 0.85 ] ;
703 case 5
704 init = [1.3179 0.3681 ;
705 1.2454 0.4088 ;
706 0.4305 0.7243 ] ;
707 case 6
708 init = [2.7077 0.4360 ;
709 2.6025 0.5145 ;
710 1.2037 0.5038 ] ;
711 case 7
712 init = [2.1404 0.4022 ;
713 2.0171 0.4645 ;
714 0.6162 0.8535 ] ;
715 case 8
716 init = [1.5827 0.3608 ;
717 1.4804 0.4117 ;
718 0.6990 0.4152 ] ;
719 case 9
720 init = [3.2223 0.4276 ;
721 3.0833 0.5222 ;
722 0.8475 1.0090 ] ;
723 case 10
724 init = [1 0.1 ;
725 0.6 0.2 ;
726 0.30 7.34] ;
727 case 11
728 init = [1.04 0.47 ;
729 1.02 0.49 ;
730 0.38 1.00 ] ;
731 case 12
732 init = [4.5 0.11 ;
733 4.23 0.21 ;
734 0.5 0.8 ] ;
735 case 13
736 init = [0.19 3.14 ;
737 0.1 2 ;
738 0.44 0.74 ] ;
739 case 14
740 init = [1.04 0.47 ;
741 1.02 0.49 ;
742 0.38 1.00 ] ;
743 end % end switch modelId
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744 end % end switch cNum
745 end % end switch ctrlr
746 case 4
747 init = 0 ;
748 case 5
749 init = 0 ;
750 end
751 end

M.7 Models Function: model.m

The model function accepts the modelId as argument and return a struct of
the appropriate model transfer function and it’s parameters.

Listing M.7 – Function generating a struct containing the model transfer function
and its corresponding parameters

1 %% Header
2 % Purpose: Creating the process transfer function G (struct).
3 % Author: Axel Lodemel Holene (based on work done by Chriss
4 % Grimholt (2011) and Martin S. Foss (2012)).
5 % E−mail: axel.holene@gmail.com
6 % Date: February 2013
7 % About: G =
8 % k Process

gain
9 % tau1 Process time

constant
10 % tau2 Process time

constant
11 % theta Process time

delay
12 % tf Process transfer

function
13

14 function G = model(modelId)
15 s = zpk('s') ; % Transfer function

variable
16

17 G.k = 1 ; % Common process
gain

18 G.tau1 = 1 ; % Common process time constant
1

19

20 switch modelId
21 case 1
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22 G.case = 1 ;
23 G.tau2 = 0.5*G.tau1 ; % Process time constant

2
24 G.theta = 1 ; % Process time

delay
25 case 2
26 G.case = 2 ;
27 G.tau2 = 0.8*G.tau1 ; % Process time constant

2
28 G.theta = 1 ; % Process time

delay
29 case 3
30 G.case = 3 ;
31 G.tau2 = 0.3*G.tau1 ; % Process time constant

2
32 G.theta = 1 ; % Process time

delay
33 case 4
34 G.case = 4 ;
35 G.tau2 = 0.5*G.tau1 ; % Process time constant

2
36 G.theta = G.tau2/1.5 ; % Process time

delay
37 case 5
38 G.case = 5 ;
39 G.tau2 = 0.8*G.tau1 ; % Process time constant

2
40 G.theta = G.tau2/1.5 ; % Process time

delay
41 case 6
42 G.case = 6 ;
43 G.tau2 = 0.3*G.tau1 ; % Process time constant

2
44 G.theta = G.tau2/1.5 ; % Process time

delay
45 case 7
46 G.case = 7 ;
47 G.tau2 = 0.5*G.tau1 ; % Process time constant

2
48 G.theta = G.tau2/2.0 ; % Process time

delay
49 case 8
50 G.case = 8 ;
51 G.tau2 = 0.8*G.tau1 ; % Process time constant

2
52 G.theta = G.tau2/2.0 ; % Process time

delay
53 case 9
54 G.case = 9 ;
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55 G.tau2 = 0.3*G.tau1 ; % Process time constant
2

56 G.theta = G.tau2/2.0 ; % Process time
delay

57 case 10
58 G.case = 10 ;
59 % G.tau1 = 100 ;
60 G.tau2 = 0 ;
61 G.theta = 1 ;
62 % G.k = 100 ;
63 G.tfnd = G.k/s ;
64 G.tf = G.tfnd*exp(−G.theta*s) ;
65 return
66 case 11
67 G.case = 11 ;
68 G.tau1 = 1 ;
69 G.tau2 = 0 ;
70 G.theta = 1 ;
71 case 12
72 G.case = 12 ;
73 G.tau1 = 8 ;
74 G.tau2 = 0 ;
75 G.theta = 1 ;
76 case 13
77 G.case = 13 ;
78 G.tau1 = 0.005 ;
79 G.tau2 = 0 ;
80 G.theta = 1 ;
81 case 14
82 G.case = 14 ;
83 % G.k = 20 ;
84 G.tau1 = 20 ;
85 G.tau2 = 0 ;
86 G.theta = 1 ;
87 end
88 %% Process transfer functions
89 G.tfnd = G.k/((G.tau1*s + 1)*(G.tau2*s + 1)) ;
90 G.tf = G.tfnd*exp(−G.theta*s) ;
91 end

M.8 Maximum Sensitivity Peak Calculation: Ms.m

The function Ms accepts a vector of controller tuning and the parameter
struct, and returns the maximum sensitivity peak value, MS, for the given
model and controller loop.



252 MATLAB Support Functions

Listing M.8 – Function computing the maximum sensitivity peak value for a given
controller and process model loop.

1 %% Header
2 % Purpose: Calculating M_s−value from controller tuning
3 % Author: Axel Lodemel Holene
4 % E−mail: axel.holene@gmail.com
5 % Date: 13. February 2013
6 % About:
7

8 function Ms = Ms(ctrl, parm)
9 G = parm.G ;
10 C = controller(ctrl, parm) ;
11 Ms = max(abs(freqresp(1/(1 + G.tf*C.tf),...
12 logspace(−4,4,40000)))) ;
13 end

M.9 Maximum Complementary Sensitivity Peak
Calculation: Mt.m

The function Mt accepts a vector of controller tuning and the parameter
struct, and returns the maximum sensitivity peak value, MT , for the given
model and controller loop.

Listing M.9 – Function computing the maximum sensitivity peak value for a given
controller and process model loop.

1 %% Header
2 % Purpose: Calculating M_t−value from controller setting
3 % Author: Axel Lodemel Holene
4 % E−mail: axel.holene@gmail.com
5 % Date: 13. February 2013
6 % About:
7

8 function Mt = Mt(ctrl, parm)
9 G = parm.G ;
10 C = controller(ctrl, parm) ;
11 Mt = max(abs(freqresp((G.tf*C.tf)/(1+G.tf*C.tf), ...
12 logspace(−4,4,40000)))) ;
13 end
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M.10 Gradient Free Optimisation Help Function

The help function for gradient free optimisation by the use of fminsearch is
given in Listing M.10. The function accepts a controller tuning vector and
the parameter struct. It determines the controller gain necessary to reach
the MS value specification by the use of fzero.

Listing M.10 – fminsearch help function for gradient free optimisation.

1 % Purpose: Help function for gradient free opt. with
fminsearch

2 % Author: Axel Lodemel Holene
3 % E−mail: axel.holene@gmail.com
4 % Date: March 2013
5 % About: ID = [I D] Vector of integral (and derivative) time
6

7 function J = noGrad(ctrl, parm)
8 Kc = ctrl(1) ;
9 ID = ctrl(2:end) ;

10 MsFun = @(Kc) parm.Ms_s − Ms([Kc ID], parm) ;
11 opt = optimset('Display','off','UseParallel','Always') ;
12 Kc = fzero(MsFun, Kc, opt) ; % Finding controller

gain
13 J = costFun([Kc ID], parm) ; % Calling cost

function
14 end

M.11 Disturbance Functions

The disturbance functions are functions made when keeping controller and
model structs constant was required. The functions are very similar to their
ancestors; they are only modified to accept the controller and model struct as
arguments instead of computing them within the function.

The disturbance functions are:

• distCostFun

• distMs

• distMt

• distModel
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The three first functions should be easy to find when considering the par-
ent functions being listed. A description of distModel is included for conve-
nience.

M.11.1 Model Disturbance Implementation: distModel.m

The distModel function, given in Listing M.11, accepts a model struct and a
disturbance parameter (d). The original model struct is duplicated into the
struct returned by the function, and a new field with the new, time-delay
perturbed model is saved at the tf attribute.

Listing M.11 – Function for changing the time-delay parameter, θ, by a factor of d.

1 %% Header
2 % Purpose: Function which introduces modelling error to the
3 % process transfer function, such that it differs

from
4 % the model used in the Smith Predictor calculations.
5 % Author: Axel Lodemel Holene
6 % E−mail: axel.holene@gmail.com
7 % Date: 13. February 2013
8 % About: G − model struct returned from model.m
9 % d − disturbance factor
10

11 function Gse = distModel(G, d)
12 s = zpk('s') ;
13 Gse = G ;
14 Gse.origMod = G ;
15 Gse.theta = (1 + d)*G.theta ;
16 Gse.tf = G.tfnd*exp(−Gse.theta*s) ;
17 end



APPENDIX N

SIMULINK

The SIMULINK flow sheet used for computing the integrated absolute error
values for a step load disturbance in the process input and output signal, di
and do, respectively, is given in Figure N.1. S and Sd are the output (y → e)
and input (u → e) feedback loop to the feedback error, e = y− r, where y and
r is the output signal and reference signal for the system, respectively.

1 S |u| 1
s IAEdo

1 Sd |u| 1
s IAEdi

Constant Transfer Fcn To WorkspaceLTI Block

Constant Transfer Fcn To WorkspaceLTI Block

Figure N.1 – SIMULINK flow sheet for computation of the integrated absolute error
from a step load disturbance in the process input and output signal.
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