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Christian F Doeller1,3*

1Donders Institute for Brain, Cognition and Behaviour, Radboud University
Nijmegen, Nijmegen, The Netherlands; 2Department of Neuropsychology, Institute
of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany; 3Kavli
Institute for Systems Neuroscience, Centre for Neural Computation, Egil and
Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU -
Norwegian University of Science and Technology, St. Olavs University Hospital,
Trondheim, Norway

Abstract The hippocampus has long been implicated in both episodic and spatial memory,

however these mnemonic functions have been traditionally investigated in separate research

strands. Theoretical accounts and rodent data suggest a common mechanism for spatial and

episodic memory in the hippocampus by providing an abstract and flexible representation of the

external world. Here, we monitor the de novo formation of such a representation of space and time

in humans using fMRI. After learning spatio-temporal trajectories in a large-scale virtual city,

subject-specific neural similarity in the hippocampus scaled with the remembered proximity of

events in space and time. Crucially, the structure of the entire spatio-temporal network was

reflected in neural patterns. Our results provide evidence for a common coding mechanism

underlying spatial and temporal aspects of episodic memory in the hippocampus and shed new

light on its role in interleaving multiple episodes in a neural event map of memory space.

DOI: 10.7554/eLife.16534.001

Introduction
The hippocampus is one of the most extensively studied regions in the brain. However, two of its

core functions, spatial navigation and episodic memory, have mostly been investigated in separate

research lines (Eichenbaum, 2014). It has been suggested that the answer to the apparent duality in

hippocampal function resides in a common mechanism that is required for both spatial navigation

and episodic memory (Eichenbaum, 2014): the formation of an abstract representation of the exter-

nal world, a memory space (Eichenbaum et al., 1999). While it is clear that such a map-like repre-

sentation would be necessary for spatial navigation, it might be less obvious for episodic memory.

Yet, episodic memory has been defined as the ability to recall events from one’s own life (Tulv-

ing, 1983) in a specific mode of retrieval that has been referred to as recollection

(Eichenbaum et al., 2007) or ’mental time travel’ (Tulving, 2002). This specific mode of retrieval

makes it necessary that humans can, in their minds, re-create and re-experience episodes of their

past by mentally navigating to the point when and where the episode happened, thereby retrieving

the time and the place of past events. Notably, this implies that humans must be able to convert

relationships between events, for example along the physical dimensions of space and time, into a

mental representation so that the arrangement of events is appropriately reflected. In line with this

idea, recent discoveries in rodent electrophysiology indicate that cells in the hippocampus code for

events in space and time simultaneously (Kraus et al., 2013, 2015; Mankin et al., 2012) and pro-

vide evidence for the notion that memories are, in fact, stored in a multi-dimensional memory space
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(Eichenbaum et al., 1999; McKenzie et al., 2014). Findings from fMRI studies in humans also sug-

gest that memories are dynamically integrated into mnemonic network representations along differ-

ent dimensions (Collin et al., 2015; Horner et al., 2015; Kumaran and Maguire, 2006;

Milivojevic et al., 2015; Preston and Eichenbaum, 2013; Schlichting et al., 2015; Shohamy and

Wagner, 2008; Zeithamova et al., 2012). However, it remains elusive how inter-event relationships

along multiple dimensions, such as space and time, are combined and converted into a multi-dimen-

sional mnemonic event map, which might potentially support episodic memory.

In studies with rodents, the hippocampus has traditionally been associated with the representa-

tion of space (Burgess et al., 2002; Moser et al., 2008; O’Keefe and Nadel, 1978), i.e. knowing

where events occurred. This spatial code is supported by specific neurons in the hippocampal forma-

tion such as place cells (O’Keefe and Dostrovsky, 1971), which increase firing rate when a specific

place in an environment is traversed, and grid cells, which increase firing rate in multiple locations,

organized in a hexagonal grid pattern (Hafting et al., 2005). Although much of this research has

employed electrophysiology in rodents, recent studies using functional magnetic resonance imaging

have pointed to similar mechanisms in humans (Doeller et al., 2010; Hassabis et al., 2009;

Howard et al., 2014; Kyle et al., 2015; Vass and Epstein, 2013; Wolbers et al., 2007).

In addition to its role in spatial representation, the hippocampus is also known to be crucial for

episodic memory in humans (Eichenbaum, 2014; Norman and O’Reilly, 2003; Scoville and Milner,

1957; Stark and Squire, 2000). While it has been acknowledged that episodic memory is inherently

structured in a temporal manner (Tulving, 1985), our understanding of the role of the hippocampus

for remembering temporal structure has been limited for a long time (Howard and Eichenbaum,

2015). Recently, descriptions of situation-specific cell-assembly firing sequences (Pastalkova et al.,

2008) and the discovery of time cells in the rodent hippocampus (MacDonald et al., 2011) have

sparked a renewed interest in the role of the hippocampus in temporal memory. Time cells have

been shown to selectively increase their firing pattern at specific time points after a cue had been

presented, while animals were waiting to respond to an odor (MacDonald et al., 2011). Interest-

ingly, the cells exhibited this temporally coordinated firing pattern only in specific contexts. In a new

context, e.g. when delay time was prolonged, some of the previously responding cells ceased to fire

or fired at different time points while previously unresponsive cells suddenly began to code for

elapsed time, a response pattern akin to spatial remapping of place cells (‘retiming’). Thus, rather

than displaying a simple counting function or a generic delay signal, these cells seem to represent

the specific temporal context of an episode, consistent with the temporal context model

(Howard and Kahana, 2002; Howard et al., 2005). These findings have led to a re-examination of

the hippocampus’ role in temporal memory in rodents and humans (Eichenbaum, 2014;

DuBrow and Davachi, 2015; Ranganath and Hsieh, 2016) and to several recent neuroimaging

studies in humans. For example, one study found that, in predictable as opposed to random sequen-

ces of items, items that are closer together in the sequence elicit increased neural pattern similarity

(Hsieh et al., 2014), an effect which is dependent on the conjunction of item identity and order posi-

tion rather than order position alone. Another study showed that items are represented differently

within event boundaries than across event boundaries (Ezzyat and Davachi, 2014). Interestingly,

participants’ judgment of temporal distance between a pair of items was systematically higher when

the pair was separated by an event boundary compared to when it was within an event boundary

(even though the actual temporal distance was the same for the two types of item pairs). Further, a

subsequent behavioral judgment of across-boundary item pairs as being temporally close was asso-

ciated with higher pattern similarity during the learning task when compared to across-boundary

items that were judged to be far. However, the temporal sequences in these studies were investi-

gated independently of the spatial relationship between the elements. Another recent report

showed that spatial and temporal aspects of autobiographical experiences are coded within the hip-

pocampus across various scales of magnitude, up to one month in time and 30 km in space

(Nielson et al., 2015). Participants wore a camera over the course of four weeks, which automatically

took pictures throughout the day. Later, participants were scanned with fMRI while reviewing these

pictures and trying to recall what they depicted. While providing interesting insight into real-life

autobiographical memory, there was little experimental control over the stimulus material with

regards to visual properties and the degree of familiarity participants had with the locations. More

importantly, none of the studies mentioned above compared changes in neural pattern similarity

from before the acquisition of the spatial and temporal structure to after.
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The present study tests the overarching idea that the hippocampus represents events within a

multi-dimensional event map of memory space (Eichenbaum et al., 1999). More specifically, we will

use the term ’event map’ to refer to the mental representation of a complete set of interrelation-

ships between events. In order to support an efficient and adaptive memory system, such an event

map should be abstract, flexible and relational (Eichenbaum, 2014; Eichenbaum et al., 1999):

Abstract in the sense that it represents aspects of the experience that go beyond a direct record of

events, such as being able to extrapolate that taking a specific turn in a city will be a shortcut even

before the actual experience has been made. An event map should further be flexible to allow for

the representation of sudden changes in the world, such as roadblocks. Thirdly, it should be able to

represent relationships along different dimensions concurrently and conjunctively, while still allowing

to focus on one dimension depending on task situations, such as for example knowing that the spa-

tial distance between two bus stops is short, but that it could take a long time to get to the destina-

tion during rush hour.

The goal of this study was to investigate whether experiencing multiple events within a spatio-

temporal structure leads to the acquisition of a neural event map that is abstract, flexible and rela-

tional. We used a highly realistic first-person virtual navigation paradigm that led participants

through a complex virtual city (’Donderstown’, see http://www.doellerlab.com/donderstown/). The

purpose of this task was to provide a learning experience for participants in which 16 objects were

arranged consistently in a spatial and temporal structure, defined through the complex network of

inter-object relations. We dissociated the dimensions of time and space through the use of teleport-

ers, requiring a high level of flexibility in memory (see Figure 1A for details of the task). To ascertain

maximal experimental control, the objects were shown repeatedly in random order before and after

the learning task and all fMRI analyses were performed on data acquired during these independent

scanning sessions. Knowledge of the spatio-temporal structure acquired during the learning task

was assessed with a memory test after fMRI acquisition (see Figure 1B). Participants’ abstract repre-

sentation of the event structure was estimated through all possible pairwise spatial and temporal dis-

tance judgments, including judgments which required higher-order inference because events were

separated by multiple intervening events. The participant-specific spatial and temporal distance rat-

ings from the memory test were then used to investigate changes in neural pattern similarity from

before to after the learning task leveraging representational similarity analysis (RSA;

Kriegeskorte et al., 2008). More specifically, we investigated whether increases in hippocampal

pattern similarity co-varied with the remembered spatial and temporal event structure during the

learning task.

Results

Behavioral results
Participants had to learn the temporal and spatial relationships between 16 objects placed in boxes

along a route (see Figure 1 and Figure 1—figure supplement 1 for details) by repeatedly navigat-

ing along the specific route in the virtual city environment Donderstown. In order to ensure sufficient

learning of the spatio-temporal trajectory, participants had to complete 14 rounds of the route. Pro-

ficiency in this virtual-navigation task (see Figure 1A) was assessed by analyzing improvements dur-

ing the task as well as by investigating performance in the subsequent memory tests. Both the

spatio-temporal learning task and the subsequent memory tests were done outside of the MR scan-

ner, so neural activity during these tasks cannot be assessed.

Spatio-temporal learning task
Participants required on average 71.63 ± 13.75 (mean ± std) minutes for the task (range 52.67–

113.06 min), showing high variability in navigation speed. When looking at the time it took partici-

pants to get from one object to the next (Figure 1—figure supplement 2) across the 14 route repe-

titions, we observed a rapid decrease of navigation times over the first 3–4 repetitions, with

navigation duration roughly converging to the time it takes to walk from one box to the next (raw

walking time). Navigation times during the last repetition were significantly shorter than during the

first repetition (21.55 vs 11.60 min, T25 = 6.70, p<0.0001), see Figure 1—figure supplement 2 for

more details. In sum, these data indicate that participants were able to learn the virtual route.
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Memory tests
We assessed participants’ memory of the spatio-temporal structure of objects with three different

memory tests after MRI acquisition. Firstly, participants were asked to freely recall all objects they

encountered during the task. Secondly, they had to indicate the spatial and temporal distance

between every possible pair of objects. Thirdly, participants were given a schematic map of Don-

derstown on the computer screen, shown the image of every object and asked to indicate the loca-

tion of the box that contained this object by moving the mouse, see Materials and methods for

more details on the memory tasks.

Figure 1. Learning spatio-temporal trajectories in virtual reality. (A) Overview of the route participants had to take through the virtual reality city

Donderstown. 16 objects were presented along the route (see Figure 1—figure supplement 1 for details on the objects). Participants were first guided

by the presentation of traffic cones (marked here with turquoise circles) that led them from one wooden box (red numbered circles) to the next. The

cones disappeared after 6 repetitions of the route (see Figure 1—figure supplement 2 for behavioral performance in the navigation task). Crucially,

the spatial and temporal distance between objects was systematically manipulated (see Materials and methods for details). As exemplified in the table,

pairs of objects have either high or low spatial distance to one another as well as high or low temporal distance. At three points along the route,

participants had to use a teleporter (pink and purple numbered circles), which transported them immediately from one part of the city to a completely

different part of the city. Introducing the teleporters allowed us to have pairs of objects with a high spatial distance and low temporal distance, as can

also be seen in Figure 1—figure supplement 3. (B) In a subsequent memory test outside the scanner, participants were asked to judge for every

possible pair of objects how close together or far apart the objects had been in space (Euclidean distance) or time (how long it took them to get from

one object to the next).

DOI: 10.7554/eLife.16534.002

The following figure supplements are available for figure 1:

Figure supplement 1. Overview of the 16 objects used in the picture viewing tasks and the learning task.

DOI: 10.7554/eLife.16534.003

Figure supplement 2. Performance during the VR learning task.

DOI: 10.7554/eLife.16534.004

Figure supplement 3. Pairwise spatial and temporal distances are independent from each other.

DOI: 10.7554/eLife.16534.005
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Free recall test
Participants recalled on average 13.08 ± 3.06 (mean ± std) of the 16 items. The order of free recall

was more influenced by the temporal order during the task than by the spatial arrangement, as

assessed by correlating the spatial and temporal distances between items during the task with the

distance in order during free recall (mean R for spatial distance: �0.01 ± 0.16 [mean ± std]; temporal

distance: 0.50 ± 0.40 [mean ± std]; T25 = 4.32, p<0.0003).

Distance judgment task
In this memory test, we asked participants to judge for every possible pair of objects how close

together or far apart they had been presented during the learning task, both in space and in time.

This yielded a participant-specific distance estimate for both the spatial and the temporal domain,

effectively probing the participant’s mnemonic event map. Crucially, by asking participants to make

distance judgments for every possible pair of items, we required them to infer the spatial and tem-

poral distances of items that had not been directly experienced together in the task. For every par-

ticipant, we compared the subjective distance judgments with the objective distance during the

task. Because memory distance judgments were given on a scale from ’close together’ to ’far apart’

rather than in absolute terms (see Figure 1B), accuracy was tested by the goodness of fit between

the actual spatial and temporal distances in the learning task and the estimated spatial and temporal

distances. For temporal judgments, memory distances were significantly correlated with actual tem-

poral distances in 24 of the 26 participants (p<0.05; R = 0.64 ± 0.29 (mean ± std), see Figure 2A for

the correlation coefficients across participants and Figure 2—figure supplement 1 for participant-

specific scatter plots). For spatial judgments, memory distances were significantly correlated with

actual spatial distances in 21 of the 26 participants (p<0.05; mean ± std: R = 0.49 ± 0.29);

Figure 2A). Thus, correspondence between actual and reproduced distances was very high for both

space and time and slightly better for the temporal than for the spatial condition (T25 = �2.52,

p = 0.019). We also examined the relationship between participants’ spatial and temporal distance

judgments for a given pair of objects (even though the two factors were independent in the task,

see Materials and methods). Indeed, we found that in 14 of the 26 participants, there was a signifi-

cant correlation between their spatial and temporal distance judgments (p<0.05, R = 0.31 ± 0.29

[mean ± std]). Therefore, the two factors were not independent in most participants’ memory judg-

ments and we addressed this in our fMRI analysis (see below).

To further investigate the relationship between spatial and temporal distance judgments, we set

up two GLMs which model the impact of actual spatial and actual temporal distances on (a) spatial

distance ratings and (b) temporal distance ratings, respectively (see Figure 2B). Across participants,

both actual spatial distances and actual temporal distances explained variance in spatial distance rat-

ings (beta for the factor actual spatial distance: 0.50 ± 0.28 [mean ± std], significantly different from

zero across participants: T25 = 9.08, p<0.0001; beta for the factor actual temporal distance 0.17 ±

0.19 [mean ± std]; significantly different from zero across participants: T25 = 4.48, p<0.001). How-

ever, the factor actual spatial distance had a significantly greater impact on spatial distance ratings

than the factor actual temporal distance (t-test between betas across participants for space > time:

T25 = 4.06, p<0.001). Similarly, both actual spatial distances and actual temporal distances explained

variance in temporal distance ratings (beta for the factor actual spatial distance: 0.16 ± 0.22 [mean ±

std], significantly different from zero across participants: T25 = 3.58, p<0.01; beta for the factor

actual temporal distance 0.65 ± 0.27 [mean ± std]; significantly different from zero across partici-

pants: T25 = 12.16, p<0.0001). The factor actual temporal distance had a much bigger impact on

temporal distance ratings than the factor actual spatial distance (t-test between betas across partici-

pants for time > space T25 = 5.33, p<0.0001). Thus, while there was some ’cross-over’ between the

domain that should be rated and the respective other domain, the domain that should be rated had

a greater impact on the judgments both for space and for time.

We also investigated whether errors in judging spatial and temporal distances (i.e. the difference

between z-scored actual distance and z-scored remembered distance) were systematically related to

the distance in the other dimension (see Figure 2C). Indeed, we found that errors in spatial distance

ratings were correlated both with actual temporal distance and remembered temporal distances

(Fisher z-transformed correlation coefficients tested against zero across participants; actual temporal

distance: T25 = �5.39, p<0.0001; remembered temporal distance: T25 = �5.33, p<0.0001). Similarly,
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Figure 2. Results from the distance judgment task. (A) Accuracy in the distance judgment task was assessed by correlating the actual distance between

pairs of items with the distance ratings given by participants during the memory task (illustrated for one participant as an example in the left panel;

scatter plots for all participants can be found in Figure 2—figure supplement 1). The higher the correlation coefficient, the better the memory

performance. Correlation coefficients for all participants are shown in a boxplot on the right side, both for the spatial and the temporal domain.

Figure 2 continued on next page
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errors in temporal distance ratings were correlated with both actual spatial distances and remem-

bered spatial distances (Fisher z-transformed correlation coefficients tested against zero across par-

ticipants; actual spatial distance: T25 = �4.82, p<0.0001; remembered spatial distance: T25 = �5.04,

p<0.0001). It is conceivable that the bias that the opposite domain has on the distance rating of the

domain that should be judged depends on which domain is tested first, e.g. it could be hypothe-

sized that actual spatial distance has a higher impact on errors in temporal distance ratings when

spatial distance was probed first within a participant. Therefore, we repeated the error analysis

described before, but this time split trials up depending on whether space was tested first or time

was tested first for a given pair of items, and then correlated the errors with the distance in the other

domain separately. Neither the spatial domain nor the temporal domain was differentially affected

by a bias from the other domain (neither actual nor remembered) depending on test order (all

p>0.09). This means that the order in which spatial or temporal distances were probed did not have

an impact on biases in the distance judgments.Taken together, these behavioral results show that

participants were mostly accurate in reproducing the spatial and temporal structure between objects

that had not been directly experienced together, indicating that they successfully formed an

abstract, relational event map. While spatial and temporal distance ratings were correlated with one

another in some participants, there is no evidence that either the spatial domain or the temporal

domain had a bigger impact on distance ratings than the other, and that the degree to which one

domain was biased by the other did not depend on which domain was tested first.

Map test
On average, participants positioned the items with a distance error (expressed here as the ratio

between the displacement error and the side length of the city map) of 0.193 ± 0.16 to the actual

item location and performance was variable across participants (range 0.017–0.480, see Figure 2—

figure supplement 2).

Neuroimaging results
To assess the representational change as a consequence of the de novo acquisition of the spatial

and temporal structure of events during the learning task, two independent picture-viewing tasks

(PVT) inside the fMRI scanner preceded (PVT pre) and followed (PVT post) the spatio-temporal learn-

ing task (see Figure 3 for an outline of the experimental sessions). In these two PVT fMRI blocks,

participants saw pictures of the same 16 objects that were also presented during the spatio-tempo-

ral learning task (see Figure 1—figure supplement 1). Objects were presented multiple times on a

black background, in random order, and participants were asked to press a button whenever they

saw a target object (see Materials and methods).

The rationale behind the picture-viewing task was to assess the neural pattern similarity between

pairs of objects without possible confounds of stimulus presentation during the learning task. If we

Figure 2 continued

Correlation coefficients are significantly different from zero across participants. Memory judgment for time was slightly better than for space. Individual

participants’ values are shown between the two boxplots, with lines connecting the corresponding values of the same participant. See Figure 2—figure

supplement 2 for exemplary results from a map test on spatial memory. (B) Result of two GLMs, modeling the impact of actual space and actual time

on spatial distance ratings and temporal distance ratings, respectively. The boxplots show the beta estimates for the two factors across participants.

Spatial judgments are related to actual distance in both space and time, and the same is true for temporal judgments. However, spatial distance has a

higher impact than temporal distance on spatial judgments and temporal distance has a higher impact than spatial distance on temporal judgments.

(C) Left: Investigating whether one domain biased the errors committed in the other domain, we correlated the errors in distance ratings with the actual

or remembered distance in the other domain. Both time and space were correlated with errors committed in the other domain, but neither more

strongly than the other. (C) Right: The same analysis as on the left side, but with trials split up depending on whether memory for space or time was

tested first. The order in which memory was tested had no impact on the bias one domain had on errors committed in the other domain.

DOI: 10.7554/eLife.16534.006

The following figure supplements are available for figure 2:

Figure supplement 1. Participants acquire knowledge about the temporal and spatial structure of events.

DOI: 10.7554/eLife.16534.007

Figure supplement 2. Results from the subsequent map test.

DOI: 10.7554/eLife.16534.008
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had assessed pattern similarity for objects while they were presented in Donderstown during the

learning task, analyses would have been susceptible to visual confounds for spatially close items

(sharing more similar views of the environment) and possible auto-correlation confounds for tempo-

rally close items due to the slow hemodynamic response (i.e. temporally closer volumes will always

be more similar to one another) or effects related to head movements. Analyzing pattern similarity

in this independent task, when the objects were shown out of context and in random order, gave us

high experimental control. Furthermore, both sessions, PVT pre and PVT post, were identical with

respect to stimulus order and timing. Any changes in pattern similarity from PVT pre to PVT post

(PS’) are thus due to a changed neural representation of objects as a result of the spatio-temporal

learning task and the newly formed memories. Therefore, we related the difference in pattern simi-

larity from PVT pre to PVT post (PS’) to the remembered temporal and spatial distances, both in a

region of interest (ROI) analysis and a searchlight analysis (see Figure 4 and Materials and methods

for details on analyses and nonparametric statistical procedures). We pursued these approaches in

parallel because they offer complementary advantages: the ROI approach allows for rigorous testing

of a clear a priori hypothesis, while the searchlight approach allows us to identify possible regions

outside of hippocampus that show the same effect, as well as to pinpoint any effect more locally

within hippocampus.

The hippocampus represents a spatio-temporal event map
We hypothesized that the hippocampus would support spatial and temporal event memory and,

importantly, the combination of both. Therefore, in a first step, we investigated whether the change

in pattern similarity across all hippocampal grey-matter voxels was related to participants’ spatial

and temporal distance judgments for pairs of items (see Materials and methods for details). We

found that pattern similarity changes in bilateral hippocampus reflected participants’ spatial distance

judgments (Z = �3.719, pFDR=0.0005; FDR correction for 15 multiple comparisons, see Methods and

materials), as well as their temporal distance judgments (Z = �2.597, pFDR = 0.0078), see Figure 5.

More specifically, pairs of objects which were recalled as being close together either in space or

time during the task had higher pattern similarity increases across all hippocampal grey-matter

voxels.

Figure 3. Assessing memory-related changes in neural similarity as a result of learning the spatio-temporal event structure. FMRI data were acquired

during two blocks of an identical picture viewing task (‘PVT’, in red) before and after the virtual navigation learning task (gold). This allowed us to

measure the fine-grained neural similarity structure between event representations. Event memories were subsequently assessed in separate memory

tests for space and time (purple). The crucial index for assessing the spatial and temporal event structure as a result of the learning task was the change

in neural similarity from before the learning task to after (expressed as PS’) and how it covaried with the remembered spatial and temporal distances in

the subsequent memory task.

DOI: 10.7554/eLife.16534.009
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Figure 4. Methodological procedure for ROI pattern similarity analysis. (A) Illustration of first level analysis. Both for the picture viewing task pre and

picture viewing task post, activity of all voxels within a ROI (e.g. bilateral hippocampus) is extracted across all trials, in which 16 different items are

presented 12 times (for illustrative purposes, procedures here are depicted for 5 items only). Voxel patterns for every item in every repetition are

correlated with voxel patterns for every other item in every other repetition, yielding one average cross-correlation matrix for all items, respectively for

Figure 4 continued on next page
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However, behavioral analyses had revealed that some participants’ spatial and temporal distance

judgments were correlated, even though spatial and temporal distances between items were

designed to be independent in the task. It could be that the similar effects we find for spatial and

temporal memory are only due to the correlation of the two in participants’ ratings, i.e. that one of

the domains has no unique contribution to the pattern similarity increase. Therefore, we investigated

in an additional analysis whether there were separate contributions of the two factors: First, we

removed variance explained by spatial distance judgments from the pattern similarity changes in

pairs of items in a GLM, and correlated the residuals from this model (i.e. what could not be

explained by spatial distance judgments) with temporal distance judgments. We found that these

residual pattern similarity changes still correlated with temporal distance judgments in bilateral hip-

pocampus (Z= �1.805, pFDR = 0.041). Similarly, when we removed the influence of temporal distance

judgments first, the residuals still correlated with spatial distance judgments (Z = �3.719,

pFDR = 0.0005). These results suggest that both the dimensions of space and of time contribute to

the observed pattern similarity increases.

As outlined above, the main goal of this study was to investigate how the spatial and the tempo-

ral aspects of an experience are combined to form a common multi-dimensional event map, into

which events can be integrated. Therefore, we correlated the combination of spatial and temporal

distance judgments with pattern similarity changes in the hippocampus (i.e., we took the product of

the two distance ratings, with the lowest values reflecting proximity in both dimensions and the high-

est values reflecting high distance in both dimensions). We found that the combination of spatial

and temporal distance judgments was indeed associated with hippocampal pattern similarity

changes (Z = �3.719, pFDR = 0.0005). Thus, the spatial and temporal event structures are not only

represented separately, but they are also combined in the hippocampus, providing evidence that

these two dimensions are flexibly integrated to form a spatio-temporal event map.

Next, we investigated whether right and left hippocampus were differentially involved in repre-

senting time and space. Therefore, we computed the five models described above (spatial distance,

temporal distance, spatial x temporal combination, temporal distance with effects of spatial distan-

ces removed, and spatial distance with effects of temporal distanced removed) separately for voxels

in the right and left hippocampus, respectively. We found that pattern similarity across voxels in right

hippocampus was significantly correlated with all five factors (all pFDR<0.041, significant after FDR

correction for 15 multiple comparisons, see Materials and methods). However, for left hippocampus,

only spatial distance judgments (with and without effects of temporal distance judgment removed)

and the combination of spatial and temporal distance judgments were significantly correlated to pat-

tern similarity changes (all pFDR<0.011), while temporal distance judgments were not (neither with

nor without effects of spatial distance judgments removed).

Figure 4 continued

the PVT pre and the PVT post task. In the next step, the difference between the PVT post cross-correlation matrix and the PVT pre cross-correlation

matrix is formed to get a difference matrix with pattern similarity increases/decreases for every item pair. This difference matrix (PS’) is then put in

relation to an external variable, for example the remembered spatial distance between every item pair, which is based on the behavioral distance

judgment task at the end of the experiment. The relationship between PS’ and the external variable is expressed with a correlation coefficient. For

example, higher pattern similarity increases for item pairs with lower remembered distance between them (i.e. which were remembered as being closer

together) will result in a negative correlation coefficient. To estimate the strength of this relationship, the correlation coefficient is compared to a

distribution of surrogate correlation coefficients derived from correlating shuffled pattern similarity increases and distance judgments. The position of

the real correlation coefficient in this distribution is a marker for the strength of the effect and is expressed with a z-value, whose absolute value will be

higher for more extreme values with regard to the surrogate distribution. However, the z-value can be both positive and negative, depending on which

tail of the distribution the real correlation coefficient is located at. (B) Second level analysis. The z-statistics from the first level analysis, which were

calculated for every participant, are then tested for significance across participants by comparing the mean z across participants to surrogate mean

z-values derived from averaging randomly sign-flipped first-level z-values, with 10,000 repetitions of the random sign-flips. Again, if the mean of the

first-level z-values is at an extreme end of the surrogate distribution, this is reflected in a high absolute z-value and a low probability (p) that the effect is

not significantly different from zero. See Figure 4—figure supplement 1 for a corresponding illustration of methodological procedure for the

searchlight analysis.

DOI: 10.7554/eLife.16534.010

The following figure supplement is available for figure 4:

Figure supplement 1. Methodological procedure for searchlight pattern similarity analysis.

DOI: 10.7554/eLife.16534.011
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Searchlight analysis of event map-related neural pattern similarity
changes
So far, we have provided evidence that the hippocampus is involved in representing and integrating

spatial and temporal relationships of multiple events. But are there regions in hippocampus that are

Figure 5. Neural similarity of hippocampal multi-voxel pattern scale with spatial and temporal memory and the combination of the two domains. (A)

Top: Hippocampus mask used for the ROI analysis. (B) Increases in pattern similarity (PS’) across all grey-matter voxels were negatively correlated with

the spatial and temporal distance judgments from the post-scan memory test: The closer together two items were remembered (low distance), the

higher was the pattern similarity increase observed in the hippocampus. Results from a bootstrapping procedure are depicted (mean ± sem) for spatial

distance judgments and temporal judgments, as well as the combination of both (see Materials and methods for details on analysis). (C) Barplots show

the averaged pattern similarity increases for item-pairs depending on whether they had low versus high distance to one another in the three conditions

remembered spatial distance, remembered temporal distance and the combination of both. (D) Because spatial and temporal distance judgments were

correlated in the memory judgments, an additional analysis was carried out to calculate the effects after the influence of the additional factor had been

statistically removed. Analyses were performed for bilateral hippocampus, as well as for left and right hippocampus separately. Stars in B and D denote

that effects were significantly smaller than zero across participants (statistically corrected for 15 comparisons, see Materials and methods for details on

analysis). See Figure 5—figure supplement 1 for a more detailed ROI analysis of effects on posterior, medial and anterior hippocampus.

DOI: 10.7554/eLife.16534.012

The following figure supplement is available for figure 5:

Figure supplement 1. ROI analysis of anterior, middle and posterior hippocampus.

DOI: 10.7554/eLife.16534.013

Deuker et al. eLife 2016;5:e16534. DOI: 10.7554/eLife.16534 11 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.16534.012
http://dx.doi.org/10.7554/eLife.16534.013
http://dx.doi.org/10.7554/eLife.16534


more involved in this effect, and are there any other brain regions that show the same pattern? To

address this question, we performed a searchlight analysis over all voxels in our field of view (see

Materials and methods). In this approach, a 9 mm sphere is formed around a center voxel and pat-

tern similarity is assessed for all voxels included in that sphere. Moving the center of this sphere con-

secutively over all possible voxels yields information about fine-grained local effects (see Materials

and methods for details).

Temporal distance
As can be seen in Figure 6, a cluster in right medial to anterior hippocampus showed increased pat-

tern similarity effects for objects that were remembered as being temporally close together in the

task (peak MNI:26/�18/�22, T25 = 4.05, pcorr = 0.0178, small volume correction, see Materials and

methods). This peak was the global maximum in our acquisition volume and no other effects survived

correction for multiple comparisons at a threshold of pcorr <0.05. There were no significant effects

observed for the opposite contrast (at pcorr <0.05). Taken together, these results show that temporal

relationships between events in episodic memory are reflected in pattern similarity changes in a clus-

ter in right hippocampus extending from the medial to the anterior part.

Spatial distance
Next, we performed the same analysis for remembered spatial distances. Again, a cluster in right

medial to anterior hippocampus showed the highest pattern similarity increases for objects, which

had the smallest spatial distance in the learning task (see Figure 6, peak MNI:34/�17/�22, T25 =

5.16, pcorr = 0.0046, small volume correction). This peak was again the global maximum. No other

effect survived correction for multiple comparisons at a threshold of pcorr <0.05. There were no sig-

nificant effects observed for the opposite contrast (at pcorr <0.05). The only observed cluster was

thus again located in medial to anterior right hippocampus.

Do spatial and temporal distance judgments have an independent
effect?
Our results so far show that partly overlapping regions in right medial to anterior hippocampus rep-

resent the spatial and temporal distance between pairs of items. Again, we were interested whether

this might be caused by the fact that the two dimensions were correlated in participants’ responses

during the memory task. As already described in the ROI approach, we removed the influence of the

second factor in an additional analysis: Before correlating our PS’ matrix with the temporal distance

matrix, we removed the effects of spatial distance with a GLM and continued the analysis with the

residuals. Conversely, before we correlated our PS’ matrix with the spatial distance matrix, we

removed the effects of temporal distance with a GLM. We investigated how this procedure affected

our searchlight findings in the hippocampus (for peak voxels: MNI 26/�18/�22 for time and 34/

�17/�22 for space, respectively). For the temporal structure analysis, the effect was still significant,

albeit slightly weaker, after removing the influence of spatial distance (T25 = 3.22, puncorr = 0.0018).

The same was true for the peak voxel of the spatial structure analysis after removing the influence of

temporal distance (T25 = 3.87, puncorr <0.0004). Thus, part of the overlap in peak regions for space

and time may be explained by the two factors being correlated in participants’ memory judgments,

but there are also significant effects of space and time after statistically removing the influence of

the other factor, suggesting that the two dimensions both contribute to pattern similarity increases

in right medial to anterior hippocampus.

Neural changes are modulated strongly by the combination of space
and time
Again, we investigated how space and time are integrated to form an event map and assessed cor-

relations between pattern similarity increases and the combined remembered spatial and temporal

distances between items by using the product of spatial and temporal distance judgments. We

found a significant effect in right medial to anterior hippocampus (see Figure 6B, peak MNI: 32/

�17/�22, T25 = 6.07; pcorr < 0.0001, small volume correction). This indicates that pattern similarity in

this region increased strongly when items were close together both in the spatial and temporal

domain.
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Figure 6. Overlapping and distinct codes for spatial and temporal event structures in the hippocampus. Results from the searchlight analysis in which

pattern similarity changes in searchlights across the whole MRI acquisition volume were correlated with distance judgments from the post-scanning

spatial and temporal memory tests. (A) Partly overlapping clusters in right medial to anterior hippocampus show significant correlations between

pattern similarity increases and spatial distance judgments, as well as temporal distance judgments; enlarged section of hippocampus shows

Figure 6 continued on next page
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Impact of objective spatial and temporal distance on pattern similarity
So far, we investigated how the remembered spatial and temporal relationships between items are

reflected in pattern similarity increases in the brain. However, in our task there are also objective

spatial and temporal relationships between items, independent of how participants remembered

them. We defined objective spatial distances between items as the Euclidean distance and the actual

temporal distance between items as the median walking time from one item to the next across all

repetitions of the route during the navigation task. We then tested the impact of objective spatial

distance, objective temporal distance and the combination of the two in an ROI analysis. We found

that objective spatial distances between pairs of items were associated with an increase in pattern

similarity across all gray-matter voxels in bilateral hippocampus (Z = �2.85, pFDR = 0.02, corrected

for 9 comparisons: 3 ROI � 3 conditions). Interestingly, no significant effects were found for objec-

tive temporal distance and the combination of spatial and temporal distance.

As objective spatial and temporal distances were designed to be independent from one another,

we did not need to control for the other factor as we did for the remembered distances. Instead, we

made use of the full factorial setup of the objective distances and tested space (high vs low) against

time (high vs low) with a 2-way repeated measures ANOVA. We found that only the factor ‘space’

was significant in bilateral (F1,25 = 8.29, p=0.008) hippocampus and in left hippocampus (F1,25 =

8.84, p=0.006), while neither the factor ‘time’ nor the interaction were significant in any of the three

ROIs.

These results suggest that there might be a different pattern of results for objective spatial and

temporal distances as compared to remembered spatial and temporal distances. While we think that

the remembered distances more accurately reflect the notion of an event map, it would certainly be

very interesting to investigate possible differences in the representation of objective distances in

future studies, maybe by systematically increasing divergence between objective distances and

remembered distances through experimental manipulation.

Discussion
In this study, we investigated the neural mechanisms underlying the formation of a de novo repre-

sentation of multiple events embedded in a spatial and temporal context. We used a realistic virtual

reality task to induce spatial and temporal interrelations between events and assessed the ensuing

change in neural pattern similarity with fMRI. We found that neural similarity in the hippocampus

after learning the spatio-temporal event structure scaled with the proximity of event memories in

space and time, providing evidence for a mnemonic event map in the hippocampus.

The hippocampal formation is the key region for coding memory for space and time in rodents

(MacDonald et al., 2011; Moser et al., 2008; O’Keefe and Nadel, 1978; Pastalkova et al., 2008)

and humans (Chadwick et al., 2015; Doeller et al., 2010; Ezzyat and Davachi, 2014; Hsieh et al.,

2014; Kyle et al., 2015; Miller et al., 2013; Nielson et al., 2015; Schapiro et al., 2016). It is also

essential for forming episodic memory, a hallmark of which is vivid recollection, or ’mental time

travel’ (Tulving, 2002). However, the two mnemonic functions have hitherto mostly been investi-

gated in isolation, even though it has been suggested that the hippocampus supports these differ-

ent functions via a common underlying mechanism, namely, the representation of multi-dimensional

Figure 6 continued

overlapping and separate voxels for the two conditions (binary masks including voxels surviving correction for multiple comparisons of the respective

second-level analysis). Bar plots show pattern similarity increases (mean ± sem) for the hippocampal peak separately for different levels of remembered

spatial and temporal distance judgments, respectively (memory data binned into quartiles). (B) The effect was strongest when the two factors of space

and time were combined and spans the border between medial and anterior hippocampus. Effects are overlaid on a structural template; the color bar

indicates T-statistic derived from nonparametric second level analyses (see Materials and methods). Bar plots on the right show parameter estimates

(mean pattern similarity increase for the peak voxel). Box indicates approximate field of view (FoV) of the acquisition volume (40 slices at 1.5 mm) for all

MR scans. Images are thresholded at pcorr <0.05 (small volume corrected, see Materials and methods).

DOI: 10.7554/eLife.16534.014

The following source data is available for figure 6:

Source data 1. Statistical maps of the searchlight results.

DOI: 10.7554/eLife.16534.015
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inter-event relationships in memory space (Eichenbaum, 2014; Eichenbaum et al., 1999). Here, we

take a first step towards demonstrating such a common coding mechanism in the human hippocam-

pus by showing that both spatial and temporal relationships between events might be represented

by a similar mechanism.

Furthermore, our study goes beyond previous findings in several important ways: Firstly, we

investigate the de novo formation of a spatio-temporal event map by tracking the task-induced

changes in pattern similarity from a pre-task baseline scan to the post-task scan. While this approach

enables us to control for the potential effects of stimulus and task confounds (see below), most cru-

cially it allows us to investigate representational changes (through comparison of post- vs pre-acqui-

sition effects) as a consequence of encountering a complex event structure during the learning

phase.

Secondly, we directly relate the specific neural changes we observe to the interrelations of the

memories that have been formed. We achieve this by mapping out the participant-specific mne-

monic event-map for the newly acquired spatio-temporal structure in an extensive post-scanning

memory test. Previous studies have related the strength of neural effects to markers of overall mem-

ory performance across participants (Hsieh et al., 2014), or have restricted their analyses to trials

with self-reported recollection success (Nielson et al., 2015). One study reports higher pattern simi-

larity during task trials for items which were later judged as ‘close’ as compared to items which were

later judged as ‘far’ (Ezzyat and Davachi, 2014). However, all of the item pairs which entered the

analyses were, in fact, separated by the same number of intervening trials in the task (i.e., two trials),

limiting the complexity of the probed memory. Here, we probed all possible interrelations between

the encountered events across spatial and temporal dimensions simultaneously. This allowed us to

reconstruct, from these pairwise ratings, the full participant-specific temporal and spatial distance

maps which were then used in the representational change analysis of our fMRI data.

Thirdly, we combine spatial and temporal aspects in our learning task and use teleporters to

reduce overlap between spatial and temporal distances. This makes the task more complex and

increases the level of abstraction required to accurately represent the events. Notably, all item pairs

are defined by a specific spatial as well as a temporal distance. Thus, for solving the memory task, it

is not sufficient to have a notion of two items belonging together or being close, but one needs to

retrieve their spatial and temporal position in the task and estimate how close they are in the respec-

tive domain separately. It should be noted that space and time were intertwined to some degree in

participants’ memory reports. However, the generally good fit between responses and actual distan-

ces and results from the additional analyses in which we statistically control for the influence of the

other factor indicate that participants were able to represent the two dimensions separately, at least

to a certain degree.

A novel approach to investigate the neural structure of a spatio-
temporal event map
In this study, we introduce a novel experimental paradigm that allows us to investigate both spatial

and temporal aspects of memory and combines a complex episode-like learning task with rigorous

experimental control. So far, most studies in the field have investigated the neural underpinnings of

memory either for space (Bellmund et al., 2016; Doeller et al., 2010; Iglói et al., 2010; Kyle et al.,

2015; Vass and Epstein, 2013; Wolbers et al., 2007) or for time (Ezzyat and Davachi, 2014;

Hsieh et al., 2014). However, in real life, episodes are always embedded in both spatial and tempo-

ral context, as recently demonstrated by a study using GPS and camera timestamps of snapshots of

real-life experiences of participants to show that pattern similarity in the hippocampus is sensitive to

spatial and temporal distances over large scales of magnitude (Nielson et al., 2015). We include

both spatial and temporal aspects in our learning task to test, in a laboratory setting, how the two

dimensions are represented after the de novo formation of an event map.

Another aspect of our task is that it induces spatio-temporal memories by exposing participants

to a realistic, 3D virtual environment. This paradigm is well suited to mimic episodic memory forma-

tion, due to both the richness of experience and the active nature of the task, in which participants

have control and agency over the to-be-encoded events. Volitional control is a crucial aspect of the

hippocampal role in memory encoding (Voss et al., 2011) and a sense of self, in turn, may be an

essential prerequisite for mental time travel (Tulving, 2002).
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However, in a complex, realistic learning task, analyses might be prone to potential confounds.

For example, items that are spatially proximal in the task (or in real life) probably also share a similar

view, especially in the seconds walking up to the item, and would therefore inflate pattern similarity.

Likewise, items that are temporally proximal would automatically have higher neural pattern similar-

ity due to autocorrelations in the slow BOLD signal. To counter these potential confounds, we limit

our fMRI analysis to the difference in pattern similarity between two separate blocks, which were

scanned both before and after the task – an approach taken in several recent fMRI studies

(Collin et al., 2015; Milivojevic et al., 2015; Schapiro et al., 2012; Schlichting et al., 2015). One

strength of this approach is that by strictly focusing on the change in pattern similarity from PVT pre

to PVT post we can exclude effects of temporal proximity between items in the PVT tasks and of a

priori differences in neural pattern similarity that some pairs of items might elicit in individual partici-

pants, an aspect that cannot easily be excluded by using pairs of autobiographical photographs, for

example.

Taken together, the combination of these advances gives us access to study the spatio-temporal

organization of memory in humans – spanning a triad between an experimentally created objective

’external world’ as simulated with our realistic, life-like task, a subjective representation of this exter-

nal world in participants’ minds as assessed with the extensive memory testing, and the investigation

of how this subjective representation is reflected in the brain as expressed in changes in neural pat-

terns associated with an event map.

Mechanisms underlying spatial and temporal memory
Are similar or different neural mechanisms supporting spatial and temporal memory? For space, the

existence of place cells (O’Keefe and Dostrovsky, 1971) and grid cells (Hafting et al., 2005) has

suggested that space is represented in an abstract manner, potentially in the form of a ’cognitive

map’ (O’Keefe and Nadel, 1978). In contrast, the representation of temporal structure has been dis-

cussed more in terms of analogous mechanisms: chaining models (Axmacher et al., 2010;

Jensen and Lisman, 2005) argue that serial events are linked through pairwise binding between suc-

ceeding items (through LTP-like mechanisms) and that the recall of one item triggers recall of the

subsequent item. The temporal context model (Howard and Kahana, 2002; Howard et al., 2005)

suggests that an episodic element is ’tagged’ to slowly changing, random neuronal background

activity present at the time of encoding; this temporal context is then reinstated during recall and

provides information about how long ago the episode was experienced by assessing the degree of

disparity between the reinstated and the present neuronal background (i.e. the greater the disparity,

the more time has passed). In both of these models, temporal structure in memory can be seen as a

mere by-product of basic neuronal processing. However, the recent findings about internally gener-

ated sequential firing of neuronal ensembles (Pastalkova et al., 2008) and context-specific time cells

(MacDonald et al., 2011, 2013) are consistent with the notion of a more active mechanisms in tem-

poral memory, which might, in fact, be very similar to mechanisms in spatial memory (Howard and

Eichenbaum, 2015). In humans, it has also been shown that hippocampal damage leads to impair-

ments in both spatial and temporal memory tasks (Spiers et al., 2001; Konkel et al., 2008) and that

the hippocampus is active during active retrieval of temporal sequences as well as spatial layouts

(Ekstrom et al., 2011), even though dissociable networks for the two retrieval domains were

observed outside of the hippocampus. In seeming contrast with our results, one study investigating

pattern similarity during retrieval of spatially near versus far intervals and temporally near versus far

intervals found an interaction effect in right hippocampus, with increased pattern similarity for spa-

tially far compared to spatially near retrieval trials and the opposite effect for temporally near versus

far retrieval trials (Kyle et al., 2015) whereas we find a pattern similarity increase both for spatially

close and temporally close pairs of items. However, this discrepancy can probably be explained by

methodological differences: we recorded our data not during active retrieval, but during two inde-

pendent tasks in which participants had to passively view items, and then related the pattern similar-

ity difference between these two tasks to an external behavioral marker, i.e. participants subjective

distance ratings, which was collected at a later time point. Another study found decreased pattern

similarity in hippocampal subfields CA2/CA3/DG between trials in a spatial retrieval condition and a

temporal retrieval condition when both domains were correctly retrieved compared to trials when

only one of the domains was correctly retrieved, and the opposite effect in parahippocampal cortex

(Copara et al., 2014). Again, it is difficult to directly relate this study to our results, since the pattern
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similarity differences were found in a retrieval task and in hippocampal subfields, which we did not

investigate in this study. However, it would be interesting to also acquire data during the memory

test to examine whether actively retrieving spatial and temporal relationships affects neural pattern

similarity. Our data support the notion of a common hippocampal coding mechanism in space and

time: neural similarity scales with the proximity of event memories in both dimensions. Notably,

while we found that spatial and temporal distance are to some degree correlated in participants’

memory, the observed effect is still present for each domain after statistically controlling for the

effect of the other domain, suggesting that both space and time contribute to the observed pattern

similarity increase, possibly in an additive manner. The observed strong effect for the combination of

space and time further suggests that the two dimensions might be integrated in a common dimen-

sion in the hippocampus, i.e. spatio-temporal proximity, supporting the formation of hierarchical

structures in a memory space (Collin et al., 2015; Eichenbaum et al., 1999; McKenzie et al., 2014).

Here we provide evidence for a mapping of the entire event structure in the hippocampus. The hip-

pocampal event-coding patterns are thus not restricted to representing event relationships per se,

but rather scale with mnemonic distance in a spatio-temporal event map. One alternative explana-

tion for the increased pattern similarity could be that in the second PVT participants covertly retrieve

the environment in which they encountered the object in the learning task and that the effect might

be partly related to the higher visual similarity in the imagined scene. Several points argue against

this interpretation. Firstly, the views associated with nearby boxes are not necessarily very similar, for

example due to rotations during navigation between the boxes or large buildings obstructing the

view at one location but not the other. Secondly, we observe the increased similarity for temporally

close items as well, which due to the teleporters are not necessarily spatially close. Thirdly, if the

effects relied solely on similarity in visual scenes, we would expect to see very prominent pattern

similarity increases in visual areas. However, no cluster survived correction for multiple comparisons

outside of hippocampus. Therefore, we believe that our findings reflect memory for spatial and tem-

poral relationships, rather than visual similarity.

One interesting finding here is that we observed a different pattern of results regarding the neu-

ral representation of objective spatial distances compared to remembered distances. It is conceiv-

able that the spatial and temporal distances as they are remembered are more indicative of the

event map which participants have formed, but the different pattern of results for the objective dis-

tances raises the interesting question how objective distances are translated into subjectively

remembered distances, and how this is reflected in the neural representation. In our behavioral anal-

yses we found that memory judgments in one domain were biased by the distances in the other

domain, but no domain seemed to have a higher impact than the other. It is very likely that other

factors in addition to objective spatial and temporal distance impact how a spatio-temporal event

map is constructed and remembered, and it will be very interesting in future studies to identify these

factors.

Conclusion and outlook
By showing that both the temporal and the spatial relationships between multiple events are repre-

sented in the hippocampus, we took a first step towards unraveling the link between the multi-fac-

eted external world, participants’ memories of it and the neural coding mechanisms supporting the

formation of a multi-dimensional mnemonic structure. Such event maps are likely not restricted to

the physical dimensions of space and time. Elements in memory could be arranged according to a

variety of factors, for example social aspects (Kumaran and Maguire, 2005; Kumaran et al., 2012;

Tavares et al., 2015) or abstract concepts (Milivojevic and Doeller, 2013). It would be interesting

to investigate in further studies whether nuanced differences in these dimensions can be read out in

hippocampal patterns as well. Another exciting future avenue for research could be that – if mne-

monic relatedness in participants’ minds is reflected in pattern similarity – one can reverse the logic

and use participant-specific similarity maps to make inferences about their internal record of experi-

ence (Morris and Frey, 1997; Wood et al., 1999). In summary, the present study sheds light on the

neural mechanisms supporting the formation of a spatio-temporal event map in memory by leverag-

ing a novel, life-like learning task in combination with rigorous experimental control. More broadly,

it may be a first step towards mapping out the representation of the external world in the human

mind – here along physical dimensions, but potentially also along more abstract ones.
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Materials and methods

Participants
Based on an effect size of d = 1.03, which was found in a previous similar study from our lab

(Milivojevic et al., 2015) in hippocampus, an alpha level of 0.001 (necessary for corrections for mul-

tiple comparisons in fMRI data) and power of 0.95, a sample size of N = 26 was calculated to be nec-

essary using G*Power (http://www.gpower.hhu.de/). 26 participants signed up for the study through

a University-wide online recruitment system. The mean age of the group was 24.88 ± 2.21 (mean ±

std) and 11 were female. All participants underwent a familiarization phase in Donderstown, so they

had good knowledge of the city (see below). All participants gave written informed consent, filled in

a screening form to ensure they did not meet any exclusion criteria for fMRI and were compensated

for their time. The study was approved by the local ethics committee (CMO Regio Arnhem-

Nijmegen).

Virtual city environment ‘Donderstown’ and familiarization phase
For the purpose of providing a realistic, life-like episodic learning experience, we developed a 3D

virtual city environment using the Unreal Development Kit for Unreal Engine 3 (https://www.unreal-

engine.com/previous-versions). The city consists of a complex network of streets and features resi-

dential as well as commercial areas. Distances in the VR city are difficult to translate to real-world

settings, because they are based on arbitrary units that depend on the exact scaling of the 3D

meshes. Relating the eye-level height of the first-person player (assumed to be at 1.60 m) to these

arbitrary units, one side length of the square city roughly translates to 390 m. Walking this side

length takes approximately 36 s, putting the walking speed with 39 km/h well above normal walking

speed. However, this was necessary to achieve a sufficient number of repetitions in reasonable time.

See Figure 1 for a top-down overview of Donderstown and http://www.doellerlab.com/donders-

town/ for further images. In the experiment, participants had to navigate through this complex vir-

tual environment and judge distances in it (see below for details on the task). During piloting of this

study we observed that it was difficult for most participants to accurately estimate Euclidean distan-

ces if the city environment was novel to them. Some participants showed signs of disorientation,

especially with regard to those parts of the route in which they were teleported through the city (see

below). As our hypotheses depended crucially on the use of these teleporters, we decided to only

include participants with extensive prior knowledge of the city. Thus, all participants were required

to have taken part in another study from our lab, which pre-exposed them to the virtual city, Don-

derstown. In this previous study, which took place on a different day (1–21 days prior to participation

in the current study), participants had to learn the names and locations of specific houses in this city

and estimate directions between these houses. The task was unrelated to the current task but

exposed participants to Donderstown for approximately 2 hr and thereby ensured that they had

formed a robust spatial representation of the city. This experimental session was crucial to ensure

successful learning of the spatio-temporal trajectories. Notably, participants did not acquire any

knowledge about the position of the wooden boxes or teleporters (see Figure 1 and below), as nei-

ther was present in the familiarization task.

Experimental sessions
The experiment consisted of five parts (see Figure 3), two of which took place in the MRI scanner.

First, participants were asked to freely navigate through Donderstown for 10 min to refresh their

knowledge of the city. This session was performed in front of a computer screen outside of the scan-

ner. Secondly, participants were taken inside the scanner and performed the picture viewing task

(’PVT pre’), in which 17 objects were presented 12 times in random order. Thirdly, they were taken

out of the scanner and performed the route learning task in front of a computer screen in a behav-

ioral lab. In this learning task, 16 objects were arranged at specific locations along a route and the

spatial and temporal distances between them were varied independently in a 2-by-2 design. After

the learning task, participants were taken inside the scanner again for the picture viewing task (’PVT

post’), in which 17 objects were presented 12 times in the same random order as before. Lastly, par-

ticipants performed three different memory tests outside of the scanner: a free recall test, a distance

judgment test and a map test. All of the tasks are described in detail below.
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Spatio-temporal learning task
The task is similar to playing a computer game and involves first-person navigation through a 3D vir-

tual city environment, Donderstown. In the learning task, participants started at a specific point in

the city and then had to follow a predefined route through the city. At the beginning, participants

were unfamiliar with the route, therefore it was marked by presenting orange traffic cones in regular

intervals. Participants’ task was to follow the traffic cones until they arrived at a wooden box; then

they were required to touch the box. The box then opened and the content of the box was revealed

by presenting a single object on a black background. After 2 s, the black screen with the object dis-

appeared and participants continued to follow the route marked by the traffic cones. Participants

encountered 16 different objects along the route, always hidden in a wooden box. Pictures depicted

various every-day objects (e.g. a football, apple), the requirement being that they would reasonably

fit inside the wooden box. The next box (and the traffic cones leading up to it) would only appear

after the previous box had been opened (i.e. touched).

Crucially, at specific points during the route, participants encountered a teleporter after opening

a box. When they touched this teleporter, they were transported immediately to a completely differ-

ent part of the city, where they would encounter the next box to be opened. These teleporters were

always in the same position along the route and created experimental situations in which the next

box was opened after only a small temporal delay while maintaining long spatial distance between

the two boxes. This was necessary for rendering the two factors of time and space independent of

each other (see Figure 1—figure supplement 3 for a comparison of spatial and temporal distances;

also note that in some participants’ memory, the two factors were not independent from one

another, but correlated). After participants opened the last box in the route, a black screen

appeared for 15 s and participants found themselves back at the start of the route, where they again

followed the orange traffic cones until they found the first box in the route again.

A wooden box at a particular position during the route always contained the same object for a

given participant (between participants, the content of the wooden boxes was randomized). Thus,

an object was associated with a particular position in Donderstown, and it was always encountered

in the same temporal order. The route was taken by participants 14 times in total.

After 6 repetitions, the orange traffic cones were no longer shown and participants had to find

the route on their own. During piloting, it had become evident that participants tended to underesti-

mate their dependence on the traffic cones and would sometimes be surprised by the difficulty of

navigating in the absence of the cones. Therefore, we included an ’emergency help’ procedure that

was active for 5 repetitions after we removed the traffic cones. When participants felt they had got

lost, they were instructed to return to the position of the last box or the last place they were certain

was on the correct route and press the button ’H’ on the keyboard. On this, all of the traffic cones

leading up to the next box appeared at the same time and gave participants an opportunity to find

their way again. As this was a free navigation task, duration for the completion of the task varied

considerably between participants, lasting 71.63 ± 13.75 (mean ± std) minutes. In summary, the

learning task in this study was developed to induce a spatio-temporal structure between different

objects by presenting them repeatedly and consistently at a specific place and in a specific temporal

order.

Memory tasks
Memory was assessed with three different tasks, (1) a free recall task, (2) a spatial and temporal dis-

tance judgment task and finally a (3) map task:

During the free recall task, participants named all objects, which they encountered during the

learning task using a microphone. They were given two minutes in this task and were instructed to

name the objects in the order in which they came to their mind.

In two distance judgment tasks, participants were asked to rate the spatial and temporal distance

between pairs of objects (see Figure 1B). This task comprised 240 trials and lasted 45–70 min

(depending on participants’ speed). There were two conditions: one, in which participants were

required to rate the distance between objects with regard to their Euclidean spatial distance (spatial

memory task), and secondly, to rate the distance between objects with regard to the time it had

taken to walk from one object to the other (temporal memory task). During every trial, participants

were shown two objects that they had seen in the learning task and then made their distance
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judgment by sliding a bar with the mouse on a range from ’close together’ to ’far apart’. Participants

were instructed to base their rating on the smallest and largest distance that was present in the task,

i.e. the smallest distance in the task would correspond to the bar position closest to the ’close

together’ end of the scale whereas the largest distance in the task would correspond to the ’far

apart’ end of the scale. To make the task easier for participants, conditions were sampled in 8

blocks: 30 trials of one condition were shown in one block, then there was a break of 20 s and then

the next block would start with 30 trials from the other condition. Before each block, the condition

of the next block was shown and participants had to press a button to continue. In addition, either

the cue ’space’ or ’time’ was displayed in every trial above the pair of objects to be rated. Whether

the test started with the ’time’ or the ’space’ condition was counterbalanced across subjects. Partici-

pants were explicitly instructed that the spatial and temporal distance ratings were in some cases

quite different from one another. The instruction explicitly mentioned that items could still be close

together in space even when they were at different ends of the route (i.e. far apart in time) due to

the route leading back and forth through the city, and it was also pointed out that items could be

far apart in space but close together in time due to the teleporters. Notably, this instruction was

only given to participants immediately before the distance judgment task, i.e. after the imaging part

was already concluded, so the effects we find in the fMRI data cannot be explained by this explicit

instruction.

The final map test lasted approximately 5 min and involved 16 trials. In every trial, participants

were shown one of the 16 objects encountered in the city. Then, they saw a schematic aerial view of

Donderstown and had to indicate where in the city the object had been located by moving the

mouse to the memorized location. To make sure participants could translate their first-person per-

spective of the city during the learning task to a topdown view, certain prominent landmarks in the

city were marked with symbols and pointed out to them before the start of the memory task.

Picture viewing task during scanning
Before (picture viewing task, PVT pre) and after (PVT post) the learning task, pictures of 17 different

objects (see Figure 1—figure supplement 1) were presented repeatedly on a black background. 16

of these objects were used in the learning task, while 1 object only served as a target and was not

shown during learning. Whenever participants saw this target, they were asked to press a button to

ensure that they attended the stimuli throughout the PVT pre and post blocks. In 25 participants,

the target was detected in 98.33 + 4.17 percent of cases in both PVT pre and PVT post blocks. Due

to malfunctioning of the button box in the PVT post block target detection data from one participant

could not be recorded.

During each picture viewing task, every object was shown 12 times, once in each of 12 blocks in

pseudo-random order (see below). Between blocks, there was a 30 s break. In total, each of the two

picture viewing tasks took 23 min and included 204 trials. In every trial, participants saw the picture

for 2500 ms, followed by a fixation cross until the next trial started (intertrial interval, ITI). The next

trial commenced either two or three TRs after the start of the previous trial (2 TRs in 50% of trials; 3

TRs in the other 50% of trials, with both types of inter-trial intervals, ITIs, randomly assigned to

trials).

Since we were interested in the changes in pattern similarity that were the result of the learning

task (and not due to spurious timing differences between the PVT pre and PVT post), we used identi-

cal PVT pre and PVT post blocks for every participant. More specifically, we created one ’recipe’ for

every participant. This recipe described which object was shown in which trial and also defined the

distribution of the different ITI types. While the recipe for each participant was created to be semi-

random (see below) and was, in fact, different for every participant, we re-used the recipe from PVT

pre for PVT post within a participant, thereby ensuring that the two tasks were absolutely identical.

In theory, participants could have realized that the order in the second task was repeated from the

first, but as there were 204 trials, it seems unlikely that they remembered sequences of multiple

items. In fact, none of the participants reported to have noticed a specific order.

For creating the recipe, we took into account that every object was supposed to be shown only

once in every block. Therefore, we shuffled the order of the 17 objects 12 times and concatenated

the resulting vector. Then, we assigned an ITI of either 2 or 3 TRs to every trial, balancing the occur-

rence across the entire experiment. Lastly, we performed a one-factor ANOVA (with the 17 different
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objects as groups) on the positions of every object in this recipe. If this ANOVA was significant

(meaning that the positions of at least one of the objects were consistently early or late in the

blocks), we discarded the recipe and created a new one. This measure was taken to prevent huge

imbalances in the ordering of the objects. As we always compared pattern similarity from the pre

and the post blocks in our analysis (see below), any effects that are solely due to spurious order

effects should be present in both sessions and therefore cannot explain differences in neural pattern

similarity.

Image acquisition
MRI data were collected on a 3T Siemens Skyra scanner (Siemens, Erlangen, Germany). A high-reso-

lution 2D EPI sequence was used for functional scanning (TR = 2270 ms, TE = 24 ms, 40 slices, dis-

tance factor 13%, flip angle 85 degree, field of view (FOV) 210 � 210 � 68 mm 3, voxel size 1.5 mm

isotropic). The field of view (FOV) was aligned to fully cover the medial temporal lobe, parts of ven-

tral frontal cortex and (if possible) calcarine sulcus. Functional images for PVT pre and PVT post were

acquired in separate sessions. In addition to these partial-volume acquisitions, 10 scans of a func-

tional wholebrain sequence were also acquired (usually in both sessions, but due to time pressure

sometimes only in one session) to improve registration during preprocessing. The sequence settings

were identical to the functional sequence above, but instead of 40 slices, 120 slices were acquired,

leading to a longer TR (6804.1 ms). A 0.8 mm structural scan was acquired for every participant (TR

= 2300 ms; TE = 315 ms; flip angle = 8˚; in-plane resolution = 256 � 256 mm; number of slices =

224, voxel resolution = 0.8 � 0.8 � 0.8 mm3). Lastly, a gradient field map was acquired (for N = 21

participants), with a gradient echo sequence (TR = 1020 ms; TE1 = 10 ms; TE2 = 12.46 ms; flip angle

= 90˚; volume resolution = 3.5 � 3.5 � 2 mm; FOV = 224 �224 mm).

fMRI preprocessing
Preprocessing of functional images was performed with FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

Both the main functional scans and the short wholebrain functional scan were submitted to motion

correction and high-pass filtering at 100 s. For those participants with a fieldmap scan, distortion

correction was applied to both functional data sets. No spatial smoothing was performed. The two

functional datasets (PVT pre and PVT post) were then both registered to the preprocessed mean

image of one wholebrain scan (if a wholebrain scan was acquired in both sessions, the first whole-

brain scan was used for both). This was done to ensure that voxels from these two separate sessions

were corresponding to the same anatomical location. The two brain masks from the PVT pre and

PVT post blocks were also registered to the wholebrain space and intersected: only voxels which

were covered in both sessions were analyzed during the next step. The whole brain functional

images were registered to the individual structural scans. The structural scans were then in turn nor-

malized to the MNI template (at 1 mm resolution). Grey-matter segmentation was done on the struc-

tural images and the results were mapped back to the space of the wholebrain functional scan for

later use in the analysis.

Representational similarity analysis
Representational similarity analysis (RSA; Kriegeskorte et al., 2008) was carried out separately for

the PVT pre and PVT post blocks. The preprocessed scans were loaded into Matlab as 4D matrices.

For every voxel, movement correction parameters were used as predictors in a GLM with the voxel

time series as dependent variable. The residuals from this GLM (i.e. what could not be explained by

motion) were then taken to the next analysis step. As the presentation of images in the PVT pre and

post blocks was locked to the onset of a new volume (see above), the third volume after image onset

was selected for every trial (effectively covering the time between 4540–6810 ms after stimulus

onset). Only data for the 16 objects that were shown in the city were analyzed, discarding data for

the target object. Data were then sorted according to object identity and repetition, yielding a 16

� 12 matrix for every voxel (16 objects, 12 repetitions). Resulting data were then subjected to two

different types of analyses, (1) a region of interest (ROI) based analysis and (2) a searchlight analysis.
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ROI analysis
Hippocampal masks were created using the hippocampal ROIs of the probabilistic Harvard-Oxford

atlas provided by FSL (Desikan et al., 2006; Makris et al., 2006), thresholded at a probability level

of 0.25. We generated one mask for bilateral hippocampus, one for only the left, and one for only

the right hippocampus. These masks were then coregistered to the subject specific functional space.

Then, the masks were intersected with the subject-specific grey-matter masks, leaving only grey-mat-

ter voxels in the hippocampus. The trial-wise values for every voxel within this mask were then

extracted and the voxel pattern for every object in every repetition was correlated with the voxel

pattern of itself and every other object in every other repetition. Thus, every trial was correlated with

every other trial, except combinations of trials within the same of the 12 blocks. Mean correlation

coefficients for every possible pair of objects across repetitions were calculated, yielding a 16-by-16

cross-correlation matrix for every ROI and every PVT block. Subsequent analysis of this cross-correla-

tion matrix (see below) was identical for the ROI and searchlight approach.

Searchlight analysis
Instead of including all voxels within an anatomically defined region, all voxels in a sphere around a

given voxels were studied in the searchlight analysis, allowing a more regionally specific analysis in

the entire field of view. Around every voxel of the subject-specific combined brain mask, a sphere

was formed with a radius of 6 voxels (9 mm). Within this sphere, only grey-matter voxels were con-

sidered. If less than 30 voxels remained, the searchlight was not analysed further. Within every valid

searchlight, the approach was analogous to the ROI analysis: the voxel pattern for every object in

every repetition was correlated with the voxel pattern of itself and every other object in every other

repetition. So, again, every trial was correlated with every other trial, except combinations of trials

within the same block. Mean correlation coefficients for every possible pair of objects across repeti-

tions were calculated, yielding a 16-by-16 cross-correlation matrix for every searchlight.

Analyzing the cross-correlation matrices
The 16-by-16 cross-correlation matrices for every ROI and every searchlight reflected the mean pat-

tern similarity between pairs of objects. We calculated similarity matrices separately for the PVT pre

and the PVT post block, reflecting the neural response to the objects when participants had not

seen them in the virtual city context, the other reflecting the neural response to the objects after the

spatio-temporal relationship between objects had been learned. Subtracting the PVT pre similarity

matrix from the PVT post matrix resulted in a matrix that reflected the change in pattern similarity

for all pairwise comparisons of items that is due to the learning task. In a second step, the pattern

similarity difference matrix (PS’ matrix) for every ROI and every searchlight was related to an external

variable which was derived from the behavioral tasks, for example the participant-specific remem-

bered spatial distances for all pairs of items, which were derived from the distance judgment that

was performed outside of the scanner at the end of the experiment. In our main analyses, we corre-

lated the PS’ matrix with the remembered spatial and temporal distances as derived from partici-

pants’ responses in the memory test, as well as with the combination of the spatial and temporal

distance, using Spearman correlation. The size of the resulting correlation coefficient describes the

fit between the PS’ matrix, i.e. the pattern similarity increase from PVT pre to PVT post, and a given

variable. For the searchlight analysis, the correlation coefficient describes the relationship only for

the given searchlight, and it is assigned to the center voxel of the searchlight. Iterating through all

searchlights in the field of view, this results in a brain map of correlation coefficients for a participant

that can then be taken to second-level testing (see Figure 4—figure supplement 1 for an illustration

of this). For the ROI analyses, the correlation coefficient reflects the relationship between pattern

similarity increase and the external variable for the entire ROI. Here, we applied an additional boot-

strapping procedure to estimate the strength of the relationship (for the searchlight approach, this

would have been computationally too demanding). For this, we shuffled the two matrices, which

were used to compute the correlation coefficient (PS’ and the external variable) against one another,

so that the relationship between them was random. We then calculated a Spearman correlation for

these shuffled data and repeated the procedure 10,000 times. Thus, for every participant, we gained

a surrogate distribution of Spearman correlation coefficients, which were based on shuffled data and

compared our real correlation coefficient for a given ROI against this random distribution (see
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Figure 4 for an illustration of this procedure). To this end, we gained a z-statistic for every partici-

pant, reflecting how normal or extreme the real correlation coefficient was when compared to the

random distribution. The resulting z-statistic was then tested across participants for the ROI

analyses.

Pattern similarity control analyses
Because temporal and spatial distance estimates were correlated in some participants’ behavioral

ratings, it could be that effects we find for one domain can be explained by the correlation with the

other domain, and that the domain has no unique contribution to the effect we find. Therefore, we

performed a control analysis (both for the ROI analysis and for the searchlight analysis) in which we

investigated whether there were unique contributions of the two domains: Before correlating pattern

similarity increases with the remembered temporal distances, we performed a GLM in which we

entered remembered spatial distance as a predictor and pattern similarity increases as criterion.

Then, we took the residuals of this GLM (i.e. variance not explained by remembered spatial distance)

and correlated these residuals with the remembered temporal distances. Conversely, before we cor-

related pattern similarity increases with the remembered spatial distances, we performed a GLM

modeling the effects of remembered temporal distances and calculated the correlation with remem-

bered spatial distances with the residuals of this analysis. We then took these correlation coefficients

to the same second-level analysis as described below for the other analyses.

Second-level testing of RSA results
For the ROI analysis, the z-statistics were averaged across participants and tested for significant

deviance from zero using a non-parametric approach: the observed mean z-statistic was compared

to a distribution derived by performing random sign-flips on the participant-specific values and aver-

aging them. This was repeated 10,000 times, yielding a null distribution of average z-statistics with

random signs. Then, the real average was tested against this distribution of random averages and

the resulting z-statistic reflects how much the real average deviates from the random distribution.

This procedure closely follows methods applied in other studies using Representational Similarity

Analysis (Schlichting et al., 2015; Stelzer et al., 2013). For the ROI approach, we also corrected for

15 multiple comparisons (3 ROI � 5 effects) by applying false discovery rate correction

(Benjamini and Yekutieli, 2001) to the probability values from the non-parametric second-level test;

reported p-values are FDR corrected.

For the searchlight analysis, the resulting correlation coefficient brain maps were tested in a sec-

ond level analysis to identify regions in which correlation coefficients consistently differed from zero

across participants using a non-parametric equivalent of the one-sample t-test implemented in the

randomise package provided by FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise; Winkler et al.,

2014), using 5000 random sign-flips and threshold free clustering. Results as reported above and

denoted with pcorr are corrected with FSL-randomise with a small volume correction for the bilateral

hippocampus, based on the same hippocampus mask that was used in the ROI approach. Note that

in both the ROI and the searchlight approach, we tested whether correlation coefficients were con-

sistently negative as we expected low spatial or temporal distance to be associated with high pat-

tern similarity in the brain.
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