

# Reactive Absorption of CO2 in Single and Blended Amine Systems

Hammad Majeed

Chemical Engineering Submission date: July 2013 Supervisor: Hallvard Fjøsne Svendsen, IKP

Norwegian University of Science and Technology Department of Chemical Engineering

Dedicated To

Nature, it's Creator



In the Name of Almighty **ALLAH** to whom my all praises are. He is the one who gave me courage to perform this work.

I am pleased to pay credit to **Chemical Engineering department of NTNU** for offering each possible facility in making my effort triumphant.

I would like to express my profound gratitude to my supervisor, **Professor Hallvard F. Svendsen** for giving me the opportunity to join in the  $CO_2$  capture research group whose brainwave, motivation and stimulating suggestions enabled me to complete this thesis work.

Thanks a lot to my co-advisors **Hanna Knuutila** & **Juliana G. Monteiro** for their exceptional guidance and for readily sharing their profound expertise in the most delightful manner. I would also like to pay gratitude to **Ardi Hartono** for his un parallel suggestions in every field, whether it's an experimental work or modeling. His quest for performing high quality research was inspirational to me.

I hereby declare that this is an independent work according to the exam regulations of Norwegian University of Science and Technology.

NTNU, Trondheim 15.07.2013 Author

## ABSTRACT

Global warming scenario is pretty grim and is a well-known worldwide concern, most likely caused by increasing concentrations of  $CO_2$  and other greenhouse gases in the earth's atmosphere due to human activities.  $CO_2$  absorption in amine-based absorbents is an established and proven technology. Unfortunately, this process is still very energy intensive and has high capital costs. The main theme of this work is to characterize new generation solvents; kinetics of  $CO_2$  absorption in single and blended amine system is a part of this mission.

Kinetics of  $CO_2$  in aqueous MAPA system with concentration of 1/2/3/4/5 M and aqueous blended system of MAPA+DEEA with variant concentrations were measured at a temperature range of 298.15-338.15 K. The kinetic experiments for both systems were performed in string of disc contactor. Results for rate constants were interpreted in terms of single step termolecular mechanism proposed by "*Crooks et al., 1989*" for the reaction of  $CO_2$  with amine because of its less number of parameters.

In addition to this work, the physical properties like density from 293.15-353.15 K and viscosity with in span of 293.15-333.15 K were also measured to determine the physic chemical parameters. The solubility of  $N_2O$  in aqueous MAPA system and aqueous blended systems were performed to estimate the solubility of  $CO_2$  in MAPA and blended (MAPA+DEEA) solutions at temperature range of 298.15-338.15K.

Densities of systems were measured in Anton Paar DMA 4500M density meter while viscosities were estimated in Physica MCR 100 rheometer and solubility experiments were done in stirred jacketed glass vessel.

Simple model based on temperature and concentration was applied on excel sheet in order to calculate the density, solubility and viscosity. The absorption flux of  $CO_2$  in MAPA and blended systems, Henry's constants, over all mass transfer coefficients and second order rate constants were determined for each case and compared these with the citied data available in order to judge the behavior and performance of current systems.

## **TABLE OF CONTENTS**

| 1. | Int | roduc | ction                                                     | 1 |
|----|-----|-------|-----------------------------------------------------------|---|
|    | 1.1 | Wh    | y to Capture CO <sub>2</sub>                              | 1 |
|    | 1.2 | Car   | bon Capture and Storage (CCS)                             | 2 |
|    | 1.3 | CO    | 2 Capture Technologies                                    | 2 |
|    | 1.3 | .1    | Pre-Combustion CO <sub>2</sub> Capture                    | 2 |
|    | 1.3 | .2    | Post Combustion CO <sub>2</sub> Capture                   | 3 |
|    | 1.3 | .3    | Oxy-Fuel Combustion                                       | 3 |
|    | 1.4 | Sep   | aration Methodologies                                     | 5 |
|    | 1.4 | .1    | Chemical Absorption                                       | 5 |
|    | 1.4 | .2    | Physical Absorption                                       | 5 |
|    | 1.4 | .3    | Physical Adsorption                                       | 6 |
|    | 1.4 | .4    | Membrane Technologies                                     | 6 |
|    | 1.4 | .5    | Cryogenic Separation                                      | 6 |
|    | 1.5 | CO    | 2 Transport and Storage                                   | 7 |
|    | 1.6 | Unf   | folding Concepts and Research for CO <sub>2</sub> Capture | 8 |
|    | 1.7 | Inte  | rest & Span of Current Work                               | 8 |
| 2  | Ba  | ck gr | ound1                                                     | 1 |
|    | 2.1 | Phy   | siochemical Properties 1                                  | 1 |
|    | 2.1 | .1    | Solubility                                                | 1 |
|    | 2.1 | .2    | Density1                                                  | 2 |
|    | 2.1 | .3    | Diffusivity                                               | 3 |
|    | 2.1 | .4    | Viscosity 1                                               | 3 |
|    | 2.2 | Kin   | etics of Alkanolamines1                                   | 4 |
|    | 2.2 | .1    | Zwitterion Mechanism1                                     | 4 |

| 2.2.2    | Termolecular Mechanism                                       | 17 |
|----------|--------------------------------------------------------------|----|
| 2.3 M    | ass Transfer with a Chemical Reaction                        | 18 |
| 2.3.1    | Two Film Theory                                              | 19 |
| 2.3.2    | Surface Renewal Model                                        | 21 |
| 2.3.3    | Film-Penetration Theory                                      | 22 |
| 2.4 Cł   | hemical Equilibrium                                          | 23 |
| 2.4.1    | Chemical Equilibria in (CO <sub>2</sub> -Water- DEEA System) | 23 |
| 2.4.2    | Chemical Equilibria in (CO <sub>2</sub> -Water- MAPA System) | 24 |
| 2.5 Re   | eaction Regime                                               | 24 |
| 2.5.1    | Slow Reaction Regime                                         | 25 |
| 2.5.2    | Fast Reaction Regime                                         | 25 |
| 2.5.3    | Instantaneous Reaction Regime                                | 25 |
| 2.5.4    | Slow Reaction Regime                                         | 25 |
| 2.5.5    | Fast Reaction Regime                                         | 26 |
| 2.5.6    | Instantaneous Reaction Regime                                | 26 |
| 2.6 Ga   | as Side Resistance                                           | 27 |
| 2.6.1    | Liquid Phase Control                                         | 27 |
| 2.6.2    | Gas Phase Control                                            | 28 |
| 2.7 Li   | quid Film Mass Transfer Coefficient                          | 28 |
| 2.8 Ga   | as Film Mass Transfer Coefficient                            | 28 |
| 2.9 Ki   | inetic Rate Constant                                         | 29 |
| 2.9.1    | Rate Constant for Zwitterion Mechanism                       | 29 |
| 2.9.2    | Rate Constant for Termolecular Mechanism                     | 30 |
| 2.10     | Activity Based Rate Constant                                 | 30 |
| 3 Materi | ials and Experimental Setup                                  | 32 |

| 3.1 Ch    | emicals for CO <sub>2</sub> and Amine Analyses                               |    |
|-----------|------------------------------------------------------------------------------|----|
| 3.1.1     | Standard Solutions                                                           |    |
| 3.1.2     | Filters                                                                      |    |
| 3.2 Ex    | perimental Setup                                                             |    |
| 3.2.1     | String of Discs Contactor Apparatus (SDC)                                    |    |
| 3.2.2     | Solubility Assessment                                                        |    |
| 3.2.3     | Density Measurement                                                          |    |
| 3.2.4     | Viscosity Determination                                                      |    |
| 3.3 Pro   | ocess of Analyzing                                                           |    |
| 3.3.1     | CO <sub>2</sub> Analyses of Samples                                          |    |
| 3.3.2     | Amine Analysis of Samples                                                    |    |
| 3.4 Ac    | curacy / Uncertainty                                                         |    |
| 4 Results | s & Discussions                                                              |    |
| 4.1 De    | nsity Evaluations:                                                           | 45 |
| 4.1.1     | Density Comparison (Current Work & Literature)                               |    |
| 4.2 Vi    | scosity Evaluation                                                           |    |
| 4.2.1     | Viscosity Comparison (Current Work & Literature)                             | 53 |
| 4.3 So    | lubility Determination                                                       |    |
| 4.3.1     | Solubility Comparison (Current Work & Literature)                            |    |
| 4.4 Ki    | netic Evaluation of Aqueous MAPA System                                      |    |
| 4.4.1     | Absorption Flux                                                              |    |
| 4.4.2     | Overall Mass Transfer Coefficient                                            |    |
| 4.4.3     | Observed Kinetic Rate Constant                                               | 63 |
| 4.4.4     | Second Order Kinetic Rate Constant                                           |    |
| 4.4.5     | Comparison of Modeled and Experimental (Absorption Flux and K <sub>2</sub> ) | 68 |

| 2 | 4.5 Kir | netic Evaluation of Aqueous Blended System                              | 70    |
|---|---------|-------------------------------------------------------------------------|-------|
|   | 4.5.1   | Absorption Flux                                                         | 70    |
|   | 4.5.2   | Overall Mass Transfer Coefficient                                       | 72    |
|   | 4.5.3   | Observed Kinetic Rate Constant                                          | 73    |
|   | 4.5.4   | Second Order Kinetic Rate Constant                                      | 75    |
| 2 | 4.6 Co  | mparison of Aqueous MAPA System & Aqueous Blended System (Current World | k).76 |
| 5 | Conclus | sions & Proposed Future Work                                            | 82    |
| 6 | Referen | ces                                                                     | 83    |
| 7 | Append  | ix                                                                      | 89    |
|   |         |                                                                         |       |

## List of Figures

| Fig 1.1: Pre combustion Scheme (Feron et al., 2005)                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig 1.2: Post combustion scheme ( <i>Feron et al.</i> , 2005)                                                                                                                 |
| Fig 1.3: Separation processes (carbon capture project CCP, 2008)7                                                                                                             |
| Fig 2.1 Mass transfer concept b/w gas and liquid based on two film theory (Ma'mun, 2005)                                                                                      |
|                                                                                                                                                                               |
| Fig 2.2: Asymptotic behavior for enhancement factor $EA = f(\varphi)$ (Ma'mun, 2005)26                                                                                        |
| Fig 3.1: Kinetic apparatus "String of discs contactor" (Hartono et al., 2009)                                                                                                 |
| Fig 3.2: N <sub>2</sub> O solubility experimental arrangement (Ma'mun, 2005)                                                                                                  |
| Fig 3.3: "Anton Paar DMA 4500M" density meter (Representative Anton Paar 2013) 40                                                                                             |
| Fig 3.4: "MCR 300 Physica" rheometer (APTL)                                                                                                                                   |
| Fig 4.1: Experimental densities of "MAPA" system at different temperatures                                                                                                    |
| Fig 4.2: Experimental densities of Blended "MAPA+DEEA" system at different temperatures                                                                                       |
| Fig 4.3: Comparison of current work MAPA system with MEA system by "Erwin D. snijder et al., 1993", HDMA system by "Prachi Singh et al., 20011", Pz system by "In house data" |
| Fig 4.4: Experimental viscosities of "MAPA" system at different temperatures                                                                                                  |
| Fig 4.5: Experimental viscosities of Blended "MAPA+DEEA" system at different temperatures                                                                                     |
| Fig 4.6: Comparison of current work MAPA system with Pz system by "Peter W. Derks, 2005" and Pz system by "In house data"                                                     |
| Fig 4.7: Comparison of current work "MAPA" system with "HDMA" system by "Prachi Singh et al., 2011"                                                                           |
| Fig 4.8: Experimentally determined henry's constant of "MAPA" system at different temperatures                                                                                |

| Fig 4.9: Experimental and modeled Henry's constant of "MAPA" system                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig 4.10: Experimentally determined henry's constant of Blended "MAPA+DEEA" system at diff. temperatures                                                           |
| Fig 4.11: Absorption flux of CO <sub>2</sub> for "MAPA" system at different temperatures                                                                           |
| Fig 4.12: Comparison of absorption flux of current work and DETA system by "Hartono et al., 2009", Pz system by "In house data"                                    |
| Fig 4.13:Overall mass transfer coefficient of "MAPA" system at different temperatures 62                                                                           |
| Fig 4.14: Observed kinetic rate constant of "MAPA" system at different temperatures 64                                                                             |
| Fig 4.15: Observed kinetic rate constant at variant "MAPA" concentrations                                                                                          |
| Fig 4.16: Comparison of overall mass transfer coefficient of current work and Pz system by "P.W.J. Derks et al., 2006", HDMA system by "Prachi singh et al., 2011" |
| Fig 4.17: Second order kinetic rate constant of "MAPA" system at different temperatures 66                                                                         |
| Fig 4.18: Experimental and calculated/modeled absorption flux of CO <sub>2</sub> in "MAPA" system                                                                  |
| Fig 4.19: Experimental and calculated/modeled second order kinetic rate constant in "MAPA" system                                                                  |
| Fig 4.20: Absorption flux of CO <sub>2</sub> for Blended "MAPA+DEEA" system at different temperatures                                                              |
| Fig 4.21: Overall mass transfer coefficient for Blended "MAPA+DEEA" system at different temperatures                                                               |
| Fig 4.22: Observed kinetic rate constant for Blended "MAPA+DEEA" system at different temperatures                                                                  |
| Fig 4.23: Second order kinetic rate constant for Blended "MAPA+DEEA" system at different temperatures                                                              |
| Fig 4.24: Experimental densities of "MAPA" system and Blended "MAPA+DEEA" system at different temperatures                                                         |

| Fig 4.25: Experimental viscosities of "MAPA system and Blended "MAPA+DEEA" system  |
|------------------------------------------------------------------------------------|
|                                                                                    |
| Fig 4.26: Experimentally determined henry's constant for "MAPA" system and Blended |
| 'MAPA+DEEA" system                                                                 |
| Fig 4.27: Observed kinetic rate constant of "MAPA" system and Blended "MAPA+DEEA"  |
| system                                                                             |

## List of Tables

| Table 1                            | l.1: Co                                                                | omparison of Capt | ture technolo | ogies (Jose´ D. Fig | ueroa et. al., | 2008 | 8)   | 4   |  |
|------------------------------------|------------------------------------------------------------------------|-------------------|---------------|---------------------|----------------|------|------|-----|--|
| Table 1.2: Details of current work |                                                                        |                   |               |                     |                |      |      |     |  |
| Table                              | 1.3:                                                                   | Experimentally    | measured      | physiochemical      | properties     | of   | MAPA | and |  |
| MAPA+DEEA                          |                                                                        |                   |               |                     |                |      |      |     |  |
| Table 4                            | Table 4.1: Reaction rate constants of MAPA and those of water       67 |                   |               |                     |                |      |      |     |  |

## Nomenclature

| Symbol           | Definition                                   | Symbol           | Definition                                          |  |
|------------------|----------------------------------------------|------------------|-----------------------------------------------------|--|
| A                | Arrhenius constant                           | L                | Liter                                               |  |
| AmH              | Amine                                        | Amine M          |                                                     |  |
| В                | Base                                         | MAPA             | <i>N</i> -Methyl-1,3-<br>diaminopropane             |  |
| $CO_2$           | Carbon dioxide                               | MFC              | Mass flow controllers                               |  |
| DEEA             | 2-(Diethylamino)ethanol                      | Mol/mol          | Mole                                                |  |
| E                | Activation energy                            | N <sub>CO2</sub> | Flux of CO <sub>2</sub>                             |  |
| $E_{A,pen}$      | Enhancement factor for<br>penetration theory | n <sub>d</sub>   | Number of discs                                     |  |
| GHG              | Green House Gas Emissions                    | °C               | Celsius scale                                       |  |
| $H_2$            | Hydrogen                                     | $P^*_{co2}$      | Partial pressure of CO <sub>2</sub><br>at interface |  |
| Ha               | Hatta number                                 | Pz               | Piperazine                                          |  |
| К                | Kelvin scale                                 | Re               | Reynolds number                                     |  |
| $K_{app}$        | Apparent rate constant                       | Sc               | Schmidt number                                      |  |
| K <sub>B</sub>   | Rate constant of base                        | Sh               | Sherwood number                                     |  |
| KG               | Overall mass transfer coefficient            | Тс               | Critical temperature                                |  |
| k <sub>l</sub>   | Liquid mass transfer coefficient             | Р                | Density                                             |  |
| K <sub>obs</sub> | Observed kinetic rate constant               | μ                | Viscosity                                           |  |

# **Chapter 1**

## Introduction

Energy plays a vital role in world's economic growth. International energy agency (*IEA*, 2010a) presumed that if plans and policies by various governments with respect to energy usage will be implemented then the world primary energy demands will increase by 35% in between 2010 and 2035. That represents an average increase of 1.2% energy demand. On the other hand if policies are not implemented the value of growth per year will be 1.4%. (*IEA*, 2010b) outlined that in 2030 fossil fuel demand will account for 75-80% of world energy usage. In the view of this whole scenario it is pointed out that fossil fuels: coal, natural gas and oil will remain in the most prominent energy sources in an upcoming years.

Global climate change is most obtrusive environmental and energy policy issue of modern age. Industrial processes, burning of fossil fuels and various land use practices are disbursing greatly to the accumulation of greenhouse gases (GHGs) in the atmosphere, which can trap heat and block outward radiation. By far the most rampant of these GHGs is carbon dioxide ( $CO_2$ ) accounting for 82% of total US GHG emissions.

Among the global prime energy demands the contribution of the fossil fuels are Coal 24%, natural gas accounted 21%, nuclear 5%, hydropower 7% and renewable are 10% (*BP*, 2005). Power generation plants are the largest source of CO<sub>2</sub>emissions (*IEA GHG*,2002 b). It is also stated that fifth portion of total CO<sub>2</sub> emissions comes from industrial plants (*Zero*, 2012).

## **1.1** Why to Capture CO<sub>2</sub>

Year 1992, international entanglement about climate change led to the United Nations Framework Convention on Climate Change (UNFCCC). The eventual theme of that Convention is "stabilization of greenhouse gas concentrations in the atmosphere at a level that prevents dangerous anthropogenic interference with the climate system". So in order to minimize the contrary effects of  $CO_2$  there is a need to limit the temperature increase to 2 degrees by 2050 (*Koomey, Krause, 2009*). In Copenhagen, December 2009 accord set a non-binding treaty to limit the global temperature increase to 2<sup>o</sup>C above the industrial level. In July, 2009 the G8 leaders ratified to cut the global  $CO_2$  emissions by at least 50% by 2050. To meet these requirements, a reduction in greenhouse gases is urgently required and every option to capture and to store  $CO_2$  should be looked into.

## 1.2 Carbon Capture and Storage (CCS)

The world is now looking for modifications to increase the energy efficiency like switching from high carbon fossil fuels such as coal to less carbon fuels. Meanwhile technologies have cooperatively come to be known as "carbon capture" to continue the trend of fossil fuel energy sources.

CCS is the family of technologies and has different steps. The very first step is to capture  $CO_2$  at some spot in the energy conversion process, depending on the type of energy technology applied. Following is the separation from mixture gas. It is then proceed towards transportation and storage in a suitable geological sink, where it is kept for suitable long period.

## **1.3 CO<sub>2</sub> Capture Technologies**

There are three main channels to capture CO<sub>2</sub> from origin.

- Pre-Combustion CO<sub>2</sub> capture
- Post-Combustion CO<sub>2</sub> capture
- Oxy-fuel Combustion

## 1.3.1 Pre-Combustion CO<sub>2</sub> Capture

In pre-combustion  $CO_2$  capture process, the fuel is converted in a reforming or gasification process and the subsequent shift-reaction into a mixture of H<sub>2</sub> and CO<sub>2</sub>. The high pressure of this product gas stream expedites the removal of CO<sub>2</sub>. The H<sub>2</sub>-product can then be burnt in a gas turbine for energy production (*Feron et al.*, 2005).



Fig 1.1: Pre combustion Scheme (Feron et al., 2005)

#### **1.3.2** Post Combustion CO<sub>2</sub> Capture

In post combustion process, combustion of the fuel takes place first and then  $CO_2$  is going to be captured from the flue gas. Commonly a chemical solvent is used to capture the  $CO_2$  from the flue gas by absorption process. This  $CO_2$  rich solvent is regenerated by heating it up in a stripping column and  $CO_2$  is compressed, transported and stored. Post combustion capture is the facile method to implement on large industrial scale.



Fig 1.2: Post combustion scheme (Feron et al., 2005)

#### 1.3.3 Oxy-Fuel Combustion

Oxy-combustion systems are being developed as flipside to post-combustion. In oxy-fuel combustion pure oxygen is used in gasification instead of air. Separation methodologies are used to extract oxygen from air. As a result of this gasification there will be a very low amount of  $CO_2$  in the flue gases and  $CO_2$  can be easily separated if present in gas streams.

| Capture Technology  | Advantages                                 | Disadvantages                                 |
|---------------------|--------------------------------------------|-----------------------------------------------|
|                     | 1) Synthesis gas is concentrated           | 1) Applicable mainly to new                   |
|                     | in CO <sub>2</sub> and has high pressure.  | plants, as few gasification plants            |
|                     | 2) Increased driving force for             | are currently in operation.                   |
| Dro Combustion      | separation.                                | 2) Barriers to commercial                     |
| Pre Compustion      | 3) More technologies available             | application of gasification are               |
|                     | for separation.                            | common to pre-combustion                      |
|                     | 4) Potential for reduction in              | capture like availability and cost            |
|                     | compression costs/loads                    | of equipment.                                 |
|                     | 1) Retrofit technology option.             | 1) Flue gas will dilute in CO <sub>2</sub> at |
|                     |                                            | ambient pressure.                             |
|                     |                                            | 2) Resulting in low CO <sub>2</sub> partial   |
| Post Combustion     |                                            | pressure.                                     |
|                     |                                            | 3) Significantly higher                       |
|                     |                                            | performance or circulation                    |
|                     |                                            | volume needed for high capture                |
|                     |                                            | levels than pre-combustion.                   |
|                     | 1) Very high CO <sub>2</sub> concentration | 1) Large cryogenic O <sub>2</sub>             |
|                     | in flue gas.                               | production requirement may be                 |
|                     | 2) Retrofit and repowering                 | cost prohibitive.                             |
| Ovy Fuel Combustion | technology option.                         | 2) Cooled CO <sub>2</sub> recycle required    |
| Oxy Fuel Combustion |                                            | to maintain temperatures within               |
|                     |                                            | limits of combustor materials.                |
|                     |                                            | 3) Low process efficiency.                    |
|                     |                                            | 4) Added auxiliary load.                      |

Table 1.1: Comparison of Capture technologies (Jose´ D. Figueroa et. al., 2008)

In the line of these capture technologies it is essential to discuss the separation of  $CO_2$  from mixture gas.

## 1.4 Separation Methodologies

Variant schemes are adopted to separate CO<sub>2</sub> from flue or stack gas as follows.

- Chemical absorption
- Physical absorption
- Physical adsorption
- Membrane technologies
- Cryogenic separation

Energy consumption, capture efficiency and process cost are the major aspects on which selectivity of the process is defined.

## **1.4.1 Chemical Absorption**

Chemical reaction takes place between solvent and gas. Chemical absorption utilizes the different reactivity's of various gases with solvent. MEA and other amines can be used in this process,  $CO_2$  recovery rates of 98% and product purity of 99% can be achieved. The reactions should be reversible so that the solvent can be regenerated. Efficient solvents could reduce energy requirements by as much as 40% compared to conventional MEA solvents. There are, however, questions about its rate of degradation in the oxidizing environment of a flue gas and the amount of energy required for regeneration (*CCP*, 2008).

## 1.4.2 Physical Absorption

Absorption is a process in which atoms or molecules transfer from a gas phase to a liquid phase. In physical absorption, molecules of  $CO_2$  are going to be dissolved in solvent in the absence of chemical reaction. The amount of absorbed gas increases linearly with the increase in its partial pressure according to Henry's law. Physical absorption will be more noticeable if partial pressure of the absorbed gas is high. It also depends upon the temperature; at low temperature the absorption is more efficient.

## **1.4.3** Physical Adsorption

In adsorption, molecules from gas or from liquid penetrated on solid surface hence creating a film of adsorbate on surface of adsorbent. In this case gas is adsorbed on the solid surface by van der Waals forces.

Separation is based on the difference in gas molecule sizes or different binding forces. Temperature swing and pressure swing adsorption methods are used for separation. The most common adsorbents are activated carbon (*Plaza et al., 2010*) silica gel and aluminum oxide.

#### 1.4.4 Membrane Technologies

The principle behind this method is the pressure gradient. Gas separation membranes allow one component in a gas stream to pass through it faster than the others. High degrees of separation may not be achieved in membranes so multiple stages and/or recycle of one of the streams is essential. That leads to energy consumption, increased complexity and increased operational costs. There are diverse types of gas separation membranes including porous inorganic membranes, palladium membranes, polymeric membranes and zeolites (*CCP*, 2008).

### 1.4.5 Cryogenic Separation

The principle behind this separation is the difference in the boiling points of various gases. All the gases have different boiling points and this method provide effective gas separation.  $CO_2$  can be separated from other gases by cooling and condensation. Cryogenic separation facilities the direct availability of liquid  $CO_2$  required for transportation. The amount of energy required to provide the necessary refrigeration for cryogenic separation of  $CO_2$  is the major issue in term of cost.

Another problem in this system is to remove any amount of water present, before the gas stream is cooled to avoid any kind of blockage in system. Cryogenics would normally only be applied to high concentration, high pressure gases, such as in pre-combustion capture processes or oxy fuel combustion (*CCP*, 2008).



## Panoramic view of separation process

## **1.5** CO<sub>2</sub> Transport and Storage

Deep ocean storage, geological storage and enhanced oil recovery techniques are leadingly followed for  $CO_2$  storage. In deep ocean storage it is suggested that  $CO_2$  can be stored under a depth of 3000m in the form of  $CO_2$  lake under water for thousands of years but this process requires liquefaction and injection of  $CO_2$  to this level. In geological storage,  $CO_2$  is injected under high pressure in deep stable rocks where it can be stored for long period of time. The  $CO_2$  would remain in small pore spaces inherent in rocks. In enhanced oil recovery "EOR" method  $CO_2$  is injected in reservoirs to increase the oil productivity from well where it can be stored as well.  $CO_2$  will be transported through pipeline or by ships (*IPCC, Special report 2005*).

## **1.6 Unfolding Concepts and Research for CO<sub>2</sub> Capture**

 $CO_2$  capture and separation from large point sources, like power plants, can be achieved through continued research, development, and demonstration. Worldwide research is being performed to abate global climate change and to develop new strategy and processes that increase the efficiency of carbon capture systems while reducing overall expenditure *(IPCC, 2007)*.

All the three  $CO_2$  capture technologies citied above are capable of high efficiencies (about 90%). But high cost and energy requirements are major issues for these technologies. There are still gaps in currently available knowledge regarding some aspects of Carbon capture.

There should be some new tactics to find best out of best method and solvent in the form of low cost and less energy requirements for  $CO_2$  capture. Technology roadmaps have been developed in the world for the availability of commercial deployment of  $CO_2$  capture by 2020 (*Fogler*, 2010).

#### **1.7 Interest & Span of Current Work**

The paramount focus of current work is to play a part in characterization of new generation absorbents for  $CO_2$ . The reason behind this is to optimize the process by amendments in order to reduce overall capture cost. Absorption is considered to be the optimum available technology for post combustion application out of the three traditional methods of  $CO_2$  capture (absorption, adsorption and membrane processes). However,  $CO_2$  absorption by amines requires 2.8–3.2 GJ/ton of recovered  $CO_2$  (as claimed by MHI and Fluor) in a large part due to significant energy consumption associated with the regeneration step (*Mohammad R.M et al., 2007*).

The presage path in development of absorption process is blended amine systems. Some of the blended amine systems can form two liquid phases and hence, end up in high reaction rate on absorption side of process and low energy requirements in the regeneration side. Primary and secondary amines form carbamates, while tertiary amines boost the reaction of hydration of  $CO_2$  that leads to bicarbonate formation (*Donaldson and Nguyen, 1980*). If the lower regeneration heat of bicarbonate, as compared to that of carbamate, is combined with high equilibrium temperature sensitivity, it will end up in to a low stripping steam requirement. From two of the liquid phases one the very rich in  $CO_2$ , will be forwarded to regeneration. Due to low circulation

of only one phase this can lead to decreased sensible heat loss, high equilibrium temperature sensitivity and thus over all minimizing the stripping requirement.

Furthermore, the reactive  $CO_2$  absorption in tertiary amines is relatively slow (*Versteeg et al.,* 1996) but can be enhanced by addition of primary or secondary amine to generate blended systems.

MAPA (*N*-Methyl-1,3-diaminopropane) a diamine and DEEA (2-(Diethylamino)ethanol) a tertiary alkanolamine have been selected for the reactive absorption of CO<sub>2</sub>. The intent of current work is to judge the reaction rates of both the solvents at variant temperatures and driving forces. The kinetics of MAPA and blends of MAPA+DEEA at different temperatures and driving forces of partial pressure of CO<sub>2</sub> were measured. The aqueous blends of DEEA and MAPA are especially captivating for the absorption process because they can form two liquid phases upon CO<sub>2</sub> loading. The upper phase is lean in CO<sub>2</sub> and does not require regeneration, while the lower phase is CO<sub>2</sub> rich and is sent to the stripper column, where DEEA is mainly regenerated (*Liebenthal et al., 2012*).In experimentation of blended systems denotation are made for both amine systems as M denotes MAPA and D denotes DEEA.

| System    | Concentration (mol/L) | Temperatures (K) | Equipment         |  |
|-----------|-----------------------|------------------|-------------------|--|
| МАРА      | 1,2,3,4,5             | 298.15-338.15    | A String of Discs |  |
|           | 1M1D,1M2D,1M3D,1M5D   |                  |                   |  |
| MAPA+DEEA | 2M1D,2M2D,2M3D,2M4D,  | 298.15-338.15    | A String of Discs |  |
|           | 2M5D,3M1D,3M3D,4M3D   |                  |                   |  |

Table 1.2: Details of current work

| System    | Physiochemical                           | Concentration                                                      | Temperature    | Range               |
|-----------|------------------------------------------|--------------------------------------------------------------------|----------------|---------------------|
|           | Property (mol/L)                         |                                                                    | (K )           |                     |
|           | Density (g/cm <sup>3</sup> )             | 1,2,3,4,5                                                          | 293.15-353.15  | 0.9276-<br>0.99359  |
| MAPA      | Viscosity (mPa.s)                        | 1,2,3,4,5                                                          | 293.15-333.15  | 0.6733-<br>12.386   |
|           | Solubility<br>(kPa.m <sup>3</sup> /kmol) | 1,3,5                                                              | 298.15-338.15  | 4604-14620          |
|           | Density (g/cm <sup>3</sup> )             | 1M1D,1M2D,1M3D,1M5D<br>2M1D,2M2D,2M3D,2M4D,<br>2M5D,3M1D,3M3D,4M3D | 293.15-353.15  | 0.86631-<br>0.99117 |
| MAPA+DEEA | Viscosity (mPa.s)                        | 1M1D,1M2D,1M3D,1M5D<br>2M1D,2M2D,2M3D,2M4D,<br>2M5D,3M1D,3M3D,4M3D | 293.15-333.15  | 0.9886-<br>20.285   |
|           | Solubility<br>(kPa.m <sup>3</sup> /kmol) | 1M1D,1M2D,1M3D<br>1M5D,2M1D,2M2D,2M3D,2M4D<br>2M5D                 | 298.15 -338.15 | 1666.59-<br>8354.82 |

Physical properties of solvents were also measured that include density, viscosity and solubility.

Table 1.3: Experimentally measured physiochemical properties of MAPA and MAPA+DEEA

# **Chapter 2**

## **Back ground**

Detailed characterization of solvent is required for its industrial application. Physiochemical properties like density, viscosity and solubility of  $CO_2$  in aqueous amine solutions are of distinct importance for the development of new solvents in  $CO_2$  capture and design of gas-liquid absorption contactors for gas treatment. Densities and viscosities are required to calculate the liquid Sherwood number. Density is also necessary for determination of physical solubility of  $CO_2$  in the solvent, for the evaluation of kinetics and mass transfer. Viscosity is another requirement to measure diffusivity by using a modified Stokes-Einstein equation, for kinetics and mass transfer (*Versteeg and van swaaij, 1988*). Solubility of  $CO_2$  in an absorbent is desired for thermodynamic models for the prediction of activity coefficients of  $CO_2$ . So in short binary data of system containing ( $CO_2$ -water-amine) is utmost hunger to establish the kinetic model. Solubilities, densities and viscosities of  $CO_2$  in the aqueous solutions of MAPA and blends of MAPA+DEAA are estimated at different temperatures and concentrations.

## 2.1 Physiochemical Properties

## 2.1.1 Solubility

 $CO_2$  can be chemically bound to an absorbent or it can be in the form of free  $CO_2$  in absorbent solution (physical solubility). The knowledge of the physical solubility of  $CO_2$  at numerous concentrations and temperatures is desired for developing a kinetic model of the system. Here comes a problem that direct measurement of physical solubility is not possible because  $CO_2$  reacts with amine. N<sub>2</sub>O which is a non-reacting gas with amine solutions can then be capitalized to measure this property. N<sub>2</sub>O analogy is implemented to calculate the solubility of  $CO_2$  into amine solution. N<sub>2</sub>O analogy was originally proposed by (*Clarke*, 1964). The N<sub>2</sub>O analogy then;

Solubility of  $CO_2$  in absorbent = C1 (solubility of  $N_2O$  in absorbent)

Where

$$C1 = \frac{Solubility of \ CO_2 in water}{Solubility of \ N_2 O \ in water}$$
2.1

$$C1 = \frac{H_{N_2O}^{H_2O}}{H_{CO_2}^{H_2O}}$$
 2.2

The value of C1 can be calculated according to Varsteeg and van Swaaij (Versteeg et al., 1988).

$$C1 = 3.04e^{-\frac{240}{T}}$$
 2.3

This N<sub>2</sub>O analogy has been applied to amine systems including blended systems (*Hartono et al.*, 2008; Versteeg and van Swaij, 1988).

The solubility of  $N_2O$  gas in aqueous amine solvents can be fashioned by an apparent Henry's law coefficient showing the equilibrium between solute concentration in the gas phase and the solute concentration in liquid phase.

The Redlich-Kister equation correlates the solubility at different concentrations and temperatures based on the excess properties. The excess Henry's constant then figured by equation (2.4) (*Edwards et al., 1975*) and (*Tiepel et al., 1972*.

$$\hat{A} = \ln(K_{H_M}) - x_1 \ln(K_{H_1}) - x_1 \ln(K_{H_2})$$
2.4

Where  $K_{H_M}$ ,  $K_{H_1}$  and  $K_{H_2}$  are Henry's law constant of N<sub>2</sub>O in an amine-water mixture. The excess Henry's constant was correlated to Redlich-Kister equation as: (*Prausnitz et al.*, 1999).

$$\hat{A} = x_1 x_2 \sum_{n=1}^{n} A_n (1 - 2x_2)^{n-1}$$
2.5

Where  $x_1$  and  $x_2$  are mole fractions of amine and water respectively and An is Redlich-Kister coefficient, determined by regression for each temperature case. Inconsistency in solubility data may leads to non-precise results for reaction kinetics (*Blauwhoff et al.*, 1984).

## 2.1.2 Density

Redlich-Kister model is usually adopted to figure out the densities of aqueous amine solutions. The pure liquid components data in the DIPPR (version 4.1.0, 2004) can be estimated by using the equation (2.6). Critical temperature was used for the regression of the parameters.

$$\rho(gcm^{-3}) = \frac{AM}{B\left[1 + \left[1 - \frac{T}{T_c}\right]^c\right] 1000}$$
 2.6

A, B and C are adjusted parameters and M indicates molar mass of the solvent. T is the temperature to be measured while  $T_c$  is the critical temperature.

### 2.1.3 Diffusivity

The diffusivity of the gases like  $CO_2$  and  $N_2O$  in water or infinite dilute solution can be estimated by the correlation proposed by Littel (*Littel et al., 1992*) and *Versteeg (Versteeg et al., 1988*). The Stokes-Einstein correlation was proposed for the diffusivity of  $CO_2$  and alkanolamine in aqueous solutions.

### 2.1.3.1 Diffusivity of CO<sub>2</sub> and N<sub>2</sub>O in Water

The diffusivity of  $CO_2$  in water can be calculated as a function of temperature as:

$$D_{CO_2} = 2.35 * 10^{-6} exp\left(\frac{-2119}{T}\right) m^2 s^{-1}$$
 2.7

Similarly the diffusivity of N<sub>2</sub>O in water as a function of temperature is summed as:

$$D_{N_20} = 5.07 * 10^{-6} exp\left(\frac{-2371}{T}\right) m^2 s^{-1}$$
 2.8

With same routine the diffusivity of  $N_2O$  in aqueous alkanolamine solutions can be determined and the general expression for that is "the reciprocal values of the diffusivity data measured and those presented by (*Versteeg et al.1988*) were multiplied by the diffusivity of  $N_2O$  in water and sketched against the ratio of viscosity of alkanolamine solutions to water (*Versteeg et al.1988*).

#### 2.1.4 Viscosity

Viscosity is a measure in resistance to flow. Fluids resist the relative motion of the immersed object as well as the motion of the layers with differing velocities in them (*Bird et al., 2002*). Viscosity of both liquid and gas phases are affected by temperature changes but pressure affects, normally, only the viscosity of the gas phase.

The viscosities of aqueous amine solutions are influential for the measurement of the diffusivities. Viscosity of aqueous amine solutions can be correlated to diffusivity by modified Stokes-Einstein relation (*Versteeg et al.*, 1988).

Viscosity of aqueous solutions of MAPA and blended system of MAPA+DEEA were measured at different temperatures and compositions. The experimental setup and results from assessments are shown in upcoming chapters.

## 2.2 Kinetics of Alkanolamines

Alkanolamines are most trendy absorbents in removal of  $CO_2$  from process gas streams, like in ammonia plants to make the gaseous streams free of  $CO_2$ , in the production of hydrogen via steam reforming of natural gas, in treating natural/associated gas streams and in thermal power stations to meet the discharge limits for  $CO_2$  in flue gas. Therefore, the  $CO_2$  reaction with alkanolamines is of gigantic importance. The absorption of  $CO_2$  in aqueous amine solutions is based on three mechanisms i-e. Zwitterion mechanism, termolecular mechanism and base catalyzed hydration (*Versteeg et al., 1988*). Primary, secondary and sterically hindered amines are usually described by zwitterion mechanism while reaction of tertiary amines with  $CO_2$  follows base catalyzed hydration mechanism.

#### 2.2.1 Zwitterion Mechanism

The two-step mechanism originally proposed by Caplow (*Caplow*, 1968) and later on redeem by Danckwerts (*Danckwerts*, 1979). Reaction between  $CO_2$  and the amine (AmH) proceeds through the formation of a zwitterion as an intermediate is the first step.

$$CO_2 + AmH \stackrel{k_1}{\rightleftharpoons} AmH^+COO^- 2.9$$

This zwitterion undergoes deprotonation by a base B, thereby resulting in carbamate formation in second step.

$$AmH^+COO^- + B \xrightarrow{k_B} AmCOO^- + BH^+$$
 2.10

Applying the steady-state principle to the intermediate zwitterion, the rate of reaction of  $CO_2$  in aqueous solutions can then be defined as: (*Versteeg et al.*, 1996)

$$r = \frac{k_1(CO_2)(AmH)}{1 + \frac{k_{-1}}{k_B(B)}}$$
 2.11

Where  $K_B$  (*B*) represents deprotonation of the zwitterion by any base, such as H<sub>2</sub>O, OH<sup>-</sup> or AmH, as well as by a combination of bases. The reaction rate given by equation (2.11) unveils a fractional order of reaction with respect to the amine concentration.

When deprotonation is instant as compared to the reverse reaction in equation (2.11) ( $k_{-1} \ll k_B$  (B)) then zwitterion formation is said to be rate-determining step.

Than rate of reaction will be:

$$r = k_1(CO_2)(AmH)$$
 2.12

There by proposing that the reaction is of the first order with respect to both  $CO_2$  and amine concentration. When zwitterion deprotonation is rate-determining step ( $k_{-1} \gg k_B$  (B)), equation (2.12) takes the form:

$$r = \frac{k_1 k_B(B)}{k_{-1}} (CO_2) (AmH)$$
 2.13

The above expression declares the fractional reaction order between one and two with respect to amine concentration. If the amine itself represents base B, then carbamate formation can be expressed as follows:

$$AmH^+COO^- + AmH \rightarrow AmCOO^- + AmH_2^+$$
 2.14

The overall rate of reaction which accounts for carbamate formation in a solution can be then expressed by the sum of the reactions in equations (2.10-2.14).

$$CO_2 + 2AmH \Rightarrow AmCOO^- + AmH_2^+$$
 2.15

In case of sterically hindered amine, the zwitterion reacts preferably with water and formation of bicarbonate takes place:

$$AmH^+COO^- + H_2O \rightarrow HCO_3^- + AmH_2^+$$
 2.16

In this scenario the reaction, which narrates for bicarbonate formation, is given by the summation of reactions represented by equations. (2.9-2.16):

$$CO_2 + AmH + H_2O \iff HCO_3^- + AmH_2^+ \qquad 2.17$$

Steric effects reduce the stability of the carbamates formed by the amine with  $CO_2$ . Due to the low stability, the carbamates of sterically hindered amines may also readily undergo hydrolysis, forming bicarbonates and releasing free amine molecules. This can be represented as:

$$AmCOO^- + H_2O \rightarrow HCO_3^- + AmH$$
 2.18

The released free ion molecules will again react with  $CO_2$ . Thus, presence of bicarbonate ions will be more as compared to that of carbamate ions.

The following reactions may also take place simultaneously in an aqueous amine solution:

$$AmH + H_2 0 \rightarrow AmH_2^+ + OH^- \qquad 2.19$$

$$H_20 \leftrightarrows H^+ + 0H^- \tag{2.20}$$

$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$$
 2.21

$$CO_2 + OH^- \rightleftharpoons HCO_3^- \qquad 2.22$$

The net rate of  $CO_2$  reactions in an aqueous amine solution is provided by the sum of the reaction rates given by equations (2.10, 2.21, and 2.22) as:

$$r_{overall} = \left[\frac{k_1(CO_2)(AmH)}{1 + \frac{k_{-1}}{k_B(B)}}\right] + \left\{ \left[ k_{H_2O}(H_2O) + k_{OH^-}(OH^-) \right] (CO_2) \right\}$$
 2.23

Assuming that the reaction takes place in pseudo-first regime,

$$r_{overall} = k_{obs} (CO_2)$$
 2.24

While  $k_{obs}$  denotes observed reaction rate constant that can be measured.

$$k_{obs} = \left[\frac{k_1(AmH)}{1 + \frac{k_{-1}}{k_B(B)}}\right] + \left\{ \left[ k_{H_2O}(H_2O) + k_{OH^-}(OH^-) \right] \right\}$$
 2.25

For the analysis of experimental data apparent reaction rate constant  $(k_{ap})$ , is used and given by:

$$k_{ap} = \left[\frac{k_1(AmH)}{1 + \frac{k_{-1}}{k_B(B)}}\right]$$
 2.26

 $k_{ap}$  can be extracted from  $k_{obs}$  as follows:

$$k_{ap} = k_{obs} - \left[ k_{H_20} (H_20) + (k_{OH^-} (OH^-)) \right]$$
 2.27

### 2.2.2 Termolecular Mechanism

Termolecular mechanism was formerly proposed by Crooks and Donnellan (*Crooks et al., 1989*) consider that an amine reacts with one molecule of a base and one molecule of  $CO_2$  at the same time. The reaction proceeds in a single step via a slackly bound encounter complex as an intermediate, represented as: (*Danckwerts et al., 1979*).

$$CO_2 + AmH \cdots B \rightleftharpoons AmCOO^- + \cdots BH^+$$
 2.28

The loosely bound encounter complex breaks up to form reactant molecules (CO<sub>2</sub> and amine) while its small fraction reacts with a second molecule of the amine or a water molecule to give ionic products. Da Silva and Svendsen (*da Silva et al., 2004*) recently retreated this mechanism by ab initio calculations and a solvation model. According to their results, the most credible mechanism was similar as suggested by Crooks and Donnellan (*Crooks et al., 1989*). There might be another alternative that CO<sub>2</sub> forms a bond to amine with solvent molecule stabilizing the zwitterion like intermediate with hydrogen bonds.

The forward rate of reaction for this mechanism is specified by the following equation:

$$r_{overall} = k_{obs} (CO_2)$$
 2.29

While  $k_{obs}$  can be illustrated as

$$k_{obs} = \left[ k_{H_20}(H_20) + k_{OH^-}(OH^-) + k_{AmH}(AmH) \right] (AmH)$$
 2.30

#### 2.2.2.1 Base Catalyzed Hydration Mechanism

According to Donaldson and Nguyen (*Donaldson et al., 1980*) tertiary alkanolamines cannot react directly with  $CO_2$ . These amines have a base-catalytic effect on the hydration of  $CO_2$ . This was deep-rooted by Versteeg and Van Swaaij (*Versteeg et al., 1988b*) by the absorption of  $CO_2$  into a water free solution of MDEA and ethanol. They clinched that  $CO_2$  was only physically absorbed, proving the proposed reaction mechanism (Versteeg et al., 1988), represented as:

$$R_3N + H_2O + CO_2 \xrightarrow{k'} R_3N^+H + HCO_3^-$$
 2.31

In aqueous solution an amine dissociation reaction may occur:

$$R_3N + H_2O \rightleftharpoons R_3N^+H + OH^- \qquad 2.32$$

Jørgensen and Faurholt (*Jørgensen et al., 1954*) reported that direct reaction between  $CO_2$  and tertiary amines may arise at extremely high pH values, thereby resulting in monoalkyl carbonate formation. On the other hand, at pH values lower than 12, the rate of this reaction can be neglected (*Benitez-Garcia et al., 1991*).

The total rate of all  $CO_2$  reactions in an aqueous solution is therefore expressed by the sum of the reaction rates given by equations (2.10, 2.21 and 2.31):

$$r_{overall} = \left[ k_{H_20} (H_20) + k_{OH^-} (OH^-) + k' (R_3N) \right] (CO_2)$$
 2.33

And *k*<sub>obs</sub>:

$$k_{obs} = \left[ k_{H_20} (H_20) + k_{OH^-} (OH^-) + k' (R_3N) \right]$$
 2.34

And  $k_{ap}$  by:

$$k_{av} = [k'(R_3N)]$$
 2.35

## 2.3 Mass Transfer with a Chemical Reaction

Absorption into a liquid agent is the most frequently used channel in gas purification process. Absorption of gas is a unit operation in which soluble components of a gas mixture dissolve in a liquid agent. This heterogeneous process is carried out in various equipment's ranging from a bubbling absorber to a packed column.

In order to polish the overall rate of the process, an intimate gas–liquid contact has to be developed and mass transfer has to be improved by increasing turbulence in both liquid and gas phases. Though, at the interface boundary layers are always present, in which mass transfer takes place by a fusion of diffusional and chemical mechanisms, so that, the overall rate of the process is administered by both chemical reaction and mass transfer (*Ma'mun 2005*).

The absorption rate of  $CO_2$  in aqueous amine solution will increase if the mass transfer is accompanied by chemical reaction. The absorption flux will be then:

$$N_{A} = \frac{1}{\frac{1}{E_{A}k_{l}} + \frac{R_{T}}{Hk_{G}}} \left( C_{A}^{*} - C_{A,b} \right)$$
 2.36

 $E_A$  denotes the enhancement factor which is defined as the ratio of liquid side mass transfer coefficient with chemical reaction to the mass transfer coefficient without chemical reaction.

The absorption flux can be simplified in two ways:

• For very low loadings of CO<sub>2</sub> the concentration of solute (CO<sub>2</sub>) in the liquid bulk will be zero and absorption flux equation thus reduced to:

$$N_A = \frac{1}{\frac{1}{E_A k_l} + \frac{R_T}{H k_G}} (C_A^*)$$
 2.37

• Gas side resistance to mass transfer can be ignored if pure CO<sub>2</sub> is used. In that case absorption flux will be:

$$N_A = E_A k_l C_A^*$$
 2.38

When mass transfer is accompanied by chemical reaction then  $E_A$  is an influential parameter. Enhancement factor can be calculated from equations based on mass transfer models like surface renewal model, film theory and penetration theory.

## 2.3.1 Two Film Theory

Two film theory was first suggested by Whitman (1923) and by Lewis and Whitman (1924). To illustrate the process, a gas phase is brought in contact with a liquid phase (*Froment and Bischoff, 1990*). According to this theory a stagnant film of thickness  $\delta$  is supposed to exist at liquid and gas interface as sketched in Figure 2.1. Mass transfer occurs by a steady molecular diffusion through the film. This theory predicts mass transfer rate on the basis of first order dependency.



Fig 2.1 Mass transfer concept b/w gas and liquid based on two film theory (Ma'mun, 2005)

The absorption rate is determined by molecular diffusion in the surface layers. Although the diffusional and turbulence transport will apparently vary on continuous basis with depth below the surface, So therefore it is useful to take as a model a completely stagnant layer having an effective thickness  $\delta$ , overlying liquid of uniform composition. It is assumed that the thickness is small enough for the absorption process to be treated as one, steady–state diffusion through the stagnant layer.

The mass transfer equation in physical absorption is determined from the mass balance of the solute  $(CO_2)$  at steady state as:

$$D_A \frac{\partial^2 C_A}{\partial x^2} = 0 \qquad \text{for } 0 \le x \le \delta \qquad 2.39$$

While the Boundary limits are:

When X=0,  $C_A = C_{A,i}$ When X= $\delta$ ,  $C_A = C_{A,b}$ 

Integrating and applying boundary conditions yields,

$$C_A = C_{A,i} + (C_{A,b} - C_{A,i})\frac{x}{\delta}$$
 2.40

The mass transfer flux will then be

$$N_{A} = -D_{A} \frac{dC_{A}}{dx} \Big|_{x = 0} = \frac{D_{A}}{\delta} \left( C_{A,b} - C_{A,i} \right) = k_{l} \left( C_{A,j} - C_{A,b} \right)$$
 2.41

 $k_l$  denotes the coefficient of mass transfer for liquid side, equals to  $\frac{D_A}{\delta}$ .

Hatta (Hatta, 1932) proposed the analytical solution for the mass transfer through a film. Mass balance for the solute is given as under:

$$D_A \frac{\partial^2 C_A}{\partial x^2} = k_l C_A for \ 0 \le x \le \delta$$
 2.42

**Boundary Conditions:** 

X=0, 
$$C_A = C_{A,i}$$
  
X= $\delta$ ,  $D_A \left[\frac{\partial C_A}{\partial x}\right]_{\delta}$ 

Enhancement factor is given by:

$$E_{A,film} = \frac{Ha}{\tanh(Ha)}$$
 2.43

If Ha >>1, then  $E_{A,film} \cong Ha$ .

## 2.3.2 Surface Renewal Model

Surface renewal model for mass transfer was proposed by Danckwerts (Danckwerts, 1951) as extension of penetration theory. It is based on the assumption that the liquid elements do not stay on the surface (gas-liquid contact) at the same time. It is the complex model of fluid mechanics.

In surface renewal model, the interface is observed as being formed by a number of elements, and each one of which has been brought to the surface some time *t* before the instant of observation.

The distribution of the surface element contact times is described by a distribution function  $\psi(t)$ = se-st, where

$$\psi(t) = \frac{1}{t^*} \text{ for } t < t^* \quad \text{and} \quad \psi(t) = 0 \text{ for } t > t^*$$

The absorption rate at the surface stated by Danckwerts' age function is:

$$N_A(t) = \sqrt{D_A(k_1 + s)C_{A,i}} = \sqrt{D_A\left(k_1 + \frac{k_l^2}{D_A}\right)C_{A,i}} = k_l C_{A,i} \sqrt{1 + \frac{k_l D_A}{k_l^2}}$$
 2.44

While

$$k_l = \sqrt{D_A s}$$
 2.45

Hence the enhancement factor  $E_A$  can be illustrated as:

$$E_A = \sqrt{1 + \frac{k_l D_A}{k_l^2}} = \sqrt{1 + Ha^2}$$
 2.46

A number of literature such as Perry and Pigford (1953), Brian (1964), Secor and Beutler (1967), and Onda *et al.* (1970). Danckwerts and Kennedy (1954), Porter (1966), DeCoursey (1974, 1982) and Olander (1960) is available for correlation of enhancement factor for other type of reactions based on penetration theory and surface renewal theory.

## 2.3.3 Film-Penetration Theory

In contrast to surface renewal model, the film-penetration theory adopts the unsteady state molecular diffusion mechanism. Higbie (*Higbie, 1935*) was first who come up with the film penetration theory based on the hypothesis that, liquid-gas interface is composed of tiny liquid elements that are incessantly brought to the surface from bulk of the liquid. These elements are considered as stagnant. When liquid element reached the surface, the dissolved gas concentration in the element is supposed to be equal to the liquid bulk concentration. So therefore mass transfer will then be:

$$D_A \frac{\partial^2 C_A}{\partial x^2} = \frac{\partial C_A}{\partial t}$$
 2.47

Initial and Boundary Conditions:

$$C_A(0,t) = C_{A,i}$$
$$C_A(\infty,t) = C_{A,b}$$
$$C_A(x,0) = 0$$

The mass transfer rate with above conditions gives a solution:

$$N_A = k_l (C_{A,i} - C_{A,b})$$
 2.48

Where  $K_l$  denotes the mass transfer coefficient

$$k_l = 2\sqrt{\frac{D_A}{\pi t^*}}$$
 2.49

The enhancement factor  $E_A$  for pseudo first order irreversible reaction can be voiced as:

$$E_{A,pen} = \left[ \left\{ 1 + \frac{\pi}{8Ha^2} erf\left[\sqrt{\frac{4Ha^2}{\pi}}\right] + \frac{1}{2Ha} exp\left(\frac{4Ha^2}{\pi}\right) \right\} \right]$$
 2.50

 $E_{A,pen} \cong$  Ha, If Ha >> 1,
# 2.4 Chemical Equilibrium

Chemical equilibrium governs the extent of dissociation and reaction and so the distribution of species.

The equilibrium condition stoichiometric formulation is:

$$\sum_{i=1}^{n} \vartheta_i.\,\mu_i = 0 \tag{2.51}$$

Where  $\vartheta_i$  is stoichiometric coefficient of component i and  $\mu_i$  characterizes the chemical potential of component i. Conventionally, the chemical equilibrium is defined by the equilibrium constant, K.

$$K = \prod_{i=1}^{n} \alpha_{i}^{\nu i} = \prod_{i=1}^{n} \gamma_{i}^{\nu i} \cdot x_{i}^{\nu i}$$
 2.52

While  $\gamma_i$  dontes the activity coefficient and xi is liquid phase composition (*Kohl & Nielsen, 1997*).

# 2.4.1 Chemical Equilibria in (CO<sub>2</sub>-Water- DEEA System)

Dissociation of CO<sub>2</sub> from gas phase to liquid phase

$$CO_{2(g)} \rightleftharpoons CO_{2(l)}$$
 2.53

Ionization of water

$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$
 2.54

Hydrolysis of dissolve CO<sub>2</sub>

$$CO_2 + 2H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
 2.55

Dissociation of carbonate ion

$$HCO_3^{-} + H_2O \rightleftharpoons CO_3^{-2-} + H_3O^{+}$$
 2.56

Amine Protonation

$$DEEA + H_3O^+ \rightleftharpoons DEEAH^+ + H_2O$$
 2.57

Base catalytic effect on hydration of CO<sub>2</sub>

$$DEEA + H_2O + CO_2 \rightleftharpoons DEEAH^+ + HCO_3^-$$
 2.58

## 2.4.2 Chemical Equilibria in (CO<sub>2</sub>-Water- MAPA System)

Dissociation of CO<sub>2</sub> from gas phase to liquid phase

$$\mathrm{CO}_{2(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{l})}$$
 2.59

Ionization of water

$$2H_2O \rightleftharpoons H_3O^+ + OH^- \qquad 2.60$$

Hydrolysis of dissolve CO<sub>2</sub>

$$CO_2 + 2H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
 2.61

Dissociation of carbonate ion

$$HCO_3^{-} + H_2O \rightleftharpoons CO_3^{-2-} + H_3O^{+}$$
 2.62

Amine Protonation

 $MAPA + H_3O^+ \rightleftharpoons MAPAH^+ + H_2O$  2.63

Carbamate formation

$$MAPA + H_2O + CO_2 \rightleftharpoons MAPACOO^- + H_3O^+ \qquad 2.64$$

Protonated carbamate formation

$$MAPACOO^{-} + H_3O^{+} \rightleftharpoons H^{+}MAPACOO^{-} + H_2O \qquad 2.65$$

# 2.5 Reaction Regime

The influence of a reaction on the absorption rate can be expressed by a dimensionless ratio term  $\varphi$ , or can be determined from Hatta number and enhancement factor. Extent of reaction can also be identified by the relative rates of diffusion and reaction (*Astarita et al., 1983*).

$$\varphi = \frac{Diffusion time}{Reaction time}$$
 2.66

$$\varphi = \frac{t_D}{t_R}$$
 2.67

The Hatta number, Ha;

$$H_a^2 = \frac{Maximum \ conversion \ in \ film}{Maximum \ transport \ through \ film} = \frac{k_{obs}D}{k_l^2}$$
 2.68

Reaction regimes in terms of relative rates of reaction and diffusion can be expressed as:

#### 2.5.1 Slow Reaction Regime

When  $\phi \ll 1$ , the reaction is too slow and have no significant effect on the diffusion phenomena and fundamentally no absorption rate enhancement will take place. This case then refers to as slow reaction regime.

#### 2.5.2 Fast Reaction Regime

When  $\phi \gg 1$ , the reaction will be fast, in result there will be a significant rate enhancement, dropped it on to fast reaction regime.

#### 2.5.3 Instantaneous Reaction Regime

When  $\varphi \to \infty$  the reaction is infinitely fast, chemical reaction and the rate enhancement grasps its maximum achievable limit. Chemical equilibrium is established instantaneously and regime is said to be instantaneous reaction regime.

The enhancement factors EA for these three regimes, according to Astarita et al. (1983):

Slow reaction regime

Fast reaction regime

$$EA = \sqrt{\varphi}$$
 2.70

Instantaneous reaction regime

$$E_A = E_{A\infty} = \frac{(C_{A,i} - C_{a,b})_{eq.}}{(C_{A,i} - C_{a,b})}$$
 2.71

Now the reaction regimes in terms of Hatta number are summarized as:

#### 2.5.4 Slow Reaction Regime

Ha < 0.3 and  $E_A=1$ . The rate of reaction is faster than diffusional transfer of solute to liquid phase. This transfer of solute is rate controlling step. Mass transfer coefficient and absorption flux will depend on liquid flow rate (*Aronu et al.*, 2011).

# 2.5.5 Fast Reaction Regime

Fast reaction regime follows;  $3 < Ha \ll EA$ . Diffusion and chemical reactions are proceeding parallel. The liquid phase retention time is not of considerable importance because all reaction takes place in reaction film. Absorption flux is independent of physical mass transfer coefficient so therefore independent of liquid flow rate.

#### 2.5.6 Instantaneous Reaction Regime

 $3 < E_{A\infty} \ll$  Ha and  $E_A = E_{A\infty}$ , applies for instantaneous reaction regime. The reaction is too fast in case of irreversible reaction, the reactants cannot co-exist in film. By reaction diffusion the absorption flux is limited.



Fig 2.2: Asymptotic behavior for enhancement factor  $EA = f(\varphi)$  (Ma'mun, 2005)

# 2.6 Gas Side Resistance

The soluble gas essentially diffuses through insoluble gas to reach interface in a gas blend of soluble and insoluble gasses. That's why the partial pressure of the soluble gas at the interface is less than that in the bulk gas. According to Danckwerts (*Danckwerts, 1970*), the stagnant gas film of finite thickness across which the soluble gas is transferred by molecular diffusion alone while bulk gas has uniform composition is said to be gas film resistance. The mass balance of the soluble gas for both the liquid and gas film at steady state condition will then be as:

$$N_A = k_g (p_A - p_{A,i}) = E_A k_L^0 (C_{A,i} - C_{A,b})$$
 2.72

In correspondence to Henry's law ( $P_{A,i} = HC_{A,i}$ ) at the liquid interface to eliminate interfacial concentrations, and  $E_A k_L^0 = k_L$ , the absorption flux is given as under:

$$N_{A} = K_{g} \left( p_{A} - HC_{A,b} \right) = K_{l} \left( \frac{p_{A}}{H} - C_{A,b} \right)$$
 2.73

While

$$\frac{1}{K_G} = \frac{1}{k_g} + \frac{H}{k_l}$$
 2.74

$$\frac{1}{K_L} = \frac{1}{k_l} + \frac{1}{Hk_g}$$
 2.75

Expression in equations (2.74 and 2.75) provides the overall resistance as the sum of the resistances in two films. The values of  $k_g$  and  $k_l$  vary from point to point in reality.

The average over all resistance and summation of two averaged resistances are not considerably different in practical cases, based on (*Mannford Doble 1996*) experimentations (*Aronu et al., 2011*).

According to equation (2.73) there are two possible limiting behaviors in system explicitly as:

#### 2.6.1 Liquid Phase Control

If 
$$\frac{k_l}{Hk_g} \ll 1$$
 Then  $N_A = K_L\left(\frac{P_A}{H - C_{A,b}}\right)$  2.76

In this scenario mass transfer in gas phase is easier than in liquid phase, it means that over all force of driving is exclusively consumed in liquid phase so that  $P_{A,i}$  is almost equal to  $P_A$ .

#### 2.6.2 Gas Phase Control

If 
$$\frac{k_l}{Hk_g} \gg 1$$
 Then  $N_A = K_G (P_A - HC_{A,b})$  2.77

Mass transfer in liquid phase is much more favorable as compared to that of gas phase showing that driving force is mainly involved in gas phase (*Aronu et al., 2011*).

# 2.7 Liquid Film Mass Transfer Coefficient

Stephens and Morris (*Stephens et al., 1951*) proposed a correlation for strings of disc contactor in order to calculate liquid side mass transfer coefficient: (*Dindore, 2004*).

$$\frac{k_l}{D} = \alpha \left(\frac{4\Gamma}{\mu}\right)^n \left(\frac{\mu}{\rho D}\right)^{0.5}$$
 2.78

While  $\alpha = 17.92$  and n = 1.0,  $\mu$  and  $\rho$  are the viscosity and density of the liquid. Where D is the diffusivity of the solute in the liquid phase and  $\Gamma$  is wetting rate of the apparatus: (*Hartono et al., 2009*)

$$\Gamma = \frac{(liquid flow rate) \times (length of string)}{Surface area of string}$$
2.79

The Stephens–Morris correlation has been used by some writers to correlate the liquid–side mass transfer coefficient with operating and physical parameters for this system. There is no agreement on the values of  $\alpha$  and *n* among the authors. The difference in these correlation of the parameter values is due to variations in factors such as disc–type, disc morphology etc (*Ma'mun, 2005*).

It is important to have the gas film resistance as small as possible while measuring the liquid film mass transfer coefficient.

#### 2.8 Gas Film Mass Transfer Coefficient

The gas film mass transfer coefficient for strings of disc contactor can be estimated by correlation provided by Stephens and Morris (*Stephens et al., 1951*) which is given as under.

$$\frac{k_G P}{\nu \rho_d} = 0.3281 \Gamma^{0.13} \left(\frac{\nu d\rho}{\mu}\right)^{-0.33} \left(\frac{\mu}{\rho D}\right)^{-0.56} \left(\frac{P}{Pi}\right)$$
 2.80

 $\rho_d$  is the density of the solute gas, "d" denotes the equivalent diameter for gas flow, "P" is the total pressure, "v" is the gas velocity and "Pi" is the partial pressure of solute gas.

Dindore (*Dindore*, 2004) used SO<sub>2</sub> absorption into aqueous NaOH solution to determine the gasside mass transfer coefficient for the disc contactor defined as: (*Ma'mun*, 2005)

$$Sh = 0.11Re^{0.73}Sc^{-0.56} 2.81$$

# 2.9 Kinetic Rate Constant

The rate constant (apparent) in terms of zwitterion ion mechanism and termolecular mechanism are expressed as under.

#### 2.9.1 Rate Constant for Zwitterion Mechanism

The apparent kinetic rate constant for the zwitterion mechanism can be elaborated by following expression:

$$k_{ap} = k_2 (AmH)$$
 2.82

$$k_{ap} = \frac{(AmH)}{\frac{1}{k_2} + \frac{1}{\{k_{AmH}(AmH) + k_{H_2O}(H_2O)\}}}$$
2.83

While  $k_{AmH}$ ,  $k_{H_20}$  are kinetic parameters and for single zwitterion mechanism these parameters can be calculated by two methods:

• Non-linear regression:

This method will be used to determine the kinetic parameters if the assumption for water concentration to be constant is not valid, or not considered.

• Plotting method:

Another method to estimate kinetic parameters is graphical/plotting method. According to that if water concentration can be assumed constant for low amine concentrations, and graph is sketched between AmH and  $\frac{k_{ap}}{(AmH)}$  then slope of that plot will give the value for  $k_{AmH}$  and the intercept of the plot will give the value of  $k_{H_2O}$ .

#### 2.9.2 Rate Constant for Termolecular Mechanism

For the single-step termolecular mechanism, the apparent kinetic rate constant will then be:

$$k_{ap} = \{k_{AmH}(AmH) + k_{H_20}(H_20)\}(AmH)$$
 2.84

Similarly, in order to estimate kinetic parameters for termolecular mechanism the overhead nonlinear regression method and plotting method can be applied.

# 2.10 Activity Based Rate Constant

Kinetic constants are dependent on temperature, concentration and also types of the ions in the solution. They are not real constants. The kinetic expression based on activity can be stated as (*Pinsent et. al., 1956*):

$$r = k_2^{\gamma} C_A C_B \gamma_A \gamma_B \qquad 2.85$$

 $k_2^{\gamma}$  in above expression depends solely on temperature and should be independent of concentration. CO<sub>2</sub> distribution between liquid and vapor phase is modeled, based on Henry's law constant at infinite dilution.

$$\varphi_{CO_2}(T, P, y) y_{CO_2} P = \hat{\gamma}_{CO_2}(T, P, x) x_{CO_2} H_{CO_2}^{\sim *}(T) \exp\left\{\frac{\overline{\nu}_{CO_2}(P - P_{H_2O}^{sat})}{RT}\right\}$$
 2.86

Apparent Henry's constant is used to estimate the concentration of species for calculation of kinetic rate constant. Apparent Henry's law constant is basically a ratio of partial pressure of gas above solution to concentration of gas in solution and can be expressed numerically as:

$$H_A^{App} = \frac{P_{A,i}}{C_{A,i}}$$
 2.87

Relating equations (2.86 and 2.87):

$$H_A^{App} x_A = x_A \gamma_A H_A^{\infty *}$$
 2.88

While the overall gas side mass transfer coefficient is:

$$N_A = E^{\gamma} k_L^o (a_{A,i} - a_{A,b})$$
 2.89

$$K_{ov,G} = \frac{1}{\frac{1}{\frac{1}{k_G} + \frac{H_{co2}^{*}/c_{tot}}{E^{\gamma}k_L^0}}} = \frac{1}{\frac{1}{k_G} + \frac{H_{co2}^{*}}{E^{\gamma}k_L^0}}$$
2.90

Reaction rate for irreversible first order reaction is accounted by film theory, depicted by under texted eq:

$$r = a_A k_1^{\gamma} = k_1^{\gamma} \gamma_A C_A \qquad 2.91$$

While Hatta number is scripted as:

$$Ha^{\gamma} = \frac{\sqrt{k_1^{\gamma} \gamma_A D_A}}{k_L^o}$$
 2.92

The activity based kinetic rate constant for first can be determined by equation (2.93).

$$k_{1}^{\gamma} = \frac{H_{A}^{\infty 2} \gamma_{A}}{\left(\frac{1}{K_{\text{ov},G}} - \frac{1}{k_{g}}\right)^{2} D_{A}}$$
 2.93

While the second order rate constant by equation (2.94):

$$k_2^{\gamma} = \frac{k_1^{\gamma}}{C_B \gamma_B}$$
 2.94

# **Chapter 3**

# **Materials and Experimental Setup**

A diamine and a tertiary alkanolamine are picked up for kinetics examination of CO<sub>2</sub> absorption as solvents.

MAPA ( $\geq$  99%) with CAS no. 6291-84-5 was obtained from Sigma Aldrich. It is important to be acquainted with some of his general properties.

- Clear and color less liquid
- Freezing point =  $-72 \ ^{0}C$
- Boiling point =  $140 \ ^{0}C$
- Completely soluble in water
- $pH = 11.5 \text{ at } 20^{\circ} \text{C}$
- Structure:



Similarly DEEA ( $\geq$  99%) with CAS no.100-37-8 was also obtained from Sigma Aldrich.

- Clear liquid with pale yellowish color
- Freezing point =  $-70^{\circ}$ C
- Boiling point =  $163 {}^{0}C$
- Completely soluble in water
- Structure:



The CO<sub>2</sub> (purity > 99.999 mol % from AGA Gas GmbH) and Nitrogen N<sub>2</sub> (purity > 99.999 mol% from YARA PRAXAIR) were used for calibration, loading and flushing. While N<sub>2</sub>O was used in solubility experiments also obtained from YARA PRAXAIR.

# 3.1 Chemicals for CO<sub>2</sub> and Amine Analyses

All of standard solutions were prepared from underneath stated chemicals and de-ionized water.

## 3.1.1 Standard Solutions

- 0.1N NaOH (ampoule for 1000 mL supplied Merck KGaA)
- 0.1N HCl (ampoule for 1000 mL supplied Merck KgaA)
- 0.2N H<sub>2</sub>SO<sub>4</sub> (2, 0.1 ampoules for 1000 mL supplied by Merck KgaA)
- $0.1 \text{N BaCl}_2$  (244 g BaCl<sub>2</sub>.2H<sub>2</sub>O/2L with purity > 99% supplied by SIGMA-ALDRICH)

## 3.1.2 Filters

• 0.45µmHAWP supplied by MILLIPOR

Analysis technique will be described later on.

# 3.2 Experimental Setup

Kinetic measurements of  $CO_2$  absorption were performed on a string of discs contactor. In the line of these experiments, solubilities, densities and viscosities were also measured.

#### 3.2.1 String of Discs Contactor Apparatus (SDC)

The rate of  $CO_2$  absorption in an aqueous amine solutions were evaluated by means of string of discs contactor. String of discs contactor comprises an arrangement of 43 discs that are at right angel to each other having a diameter of 1.5 cm and thickness of 0.4 cm. The characteristic active length of the column is 64.5 cm while the active mass transfer area for this arrangement is 226.15 cm<sup>2</sup> (*Ma'mun, 2005*).

The SDC is equipped with Fisher–Rosemount BINOS<sup>®</sup> two CO<sub>2</sub> channels; 2000 ppm and 1vol% CO<sub>2</sub>; a BRONKHORST HI–TEC mass flow controller, a peristaltic liquid pump (EH PROMASS 83), five K–type thermocouples and a gas blower are also a part of this setup. Figure 3.1 sketched the whole apparatus.



Fig 3.1: Kinetic apparatus "String of discs contactor" (Hartono et al., 2009)

SDC is operated in counter-current mode with liquid flow from top to bottom on discs and gas flows vice versa. Thermocouples are mounted at the inlet and outlet of liquid, inlet and outlet of gas and inside the cabinet. The liquid and gas flows can be independently adjusted by a liquid pump and gas blower respectively.

The flow of the blower is controlled by a Siemens Micro Master Frequency Transmitter and has a maximum flow rate of 1.75 Nm<sup>3</sup>/hr. The active mass transfer area is calculated by the following expression (*Hartono*, 2009).

$$A_{active}(m^2) = \left\{ 2.\pi \left(\frac{d}{2}\right)^2 + \pi dw - 2w^2 \right\} . n_d$$
 3.1

#### 3.2.1.1 Calibration Process

- CO<sub>2</sub> and N<sub>2</sub> injection valves were opened
- Turned on fan and fan regulators and adjusted to desired level
- Mass flow controllers (MFC) were on calibration mode
- Flow of condensate water valve regulated to open position
- Experimental valve adjusted to closed position for calibration
- Log file in system was created on labview program for data acquisition and sample readings

After performing the essential startup tasks for calibration, it's time to start with the process of calibration. Firstly leakage test was done in order to check any malfunctions in system by altering the valve of  $N_2$  MFC to low flow range. Bubbles were popped up in gas outlet cylinder indicating that system was leakages free. On the other hand if gas bubbles weren't trickled out then system had some leakage that should be looked in to for further proceeding.

Afterwards, calibration was initiated for 0 to 1 vol%  $CO_2$  channel by maintaining the zero opening of  $CO_2$  MFC and 100% for N<sub>2</sub> MFC opening in order to get the first calibration point. Variant openings of  $CO_2$  MFC using channel 3 (starting from 70% to 0% opening) were used while the opening for N<sub>2</sub> MFC remained same for all readings. 10-20 minutes were allotted for each opening and waited for the point to get stable. These points were recorded in the sheets that are attached to appendix in kinetic calculations.

#### **3.2.1.2 Experimental Layout**

When the calibrations were done, the calibration valve was also closed and experimental valve was opened. Solution was prepared in the beginning of the experiment .The 5 liter flask at liquid inlet was filled with the desired solution, heating element was turned on and adjusted to required temperature. Five K-type thermocouples were used to register the 4 inlet and outlet gas/liquid temperatures and the temperature inside the chamber (*Ma'mun, 2005*). Before starting every

experiment it was desired to clean the disc of SDC by pumping it firstly with hot water then with DI water. Direct drained valve was used to remove any air trap inside lines, in order to avoid pump failure, so some of the solution was evacuated first from that valve. Now the solution from 5 liter filled flask was allowed to enter in to SDC. The initial amount of solution that entered in SDC was removed in an empty beaker after passing through it to make sure that there were no contaminations on disc remaining. The liquid flow rate was adjusted to 50mL/min. The flow of liquid was controlled by peristaltic liquid pump. The flow rate of gas which is flowing in counter current direction was also adjusted to desired level. Opening of N2 MFC was defined to 6% (low value) and this value will remain unchanged throughout all the experiments. This value was stated because by increasing the amount of N2 more than that of 6%, wouldn't have immense effect on flux. Then hit and trial method was used to adjust the amount of CO<sub>2</sub> to 2 kPa on analyzer (Fisher-Rosemount BINOS 100 NDIR  $CO_2$  analyzer) by opening  $CO_2$  MFC. Most of the experiments were performed to this partial pressure with desired temperature levels. It was waited for liquid and gas temperatures to get stable at the desired set point. After point stabilization reading was documented and temperature was changed. During temperature stabilization the flow of liquid and gas was kept close. Liquid and gas flows were re-started after the stabilizing of temperature. Experiments were executed from 298.15 K-338.15 K. When 5 liter of solution was finished in the first run, then the solution from the outlet flask was returned to the inlet flask.

The string of discs contactor involved in this kinetic study has been characterized by (*Dindore 2004*) in order to evaluate hydrodynamics of liquid and gas flow.

The CO<sub>2</sub> flux can be calculated by implementing solute balance over whole system. The difference between CO<sub>2</sub> flow rate in the system and CO<sub>2</sub> out of the system gives the absorption flux of CO<sub>2</sub> (*Hartono, 2009, Ma'mun, 2005, and Aronu, 2011*).

$$r_{CO_2}^{abs}\left(\frac{kmol}{s}\right) = Q_{CO_2}^{in} - Q_{CO_2}^{out}$$
3.2

Where  $r_{CO_2}^{abs}$  indicates molar absorption rate.

The amount of  $CO_2$  which is going out of the system as indicated on analyzer can be determined from:

$$Q_{CO_2}^{out} = Q_{N_2}^{in} \frac{y_{CO_2}^{out}}{1 - \binom{p_{solution}}{p} - y_{CO_2}^{out}}$$
 3.3

When the experimentation was completed, the clean-up and shut down procedure was executed.

All of the solution was drained out from system. Hot water and DI water was injected from inlet again to rinse it and to remove any traces of amine solution remaining in it. Liquid pump speed reduced to zero from labview program, and system was shutdown afterwards. It was made sure that all the gas bottles, valves and cooling water line were closed.

#### 3.2.2 Solubility Assessment

A stirred jacketed glass vessel as sketched in figure<sup>\*</sup> 3.2 was used for N<sub>2</sub>O solubility measurements. Glass vessel had a calibrated volume of  $1.07*10^{-3}$  m<sup>3</sup>. On the other hand there was a stainless steel gas holding vessel with a calibrated volume of  $1.04*10^{-3}$  m<sup>3</sup>. A vacuum pump, condenser, cooling medium and external heating attachment was also a part of system. In a startup procedure valves of gas bottles were turned on and absorption flask was ensured to be dry and free of impurities by injecting N<sub>2</sub>. The absorption flask/glass vessel contained the N<sub>2</sub>O, Liquid and vacuum inlet lines. After flushing with N<sub>2</sub> the flask was sealed and vacuum was generated in flask by using vacuum pump and pressure was reduced to maximum achievable limit. During vacuum the liquid inlet line remained open to generate vacuum in it as well to suck solution in to flask after wards. Labview program for solubility measurement was clicked from system. Then it's time to prepare amine solution. Solution was weighed and injected up to marked level in the absorption vessel. The remaining solution inside the absorption vessel.

After injection, liquid inlet line was closed and vessel was degassed again in order to remove any trapped gas bubbles inside liquid and in vessel down to 20 mbar and at ambient temperature. Before degassing the vessel cooling medium was turned on and temperature of the vessel top reduces to 277.15 K in order to condense any amine vapors if present, so that they may not lost and changed the concentration of amine during degassing of the vessel.

When these two steps were finished stirrer was switched on to ensure homogeneous mixing and to attain the equilibrium and it was adjusted to 1000 RPM. The temperature of stirred glass vessel was managed by a heating medium (LAUDA E300) glycol bath.

<sup>\*</sup> Apparatus for current work is somehow similar to Ma'mun, 2005



Fig 3.2: N<sub>2</sub>O solubility experimental arrangement (Ma'mun, 2005)

Temperature in solubility measurements ranged from 298.15 K to 338.15 K when temperature of gas and temperature of liquid stabilized for one certain temperature the point was noted and temperature was altered for next reading. When 338 K was achieved and all points were recorded, then it's time to inject N<sub>2</sub>O in vessel by opening the N<sub>2</sub>O inlet line. The commercial N<sub>2</sub>O gas was supplied by AGA Gas GmbH with a purity of 99.999%. After the injection temperature and pressure of absorption vessel and steel vessel were measured and catalogued. The amount of N<sub>2</sub>O injected in absorption flask was calculated from the difference in pressure of the gas vessel before and after injecting N<sub>2</sub>O. Temperature was decreased from 338.15 K to 298.15 K in the same fashion as it was increased and points were recorded similarly for every temperature change.

Temperature was measured by two K type thermocouples and pressure was measured by two pressure transducers (Druck PTX 610 and PCE28). Transducer attached to absorption flask will go up to 8 bar while the transducer in steel vessel measured up to 6 bar.

The amount of N<sub>2</sub>O that was added can be calculated as (Hartono, 2009):

$$n_{N_2O}^{added} = \frac{V_V}{RT_V} \left[ \frac{P_{\nu 1}}{z_1} - \frac{P_{\nu 2}}{z_2} \right]$$
 3.4

Where  $P_v$ ,  $T_v$ , are pressure and temperature while  $z_1$ ,  $z_2$  are compressibility factor of gas at initial and final conditions and R is universal gas constant respectively. Peng Robinson equation of state was used to calculate compressibility factor.

The amount of N<sub>2</sub>O in gas phase of the absorption vessel can be estimated by the following equation:

$$n_{N_2O}^{gas} = \frac{P_{N_2O}(V_R - V_S)}{zRT_R}$$
 3.5

While Vs is volume of solvent and can be measured from solvent density and  $V_R$  expressed volume of reactor.  $P_{N_2O}$  is the partial pressure of  $N_2O$  and quoted as:

$$P_{N_2 0} = P_R - P_S^0 3.6$$

 $P_R$  is the total pressure of absorption glassed vessel and  $P_S^0$  indicates the solvent vapor pressure.

The amount of N<sub>2</sub>O in the liquid phase can be assessed by:

$$n_{N_2O}^{liq} = (n_{N_2O}^{added}) - (n_{N_2O}^{gas})$$
3.7

The solubility of N<sub>2</sub>O can be calculated by Henry's law constant relation:

Where  $C_{N_2O}$  indicates concentration of N<sub>2</sub>O, will be calculated by following equation:

$$C_{N_2O} = \frac{\left(n_{N_2O}^{liq}\right)}{V_S}$$
 3.9

#### 3.2.3 Density Measurement

The (Anton Paar DMA 4500M) density meter was used to analyze densities of amine samples as shown in figure 3.3. Density of all solutions of MAPA and blends of DEEA+MAPA were measured.

First of all test vials were cleaned and it was made sure that there was no contamination in vials. These test vials will then be filled with amine solution up to 9.5 ml measured volume and sealed with caps. DI water filled vials were put at the start and end of amine samples in order to check accuracy and percentage error in measurements.

Program was called from density meter and was operated from lavish touch screen. Sample data was fed in according to the positions in rotating disc in which vials were adjusted. Before running the experiment the DI water and ethanol bottles used for cleaning and drying of sensor were checked. Temperature was set to the desired value and started the measurement. Densities were measured from 293 K to 353.15 K for each individual sample. Densities of water were also measured at these temperatures in order to check the system accuracy. Data was saved automatically in system memory that was extracted afterwards.



Fig 3.3: "Anton Paar DMA 4500M" density meter (Representative Anton Paar 2013)

## 3.2.4 Viscosity Determination

The (Physica MCR 100) rheometer was used for the viscosity assessments. This apparatus is operated by US 200 Software which is windows based. Amine samples of MAPA and blends of DEEA+MAPA were analyzed. Software window was opened and correctly chose the measuring system (DG 26.7) and measuring cell (TEK 150P-C). The EC motor shaft position was adjusted to lift up position as sketched in figure 3.4 as well and desired temperature was adjusted. Temperature was controlled by fluid circulation.

Then white protection cylinder was removed from apparatus to couple the cylindrical measuring system but it was very important to make sure that coupling should be aligned as indicated by mark on shaft. In MCR rheometers the one hand quick coupling system, solvent trap and evaporation blocker enhanced its measuring capacity.



Fig 3.4: "MCR 300 Physica" rheometer (APTL)

When coupling was done then bottom (concentric) cylinder was fitted to rheometer base and filled with 4ml of solution. After wards the measuring position tab was clicked from software and EC motor shaft rotated downwards to base. Furthermore was time to wait for the temperature to be stabilized. Then reset the NF to zero and started the measurement.

For one temperature the apparatus took 5-8 minutes depending upon the number of points selected. 20 data points were selected in these experiments for most of the cases to observe the shear stress and shear rate. Newton1 method was used to calculate the viscosity of aqueous solutions, while taking an assumption that amines behave as Newtonian fluids. The data points showing linear trends were included by selecting those desired points and that value was recorded as viscosity of the given solution. Same procedure was followed for rest of the temperatures and concentrations. Viscosity measurements were done for temperature range of 293.15 K to 333.15 K while the sample solution was changed after every two temperature analysis.

# 3.3 Process of Analyzing

#### 3.3.1 CO<sub>2</sub> Analyses of Samples

In order to calculate the amount of CO<sub>2</sub> in samples, precipitation titration method was used.

Following steps were adopted:

- Liquid sample from closely tight sample bottle which was to be analyzed obtained and added to flask. The amount of the liquid sample added, dependent on the total CO<sub>2</sub> content in the sample.
- 50 cm<sup>3</sup> sodium hydroxide (0.1 N NaOH ) and 25 cm<sup>3</sup> barium chloride (0.1 N BaCl<sub>2</sub>) freshly prepared solution was taken in 250 cm<sup>3</sup> Erlenmeyer flask and measured.
- Tare the weight balance and measured amount of liquid sample is added in Erlenmeyer flask.
- The Erlenmeyer flask was heated for four minutes on heated plate until it boiled in order to enhance the barium carbonate (BaCO<sub>3</sub>) formation, and then cooled to ambient temperature.
- The mixture was filtered with a 0.45 µm Millipore paper and rinsed with de-ionized water in order to check any leakage in filtration flask.
- The filter covered by BaCO<sub>3</sub> cake was transferred to a 250 cm<sup>3</sup> beaker. De-ionized water (100 cm<sup>3</sup>) was added into the beaker, and enough hydrochloric acid (0.1N HCl) was added to dissolve the cake of BaCO<sub>3</sub>.
- The amount of hydrochloric acid (0.1N NaOH) added was measured.
- The solution with 0.1 N NaOH with an end-point of pH 5.25 was titrated in an automatic titrator (Metrohm 809 Titrando).
- After the titration the following equation was used to calculate the amount of CO<sub>2</sub> in the liquid phase.

Amount of 
$$CO_2\left(\frac{mol}{kg}\right) = \frac{\left[(Hcl_g - NaOH_{ml}) - (Hcl_g(blank) - NaOH_{ml}(blank))\right]}{10*2*wt.of Sample_g}$$
 3.10

$$CO_2\left(\frac{mol}{litre}\right) = CO_2\left(\frac{mol}{kg}\right) * \rho_{sol}\left(\frac{kg}{liter}\right)$$
 3.11

# 3.3.2 Amine Analysis of Samples

There was a possibility of solvent loss during operation, so the amine concentrations were determined by titration afterwards.

Following steps were adopted:

- A liquid sample of 0.5 cm<sup>3</sup> was diluted in 50 cm<sup>3</sup> de-ionized water in plastic beaker and titrated with 0.2 N sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) using the metrohm 702 SM Titrino.
- High concentration samples were analyzed by using 0.2N H<sub>2</sub>SO<sub>4</sub> as titrant and low concentration samples were analyzed by using 0.02NH<sub>2</sub>SO<sub>4</sub>.
- LabX software program was used for determination of the amine concentrations by titration. Weighed quantities of the samples were placed in rotating disc and program was started.
- Before starting the program the diaode was cleaned with DI water and adjusted in sampling place.
- The end point was obtained at pH 2.5. The Amine concentrations were found in mol/kg and these concentrations were used to get loading (mol CO<sub>2</sub>/ mol amine).

# 3.4 Accuracy / Uncertainty

There is no such thing as a perfect measurement. Experimentations and measurements can never be exact; there will be some errors due to one of the following reasons.

- Systematic uncertainties
- Difficulty of temperature control
- Limitations of theoretical Laws
- Random uncertainties
- Time lag of instrumentation and Control system
- Human Errors
- Numerical Errors
- Limited precision

- Comparison uncertainties
- Response time of IR analyzer
- Impurity of Materials used

Measurements have always errors and uncertainties, no matter how hard someone might try to minimize them.

System accuracy is basically an accreditation in measured value and the correct value. To avoid air and  $O_2$  pressures in SDC and in solubility equipment,  $N_2$  was flushed through equipments prior to experimentations.

Standard equipments like pressure transducers, thermocouples, balances, weighing, analyzer, Pumps, blowers, fans were used in order to minimize the uncertainties in readings. A standard was maintained from preparation of solution till  $CO_2$  and amine analysis in order to generate precise data. State of the art controllers were used during whole process. Well accepted and best fitted equations for kinetic measurements were a part of this work.

Appropriate care was taken during rinsing of the equipments with hot water then de-ionized water. Atmospheric pressure from lab mounted barometer was taken after every reading and compared with the equipment generated atmospheric pressure for counter check. For calculation in excel sheets data fixed at four places after decimal point and taking every possible precaution in every step of experimental and computational work. In spite of all above protections and precautions the equipment uncertainties; human error; material impurities; ground conditions and limitations of governing theoretical laws and computational models cannot be totally disregarded.

# **Chapter 4**

# **Results & Discussions**

Physiochemical properties and kinetics were performed for MAPA and blends of MAPA+DEEA.

# 4.1 Density Evaluations:

# (Aqueous MAPA System)

Experimental densities were performed for the aqueous solution of 1/2/3/4/5M MAPA system at variant temperatures, ranging from 293.15K - 353.15K. All the data points achieved are tabulated in appendix A1. While the densities are sketched against temperatures as shown in figure 4.1.



Fig 4.1: Experimental densities of "MAPA" system at different temperatures

The parallel measurements were compassed for each sample in order to ensure the reproducibility of the data. The uncertainty in the parallel measurements was approximately less than  $\pm 0.01\%$  (see tables in appendix A1) hence showing system accuracy.

Densities of deionized water were also measured by placing test vials at the start and end of actual samples in order to assure the working efficiency of current equipment (Appendix A4).

From plotted data it is observed that with the increase in concentration of aqueous amine solutions, density decreases accordingly. It is spotted that highest density achieved is  $(d= 0.99359 \text{ gm/cm}^3)$  at 293.15 K. At low temperatures the density difference in between all concentrations is small. While with the increase in temperature the difference in densities is quite large, as density is a relation of mass to volume so with the increase in temperature volume increases hence density decreases. The experimental results revealed that the density difference for 2M and 3M MAPA system are not very much, therefore curves for both systems pursued the same trend. Points at each concentration followed likely the same polynomial behavior as it was observed for the other amine systems.

The equation (4.1) is used in order to model the density calculation of aqueous MAPA system at all temperature and concentration while the modeled graph is also attached to appendix C1.

$$\rho\left(\frac{gm}{cm^3}\right) = K_1 - \frac{K_2 \cdot X}{T} + \frac{K_3 \cdot X}{T^2} \cdot exp\left(\frac{K_4}{T} - \frac{K_5}{T^2}\right)$$
4.1

While  $\rho$  indicates density, T for temperature in K, X is the mass fraction and K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub>, K<sub>4</sub>, K<sub>5</sub> are the parameters and are tabulated in appendix A2. The value of AARD is 0.2%.

## (Aqueous Blended System)

Blended (MAPA+DEEA) systems were also evaluated for density measurements. Same experimental procedure was adopted as before and two parallel density measurements were also performed for this system. Tabulated densities of blends are a part of appendix A3 and also graphed against variant temperature as depicted in figure 4.2. Denotations are made in order to simplify plot area, M indicates MAPA while D indicates DEEA and integers indicates molar concentrations.



#### Fig 4.2: Experimental densities of Blended "MAPA+DEEA" system at different temperatures

The main focus is on two different sets of blended systems that are examined for densities, one in which 1M concentration of MAPA is constant but concentration of DEEA varies. Second is in which 2M concentration of MAPA is constant and concentration of DEEA varies again. Blended systems have the same trend as for single solvent that with the increase in temperature the density of blended system decreases and vice versa. While higher densities are examined at lower concentration and lower temperatures and phenomenal differences in densities are observed at higher concentration and lower temperatures. As physical properties like density and viscosity are related to overall total molar concentration rather than that of individual amine constituents. So density measurements of some of the blended systems extensively overlap each other, although the number of moles of MAPA and DEEA are not the same in both the cases as declared by the plot of 1M2D and 2M1D.

Similarly 1M3D, 3M1D and 2M2D blended systems show approximately the same values and density differences at all temperatures in these systems are not much eminent. Overall the graphical representation of the data points showed the polynomial behavior as observed in single amine system.

Considering two sets of density measurement it is also concluded that with the increase in concentration of DEEA with constant concentration of MAPA the density of blended system decreases.

## 4.1.1 Density Comparison (Current Work & Literature)

The experimental measurements of current work should be analyzed and verified by comparing it with the literature data. This section will cover the comparison of densities of single and blended amine systems with literature. It is worth mentioning here that current work and literature may not behave as it is. Current work and literature have different performances and characteristics and experimented under different conditions.

#### (Aqueous MAPA System)

Density measurements were reviewed in literature in order to find out the same solvent to compare it with current work but unfortunately no as such density measurements are available on single MAPA system. MAPA being a diamine contains one primary and one secondary group. Extensive literature is available on primary and secondary amines so current work can be compared either with primary, secondary amines or with diamine to have a complete over view of density evaluations.

Fig 4.3 contains the density measurements of current work, the MAPA system and MEA (Monoethanolamine) system by "*Erwin D. Snijder et al., 1993*". Both the data points are in agreement with each other. The data points of current work and "*Erwin D. Snijder et al., 1993*" followed the same polynomial trend. The values of the densities of current work are slightly lower than "*Erwin D. Snijder et al., 1993*".

The current work is also compared with a diamine, the HDMA (1,6-hexamethyldiamine) system by "*Prachi Singh et al., 2011*". Fig 4.3 showed that current work and "*Prachi Singh et al., 2011*" both are in agreement with each other. Both the systems have the same trend and at lower concentration i.e. 1M of "*Prachi Singh et al., 2011*" exhibts the same character as of 2and 3M concentrations of current work. Similarly density measurements of 2.5M "*Prachi Singh et al., 2011*" followed the 5M concentration of current work.



Fig 4.3: Comparison of current work MAPA system with MEA system by "Erwin D. snijder et al., 1993", HDMA system by "Prachi Singh et al., 20011", Pz system by "In house data"

Similarly the current work is compared with Pz (piperazine) system of "In house data". The current work is in agreement with "In house data" at lower concentrations in terms of trend but densities of "In house data" are higher than current work. As literature data is not available at higher concentrations it is believed that at higher concentrations literature work will follow the same polynomial behavior as of current work. (Some simplification is required to elaborate "In house data", it is the data available with in research group still not published but done by another master's student).

## (Aqueous Blended System)

It is declared that there is no as such literature available on the density measurements of MAPA+DEEA blended system. There are literatures available on some other primary and tertiary blends like MEA+TEA (Monoethanol amine + Triethanol amine) system by "*Shyh-Yun Horng et al., 2002*", MEA+MDEA (Monoethnaol amine + *N*-Methyldiethanolamine) system by "*Daniel P. et al., 1994*". There is another citied data on density measurements of blends like MDEA+ PZ (*N*-Methyldiethanolamine + Piperazine) system by "*Arunkumar Samantaa et al., 2011*". Density measurements of current work MAPA+DEEA blended systems are not appropriate to compare with these published data's because the concentrations of citied data are very much lower as compared to that of current system and blended concentration of amines are different, although graphs were plotted to estimate the behavior of current work with literature and all these systems followed the same trend line.

## 4.2 Viscosity Evaluation

#### (Aqueous MAPA System)

Experimental viscosities were also carried out for aqueous MAPA system. The data points of 1/2/3/4/5M MAPA systems are attached to appendix A5 and graphical illustration is presented by graph 4.4.

Sketched area indicates that with the increase in temperature the viscosities of the amine solution decrease accordingly. It is observed that difference in the viscosities of amine solution at higher temperature is limited, even at 333.15 K viscosities of 2/3/4/5 M MAPA systems have almost the same numerical values. This effect is due to rise in the kinetic energy of molecules with increase in the temperature and hence the relative motion of the molecules which decrease the resistance to flow. While at lower temperature the difference in term of viscosities increases rapidly.

The 2M and 3M MAPA system has exactly the same behavior as it was observed in density measurements that data points of both systems followed the same path.

On the other hand side data points of 1/2/3 M MAPA systems have likely the same trends and points are somehow conjugated to each other, while drastic change in viscosities are detected for 4&5 M MAPA system at lower temperatures.



Fig 4.4: Experimental viscosities of "MAPA" system at different temperatures

Similarly if the focused area is concentration of the amine system, then with the increase in concentration at one specific temperature the viscosity increases.

Equation (4.2) is used in order to model the viscosity calculations of aqueous MAPA system as follows:

$$\mu(mPa.s) = K_1 - \frac{K_2 \cdot X^2}{T} + \frac{K_3 \cdot X}{T^3} \cdot exp\left(\frac{K_4}{T} + \frac{K_5 \cdot X^2}{T^2}\right)$$
4.2

While  $\mu$  indicates viscosity, T for temperature in K, X is the mass fraction and K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub>, K<sub>4</sub>, K<sub>5</sub> are the parameters and are tabulated in appendix A6 along with the graphical representation of data in appendix C2 with an AARD value of 4.9%.

# (Aqueous Blended System)

Aqueous blended systems were also passed through the same experimental procedure in order to determine viscosity. Tabulated values are attached to appendix A7 while graph is plotted here in figure 4.5 to discuss.

Blended systems present the same trend as for single system that with the increase in temperature the viscosity of the system decreases. At higher temperature (e.g. 333.15 K) the viscosities of blended systems are align (vertical stream line) to each other means viscosity difference is small, but with the decrease in temperature the alteration in viscosity values increases accordingly. The viscosities of 2M4D/1M5D/3M3D/4M3D/2M5D followed exactly the same exponential behavior with temperature it might be because of likely same total molar concentrations. Similarly 1M3D/3M1D/2M2D have also the same conjugated exponential path with a slight change in numerical values.



Fig 4.5: Experimental viscosities of Blended "MAPA+DEEA" system at different temperatures Considering again the two sets of viscosities with constant 1&2M MAPA with varying concentrations of DEEA, viscosity increases exponentially with the increase in DEEA concentrations.

Furthermore, by changing / increasing the concentration of blended system at one specific temperature, immense changes in viscosities are observed specially at low temperatures.

### 4.2.1 Viscosity Comparison (Current Work & Literature)

The experimental measurements of viscosities of single and blended systems are analyzed with the literature data available.

# (Aqueous MAPA System)

Literature was reviewed in order to examine the current work against the published work. Similar to that of densities, citied data is not available for aqueous MAPA system.

So viscosities of current work, aqueous MAPA system are compared with Pz (piperazine) system by "*Peter W. Derks, 2005*" and Pz (Piperazine) system of "*In house data*". The "*Peter W. Derks, 2005*" data and the "*In house data*" both are done at low concentrations. Form figure 4.6 it is observed that current work, "*Peter W. Derks, 2005*" and "*In house data*" are in good agreement with each other at low concentrations. It is believed that at if literature data is extrapolated to higher concentrations it will follow the same exponential behavior as of current work.

Current work is also compared with HDMA (1,6-hexamethyldiamine) system a diamine by "*Prachi* Singh et al., 2011". The current work is in good agreement with "*Prachi Singh et al.*, 2011" and is presented in figure 4.7. One higher concentration i.e. 5.04M in literature is available similar to that of current work that show good adjustment in curves. All the data points of current work and literature followed the same exponential behavior.



Fig 4.6: Comparison of current work MAPA system with Pz system by "Peter W. Derks, 2005" and Pz system by "In house data"



Fig 4.7: Comparison of current work "MAPA" system with "HDMA" system by "Prachi Singh et al., 2011"

# (Aqueous Blended System)

Considering the viscosities of blended systems, literature data is currently unavailable for MAPA+DEEA blended system. There are some published works available on blends like MDEA+PZ (*N*-Methyldiethanolamine + Piperazine) system by "*Arunkumar Samantaa et al., 2011*", MEA+TEA (Mono ethanol amine + Triethanol amine) system by "*Shyh-Yun Horng et al., 2002*" and MEA+MDEA (Monoethnaol amine + *N*-Methyldiethanolamine) system by "*Daniel P. et al., 1994*".

Viscosity measurements of current work MAPA+DEEA blended systems are not appropriate to compare with these published data's because the concentrations of citied data are very much lower as compared to that of current system and blended concentration of amines are totally different, although graphs were plotted to test the behavior of current work with literature and all these systems followed the same exponential behavior as of current work.

# 4.3 Solubility Determination

Solubility experiments were performed in order to estimate henry's constant that are essential in order to predict kinetics of specific system.

#### (Aqueous MAPA System)

Measured henry's constant against variant temperatures in aqueous MAPA systems are attached to appendix A8, while graph is sketched in fig 4.8 in order to explain the behavior.

The plotted area indicates that with the increase in temperature the henry constant increases accordingly. Similarly concatenation has also direct decency on henry constant. At lower temperatures the difference in values of henry constant is excessive but as the temperature increases the difference in values at all concentration reduces.



Fig 4.8: Experimentally determined henry's constant of "MAPA" system at different temperatures An abrupt behavior is observed in higher concentration i.e. 5M that at higher temperatures it follows the trend likely similar to 1M. There might be a problem in doing experimentation at that particular time, details including gas saturation by solvent (mostly water), any potential leakage, neglect of the influence of the room pressure fluctuations, and imperfect purging of N<sub>2</sub> in the equilibrium cell at the start of experiment. Beside this, solubility experiments were performed for alternative 1/3/5M MAPA system while for 2&4M MAPA system values are obtained by interpolation. That's why same rough behavior can be seen in 4M MAPA system as it is derived from 1/3/5 MAPA system by interpolation. N<sub>2</sub>O solubility in aqueous MAPA system is predicted by the Redlich-Kister equation as mentioned in chapter 2.

The equation (4.3) is used in order to model the henry's constant of aqueous MAPA system at all temperature and concentration while the modeled sketch is also presented in fig 4.9.

$$H_{N_2O}\left(\frac{kPa.m^3}{mol}\right) = K_1 - \frac{K_2.X^2}{T} + \frac{K_3.X}{T^2} \cdot exp\left(\frac{K_4}{T} + \frac{K_5.X^2}{T^2}\right)$$

$$4.3$$

Where T indicates temperature in K, X is the mass fraction and  $K_1$ ,  $K_2$ ,  $K_3$ ,  $K_4$ ,  $K_5$  are the parameters and are tabulated in appendix A9, with an AARD of 4.3%.



Fig 4.9: Experimental and modeled Henry's constant of "MAPA" system

## (Aqueous Blended System)

Same experimental procedure was adopted in order to calculate the henry's constant for blended amine systems. The tabulated values are attached to appendix A10 while graph is presented in fig 4.10.

Blended systems exhibit the same characteristic behavior as observed in single amine system, that with the increase in temperature the henry's constant increases. As two different cases are discussed in density and viscosity evaluation so for solubility of blended systems those two cases are again of main consideration i.e. constant 1M MAPA with varying DEEA concentration similarly constant 2M MAPA with varying DEEA concentration. At very low concentrations i.e. 1M1D (1M MAPA+1M DEEA) the values of henry constant are higher, as the concentration of DEEA increases in it the values reduces respectively. Similarly for 2M1D (2M MAPA+1M DEEA) the henry constant is higher but by increasing the amount of DEEA values reduces equally. It is also observed that constant 1M MAPA set has higher henry's constant values as compared to that of constant 2M MAPA set. All the solubility experiments in case of blended system were performed except 3M1D/3M3D/4M3D.

So the solubilities in these three cases are obtained by interpolation from experimental data points of performed systems.



Fig 4.10: Experimentally determined henry's constant of Blended "MAPA+DEEA" system at diff. temperatures

#### 4.3.1 Solubility Comparison (Current Work & Literature)

Literature data was considered to compare the current work results and previously available data.

#### (Aqueous MAPA System)

It is reported that as such there is no citied data available on aqueous MAPA system but similar systems are available to compare with. The results of MEA (Monoethnaolamine) system by *"Basma Yaghi et al., 2008"* is compared with current system at lower concentrations, depicts that values of henry's constant of current work are higher than MEA system and the data points of literature work are bit scattered as compared to that of current work.

Another MEA (Monoethnaolamine) system by "*Mandal et al., 2005*", MEA (Monoethnaolamine) system by "*Li et al., 1995*" for higher concentration indicated that solubility of current work is very much higher when compared with these systems as well.
#### (Aqueous Blended System)

Blended systems like, MEA+MDEA (Monoethnaolamine + *N*-Methyldiethanolamine) system by "*Daniel P. et al., 1994*", MDEA+PZ (*N*-Methyldiethanolamine + Piperazine) system by "*Arunkumar Samantaa et al., 2011*" and MEA+TEA (Monoethanolamine + Triethanolamine) system by "*Shyh-Yun Horng et al., 2002*" are readily present in literature but this data is not well suited to compare with current work. The molar concentrations of current systems are too high as compared to that of all available literature, in addition to it the range of these systems are limited to few specific temperatures. The aim of current work in case blended systems is to judge the changes by varying concentrations rather than that of analysis with past work.

### 4.4 Kinetic Evaluation of Aqueous MAPA System

Kinetic measurements were done for single and blended systems on string of discs equipment. Different concentrations of single and blended systems were performed at different temperatures. Results are displayed in this way that aqueous MAPA system will be discussed first then blended systems joined the discussion afterwards. Kinetics data for aqueous MAPA system is attached to appendix B1.

#### 4.4.1 Absorption Flux

The measurements of absorption flux of  $CO_2$  were also achieved during kinetic experiments. Five different molar concentrations of single MAPA systems were performed as graphed in fig 4.11.

According to experimental results that are presented in graph, indicates that variation in the temperature of the amine solution has a significant effect on the absorption rate. With the increase in temperature the rate of  $CO_2$  absorption increases accordingly. Considering the concentration as second factor, the absorption flux has direct dependency on it. It can be observed that with the increase molar concentration of amine solution the rate of absorption of  $CO_2$  increases the same way.

There is another factor that has an influence on flux that is the mass transfer area, both have an inverse relation by decreasing it the absorption rate/flux of  $CO_2$  increases and vice versa.

The order of the flux will then be 5M>4M>3M>2M>1M. Sudden increase in flux noted at higher temperature for 5M MAPA system. On the other hand side difference in flux values for lower concentration i.e. 1&2M MAPA system is small. The maximum value of flux achieved is 3.45E-03 (mol/m<sup>2</sup>.sec) for the case of 5M MAPA at higher temperature. During kinetics calculations temperature was averaged for liquid inlet and outlet because the temperatures attained during experimentations were not exact integers like 293.15K or 303.15K. The reason behind this is the poor temperature control in string of discs apparatus. The amine solution continuously dripped out in to the discharge storage tank, and it will remain outside under ambient conditions until and unless 5L batch of amine solution is finished. When amine solution was recirculated the set temperature disturbed.





### **4.4.1.1 Absorption Flux Comparison (Current work & Literature)**

Current work is also compared with the citied data. Literature was reviewed in order to find the kinetics on aqueous MAPA system but as such no experimental measurements were obtained. So current work is compared with the similar systems available.

Absorption flux of  $CO_2$  of current work is analyzed with the Pz (Piperazine) system of "*In house data*" and DETA (Diethylenetriamine) system by "*Hartono et al., 2009*" and is presented in fig 4.12. The graphical representation indicates that the current work is in agreement with the literature data,

although higher concentration of cited data are not available but it is believed that it will follow the same behavior as higher concentrations of current work.



Fig 4.12: Comparison of absorption flux of current work and DETA system by "Hartono et al., 2009", Pz system by "In house data".

At lower concentrations i.e. 1M concentration of Pz (Piperazine) system "In house data" is in agreement with the 1M concentration of current work. Moreover the 1.5M concentration of Pz (piperazine) system "In house data" is showing slightly higher flux values as compared to that of 2M concentrations of current work but the fashion of both works are similar. Data points of "In house data" are bit scattered as compared to that of other systems.

Considering the DETA (Diethylenetriamine) system by *"Hartono et al., 2009"* the absorption rate of  $CO_2$  is lower as compared to that of current work at lower concentrations.

Even by increasing the concentration of DETA (Diethylenetriamine) system by "Hartono et al., 2009" to 2.9M the values of fluxes are lower than that of 1M concentration of current work,

2013

indicating that the current system is fast in terms of absorption rate when comes in comparison to DETA (Diethylenetriamine) system by *"Hartono et al., 2009"*.

### 4.4.2 Overall Mass Transfer Coefficient

The overall mass transfer coefficient for different concentration of single MAPA system is sketched in fig 4.13.



Fig 4.13:Overall mass transfer coefficient of "MAPA" system at different temperatures According to the experimental results obtained, it is observed that overall mass transfer coefficient is enhanced with the increase in temperature. The same behavior is recognized with the increase in concentration of the amine solution as well, that over all mass transfer coefficient increases with the concentration. It means that there is more ease for the mass transfer at higher concentrations than at lower concentrations. With the increase in absorption flux of  $CO_2$  the overall mass transfer coefficient increases accordingly as by definition flux has direct relation with overall mass transfer coefficient.

According to sketched behavior of overall mass transfer coefficient it is examined that at lower concentration i.e. 1&2M MAPA system the values of mass transfer are very much close. As the concentration increases rapid difference in values of overall mass transfer coefficient is observed.

# 4.4.2.1 Overall Mass Transfer Coefficient Comparison (Current Work and Literature)

Literature was citied in order to analyze the current work and data already available. It is stated that no as such material is available on over all mass transfer coefficient for this system (Aqueous MAPA system) or similar system. Although kinetic evaluations are done like Pz (Piperazine) system by "*P.W.J. Derks et al., 2006*", HDMA (1,6-hexamethyldiamine) system by "*Prachi Singh et al., 2011*" and EDA (Ethylenediamine) system by "*Juelin Li et al., 2007*" but no one from these, reported over all mass transfer coefficient details to judge and estimate the behavior of current work.

### 4.4.3 Observed Kinetic Rate Constant

The observed kinetic rate constant is sketched against temperature and plotted in fig 4.14.

Termolecular mechanism (Direct mechanism) is followed in order to interpret kinetics. The number of fitting parameters in this mechanism is lower than that in the zwitterion mechanism. Termolecular mechanism can satisfactorily explain fractional and higher-order kinetic. It is a straightforward procedure for kinetic estimation and is briefly out-lined in previous chapters.

It is clear from these results that the temperature affects the kinetics for  $CO_2$  absorption. With the increase in temperature the rate constant increases accordingly. Similarly concentration of amine solution is also focusing its influence on kinetic rate constant, by increasing the concentration the observed kinetic rate constant increases. It can be noticed that at higher concentrations and higher temperature i.e. 4&5M the rate constant increases rapidly as compared to that of lower concentrations and lower temperature.

The observed kinetic rate constant has an inverse relation with the diffusivity of  $CO_2$ , if diffusivity increases than kinetic rate constant decreases in the same fashion. Similarly by varying the enhancement factor (Ea) the observed kinetic rate constant vary, as Ea has direct relation with it.



Fig 4.14: Observed kinetic rate constant of "MAPA" system at different temperatures



Fig 4.15: Observed kinetic rate constant at variant "MAPA" concentrations

More over in order to show the effect of concentration on observed kinetic rate constant semi log graph is plotted as shown in fig 4.15, that indicates effect of increased molar concentration on rate constant which is significant. The concentration dependency of the observed kinetic rate constant is the reaction order with respect to the MAPA concentration.

# 4.4.3.1 Comparison of Observed Kinetic Rate Constant (Current Work and Literature)

Literature was studied in order to analyze the behavior of current work. Observed kinetic rate constant of the current work is compared with Pz (Piperazine) system by "*P.W.J. Derks et al., 2006*", Pz (Piperazine) system of "*In house data*" and HDMA (1,6-hexamethyldiamine) system by "*Prachi Singh et al., 2011*". Graphed is plotted and presented in fig 4.16.



Fig 4.16: Comparison of overall mass transfer coefficient of current work and Pz system by "P.W.J. Derks et al., 2006", HDMA system by "Prachi singh et al., 2011"

It is examined from the graph that current work and literature are likely in agreement with each other. The 1M concentration of Pz (Piperazine) system by "*P.W.J. Derks et al., 2006*" followed the same Furthermore the current system is showing higher values in terms of observed kinetic rate constant than that of HDMA (1,6-hexamethyldiamine) system by *"Prachi Singh et al., 2011"*.

### 4.4.4 Second Order Kinetic Rate Constant

Experimental kinetic rate constants for aqueous MAPA system are presented in fig 4.17.





Parity plot of kinetic rate constant has a direct dependency over temperature and concentration of amine solution. It can be observed that with the increase in temperature the kinetic rate constant increases accordingly. The data points for all concentrations show linear behavior although at higher concentrations i.e. 5M there is a deviation from the linearity at higher temperatures it is because of sensitivity of measured physiochemical properties.

The difference in the values of rate constants at lower concentration are small, it perhaps of very close physiochemical properties at lower temperatures and lower concentrations which affects the  $K_2$  values. The solubility data affects the  $K_2$  values more than density and viscosity. Secondly the very low flow rates of CO<sub>2</sub> on MFC were used during experiments on SDC (string of discs) and that creates the uncertainty in flux. On the other hand side as the concentration increases difference in rate constant values exaggerate as well.

Furthermore the reaction rate constant ( $k_{MAPA}$  and  $k_{water}$ ) can also be determined by single step termolecular mechanism as proposed by "*Crooks et al., 1989*". These parameters are obtained from experimental observed kinetic rate constant ( $k_{obs}$ ) at various MAPA concentrations and regressed at given temperatures. The values of observed kinetic rate constant ( $k_{obs}$ ) divided by the concentration of MAPA result in a linear equation as expressed in eq. (4.4).

$$\frac{k_{obs}}{[MAPA]} = k_{MAPA}[MAPA] + k_{H_2O}[H_2O]$$
 4.4

Isotherms for each individual temperature are sketched for  $\frac{k_{obs}}{[MAPA]}$  versus concentration of MAPA and best fit linear curves are extracted in order to get rate constants ( $k_{MAPA}$  and  $k_{water}$ ) as all the data points are not showing linearity in behavior. From linear equations at each individual temperature slope indicates  $k_{MAPA}$  while intercept divided by water concentration gives  $k_{Water}$ .

By taking an average value against each averaged temperature, the reaction rate constants of MAPA and those of water that are calculated from the plots are presented in Table 4.1.

| Temp<br><sup>0</sup> C | $k_{ m Mapa}$ $l^2/mol^2.sec$ | $k_{\text{water}}$ l <sup>2</sup> /mol <sup>2</sup> .sec |
|------------------------|-------------------------------|----------------------------------------------------------|
| 27.08                  | 2.39E+04                      | 8.86E+02                                                 |
| 34.98                  | 2.83E+04                      | 1.24E+03                                                 |
| 43.28                  | 4.25E+04                      | 1.22E+03                                                 |
| 51.79                  | 7.60E+04                      | 5.42E+02                                                 |

Table 4.1: Reaction rate constants of MAPA and those of water

Rate constants ( $k_{MAPA}$  and  $k_{water}$ ) are sketched against 1000/T (K) to attain an Arrhenius–plot. The reaction rate constant of  $k_{MAPA}$  and that of water  $k_{H_2O}$  calculated from this plot can be expressed by the following Arrhenius correlations.

$$k_{MAPA} = 1.6654 \times 10^9 \exp\left(\frac{-3359.6}{T}\right)$$
$$k_{H_2O} = 4.777 \times 10^5 \exp\left(\frac{-1871.0}{T}\right)$$

By applying these equations at each individual temperature modeled/calculated kinetic rate constant can be estimated.

# 4.4.4.1 Comparison of Second Order Kinetic Rate Constant (Current Work and Literature)

Experimentally determined rate constants were citied in order to analyze the present work.

MEA (Monoethnaolamine) system by "*Haruo Hikita et al.1979*" has lower concentrations as compared to that of current work for kinetic rate constant. Trend of 1M concentration of "*Haruo Hikita et al.1979*" acquire the same behavior as of current work but current system is very much fast as values of kinetic rate constant are much higher than reported data.

### 4.4.5 Comparison of Modeled and Experimental (Absorption Flux and K<sub>2</sub>)

Experimentally determined and calculated/modeled absorption flux of CO<sub>2</sub> and second order kinetic rate constant are presented in figures 4.18 and 4.19.

According to sketched area the calculated and experimental absorption flux of  $CO_2$  showing good agreement with each other at all concentrations. While in case of kinetic rate constant the lower concentrations are showing similarity as the concentration approaches to 5M, there is a slight change in modeled and experimental values it's because of sensitivity of henry's constant values of 5M MAPA system.



Fig 4.18: Experimental and calculated/modeled absorption flux of CO2 in "MAPA" system



Fig 4.19: Experimental and calculated/modeled second order kinetic rate constant in "MAPA" system

### 4.5 Kinetic Evaluation of Aqueous Blended System

Kinetic evaluations of blended systems were performed on same experimental setup as for MAPA system. Kinetics data of blended system is attached to appendix B2.

#### 4.5.1 Absorption Flux

The experimentally determined absorption flux of  $CO_2$  at variant concentration and blended schemes are presented in fig 4.20.

According to experimental results that are expressed in graph indicates, with the increase in temperature the rate of  $CO_2$  absorption increases accordingly. Similarly the concentration of blended systems has significant effect on absorption flux. It can be observed that absorption rate of  $CO_2$  increases when the concentration of the blended amine solution increases. As concentration has direct relation with flux.



Fig 4.20: Absorption flux of  $CO_2$  for Blended "MAPA+DEEA" system at different temperatures In case of blended systems two different set of experiments are of considerable importance one with constant 1M MAPA and variable DEEA concentrations, and second is of constant 2M MAPA with variable DEEA concentrations.

As the concentrations of DEEA increases in blend the absorption flux tends to increase in the same manner. At lower temperatures the difference in values of fluxes are limited as the temperature raises the difference in flux boosts. 4M3D system depicts high absorption flux at higher temperature. Additionally when concentration of MAPA increases from 1M to 2M an apparent increase in flux is observed. If the DEEA concentration is kept constant and concentration of MAPA varies from 1M to 2M an intensive increase in flux can be observed i.e. 1M5D and 2M5D.

There is another factor that has an influence on flux that is the area of mass transfer. The absorption flux has an inverse relation with flow area. Flux will be higher when mass transfer area will be less.

In order to ensure the experimental data points for flux, two blended systems were repeated as indicated by 2M2D a, 2M2Db similarly 2M3Da, 2M3Db. The data points of these two systems are in good agreement with each other ensuring the reproducibility of data.

Temperature values were averaged for liquid inlet and outlet. The reasoning behind averaged values is the imperfect temperature control in string of discs apparatus. The amine solution continuously dripped out in to the discharge storage tank, and it will remain outside under ambient conditions until and unless 5L batch of amine solution is finished. The solution collected at the outlet when recirculated the set temperature disturbed.

### 4.5.1.1 Absorption Flux Comparison (Current work & Literature)

Literature data was reviewed on blended systems in order to judge the trends of current work but blends of MAPA+DEEA have not done yet. Single literature that is reported for the blends of MEA+MDEA (Monoethnaolamine + *N*-Methyldiethanolamine) system by "*Daniel P. et al., 1994*" presents the data points for absorption flux at only one temperature. Current work can't be compared with the literature reviewed as molar concentrations of reported system are very low as compared to that of current and only available for single data point.

The main theme of blended system (current work) is to judge the efficiency by varying concentrations either DEEA or MAPA in order to get an appropriate blend that has a high absorption rate. It can be observed that with slight increase in MAPA concentration from 1M to 2M with constant 5M DEEA a very high absorption flux is achieved.

2013

### 4.5.2 Overall Mass Transfer Coefficient

The overall mass transfer coefficient for different concentration of blended system is plotted in fig 4.21.

From sketched area it is noticed that overall mass transfer coefficient increases with the increase in temperature. The same behavior is observed with concentration of the amine solution as well, that over all mass transfer coefficient increases with the concentration. Indicating more ease for the mass transfer at higher concentrations than at lower concentrations. Overall mass transfer coefficient has direct dependency on absorption flux of  $CO_2$  With the increase in absorption flux of  $CO_2$  the overall mass transfer coefficient increases accordingly.

At lower blended concentrations the difference in values of overall mass transfer coefficient is small as the concentration increases, rise in overall mass transfer coefficient is observed but this increase is not very much noticeable but as concentration of DEEA approaches to 5M with 2M MAPA a rapid increase in overall mass transfer coefficient can be seen.



Fig 4.21: Overall mass transfer coefficient for Blended "MAPA+DEEA" system at different temperatures

Considering again two sets of blended systems, the mass transfer coefficient is higher in case of constant 2M MAPA with variant DEEA concentrations. While constant 1M MAPA system occupied the lower range. An attributed change in overall mass transfer coefficient values can be seen in case when 1M5D is compared with 2M5D.

Experimental data points for overall mass transfer coefficient of two blended systems i.e. 2M2D a, 2M2Db and 2M3Da, 2M3Db are in good agreement with each other certifying the reproducibility of data.

# 4.5.2.1 Overall Mass Transfer Coefficient Comparison (Current Work and Literature)

Literature was citied in order to estimate the behavior of current work and data already available. It is reported that no as such data of overall mass transfer coefficient for current blends or similar system is obtainable. Although kinetic evaluations are performed on blended systems like and MEA+TEA (Monoethanolamine + Triethanolamine) system by *"Shyh-Yun Horng et al., 2002* but overall mass transfer coefficient details are not presented in order to judge and estimate the trend and mass transfer efficiency of current work.

### 4.5.3 Observed Kinetic Rate Constant

Experimental values of observed kinetic rate constant are attached to appendix B1. While the graph for observed kinetic rate constant against temperature is plotted in fig 4.22.

Single step termolecular mechanism (Direct mechanism) is followed in order to interpret kinetics of blended system. The number of fitting parameters in this mechanism is less than that in the zwitterion mechanism. Termolecular mechanism can satisfactorily explain fractional and higher-order kinetic.

Graphical representation depicts that kinetics for  $CO_2$  absorption is affected by temperature change. With the increase in temperature the kinetic rate constant increases accordingly. Similarly concentration of amine solution has influence on kinetic rate constant, by increasing the concentration the observed kinetic rate constant increases.

The observed kinetic rate constant has an inverse relation with the diffusivity of  $CO_2$ , if this diffusivity decreases than kinetic rate constant increases in the same trend. Similarly by varying the enhancement factor (Ea) the observed kinetic rate constant vary, as Ea has direct relation with it.



Fig 4.22: Observed kinetic rate constant for Blended "MAPA+DEEA" system at different temperatures

Kinetic rate constant in case of constant 1M MAPA and variable DEEA have low numerical values in contrast to 2M MAPA and variable DEEA. While if concentrations of DEEA are kept constant then a drastic rise in kinetic rate constant is observed in 1M5D and 2M5D.

Reproducibility of the experimental data points is also done by replicate runs at all temperature for 2M2D a, 2M2Db and 2M3Da, 2M3D b.

# 4.5.3.1 Comparison of Observed Kinetic Rate Constant (Current Work and Literature)

Literature was studied in order to analyze the behavior of current work. According to review no as such data on observed kinetic rate constant for blended systems is presented yet. Although kinetic evaluations are performed on blended systems like and MEA+TEA (Monoethanolamine + Triethanolamine) system by *"Shyh-Yun Horng et al., 2002* but the behavior and trend of observed kinetic rate constant is not explained in this published data.

On other hand side if two sets of blended systems of current work are compared with each other it is concluded that higher concentration of MAPA leads to high observed kinetic rate constant. Two blended systems attracts more attention 1M5D and 2M5D, the concentration of DEEA are same but slight increase in concentration of MAPA ends up with a very high observed kinetic rat constant.

### 4.5.4 Second Order Kinetic Rate Constant

Experimental kinetic rate constants for blended system are presented in fig 4.23.

Parity plot of kinetic rate constant has a direct dependency over temperature and concentration of amine solution. It is determined that with the increase in temperature the kinetic rate constant increases accordingly.

Considering again the two sets of blended systems, by increasing the concentration of MAPA from 1 to 2M there is a rise in rate constant and very high values (rate constant) are reported for 2M5D when it is compared to 1M5D.



Fig 4.23: Second order kinetic rate constant for Blended "MAPA+DEEA" system at different temperatures

The difference in the values of rate constants at lower concentration and lower temperatures are small, it because of very close physiochemical properties at lower temperatures and lower concentrations which affects the  $K_2$  values. The solubility data affects the  $K_2$  values more than density and viscosity. A rough trend is observed in case of 1M5D that rate constant are lower than 1M1D/1M2D/1M3D/ it might be because of very low values of henry constant in case of 1M5D as compared to that of other blends. 4M3D has higher kinetic rate constant in blended systems at all temperature.

Reproducibility is also achieved by replicate runs of 2M2D a, 2M2D b and 2M3D a, 2M3D b, all the data points are fashioned in the same trend showing good agreement with each other.

# 4.5.4.1 Comparison of Second Order Kinetic Rate Constant (Current Work and Literature)

Literature review revealed no specific data on second order kinetic rate constant of blended systems. Although kinetic characterization are performed on blended systems like and MEA+TEA (Monoethanolamine + Triethanolamine) system by *"Shyh-Yun Horng et al., 2002"* but data on kinetic rate constant is not presented.

In addition to it, if two sets of blended systems of current work are compared with each other it is concluded that increase in concentration of MAPA leads to high kinetic rate constant. Two blended systems absorbs more consideration 1M5D and 2M5D, the concentration of DEEA are same but slight increase in concentration of MAPA ends up with a very high observed kinetic rat constant.

# 4.6 Comparison of Aqueous MAPA System & Aqueous Blended System (Current Work)

Two systems are studied in this whole work, the aqueous MAPA system and the blended (MAPA+DEEA) system. The intent of the current work is to judge the behavior of blended systems when the concentration of one amine solution is increases keeping the other constant. Two sets are discussed already in which 1M MAPA is kept constant and then 2M MAPA with variant DEEA.

It is convenient to analyze variations in data points of all the calculated parameters from physical properties till kinetics when one amine is blended with another in different concentrations, so MAPA system along with blends are compared together.

Experimentally determined densities of single (MAPA) system along with blended systems are presented in fig 4.24.



Fig 4.24: Experimental densities of "MAPA" system and Blended "MAPA+DEEA" system at different temperatures The graphical explanation in each set represents that with the increase in DEEA concentration the density of blended solution decreases. In all cases aqueous MAPA system has higher numerical values, as DEEA is induced density decreases accordingly. 1M4D system was not performed experimentally but in this case in order to judge changes at each concentration, density is interpolated from 1M3D and 1M5D. So slightly change manner from its remaining blends can be seen in 1M4D.

In the same fashion experimental viscosities are also compared for both systems as expressed in fig 4.25.



Fig 4.25: Experimental viscosities of "MAPA system and Blended "MAPA+DEEA" system

It is concluded that with the increase in DEEA concentration in all blended schemes the viscosity of system increases as single MAPA system has low numerical values in terms of viscosities.

Viscosities of the blended systems are close at lower concentration but a drastic rise can be seen as DEEA concentration approaches to 5M. In second sketch of fig 4.25 a rough trend is detected as 2M4D has higher viscosities as compared to that of 2M5D at higher temperature, it is believed as an experimental error as parallel measurements/runs of samples were not done. Furthermore in third graph of fig 4.25 the viscosities of 3M3D and 4M3D are following the same trend indicating no effect on viscosity change with increase in MAPA concentration.

Solubility measurements that were performed will also be a part of analysis as plotted in fig 4.26

From fig 4.26 it is recognized that with the increase in DEEA concentration henry's constant decreases in all cases. Henry constant is higher in case of single MAPA system. A slight deviation from trend is also observed in case of 3M1D as plotted in third graph of fig 4.26.

Similarly kinetic evaluations are also performed by comparing the MAPA system along with blends.

Observed kinetic rate constants of aqueous MAPA system and blended system are inspected consecutively as plotted in fig 4.27. That are resulted in, increase observed kinetic rate constant at higher concentrations of DEEA i.e. 5M in the light of second graph. While 1M5D is again showing rough behavior because of very low henry's constant values. As kinetic calculations are very much sensitive to henry's constant values. On other side at lower concentrations of DEEA in blended systems the trends are likely same as of aqueous MAPA system indicating very little effect of DEEA in blends at lower concentration.

2013



Fig 4.26: Experimentally determined henry's constant for "MAPA" system and Blended "MAPA+DEEA" system



Fig 4.27: Observed kinetic rate constant of "MAPA" system and Blended "MAPA+DEEA" system

## **Conclusions and Proposed Future Work**

The kinetic of  $CO_2$  absorption in aqueous MAPA system and blends of MAPA+DEEA has been studied using the string of discs contactor by the single step-termolecular mechanism (Direct mechanism) approach, proposed by "*Crooks et al., 1989*".

Kinetic evaluations were done at a temperature ranging from 298.15K-338.15K for both systems. The results indicate that this mechanism can be applied to determine the reaction mechanism of MAPA system and blended "MAPA+DEEA" system. Reproducibility is also analyzed by performing replicate runs of blended system (2M2D and 2M3D).

In addition, physical properties as density and viscosity have been examined to determine the physicochemical parameters. The solubility of  $N_2O$  in both systems was also measured in order to estimate the solubility of  $CO_2$ . The solubility should be measured accurately as it affects the second order rate constant much of all. The results of 5M MAPA system and 1M5D system indicates the sensitivity of henry's constant in kinetic evaluation.

Literature was citied in order to analyze the trend of current work. The literature data available is in agreement with the current work.

In future work it is proposed to evaluate the henry's constant values of 5M MAPA system and 1M5D system in replicate runs to ensure its reproducibility. Henry's constant was measured for alternative amine systems, while the remaining was calculated by interpolation of data. It is proposed to examine the henry's constant for each amine system rather than interpolation.

In order to understand the effect of promoter in case of blended system it is preferred to study the kinetics of DEEA system alone as well. In string of discs contactor as amine solution is continuously dripping out in outlet flask so samples should be collected after each run of 5L of solution and analyze them to see the exact effect of the  $CO_2$  absorption.

### References

- Anton Paar MCR 100, Picture retrieved from "Aerosol and Particle Technology Laboratory (APTL)" http://apt.cperi.certh.gr/.
- Anton Paar DMA 4500M "Density meter", Picture retrieved from: info.us@anton-paar.com
- Aronu, E. Ugochukwu, Hartono, A., Hallvard F.Svendsen, "Density, Viscosity and  $N_2O$ Solubility of aquoues amino acid salt and amine amino acid salt solution", Journal of Chemical Thermodynamics, (2011).
- Arunkumar Samanta, S.S. Bandyopadhyay "Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine" Chemical Engineering Journal 171 (2011) 734–741
- Astarita, G., Savage, D. W., Bisio, A., "Gas Treating with Chemical Solvent", John Wiley & Sons., New York, (1983).
- Ardi Hartono, Eirik F.daSilva, Hallvard F.Svendsen *"Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA)"*, Chemical Engineering Science 64 (**2009**) 3205 3213
- Basma Yaghi and Omar Houache "Solubility of Nitrous Oxide in Amine Aqueous Solutions" Journal of Engineering, computing and architecture. ISSN 1937-7197 Volume 2 issue 1 (2008).
- Bentiez-Garacia, J.,G. Ruiz-ibanex, H. A. Al-Ghawas and O.C. Sandall, (1991), Chem, eng. Sci. 46, 2927.
- Bird, R, B., Stewart, W.E., Lighfoot, E. N. *"Transport phenomena"*, 2<sup>nd</sup> edition, John Wiley & Son, Inc., New York, (**2002**)
- Blauwhoff, P. M. M.; Versteeg, G. F.; van Swaaij, W. P. M. "A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions". Chem. Eng. Science. (1983), 38, 1411–1429
- Blauwhoff, P. M. M.; Versteeg, G. F.; van Swaaij, W. P. M. "A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions". Chem. Eng. Science. (1984), 39(2), 207–25
- Brian, P. L. T. "Gas Absorption Accompanied by an Irreversible Reaction of General Order". AIChE J. (1964), 10, 5–10.

- BP, 2005, "BP Statistical Review of World Energy", Retrieved from http://www.bp.com
- Caplow, M., "Kinetics of Carbamate Formation and Breakdown", J. Am. Chem Soc., 90, 6795-6803 (1968).
- Crooks, J. E., and Donnellan, J. P., *"Kinetics and Mechanism of the Reaction between Carbon Dioxide and Amine in Aqueous Solution"*, J. Chem. Soc., Perkins Trans., II, 331-333, (**1989**)
- Clarke, J. K. A., "Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions at Shorts Contact Time", Ind. Eng. Chem. Fundam., 3, 239-245, (1964)
- Carbon capture project, *CCP* (2008); Retrieved from http:// CO<sub>2</sub>captureproject.org
- Daniel P. Hagewiesche, Sami S. Ashour, Hani A. Al-Ghawasorville & Orvillec. Sandall "Absorption of carbon dioxide into aqueous blends of monoethanolamine and n methyldiethanolamine" Chem. Eng. Science 0009-2509(**1994**) 00489-7.
- Danckwert, P.V., "The Reaction of CO<sub>2</sub> with Ethanolamine", Chem. Eng. Science 34,443-446 (1979).
- Da Silva, E. F.; Svendsen, H. F. Ab "*Initio Study of the Reaction of Carbamate formation from CO*<sub>2</sub> and Alkanolamines". Ind. Eng. Chem. Res. (**2004**), *43*, 3413–3418.
- Donaldson, T. L.; Nguyen, Y. N. "Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes" Ind. Eng. Chem. Fundam. (1980), 19, 260–266.
- Dindore, V. Y. "String of Disc Contactor: Process Details and Experimental Set Up"; SINTEF Report; Trondheim, (2004).
- DeCoursey, W. J. Absorption with Chemical Reaction: "Development of a New Relation for the Danckwerts Model". Chem. Eng. Sci. (1974), 29, 1867–1872.
- DeCoursey, W. J. "Enhancement Factor for Gas Absorption with Reversible Reaction". Chem. Eng. Sci. (1982), 37, 1483–1489.

- Danckwerts, P. V.; Kennedy, A. M. *"Kinetics of Liquid–Film Process in Gas Absorption. Part I: Models of the Absorption Process".* Trans. Inst. Chem. Eng. (**1954**), *32*, S49–S52.
- Danckwerts, P. V., (1970), "Gas-Liquid Reaction", McGraw-Hill, New York.
- Donaldson, T.; Nguyen, Y. N. "Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes" Ind. Eng. Chem. Fundam. (1980), 19, 260-266.
- Edwards, T. J.; Newman, J.; Prausnitz, J. M., "Thermodynamics of Aqueous Solutions Containing Volatile Weak Electrolyte Solutions", AIChE J., 21, 248–259, (1975).
- Erwin D. Snijder, Marcel J. M. te Riele, Geert F. Versteeg; and W. P. M. van Swaaij "*Diffusion Coefficients of Several Aqueous Alkanolamine Solutions*" J. Chem. Eng. Data (**1993**),38,475-480.
- Froment, G. F.; Bischoff, K. B. "*Chemical Reactor Analysis and Design*"; John Wiley & Sons: New York, (1990).
- Hartono, A., Juliussen, O., Svendsen, H. F., "Solubility of N<sub>2</sub>O in Aqueous Solution of Diethylenetriamine (DETA)", J. Chem. Eng. Data., 53 (11), 2696–2700, (2008).
- Haruo Hikia, Satoru asai Yoshio katsu and Seiichi ikuno, "Absorption of Carbon Dioxide into Aqueous Monoethanola mine Solutions" AlChE Journal (Vol. 25, No. 5) Sep (1979).
- Hatta, S., Technological Reports of Tôhoku University, 10, 613-622.
- Higbie, R., "The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods Exposure", Trans.Am.Inst.Chem.Eng.31, 365-389, (1935).
- IPCC, Intergovernmental Panel on Climate Change, (2007). Synthesis Report: "Contribution of working groups 1,2,3 to fourth assessment report of the intergovernmental panel on climate change core writing", Pachauri, R.K. and Reisinger, A. (Eds.). IPCC, Geneva, Switzerland.
- IPCC. (2005). "IPCC Special Report, "*Carbon Dioxide Capture and Storage*", Technical Summary Retrieved from: http://www.ipcc.ch/pdf/special reports/srccs/srccs\_technicalsummary.pdf

- IEA GHG "*Putting carbon dioxide back in the ground*' IEA Greenhouse Gas R&D Programme, (**2002**), ISBN 1 898373 28 0.
- IEA, International Energy Agency, (2010) a. "World energy outlook", Executive summary.
- IEA, International Energy Agency, (2010) b. "Key world energy statistics".
- Jose' D. Figueroa, Timothy Fout, Sean Plasynski, Howard McIlvried, Rameshwar D. Srivastava Deshmukh, R. D.; "Advances in CO<sub>2</sub> capture technology"—The U.S. Department of Energy's Carbon Sequestration Program (2008).
- Jørgensen, E.; Faurholt, C. "*Reaction between Carbon Dioxide and Amino Alcohols II. Triethanolamine*". Acta Chem. Scand. (**1954**), 8, 1141–1144.
- Juelin Li, Amr Henni, and Paitoon Tontiwachwuthikul "Reaction Kinetics of CO<sub>2</sub> in Aqueous Ethylenediamine, Ethyl Ethanolamine, and Diethyl Monoethanolamine Solutions in the Temperature Range of 298-313 K, Using the Stopped-Flow Technique" Ind. Eng. Chem. Res. (2007), 46, 4426-4434.
- Koomey, J. G., Krause, F. (2009). "Why two degrees really matters". Retrieved from http://thinkprogress.org/climate/2009/12/06/205058/copenhagen-two-degrees-warmingtarget/? mobile=nc.
- Kohl, A.; Nielsen, R. "Gas Purification"; Gulf Publishing Company: Houston, (1997).
- Littel, R.J., Versteeg, G. F., van Swaaij, P.M., "Solubility and diffusivity for the absorption of COS, CO<sub>2</sub> and N<sub>2</sub>O in amine solutions", J.Chem.Eng.Data, 37(1), 49-55, (**1992**).
- Li, M.-H.; Lai, M.-D. "Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine +2-Amino-2-methyl-1-propanol + Water)". J. Chem. Eng. Data (**1995**), 40, 486–492.
- Liebenthal, U.; Pinto, D.D.D.; Monteiro, J. G. M.-S.; Svendsen, H. F.; Kather, A. "Overall process analysis and optimization for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases". 11th International Conference on Greenhouse Gas Control Technologies, 18 22 November (2012), Kyoto, Japan
- Mandal, B. P.; Kundu, M.; Padhiyar, N. U.; Bandyopadhyay, S. S. "*Physical Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> into Aqueous Solutions of (2-Amino-2-methyl-1-propanol + Monoethanolamine) and (N-Methyldiethanolamine + Monoethanolamine)*". J. Chem. Eng. Data (2005), 50, 352–358.

- Mannford Doble, M. "Ph.D. Thesis", Cambridge University, (1996)
- Mohammad R.M. Abu-Zahra, John P.M. Niederer, Paul H.M. Feron; Geert F. Versteeg, CO2 capture from power plants: Part II. "A parametric study of the economical performance based on mono-ethanolamine". March (2007).
- Onda, K.; Sada, E.; Kobayashi, T.; Fujine, M. "Gas Absorption Accompanied by Complex Chemical Reactions I Reversible Chemical Reactions". Chem. Eng. Sci. (1970), 25, 753–760.
- Olander, D. R. "Simultaneous Mass Transfer and Equilibrium Chemical Reaction". AIChE J. (1960), 6, 233–239.
- Plaza, M.G., García, S., Rubiera, F., Pis, J.J. and Pevida, C. (**2010**). "Post-Combustion CO<sub>2</sub> Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies". Chem. Eng. J. 163: 41–4
- P.H.M. Feron and C.A. Hendriks "*CO*<sub>2</sub> *Capture Process Principles and Costs*" Oil & Gas Science and Technology Rev. IFP, Vol. 60 (**2005**), No. 3, pp. 451-459.
- Peter Folger, "Carbon Capture: A Technology Assessment, Specialist in Energy and Natural Resources Policy" July 19, (2010).
- Peter W. Derks, Kees J. Hogendoorn, and Geert F. Versteeg "Solubility of N<sub>2</sub>O in and Density, Viscosity, and Surface Tension of Aqueous Piperazine Solutions" J. Chem. Eng. Data (2005), 50, 1947-1950.
- Perry, R. H.; Pigford, R. L. "*Kinetics of Gas–Liquid Reactions*". Ind. Eng. Chem. (1953), 45, 1247–1253.
- Porter, K. E. "*The Effect of Contact–Time Distribution on Gas Absorption with Chemical Reaction*". Trans. Instn. Chem. Engrs. (1966), 44, T25–T36.
- Pinsent, B. R. W., Pearson, L., Roughton, F. W. J., "*The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions*", Trans. Faraday Soc., 52, 1512-1520, (**1956**).
- Prausnitz, J. M.; Lichtenthaler, R. N.; and de Azevedo, E. D., "Molecular Thermodynamics of Fluid-phase Equilibira", (3rd ed.), Prentice Hall PTR; New Jersey (1999).

- Prachi Singh n, W.P.M.vanSwaaij, D.W.F.(Wim)Brilman "Kinetics study of carbon dioxide absorption in aqueous solutions of 1,6hexamethyldiamine(HMDA) and 1,6-hexamethyldiamine, N,N0 di-methyl(HMDA,N,N0)" Chemical Engineering Science 66 (2011) 4521–4532.
- P.W.J. Derks, T. Kleingeld, C. van Aken, J.A. Hogendoorn, G.F. Versteeg "*Kinetics of absorption of carbon dioxide in aqueous piperazine solutions*" Chemical Engineering Science 61 (**2006**) 6837 6854.
- Sholeh Ma'mun "Selection and Characterization of New Absorbents for Carbon Dioxide Capture" Doctoral thesis Faculty of Natural Science and Technology, Department of Chemical Engineering, NTNU Trondheim, Norway (2005).
- Shyh-Yun Horng and Meng-Hui Li "Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine + Triethanolamine" Ind. Eng. Chem. Res.(2002), 41, 257-266
- Secor, R. M.; Beutler, J. A. "Penetration Theory for Diffusion Accompanied by a Reversible Chemical Reaction with Generalized Kinetics". AIChE J. (1967), 13, 365–373.
- Stephens, E. J.; Morris, G. A. "Determination of Liquid–Film Absorption Coefficient: A New Type of Column and Its Application to Problems of Absorption in Presence of Chemical Reaction". Chem. Eng. Prog. (1951), 47, 232–242.
- Tiepel, E.W.; Gubbins, K. E.; Can. J., "Theory of gas solubility in mixed solvent systems", Chem. Eng. (1972), 50, 361-365.
- Versteeg, G. F.; van Dijck, L. A. J.; van Swaaij, W. P. M. "On the kinetics between CO2 and Alkanolamines both in Aqueous and Nonaqueous Solutions". An Overview. Chem. Eng. Commun. (1996), 144, 113-158.
- Versteeg, G. F., van Swaiij, W. P. M., "Solubility and Diffusivity of Acid Gases (CO<sub>2</sub>, N<sub>2</sub>O) in Aqueous Alkanolamines Solutions", J. Chem. Eng. Data., 33, 29-34, (**1988**).
- Versteeg, G. F.; van Swaiij; W. P. M., "Solubility and Diffusivity of Acid Gases (Carbon Dioxide and Nitrous Oxide) in Aqueous Alkanolamine Solutions", J. Chem. Eng. Data, 33, 29-34, (1988).

<sup>•</sup> *Why CCS?* (2012). Retrieved from the Zero website: http://www.zero.no/ccs/introduction/whyccs.

### **Appendix A: Physiochemical Properties**

#### Temp Temp Concentration Weight Density Difference gm/cm<sup>3</sup> 0**C** mol/l fraction gm/cm<sup>3</sup> K 80 0.92760 0.92760 353.15 5M Mapa<sup>\*</sup> 0.4407 0 0.93688 0.93687 70 343.15 0.4407 0.001067 5M Mapa 60 333.15 5M Mapa 0.4407 0.94555 0.94554 0.001058 50 323.15 0.4407 0.9545 0.95448 0.002095 5M Mapa 40 313.15 0.4407 0.96281 0 5M Mapa 0.96281 30 0.97124 303.15 5M Mapa 0.4407 0.97123 0.00103 20 293.15 0.4407 0.97925 0.97926 -0.00102 5M Mapa 0.94046 0.94045 80 353.15 0.3651 0.001063 4M Mapa 70 343.15 0.3651 0.94894 0.94893 4M Mapa 60 333.15 4M Mapa 0.3651 0.95696 0.95695 0.001045 50 0.96486 0.002073 323.15 4M Mapa 0.3651 0.96488 40 0.3651 0.97233 313.15 4M Mapa 0.97233 0 0.3651 0.97945 0.97944 0.001021 30 303.15 4M Mapa 20 293.15 4M Mapa 0.3651 0.98626 0.98626 0 0.95419 80 353.15 **3M Mapa** 0.2718 0.95419 0 0.96134 0.96134 0 70 343.15 3M Mapa 0.2718 60 0.2718 0.96864 0.001032 333.15 3M Mapa 0.96863 50 323.15 3M Mapa 0.2718 0.97446 0.97445 0.001026 40 313.15 0.2718 0.98023 0.98023 0 3M Mapa 0 30 303.15 3M Mapa 0.2718 0.98546 0.98546 0.2718 20 293.15 3M Mapa 0.99003 0.99003 0 80 353.15 0.1803 0.95515 0.95515 0 2M Mapa 70 343.15 0.1803 0.96213 2M Mapa 0.96212 0.001039 333.15 60 2M Mapa 0.1803 0.96863 0.96862 0.001032 50 323.15 0.1803 0.97464 0.97463 0.001026 2M Mapa 40 0.1803 0.98006 0.98007 -0.00102 313.15 2M Mapa 30 303.15 2M Mapa 0.1803 0.9849 0.98491 -0.0010220 293.15 0.1803 0.98905 0.98905 2M Mapa 0.96472 0.96472 80 353.15 **1M Mapa** 0.0891 0 70 0.0891 0.97102 0.97101 0.00103 343.15 1M Mapa 60 333.15 0.0891 0.97685 0.97684 0.001024 1M Mapa 50 323.15 1M Mapa 0.0891 0.9821 0.98209 0.001018 40 313.15 0.0891 1M Mapa 0.98665 0.98665 0 30 303.15 1M Mapa 0.0891 0.99057 0.99057 0 20 293.15 0.0891 0.99359 0.9936 -0.00101 1M Mapa

Table A1: Experimental density data of aqueous MAPA system at temperatures 20-80 °C

\* Bold text just represents starting of the sample

## Table A2: Density Parameters (Eq4.1)

| Solvent | Parameters |         |          |          |            |  |  |
|---------|------------|---------|----------|----------|------------|--|--|
| МАВА    | K1         | K2      | K3       | K4       | K5         |  |  |
| MAPA    | 0.48691    | 71.3021 | 1.9389E4 | 411.5582 | 59046.5252 |  |  |

### Table A3: Experimental density data of aqueous Blended system at temperatures 20-80 °C

| Temp<br>°C | Temp<br>K | Concentration<br>mol/l | Weight<br>fraction | Den<br>gm/ | sity<br>cm <sup>3</sup> | Difference |
|------------|-----------|------------------------|--------------------|------------|-------------------------|------------|
| 80         | 353.15    | 2M1D*                  | 0.1205             | 0.94453    | 0.94452                 | 0.001059   |
| 70         | 343.15    | 2M1D                   | 0.1205             | 0.95275    | 0.95274                 | 0.00105    |
| 60         | 333.15    | 2M1D                   | 0.1205             | 0.96046    | 0.96044                 | 0.002082   |
| 50         | 323.15    | 2M1D                   | 0.1205             | 0.9679     | 0.96788                 | 0.002066   |
| 40         | 313.15    | 2M1D                   | 0.1205             | 0.97484    | 0.97484                 | 0          |
| 30         | 303.15    | 2M1D                   | 0.1205             | 0.98141    | 0.98141                 | 0          |
| 20         | 293.15    | 2M1D                   | 0.1205             | 0.98764    | 0.98764                 | 0          |
| 80         | 353.15    | 2M2D                   | 0.2477             | 0.92947    | 0.92947                 | 0          |
| 70         | 343.15    | 2M2D                   | 0.2477             | 0.93892    | 0.93892                 | 0          |
| 60         | 333.15    | 2M2D                   | 0.2477             | 0.94766    | 0.94765                 | 0.001055   |
| 50         | 323.15    | 2M2D                   | 0.2477             | 0.95651    | 0.9565                  | 0.001045   |
| 40         | 313.15    | 2M2D                   | 0.2477             | 0.96429    | 0.96431                 | -0.00207   |
| 30         | 303.15    | 2M2D                   | 0.2477             | 0.9726     | 0.9726                  | 0          |
| 20         | 293.15    | 2M2D                   | 0.2477             | 0.98025    | 0.98026                 | -0.00102   |
| 80         | 353.15    | 2M3D                   | 0.3735             | 0.91075    | 0.91075                 | 0          |
| 70         | 343.15    | 2M3D                   | 0.3735             | 0.92127    | 0.92128                 | -0.00109   |
| 60         | 333.15    | 2M3D                   | 0.3735             | 0.93068    | 0.93066                 | 0.002149   |
| 50         | 323.15    | 2M3D                   | 0.3735             | 0.94031    | 0.94029                 | 0.002127   |
| 40         | 313.15    | 2M3D                   | 0.3735             | 0.94978    | 0.94978                 | 0          |
| 30         | 303.15    | 2M3D                   | 0.3735             | 0.95827    | 0.95828                 | -0.00104   |
| 20         | 293.15    | 2M3D                   | 0.3735             | 0.96662    | 0.96663                 | -0.00103   |
| 80         | 353.15    | 2M4D                   | 0.4821             | 0.89138    | 0.89138                 | 0          |
| 70         | 343.15    | 2M4D                   | 0.4821             | 0.90180    | 0.90180                 | 0          |
| 60         | 333.15    | 2M4D                   | 0.4821             | 0.91227    | 0.91226                 | 0.001096   |
| 50         | 323.15    | 2M4D                   | 0.4821             | 0.92228    | 0.92227                 | 0.001084   |
| 40         | 313.15    | 2M4D                   | 0.4821             | 0.93207    | 0.93208                 | -0.00107   |

| 30 | 303.15 | 2M4D | 0.4821 | 0.94115 | 0.94117 | -0.00213 |
|----|--------|------|--------|---------|---------|----------|
| 20 | 293.15 | 2M4D | 0.4821 | 0.94996 | 0.94997 | -0.00105 |
| 80 | 353.15 | 2M5D | 0.6499 | 0.86631 | 0.86630 | 0.001154 |
| 70 | 343.15 | 2M5D | 0.6499 | 0.87730 | 0.87729 | 0.00114  |
| 60 | 333.15 | 2M5D | 0.6499 | 0.88728 | 0.88726 | 0.002254 |
| 50 | 323.15 | 2M5D | 0.6499 | 0.89753 | 0.89751 | 0.002228 |
| 40 | 313.15 | 2M5D | 0.6499 | 0.90771 | 0.90773 | 0.002228 |
| 30 | 303.15 | 2M5D | 0.6499 | 0.91685 | 0.91689 | -0.00436 |
| 20 | 293.15 | 2M5D | 0.6499 | 0.92572 | 0.92572 | 0        |
| 80 | 353.15 | 1M3D | 0.3649 | 0.92745 | 0.92745 | 0        |
| 70 | 343.15 | 1M3D | 0.3649 | 0.93708 | 0.93707 | 0.001067 |
| 60 | 333.15 | 1M3D | 0.3649 | 0.94596 | 0.94595 | 0.001057 |
| 50 | 323.15 | 1M3D | 0.3649 | 0.95499 | 0.95497 | 0.002094 |
| 40 | 313.15 | 1M3D | 0.3649 | 0.96351 | 0.96351 | 0        |
| 30 | 303.15 | 1M3D | 0.3649 | 0.97125 | 0.97126 | -0.00103 |
| 20 | 293.15 | 1M3D | 0.3649 | 0.97915 | 0.97916 | -0.00102 |
| 80 | 353.15 | 1M5D | 0.6293 | 0.88690 | 0.88690 | 0        |
| 70 | 343.15 | 1M5D | 0.6293 | 0.89775 | 0.89774 | 0.001114 |
| 60 | 333.15 | 1M5D | 0.6293 | 0.90833 | 0.90832 | 0.001101 |
| 50 | 323.15 | 1M5D | 0.6293 | 0.91919 | 0.91918 | 0.001088 |
| 40 | 313.15 | 1M5D | 0.6293 | 0.9295  | 0.92952 | -0.00215 |
| 30 | 303.15 | 1M5D | 0.6293 | 0.93875 | 0.93882 | -0.00746 |
| 20 | 293.15 | 1M5D | 0.6293 | 0.94769 | 0.9477  | -0.00106 |
| 80 | 353.15 | 3M3D | 0.3716 | 0.89669 | 0.89668 | 0.001115 |
| 70 | 343.15 | 3M3D | 0.3716 | 0.90722 | 0.90721 | 0.001102 |
| 60 | 333.15 | 3M3D | 0.3716 | 0.91679 | 0.91678 | 0.001091 |
| 50 | 323.15 | 3M3D | 0.3716 | 0.92735 | 0.92734 | 0.001078 |
| 40 | 313.15 | 3M3D | 0.3716 | 0.93704 | 0.93706 | -0.00213 |
| 30 | 303.15 | 3M3D | 0.3716 | 0.94595 | 0.94598 | -0.00317 |
| 20 | 293.15 | 3M3D | 0.3716 | 0.95455 | 0.95455 | 0        |
| 80 | 353.15 | 4M3D | 0.3789 | 0.88102 | 0.88101 | 0.001135 |
| 70 | 343.15 | 4M3D | 0.3789 | 0.89166 | 0.89164 | 0.002243 |
| 60 | 333.15 | 4M3D | 0.3789 | 0.90113 | 0.90112 | 0.00111  |
| 50 | 323.15 | 4M3D | 0.3789 | 0.91116 | 0.91114 | 0.002195 |

| 40 | 313.15 | 4M3D | 0.3789 | 0.92088 | 0.92089 | -0.00109 |
|----|--------|------|--------|---------|---------|----------|
| 30 | 303.15 | 4M3D | 0.3789 | 0.9297  | 0.92975 | -0.00538 |
| 20 | 293.15 | 4M3D | 0.3789 | 0.93845 | 0.93846 | -0.00107 |
| 80 | 353.15 | 3M1D | 0.1215 | 0.93216 | 0.93215 | 0.001073 |
| 70 | 343.15 | 3M1D | 0.1215 | 0.94130 | 0.94129 | 0.001062 |
| 60 | 333.15 | 3M1D | 0.1215 | 0.94985 | 0.94983 | 0.002106 |
| 50 | 323.15 | 3M1D | 0.1215 | 0.95842 | 0.95841 | 0.001043 |
| 40 | 313.15 | 3M1D | 0.1215 | 0.96651 | 0.96651 | 0        |
| 30 | 303.15 | 3M1D | 0.1215 | 0.97402 | 0.97405 | -0.00308 |
| 20 | 293.15 | 3M1D | 0.1215 | 0.98166 | 0.98166 | 0        |
| 80 | 353.15 | 1M2D | 0.2385 | 0.94255 | 0.94255 | 0        |
| 70 | 343.15 | 1M2D | 0.2385 | 0.95127 | 0.95126 | 0.001051 |
| 60 | 333.15 | 1M2D | 0.2385 | 0.95926 | 0.95925 | 0.001042 |
| 50 | 323.15 | 1M2D | 0.2385 | 0.96713 | 0.96711 | 0.002068 |
| 40 | 313.15 | 1M2D | 0.2385 | 0.97441 | 0.97442 | -0.00103 |
| 30 | 303.15 | 1M2D | 0.2385 | 0.98134 | 0.98136 | -0.00204 |
| 20 | 293.15 | 1M2D | 0.2385 | 0.98783 | 0.98783 | 0        |
| 80 | 353.15 | 1M1D | 0.1198 | 0.95426 | 0.95424 | 0.002096 |
| 70 | 343.15 | 1M1D | 0.1198 | 0.96001 | 0.96001 | 0        |
| 60 | 333.15 | 1M1D | 0.1198 | 0.96858 | 0.96859 | -0.00103 |
| 50 | 323.15 | 1M1D | 0.1198 | 0.97496 | 0.97495 | 0.001026 |
| 40 | 313.15 | 1M1D | 0.1198 | 0.981   | 0.981   | 0        |
| 30 | 303.15 | 1M1D | 0.1198 | 0.98638 | 0.98638 | 0        |
| 20 | 293.15 | 1M1D | 0.1198 | 0.99117 | 0.99118 | -0.00101 |

\* Bold text just represents starting of the sample and denotations are made to simplify as M indicates MAPA concentration and D represents DEEA concentration.

| Temp       | Temp   | Den     | Density         |                    |
|------------|--------|---------|-----------------|--------------------|
| 0 <b>C</b> | K      | gm/o    | cm <sup>3</sup> | gm/cm <sup>3</sup> |
| 80         | 353.15 | 0.97190 | 0.97190         | 0                  |
| 70         | 343.15 | 0.97785 | 0.97785         | 0                  |
| 60         | 333.15 | 0.98329 | 0.98328         | 0.001017           |
| 50         | 323.15 | 0.98813 | 0.98812         | 0.001012           |
| 40         | 313.15 | 0.92220 | 0.92230         | 0.01084            |
| 30         | 303.15 | 0.99572 | 0.99572         | 0                  |
| 20         | 293.15 | 0.99819 | 0.99819         | 0                  |

| Temp<br>°C | Temp<br>K | Concentration<br>mol/l | Weight fraction | viscosity<br>mPa.s |
|------------|-----------|------------------------|-----------------|--------------------|
| 20         | 293.15    | 1M Mapa                | 0.0891          | 1.5566             |
| 30         | 303.15    | 1M Mapa                | 0.0891          | 1.1907             |
| 40         | 313.15    | 1M Mapa                | 0.0891          | 0.94221            |
| 50         | 323.15    | 1M Mapa                | 0.0891          | 0.81542            |
| 60         | 333.15    | 1M Mapa                | 0.0891          | 0.67336            |
| 20         | 293.15    | 2M Mapa                | 0.1803          | 2.6734             |
| 30         | 303.15    | 2M Mapa                | 0.1803          | 1.937              |
| 40         | 313.15    | 2M Mapa                | 0.1803          | 1.467              |
| 50         | 323.15    | 2M Mapa                | 0.1803          | 1.2039             |
| 60         | 333.15    | 2M Mapa                | 0.1803          | 1.0331             |
| 20         | 293.15    | 3M Mapa                | 0.2718          | 3.1306             |
| 30         | 303.15    | 3M Mapa                | 0.2718          | 2.2364             |
| 40         | 313.15    | 3M Mapa                | 0.2718          | 1.6743             |
| 50         | 323.15    | 3M Mapa                | 0.2718          | 1.3518             |
| 60         | 333.15    | 3M Mapa                | 0.2718          | 1.0663             |
| 20         | 293.15    | 4M Mapa                | 0.3651          | 7.2112             |
| 30         | 303.15    | 4M Mapa                | 0.3651          | 4.5946             |
| 40         | 313.15    | 4M Mapa                | 0.3651          | 3.1331             |
| 50         | 323.15    | 4M Mapa                | 0.3651          | 2.2954             |
| 60         | 333.15    | 4M Mapa                | 0.3651          | 1.7526             |
| 20         | 293.15    | 5M Mapa                | 0.4407          | 12.386             |
| 30         | 303.15    | 5M Mapa                | 0.4407          | 7.3773             |
| 40         | 313.15    | 5M Mapa                | 0.4407          | 4.796              |
| 50         | 323.15    | 5M Mapa                | 0.4407          | 3.4407             |
| 60         | 333.15    | 5M Mapa                | 0.4407          | 2.3698             |

Table A5: Experimental viscosity data of aqueous MAPA system at temperatures 20-60 °C

### Table A6: Viscosity Parameters (Eq 4.2)

| Solvent | Parameters |         |          |         |         |  |
|---------|------------|---------|----------|---------|---------|--|
| МАВА    | K1         | K2      | K3       | K4      | K5      |  |
| MAPA    | 2.74E-3    | 10.1592 | 5.4578E5 | 1713.87 | 7.594E5 |  |

Table A7: Experimental viscosity data of aqueous Blended system at temperatures 20-60 °C

| Temp<br>°C | Temp<br>K | Concentration<br>mol/l | Weight fraction | viscosity<br>mPa.s |
|------------|-----------|------------------------|-----------------|--------------------|
| 20         | 293.15    | 1M1D                   | 0.1198          | 3.0937             |
| 30         | 303.15    | 1M1D                   | 0.1198          | 2.1819             |
| 40         | 313.15    | 1M1D                   | 0.1198          | 1.6352             |
| 50         | 323.15    | 1M1D                   | 0.1198          | 1.2693             |
| 60         | 333.15    | 1M1D                   | 0.1198          | 0.98868            |
| 20         | 293.15    | 1M5D                   | 0.6293          | 20.204             |
| 30         | 303.15    | 1M5D                   | 0.6293          | 11.548             |
| 40         | 313.15    | 1M5D                   | 0.6293          | 7.1605             |
| 50         | 323.15    | 1M5D                   | 0.6293          | 4.5125             |
| 60         | 333.15    | 1M5D                   | 0.6293          | 3.0891             |
| 20         | 293.15    | 2M1D                   | 0.1205          | 5.3125             |
| 30         | 303.15    | 2M1D                   | 0.1205          | 3.4849             |
| 40         | 313.15    | 2M1D                   | 0.1205          | 2.4714             |
| 50         | 323.15    | 2M1D                   | 0.1205          | 1.8387             |
| 60         | 333.15    | 2M1D                   | 0.1205          | 1.4196             |
| 20         | 293.15    | 2M5D                   | 0.6499          | 19.399             |
| 30         | 303.15    | 2M5D                   | 0.6499          | 11.162             |
| 40         | 313.15    | 2M5D                   | 0.6499          | 6.9377             |
| 50         | 323.15    | 2M5D                   | 0.6499          | 4.5792             |
| 60         | 333.15    | 2M5D                   | 0.6499          | 3.1508             |
| 20         | 293.15    | 1M3D                   | 0.3649          | 9.4204             |
| 30         | 303.15    | 1M3D                   | 0.3649          | 5.8713             |
| 40         | 313.15    | 1M3D                   | 0.3649          | 3.9228             |
| 50         | 323.15    | 1M3D                   | 0.3649          | 2.7554             |
| 60         | 333.15    | 1M3D                   | 0.3649          | 2.0258             |
| 20         | 293.15    | 2M3D                   | 0.3735          | 15.604             |
| 30         | 303.15    | 2M3D                   | 0.3735          | 9.1397             |
| 40         | 313.15    | 2M3D                   | 0.3735          | 5.7826             |
| 50         | 323.15    | 2M3D                   | 0.3735          | 3.9006             |
| 60         | 333.15    | 2M3D                   | 0.3735          | 2.7671             |
| 20 | 293.15 | 2M2D | 0.2477 | 9.7858 |
|----|--------|------|--------|--------|
| 30 | 303.15 | 2M2D | 0.2477 | 5.9787 |
| 40 | 313.15 | 2M2D | 0.2477 | 3.9981 |
| 50 | 323.15 | 2M2D | 0.2477 | 2.8172 |
| 60 | 333.15 | 2M2D | 0.2477 | 2.0735 |
| 20 | 293.15 | 2M4D | 0.4821 | 20.85  |
| 30 | 303.15 | 2M4D | 0.4821 | 11.912 |
| 40 | 313.15 | 2M4D | 0.4821 | 7.3068 |
| 50 | 323.15 | 2M4D | 0.4821 | 4.824  |
| 60 | 333.15 | 2M4D | 0.4821 | 3.3207 |
| 20 | 293.15 | 1M2D | 0.2385 | 5.5779 |
| 30 | 303.15 | 1M2D | 0.2385 | 3.6268 |
| 40 | 313.15 | 1M2D | 0.2385 | 2.5792 |
| 50 | 323.15 | 1M2D | 0.2385 | 1.9029 |
| 60 | 333.15 | 1M2D | 0.2385 | 1.4656 |
| 20 | 293.15 | 3M1D | 0.1215 | 9.4809 |
| 30 | 303.15 | 3M1D | 0.1215 | 5.8409 |
| 40 | 313.15 | 3M1D | 0.1215 | 3.8862 |
| 50 | 323.15 | 3M1D | 0.1215 | 2.7677 |
| 60 | 333.15 | 3M1D | 0.1215 | 2.0081 |
| 20 | 293.15 | 4M3D | 0.3789 | 20.009 |
| 30 | 303.15 | 4M3D | 0.3789 | 11.393 |
| 40 | 313.15 | 4M3D | 0.3789 | 7.0032 |
| 50 | 323.15 | 4M3D | 0.3789 | 4.6393 |
| 60 | 333.15 | 4M3D | 0.3789 | 3.2137 |
| 20 | 293.15 | 3M3D | 0.3716 | 18.842 |
| 30 | 303.15 | 3M3D | 0.3716 | 10.883 |
| 40 | 313.15 | 3M3D | 0.3716 | 6.7687 |
| 50 | 323.15 | 3M3D | 0.3716 | 4.5851 |
| 60 | 333.15 | 3M3D | 0.3716 | 3.1592 |
|    |        |      |        |        |

| Temp<br>°C | Temp<br>K | Concentration<br>mol/l | Weight<br>fraction | Henry constant<br>Kpa.m³/kmol |
|------------|-----------|------------------------|--------------------|-------------------------------|
| 75.01      | 348.16    | 1M Mapa                | 0.0882             | 11752.06                      |
| 65.00      | 338.15    | 1M Mapa                | 0.0882             | 10768.72                      |
| 55.01      | 328.16    | 1M Mapa                | 0.0882             | 9258.76                       |
| 45.00      | 318.15    | 1M Mapa                | 0.0882             | 7607.85                       |
| 35.00      | 308.14    | 1M Mapa                | 0.0882             | 6038.92                       |
| 25.00      | 298.15    | 1M Mapa                | 0.0882             | 4604.09                       |
| 65.00      | 338.15    | 2M Mapa                | 0.1769             | 13144.02                      |
| 55.00      | 328.15    | 2M Mapa                | 0.1769             | 11433.84                      |
| 45.00      | 318.15    | 2M Mapa                | 0.1769             | 9592.199                      |
| 35.00      | 308.15    | 2M Mapa                | 0.1769             | 7765.935                      |
| 25.00      | 298.15    | 2M Mapa                | 0.1769             | 6027.405                      |
| 75.00      | 348.15    | 3M Mapa                | 0.265              | 14620.42                      |
| 65.01      | 338.16    | 3M Mapa                | 0.265              | 13430.22                      |
| 55.00      | 328.15    | 3M Mapa                | 0.265              | 11909.76                      |
| 45.00      | 318.15    | 3M Mapa                | 0.265              | 10223.16                      |
| 35.00      | 308.15    | 3M Mapa                | 0.265              | 8514.56                       |
| 25.00      | 298.15    | 3M Mapa                | 0.265              | 6846.90                       |
| 65.00      | 338.15    | 4M Mapa                | 0.355              | 11589.29                      |
| 55.00      | 328.15    | 4M Mapa                | 0.355              | 10662.55                      |
| 45.00      | 318.15    | 4M Mapa                | 0.355              | 9488.659                      |
| 35.00      | 308.15    | 4M Mapa                | 0.355              | 8284.601                      |
| 25.00      | 298.15    | 4M Mapa                | 0.355              | 7072.297                      |
| 65.00      | 338.15    | 5M Mapa                | 0.4396             | 8279.26                       |
| 55.00      | 328.15    | 5M Mapa                | 0.4396             | 7893.02                       |
| 45.00      | 318.15    | 5M Mapa                | 0.4396             | 7527.60                       |
| 35.00      | 308.15    | 5M Mapa                | 0.4396             | 7151.62                       |
| 25.01      | 298.16    | 5M Mapa                | 0.4396             | 6720.89                       |

Table A8: Experimental Henry constant for aqueous MAPA system at temperatures 25-65, 75  $^{\rm o}{\rm C}$ 

## Table A9: Henry constant Parameters (Eq 4.3)

| Solvent |         |          | Parameter | rs      |        |
|---------|---------|----------|-----------|---------|--------|
| МАДА    | K1      | K2       | K3        | K4      | K5     |
| MAPA    | 3487.92 | 8.4368E6 | 6.364E8   | 2005.66 | 868706 |

| Temp<br>°C | Temp<br>K | Concentration<br>mol/l | Weight<br>fraction | Henry constant<br>Kpa.m³/kmol |
|------------|-----------|------------------------|--------------------|-------------------------------|
| 65.00      | 338.15    | 1M1D                   | 0.2056             | 8354 82                       |
| 55.00      | 328.15    | 1M1D                   | 0.2056             | 7551.85                       |
| 45.00      | 318.15    | 1M1D                   | 0.2056             | 6666.86                       |
| 35.00      | 308.15    | 1M1D                   | 0.2056             | 5768.55                       |
| 25.00      | 298.15    | 1M1D                   | 0.2056             | 4816.92                       |
| 65.00      | 338.15    | 1M2D                   | 0.3250             | 6776.15                       |
| 55.00      | 328.15    | 1M2D                   | 0.3250             | 6321.83                       |
| 45.00      | 318.15    | 1M2D                   | 0.3250             | 5806.96                       |
| 35.00      | 308.15    | 1M2D                   | 0.3250             | 5264.40                       |
| 25.00      | 298.15    | 1M2D                   | 0.3250             | 4684.46                       |
| 64.64      | 337.79    | 1M3D                   | 0.4410             | 5380.96                       |
| 55.02      | 328.17    | 1M3D                   | 0.4410             | 5113.44                       |
| 45.00      | 318.15    | 1M3D                   | 0.4410             | 4778.75                       |
| 35.00      | 308.15    | 1M3D                   | 0.4410             | 4429.17                       |
| 25.00      | 298.15    | 1M3D                   | 0.4410             | 4047.83                       |
| 65.02      | 338.17    | 1M5D                   | 0.6740             | 3199.37                       |
| 55.00      | 328.15    | 1M5D                   | 0.6740             | 2975.15                       |
| 45.00      | 318.15    | 1M5D                   | 0.6740             | 2746.53                       |
| 35.00      | 308.15    | 1M5D                   | 0.6740             | 2504.59                       |
| 25.00      | 298.15    | 1M5D                   | 0.6740             | 2244.65                       |
| 65.00      | 338.15    | 2M1D                   | 0.2940             | 7619.42                       |
| 55.00      | 328.15    | 2M1D                   | 0.2940             | 7049.54                       |
| 45.00      | 318.15    | 2M1D                   | 0.2940             | 6414.20                       |
| 35.01      | 308.16    | 2M1D                   | 0.2940             | 5743.75                       |
| 25.00      | 298.15    | 2M1D                   | 0.2940             | 5014.80                       |
| 65.00      | 338.15    | 2M2D                   | 0.4165             | 6155.31                       |
| 55.00      | 328.15    | 2M2D                   | 0.4165             | 5824.96                       |
| 45.01      | 318.16    | 2M2D                   | 0.4165             | 5453.70                       |
| 35.00      | 308.15    | 2M2D                   | 0.4165             | 5055.61                       |
| 25.00      | 298.15    | 2M2D                   | 0.4165             | 4574.75                       |
| 65.00      | 338.15    | 2M3D                   | 0.5280             | 4718.02                       |
| 55.00      | 328.15    | 2M3D                   | 0.5280             | 4475.10                       |
| 45.00      | 318.15    | 2M3D                   | 0.5280             | 4213.48                       |
| 35.00      | 308.15    | 2M3D                   | 0.5280             | 3935.56                       |
| 25.00      | 298.15    | 2M3D                   | 0.5280             | 3635.78                       |
| 65.37      | 338.52    | 2M4D                   | 0.6451             | 3488.38                       |
| 54.88      | 328.03    | 2M4D                   | 0.6451             | 3255.41                       |
| 45.20      | 318.35    | 2M4D                   | 0.6451             | 3012.26                       |
| 35.35      | 308.50    | 2M4D                   | 0.6451             | 2763.69                       |

Table A10: Experimental Henry constant for aqueous Blended system at temperatures 25-65°C

| 27.39 | 300.54 | 2M4D | 0.6451 | 2496.76  |
|-------|--------|------|--------|----------|
| 65.03 | 338.18 | 2M5D | 0.7623 | 2532.93  |
| 55.00 | 328.15 | 2M5D | 0.7623 | 2305.57  |
| 45.00 | 318.15 | 2M5D | 0.7623 | 2091.84  |
| 35.00 | 308.15 | 2M5D | 0.7623 | 1881.89  |
| 25.00 | 298.15 | 2M5D | 0.7623 | 1666.59  |
| 25.00 | 298.15 | 4M3D | 0.7042 | 2801.41  |
| 35.00 | 308.15 | 4M3D | 0.7042 | 2936.051 |
| 45.00 | 318.15 | 4M3D | 0.7042 | 3068.896 |
| 55.00 | 328.15 | 4M3D | 0.7042 | 3182.564 |
| 65.00 | 338.15 | 4M3D | 0.7042 | 3375.625 |
| 25.00 | 298.15 | 3M1D | 0.3816 | 4620.699 |
| 35.00 | 308.15 | 3M1D | 0.3816 | 5793.154 |
| 45.00 | 318.15 | 3M1D | 0.3816 | 6917.365 |
| 55.00 | 328.15 | 3M1D | 0.3816 | 6551.545 |
| 65.00 | 338.15 | 3M1D | 0.3816 | 6890.137 |
| 25.00 | 298.15 | 3M3D | 0.6160 | 3219.001 |
| 35.00 | 308.15 | 3M3D | 0.6160 | 3436.301 |
| 45.00 | 318.15 | 3M3D | 0.6160 | 3641.763 |
| 55.00 | 328.15 | 3M3D | 0.6160 | 3829.485 |
| 65.00 | 338.15 | 3M3D | 0.6160 | 4047.48  |

## **Appendix B: Kinetics**

# Appendix B1: Kinetics data of aqueous MAPA System

#### **1M MAPA**

| Т     | LMa                                  | 105.<br>kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG | KG/k<br>g | E     | $\mathbf{k}_2$ | kobs<br>(1/s) | 10 <sup>3</sup> .N <sub>CO2</sub><br>(mod) |
|-------|--------------------------------------|------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|----------------------|-----------|-------|----------------|---------------|--------------------------------------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)      | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m <sup>3</sup> /mol)           | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m²<br>kpa s)    | (%)       |       |                |               | (mol/ m <sup>2</sup><br>s)                 |
| 25.53 | 0.00                                 | 5.59       | 3.84       | 1.53              | 3.35                                   | 0.26                   | 0.000                   | 0.80                                  | 3.75                          | 3.01                 | 19.67     | 225.1 | 114.2<br>8     | 1.1368E+5     | 0.92                                       |
| 33.73 | 0.00                                 | 6.85       | 3.90       | 1.52              | 4.26                                   | 0.25                   | 0.000                   | 0.85                                  | 4.27                          | 3.33                 | 21.91     | 265.9 | 195.0<br>1     | 1.9334E+5     | 0.90                                       |
| 43.11 | 0.00                                 | 8.27       | 3.95       | 1.50              | 5.21                                   | 0.25                   | 0.000                   | 0.92                                  | 4.89                          | 3.68                 | 24.63     | 307.9 | 302.4<br>7     | 2.9847E+5     | 0.94                                       |
| 51.37 | 0.00                                 | 9.84       | 3.96       | 1.46              | 5.95                                   | 0.25                   | 0.000                   | 0.98                                  | 5.54                          | 4.02                 | 27.55     | 335.3 | 425.3<br>5     | 4.1786E+5     | 0.99                                       |
| 59.76 | 0.01                                 | 11.09      | 3.58       | 1.29              | 6.65                                   | 0.24                   | 0.000                   | 1.03                                  | 6.26                          | 4.21                 | 32.71     | 375.6 | 592.3<br>5     | 5.7912E+5     | 1.01                                       |

#### 2M MAPA

| Т     | LMa                     | 10 <sup>5</sup> .<br>kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP*<br>CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG | KG/kg | 2         | $\mathbf{k}_2$ | kobs<br>(1/s) | 10 <sup>3</sup> .N <sub>CO2</sub><br>(mod) |
|-------|-------------------------|-------------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|----------------------|-------|-----------|----------------|---------------|--------------------------------------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                   | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa<br>)               | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m²<br>kpa s)    | (%)   |           |                |               | (mol/ m <sup>2</sup><br>s)                 |
| 26.64 | 0.00                    | 3.65                    | 3.86       | 1.54              | 4.61                                   | 0.26                   | 0.00                    | 0.79                                  | 3.84                 | 3.07                 | 19.90 | 484<br>.2 | 163.<br>38     | 3.2813E+5     | 0.99                                       |
| 34.74 | 0.00                    | 4.73                    | 3.98       | 1.55              | 5.56                                   | 0.24                   | 0.00                    | 0.85                                  | 4.49                 | 3.48                 | 22.43 | 527<br>.1 | 255.<br>16     | 5.1044E+5     | 1.01                                       |
| 43.15 | 0.00                    | 6.02                    | 4.01       | 1.52              | 6.50                                   | 0.24                   | 0.00                    | 0.96                                  | 5.39                 | 3.98                 | 26.15 | 582<br>.5 | 397.<br>33     | 7.9103E+5     | 1.08                                       |
| 51.42 | 0.00                    | 7.18                    | 4.07       | 1.50              | 7.38                                   | 0.24                   | 0.00                    | 1.06                                  | 6.45                 | 4.51                 | 30.04 | 662<br>.6 | 604.<br>13     | 1.1966E+6     | 1.14                                       |
| 60.26 | 0.00                    | 7.68                    | 3.68       | 1.32              | 8.31                                   | 0.24                   | 0.00                    | 1.17                                  | 7.91                 | 4.95                 | 37.43 | 855<br>.7 | 102<br>2.80    | 2.0135E+6     | 1.16                                       |

#### **3M MAPA**

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG | KG/kg | Ε      | $\mathbf{k}_2$ | kobs (1/s) | 10 <sup>3</sup> .N <sub>CO2</sub><br>(mod) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|----------------------|-------|--------|----------------|------------|--------------------------------------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m<br>² kpa s)   | (%)   |        |                |            | (mol/ m <sup>2</sup><br>s)                 |
| 28.04 | 0.00                                 | 3.50                 | 3.96       | 1.58              | 5.35                                   | 0.25                   | 0.000                   | 1.01                                  | 5.36                 | 4.00                 | 25.33 | 819.6  | 308.86         | 9.3585E+5  | 1.14                                       |
| 35.77 | 0.00                                 | 4.24                 | 3.90       | 1.52              | 6.24                                   | 0.23                   | 0.000                   | 1.07                                  | 6.61                 | 4.61                 | 30.34 | 973.4  | 503.91         | 1.5203E+6  | 1.14                                       |
| 43.31 | 0.00                                 | 5.21                 | 3.99       | 1.51              | 7.02                                   | 0.22                   | 0.000                   | 1.16                                  | 8.29                 | 5.36                 | 35.38 | 1117.3 | 798.32         | 2.3978E+6  | 1.16                                       |
| 52.53 | 0.00                                 | 6.79                 | 4.04       | 1.49              | 7.86                                   | 0.20                   | 0.000                   | 1.25                                  | 11.09                | 6.35                 | 42.75 | 1285.5 | 1412.2<br>7    | 4.2177E+6  | 1.17                                       |
| 61.51 | 0.00                                 | 7.76                 | 3.89       | 1.39              | 8.62                                   | 0.22                   | 0.000                   | 1.59                                  | 15.61                | 7.36                 | 52.86 | 1736.2 | 2904.4<br>1    | 8.6145E+6  | 1.34                                       |

#### 4M MAPA

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | Ε      | $\mathbf{k}_2$ | kobs (1/s) | 10 <sup>3</sup> .N <sub>CO2</sub><br>(mod) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|--------|----------------|------------|--------------------------------------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m <sup>2</sup><br>kpa s) | (%)   |        |                |            | (mol/ m <sup>2</sup><br>s)                 |
| 27.52 | 0.00                                 | 1.67                 | 3.96       | 1.58              | 5.39                                   | 0.21                   | 0.000                   | 1.05                                  | 7.16                          | 4.93                          | 31.15 | 2313.4 | 783.0<br>7     | 3.1721E+6  | 0.93                                       |
| 35.42 | 0.00                                 | 2.49                 | 4.03       | 1.57              | 5.99                                   | 0.21                   | 0.000                   | 1.25                                  | 9.75                          | 6.02                          | 38.27 | 2350.2 | 1311.<br>75    | 5.2822E+6  | 1.05                                       |
| 43.26 | 0.00                                 | 3.52                 | 4.11       | 1.56              | 6.52                                   | 0.22                   | 0.000                   | 1.46                                  | 11.77                         | 6.70                          | 43.09 | 2181.7 | 1655.<br>20    | 6.6238E+6  | 1.26                                       |
| 51.13 | 0.00                                 | 4.69                 | 4.14       | 1.53              | 6.99                                   | 0.20                   | 0.000                   | 1.61                                  | 16.83                         | 8.01                          | 52.43 | 2511.2 | 2978.<br>96    | 1.1845E+7  | 1.31                                       |
| 60.57 | 0.00                                 | 4.79                 | 3.88       | 1.40              | 7.53                                   | 0.21                   | 0.000                   | 2.02                                  | 30.08                         | 9.53                          | 68.32 | 4736.7 | 9501.<br>06    | 3.7440E+7  | 1.45                                       |

## 5M MAPA

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG          | KG/kg | Ε           | $\mathbf{k}_2$ | kobs (1/s) | 10 <sup>3</sup> .N <sub>CO2</sub><br>(mod) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|-------------------------------|-------|-------------|----------------|------------|--------------------------------------------|
| (ºC)  | (mol CO <sub>2</sub> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m <sup>2</sup><br>kpa s) | (%)   |             |                |            | (mol/ m <sup>2</sup><br>s)                 |
| 27.68 | 0.00                                 | 1.15                 | 4.08       | 1.64              | 5.00                                   | 0.27                   | 0.000                   | 1.75                                  | 11.06                | 6.60                          | 40.35 | 4808.0      | 2002.<br>13    | 9.7025E+06 | 1.21                                       |
| 35.25 | 0.00                                 | 1.58                 | 4.00       | 1.56              | 5.11                                   | 0.25                   | 0.000                   | 1.85                                  | 14.23                | 7.43                          | 47.76 | 4603.7      | 2477.<br>46    | 1.1926E+07 | 1.37                                       |
| 43.59 | 0.00                                 | 2.21                 | 4.00       | 1.51              | 5.23                                   | 0.22                   | 0.000                   | 1.98                                  | 21.33                | 8.85                          | 58.51 | 5050.7      | 3981.<br>92    | 1.9020E+07 | 1.48                                       |
| 52.51 | 0.00                                 | 3.13                 | 4.02       | 1.48              | 5.35                                   | 0.27                   | 0.000                   | 2.88                                  | 39.83                | 10.77                         | 72.95 | 6830.5      | 10367<br>.64   | 4.9046E+07 | 2.05                                       |
| 60.92 | 0.00                                 | 3.48                 | 3.84       | 1.38              | 5.46                                   | 0.29                   | 0.000                   | 3.45                                  | 80.85                | 11.76                         | 85.45 | 12727.<br>6 | 40111<br>.62   | 1.8812E+08 | 2.35                                       |

# Appendix B2: Kinetics data of aqueous Blended "MAPA+DEEA" System

## 1M1D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG | KG/kg | E      | $\mathbf{k}_2$ | kobs (1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|----------------------|-------|--------|----------------|------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m²<br>kpa s)    | (%)   |        |                |            |
| 25.38 | 0.00                                 | 3.11                 | 3.89       | 1.56              | 2.69                                   | 0.31                   | 0.00                    | 0.71                                  | 2.65                          | 2.27                 | 14.53 | 321.19 | 60.88          | 1.213E+05  |
| 34.72 | 0.00                                 | 4.21                 | 3.92       | 1.53              | 4.11                                   | 0.22                   | 0.00                    | 0.71                                  | 4.07                          | 3.22                 | 21.05 | 398.39 | 127.5<br>9     | 2.541E+05  |
| 43.17 | 0.00                                 | 5.49                 | 3.95       | 1.49              | 4.56                                   | 0.23                   | 0.00                    | 0.78                                  | 4.47                          | 3.44                 | 23.05 | 372.02 | 143.9<br>5     | 2.866E+05  |
| 51.73 | 0.00                                 | 6.98                 | 3.76       | 1.38              | 4.98                                   | 0.20                   | 0.00                    | 0.85                                  | 6.03                          | 4.20                 | 30.36 | 429.79 | 243.5<br>9     | 4.8488E+05 |
| 59.76 | 0.00                                 | 8.10                 | 3.83       | 1.38              | 5.35                                   | 0.18                   | 0.00                    | 0.99                                  | 9.52                          | 5.63                 | 40.85 | 630.25 | 596.4<br>0     | 1.1864E+05 |

| Т     | LMa                     | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | E      | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|-------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|--------|----------------|---------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m <sup>2</sup><br>kpa s) | (%)   |        |                |               |
| 23.91 | 0.00                    | 1.81                 | 3.70       | 1.49              | 3.39                                   | 0.38                   | 0.00                    | 0.79                                  | 2.38                          | 2.06                          | 13.80 | 446.82 | 43.65          | 1.305E+05     |
| 33.65 | 0.00                    | 2.71                 | 3.80       | 1.48              | 3.71                                   | 0.34                   | 0.00                    | 0.79                                  | 2.74                          | 2.31                          | 15.63 | 375.09 | 48.06          | 1.437E+05     |
| 41.96 | 0.00                    | 3.72                 | 3.83       | 1.45              | 3.96                                   | 0.28                   | 0.00                    | 0.79                                  | 3.46                          | 2.80                          | 19.27 | 369.25 | 63.59          | 1.902E+05     |
| 51.52 | 0.00                    | 4.99                 | 3.88       | 1.42              | 4.21                                   | 0.28                   | 0.00                    | 0.88                                  | 4.07                          | 3.17                          | 22.23 | 343.44 | 72.16          | 2.157E+05     |
| 60.47 | 0.00                    | 5.73                 | 3.71       | 1.33              | 4.42                                   | 0.25                   | 0.00                    | 0.95                                  | 5.43                          | 3.85                          | 29.01 | 419.21 | 121.03         | 3.618E+05     |

#### 1M3D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | Ε      | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|--------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m <sup>2</sup><br>kpa s) | (%)   |        |                |               |
| 25.14 | 0.00                                 | 1.21                 | 3.80       | 1.53              | 2.98                                   | 0.32                   | 0.00                    | 0.78                                  | 2.93                          | 2.46                          | 16.05 | 722.81 | 54.45          | 2.173E+05     |
| 34,99 | 0.00                                 | 1.96                 | 3.92       | 1.52              | 3.17                                   | 0.27                   | 0.00                    | 0.78                                  | 3.50                          | 2.84                          | 18.66 | 564.84 | 58.39          | 2.330E+05     |
|       |                                      | 1.50                 | 0.02       | 1.02              |                                        | 0.27                   | 0.00                    | 0170                                  |                               |                               | 10.00 |        | 0.007          | 2.00002.00    |
| 43.35 | 0.00                                 | 2.77                 | 4.00       | 1.51              | 3.31                                   | 0.26                   | 0.00                    | 0.86                                  | 4.21                          | 3.29                          | 21.77 | 503.31 | 64.25          | 2.563E+05     |
|       |                                      |                      |            |                   |                                        |                        |                         |                                       |                               |                               |       |        |                |               |
| 51.05 | 0.00                                 | 3.77                 | 3.93       | 1.45              | 3.42                                   | 0.23                   | 0.00                    | 0.93                                  | 5.64                          | 4.06                          | 28.02 | 511.82 | 91.45          | 3.648E+05     |
| 60.39 | 0.00                                 | 4.29                 | 3.83       | 1.38              | 3.54                                   | 0.22                   | 0.00                    | 1.07                                  | 7.58                          | 4.89                          | 35.53 | 627.41 | 148.97         | 5.940E+05     |

| Т     | LMa                     | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|-------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m <sup>2</sup><br>kpa s) | (%)   |         |                |               |
| 25.72 | 0.00                    | 0.63                 | 3.87       | 1.56              | 1.66                                   | 0.30                   | 0.00                    | 0.94                                  | 3.96                          | 3.16                          | 20.28 | 1050.51 | 36.25          | 2.170E+05     |
| 34.97 | 0.00                    | 1.07                 | 4.00       | 1.56              | 1.79                                   | 0.31                   | 0.00                    | 1.03                                  | 4.23                          | 3.33                          | 21.34 | 706.78  | 30.65          | 1.835E+05     |
| 44.37 | 0.00                    | 1.70                 | 3.95       | 1.49              | 1.91                                   | 0.28                   | 0.00                    | 1.09                                  | 5.22                          | 3.86                          | 25.90 | 586.44  | 32.05          | 1.918E+05     |
| 52.80 | 0.00                    | 2.44                 | 3.96       | 1.46              | 2.01                                   | 0.27                   | 0.00                    | 1.17                                  | 6.31                          | 4.40                          | 30.24 | 518.55  | 35.31          | 2.113E+05     |
| 61.46 | 0.00                    | 2.61                 | 3.77       | 1.35              | 2.10                                   | 0.27                   | 0.00                    | 1.27                                  | 7.38                          | 4.77                          | 35.37 | 593.70  | 48.21          | 2.884E+05     |

## 2M1D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG | KG/kg | Ε      | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|----------------------|-------|--------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m²<br>kpa s)    | (%)   |        |                |               |
| 25.34 | 0.00                                 | 2.03                 | 3.81       | 1.53              | 3.70                                   | 0.31                   | 0.00                    | 0.80                                  | 3.07                          | 2.56                 | 16.72 | 560.22 | 79.00          | 2.362E+05     |
| 35.16 | 0.00                                 | 2.98                 | 3.91       | 1.53              | 4.12                                   | 0.28                   | 0.00                    | 0.89                                  | 4.03                          | 3.19                 | 20.89 | 557.39 | 117.34         | 3.508E+05     |
| 43.94 | 0.00                                 | 4.25                 | 4.03       | 1.52              | 4.44                                   | 0.29                   | 0.00                    | 1.02                                  | 4.66                          | 3.56                 | 23.44 | 487.21 | 130.58         | 3.903E+05     |
| 50.43 | 0.00                                 | 5.29                 | 3.82       | 1.41              | 4.65                                   | 0.26                   | 0.00                    | 1.13                                  | 6.36                          | 4.38                 | 31.11 | 558.71 | 216.02         | 6.454E+05     |
| 59.24 | 0.00                                 | 6.22                 | 3.68       | 1.32              | 4.92                                   | 0.23                   | 0.00                    | 1.29                                  | 9.42                          | 5.50                 | 41.56 | 746.79 | 444.84         | 1.329E+06     |

| Т     | LMa                     | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>H <sub>CO2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|-------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m<br><sup>2</sup> kpa s) | (%)   |         |                |               |
| 26.20 | 0.00                    | 1.21                 | 3.70       | 1.48              | 3.39                                   | 0.24                   | 0.00                    | 0.99                                  | 5.60                          | 4.06                          | 27.42 | 1568.31 | 255.14         | 1.017E+06     |
| 34.79 | 0.00                    | 1.74                 | 3.89       | 1.51              | 3.60                                   | 0.31                   | 0.00                    | 1.12                                  | 4.75                          | 3.61                          | 23.87 | 981.17  | 143.15         | 5.706E+05     |
| 43.79 | 0.00                    | 2.62                 | 3.93       | 1.48              | 3.78                                   | 0.29                   | 0.00                    | 1.19                                  | 5.66                          | 4.10                          | 27.58 | 817.42  | 150.60         | 6.002E+05     |
| 52.34 | 0.00                    | 3.65                 | 3.94       | 1.45              | 3.92                                   | 0.25                   | 0.00                    | 1.30                                  | 7.94                          | 5.12                          | 35.42 | 853.40  | 232.63         | 9.270E+05     |
| 60.62 | 0.00                    | 4.02                 | 3.69       | 1.33              | 4.05                                   | 0.24                   | 0.00                    | 1.45                                  | 10.90                         | 5.99                          | 45.07 | 1099.78 | 413.74         | 1.648E+06     |

## 2M2D b

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m <sup>3</sup> /mol)           | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m<br><sup>2</sup> kpa s) | (%)   |         |                |               |
| 24.62 | 0.00                                 | 1.13                 | 3.94       | 1.59              | 3.42                                   | 0.28                   | 0.00                    | 0.92                                  | 4.12                          | 3.27                          | 20.61 | 1247.08 | 148.75         | 5.932E+05     |
| 34.16 | 0.00                                 | 1.51                 | 3.99       | 1.56              | 3.58                                   | 0.26                   | 0.00                    | 0.92                                  | 4.66                          | 3.59                          | 23.02 | 1109.94 | 140.33         | 5.597E+05     |
| 43.67 | 0.00                                 | 2.67                 | 3.93       | 1.48              | 3.78                                   | 0.25                   | 0.00                    | 1.02                                  | 5.68                          | 4.11                          | 27.67 | 803.97  | 151.87         | 6.056E+05     |
| 51.92 | 0.00                                 | 3.61                 | 3.82       | 1.40              | 3.92                                   | 0.22                   | 0.00                    | 1.17                                  | 8.34                          | 5.23                          | 37.27 | 905.09  | 259.14         | 1.033E+06     |
| 60.20 | 0.00                                 | 3.98                 | 3.74       | 1.35              | 4.05                                   | 0.25                   | 0.00                    | 1.46                                  | 10.36                         | 5.85                          | 43.51 | 1054.96 | 373.06         | 1.486E+06     |

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG          | KG/kg | Е       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|-------------------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m<br><sup>2</sup> kpa s) | (%)   |         |                |               |
| 26.70 | 0.00                                 | 0.83                 | 3.88       | 1.55              | 2.70                                   | 0.27                   | 0.00                    | 0.92                                  | 4.46                 | 3.47                          | 22.31 | 1444.84 | 114.31         | 5.702E+05     |
| 35.29 | 0.00                                 | 1.42                 | 4.00       | 1.56              | 2.82                                   | 0.28                   | 0.00                    | 1.05                                  | 4.95                 | 3.76                          | 24.14 | 984.32  | 102.84         | 5.129E+05     |
| 43.63 | 0.00                                 | 1.95                 | 3.90       | 1.48              | 2.93                                   | 0.27                   | 0.00                    | 1.20                                  | 6.48                 | 4.50                          | 30.47 | 973.66  | 125.16         | 6.239E+05     |
| 52.62 | 0.00                                 | 2.85                 | 3.93       | 1.45              | 3.03                                   | 0.26                   | 0.00                    | 1.40                                  | 8.59                 | 5.40                          | 37.19 | 913.75  | 162.51         | 8.098E+05     |
| 61.58 | 0.00                                 | 2.96                 | 3.83       | 1.37              | 3.12                                   | 0.25                   | 0.00                    | 1.55                                  | 11.65                | 6.30                          | 45.91 | 1231.14 | 289.30         | 1.441E+06     |

## 2M3D b

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|----------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m<br>² kpa s)   | (%)   |         |                |               |
| 24.32 | 0.00                                 | 0.74                 | 3.93       | 1.59              | 2.66                                   | 0.28                   | 0.00                    | 0.99                                  | 4.49                 | 3.50                 | 22.05 | 1613.68 | 124.56         | 6.212E+05     |
| 35.07 | 0.00                                 | 1.24                 | 3.98       | 1.55              | 2.82                                   | 0.29                   | 0.00                    | 1.09                                  | 4.88                 | 3.71                 | 23.94 | 1104.53 | 100.57         | 5.014E+05     |
| 43.87 | 0.00                                 | 1.98                 | 4.02       | 1.52              | 2.92                                   | 0.26                   | 0.00                    | 1.15                                  | 6.15                 | 4.38                 | 28.83 | 911.32  | 111.33         | 5.550E+05     |
| 52.47 | 0.00                                 | 2.84                 | 3.90       | 1.43              | 3.02                                   | 0.26                   | 0.00                    | 1.41                                  | 8.97                 | 5.51                 | 38.54 | 956.32  | 176.70         | 8.805E+05     |
| 60.68 | 0.00                                 | 2.99                 | 3.85       | 1.39              | 3.11                                   | 0.27                   | 0.00                    | 1.65                                  | 10.76                | 6.06                 | 43.69 | 1121.16 | 243.43         | 1.212E+06     |

#### 2M4D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG          | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|-------------------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m<br><sup>2</sup> kpa s) | (%)   |         |                |               |
| 27.56 | 0.00                                 | 0.67                 | 3.80       | 1.52              | 1.83                                   | 0.31                   | 0.00                    | 1.34                                  | 6.01                 | 4.31                          | 28.38 | 1649.31 | 95.49          | 5.713E+05     |
| 35.03 | 0.00                                 | 1.05                 | 3.83       | 1.49              | 1.96                                   | 0.29                   | 0.00                    | 1.47                                  | 7.50                 | 4.99                          | 33.50 | 1395.31 | 117.50         | 7.030E+05     |
| 44.15 | 0.00                                 | 1.67                 | 3.94       | 1.49              | 2.09                                   | 0.27                   | 0.00                    | 1.56                                  | 9.57                 | 5.82                          | 39.15 | 1197.87 | 134.87         | 8.067E+05     |
| 51.60 | 0.00                                 | 2.25                 | 3.84       | 1.42              | 2.18                                   | 0.29                   | 0.00                    | 1.82                                  | 11.44                | 6.33                          | 44.65 | 1110.09 | 149.78         | 8.955E+05     |
| 60.42 | 0.00                                 | 2.57                 | 3.87       | 1.39              | 2.28                                   | 0.28                   | 0.00                    | 1.95                                  | 14.17                | 7.02                          | 50.48 | 1256.21 | 221.27         | 1.323E+06     |

## 2M5D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> . KG | KG/kg | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|----------------------|-------|---------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m <sup>3</sup> /mol)           | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m²<br>kpa s)    | (mol/m<br>² kpa s)   | (%)   |         |                |               |
| 27.43 | 0.00                                 | 0.69                 | 3.83       | 1.54              | 1.26                                   | 0.23                   | 0.00                    | 1.63                                  | 13.36                | 7.15                 | 46.50 | 2438.57 | 182.39         | 1.273E+06     |
| 35.49 | 0.00                                 | 1.06                 | 3.89       | 1.51              | 1.35                                   | 0.24                   | 0.00                    | 1.96                                  | 17.19                | 8.05                 | 53.18 | 2189.79 | 235.11         | 1.640E+06     |
| 44.16 | 0.00                                 | 1.67                 | 3.95       | 1.50              | 1.45                                   | 0.21                   | 0.00                    | 2.04                                  | 27.28                | 9.66                 | 64.59 | 2379.53 | 435.65         | 3.039E+06     |
| 52.98 | 0.00                                 | 2.45                 | 3.98       | 1.46              | 1.55                                   | 0.19                   | 0.00                    | 2.27                                  | 74.54                | 12.23                | 83.59 | 4741.77 | 2555.8<br>2    | 1.782E+07     |
| 62.20 | 0.00                                 | 2.50                 | 3.89       | 1.40              | 1.66                                   | 0.24                   | 0.00                    | 2.96                                  | 122.64               | 12.55                | 89.77 | 8193.63 | 7411.7<br>0    | 5.164E+07     |

| Т     | LMa                     | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>H <sub>CO2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/k<br>g | E       | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|-------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-----------|---------|----------------|---------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m<br><sup>2</sup> kpa s) | (%)       |         |                |               |
| 25.00 | 0.00                    | 1.17                 | 3.78       | 1.52              | 3.42                                   | 0.30                   | 0.00                    | 1.17                                  | 5.35                          | 3.96                          | 25.98     | 1558.49 | 241.85         | 9.640E+05     |
| 34.45 | 0.00                    | 1.97                 | 3.85       | 1.50              | 4.14                                   | 0.30                   | 0.00                    | 1.24                                  | 5.79                          | 4.17                          | 27.84     | 1215.65 | 280.23         | 1.117E+06     |
| 43.12 | 0.00                    | 2.74                 | 3.76       | 1.42              | 4.54                                   | 0.31                   | 0.00                    | 1.35                                  | 6.26                          | 4.35                          | 30.59     | 1038.31 | 269.05         | 1.072E+06     |
| 51.91 | 0.00                    | 3.57                 | 3.90       | 1.43              | 4.70                                   | 0.27                   | 0.00                    | 1.47                                  | 8.71                          | 5.42                          | 37.80     | 1146.91 | 399.65         | 1.592E+06     |
| 60.09 | 0.00                    | 4.26                 | 3.95       | 1.42              | 4.65                                   | 0.21                   | 0.00                    | 1.61                                  | 16.51                         | 7.64                          | 53.73     | 1802.05 | 1218.09        | 4.851E+06     |

## 3M3D

| Т     | LMa                                  | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg          | 10 <sup>3</sup> . KG          | KG/k<br>g | E            | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|--------------------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------|-----------|--------------|----------------|---------------|
| (ºC)  | (mol CO <sup>2</sup> /<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m <sup>3</sup> /mol)           | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m <sup>2</sup><br>kpa s) | (mol/m<br><sup>2</sup> kpa s) | (%)       |              |                |               |
| 25.68 | 0.00                                 | 0.66                 | 3.83       | 1.54              | 2.38                                   | 0.22                   | 0.00                    | 1.42                                  | 11.44                         | 6.56                          | 42.62     | 4131.47      | 587.53         | 3.515E+06     |
| 35.53 | 0.00                                 | 1.12                 | 3.87       | 1.50              | 2.46                                   | 0.20                   | 0.00                    | 1.54                                  | 15.43                         | 7.62                          | 50.65     | 3391.39      | 718.75         | 4.299E+06     |
| 44.39 | 0.00                                 | 1.74                 | 3.96       | 1.49              | 2.53                                   | 0.23                   | 0.00                    | 1.94                                  | 19.09                         | 8.38                          | 56.09     | 2785.23      | 740.64         | 4.427E+06     |
| 52.95 | 0.00                                 | 2.49                 | 4.01       | 1.47              | 2.60                                   | 0.20                   | 0.00                    | 2.16                                  | 38.36                         | 10.63                         | 72.27     | 4018.49      | 2207.91        | 1.319E+07     |
| 62.05 | 0.00                                 | 2.57                 | 3.75       | 1.34              | 2.67                                   | 0.20                   | 0.00                    | 2.55                                  | 181.23                        | 12.50                         | 93.11     | 19033.8<br>7 | 49375.6<br>6   | 2.949E+08     |

| 4M31 | D |
|------|---|
|------|---|

| Т     | LMa                     | 10 <sup>5</sup> . kl | 10².<br>kg | 10². kg           | 10 <sup>-3</sup> .<br>Н <sub>СО2</sub> | LMP<br>CO <sub>2</sub> | LMP<br>*CO <sub>2</sub> | 10 <sup>3</sup> .<br>N <sub>CO2</sub> | 10 <sup>3</sup> . kg | 10 <sup>3</sup> .<br>KG | KG/k<br>g | Е        | $\mathbf{k}_2$ | kobs<br>(1/s) |
|-------|-------------------------|----------------------|------------|-------------------|----------------------------------------|------------------------|-------------------------|---------------------------------------|----------------------|-------------------------|-----------|----------|----------------|---------------|
| (ºC)  | (mol CO²/<br>mol Amine) | (m/s)                | (m/s<br>)  | (mol/m²<br>kpa s) | (kpa<br>m³/mol)                        | (kpa)                  | (kpa)                   | (mol/<br>m <sup>2</sup> s)            | (mol/m<br>² kpa s)   | (mol/<br>m² kpa<br>s)   | (%)       |          |                |               |
| 27.10 | 0.00                    | 0.66                 | 3.92       | 1.57              | 2.07                                   | 0.25                   | 0.00                    | 2.13                                  | 18.47                | 8.49                    | 54.03     | 5784.91  | 980.65         | 6.839E+06     |
| 34.99 | 0.00                    | 1.01                 | 3.99       | 1.56              | 2.10                                   | 0.27                   | 0.00                    | 2.44                                  | 22.35                | 9.17                    | 58.96     | 4648.75  | 995.62         | 6.941E+06     |
| 44.39 | 0.00                    | 1.75                 | 4.03       | 1.52              | 2.13                                   | 0.27                   | 0.00                    | 3.00                                  | 40.24                | 11.04                   | 72.57     | 4917.13  | 2032.89        | 1.416E+07     |
| 53.77 | 0.00                    | 2.45                 | 4.00       | 1.47              | 2.18                                   | 0.29                   | 0.00                    | 3.84                                  | 135.82               | 13.25                   | 90.25     | 12150.05 | 16496.85       | 1.148E+08     |
| 62.72 | 0.00                    | 2.42                 | 3.92       | 1.40              | 2.23                                   | 0.29                   | 0.00                    | 4.79                                  | -86.78               | 16.64                   | 119.1     | 7967.04  | 6827.11        | 4.746E+07     |

#### **Appendix C: Graphical Representation**



Graph C1: Density vs temperature curves MAPA system based on modeling



Graph C2: Viscosity vs temperature curves for MAPA system based on modeling

# Appendix D: Risk Assessment Form of In Used Equipment

| NTNU                                                                                                                              |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              | Dato                           |                    |                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|------------------------------------------|-------------------------------------------|------------------------|----------------------------------|------------------------------|-------------------------------|---------------------|-----------------------------|--------------------------------------------------------------|--------------------------------|--------------------|-----------------------------------|--|--|
|                                                                                                                                   |                                               | HMS-avd.         | HMSRV2                                   | 601 2                                     | 2/6/2013               |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
|                                                                                                                                   |                                               |                  | nazi                                     | Godkjent av                               | v Side                 | Erstat                           | ter                          |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| HMS                                                                                                                               |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    | ( )                               |  |  |
|                                                                                                                                   |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| Unit:                                                                                                                             |                                               |                  |                                          |                                           |                        | Kjemis                           | k prosess                    | teknologi                     | Date:               | 2/6/2013                    |                                                              |                                |                    |                                   |  |  |
| Line mana                                                                                                                         | ger:<br>is in the idea                        | oluding their fu | notion):                                 | Hallvard F. svendesen (CO2 capture group) |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| rancipant                                                                                                                         |                                               |                  | // UCE 33 (III                           |                                           | icuon).                | Tianina                          | u Wajeeu                     | (Operator),                   | Juliana man         | leno(Co sup                 |                                                              |                                |                    |                                   |  |  |
| Short desc                                                                                                                        | ription of the                                | process:         | Kinetics and                             | l modelling i                             | n CO2-an               | nine systems                     |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| ID no.                                                                                                                            | Activity/process                              |                  |                                          | Responsible<br>person                     | Laws, reg              | ulations et                      | c. Existing<br>documentation |                               | Exis<br>n n         | Existing safety<br>measures |                                                              | Comment                        |                    |                                   |  |  |
| 1                                                                                                                                 | Cleaning of equipment                         |                  |                                          | Operator                                  |                        | Wearin                           |                              |                               |                     | ng Proper PI                | Exhaust Valve is very important fo<br>PPE volatile chemicals |                                |                    | nportant for                      |  |  |
| 2                                                                                                                                 | Preparation of sample                         |                  |                                          | Operator                                  |                        |                                  |                              |                               | Wearin              | 19 Proper PI                | To be p<br>PE chambe                                         | er where a                     | n spec<br>air flow | med<br>is availible               |  |  |
| _                                                                                                                                 | r reparation of sample                        |                  |                                          | - Prince                                  |                        |                                  |                              |                               |                     | grioperri                   |                                                              |                                |                    | is a valie ie                     |  |  |
| 3                                                                                                                                 | Sample loading in equipment                   |                  |                                          | Operator                                  |                        | Wearing                          |                              |                               |                     | ng Proper PI                | ЪЕ                                                           |                                |                    |                                   |  |  |
| 4                                                                                                                                 | Sample taking from equipment                  |                  |                                          | Operator                                  |                        |                                  |                              |                               | Wearin              | ng Proper PI                | Έ                                                            |                                |                    |                                   |  |  |
| _                                                                                                                                 | Draining of chemical from                     |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             | waste c                                                      | waste container to be disposed |                    |                                   |  |  |
| 5                                                                                                                                 | equipment<br>Cleaning of equipment after      |                  |                                          | Operator                                  |                        |                                  | _                            | wearing                       |                     |                             | Vent valve should be open du                                 |                                |                    | oen during                        |  |  |
| 6                                                                                                                                 | experiment                                    |                  |                                          | Operator                                  |                        |                                  | Wearin                       |                               |                     | ng Proper PI                | Proper PPE cleaning                                          |                                |                    | g and drying period               |  |  |
| 7                                                                                                                                 | Gas bottles(N2, CO2)                          |                  |                                          | Operator                                  | Operator               |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| NTNU                                                                                                                              |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     | Utarbeidet av               | Nummer                                                       | Dato                           |                    |                                   |  |  |
|                                                                                                                                   |                                               |                  |                                          |                                           |                        |                                  |                              | -                             |                     | HMS-avd.                    | HMSBV 2603                                                   | 2/6/20                         | /6/2013            |                                   |  |  |
|                                                                                                                                   |                                               |                  |                                          | Risk a                                    | assessm                | ent                              |                              |                               |                     | Codkiont ov                 |                                                              | Fretattor                      |                    | $\left\{ \left( \right) \right\}$ |  |  |
| HMS /KS                                                                                                                           |                                               |                  |                                          |                                           |                        |                                  |                              |                               | Gourjent av         | Side                        | DSIAILEI                                                     |                                | $\left\{ \right\}$ |                                   |  |  |
|                                                                                                                                   |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| Unit:                                                                                                                             |                                               |                  |                                          |                                           |                        | Kjemisk prosessteknologi Date: 2 |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| Line manager:                                                                                                                     |                                               |                  |                                          |                                           | Hallvard F             | . svendes                        | sen (CO2 ca                  | pture grou                    | p)                  |                             |                                                              |                                |                    |                                   |  |  |
| Participants in the identification process (including their function): Hammad Majeed (Operator), Juliana manterio (Co Supervisor) |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
|                                                                                                                                   |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| Signatures                                                                                                                        | s:                                            | Hammad N         | /lajeed                                  |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
|                                                                                                                                   | Activity from the identification process form |                  | Potential undesirable<br>incident/strain |                                           | Likelihood: Consequent |                                  |                              |                               | nce:                |                             | Comments/sta                                                 |                                | status             |                                   |  |  |
| ID no.                                                                                                                            |                                               |                  |                                          |                                           | Likelihood<br>(1-5)    | Human<br>(A-E)                   | Environmen<br>t<br>(A-E)     | Economy/<br>material<br>(A-E) | Reputation<br>(A-E) | Human                       | Suggested mit                                                |                                | 16434163           |                                   |  |  |
| 1                                                                                                                                 | Cleaning of equipment                         |                  |                                          | breakage of glass ware,<br>Chemcial fumes |                        | 3                                | А                            | А                             | А                   | А                           | A3                                                           |                                |                    |                                   |  |  |
| -                                                                                                                                 |                                               |                  |                                          |                                           |                        |                                  |                              |                               |                     |                             |                                                              |                                |                    |                                   |  |  |
| 2                                                                                                                                 | Preparation of sample                         |                  |                                          | spillage of amines, Alcohol               |                        | 4                                | В                            | В                             | В                   | A                           | B4                                                           | Use of fume cupboar            |                    | pboard                            |  |  |
| 3                                                                                                                                 | Sample loading in equipment                   |                  |                                          | spillage of chemical                      |                        | 4                                | В                            | A                             | В                   | A                           | B4                                                           | Fume mask is manda             |                    | nandatory                         |  |  |
| 4                                                                                                                                 | Sample taking from equipment                  |                  |                                          | spillage of chemical                      |                        | 4                                | В                            | Α                             | А                   | А                           | B4                                                           |                                |                    |                                   |  |  |
| 5                                                                                                                                 | equipment                                     |                  | spillage of chemical                     |                                           | 4                      | В                                | А                            | А                             | А                   | B4                          |                                                              |                                |                    |                                   |  |  |
|                                                                                                                                   | Cleaning of equipment after                   |                  | 1                                        |                                           | 2                      |                                  | _                            |                               |                     |                             | Exhaust                                                      | value s                        | hould be           |                                   |  |  |
| 6                                                                                                                                 | experiment<br>Preparation of disc in SDC onc  |                  | breakage of glass ware                   |                                           | 3                      | A                                | В                            | A                             | A                   | A3                          | open                                                         |                                |                    |                                   |  |  |
| 7                                                                                                                                 | in 5 years                                    |                  |                                          |                                           | 1                      | D                                | А                            | А                             | А                   | 1D                          |                                                              |                                |                    |                                   |  |  |