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Abstract—In this paper, we present a geometrical scattering
model for a typical class of industrial indoor environments.
The proposed industrial reference model takes into account
scattering components arising from metallic structures and the
surrounding walls of the investigated environment. Starting
from the geometrical scattering model, we derive the analytical
expressions of the probability density function (PDF) of the angle
of arrival (AoA), PDF of the time of arrival (ToA), and the
autocorrelation function (ACF) in the frequency domain. The
obtained results reveal a large difference between industrial
channels and other home and office environments. The theoretical
results of the reference model are validated by simulation results
of a channel simulator designed by employing the sum-of-cisoids
(SOC) principle. The proposed channel model is useful for the
design and performance evaluation of wireless communication
systems operating in industrial environments.

Index Terms—Industrial indoor channels, wideband channel
model, multipath propagation, geometry-based channel model.

I. INTRODUCTION

In recent years, there has been a growing interest from
industrial manufacturing companies to incorporate wireless
communications in their production process. Compared to
traditional wired communication systems, the wireless solution
has the advantage in terms of deployment flexibility, potential
in data collection, enabling remote control, etc. [1].

It is known that the wave propagation characteristics in
industrial environments are different from those in offices and
residential indoor environments due to a number of factors
including the presence of highly reflective metallic structures
(machinery) [2]. The successful design and deployment of
wireless communication systems in industrial settings neces-
sitates a good knowledge of the propagation characteristics
of industrial channels. To this end, a number of measure-
ment campaigns have been conducted in various industrial
environments over the past few years and empirical channel
models have been developed based on field measurements
[1]–[3]. However, the nature of empirical models implies
that they are only applicable and accurate for environments
sharing the same channel characteristics with those where
the measurements were performed. This limits the usage of
empirical channel models. Ray tracing (RT) is an alternative
channel modeling technique, which evaluates all propagation
paths as they interact with the surrounding environment based
on the geometrical theory of diffraction [4]. Nevertheless,
the accuracy of RT models largely depends on the detailed

knowledge of the geometrical and dielectric properties of
the site, which often results in large, sometimes prohibitive,
computational cost and simulation time.

To cope with the drawbacks of the aforementioned models
and to provide sufficiently accurate channel characterization of
a wide range of scenarios at reasonable computational cost, a
geometry-based approach utilizing the statistical distribution of
the scatterers from the scenario of interest has been proposed
to model various propagation channels. In [5], a vehicle-to-
vehicle channel was analyzed by placing an ensemble of point
scatterers according to a site-specific statistical distribution.
In [6], the approach was used to model shallow underwater
acoustic channels under the condition of rough surface and
bottom scattering. A multiple-input multiple-output (MIMO)
mobile-to-mobile fading channel model was derived under the
geometrical two-ring scattering assumption in [7].

In this paper, we apply the geometry-based modeling
approach to model the wideband channel in typical industrial
indoor environments. The remainder of this paper is organized
as follows: Section II describes the industrial geometrical
scattering model and the underlying industrial setting. In
Section III, some of the characteristic quantities describing
the wideband channel are derived, such as the PDF of the
AoA, PDF of the ToA, and the frequency correlation function
(FCF). The numerical results are presented and discussed in
Section IV. Section V concludes the paper.

II. GEOMETRICAL SCATTERING ASSUMPTION FOR
INDUSTRIAL INDOOR CHANNELS

Observations in a large number of factories revealed that
there are some common characteristics in the layout of
many manufacturing sites (especially in modern plants with
automated production or processing lines): the equipments
are often installed along multiple parallel production lines
with straight aisles in between them for passing workers or
materials. In this case, most of the multipath components
might be due to reflections from the building walls as well
as reflections from the production lines. The scatterer density
along each production column is usually high and decays
exponentially with distance to the neighboring production line.
This may suggest that the scatterer density in the industrial
environment might be described using multiple exponential
decay functions. In addition, the equipment is in most cases
metallic, producing a higher degree of scattering than concrete



Fig. 1: A typical industrial workshop with
parallel automated production lines.
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Fig. 2: The geometrical abstraction of the
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Fig. 3: The industrial geometry-based
model in the Cartesian coordinate system.

walls (see Figs. 1 and 2). From the above statements, we make
the following assumptions on our industrial channel model.
Firstly, we assume that an infinite number of randomly dis-
tributed scatterers in the three dimensional (3D) environment
are projected onto a 2D horizontal plane. It should be noted
that while the real environment is intrinsically 3D, the 2D
model can provide meaningful results with orders of mag-
nitude less complexity. Secondly, the density of the scatterers
stemming from each production line decays exponentially with
the distance from the production line in the two directions
perpendicular to it. The density of the scatterers stemming
from the surrounding walls also decays exponentially with the
distance from the walls (see Fig. 3). The overall density is
the superposition of the scatterer densities resulting from all
production lines and the surrounding walls. The exponential
distribution has also been used to model the scatterers around
the base station in outdoor cellular scenarios, where the results
were in good agreement with the measurement data [8].

The geometrical abstraction of the modelled industrial
scenario is illustrated in Fig. 2. The rectangle represents
an industrial room of length A and width B. The receiver
(Rx) is located at position (a, b) and the transmitter (Tx) is

located at position (a+ c, b). For simplicity, we assume single-
bounce scattering, i.e., the emitted waves are only bounced
once by scatterers before being received by the Rx. Inside
the room, N parallel production lines are placed at positions
x1, x2, . . . , xN . The parameters x0 = 0 and xN+1 = A
represent the positions of the two walls perpendicular to the
x-axis (see Fig. 2). The position of a scatterer S is given by
a pair of random variables (x,y). Under these assumptions
on the distribution of scatterers, the PDFs of the random
variables x and y, denoted by fx(x) and fy(y), are given in
(1) and (2), respectively, at the bottom of this page. Assuming
independence between x and y, the joint PDF of the scatterer
density taking account of the effects from the machines and
surrounding walls can be expressed as

fx,y(x, y) = fx(x) · fy(y). (5)

III. STATISTICAL CHARACTERIZATION OF THE
INDUSTRIAL CHANNEL MODEL

In this section, we derive the PDF of the AoA, PDF of
the ToA, power delay profile (PDP), and the FCF of the
industrial channel model based on the geometrical assumptions
described in Section II.

fx(x) =

P1 ·
[
N∑
n=0

e−w
+
n (x−xn)1(xn, xn+1) +

N∑
n=1

ew
−
n (x−xn)1(xn−1, xn) + ew

−
0 (x−A)1(xN , A) + C1

]
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0 otherwise
(1)

fy(y) =

{
P2 ·

[
e−k

+
0 y + ek

−
0 (y−B) + C2

]
if y ∈ (0, B)

0 otherwise
(2)

where wn ≥ 0 (n = 0, 1, . . . , N) and k0 ≥ 0 are the decaying factors of the exponential distributions and a larger number
indicates faster decay (e.g., objects of different materials or densities might be given different values of decaying factor). The
superscripts of wn and k0 (‘+’ or ‘−’) indicate the decaying direction. The symbol 1(v1, v2) represents the indicator function,
which equals to 1 within the range (v1, v2) and 0 elsewhere. The parameters Cn and Pn (n = 1, 2) are ratios with P1 and P2

enforcing the following equalities:
∫ A

0
fx(x) dx = 1 and

∫ B
0
fy(y) dy = 1. They are computed as follows
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A. Derivation of the PDF of the AoA

To simplify the derivation of the AoA and ToA, we shift
the origin of the Cartesian coordinate system in Fig. 2
to the position of the Rx (see Fig. 3). Within the shifted
coordinate system, the PDF of the scatterer density, denoted
by fx′,y′(x′, y′), is given as

fx′,y′(x
′, y′) = fx′(x

′) · fy′(y′) = fx,y(x′ + a, y′ + b)

= fx(x′ + a) · fy(y′ + b)
(6)

where fx(·) and fy(·) are given in (1) and (2), respectively.
Next, we derive the joint PDF of the propagation path

length D and the AoA α from the distribution of the scatterers.
The propagation path length D is the overall propagation
length from the Tx to the Rx under the single-bounce scat-
tering assumption. The AoA α and propagation path length D
are given by

α = arctan
(y′
x′

)
(7)

D =

√
(x′2 + y′2)− 2c · cos(α) ·

√
x′2 + y′2 + c2

+
√
x′2 + y′2. (8)

The joint PDF fD,α (D,α) of the propagation path length
D and the AoA α can be obtained by applying the concept of
transformation of random variables to the relationship between
(x′, y′) and (D,α) [9, pp. 182–193], which results in

fD,α(D,α) = |J(D,α)| · fx′,y′(D,α)

=

∣∣∣∣∣ ∂y′

∂D
∂y′

∂α
∂x′

∂D
∂x′

∂α

∣∣∣∣∣ · fx′(D,α) · fy′(D,α)
(9)

where

|J(D,α)| =
[
D2 − 2Dc · cos(α) + c2

] (
D2 − c2

)
4 [D − c · cos(α)]

3 (10)

fx′(D,α) = fx′

((
D2 − c2

)
· cos(α)

2 [D − c · cos(α)]

)
(11)

fy′(D,α) = fy′

((
D2 − c2

)
· sin(α)

2 [D − c · cos(α)]

)
. (12)

Then, the PDF fα(α) of the AoA α can be obtained by
integrating the joint PDF fD,α(D,α) over the range of D,
i.e.,

fα|ID (α) =

∫
D∈ID

fD,α(D,α) dD (13)

where ID = (D∗1 , D
∗
2 ]. The parameters D∗1 and D∗2 represent

the minimum and maximum propagation path length, respec-
tively. With some straightforward geometrical derivations, it
can be shown that D∗1 = |c| and the value of D∗2 = D∗2(α) is
given by (14) and (15).

Note that the four angles α∗1, α∗2, α∗3, and α∗4 in (15) partition
the scattering region of the industrial room into four areas, as
illustrated in Fig. 2.

D∗2(α) =
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√[
b
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if α ∈ (α∗4, 2π + α∗1]

(14)

where
α∗1 = − arctan

(
b

A−a
)
, α∗2 = arctan

(
B−b
A−a

)
α∗3 = π − arctan

(
B−b
a

)
, α∗4 = π + arctan

(
b
a

)
.

(15)

B. Derivation of the PDF of the ToA

The ToA τ and the propagation path length D are related
by

τ =
D − |c|
v0

(16)

where v0 is the speed of light.
By applying the concept of transformation of random vari-

ables again [9, pp. 182–193], we obtain the PDF fτ (τ) of the
ToA τ from the PDF fD(D) of the propagation length D as

fτ (τ) = v0 · fD(v0τ + |c|). (17)

The PDF fD(D) of the propagation path length D can be
derived from the joint PDF fD,α(D,α) in (9)−(12) as follows

fD|Iα(D) =

∫
α∈Iα

fD,α(D,α) dα. (18)

The integral in (18) can be solved by reusing the relation
between D∗2 and α in (14) (see Appendix A). The analytical
expressions for fD (D) and the integral interval Iα are given
in (19) - (21) on the next page.

C. Derivation of the FCF

Let the total power of the received multipath components
be P0. Then, the following equation holds:

∫ +∞
0

Ac(τ) dτ =
P0, where Ac(τ) is the PDP. By using the property∫ +∞

0
fτ (τ) dτ = 1 and Ac(τ) ∝ fτ (τ), we can obtain the

following relation:

Ac(τ) = P0 · fτ (τ). (22)

Then, utilizing the relationship between the PDP and
the ACF, i.e., F [Ac(τ)]

τ↔∆f
=== Ac(∆f,∆t = 0), where

Ac(∆f,∆t) is the ACF in the frequency and time domain
[10, p. 117] and F(·) denotes the Fourier transform, we can
obtain the FCF Ac(∆f):

Ac(∆f) = P0 ·
∫ +∞

0

fτ (τ)e−j2π∆fτ dτ. (23)



fD(D) =



fD|Iα=(−π,π)(D) if D ∈ (|c| , D6]

fD|Iα=(−π,α1)(D) + fD|Iα=(α2,π)(D) if D ∈ (D6, D8]

fD|Iα=(−π,α3)(D) + fD|Iα=(α4,α1)(D) + fD|Iα=(α2,π)(D) if D ∈ (D8, D5]

fD|Iα=(−π,α3)(D) + fD|Iα=(α4,α5)(D) + fD|Iα=(α6,α1)(D) + fD|Iα=(α2,π)(D) if D ∈ (D5, D1]

fD|Iα=(−π,α3)(D) + fD|Iα=(α4,α5)(D) + fD|Iα=(α2,π)(D) if D ∈ (D1, D2]

fD|Iα=(−π,α3)(D) + fD|Iα=(α2,π)(D) if D ∈ (D2, D7]

fD|Iα=(α8,α3)(D) + fD|Iα=(α2,α7)(D) if D ∈ (D7, D3]

fD|Iα=(α8,α3)(D) if D ∈ (D3, D4]

(19)

where
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D2−c2+2ca , α8 = − arccos −2Da
D2−c2+2ca

(20)
and
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2
+ (B − b)2

+

√
(A− a− c)2

+ (B − b)2
, D2 =

√
(A− a)

2
+ b2 +

√
(A− a− c)2

+ b2

D3 =

√
a2 + (B − b)2

+

√
(a+ c)

2
+ (B − b)2

, D4 =
√
a2 + b2 +

√
(a+ c)

2
+ b2

D5 = 2 (A− a)− c, D6 =

√
4 (B − b)2

+ c2, D7 = 2a+ c, D8 =
√

4b2 + c2.

(21)
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Fig. 4: PDF fα(α) of AoA α for different Tx and Rx positions.
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Fig. 5: PDF fα(α) of AoA α for different machine positions.

It should be noted that there exists no closed-form solution for
the integral (23). Thus, it needs to be computed numerically.

IV. NUMERICAL AND SIMULATION RESULTS

This section provides the numerical and simulation results
for the statistical characteristics of the industrial channel model
analyzed in Section III. The corresponding simulation model is
designed by applying the SOC method [11, pp. 126–134]. The
parameters of the SOC channel simulator are computed using
the Modified Method of Equal Areas [12]. Unless specified,
the simulation results in this section are based on the following
geometry: an industrial indoor room with length A = 20 m
and width B = 12 m. Two lines of machines are placed in
the room at positions x1 = 6 m and x2 = 14 m (see Fig. 2).
The weighting factors of the exponential decaying distribution
functions in (1)−(4) are set as w±n = 0.6 (n = 1, 2) for the
metallic machineries, w±0 = k±0 = 1.2 for the surrounding
walls and the ratios Cn (n = 1, 2) being 0.122 and 0.3286,

respectively, with this setting. Typical values of the decaying
factors in real industrial environments can be obtained by
fitting the theoretical statistics of the proposed channel model
to the statistics of measured industrial channels by optimizing
the key parameters of the channel model, similar to what was
done in [13]. This work will not be included in this paper due
to the page limit and will thus be left for future work.

The theoretical results of the PDF fα(α) of the AoA α
are compared with Monte Carlo simulations in Figs. 4 and
5 for different positions of the Tx, Rx, and machinery. As
expected, a symmetrical shape of the PDF fα(α) is observed
if the Rx is located at the center of the industrial room (i.e.,
a = 10, b = 6). It can also been observed that the incoming
waves are highly non-uniformly distributed in an industrial
environment. This is in contrast to the AoA distribution of
indoor office environments, where the waves arrive mainly in
the direction connecting the Tx and Rx [14]. The distribution
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fα(α) of the AoA α is quite variable and highly depends
on the geometry, link configuration, and distribution of the
scatterers inside the investigated environment.

The PDF fτ (τ) of the ToA τ under two different geometries
is shown in Fig. 6. The results show that the incoming
waves arrive in several clearly identifiable clusters, which is in
accordance with field measurements in industrial environments
[3] and the assumptions of the well-known Saleh-Valenzuela
(S-V) model [15]. The arrival time and shape of each cluster
depend highly on the corresponding link configuration and site
geometry. The simulated shapes of the ToA PDF fτ (τ) are also
significantly different from those obtained with the elliptical
or circular scattering models proposed for the simulation of
outdoor cellular channels, where the PDF of the ToA has
roughly the shape of a negative exponential function [8].

Figure 7 shows the absolute value of the FCF Ac(∆f) for
different Tx positions with fixed Rx position. A good match
can be observed between the FCF of the reference model and
the simulation model. From Fig. 7, we can see that the channel
coherence bandwidth increases as the Tx moves towards the
Rx. This is in concert with industrial measurements, where the
delay spread was observed to increase with increasing Tx-Rx
distance [3].

V. CONCLUSION

In this paper, we proposed a wideband channel model for a
typical indoor industrial environment. The reference channel
model is derived under the assumption that an infinite number
of scatterers are exponentially distributed due to metallic ma-
chineries and walls within the horizontal plane of a rectangular
industrial room. The statistical properties of the proposed
channel model have been investigated. Analytical expressions
have been derived for the PDF of the AoA and ToA, and
the FCF. It has been shown that the waves arrive in clusters,
where the link configuration and the geometry of the industrial
room have significant influence on the channel characteristics.
The reference model can be efficiently simulated by utilizing
the SOC approach, which has the advantage of reduced
realization expenditure. The proposed model is helpful for the
design and evaluation of robust wireless systems for industrial
applications. Future work includes verifying the developed
model using measurements and extracting typical values of
the model parameters.
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APPENDIX A
DERIVATION OF Di AND αi (i = 1, 2, . . . , 8) IN (19) - (21)

In this section, we determine the range of the maxi-
mum propagation distance of the plane wave for the four
scattering areas illustrated in Fig. 2, i.e, the values of
Di (i = 1, 2, . . . , 8) in (21) and the corresponding integral
limits αi (i = 1, 2, . . . , 8) in (20). The rectangular indus-
trial room is partitioned into four areas by the four angles
α∗i (i = 1, 2, 3, 4) given in (15).

Area A1: α∗1 < α ≤ α∗2
It can be observed from (14) that D∗2 (α) is a monotonic

increasing function if α ∈ (0, α∗2]. The maximum value is
taken at α = α∗2 and the minimum value at α = 0, i.e,

D1 = max (D∗2 (α)) = D∗2 (α) |α=α∗2

=

√
(A− a)

2
+ (B − b)2

+

√
(A− a− c)2

+ (B − b)2

(A.1)
D5 = min (D∗2 (α)) = D∗2 (α) |α=0 = 2 (A− a)− c. (A.2)

It can also be seen that D∗2 (α) is a monotonic decreasing
function within (α∗1, 0]. Thus, the maximum D∗2 within this
range is given by

D2 = max (D∗2 (α)) = D∗2 (α) |α=α∗1

=

√
(A− a)

2
+ b2 +

√
(A− a− c)2

+ b2. (A.3)

Area A2: α∗2 < α ≤ α∗3
If the AoA α is within the range (α∗2, α

∗
3], we obtain

the fixed angle α = π + arctan 2(B−b)
c by setting the first

derivative of the function D∗2 (α) , α ∈ (α∗2, α
∗
3], to zero.

The second derivative of D∗2 (α) being positive indicates that
D∗2 (α) has a minimum value at α = π + arctan 2(B−b)

c , i.e.,

D6 = min (D∗2 (α)) = D∗2 (α) |
α=π+arctan

2(B−b)
c

=

√
4 (B − b)2

+ c2. (A.4)

If α ∈
(
π + arctan 2(B−b)

c , α∗3

]
, the function D∗2 (α) turns

out to be a monotonic increasing function. Thus, D∗2 (α) has



a maximum value at α = α∗3, i.e.,

D3 = max (D∗2 (α)) = D∗2 (α) |α=α∗3

=

√
a2 + (B − b)2

+

√
(a+ c)

2
+ (B − b)2

. (A.5)

The function D∗2 (α) is a monotonic decreasing function
with respect to α in the range

(
α∗2, π + arctan 2(B−b)

c

]
, which

means that D∗2 (α) < D1 within this range.

Area A3: α∗3 < α ≤ π and −π < α ≤ α∗4 − 2π

It is found that D∗2 (α) is a monotonic decreasing function
within the range (α∗3, π] by studying its first and second
derivatives. Thus, we have D7 ≤ D∗2 (α) < D3, where

D7 = min (D∗2 (α)) = D∗2 (α) |α=π = 2a+ c. (A.6)

If α ∈ (−π, α∗4 − 2π], we have D7 < D∗2 (α) ≤ D4, where

D4 = max (D∗2 (α)) = D∗2 (α) |α=α∗4−2π

=
√
a2 + b2 +

√
(a+ c)

2
+ b2. (A.7)

Area A4: α∗4 − 2π < α ≤ α∗1
By studying the first and second derivatives of the function

D∗2 (α) again, as was done for the Area A2, we can obtain
the range of D∗2 (α) for α∗4 − 2π < α ≤ α∗1. It is found that
the function D∗2 (α) has a minimum value at the fixed angle
α = −π − arctan 2b

c , i.e.,

D8 = min (D∗2 (α)) = D∗2 (α) |α=−π−arctan 2b
c

=
√

4b2 + c2.

(A.8)

Within the range
(
α∗4 − 2π,−π − arctan 2b

c

]
,

D∗2 (α) decreases with increasing α. Thus, we have
D8 ≤ D∗2 (α) < D4. The function increases with increasing
α within the range

(
−π − arctan 2b

c , α
∗
1

]
and the maximum

value is taken at the angle α = α∗1. Thus, we have
D8 < D∗2 (α) ≤ D2. �

An example of the above analysis is illustrated in Fig. 8.
From Fig. 8, we can see that D6 is the minimum value of
the function D∗2 (α). For a given value of path length |c| <
D < D6, we can conclude that all AoAs α ∈ (−π, π] fulfil
the inequality D ≤ D∗2 (α) < D6. However, if the propagation
distance D6 < D < D8, the inequality D < D∗2 (α) can only
be satisfied if α ∈ [−π, α1] ∪ [α2, π), where α1 and α2 can
be obtained by solving the equation D∗2 (α) = D. As both α1

and α2 are within the subdomain (α∗2, α
∗
3) (see Fig. 8), we

choose the second sub-function of (14) as the left-hand side
of above equation.

The AoAs αi (i = 3, . . . , 8) can be determined similarly
by solving the equation D∗2 (α) = D. The expression for
D∗2 (α) in the equation is selected based on the range of αi.
For instance, as α5 ∈ (α∗1, α

∗
2), the first sub-function of (14)

should be used.
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Fig. 8: An example of the relationship between D∗2 (α) and α
(A = 20 m, B = 10 m, a = 15 m, b = 6 m, c = -6 m).
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