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Abstract
Today, crude oil is the main resource for production of liquid fuels. As the demand
increases, utilization of alternative resources becomes more and more urgent. Thus,
the development of new and continued research on established process technologies is
important.

The scope of this Master’s thesis has been the catalytic hydrogenation of CO for produc-
tion of linear, long chained hydrocarbons, known as the Fischer-Tropsch process. The
core of a chemical plant is the reactor, thus the ultimate goal is to design the optimal
reactor path layout for the process, i.e. find number of reactor stages, cooling media
temperature, heat transfer area density, molar feed ratio and the inclusion or omission of
separation of products. A kinetic model presented by Todic et al. [1], implemented in
MATLAB R2012b, has formed the basis for the calculations.

The simulations confirmed that the performance increases as the degrees of freedom
was increased. The supply of additional H2, prior to the reactor stages, yielded a major
increase in production of key component, C11+. The optimal design, disregarding any
economical aspects, was a three-stage design with a space time, σ , equal to 0.8m3 s/kg,
a molar feed ratio , xH2

/xCO , equal to 1.5, and separation of water and products between
the reactor stages. The design resulted in a production of the key component equal to
12.8wt% of the feed flow. The exclusion of the separation between the reactor stages
yielded a decrease of 10.3% in the production.

The utilized method of reactor staging yields an optimal reactor design. The real-life
feasibility of the design is still unknown as no economical aspects have been taken into
consideration.
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Sammendrag
Råolje er i dag hovedkilden til flytende drivstoff og med verdens økende etterspørsel vil
utnyttelse av alternative kilder være uunngåelig. Forskning på eksisterende, og utvikling
av ny, prosessteknologi er av denne grunn viktig for å kunne utnytte verdens resurser på
best mulig måte.

Reaktoren er kjernen i et prosessanlegg. Det ultimate målet er å designe en optimal pro-
sess ved å bestemme antall reaktortrinn, kjølemediumstemperatur, varmeoverførings-
arealtetthet, molart fødestrømsforhold og separasjon av produkter. Masteroppgaven be-
skriver katalytisk hydrogenering av CO for produksjon av lineære, langkjedede hydro-
karboner, kjent som Fisher-Tropsch prosessen. En kinetikkmodell presentert av Todic et
al. [1], implementert i MATLAB R2012b, har dannet grunnlaget for beregningene.

Simuleringene bekreftet økt ytelse ved økt antall frihetsgrader. Tilførsel av ekstra H2 til
prosessen ved innløpet til hvert reaktortrinn førte til en markant økning i produksjonen
av nøkkelkomponent, C11+. Ved å utelate økonomiske aspekt ble det optimale designet
funnet å bestå av tre reaktortrinn, en oppholdstid, σ , lik 0.8m3 s/kg, et fødestrømsfor-
hold likt 1.5, og separasjon av vann og produkter mellom hvert reaktortrinn. Designet
resulterte i en produksjon av nøkkelkomponent lik 12.8% av fødestrømmen. Ved å fjerne
separasjonen mellom trinnene minket produksjonen av nøkkelkomponent med 10.3%.

Prosessberegningsmetoden benyttet i denne masteroppgaven gir et optimalt reaktorde-
sign. Muligheten for å gjennomføre dette reaktordesignet i virkeligheten er ikke kjent da
økonomiske beregninger ikke er gjennomført. norsk
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Nomenclature
Latin letters

Symbol Explanation Unit

a Heat transfer area density m2/m3

A Heat transfer area m2

Ai Pre-exponential factor -
Cp Heat capacity kJ/(kgK)

Cp,F Heat capacity kJ/(kgK)

Ea,i Activation energy kJ/mol
∆E Desorption energy kJ/mol
∆Hi Heat of reaction kJ/mol
∆rH j Heat of reaction kJ/mol
J Cost function -
ki Kinetic parameter -
Ki Kinetic parameter -
M Molecular weight kg/kmol
nc Number of components -
ncol Number of internal collocation point -
ns Number of reactor stages -
Pi Partial pressure, i = CO,H2,H2O MPa
Ptot Total pressure bar
PC11+

Production of key component -

r̃ j Reaction rate kmol/(m3 s)
R Universal gas constant kJ/(molK)

R̃i Component reaction rate kg/(m3 s)
[S] Fraction of vacant catalyst sites -
T Temperature K or ◦C
TF Feed temperature K or ◦C
Tmax Max temperature ◦C
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NOMENCLATURE

Latin letters continued
Symbol Explanation Unit

Tref Reference temperature K
TW Cooling media temperature K or ◦C
uA Design function, catalyst activity -
uF Design function, distribution of extra feed -
uH Design function, heat transfer area distribution -
uM Design function, mixing -
uT Design function, cooling media temperature profile -
uS Design function, separation -
U Overall heat transfer coefficient kJ/(sm2 K)

U Solution space -
V Volume m3

VR Total reactor volume m3

W Feed flow kg/s
W0 Feed flow kg/s
xi Mole fraction, i = H2,H2O -
E Diagonal matrix -
E0 Diagonal matrix -
f Model, ODE -
h Nonlinear inequality constraints -
I Unity matrix -
J̃ Partial derivative -
K Diagonal matrix -
K0 Diagonal matrix -
R̃ Component reaction rate vector kg/(m3 s)
R̃0 Component reaction rate vector kg/(m3 s)
u Manipulated variables -
x State vector -
x0 State vector, initial guess -
xS Separation function -
z State vector -
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NOMENCLATURE

Latin letters continued
Symbol Explanation Unit

z0 State vector, initial guess -

Greek letters

Symbol Explanation Unit

α Feed distribution kg/(m3 s)
αi Chain growth probability -
β Dimensionless heat transfer coefficient -
γ Dimensionless total mass flow -
γend Dimensionless total mass flow at outlet -
ωC11+

Weight fraction key component -

ωend
C11+

Weight fraction key component at outlet -

ωF,i Weight fraction extra feed -
ωi Weight fraction -
ωi,0 Weight fraction feed -
ωkey Weight fraction key product -
ω0

CO Weight fraction CO at inlet -
ωend

CO Weight fraction CO at outlet -
ρcat Bulk density catalyst kg/m3

ρproducts Density products kg/L
σ Space time m3 s/kg
θ Dimensionless temperature -
θF Dimensionless temperature additional feed -
θW Dimensionless temperature cooling media -
ξ Dimensionless volume -
∆ξ Dimensionless reactor stage volume -
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1 Introduction
The world as we know it today is dependent on fossil fuels. In total, fossil fuels claim a
market share of 87% [2] of the total world energy consumption. As the world’s energy
demand continues to increase and the environmental impacts become more severe, the
development of new, and continued research on known, process technologies is vital.
Input factors such as raw material and energy should be efficiently utilized to produce
valuable products, with the use of minimal equipment volumes, areas and energies. The
development of process technologies with enhanced material and energy efficiencies will
improve the utilization of the raw material at hand.

The core of a chemical plant is the reactor. A method for systematic staging of chem-
ical reactors has been applied to the Fischer-Tropsch (FT) process based on a kinetic
model published by Todic et al. [1]. Reactants pass through a series of functions or
basic operations to form the desired products. The basic operations are represented by
design functions on the reactor path. The design functions are fluid mixing (dispersion),
distribution of heat transfer area, cooling media temperature, distribution of additional
feed points, catalyst dilution distribution and separation of products. The conceptual
reactor design problem is solved as an optimal control problem. The realization is a
staged process string of multi-functional units where the criterion has been to maximize
the production of the desired product in a given volume.

The model has been implemented in MATLAB R2012b. Physical data has been extracted
from UniSim Design R400. The model is used to find the optimal mixing configuration,
heat transfer area, cooling media temperature distribution and feed distribution which
yields a reactor path that produces as heavy hydrocarbons as possible.

1





2 Background – The Fischer-Tropsch
Process

The gas-to-liquids (GTL) process leads to the production of liquid hydrocarbons from
natural gas via the production of synthesis gas (syngas). The two main production steps
in a GTL plant are the syngas production and the FT synthesis, see Figure 2.1. Syn-
gas consists primarily of CO and H2. The catalytic hydrogenation of CO which yields
H2O and a large range of liquid, long chained, linear hydrocarbons is known as the FT
process. The long chained products consist primarily of n-alkanes (paraffins), 1-alkenes
(olefins) and oxygenated hydrocarbons [3], while secondary products include branched
hydrocarbons, alcohols, aldehydes and carboxylic acids [4]. The products are used to
produce high-quality diesel fuels and gasoline. The process is considered a good option
for production of clean transportation fuels and chemicals [5]. It is also of great import-
ance as it makes the production of industrial organic chemicals from simple, inorganic
molecules viable.

Syngas 

manufacture 

FT 

synthesis 

O2 H2O 

Hydrogenation/ 

hydrocracking 

Naphtha, LPG 

Kerosene 

Gasoil 

Specialities 

CO + x H2 -CH2- Natural gas 

Coal 

 

Figure 2.1: The main steps in a GTL plant.

The FT process dates back to the beginning of the 20th century [3]. The first experiments
with syngas were performed by Sabatire and Senderens in 1902 [3,4,6], who found that
the reduction of CO to CH4 was catalyzed by Ni. The process is named after the two
German scientists Fischer and Tropsch, who in 1923 published their work with syngas
and alkalized iron catalysts. Their process synthesis was patented in 1925 [6]. The first
plant, utilizing the FT process, was constructed by Ruhrchemie in 1933 [3,4]. During the
Second World War FT plants were operated in Germany1 as well as in Japan, Manchuria

120% of the German gasoline demand was produced by coal-to-liquid (CTL) plants [6].
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2 BACKGROUND

and France. However, after the war, these plants were shut down due to economical
reasons.

Today, the main resource for production of liquid fuels and other bulk chemicals is crude
oil [3]. As the world’s consumption continues to increase it is important to find and
utilize other resources. The interest in the FT process has been influenced by scenarios
of the supply and demand of the fossil energy throughout the last decade [5, 7]. In
50 to 100 years the world’s oil reserves may be depleted [2] and the need for other
resources to produce liquid fuels and chemicals will be evident. Natural gas reserves
are better distributed around the world compared to oil reserves. Thus, the availability
of the former will be less sensitive to disturbances in production rates caused by social,
economical and political instability seen around the world today.

In Table 2.1 the world’s carbon reserves, relative to oil are presented. Of the four oil
substitutes, coal is the fastest growing fossil fuel [2]. Coal has the largest reserves and
may be the cheapest to mine, however from an environmental point of view it is not
a preferred raw material. Recovery of oil from tar sand and shale oil are both highly
energy demanding, in addition these oil types are highly aromatic and thus not suitable
for the production of linear hydrocarbons [3]. Biomass is an alternative feedstock which
can be utilized to produce syngas as well. Provided that the production does not come
into conflict with food production2, this is a viable way to produce “green” hydrocarbons
in the future.

Table 2.1: World reserves of “carbon” relative to oil [3].

Source Reserves, oil equivalent

Crude oil 1.0
Tar sands 0.7
Shale oil 1.2
Natural gas 1.5
Coal 26

Production of fuels utilizing natural gas and FT synthesis is in direct competition with
crude oil processes, i.e. the crude oil price will have a strong effect on the viability of a

2First generation bio-diesel has been held responsible for replacing cultivable areas.
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2 BACKGROUND 2.1 The Fischer-Tropsch reaction

FT plant [3, 7]. Natural gas has to be available at a low cost, such as stranded gas3 and
associated gas4 which can be used to produce large amounts of “clean” fuel. Gas from
remote locations is uneconomical to transport to the market as is. However, by means of
FT synthesis it can be made viable [5].

For the overall process, from raw material to products, syngas production is of great
importance. The production of syngas typically accounts for 60 to 70% of the capital
and running costs of the total plant [7]. However, here the scope is set only to investigate
the FT reactor.

2.1 The Fischer-Tropsch reaction

The FT reaction, see Equation (2.1), is highly exothermic. Formation of one mole of
−CH2− releases approximately 160kJ/mol [3,8]. The large production of heat requires
adequate heat transfer from the catalyst particles.

CO+H2
catalyst−−−−→ (−CH2−)n +H2O (2.1)

The FT synthesis can be divided into two major technologies, i.e. high temperature
Fischer-Tropsch (HTFT) and low temperature Fischer-Tropsch (LTFT). The operation
temperatures are approximately 300 to 350 ◦C and 200 to 260◦C, respectively [6, 7].
Today, the major focus of attention is directed towards the LTFT processes. LTFT
processes primarily yields ultra-clean linear, long chained hydrocarbons (wax), whilst
HTFT processes yield lighter, more aromatic products [6, 9].

2.2 Catalysts

There are several different catalysts available to the FT process. Catalysts based on Ni,
Co, Fe and Ru have the required activity, and can be utilized in commercial plants [3,7].
The relative price of the different catalysts compared to iron are presented in Table 2.2.

3Stranded gas: gas that is far from the market, thus making transport uneconomical.
4Associated gas: gas that is co-produced with crude oil and which is currently being flared.
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2.2 Catalysts 2 BACKGROUND

Table 2.2: Approximate relative price of catalysts, compared to iron [7].

Catalyst Relative price

Fe* 1
Ni 250
Co 1 000
Ru 50 000

* Fe as scrap metal.

Ni is very active. However it has high selectivity towards CH4 [7], which is an undesired
product. Ru is the most active of the four, but low accessibility and high prices make it
unsuitable for commercial applications. Thus, Co and Fe are the only viable catalysts
for FT synthesis. The iron catalysts are known to be robust when it comes to syngas
composition, but also to have a much shorter lifetime and to produce heavier, olefinic
products compared to the cobalt catalyst [9]. The plants operated in Germany during the
Second World War utilized a cobalt-based catalyst, whilst the plants in South Africa use
catalysts which are iron-based.

In addition to being active, the catalyst has to meet other requirements pertaining to par-
ticle size, porosity and strength [3]. In large particles pore diffusion can be an issue. By
decreasing the particle size or increasing the pore diameter this issue can be manipulated.
The smaller the catalyst particles become in a fixed bed system, the tighter the bed will
be packed and the greater the pressure drop over the reactor will be. Catalysts particles
that are too small in a two or three phase system will cause a high loss of catalyst when
separation is performed. If the catalyst does not meet the requirements on strength it can
disintegrate. Too low porosity will result in low conversion. These properties must be
taken into consideration and a compromise must be made between porosity and strength.

The different catalysts have different requirements when it comes to the syngas com-
position. For the cobalt based catalysts the dominant reaction is the FT reaction itself,
see Equation (2.1). Thus, a syngas feed with a xH2

/xCO -ratio close to the stoichio-
metric ratio is used, i.e. approximately 2.15 [7]. In an iron-based catalyst environment
the water-gas-shift reaction, see Equation (2.2), competes with the FT reaction. CO is
consumed and H2 is produced in the reaction, thus the syngas xH2

/xCO -ratio can be

6



2 BACKGROUND 2.3 Reactor types

decreased (how low depends on the operation temperature).

CO+H2O−−⇀↽−− CO2 +H2 (2.2)

Cobalt-based catalysts are more expensive. However the higher activity and the low
(negligible) water-gas-shift reaction for these catalysts make them interesting to investi-
gate further. Processes utilizing cobalt-based catalysts are primarily LTFT processes.

2.3 Reactor types

In the commercial history of the FT process three different reactor types have been
utilized. These are fixed bed, fluidized bed and slurry bed reactors [9]. The highly
exothermic nature of the FT process necessitates sufficient heat removal. Inefficient
heat removal can result in an increased deactivation rate of the catalyst, an undesirably
high production rate of CH4 and in the worst case runaway [7]. Runaway conditions
are possible for highly exothermic reactions where the hot spot temperature can raise
beyond permissible limits. These conditions, which can damage the equipment, are
mainly determined by the temperature sensitivity of the reaction rates, the heat of reac-
tion and the heat transfer potential of the heat exchanger [10].

For the LTFT process a large amount of the products will reside in the liquid phase under
operation conditions. Thus, three phases are present. These are gas, liquid and solids
(catalyst particles).

2.3.1 Fixed bed reactors

In fixed bed reactors the catalyst particles are packed, usually in a vertical cylinder, and
the reactants and products pass through the stagnant bed [10]. There are three main reac-
tor designs of fixed bed reactors. These are single-bed, multi-bed and multi-tube units.
For highly exothermic reactions single-bed and multi-bed reactors do not offer adequate
heat exchange. Thus, multi-tube fixed bed reactors, see Figure 2.2, are preferred. A
multi-tube reactor can contain several hundred or thousand small-diameter tubes which
are filled with catalyst. The diameter is kept small to avoid excessive temperature and
hot spots.

7



2.3 Reactor types 2 BACKGROUND

Fixed bed reactors are often fed from the top. In the FT process the liquid products
trickle down and out of the catalyst bed, accounting for the separation of liquids from
the product stream, as seen in Figure 2.2.

230 M.E. Dry / Catalysis Today 71 (2002) 227–241

Fig. 2. Multitubular fixed bed FT reactor.

type (Fig. 3B). The reactors operated at about 2 MPa
and 300◦C, i.e. they were HTFT reactors. For the first
Sasol plant at Sasolburg the Kellogg-designed circu-
lating fluidised beds (CFBs) (Fig. 3A) were chosen.
These reactors operated at about 2 MPa and 340◦C.
After making some process and catalyst improvements
these reactors operated very well for many years. The
improved reactors were named Synthol reactors. For
the two new Sasol plants constructed about 25 years
later at Secunda the same type of reactors were in-
stalled but with improved heat exchangers and the
capacity per reactor was increased three-fold (wider

diameter and higher operating pressure). The same
larger type of CFB reactors, with further improved heat
exchangers, were installed in the Mossgas FT com-
plex. It should be noted that in CFB reactors there are
two phases of fluidised catalyst. Catalyst moves down
the standpipe in dense phase while it is transported up
the “reaction” zone (left-hand side of Fig. 3A) in lean
phase. To avoid the feedgas going up the standpipe the
differential pressure over the standpipe must always
exceed that over the reaction zone. At the high operat-
ing temperature carbon is deposited on the iron-based
catalysts and this lowers the bulk density of the catalyst

Figure 2.2: Multi-tubular fixed bed FT reactor [3].

2.3.2 Fluidized and slurry bed reactors

Fluidized reactors are preferred when a high degree of gas to solid contact, large through-
put of gas and low pressure drop is required [10]. The syngas is passed through the reac-
tor bed, fluidizing the catalyst. Hence, a close to isothermal reaction zone is obtained [9].
In slurry bed reactors the syngas is fed to the reactor and bubbled through the slurry
phase consisting of catalyst particles and molten wax [7, 9]. The products which reside
in the gas phase are withdrawn at the top, while the liquid products are continuously
separated from the catalyst. Water and other lighter products can be separated from the
gas stream after the reactor stage.

In Figure 2.3 two types of fluidized bed reactors and a slurry bed reactor are depicted.

8



2 BACKGROUND 2.3 Reactor types

(a) Circulating fluidized bed
reactor.

(b) Fixed fluidized bed reac-
tor.

(c) Slurry bed reactor.

Figure 2.3: Fluidized bed reactors [3]. (a) and (b) are two phase systems, while (c) is a three
phase system.

Advantages of fluidized/slurry bed reactors [8, 10]:

• The ability to withdraw and reintroduce solids continuously.

• Possibility of continuous regeneration of the catalyst particles.

• Close to isothermal conditions, caused by the rapid mixing of solids. Low risk of
hot spots, runaway and thermal instability, i.e. well suited for exothermic reac-
tions.

• Low impact of internal and external diffusion phenomena because of the small
particle size.

• Heat and mass transfer rates between gas and particles are high, compared with
fixed bed reactors.

• The convective heat transfer coefficients at the heat exchanger surface immersed
in the bed are high, i.e. internal heat exchangers require relatively small surface
areas.

Disadvantages of fluidized/slurry bed reactors [8, 10]:

• For the same weight of catalyst, expansion of the bed requires an increase in reac-
tor volume.

• The random movement of the particles causing back-mixing results in an overall

9
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reactor behavior that is closer to an ideal mixed reactor (CSTR) than a plug flow
reactor (PFR), which can lead to an increase in the reaction volume and a loss of
selectivity.

• The entrainment of solid particles necessitates the installation of a device for sep-
arating and recycling fines (wax/catalyst separation).

• Friable solids are pulverized and entrained by the gas and must be replaced.

• Erosion of internals, pipes and vessels from abrasion by particles can be serious.

• Broad residence time distributions of solids due to intense mixing, erosion of the
bed internals and attrition of the catalyst particles.

• Broad residence time distributions of the gas due to dispersion and gas bypass in
the form of bubbles, especially when operated in the bubbling bed regime.

• Reactor hydrodynamics and modeling are complex. Scale-up and design present
serious challenges which limit the use of these reactors to applications that can
justify the significant research and development efforts involved.

There are many pros and cons with the different reactor designs. The main advan-
tages of a slurry bed system [3, 7, 9], compared with a multi-tube fixed bed system,
are lower investment costs, lower pressure drop, lower catalyst loading (higher activity
of smaller catalyst particles yields lower catalyst consumption per tonne of product),
close to isothermal conditions, on-line removal/addition of catalyst and a more uniform
product distribution. The main disadvantage of a fluidized system is that if any cata-
lyst poison enters the reactor, the total quantity of catalyst will be affected. In a fixed
bed system only the top layers will be poisoned. The behavior in the liquid phase, and
partly in the gas phase, in a simple slurry bed reactor resembles a CSTR as a result of
the back-mixing that the rising gas bubbles introduce to the liquid phase [11, 12]. By
the introduction of intermediate baffles this property can be counteracted and a mixing
pattern resembling plug-flow can be obtained [11]. In addition, the scale-up of a slurry
bed system is more complicated compared to the scale-up of a fixed bed system [9].
None of the reactor systems that are available possess all the optimal features. How-
ever, by considering the above mentioned arguments the slurry bed system may be the
preferred choice, compared to a fixed bed, for the FT process [5, 13].

10
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2.3.3 Heat transfer area density

The heat transfer area density, a
[
m2/m3

]
, is highly dependent on the reactor system at

hand. The geometry of cooling equipment, reactor and the physical properties of fluids
and/or solids in the system will all have an effect on the properties of heat transfer. While
a multi-tubular fixed bed reactor can have a heat transfer density of at least 100m2/m3

a slurry bed reactor has its maximum in the range 30 to 35m2/m3 [11]. Although the
heat transfer density is smaller, the overall heat transfer coefficient, U

[
kJ/(sm2 K)

]
, in

a slurry bed is higher compared to a fixed bed reactor. U is dependent on the physical
properties of the fluids in the system, superficial gas velocity, catalyst concentration,
geometry of bed internals (e.g. pipe pitches), etc. [12]. The heat transfer, and ancillary
assumptions, are elaborated further in Section 4.6.2 (p. 21).
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3 Reactor Path
A flowsheet of the reactor path is depicted in Figure 3.1. The path consists of a syngas
feed which is fed to the first reactor stage. Heat is removed from the reactor stage with
cooling equipment. Separation and/or addition of an extra feed is possible before the
entrance to the next reactor stage. The number of reactor stages (ns) in series is a design
variable. Recycle of the product stream is not included in the reactor path, thus maximal
conversion of CO is desired in a single pass.

Reactor  

stage 

ns-1 times 

Reactor  

stage 

Cooling 

media 

Syngas 

feed 

Extra  

feed 

Cooling 

media 

Separation 

Liquid 

products 

Products 

Extra  

feed 

Figure 3.1: Flowsheet of the reactor path.

3.1 Reactor volume

In the simulations space time, σ
[
m3 s/kg

]
, has been given as one of the design variables.

σ is defined in Equation (3.1).

σ =
VR

W0
(3.1)

where VR is the reactor volume
[
m3
]

and W0 is the feed flow [kg/s].

W0 is given by the desired production capacity. Large facilities can have a production
in the region of 130000bbl/d5 [9]. With a product density, ρproducts ≈ 0.8kg/L, the
production is approximately 700t/h. Results from the performed simulations show that

51bbl = 159L
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3.1 Reactor volume 3 REACTOR PATH

liquid hydrocarbons amount to approximately 27% of the total product stream. As the
total mass should be conserved, i.e. mass in equals mass out, W0 is calculated as ap-
proximately 720kg/s. Further, depending on the value of σ , VR can be calculated by
rearranging Equation (3.1). In the performed simulations three σ -values were utilized.
Table 3.1 presents the different σ and the corresponding total reactor volumes.

Table 3.1: Space time vs. reactor volume.

σ VR[
m3 s/kg

] [
m3
]

1.46 1050
1.0 720
0.8 580
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4 Reactor Staging
To find the optimal design for the given kinetic model, a method of systematic staging in
chemical reactor design presented by Hillestad [14] was utilized. The method involves
the construction of a reactor path where reactants go through a series of functions to form
the final products. The ideal reactor models (PFR and CSTR), with a homogeneous or
pseudo-heterogeneous formulation, form the basis of the method. There may be several
phases present, however they are restricted to have the same flow direction, velocity and
dispersion.

In the following sections the method is elaborated.

4.1 Plug flow model

Steady-state mass balance for component i and the total mass balance for a PFR model
are given in Equations (4.1) and (4.2), respectively.

W
dωi

dV
= R̃i +α (ωF,i−ωi) (4.1)

dW
dV

= α (4.2)

where W is the fresh feed [kg/s], V is the volume
[
m3
]
, R̃i is the reaction rate6 for

component i
[
kg/(m3 s)

]
, α is the mass flow rate per volume of extra feed

[
kg/(m3 s)

]
and ωi and ωF,i are the weight fractions of component i in the fresh feed and the extra
feed, respectively. The reaction rates are given by the kinetic model, presented in Section
5 (p. 25).

By disregarding shaft work, potential and kinetic energy, the steady-state energy balance
is given by Equation (4.3).

WCp
dT
dV

= ∑
j
(−∆rH j) r̃ j +αCp,F (TF−T )−Ua(T −TW) (4.3)

6The reaction rates, R̃i, are on mass basis, i.e. the sum of all the rates will summarize to zero at any point,
∑

nc
i=1 R̃i = 0.
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4.1 Plug flow model 4 REACTOR STAGING

where ∆rH j is the heat of reaction j [kJ/kmol], r̃ j is the reaction rate of reaction j[
kmol/(m3 s)

]
, U is the overall heat transfer coefficient

[
kJ/(m2 sK)

]
, a is the heat

transfer area density along the reactor path
[
m2/m3

]
, Cp and Cp,F are the composition

average heat capacity of the reactor medium and the extra feed [kJ/(kgK)], respectively,
and T , TF and TW are the temperatures of the reactor medium, the feed and the coolant
[K], respectively. By introducing dimensionless temperature, θ = T−Tref

Tref
, Equation (4.3)

becomes
WCp

dθ

dV
= ∑

j

(−∆rH j)

CpTref
r̃ j +αCp,F (θF−θ)−Ua(θ −θW) (4.4)

where θ , θF and θW are the dimensionless temperatures for fluid, extra feed and cooling
media, respectively. By defining a state vector, x, consisting of all the mass fractions
and the temperature, the mass and temperature equations can be depicted as a system of
differential equations in vector form.

W
dx
dV

= R̃(x)+αK · (xF−x)−βE · (x−xW) (4.5)

Where

x =
[
ω1, . . . ,ωn,θ

]> (4.6)

β =
Ua

Cp,ref
(4.7)

K = diag
(

1, . . . ,1,
Cp,F

Cp

)
(4.8)

E = diag
(

0, . . . ,0,
Cp,ref

Cp

)
(4.9)

R̃ =
[
R̃1, . . . , R̃n, R̃θ

]>
, R̃θ = ∑

j

(
−∆rH j

)
CpTref

r̃ j (4.10)

With the introduction of the dimensionless variables ξ = V/VR and γ = W/W0 rep-
resenting the volume and mass flow rate, respectively, together with the space time,
σ = VR/W0 , the plug flow model can be represented as a dimensionless model in the
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4 REACTOR STAGING 4.2 Completely mixed flow model

form.

γ
dx
dξ

= σR̃(x)+σαK · (xF−x)−σβE · (x−xW) (4.11)

dγ

dξ
= σα (4.12)

4.2 Completely mixed flow model

Steady-state mass balance for component i, the total mass balance and the energy balance
for a CSTR model are presented in Equations (4.13) through (4.15), respectively. In the
energy balance the dimensionless temperature has been introduced. In the same manner
as for the plug flow model, shaft work, potential and kinetic energy have been neglected.

W0
(
ωi−ωi,0

)
=V R̃i +V α

(
ωF,i−ωi

)
(4.13)

W =W0 +V α (4.14)

W0
(
θ −θ0

)
=V ∑

j

(
−∆rH j

)
Cp,0

r̃ j +V α
Cp,F

Cp,0

(
θF−θ

)
−V

Ua
Cp,0

(
θ −θW

)
(4.15)

In the same manner as for the plug flow model, the completely mixed model can be pre-
sented as a system of equations in vector form with the state vector, x, now in algebraic
form.

W0
(
x−x0

)
=V R̃0 (x)+V αK0

(
xF−x

)
−V βE0

(
x−xW

)
(4.16)

where β , K0, E0 and R0 are defined in the same manner as Equations (4.7) - (4.10). The
subscript zero states that the inlet conditions for the heat capacity is utilized.

By differentiating Equation (4.16) with respect to volume, V , the completely mixed
model can be written more similarly to the plug flow model.

W0
dx
dV

=R̃0 (x)+V
∂ R̃0 (x)

∂x
dx
dV

+αK0
(
xF−x

)
−V αK0

dx
dV

−βE0
(
x−xW

)
−V βE0

dx
dV

(4.17)
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4.3 Composite model 4 REACTOR STAGING

By manipulating Equation (4.17) it can be presented as

[
W I−V J̃

] dx
dV

= R̃0 (x)+αK0
(
xF−x

)
−βE0

(
x−xW

)
(4.18)

where

J̃ =
∂ R̃0 (x)

∂x
+diag

(
0, . . . ,0,1

)(
α

(
1−

Cp,F

Cp,0

)
−β

Cp,ref

Cp,0

)
(4.19)

With the introduction of σ and the same dimensionless variables, ξ and γ , as for the
plug flow model, the completely mixed model can be presented equivalently to Equation
(4.11). [

γI−ξ σ J̃
] dx

dξ
= σR̃0 (x)+σαK0

(
xF−x

)
−σβE0

(
x−xW

)
(4.20)

4.3 Composite model

By defining three dimensionless design functions for mixing, uM, distribution of feed,
uF, and heat transfer area distribution, uH, and comparing Equations (4.11) and (4.20) it
is evident that these two equations can be merged into a single system of equations. The
system is presented in Equation (4.21). With the definition of uF the total mass is given
by Equation (4.22).

[
γI−uMσ J̃

] dx
dξ

= σR̃(x)+uFK
(
xF−x

)
−uHE

(
x−xW

)
(4.21)

dγ

dξ
= uF (4.22)

In addition to the three design functions describing the mixing, distribution of feed and
heat transfer area density, other design functions like catalyst dilution, uA, coolant tem-
perature, uT, and separation uS, can be defined. By utilizing these design functions
the optimal reactor path can be determined. All the design functions are elaborated in
Section 4.6 (p. 20).
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4 REACTOR STAGING 4.4 Optimization

4.4 Optimization

The goal of the optimization is to find the optimal reactor path, i.e. find the parameters
and their values that yield the best environment for the reacting fluid throughout the path.
The problem is written and solved as an optimal control problem, which can be defined
as

max
[σ ,u]∈U

J (4.23)

s.t.
dz
dξ

= f(z,u) , z(0) = z0 (4.24)

where J is a cost function, σ is the space time
[
m3 s/kg

]
and u is a vector consisting

of the design functions and their boundaries. Thus, U is a vector which defines the
solution space where J can be solved. The vector z consists of the old state vector, x,
and the total mass flow, i.e. z= [x>,γ]>. The subscript zero denotes an initial guess. The
model, f, is a system of ordinary differential equations (ODEs) consisting of Equations
(4.21) and (4.22). The size of the system is dependent on the number of components
(reacting species and temperature), the number of stages and the number of collocation
points within each stage7.

In addition to maximize the cost function with the reactor model in mind, additional
path constraints can be added, h. Constraints like these can be maximum/minimum
temperature, maximum/minimum reactor volume, maximum/minimum weight fraction
of a component, etc. If present, the constraints are presented as nonlinear inequality
constraints as depicted in Equation (4.25).

h(z,u)≤ 0 (4.25)

These constraints will add to the system of ODEs. The total number of equations will
increase rapidly as each constraint has to be solved in each collocation point. Thus, if
possible, extended use of nonlinear inequality constraints is not recommended.

7Size of ODE system: If there are nine reacting species, three reactor stages and the number of internal
collocation points are set to 20, the ODE system will consist of (9+2)×3× (20+2) = 726 equations. All of
which are to be solved simultaneously.

19



4.5 Cost functions 4 REACTOR STAGING

4.5 Cost functions

The cost function describes the desired goal. An obvious choice of cost function will be
to maximize the production of the desired (key) product, i.e. the weight fraction of C11+

should be as high as possible at the end of the reactor path. If no products are separated
from the reactor path this would be a suitable objective function. In the case where
products are separated from the reactor path, the total production will be an improved
objective function. The two objective functions are presented in Equations (4.26) and
(4.27), respectively.

1. J = ωkey (1) (4.26)

2. J = prodkey (4.27)

4.6 Design functions

The path optimization consists of a number of design functions.

• uM – fluid mixing

• uH – heat transfer area distribution

• uT – cooling media temperature profile

• uF – extra feed (distribution)

• uA – catalyst activity

• uS – separation

The design functions can be kept constant or optimized. If optimized they are either
stage-wise constant or stage-wise linear.

In the following sections these functions will be further elaborated.
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4.6.1 Mixing

The design function uM describes the mixing in the reactor.

uM = ξ (4.28)

Upon integration of Equation (4.21) the choice of uM determines the kind of reactor
model that is considered. By setting uM equal to zero Equation (4.11) is obtained, i.e.
the plug flow model. By setting uM equal to ξ the completely mixed model in Equation
(4.20) is obtained. It can be shown that for an uM ∈ 〈0,ξ 〉 the path will consist of a plug
flow reactor with recycle. Different designs are depicted in Figure 4.1

(a) One CSTR and one PFR in series. (b) Two CSTR’s in series.

(c) One PFR with recycle. (d) Two CSTR’s in series with back-mixing.

Figure 4.1: Different mixing design function scenarios.

4.6.2 Heat transfer area distribution

The design function uH describes the heat transfer area distribution along the reactor
path.

uH =
Uaσ

Cp
(4.29)

where U is the overall heat transfer coefficient
[
kJ/(sm2 K)

]
, a is the heat transfer den-

sity
[
m2/m3

]
, σ is the space time

[
m3 s/kg

]
and Cp is the heat capacity of the reactor

fluid [kJ/(kgK)]. a is defined as

a =
A
V

(4.30)
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where A is the heat transfer area
[
m2
]

and V is the volume of the reactor stage
[
m3
]
.

In the calculations the overall heat transfer coefficient and the fluid heat capacity are
assumed to be 1.5kJ/(sm2 K) and 2.1kJ/(kgK), respectively. They are both assumed
to be constant throughout the reactor. The design parameter σ is set for each individual
optimization.

The optimization yields a numeric value for uH and by rearranging Equation (4.29) a can
be found. Further, A can be calculated by rearranging Equation (4.30). The heat transfer
area is dependent on the reactor design, which is further discussed in Section 2.3 (p. 7).

4.6.3 Cooling media temperature profile

The design function uT describes the cooling media temperature profile.

uT = θW (4.31)

where θW is the dimensionless temperature, defined as

θW =
TW−Tref

Tref
(4.32)

where TW and Tref are the temperature of the cooling media and a reference temperature
[K], respectively.

In the performed simulations the cooling media is assumed to be vaporizing water, i.e.
the temperature is constant throughout the reactor volume. As the FT-reaction is highly
exothermic the cooling can be utilized to produce steam. It is beneficial to only have a
single steam system, with a given temperature and pressure. In respect to this observa-
tion, most of the simulations are performed so that the temperature of the cooling media
is only optimized in the first stage and kept constant in the subsequent stages.

At a pressure of 20bar the boiling point of water is approximately 215 ◦C [15].
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4.6.4 Distribution of extra feed

The design function uF describes the distribution of extra feed along the reactor path.

uF =
ασ

∆ξ
(4.33)

where α is the feed distribution
[
kg/(m3 s)

]
, σ is the space time

[
m3 s/kg

]
and ∆ξ is

the size of the reactor stage.

Each addition of extra feed with an unique composition is associated with an individual
design function, regardless of the number of times the feed is added, i.e. addition of
pure H2 at numerous points in the reactor path yields only one design function, while
addition of two extra feeds, with different compositions, yields two design functions,
and so forth.

The extra feed can either be point fed prior to the reactor stages or be distributed along
the stages. In the performed simulations pure H2 has been used as an extra feed, and it
has only been added as point feed prior to the stages.

4.6.5 Catalyst activity

The design function uA describes the relative catalyst activity, i.e. the proportion of the
catalyst that will participate in the reaction.

uA ∈
[
0,1
]

(4.34)

Fresh catalyst will have an activity of one. Over time, catalyst deactivation due to degra-
dation and impurities will occur. A list of the most common factors involving catalyst
deactivation is presented below [3, 8].

• Fouling of the catalyst surface by coke deposits

• Poisons in the gas feed (e.g. sulphur)

• Hydrothermal sintering

• Oxidation of active phase to inactive oxide
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On the other hand, continued research and development can increase the activity of the
catalyst. The kinetic model does not take into account any deactivation, thus the optimal
solution should always be maximum catalyst activity, i.e. uA = 1. In an attempt to reduce
the number of variables in the performed optimizations the catalyst activity is assumed
to be constant and equal to one, throughout the reactor path and over time.

4.6.6 Separation

The design function uS describes the separation of components from the reactor path.
As for the addition of extra feed, the separation can either be point-wise or distributed
along the reactor path. In the performed simulations the separation has been point-wise.

In addition to the hydrocarbons, significant amounts of water are produced in the FT
synthesis. To ensure high partial pressures of H2 and CO, and consequently high reaction
rates, it may be beneficial to separate the products and the water between each stage. In
practice the separation process will consist of a cooling, a separation and a reheating
process, resembling the process depicted in the “Separation box” in Figure 3.1 (p. 13).
The properties of the separation are specified by the equipment at hand. Thus, the design
function has not been updated in the optimizations. In the simulations the separation
is defined by a single vector, xS, consisting of the component fractions that will be
separated.

The cooling and reheating of the stream will in practice be heat integrated. Hence, it can
be assumed that most of the energy will be conserved. However, as some will be lost the
temperature of the stream after the separation is assumed to be 10 ◦C lower than before
the separation.

To find the respective separation values a set of streams, with different compositions,
were constructed in UniSim Design R400. The streams where cooled to 40 ◦C and the
respective liquid fractions were calculated. The resulting separation function is pre-
sented in Equation (4.35).

xS =
[
0 0 0 1 0 0 0 0.7 1

]
(4.35)

Thus, 70wt% of the C5-10 lump and 100wt% of the H2O and C11+ lump are separated.
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5 Kinetic Model
The kinetic model adapted is presented by Todic et al. [1]. The model is found to
predict the major product distribution characteristics. It is derived with a Langmuir-
Hinshelwood-Hougen-Watson (LHHW) approach8 on a 25% Co/0.48% Re/Al2O3 cat-
alyst in a slurry rector. In this manner, the rate of hydrocarbon formation is made a
function of kinetic constants and the partial pressures of CO and H2. The main assump-
tions of the model are listed below.

• Only one type of FT-synthesis active site is present on the Co catalyst surface.

• The total number of active sites on the catalyst surface is constant.

• The concentrations of surface intermediates and vacant sites are at steady state.

• CH4 and C2H6 have different formation rate constants than other n-paraffins and
1-olefins, respectively.

• Rate constants of chain propagation and hydrogenation to n-paraffins and 1-olefins
are independent of carbon number (chain length).

• The rate constant of chain desorption to form 1-olefin is exponentially dependent
on carbon number.

• Elementary steps for the formation of n-paraffins and 1-olefins are rate-determining
steps, as is one of the elementary steps involved in chain propagation or monomer
formation. All other elementary steps are considered to be quasi-equilibrated.

• Minor FT-synthesis products, e.g. 2-olefins and oxygenates, are disregarded.

The formation rates are defined as functions of the kinetic constants, the partial pressure
of H2 and the surface fraction of various growing chain intermediates, [CnH2n+1−S],
(see Equations (5.8) through (5.11)). All the model parameters are intrinsic kinetic con-
stants, i.e. the parameters satisfy physiochemical laws in addition to providing a good

8A LHHW mechanism assumes that all species are adsorbed on the catalyst surface before reacting [16].
The mechanism is constructed by assuming a sequence of reversible, elementary reaction steps [17]. Rate
expressions for the different steps are postulated before a step is chosen as rate determining (irreversible). The
remaining steps are used to eliminate the catalyst-coverage-dependent terms in the rate expression.
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fit to the experimental data.

The chain growth probability, α , is the key factor connecting the surface fraction of
growing chain intermediates to the kinetic constants, partial pressures of CO and H2

and fraction of vacant sites, [S], on the catalyst surface. It is assumed that CH4 and
C2H6 have different formation rates than the other hydrocarbons. Thus, the α-values of
these components are defined separately. Equations (5.1) through (5.3) present the chain
growth probabilities.

α1 =
[CH3−S]
[H−S]

=
k1PCO

k1PCO + k5MPH2

(5.1)

α2 =
[C2H5−S]
[CH3−S]

=
k1PCO

k1PCO + k5PH2
+ k6Ee2c (5.2)

αn =
[CnH2n+1−S]

[Cn−1H2n−1−S]
=

k1PCO

k1PCO + k5PH2
+ k6,0ecn , n≥ 3 (5.3)

where PCO and PH2
are partial pressures, the kis are kinetic constants and n denotes the

number of C atoms.

The total number of active sites on the catalyst is assumed constant. Thus, [S] can be
calculated by Equation (5.4).

[S] = 1/

{
1+
√

K7PH2
+
√

K7PH2

(
1+

1
K4

+
1

K3K4PH2

+
1

K2K3K4

PH2O

P2
H2

)
×

(
α1 +α1α2 +α1α2

n

∑
i=3

i

∏
j=3

α j

)}
(5.4)

The kinetic constants, ki and Ki, and c are defined in Equations (5.5) through (5.7),
respectively.

ki(T ) = Ai exp
(
−

Ea,i

RT

)
(5.5)

Ki(T ) = Ai exp
(
−∆Hi

RT

)
(5.6)

c =−∆E
RT

(5.7)
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5 KINETIC MODEL

where R is the universal gas constant [kJ/(molK)] and T is the temperature [K]. The
respective factors (∆E, Ai, Ea,i and ∆H) are presented in Table B.1 in Appendix B.

From the proposed reaction mechanism by Todic et al. [1], the reaction rates for CH4,
C2H6, n-paraffins and 1-olefins can be defined as Equations (5.8) through (5.11).

RCH4
= k5M[CH3−S]PH2

= k5MK0.5
7 P1.5

H2
α1[S] (5.8)

RC2H4
= k6E,0e2c[C2H4−S]

= k6E,0e2c
√

K7PH2
α1α2[S] (5.9)

RCnH2n+2
= k5[CnH2n+1−S]PH2

= k5K0.5
7 P1.5

H2
α1α2

n

∏
i=3

αi[S] n≥ 2 (5.10)

RCnH2n
= k6,0ecn[CnH2n+1−S]PH2

= k6,0ecn
√

K7PH2
α1α2

n

∏
i=3

αi[S] n≥ 3 (5.11)

By coupling Equations (5.8) through (5.11) with expressions for α , Equations (5.1)
through (5.3), and [S], Equation (5.4), the production rates can be explicitly calculated.
The consumption rates of CO and H2 are calculated by summation of the rates of hydro-
carbon consumption, see Equations (5.12) and (5.13), respectively.

RCO =
15

∑
n=1

n
(
RCnH2n+2

+RCnH2n

)
(5.12)

RH2
=

15

∑
n=1

[(
2n+1

)
RCnH2n+2

+2nRCnH2n

]
(5.13)

All rates are given in mol/(gcat h). The method at hand utilizes weight basis. Thus
the rates must be converted. By multiplying by the bulk catalyst density, ρcat, and the
molecular weight, M, the rates can readily be converted to kg/(m3 s).
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5.1 Lumping of components 5 KINETIC MODEL

5.1 Lumping of components

In the performed simulations hydrocarbons up to and including C15 have been examined.
In addition to n-paraffins and 1-olefins the system consists of H2, CO, H2O and CO2.
The total number of reacting species is 33. To decrease the number of variables in the
simulations some hydrocarbons have been lumped together to create a set of hypothetical
components. The resulting components are presented in the following list.

• C1

• C2, both n-paraffin and 1-olefin

• C3-4, both n-paraffins and 1-olefins

• C5-10, both n-paraffins and 1-olefins

• C11+, both n-paraffins and 1-olefins

The lumping decreases the total number of reacting species in the system to nine.
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6 Simulations and Raw Data
Processing

The simulations performed in this study have been executed within MATLAB R2012b.
Physical data has been extracted from UniSim Design R400. The MATLAB scripts,
together with three simulation hierarchies depicting the simulation flow, are presented in
Appendix C. An overview of the simulations is presented in Table 6.1.

In the following, the variables that have been kept constant in the simulations are listed.

• Feed temperature, TF = 200 ◦C

• Reference temperature, Tref = 473K

• System pressure, Ptot = 20bar

• Catalyst density, ρcat = 200kg/m3

• Catalyst activity, uA = 1

• Molecular weight of lumps (see Table 6.2)

• Heat capacity of lumps (see Table6.2)

• Number of components, nc = 9

• Number of internal collocation points, ncol = 20

• Maximum reactor temperature, Tmax = 250 ◦C

• Molar fraction of inert, xCO2
= 0.1

In addition, for those cases where separation is considered, uS is not updated. The
separation is set by the xS-vector as discussed in Section 4.6.6 (p. 24).
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Table 6.1: Simulation overview stating number of stages, updated design func-
tions, space time, σ , and cost function utilized in the different cases.

Case ns
Update* σ J†

uM uH uT uF
[
m3/kg

]
1 1 All No No No 1.46 1
2 1 All All All No 1.46 1
3 1 All All All No 1.00 1
4 1 All All All No 0.80 1
5 1 All All All All 1.46 1
6 1 All All All All 1.00 1
7 1 All All All All 0.80 1

8 2 All No No No 1.46 1
9 2 All All No No 1.46 1

10 2 All All All No 1.46 1
11 2 All All All No 1.46 1
12 2 All All All No 1.46 1
13 2 All All All No 1.46 1
14 2 All No No 2nd 1.46 1

15 3 All No No 3rd 1.46 1
16 3 All No No 3rd 1.46 1
17 3 All All All No 1.46 1
18 3 All All 1st 2nd, 3rd 1.46 2
19 3 All All 1st 2nd, 3rd 1.46 2
20 3 All All 1st All 1.46 2
21 3 All All 1st All 1.00 2
22 3 All All 1st All 0.80 2
23 3 All All 1st All 0.80 1

* If updated, uH and uT are updated stage-wise constant, uF is introduced as point feed
prior to the reactor stage and uM is updated stage-wise linear.

† 1: J = ωkey (1), (Equation (4.26))
2: J = prodkey, (Equation (4.27))
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6 SIMULATIONS AND RAW DATA PROCESSING 6.1 Input data

6.1 Input data

Physical data, i.e. molecular weight and heat capacity, was extracted from UniSim
Design R400. The molecular weight, M, [kg/mol] of the hydrocarbon lumps was cal-
culated by assuming equimolar amounts of chemical species, i.e. the C3-4-lump was
assumed to consist of 25% of each of C3H8, C3H6, C4H10 and C4H8. To minimize
numerical noise in the optimization the molecular weight was rounded to integers. The
heat capacity, Cp, [kJ/kg] was calculated at the feed temperature and pressure, and was
assumed constant. As for the molecular weight, the lumps were assumed to consist of
equimolar amounts of chemical species when Cp was calculated. Both the molecular
weights and heat capacities are presented in Table 6.2.

Table 6.2: Physical properties of the component lumps.

Component M Cp[
kg/kmol

] [
kJ/(kgK)

]
CO 28 1.07
CO2 44 1.02
H2 2 14.34
H2O 18 4.89
C1 16 2.83
C2 29 2.36
C3-4 50 2.44
C5-10 106 3.10
C11+ 183 2.79

6.2 Raw data processing

The design functions are dimensionless. As a consequence they have to a greater or
lesser degree been processed in order to present the results with a more physical signifi-
cance.

The mixing properties are presented as either PFR or CSTR. The heat transfer area
distribution is presented as the heat transfer density, a

[
m2/m3

]
, which is found by
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rearranging Equation (4.29).

a =
uHCp

Uσ
(6.1)

The cooling media temperature profile is presented in degrees Celsius by coupling Equa-
tions (4.31) and (4.32), and rearranging for TW.

TW =
(
1+uT

)
Tref−273 (6.2)

The distribution of extra feed is presented as feed distribution, α
[
kg/(m3 s)

]
, found

by rearranging Equation (4.33). α can be regarded as a fraction of the fresh feed. The
feed is kept constant in all simulations, thus the volume is defined by the value of σ .
Multiplying α with the total reactor volume, VR, will yield a flow rate in kg/s for the
additional feed. However, in this thesis, all data has been chosen to be presented on a
fractional basis.

α =
uF

σ
∆ξ (6.3)

The production of key component, PC11+
, provides as a measure of the performance

of the different simulation cases. The production is calculated by Equation (6.4). The
superscript “end” in Equation (6.4) refers either to the end of the reactor path, if the
design is one-staged, or to the respective reactor stage, if the design is multi-staged.
In multi-staged cases, where separation is included, the total production is found by
summation of the contribution from each stage.

PC11+
= ω

end
C11+

γ
end (6.4)

where ωC11+
is the weight fraction of key component and γ is the total weight balance

defined as γ = W/W0
9. Following from the definition of γ , the production is given as

a weight fraction of the fresh feed, i.e. if the production is 10% and W0 is 100kg/s,
10kg/s of C11+ will be produced. The fresh feed is, as stated above, kept constant in all
simulations.

9Value of γ:
γ = 1; no extra feed and no products are separated (or the same amount fed and separated)
γ > 1; greater amount of additional feed compared to separation
γ < 1; greater amount of separation compared to additional feed
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6 SIMULATIONS AND RAW DATA PROCESSING 6.2 Raw data processing

The conversion of CO, XCO, is presented on weight basis, i.e.

XCO = 1−
ωend

CO

ω0
CO

γ
end (6.5)

where ωend
CO and ω0

CO is the weight fraction of CO at the beginning and end of the reactor
path, respectively. γend is the total mass balance at the end of the reactor path.
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7 Results
In total, 23 different cases have been simulated. An overview of the results is presented
in a set of tables in Appendix A. Most of the optimization results are in a dimensionless
form. In order to derive the physical significance of the results, both raw and processed
data are presented in the appendix. In the following section some extracts are given and
the cases which are considered of highest importance and interest are presented.

7.1 Case studies

The first case performed (Case 1) was the simplest possible design, i.e. one stage with no
addition of extra H2 feed. Thus, the molar feed ratio, xH2

/xCO , was set equal to 2.1, i.e.
approximately the stoichiometric ratio. Only uM was optimized, while σ was set equal
to 1.46m3 s/kg, uH equal to 10 and TW equal to 205◦C. The resulting design is depicted
in Figure 7.1. The design resulted in a XCO equal to 82.21%, a J equal to −0.0828 and
a PC11+

equal to 8.28%.
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Figure 7.1: Case 1: One reactor stage. Mixing is optimized. σ = 1.46m3 s/kg.
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The design in Case 1 was slightly changed to include two reactor stages (Case 8). All
other variables were kept alike. This setup yielded, as expected, the same results as Case
1.

To find a more optimal design for the one-stage system both uH and uT was added to the
optimization (Case 2). The uH design function was allowed to vary within 5 to 30 and
TW within 195 to 215◦C. xH2

/xCO and σ were kept constant at 2.1 and 1.46m3 s/kg,
respectively. The resulting design is depicted in Figure 7.2. The optimization yielded an
uH equal to 13.2, which corresponds to an area density of 12.7m2/m3 (if U is assumed
to be 1.5kJm2/(sK)), and a TW equal to 215 ◦C. The design resulted in an increase in
XCO to 92.59%, a J equal to −0.0883 and a PC11+

equal to 8.83%.
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Figure 7.2: Case 2: One reactor stage. Mixing, heat transfer area and cooling media are tempera-
ture optimized. uH ∈ [5,30], TW ∈ [195,215]◦C and σ = 1.46m3 s/kg.

A corresponding case (Case 17), i.e. optimizing uM, uH and uT, with three reactor stages
was constructed. The design functions, uH and uT, and the design variables, xH2

/xCO

and σ , were optimized within the same range and set to the same values as for the one-
stage case. I.e. uH ∈ [5,30], TW ∈ [195,215]◦C, xH2

/xCO = 2.1 and σ = 1.46m3 s/kg.
The resulting design is depicted in Figure 7.3. The optimization yielded an uH equal to
21 in the first stage and 5 in the second and third stages, which corresponds to an area
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density of 20.2 and 4.8m2/m3, respectively (if U is assumed to be 1.5kJm2/(sK)). The
optimal TW was found to be 215 ◦C. The size of the three reactor stages was found to
be 0.38, 0.14 and 0.48% of the total volume, respectively. The design resulted in a XCO

equal to 95.99%, a J equal to −0.0899 and a PC11+
equal to 8.99%.
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Figure 7.3: Case 17: Three reactor stages. Mixing, heat transfer area and cooling media temper-
ature are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C and σ = 1.46m3 s/kg.

To find the optimal xH2
/xCO -ratio in the feed a total of seven cases, with both one and

three reactor stages, were constructed. In these simulations the xH2
/xCO -ratio in the

fresh feed was set to 0.7 and additional H2 was fed both between the reactor stages and
prior to the first stage (see Figure 3.1, p. 13). uH was allowed to vary within 5 to 30 and
TW within 195 to 215 ◦C. The cases of interest are Cases 5 through 7 and 20 through
23. The main results from these cases are both presented in Table 7.1 and depicted in
Figures 7.4 through 7.10.

The results show fairly similar optimal xH2
/xCO -ratios for the cases with the same num-

ber of stages, i.e. approximately 2.0 and 1.5 for the one-stage and three-stage cases,
respectively. Case 23 is not considered in this particular analysis, due to lack of separa-
tion from the reactor path.
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Cases 5 through 7 and 20 through 22 were also utilized to investigate the effect σ has
on the process. As shown in Table 7.1 the PC11+

decreases from 11.29 to 10.64% for
the one-stage cases when σ is lowered from 1.46 to 0.8m3 s/kg. In the corresponding
three-stage cases the production decreases from 13.08 to 12.75%.

In Case 23 all simulation parameters were kept similar as in Case 22, except for the sep-
aration which was not included. Thus, all products are kept inside the reactor-path. The
resulting design is depicted in Figure 7.10. The optimization yielded an uH equal to 18.3,
21.3 and 7.2 in the three respective reactor stages, which corresponds to an area density
of 32.0, 37.2 and 12.6m2/m3, respectively (if U is assumed to be 1.5kJm2/(sK)). The
optimal TW was found to be 215 ◦C. The size of the three reactor stages was found to be
0.29, 0.31 and 0.40% of the total reactor volume, respectively. The design resulted in a
XCO equal to 91.58%, a J equal to −0.1068 and a PC11+

equal to 11.44%.

In all the performed cases the optimal mixing properties were found to be plug-flow.
Three simulations were performed, Cases 10 through 12, where the mixing properties
initially were set to CSTR. These cases produced a PFR solution as well (see Table A.2,
p. A-3).
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Figure 7.4: Case 5: One reactor stage. Mixing, heat transfer area, cooling media temperature
and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C, xH2

/xCO -ratio in
fresh feed is set to 0.7 and σ = 1.46m3 s/kg.
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Figure 7.5: Case 6: One reactor stage. Mixing, heat transfer area, cooling media temperature
and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C, xH2

/xCO -ratio in
fresh feed is set to 0.7 and σ = 1m3 s/kg.
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Figure 7.6: Case 7: One reactor stage. Mixing, heat transfer area, cooling media temperature
and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C, xH2

/xCO -ratio in
fresh feed is set to 0.7 and σ = 0.8m3 s/kg.
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Figure 7.7: Case 20: Three reactor stages with separation. Mixing, heat transfer area, cooling
media temperature and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C,
xS =

[
0 0 0 1 0 0 0 0.7 1

]
, xH2

/xCO -ratio in fresh feed is set to 0.7
and σ = 1.46m3 s/kg.
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Figure 7.8: Case 21: Three reactor stages with separation. Mixing, heat transfer area, cooling
media temperature and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C,
xS =

[
0 0 0 1 0 0 0 0.7 1

]
, xH2

/xCO -ratio in fresh feed is set to 0.7
and σ = 1m3 s/kg.
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Figure 7.9: Case 22: Three reactor stages with separation. Mixing, heat transfer area, cooling
media temperature and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C,
xS =

[
0 0 0 1 0 0 0 0.7 1

]
, xH2

/xCO -ratio in fresh feed is set to 0.7
and σ = 0.8m3 s/kg.
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Figure 7.10: Case 23: Three reactor stages. Mixing, heat transfer area, cooling media temperature
and additional feed are optimized. uH ∈ [5,30], TW ∈ [195,215]◦C, xH2

/xCO -ratio
in fresh feed is set to 0.7 and σ = 0.8m3 s/kg.
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8 Discussion
The implemented FT-kinetics presented by Todic et al. have not been previously utilized
with the applied method of systematic reactor staging. The model calculates individual
reaction rates for the different n-paraffins and 1-olefins, thus there is no need to define
a paraffin-to-olefin ratio, which has been the case in earlier models. Though this prop-
erty is an improvement, it can not be fully utilized in view of the component lumping
introduced to the system. The lumping only accounts for the number of carbon atoms
in the chemical species, but does not distinguish between paraffins and olefins. How-
ever, the simplification was necessary as it lowered the number of reacting species from
33 to 9, thus decreasing the total number of optimization variables. As a consequence,
the run-time of the simulations was dramatically reduced. Still, with the given number
of variables, some of the simulations went on for several days before a solution was
obtained. If the individual chemical species, with their respective rates and weight frac-
tions, are to be assessed more powerful computational resources are required.

In both the kinetic model by Todic et al., and the performed simulations, hydrocarbons
from C1 to C15 have been investigated. The kinetic model was able to predict all of the
major product distribution characteristics for the given hydrocarbon range, and it should
be valid for extrapolation. If a larger range of hydrocarbons is to be investigated, e.g. up
to and including C30, the demand for computational power will increase even further.

The reaction rates are dependent on the partial pressures of H2, CO and H2O. In the im-
plementation of the kinetics a rough assumption was made that a sharp split between gas
and liquid phases at carbon number five exists, i.e. components with carbon number five
and greater are assumed to be in the liquid phase and do not affect the partial pressures.
If some of the heavier hydrocarbons reside in the gas phase the partial pressure of the
reactants would decrease, and consequently the reaction rates would decrease.

Two different cost functions have been applied in the simulation, i.e. maximization of the
weight fraction of key component at the end of the reactor path and maximization of the
production of key component. The former is utilized for cases without separation, while
the latter is utilized when separation is included. As they can not be readily compared,
the production of key component is employed as a basis of performance for, and as a
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8 DISCUSSION

variable for comparison between, the different designs.

Throughout the simulations, the reactor design is assumed to be a slurry bed, mainly due
to the low catalyst bulk density which was set to 200kg/m3. All simulations yielded
an ideal plug-flow mixing design. This result implies sufficient heat transfer area and
that there is no excessive heat generation in the reactors. In a real-life slurry bed reactor
the mixing would resemble the mixing in a CSTR due to the back mixing of the slurry
phase. However, it has been shown that properties close to plug-flow properties can
be obtained by introduction of intermediate baffles. If a PFR is to form the basis for
the simulations the catalyst bulk density should be much higher, i.e. in the size-range
1000 to 1500kg/m3. This would result in a much more reactive reactor and the optimal
mixing pattern would most probably change to counteract the excessive heat generation.

Another challenge when working with slurry beds is the separation of products. In the
simulations the separation was regarded as a “black box” where the product stream is
cooled, liquid products are separated and the stream is reheated before entering the next
reactor stage. This is a valid assumption if for example a multi-tubular reactor is applied.
In a slurry bed the separation will be more complex. The heaviest products will reside
in the liquid phase in both reactor systems. In a multi-tubular reactor the liquids trickle
down and out of the bed, while in a slurry bed a separation between the liquids and the
catalyst particles is required. The lighter hydrocarbons and H2O follow the gas stream,
together with unreacted reactants and inerts, and are separated by condensation in the
same way as described in the “black box”.

The separation was assumed to be perfect for both the C11+-lump and H2O, while it
was set to 0.7 for the C5-10-lump, i.e. 70wt% of these products are withdrawn from the
gas stream before it enters the next reactor stage. This assumption is based on several
calculations in UniSim Design R400. The molar fraction of chemical species in a lump
will have a substantial effect on the fraction which resides in the liquid phase, especially
for the C5-10-lump at the given temperature and pressure. This is the reason why the
lump is not completely separated.

All simulations, where separation were considered (Figures 7.7 - 7.9, p. 41 - 42), ex-
hibit a pronounced temperature drop between the reactor stages. The drop is due to the
addition of “cold” H2 with a temperature of 200 ◦C and the “hard-coded” 10 ◦C decrease
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in temperature caused by the separation process. In the separation “box” in Figure 3.1
(p. 13) the product stream is cooled to 40◦C, the liquids are separated and the stream is
reheated before entering the next reactor stage. In a real-life design the process would
be heat integrated. However some energy will be lost, hence the 10 ◦C temperature de-
crease.

In the designs where separation is included the weight fraction of the inert, CO2, in-
creases throughout the reactor path towards 50wt% at the end. If additional stages are
introduced and more products are separated, the fraction would increase even further,
causing decreased partial pressures of H2 and CO, and lower reaction rates.

The initial simulation, Case 1, with a single reactor stage, yielded a production of key
component equal to 8.3%. All design variables, except for the mixing properties, were
set. The simple design was retained in Case 2, where the heat transfer area density and
the cooling media temperature were optimized as well. The design resulted in a 6.6%
increase in production, yielding a production of key component equal to 8.8%. Thus,
the performance was improved when several design variables were introduced to the
optimization.

By adding two reactor stages, Case 17, the production was increased by 1.8% compared
to Case 2. All three designs have a molar feed ratio set equal to 2.1. Case 2 and 17
have similar optimization boundaries for heat transfer area density and cooling media
temperature. The latter was found equal to 215 ◦C in both cases, which is at the upper
boundary ensuring as high a temperature as possible in the reactor. Continued reaction
in the two last reactor stages in Case 17 is achieved by decreasing the heat transfer area.
It is adjusted to ensure high temperature simultaneously as the maximum temperature
constraint of 250◦C is not violated (see Figure 7.2, p. 36 and Figure 7.3, p. 37). In
the three-stage case the second and third stages are identical, i.e. in practice the design
consists of two stages where the first and second stage account for 38 and 62% of the
total reactor volume, respectively. The minor increase in production might not justify
the more complex design when economical aspects are considered.

In both cases discussed above the molar feed ratio was set to 2.1. To investigate the
optimal feed ratio seven cases were constructed where an extra H2-feed was introduced
prior to the first reactor stage, as depicted in Figure 3.1 (p. 13). Of the seven cases
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8 DISCUSSION

there were three one-stage and four three-stage designs. As expected, the results show
fairly similar optimal feed ratios for the cases with the same number of stages. All the
one-stage designs, Cases 5 through 7, yielded an optimal feed ratio of approximately
2.0, which is close to the stoichiometric ratio 2.1. For three of the three-stage designs,
Cases 20 through 22, where products and H2O are separated between each stage, the
optimal feed ratio was found to be approximately 1.5. The lower feed ratio, compared
to the one-stage designs, is due to the supply of additional H2 between the subsequent
stages. The distribution of additional H2 to the reactor path showed a 45.5% increase in
production of key component, when comparing Cases 17 and 20.

The last case which included optimization of the feed ratio was Case 23 (see Figure 7.10,
p. 43). In this case no products were separated from the reactor path. The optimal feed
ratio was found to be 1.32 which is the lowest of the seven cases. The low feed ratio
may be caused by the lack of separation. Compared to Case 22, Case 23 has a lower
heat transfer area in the first stage, which results in a steeper temperature profile and
higher reaction rates. Case 23 is the only case where the heat transfer area is larger in
the second stage compared to the first stage. More H2 is also added between the first and
second reactor stages, compared to case 22.

Cases 5 though 7 and 20 through 23 were used as a basis to investigate the dependency
of σ as well. From Table 7.1 (p. 39) it can be seen that the production of C11+ decreases
by 5.8% for the one-stage cases when σ is reduced from 1.46 to 0.8m3 s/kg. For the
corresponding three-stage cases the production decreases by 2.5%. The minor reduction
in production when the reactor volume is almost halved may suggest that σ equal to
0.8m3 s/kg is a better design from an economical point of view, when investment and
operating costs are considered. In future work the optimal value of σ may be investigated
by use of a cost function that encompasses, and try to minimize, σ . In addition, the cost
function must include a constraint on the conversion of CO per pass to prevent the total
reactor volume to approach zero.

By increasing the number of stages from one to three the production of C11+ increases by
15.9, 17.2 and 19.8% when σ is equal to 1.46, 1.00 and 0.80m3 s/kg, respectively. The
largest increase is found in the case where σ is 0.8m3 s/kg. The large increase in pro-
duction, when comparing the three- and one-stage designs, can justify the construction
of one of the more complex three-stage designs.

48



8 DISCUSSION

As discussed in the previous paragraph, the largest increase in production was found
in Case 22 (see Figure 7.9, p. 42), when comparing the one and three-stage designs.
This case, which includes separation between the reactor stages, yielded a production of
key component equal to 12.8%. To investigate the benefits of separation Case 23 was
constructed. Here, all simulation variables were kept alike, apart from separation. By
retaining all the products within the reactor path, Case 23 yielded a production of 11.4%,
i.e. a decrease of 10.3% compared to Case 22. The minor reduction suggests that the
economical aspects of including separation should be investigated in more detail before
a distinct conclusion can be drawn. However, it should be noted that in a slurry bed
reactor, separation of the heaviest components from the slurry must be made. Therefore,
it is the separation between the stages that is of interest in future investigations.

All simulations yielded an optimal cooling water temperature in the range 205 to 215◦C.
To be able to have vaporizing water at this temperature the cooling water utility system
has to be at a pressure of approximately 20bar. This is equivalent to the pressure in the
reactor, and no complications associated with pressure difference between the reactor
and the utility system are expected.

A recycle is not included in the reactor path, so a high conversion of CO per pass is
desirable. All simulations yielded a conversion in the range of 82.1 to 97.7%, suggesting
that the requirement of a recycle is not paramount.

As stated in Section 6.1 (p. 31) the molecular weights and heat capacities of the lumps
are calculated with the assumption that the lumps are composed of equimolar amounts
of the respective chemical species. In addition, the molecular weights are rounded off to
integers and the heat capacities are calculated at feed temperature and pressure. These
assumptions are rather rough and the real values will differ. Though not investigated,
these assumptions are not expected to have a significant effect on the end results.

The feed temperature has been 200 ◦C in all simulations. In future work the temperature
should be investigated to find the optimal feed temperature. The same applies to the total
pressure which has been kept constant for all the performed simulations. The kinetic
model is validated in the pressure range 15 to 25bar. In the performed simulations a
total pressure of 20bar is chosen, which is well within the bounds. Further, the total
pressure is assumed constant throughout the reactor path. In reality there would be a
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pressure drop. The size of this drop is dependent on the reactor system. In a close-
packed multi-tubular reactor the pressure drop will be larger compared to a slurry bed
reactor. If the pressure drop is implemented in the model it may cause reduced reaction
rates, decreased conversion of CO and thus, lower production of key component per
pass.
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9 Conclusions
The objective of this Master’s thesis has been to find the optimal reactor path layout
for the Fischer-Tropsch process, i.e. the number of reactor stages, the desired cooling
media temperature, the heat transfer area density, the molar feed ratio and the inclusion
or emission of separation. As expected, the performed simulations show an increased
production of key component when the degrees of freedom are increased, i.e. several
optimization variables yield increased performance.

A close to halved total reactor volume showed only a small decrease in production of key
component for cases with both one and three reactor stages. Thus a space-time equal to
0.8m3 s/kg may be better from an economical point of view, compared to higher values
for σ .

Increasing the number of reactor stages from one to three, including separation, yielded
a 19.8% increase in production of key component (for σ = 0.8m3 s/kg). The large
increase in production may justify the construction of the more complex three-stage
design.

Introduction of additional H2 yielded an optimal molar feed ratio, xH2
/xCO , of approx-

imately 2.0 for the one-stage designs. For the three-stage designs the ratio was found
to be approximately 1.5 and 1.3, for the cases with and without separation, respectively.
A 45.5% increase in production of key component was found when two three-staged
designs, with and without optimization of the feed ratio, were compared.

The optimal design was found to have three reactor stages, separation, a σ equal to
0.8m3 s/kg and a molar feed ratio, xH2

/xCO , equal to 1.52. The design showed a pro-
duction of key component equal to 11.4%.

A three-staged design without separation showed a 10.3% reduction in production com-
pared to a corresponding case with separation. Thus, economical calculations should
be considered before drawing conclusions with regard to construction of a plant with or
without separation.

The simulations yield a conceptual, optimal design. The real-life feasibility of the design
is still unknown as no economical aspects have been taken into consideration.
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A Results data
In this appendix raw-data and processed data for all the simulations is presented.

The main results are presented in Table A.1. Raw data for the design functions are
presented in Table A.2.
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B Kinetic Model – Additional Data
In this appendix data for the kinetic model is presented.

Table B.1: Values for the parameters in the kinetic model.

Parameter Value Unit

A1 1.83×1010 mol/(gcat hMPa)
A2 5.08 -
A3 2.44×101 MPa−1

A4 2.90 -
A5 4.49×105 mol/(gcat hMPa)

A5M 8.43×105 mol/(gcat hMPa)
A6 7.47×108 mol/(gcat h)

A6E 7.03×108 mol/(gcat h)
A7 1.00×10−3 MPa−1

E1 100.4 kJ/mol
E5 72.4 kJ/mol

E5M 63.0 kJ/mol
E0

6 97.2 kJ/mol
E0

6E 108.8 kJ/mol
∆E 1.12 kJ/molCH2

∆H2 8.68 kJ/mol
∆H3 9.44 kJ/mol
∆H4 7.9 kJ/mol
∆H7 −25.0 kJ/mol
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C Matlab Code
In this Appendix the Matlab scripts used in the thesis are presented. A short description
of each of the scripts is presented in Table C.1. In addition, three simulation hierarchies
are presented in Tables C.2 through C.4.

Table C.1: Description of the different MATLAB scripts.

File name Description

fischerTropschTodicLump.m Main file
fluidpath.m System definition
integrate.m Integration over reactor volume
OptimizeDesign.m Optimization function
DesignModel.m ODE describing the change of states along the reactor path
kinTodicLump.m Kinetic model
ObjectiveFunction.m Objective function (that is minimized)
ModelConstraints.m Model Constraints
flowPropTPlump.m Extracting flow properties from pre-stored matrices
moletomass.m Converting from mole to mass fraction
masstomole.m Converting from mass to mole fraction
pathset.m Set objects in “fluidpath.m”
AssignVector.m Store values
AssignObject.m Store values
Jacobian.m Calculation of the Jacobian
intMolarMass.m Calculating molecular weight in whole numbers
deltaHrx.m Calculating the heat of reaction
mid.m Calculation of the mean over the reactor path
AssignRate.m Calculation of reaction rates
pathget.m Get properties from “fluidpath.m”
MmCpMatrixLump.m Main file; calculating flow properties
uniSimPropertiesTodicLump.m Extracting flow properties from UniSim Design R400
FTplotting.m Main file for plotting results
plotFT.m Constructing plots
defaultPlotSettings.m Defining default plot settings
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C MATLAB CODE

Table C.2: Simulation hierarchy for retrieving physical properties.

Level
1 2 3

MmCpMatrixLump.m uniSimPropertiesTodicLump.m FlowPropertiesTodicLump.usc*

* UniSim Design R400 file.

Table C.3: Simulation hierarchy for plotting the results.

Level
1 2 3

FTplotting.m plotFT.m defaultPlotSettings.m

C-2



C MATLAB CODE
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C.1 fischerTropschTodicLump.m C MATLAB CODE

C.1 fischerTropschTodicLump.m

1 %% Fischer−Tropsch, reactor staging

2 clear all

3 close all

4 clc

5

6 %% Local variables

7 c = ...

str2mat('CO','CO2','H2','H2O','CH4','C2H6','C3−4','C5−10','C11+');
8

9 Tf = 200; %% Temperature feed [C]

10 Tw = 205; %% Temperature cooling [C]

11 Tref = 200 + 273; %% Reference temperature

12 pTot = 2e6; %% Pressure [Pa]

13 bulkCatDensity = 200e03; %% Catalyst density [g/m^3]

14

15 % [M, cpnom, liqFrac] = uniSimPropertiesTodicLump(TF,pTot);

16 [M, cpnom, liqFrac] = flowPropTPlump(Tf,pTot);

17 M = round(M);

18 % 1 2 3 4 5 6 7 8 9 10

19 s = strvcat('CO','CO2','H2','H2O','C1','C2','C34','C510','C11','T');

20 for i=1:size(s,1)

21 eval([s(i,:),'=int8(',num2str(i),');']);

22 end

23 %%

24 ns = 1; %% Number of stages

25 nc = length(M); %% Number of components

26 ncol = 20; %% Number of internal collocation points

27

28 % Mole fractions fresh feed

29 yF0 = zeros(nc,1);

30 yF0(CO2) = 0.10;

31 yF0(CO) = 0.29;

32 yF0(H2) = 0.61;

33

34 Mav = yF0'*M;

35

36 % Mass fractions fresh feed

37 yF0m = moletomass(yF0,M);

38
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C MATLAB CODE C.1 fischerTropschTodicLump.m

39 % Mole fractions extra feed

40 yF = zeros(nc,1);

41 yF(H2) = 1;

42

43 % Mass fractions extra feed

44 yFm = moletomass(yF,M);

45

46 %%

47 % VR = 400; %% Reactor volume [m3]

48 % F0 = 5000; %% Feed flow [mol/s]

49 % W0 = F0/1000*Mav; %% Feed flow [kg/s]

50 % sigma = VR/W0; %% Space time [m3s/kg]

51 sigma = 1.4556;

52 uHi = 20; %% Heat transfer area, design function

53

54

55 %% Create a object a of class fluidpath

56 a = fluidpath(ns,nc,ncol);

57 %%%%%%%%%%%%%%%%%%%%%%%%%%

58 u1 = ones(1,2*ns);

59 a = pathset(a,'T0',Tf); %% Feed temperature

60 a = pathset(a,'Tcool0',Tw); %% Inital cooling water ...

temperature

61 a = pathset(a,'Tref',Tref); %% Reference temperature

62 a = pathset(a,'pTot',pTot); %% Total pressure

63 a = pathset(a,'M',M'); %% Molar mass [kg/kmol]

64 % TolCon TolFun TolX

65 a = pathset(a,'tol',[1e−8 1e−8 1e−6 1e−6 1e−6]); %% Tolerances

66 a = pathset(a,'cp',cpnom'); %% Heat capacities ...

[kJ/(kg*K)]

67 a = pathset(a,'liqFrac',liqFrac');

68 a = pathset(a,'kinetics','kinTodicLump'); %% Kinetic function

69 a = pathset(a,'xx0',[yF0m;(Tf + 273 − Tref)/Tref],1); %% State vector

70 a = pathset(a,'xxF',[yFm;(Tf + 273 − Tref)/Tref],1); %% State vector

71 a = pathset(a,'xxFF',[yF0m;(Tf + 273 − Tref)/Tref],1);%% State vector

72 a = pathset(a,'xS',[0 0 0 1 0 0 0 0.7 1]',1); %% Separation function

73 a = pathset(a,'key',C11); %% Key component

74 a = pathset(a,'sigma0',sigma); %% Inital sigma

75

76 %%

77 % Parameterization of design functions

78 a = pathset(a,'update_sigma',0); %% Space time
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C.1 fischerTropschTodicLump.m C MATLAB CODE

79 a = pathset(a,'update_uH', repmat([1 −1], 1, ns)); %% Heat ...

exchanger area

80 a = pathset(a,'update_uT', repmat([1 −1], 1, ns)); %% Temp ...

cooling media

81 a = pathset(a,'update_uF', repmat([0 0], 1, ns)); %% Extra feed

82 a = pathset(a,'update_uFF',repmat([0 0], 1, ns)); %% 2nd extra feed

83 a = pathset(a,'update_uA', repmat([0 0],1,ns)); %% Catalyst ...

activity

84 a = pathset(a,'update_uS', repmat([0 0],1,ns)); %% Separation

85 a = pathset(a,'uFp', repmat(1,1,ns)); %% If 1: point feed ...

1st extra feed

86 a = pathset(a,'uFFp', repmat(1,1,ns)); %% If 1: point feed ...

2nd extra feed

87 a = pathset(a,'uSp', repmat(0,1,ns));

88

89 %%

90 % Initial values and boundaries of design functions

91 % Space time

92 a = pathset(a,'sigma',sigma);

93 a = pathset(a,'sigma_max',5);

94 a = pathset(a,'sigma_min',0);

95

96 % Heat transfer area distribution

97 a = pathset(a,'uH', u1*uHi/40);

98 a = pathset(a,'uH_min',u1*5/40);

99 a = pathset(a,'uH_max',u1*30/40);

100

101 % Temperature cooling media

102 a = pathset(a,'uT', u1*(Tw+273−Tref)/Tref);
103 a = pathset(a,'uT_min',u1*(Tw−10+273−Tref)/Tref);
104 a = pathset(a,'uT_max',u1*(Tw+10+273−Tref)/Tref);
105

106 % Catalyst activity

107 a = pathset(a,'uA', u1);

108 a = pathset(a,'uA_min',u1*0.1);

109 a = pathset(a,'uA_max',u1*1);

110

111 % 1st extra feed

112 a = pathset(a,'uF', u1*0);

113 a = pathset(a,'uF_min',u1*0);

114 a = pathset(a,'uF_max',u1*1);

115

C-6



C MATLAB CODE C.1 fischerTropschTodicLump.m

116 % 2nd extra feed

117 a = pathset(a,'uFF',u1*0);

118 a = pathset(a,'uFF_min',u1*0);

119 a = pathset(a,'uFF_max',u1*10);

120

121 % Separation

122 a = pathset(a,'uS', u1*0);

123 a = pathset(a,'uS_min',u1*0);

124 a = pathset(a,'uS_max',u1*1);

125

126 % Objective function

127 a = pathset(a,'Jcrit',1);

128

129 %% Integration

130 tic

131 a = integrate(a);

132 toc

133 % CO conversion

134 y1 = masstomole(a.Z(end,1:nc)',M);

135 X_CO1 = (yF0(CO) − y1(CO))/yF0(CO); %% Molar basis

136 MX_CO1 = 1 − a.Z(end,1)/a.Z(1,1)*a.Z(end,end); %% Weight basis

137

138 %% Optimization

139 [a, b] = OptimizeDesign(a,5);

140

141 % CO conversion

142 y = masstomole(a.Z(end,1:nc)',M);

143 X_CO = (yF0(CO) − y(CO))/yF0(CO); %% Molar basis

144 MX_CO = 1 − a.Z(end,1)/a.Z(1,1)*a.Z(end,end); %% Weight basis

145 fprintf('CO conversion before optimization = %0.2f\n',MX_CO1)

146 fprintf('CO conversion after optimization = %.2f\n',MX_CO)

147 plotFT(a);

148

149 save 1stage_uM_uH_uT.mat %% Save results
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C.2 fluidpath.m C MATLAB CODE

C.2 fluidpath.m

1 function a=fluidpath(ns,nc,ncol)

2 % FLUIDPATH is the constructor of the class FLUIDPATH and

3 % initiates the stucture. A FLUIDPATH object defines a

4 % the Process Path Environment.

5 % Input

6 % ns : Number of stages

7 % nc : Number of components (species)

8 % ncol : Number of internal collocation points in each stage.

9 % Output

10 % a : An initialized object of class FLUIDPATH

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 a.ns = ns; % Number of stages

13 a.nc = nc; % Number of components

14 a.ncol = ncol; % Number of internal collocation points

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % The other

17 a.T0 = 273+200; % Temperature of fresh feed

18 a.Tcool0 = 273+200; % Temperature of cooling media (initial)

19 a.Tref = 273+250; % Reference temperature [K]

20 a.pTot = 2.0e6; % Total pressure [Pa]

21 a.kinetics = str2func('kinTodicLump'); % Kinetic function

22 a.fluid = 'micro';

23

24 a.M = zeros(1,nc); % Molecular weight kg/kmol

25 a.cp = zeros(1,nc); % Heat capacity kJ/kg−K
26 a.liqFrac = zeros(1,nc); % Liquid fraction, given temperature ...

and pressure

27

28 a.nxx = nc + 1; % Length of vector xx

29 a.nz = a.nxx + 1; % Length of z

30 %

31 % Collocation

32 [r, A, B, q] = colloc( ncol ,1 ,1);

33 a.A = A; %% First derivative

34 a.roots = r; %% Collocation points (roots)

35 a.qweights = q; %% Collocation weights

36 %

37 a.key = nc; % Defualt value

38 a.ndof = 0; % Number of DOF (degrees of freedom)
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C MATLAB CODE C.2 fluidpath.m

39

40 a.sigma0 = 0; % Space time (inital)

41 a.sigma = 0; % VRoverF0 is space time [m3*s/kmol]

42 a.sigma_max = 100.; % VRoverF0 is space time [m3*s/kmol]

43 a.sigma_min = 0; % VRoverF0 is space time [m3*s/kmol]

44 a.update_sigma = 1;

45

46 a.algorithm = 2; % Algorithm=0; manual

47 a.xx0 = zeros(a.nxx,1); % Initial state

48 a.xx = a.xx0; % Current state

49 a.xxF = a.xx0;

50 a.xxFF = a.xx0; % Composition of the side second stream

51 a.xS = zeros(nc,1);

52

53 a.J(1:20) = 0;

54 a.Jcrit = 1;

55 %a.ineqcon=[];

56 % tolerances for

57 % TolCon TolFun TolX niu niu

58 a.tol = [1.e−7 1.e−9 1.e−9 1.e−6 1.e−9];
59

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 % Initialize design functions

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63 %

64 a.dxi(1:ns) = 1.0/ns; % Equally distributed regions initially

65 a.update_dxi(1:ns) = 1;

66 for i=1:ns+1, a.xi(i) = sum(a.dxi(1:i−1)); end

67 % M

68 a.uM(1:2*ns) = 0; % Mixing regions are initially set ...

to PFR

69 a.update_uM(1:2*ns) = 1;

70 a.update_uM(1) = 0;

71 % H

72 a.uH(1:ns) = 0; % Heat exchange area distribution

73 a.uH_min(1:ns) = 0;

74 a.uH_max(1:ns) = 0

75 a.update_uH(1:ns) = 1;

76 a.iuH = [];

77 a.luH = 0;

78 a.puH = 0;

79 % F
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C.2 fluidpath.m C MATLAB CODE

80 a.neF = 1; % Number of external feeds with different composition

81 a.uF(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

82 a.uFp(1:2*ns) = 0; %% Default feed is distributed

83 a.uF0(1:2*ns) = a.uF(1:2*ns);

84 a.uF1(1:2*ns) = 0.0;

85 a.uF_min(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

86 a.uF_max(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

87 a.update_uF(1:2*ns) = 1;

88 a.iuF = [];

89 a.luF = 0;

90 a.puF = 0;

91

92 % FF second side stream

93 % FF

94 a.neFF=1; % Number of external feeds with different composition

95 a.uFF(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

96 a.uFFp(1:2*ns) = 0; %% Default feed is distributed

97 a.uFF0(1:2*ns) = a.uF(1:2*ns);

98 a.uFF1(1:2*ns) = 0.0;

99 a.uFF_min(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

100 a.uFF_max(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

101 a.update_uFF(1:2*ns) = 1;

102 a.iuFF = [];

103 a.luFF = 0;

104 a.puFF = 0;

105

106 % Separation

107 a.uS(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

108 a.uSp(1:2*ns) = 0; %% Default feed is distributed

109 a.uS_min(1:2*ns) = 0.0; %% Extra feeds are set to zero initailly

110 a.uS_max(1:2*ns) = 1; %% Extra feeds are set to zero initailly

111 a.update_uS(1:2*ns) = 0;

112 a.iuS = [];

113 a.luS = 0;

114 a.puS = 0;

115

116 % T

117 a.uT(1:ns) = 0; %% Cooling/Heating temperature

118 a.uT_min(1:ns) = 0; %% Cooling/Heating temperature

119 a.uT_max(1:ns) = 0; %% Cooling/Heating temperature

120 a.update_uT(1:ns) = 1;

121 a.iuT = [];
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122 a.luT = 0;

123 a.puT = 0;

124

125 % A

126 a.uA(1:ns) = 1.0; %% Catalyst activity over the ...

entire volume

127 a.uA_min(1:ns) = 0.0; %% Catalyst activity over the ...

entire volume

128 a.uA_max(1:ns) = 1.0; %% Catalyst activity over the ...

entire volume

129 a.update_uA(1:ns) = 1;

130 a.iuA = [];

131 a.luA = 0;

132 a.puA = 0;

133

134 a.Z = zeros((a.ncol+2)*ns,a.nz);

135 a.x = zeros((a.ncol+2)*ns,1);

136 a.R = zeros((a.ncol+2)*ns,a.nxx); %% component reaction rates + RT

137 a.alpha = zeros((a.ncol+2)*ns,15);

138

139 %a=class(a,'fluidpath');

140

141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142 function [r, A, B, q]=colloc(n,left,right)

143 % colloc: Calculate collocation weights

144 % [r, A, B, q] = colloc( n [,'left'] [,'right'])

145 % Inputs:

146 % n − Number of interior node points

147 % 'left' − Include left boundary

148 % 'right' − Include right bounary also

149 % Outputs:

150 % r − Vector of roots

151 % A − Matrix of first derivative weights

152 % B − Matrix of second derivative weights

153 % q − Quadrature weights.

154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

155 % Copyright (C) 1996, 1997 John W. Eaton

156 %

157 % This program is free software; you can redistribute it and/or ...

modify

158 % it under the terms of the GNU General Public License as ...

published by
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159 % the Free Software Foundation; either version 2, or (at your option)

160 % any later version.

161 %

162 % This program is distributed in the hope that it will be useful, but

163 % WITHOUT ANY WARRANTY; without even the implied warranty of

164 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

165 % General Public License for more details.

166 %

167 % You should have received a copy of the GNU General Public License

168 % along with Octave; see the file COPYING. If not, write to the Free

169 % Software Foundation, 59 Temple Place − Suite 330, Boston, MA

170 % 02111−1307, USA.

171 %

172 % Adapted from Octave's colloc.cc by Steve Swinnea.

173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

174

175 n0 = 0 ; n1 = 0;

176 if (nargin > 1)

177 if (strcmp(left,'left') | strcmp(left,'l') )

178 n0 = 1;

179 elseif (left == 0 | left == 1 )

180 n0 = left;

181 else

182 error('Second argument should be the string left or l')

183 end

184 end

185 if (nargin > 2)

186 if (strcmp(right,'right') | strcmp(right,'r') )

187 n1 = 1;

188 elseif ( right == 1 | right == 0 )

189 n1 = right;

190 else

191 error('Third argument should be the string right or r')

192 end

193 end

194

195 [dif1,dif2,dif3,r]=jcobi(n,n0,n1,0,0);

196 q = dfopr(n,n0,n1,0,3,dif1,dif2,dif3,r);

197 for i=1:(n+n0+n1)

198 vect = dfopr(n,n0,n1,i,1,dif1,dif2,dif3,r);

199 A(i,:) = vect';

200 end
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201 for i=1:(n+n0+n1)

202 vect = dfopr(n,n0,n1,i,2,dif1,dif2,dif3,r);

203 B(i,:) = vect';

204 end

205

206 %%%%%% jcobi %%%%%%%

207 function [dif1,dif2,dif3,root]=jcobi(n,n0,n1,alpha,beta)

208 if (n0 ~= 0) & (n0 ~= 1)

209 error('** VILERR : Illegal value % N0 ');

210 end

211 if (n1 ~= 0) & (n1 ~= 1)

212 error('** VILERR : Illegal value for N1 ');

213 end

214 if (n+n0+n1 < 1)

215 error('** VILERR : Number of interpolation points less than 1');

216 end

217 %

218 % −− FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAS.

219 % −− RECURSION COEFFICIENTS ARE STORED IN DIF1 AND DIF2.

220 %

221 nt = n+n0+n1;

222 dif1=zeros(nt,1);

223 dif2=zeros(nt,1);

224 dif3=zeros(nt,1);

225 root=zeros(nt,1);

226 ab = alpha+beta;

227 ad = beta−alpha;
228 ap = beta*alpha;

229 dif1(1) = (ad/(ab+2)+1)/2;

230 dif2(1) = 0;

231

232 if (n >= 2)

233 for i=2:n

234 z1 = i−1;
235 z = ab + 2*z1;

236 dif1(i) = (ab*ad/z/(z+2)+1)/2;

237 if (i == 2 )

238 dif2(i) = (ab+ap+z1)/z/z/(z+1);

239 else

240 z = z*z;

241 y = z1*(ab+z1);

242 y = y*(ap+y);
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243 dif2(i) = y/z/(z−1);
244 end

245 end

246 end

247 %

248 % −− ROOT DETERMINATION BY NEWTON METHOD WITH SUPPRESSION OF

249 % −− PREVIOUSLY DETERMINED ROOTS

250 %

251 x = 0;

252 for i=1:n

253 z = 1;

254 while ( abs(z) > 1e−9 )

255 xd = 0;

256 xn = 1;

257 xd1 = 0;

258 xn1 = 0;

259 for j=1:n

260 xp = (dif1(j)−x)*xn − dif2(j)*xd;

261 xp1 = (dif1(j)−x)*xn1 − dif2(j)*xd1 − xn;

262 xd = xn;

263 xd1 = xn1;

264 xn = xp;

265 xn1 = xp1;

266 end

267 zc = 1;

268 z = xn/xn1;

269 if ( i ~= 1 )

270 for j = 2:i

271 zc = zc − z/(x−root(j−1));
272 end

273 end

274 z = z/zc;

275 x = x−z;
276 end

277 root(i) = x;

278 x = x +.0001;

279 end

280 %

281 % −− ADD INTERPOLATION POINTS AT X = 0 AND/OR X = 1

282 %

283 if (n0 ~= 0)

284 root = [ 0 ; root(1:nt−1) ];
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285 end

286 if (n1 == 1)

287 root(nt) = 1;

288 end

289 [dif1 dif2 dif3] = dif( root );

290

291 %%%%% dfopr %%%%%%

292 function vect = dfopr(n,n0,n1,i,id,dif1,dif2,dif3,root)

293 nt = n+n0+n1;

294 vect = zeros(nt,1);

295 if (n0 ~= 0) & (n0 ~= 1)

296 error('** VILERR : Illegal value % N0 ');

297 end

298 if (n1 ~= 0) & (n1 ~= 1)

299 error('** VILERR : Illegal value for N1 ');

300 end

301 if (nt < 1)

302 error('** VILERR : Number of interpolation points less than 1');

303 end

304 if (id ~= 1 & id ~= 2 & id ~= 3 )

305 error('** VILERR : Illegal ID in DFOPR ')

306 end

307 if ( id ~= 3 )

308 if ( i < 1 )

309 error('** VILERR : Index less than zero in DFOPR ')

310 end

311 if ( i > nt )

312 error('** VILERR : Index greater than NTOTAL in DFOPR ')

313 end

314 end

315 %

316 % −− EVALUATE DISCRETIZATION MATRICES AND GAUSSIAN QUADRATURE

317 % −− WEIGHTS. QUADRATURE WEIGHTS ARE NORMALIZED TO SUM TO ONE.

318 %

319 if ( id ~= 3 )

320 for j = 1:nt

321 if (j == i)

322 if (id == 1)

323 vect(i) = dif2(i)/dif1(i)/2;

324 else

325 vect(i) = dif3(i)/dif1(i)/3;

326 end
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327 else

328 y = root(i)−root(j);
329 vect(j) = dif1(i)/dif1(j)/y;

330 if (id == 2 )

331 vect(j)=vect(j)*(dif2(i)/dif1(i)−2/y);
332 end

333 end

334 end

335 else

336 y=0;

337 for j = 1:nt

338 x = root(j);

339 ax = x*(1−x);
340 if (n0 == 0)

341 ax = ax/x/x;

342 end

343 if (n1 == 0)

344 ax = ax/(1−x)/(1−x);
345 end

346 vect(j) = ax/dif1(j)^2;

347 y = y + vect(j);

348 end

349 vect = vect/y;

350 end

351

352 %%%%% dif %%%%%

353 function [dif1,dif2,dif3] = dif( root )

354 nt = length( root );

355 dif1 = zeros(nt,1);

356 dif2 = zeros(nt,1);

357 dif3 = zeros(nt,1);

358 if ( nt < 1 )

359 error('** VILERR : Number of interpolation points less than 1');

360 end

361 for i = 1:nt

362 x = root(i);

363 dif1(i) = 1;

364 dif2(i) = 0;

365 dif3(i) = 0;

366 for j = 1:nt

367 if ( j ~= i)

368 y = x − root(j);
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369 dif3(i) = y*dif3(i) + 3*dif2(i);

370 dif2(i) = y*dif2(i) + 2*dif1(i);

371 dif1(i) = y*dif1(i);

372 end

373 end

374 end

C.3 integrate.m

1 function a=integrate(a)

2 % Function INTEGRATE

3 % Initial values

4 %tic

5 %zz0=[a.xx0; 1; 1];

6 zz0 = [a.xx0; 1];

7 xi0 = 0.0;

8 Z = []; xi = []; R = []; alpha = [];

9 %options=odeset('RelTol',1e−12,'AbsTol',1.e−12);
10 % % options=odeset('RelTol',1e−6,'AbsTol',1.e−6);
11 %options=odeset('RelTol',1e−5,'AbsTol',1.e−6);
12 for ir=1:a.ns

13 xi1 = xi0 + a.dxi(ir);

14 xispan = [xi0 xi1];

15 xispan = a.roots*a.dxi(ir) + xi0; % Use values only on the roots

16 a.uF0(ir) = a.uF(ir); % Default is distributed feed.

17 if a.uFp(ir) == 1 || a.uFFp(ir)==1 % If point feed

18 a.uF1(ir)=(a.uF(2*ir−1)+a.uF(2*ir))*0.5*a.dxi(ir)*a.sigma; ...

% Interpolate

19 a.FF1(ir)=(a.uFF(2*ir−1)+a.uFF(2*ir))*0.5*a.dxi(ir)*a.sigma;
20 a.uF0(ir)=0.0; a.uFF0(ir)=0;

21 nc = a.nc;

22 y = zz0(1:nc); %@mhi 050608

23 yF = a.xxF(1:nc); % Composition of 1st side stream

24 yFF = a.xxFF(1:nc); % Composition of 2nd side stream

25 TF = a.xxF(a.nxx); % Temperature of the 1st ...

side stream

26 TFF = a.xxFF(a.nxx); % Temperatire of 2nd side stream

27 ga = zz0(a.nxx+1);

28 T = zz0(a.nxx); %% [K]

29 cp = a.cp*y; %@mhi 120608

30 cpF = a.cp*yF; %@mhi 120608
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31 cpFF = a.cp*yFF;

32 gat = ga + a.uF1(ir)+a.uFF1(ir);

33 yt = (a.uF1(ir)*yF+a.uFF1(ir)*yFF + ga*y)/gat;

34 Tt = (a.uF1(ir)*cpF*TF+a.uFF1(ir)*cpFF+ga*cp*T)/...

35 (ga*cp+a.uF1(ir)*cpF+a.uFF1(ir)*cpFF);

36 zz0 = [yt;Tt;gat];

37 end

38 if a.uSp==1 % This should be place after each integration

39 kappa = (a.uS(2*ir−1)+a.uS(2*ir))*0.5; %

40 ga = zz0(a.nxx+1);

41 y = zz0(1:a.nc);

42 sum1 = sum(a.xS.*y);

43 yt = (1−kappa*a.xS).*y./(1−kappa*sum1);
44 Tt = 10./a.Tref;

45 gat = ga−kappa*ga*sum1;
46 zz0 =[yt;Tt;gat];

47 end

48 [x,Zi]= ode15s(@(x,zz) ...

DesignModel(x,zz,a,ir,xi0),xispan,zz0);%,options);

49 %[x,Zi]= ode23s(@(x,zz) ...

DesignModel(x,zz,a,ir,xi0),xispan,zz0,options);

50 xi0 = xi1;

51 uA = a.uA(ir);

52 for i=1:length(x)

53 xx = Zi(i,1:a.nxx)';

54 cp = a.cp*xx(1:a.nc);

55 [Ri, alphai] = feval(a.kinetics,xx,uA,cp,a.M',a.Tref,a.pTot);

56 R = [R;Ri' ];

57 alpha = [alpha; alphai'];

58 end

59 zz0 = Zi(end,:)';

60 Z=[Z;Zi]; xi=[xi;x];

61 end

62 a.Z=Z;

63 a.x=xi;

64 %a.xx=zz0(1:a.nxx);

65 a.xx=zz0; %endret 6Aug07

66 a.R=R;

67 a.alpha = alpha;

C-18



C MATLAB CODE C.4 OptimizeDesign.m

C.4 OptimizeDesign.m

1 function [a bb] = OptimizeDesign(a,niter)

2 %function [A b uu]=OptimizeDesign(a)

3 % OPTIMIZEDESIGN is a function that optimize the design defined ...

in an

4 % object of class fluidpath.

5 % The vector uu is assigned a fixed structure.

6 % If elements in uu are not to be optimized but fixed as given in a,

7 % they are fixed by upper and lower bound conditions.

8 %

9 % uu=[uM(2) uM3' uM3 uM4' uM4 2*ns−1 1..2*ns−1
10 % [dxi(1)..dxi(ns) ns 2*ns..3*ns−1
11 % [VRoverF0 1 3*ns

12 % [uH(1) uH(2) ...uH(nH) ns 3*ns+1..4*ns

13 % [uT(1) uT(2) ...uT(nT) ns 4*ns+1..5*ns

14 % [uA(1) uA(2) ...uA(ns) ns 5*ns+1..6*ns

15 % [uF(1) uF(2) ...uF(ns) ns 6*ns+1..7*ns

16 %

17 % A*uu<=b

18 % Aeq*uu=beq

19 %

20 ns = a.ns; %% Number of stages

21 n = 3*ns−1; %% Least number of optimization variables

22

23 nV = a.update_sigma; %% Is 0 or 1

24 n = n+nV;

25

26 a.puH = n; %% Heat exchange

27 a.iuH = find(a.update_uH==1);

28 a.luH = length(a.iuH);

29 n = n + a.luH;

30

31 a.puT = n; %% Temperature cooling media

32 a.iuT = find(a.update_uT==1);

33 a.luT = length(a.iuT);

34 n = n + a.luT;

35

36 a.puA = n; %% Catalyst distribution

37 a.iuA = find(a.update_uA==1);

38 a.luA = length(a.iuA);
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39 n = n + a.luA;

40

41 a.puF = n; %% Feed distribution

42 a.iuF = find(a.update_uF==1);

43 a.luF = length(a.iuF);

44 n = n + a.luF;

45

46 a.puFF = n; %% Second feed distribution

47 a.iuFF = find(a.update_uFF==1);

48 a.luFF = length(a.iuFF);

49 n = n + a.luFF;

50

51 a.puS = n; %% Separation

52 a.iuS = find(a.update_uS==1);

53 a.luS = length(a.iuS);

54 n = n + a.luS;

55

56 a.ndof = n; %% Degrees of freedom

57 n = n + (a.ncol+2)*a.ns*a.nz;

58

59 %n =n+a.nxx; %mhi 31Augu07

60 %a.key=n;

61

62 % n is total number of variables to be optimized

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 % Set linear inequality constraints on uM

65 % A*uM<=b

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67 %A = zeros(2*ns−1,n);b=zeros(2*ns−1,1);
68 A = zeros(3*ns−2,n); b = zeros(3*ns−2,1);
69 for i=1:2*ns−1, A(i,i) = 1.0; end

70 for i=1:2*ns−2, A(i+1,i)=−1.0; end

71 %for i=1:ns, b(2*i−1)=a.dxi(i); end

72 %for i=1:ns, A(2*i−1,2*ns+i)=−1.0; end

73 for i=1:ns, A(2*i−1,2*ns+i−1)=−1.0; end %@

74 for i=1:ns−1, A(2*ns−1+i,2*i)=1; end

75 for i=1:ns−1, A(2*ns−1+i,2*i+1)=−1; end

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77 % Set linear equality constraints on dxi sum(dxi(i))=1

78 % and 1.0*u=a.u where u is constant

79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

80 Aeq = zeros(1,n);beq=zeros(1,1);
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81 %Aeq(1,2*ns+1:3*ns)=1.0; beq(1)=1.0;

82 Aeq(1,2*ns:3*ns−1)=1.0; beq(1)=1.0; %@

83

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85 % Set lower and upper bounds on uu

86 % uu=[uM1 uM1' uM2 uM2' uM3 2*ns−1 1..2*ns−1
87 % [dxi(1)..dxi(ns) ns 2*ns..3*ns−1
88 % [VRoverF0 1 3*ns

89 % [uH(1) uH(2) ...uH(ns) ns 3*ns+1..4*ns

90 % [uT(1) uT(2) ...uT(ns) ns 4*ns+1..5*ns

91 % [uA(1) uA(2) ...uA(ns) ns 5*ns+1..6*ns

92 % [uF(1) uF(2) ...uF(ns) ns 6*ns+1..7*ns

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94 lb=zeros(n,1);

95 ub=zeros(n,1);

96 lb(1:n) = 0.0; % No design function can be negative

97 ub(1:n) = inf; % Need to be modified

98 lb(2*ns:3*ns−1)=1/a.ns*0.1; % Minimum dxi

99 ub(2*ns:3*ns−1)=1.0; % dxi is max 1.0

100 if nV==1,

101 lb(3*ns) = a.sigma_min; % Minimum VRoverF0

102 ub(3*ns) = a.sigma_max; % Maximum VRoverF0

103 end

104 if a.luH>0,

105 lb(a.puH+1:a.puH+a.luH)=a.uH_min(a.iuH); % Min heat ...

transfer area

106 ub(a.puH+1:a.puH+a.luH)=a.uH_max(a.iuH); % Max heat ...

transfer area

107 end

108 if a.luT>0,

109 lb(a.puT+1:a.puT+a.luT)=a.uT_min(a.iuT); % Min coolant ...

temperature

110 ub(a.puT+1:a.puT+a.luT)=a.uT_max(a.iuT); % Max coolant ...

temperature

111 end

112 if a.luA>0,

113 lb(a.puA+1:a.puA+a.luA)=a.uA_min(a.iuA); % Min catalyst ...

activity

114 ub(a.puA+1:a.puA+a.luA)=a.uA_max(a.iuA); % Max catalyst ...

activity

115 end

116 if a.luF>0,
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117 lb(a.puF+1:a.puF+a.luF)=a.uF_min(a.iuF); % Min extra feed

118 ub(a.puF+1:a.puF+a.luF)=a.uF_max(a.iuF); % Max extra feed

119 end

120

121 if a.luFF>0,

122 lb(a.puFF+1:a.puFF+a.luFF)=a.uFF_min(a.iuFF); % Min extra feed

123 ub(a.puFF+1:a.puFF+a.luFF)=a.uFF_max(a.iuFF); % Max extra feed

124 end

125

126 if a.luS>0,

127 lb(a.puS+1:a.puS+a.luS)=a.uS_min(a.iuS); % Min extra feed

128 ub(a.puS+1:a.puS+a.luS)=a.uS_max(a.iuS); % Max extra feed

129 end

130 % No constraints on Z.

131 lb(a.ndof+1:n)=−inf;
132 ub(a.ndof+1:n)= inf;

133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

134 % Optimize the design

135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

136 uu=AssignVector(a);

137 %uu(1:a.ndof)=uu(1:a.ndof)+rand((a.ndof),1);

138 uu0=uu;

139 %bb=uu;

140 % 'HessUpdate','bfgs',...

141 % 'LevenbergMarquardt','on',...

142 %return

143 %'TolFun',1.e−5,'TolX',1.e−5,'Display','iter','MaxIter',niter);
144 options = optimset('Algorithm','active−set','TolCon',a.tol(1),...
145 'TolFun',a.tol(2),'Display','iter','HessUpdate','bfgs',...

146 'MaxFunEval',100000000,'MaxIter',niter,'UseParallel','always');

147 [uu,fval,exitflag,output,lambda,grad,hessian] = ...

148 fmincon(@(uu) ...

ObjectiveFunction(uu,a),uu0,A,b,Aeq,beq,lb,ub,...

149 @(uu) ModelConstraints(uu,a),options);

150 display(exitflag)

151 disp(A*uu−b);
152 disp(Aeq*uu−beq);
153

154 a=AssignObject(a,uu);

155 bb.uu=uu;

156 bb.fval=fval;

157 bb.exitflag=exitflag;
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158 bb.output=output;

159 bb.lambda=lambda;

160 bb.grad=grad;

161 bb.hessian=hessian;

162 return

C.5 DesignModel.m

1 function [f] = DesignModel(xi,zz, a,ir,xi0)

2 % DESIGNMODEL is the ODE describing the change of states along ...

the path

3 %

4 % uu,xi0,dxi,nc,VRoF0)

5 %

6 % y =zz(1:nc)

7 % T =zz(nc+1)

8 % ga=zz(nc+2)

9 %

10 % uM=uu(1)−uu(2) linear

11 % uH=uu(3)

12 % uF=uu(4)

13 % uT=uu(5)

14 %

15 % R = [Ry; RT]

16 % Ry(1:nc) = mol/(m3*s)

17 % RT = mol*K/(m3*s)

18

19 %

20 % Assign the design functions

21 %

22 %xi0=sum(a.dxi(1:ir−1));
23 uM = a.uM(2*ir−1) + (xi−xi0)/a.dxi(ir)*(a.uM(2*ir)−a.uM(2*ir−1)); ...

% For piecewise − linear

24 uH = a.sigma*40*(a.uH(2*ir−1) + ...

25 (xi−xi0)/a.dxi(ir)*(a.uH(2*ir) − a.uH(2*ir−1)));
26 uF = a.uF0(ir)*a.sigma*(a.uF(2*ir−1) + ...

27 (xi−xi0)/a.dxi(ir)*(a.uF(2*ir) − a.uF(2*ir−1)));
28 uFF = a.uF0(ir)*a.sigma*(a.uFF(2*ir−1) + ...

29 (xi−xi0)/a.dxi(ir)*(a.uFF(2*ir) − a.uFF(2*ir−1)));
30 uA = a.uA(2*ir−1) + (xi−xi0)/a.dxi(ir) * ( ...

a.uA(2*ir)−a.uA(2*ir−1) );
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31 %uS=a.uS(2*ir−1) + (xi−xi0)/a.dxi(ir) * ( a.uS(2*ir)−a.uS(2*ir−1) );

32 uT = a.uT(2*ir−1) + (xi−xi0)/a.dxi(ir) * ( ...

a.uT(2*ir)−a.uT(2*ir−1) );

33

34 %uH = a.uH(ir) *a.sigma*40; %kg/(s m3) a.uH(ir) is scaled ...

07−10−2009−mhi
35 %uH=uH*a.sigma*40;

36 % uF = a.uF0(ir)*a.sigma; %kg/(s m3) If point feed uF0 has been ...

set to

37 %zero before integration and in

38 %ModelConstrain

39 % uFF= a.uFF0(ir)*a.sigma;

40 % uT = a.uT(ir); % (Tw−Tref)/Tref
41 % uA = a.uA(ir);

42

43 xx = zz(1:a.nxx);

44 ga = zz(a.nxx+1); %ga=F/F0 %@mhi 050608

45 nc = a.nc;

46

47 cp = a.cp*xx(1:nc); %@mhi 120608

48 cpF = a.cp*a.xxF(1:nc); %@mhi 120608

49 cpFF = a.cp*a.xxFF(1:nc);

50 cpR = a.cp*a.xx0(1:nc);

51 R = feval(a.kinetics,xx,uA,cp,a.M',a.Tref,a.pTot);

52 Rt = a.sigma*R;

53 Rt(1:nc) = Rt(1:nc) + uF* (a.xxF(1:nc) − xx(1:nc));

54 Rt(1:nc) = Rt(1:nc) + uFF* (a.xxFF(1:nc) − xx(1:nc));

55 Rt(a.nxx) = Rt(a.nxx) + uF*cpF/cp*(a.xxF(a.nxx) − xx(a.nxx)) + ...

uFF*cpFF/cp*(a.xxFF(a.nxx) − xx(a.nxx));

56 Rt(a.nxx) = Rt(a.nxx) − uH*cpR/cp*(xx(a.nxx)−uT);
57 %

58 %if uM>0,

59 J = Jacobian(a,xx,uA,cp,a.M');

60 %J= Jgraaf2(xx,uA,cp,a.M',a.Tref);

61 %if xi>0.5&xi<0.6, disp(xi); disp(Ja); disp(J); end

62 Jt = a.sigma*J;

63 Jt(a.nxx,a.nxx) = Jt(a.nxx,a.nxx) − uH*cpR/cp + uF*(1−cpF/cp) ...

+ uFF*(1−cpFF/cp);
64 J =(ga*eye(a.nxx)−uM*Jt);
65 f = J\Rt;

66 %else

67 % f = Rt/ga;
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68 %end

69 dgadxi = uF + uFF; % uF=sigma*alpha @mhi 050608

70 f = [f; dgadxi];

C.6 kinTodicLump.m

1 function [R, alpha, varargout] = kinTodicLump(xx,uA,Cp,M,Tref,pTot)

2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
3 % Name : kinTodicLump.m

4 % Author : Martin S. Foss

5 % Date : Spring 2013

6 % Input:

7 % xx(1) : Mass fraction of CO

8 % xx(2) : Mass fraction of CO2

9 % xx(3) : Mass fraction of H2

10 % xx(4) : Mass fraction of H2O

11 % xx(5) : Mass fraction of C1

12 % xx(6) : Mass fraction of C2

13 % xx(7) : Mass fraction of C3−4
14 % xx(8) : Mass fraction of C5−10
15 % xx(9) : Mass fraction of C11+

16 % xx(10) : Temperature (T−Tref)/Tref [−], T = [K]

17 % uA : Relative activity (catalyst dilution)

18 % cp : Average cp of composition [kJ/(kg*K)]

19 % M(1:6) : Molecular weight [kg/kmol]

20 % Tref : Reference temperature [K]

21 % pTot : Total pressuse [Pa]

22 % Output:

23 % R(i) : Component reaction rates [kg/(m3*s)]

24 % alpha : Growth probobility

25 %

26 % Reactions taking place:

27 % iCO + (2i + 1)H2 = Ci + iH2O, i = 1..15 (Paraffins)

28 % iCO + (2i)H2 = Ci + iH2O, i = 2..15 (Olefins)

29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
30

31 Rgas = 8.314472e−03; %% Gas constant [kJ/K*mol]

32 p = pTot/1e06; %% Pressure [MPa]

33 T = Tref*(xx(end) + 1); %% Temperature [K]

34

35 %% Parameters
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36 A1 = 1.83e10; %% [mol/(gcat*h*MPa)]

37 A2 = 5.08e00; %% [−]
38 A3 = 2.44e01; %% [MPa^−1]
39 A4 = 2.90e00; %% [−]
40 A5 = 4.49e05; %% [mol/(gcat*h*MPa)]

41 A6 = 7.47e08; %% [mol/(gcat*h)]

42 A7 = 1.00e−03; %% [MPa^−1]
43 A5M = 8.43e05; %% [mol/(gcat*h*MPa)]

44 A6E = 7.03e08; %% [mol/(gcat*h)]

45 E1 = 100.4; %% [kJ/mol]

46 E5 = 72.4; %% [kJ/mol]

47 E5M = 63.0; %% [kJ/mol]

48 E60 = 97.2; %% [kJ/mol]

49 E6E0 = 108.8; %% [kJ/mol]

50 deltaH2 = 8.68; %% [kJ/mol]

51 deltaH3 = 9.44; %% [kJ/mol]

52 deltaH4 = 7.9; %% [kJ/mol]

53 deltaH7 = −25.0; %% [kJ/mol]

54 deltaE = 1.12; %% [kJ/(mol_CH2)]

55

56 %% Kinetic constants

57 k1 = A1*exp(−E1/(Rgas*T)); %% [mol/(gcat*h*MPa)]

58 K2 = A2*exp(−deltaH2/(Rgas*T)); %% [−]
59 K3 = A3*exp(−deltaH3/(Rgas*T)); %% [MPa^−1]
60 K4 = A4*exp(−deltaH4/(Rgas*T)); %% [−]
61 k5M = A5M*exp(−E5M/(Rgas*T)); %% [mol/(gcat*h*MPa)]

62 k5 = A5*exp(−E5/(Rgas*T)); %% [mol/(gcat*h*MPa)]

63 k6E = A6E*exp(−E6E0/(Rgas*T)); %% [mol/(gcat*h)]

64 k60 = A6*exp(−E60/(Rgas*T)); %% [mol/(gcat*h)]

65 K7 = A7*exp(−deltaH7/(Rgas*T)); %% [Mpa^−1]
66

67 %%

68 %Assume sharp split: all components with carbon number greater ...

than 5 in liquid phase

69 gasPhase = xx(1:7);

70 molarGas = M(1:7);

71

72 omegaGas = gasPhase./sum(gasPhase);

73 moleFracGas = masstomole(omegaGas,molarGas);

74

75 partialP = moleFracGas*p; %% [MPa]

76 pCO = partialP(1); %% [MPa]
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77 pH2 = partialP(3); %% [MPa]

78 pH2O = partialP(4); %% [MPa]

79

80 c = −deltaE/(Rgas*T);
81

82 alpha = zeros(15,1);

83 alpha(1) = k1*pCO/(k1*pCO + k5M*pH2);

84 alpha(2) = k1*pCO/(k1*pCO + k5*pH2 + k6E*exp(2*c));

85

86 for i=3:15

87 alpha(i) = k1*pCO/(k1*pCO + k5*pH2 + k60*exp(i*c));

88 end

89

90 alphaSum = 0;

91 for i=3:15

92 alphaSum = alphaSum + prod(alpha(3:i));

93 end

94

95 S = 1/(1 + sqrt(K7*pH2) + sqrt(K7*pH2)*(1 + 1/K4 + 1/(K3*K4*pH2) ...

96 + pH2O/(K2*K3*K4*pH2^2))*(alpha(1) + prod(alpha(1:2)) + ...

97 prod(alpha(1:2))*alphaSum)); %% Fraction of vacant sites

98

99 rCH4 = k5M*K7^0.5*pH2^1.5*alpha(1)*S; %% ...

[mol/(gcat*h)]

100 rC2H4 = k6E*exp(2*c)*sqrt(K7*pH2)*prod(alpha(1:2))*S; %% ...

[mol/(gcat*h)]

101

102 rParaffin = zeros(15,1);

103 rParaffin(1) = rCH4; %% [mol/(gcat*h)]

104

105 rOlefin = zeros(15,1);

106 rOlefin(2) = rC2H4; %% [mol/(gcat*h)]

107

108 for i=2:15

109 rParaffin(i) = ...

k5*K7^0.5*pH2^1.5*prod(alpha(1:2))*prod(alpha(3:i));

110 end

111 for i=3:15

112 rOlefin(i) = k60*exp(c*i)*sqrt(K7*pH2)*prod(alpha(1:2))* ...

113 prod(alpha(3:i));

114 end

115
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116 bulkCatDensity = 200e03; %% [g/m^3]

117 kmole = 1000; %% [mol/kmol]

118 sperh = 3600; %% [s/h]

119

120 rParaffin = rParaffin*bulkCatDensity*kmole^(−1)*sperh^(−1); %% ...

[kmol/(m^3*s)]

121 rOlefin = rOlefin*bulkCatDensity*kmole^(−1)*sperh^(−1); %% ...

[kmol/(m^3*s)]

122

123 rCO = 0;

124 rH2 = 0;

125 for i = 1:15

126 rCO = rCO + i*(rParaffin(i) + rOlefin(i));

127 rH2 = rH2 + ((2*i + 1)*rParaffin(i) + 2*i*rOlefin(i));

128 end

129

130 %% Lumping components:

131 rC1 = rParaffin(1);

132 rC2 = rParaffin(2) + rOlefin(2);

133 rC34 = sum(rParaffin(3:4)) + sum(rOlefin(3:4));

134 rC510 = sum(rParaffin(5:10)) + sum(rOlefin(5:10));

135 rC11 = sum(rParaffin(11:end)) + sum(rOlefin(11:end));

136

137 Mwhole = intMolarMass; %% Molecular weight, whole numbers ...

(C1 − C15)

138 Mpar = Mwhole(5:19); %% Molecular weight paraffins

139 Mole = [0; Mwhole(20:end)]; %% Molecular weight olefins

140 M2 = (rParaffin(2)*Mpar(2) + rOlefin(2)*Mole(2))/ ...

141 (rC2);

142 M34 = (rParaffin(3:4)'*Mpar(3:4) + rOlefin(3:4)'*Mole(3:4))/(rC34);

143 M510 = (rParaffin(5:10)'*Mpar(5:10) + ...

rOlefin(5:10)'*Mole(5:10))/(rC510);

144 M11 = (rParaffin(11:end)'*Mpar(11:end) + ...

rOlefin(11:end)'*Mole(11:end))/(rC11);

145

146 Mtemp = [M(1:5);

147 M2;

148 M34;

149 M510;

150 M11];

151

152 r = [−rCO; %% CO
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153 0; %% CO2

154 −rH2; %% H2

155 rCO; %% H2O

156 rC1 %% C1

157 rC2; %% C2

158 rC34; %% C3−4
159 rC510; %% C5−10
160 rC11]; %% C11+ [kmol/(m^3*s)]

161

162 g = uA*r.*Mtemp; %% [kg/(m^3*s)]

163 massBalance = sum(g);

164 if massBalance > 0.0000001

165 error('error in mass balance')

166 end

167 rTemp = [−rCO; %% CO [kmol/(m^3*s)]

168 0; %% CO2

169 −rH2; %% H2

170 rCO; %% H2O

171 rParaffin; %% CnH(2n+2)

172 rOlefin(2:15)]; %% CnH(2n)

173

174 deltaH1 = deltaHrx(rTemp); %% [kJ/(m^3*s)]

175 hh = −deltaH1/(Cp*Tref); %% [kg/(m^3*s)]

176 R = [g; hh]; %% [kg/(m^3*s)]

177 return

C.7 ObjectiveFunction.m

1 function [fval] = ObjectiveFunction(uu,a)

2 % OBJECTIVEFUNCTION is the function that is minimimized by the ...

optimization

3 % program.

4 %

5 a = AssignObject(a,uu);

6 %end_point= a.ns*(a.ncol+2);

7 J(1) = a.Z(end,a.key); % Mass fraction at outlet

8 prod = 0;

9 tnc = a.ncol+2;

10 for i=1:a.ns;

11 prod = prod + (a.Z(i*tnc, a.key) − a.Z(tnc*(i−1)+1,a.key)) * ...

a.Z(i*tnc,a.nz);
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12 end

13 J(2) = prod; % Mass production

14 J(3) = prod./a.sigma;

15 uHmean = mid(a,'uH')*40;

16 J(4) = J(3) /(1+0.01 *uHmean*a.sigma);

17 J(5) = J(3) /(1+0.008*uHmean*a.sigma);

18 J(6) = J(3) /(1+0.006*uHmean*a.sigma);

19 J(7) = J(3) /(1+0.004*uHmean*a.sigma);

20 J(8) = exp(J(2));

21 J(9) = exp(J(3));

22 %a=pathset(a,'J',J);

23 %a.Jcrit=J;

24 uAmean = mid(a,'uA');

25 J(9) = J(1) /(1+0.008*(uHmean+2*uAmean)*a.sigma);

26

27 fval = −J(a.Jcrit);

C.8 ModelConstraints.m

1 function [c, ceq] = ModelConstraints(uu,a)

2 a = AssignObject(a,uu);

3 Z = a.Z;

4 Zout = a.Z;

5 n = (a.ncol + 2)*a.ns;

6 F = zeros(n,a.nz);

7 zz0 = [a.xx0; 1];

8 xi0 = 0;

9 nc = a.nc;

10 cpF = a.cp*a.xxF(1:nc);

11 cpFF = a.cp*a.xxFF(1:nc);

12 del = zeros(a.nz,1);

13 ee = zeros(a.nz,1);

14 %%

15 for s=1:a.ns

16 p = (s−1)*(a.ncol+2);
17 p2 = (s)*(a.ncol+2);

18 if p==0,

19 zB = zz0;

20 else

21 zB = Zout(p,:)';

22 end
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23 gammaB = zB(a.nz);

24 omegaB = zB(1:nc);

25 thetaB = zB(nc+1);

26 if a.uFp(s)==1 || a.uFFp(s)==1

27 a.uF0(s) = 0;

28 a.uFF0(s) = 0;

29 delgamma0 = (a.uF(2*s−1) + a.uF(2*s))*0.5*a.dxi(s)*a.sigma;

30 delgamma1 = (a.uFF(2*s−1) + a.uFF(2*s))*0.5*a.dxi(s)*a.sigma;

31 if delgamma0~=0 || delgamma1~=0

32 delgamma = delgamma0 + delgamma1;

33 omega = delgamma0/delgamma*a.xxF(1:nc) + ...

delgamma1/delgamma*a.xxFF(1:nc);

34 cpFm = a.cp*omega;

35 theta = cpF*delgamma0/(cpF*delgamma0 + ...

cpFF*delgamma1)*a.xxF(nc+1);

36 theta = theta + cpFF*delgamma1/ (cpF*delgamma0 + ...

cpFF*delgamma1)*a.xxFF(nc+1);

37 delomega = delgamma/(gammaB + delgamma)*(omega − omegaB);

38 cpB = a.cp*omegaB;

39 kapa = cpFm/cpB;

40 deltheta = delgamma*kapa/(gammaB + delgamma*kapa)* ...

(theta − thetaB);

41 else

42 delomega = zeros(nc,1);

43 deltheta = 0.;

44 delgamma = 0.;

45 end

46 del = [delomega; deltheta; delgamma];

47 else

48 a.uF0(s) = a.uF(s);

49 a.uFFu(s) = a.uFF(s);

50 end

51 if a.uSp(s)==1

52 kappa = (a.uS(2*s−1) + a.uS(2*s))*0.5;

53 gamma = Zout(p2,nc+2);

54 omega = Zout(p2, 1:nc);

55 sum1 = sum(a.xS.*omega');

56 delgamma = kappa*gamma*sum1;

57 delomega = zeros(nc,1);

58 if delgamma~=0

59 delomega = kappa*(a.xS − sum1)./(1.0 − ...

kappa*sum1).*omega';
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60 deltheta = 10./a.Tref;

61 else

62 delomega = 0.0;

63 deltheta = 0.0;

64 end

65 ee(1:nc) = delomega;

66 ee(nc+1) = deltheta;

67 ee(nc+2) = delgamma;

68 end

69 Zout(p2,:) = Zout(p2,:) − ee';

70 Zout(p2,1:nc) = Zout(p2,1:nc)./sum(Zout(p2,1:nc));

71 %

72 F(p+1,:) = Z(p+1,:) − zB' − del';

73 jj = p+1:p+a.ncol+2;

74 for i=2:a.ncol+2

75 xi = xi0 + a.roots(i)*a.dxi(s);

76 zz = Z(p+i,:)';

77 f = DesignModel(xi,zz, a,s,xi0);

78 for c=1:a.nz

79 F(p+i,c) = a.A(i,:)*Z(jj,c) − a.dxi(s)*f(c);

80 end

81 end

82 xi0 = xi0+a.dxi(s);

83 end

84 ceq = reshape(F,n*a.nz,1);

85 % Application specific constraints

86 c1 = [Z(:,nc+1) − (250 + 273 − a.Tref)/a.Tref]; % Temperature(xi) ...

< 250

87 c = [c1];

88 return

C.9 flowPropTPlump.m

1 function [M, cpnom, liqFrac] = flowPropTPlump(T,P)

2 % Function returning molecular weight, heat capacity and liquid ...

fraction

3 % for the different components (lumps) at given temperature and ...

pressure

4

5 % Written by: Martin S. Foss, Spring 2013

6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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7 Tvec = [200 205 210 215 220 225 230]; %% [C]

8 Pvec = [1.5e6 2.0e6 2.5e6 2.7e6]; %% [Pa]

9

10 load MolarMassLump.txt

11 load CpMatLump.txt

12 load liqFracMatLump.txt

13

14 nP = length(Pvec);

15

16 i = find(Tvec == T);

17 j = find(Pvec == P);

18

19 Tcheck = isempty(i);

20 Pcheck = isempty(j);

21

22 if Tcheck == 1

23 error('There are no Cp−values for the given T. Change the ...

temperature')

24 elseif Pcheck == 1

25 error('There are no Cp−values for the given P. Change the ...

pressure')

26 end

27

28 k = nP*(i−1) + j;

29

30 cpnom = CpMatLump(:,k);

31 liqFrac = liqFracMatLump(:,k);

32 M = MolarMassLump;

33 return

C.10 moletomass.m

1 function w = moletomass(x,M)

2 % Function converting mole fraction to mass fraction

3 % Inputs:

4 % x − Mole fraction [−]
5 % M − Molar mass vector [kg/kmole]

6 % Output:

7 % w − Mass fraction [−]
8 % Written by: Martin S. Foss, Spring 2013

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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10 Mav = x'*M;

11 w = x.*M/Mav;

12 return

C.11 masstomole.m

1 function x = masstomole(w,M)

2 % Function converting mass fraction to mole fraction

3 % Inputs:

4 % w − Mass fraction [−]
5 % M − Molar mass vector [kg/kmole]

6 % Output:

7 % x − Mole fraction [−]
8 % Written by: Martin S. Foss, Spring 2013

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
10 n = w./M;

11 ntot = sum(n);

12 x = n/ntot;

13 return

C.12 pathset.m

1 function a=pathset(a,pn,pv,c)

2 % Overload function SET

3 % FLUIDPATH/PATHSET set properties of the a FLUIDPATH object

4 % This file is an internal help function to set object properties.

5 if nargin == 3,

6 c=0;

7 end

8 if isnumeric(pv)

9 if size(pv,2)>1,

10 s=['a.',pn,'=[',mat2str(pv),'];'];

11 eval(s)

12 return

13 end

14 if length(pv)>1,

15 pv=reshape(pv,1,length(pv)); % Reshape to a row vector

16 if c==1,

17 s=['a.',pn,'=transpose([',num2str(pv),']);'];

18 else

C-34



C MATLAB CODE C.13 AssignVector.m

19 s=['a.',pn,'=[',num2str(pv),'];'];

20 end

21 else

22 s=['a.',pn,'=',num2str(pv),';'];

23 end

24 eval(s)

25 return

26 else

27 if pn=='kinetics',

28 a.kinetics=str2func(pv);

29 return

30 end

31 end

32 warning('the property name or value are wrong')

33 return

C.13 AssignVector.m

1 function uu = AssignVector(a)

2 % ASSIGNVECTOR stores values in the object 'a'

3 % into a vector uu

4 % uu=[uM(2) uM3' uM3 uM4' uM4 2*ns−1 1..2*ns−1
5 % [VRoverF0 1 2*ns

6 % [Dxi(1)..Dxi(ns) ns 2*ns+1..3*ns

7 % [uH(1) uH(2) ...uH(ns) ns 3*ns+1..4*ns

8 % [uT(1) uT(2) ...uT(ns) ns 4*ns+1..5*ns

9 % [uA(1) uA(2) ...uA(ns) ns 5*ns+1..6*ns

10 % [uF(1) uF(2) ...uF(ns) ns 6*ns+1..7*ns

11 ns = a.ns;

12 %n=3*ns−1 + a.update_sigma + a.luH + a.luT + a.luA + a.luF;

13 n = a.ndof + (a.ncol+2)*a.ns*a.nz;

14 uu = zeros(n,1);

15 uu(1:2*ns−1) = a.uM(2:2*ns);

16 uu(2*ns:3*ns−1) = a.dxi(1:ns);

17

18 if a.update_sigma==1,

19 uu(3*ns) = a.sigma;

20 end

21 if a.luH>0,

22 uu(a.puH+1:a.puH+a.luH) = a.uH(a.iuH);

23 end
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24 if a.luT>0,

25 uu(a.puT+1:a.puT+a.luT) = a.uT(a.iuT);

26 end

27 if a.luA>0,

28 uu(a.puA+1:a.puA+a.luA) = a.uA(a.iuA);

29 end

30 if a.luF>0,

31 uu(a.puF+1:a.puF+a.luF) = a.uF(a.iuF);

32 end

33 if a.luFF>0,

34 uu(a.puFF+1:a.puFF+a.luFF) = a.uFF(a.iuFF);

35 end

36 if a.luS>0,

37 uu(a.puS+1:a.puS+a.luS) = a.uS(a.iuS);

38 end

39

40 z = reshape(a.Z,(a.ncol+2)*a.ns*a.nz,1);

41 %uu=[uu;z];

42 uu(a.ndof+1:a.ndof+(a.ncol+2)*a.ns*a.nz) = z;

C.14 AssignObject.m

1 function a = AssignObject(a,uu)

2 % ASSIGNOBJECT is a function

3 % uu=[uM(2) uM3' uM3 uM4' uM4 2*ns−1 1..2*ns−1
4 % [dxi(1)dxi(2) ..dxi(ns) ns 2*ns..3*ns−1
5 % [VRoverF0 1 3*ns

6 % [uH(1) uH(2) ...uH(ns) ns 3*ns+1..4*ns

7 % [uT(1) uT(2) ...uT(ns) ns 4*ns+1..5*ns

8 % [uA(1) uA(2) ...uA(ns) ns 5*ns+1..6*ns

9 % [uF(1) uF(2) ...uF(ns) ns 6*ns+1..7*ns

10 ns = a.ns;

11 a.uM(1) = 0.;

12 a.uM(2:2*ns)= uu(1:2*ns−1);
13 a.dxi(1:ns) = uu(2*ns:3*ns−1);
14 for i=1:ns+1,

15 a.xi(i) = sum(a.dxi(1:i−1));
16 end

17 for i=1:ns

18 for j=1:a.ncol+2

19 k = (i−1)*(a.ncol+2)+j;
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20 a.x(k) = a.dxi(i)*a.roots(j)+a.xi(i);

21 end

22 end

23 if a.update_sigma ==1,

24 a.sigma = uu(3*ns);

25 end

26 % uH

27 if a.luH>0,

28 a.uH(a.iuH) = uu(a.puH+1:a.puH+a.luH);

29 end

30 for i=1:2*ns

31 if a.update_uH(i)==−1,
32 a.uH(i) = a.uH(i−1);
33 end

34 end

35 % uT

36 if a.luT>0,

37 a.uT(a.iuT) = uu(a.puT+1:a.puT+a.luT);

38 end

39 for i=1:2*ns

40 if a.update_uT(i)==−1,
41 a.uT(i) = a.uT(i−1);
42 end

43 end

44 % uA

45 if a.luA>0,

46 a.uA(a.iuA) = uu(a.puA+1:a.puA+a.luA);

47 end

48 for i=1:2*ns

49 if a.update_uA(i)==−1,
50 a.uA(i) = a.uA(i−1);
51 end

52 end

53 % uF

54 if a.luF>0,

55 a.uF(a.iuF) = uu(a.puF+1:a.puF+a.luF);

56 end

57 for i=1:2*ns

58 if a.update_uF(i)==−1,
59 a.uF(i) = a.uF(i−1);
60 end

61 end
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62 % uFF

63 if a.luFF>0,

64 a.uFF(a.iuFF) = uu(a.puFF+1:a.puFF+a.luFF);

65 end

66 for i=1:2*ns

67 if a.update_uFF(i)==−1,
68 a.uFF(i) = a.uFF(i−1);
69 end

70 end

71 if a.luS>0,

72 a.uS(a.iuS) = uu(a.puS+1:a.puS+a.luS);

73 end

74 for i=1:2*ns

75 if a.update_uS(i)==−1,
76 a.uS(i) = a.uS(i−1);
77 end

78 end

79

80 %r=a.key−a.nxx;
81 %a.xx(1:a.nc)=uu(r+1:r+a.nc); %mhi 31Aug07

82 %a.xx(a.nxx) =uu(a.key); %ga

83

84 n = (a.ncol+2)*a.ns;

85 z = uu(a.ndof+1:a.ndof+n*a.nz); %ndof is the degree of freedom

86 a.Z = reshape(z,n,a.nz);

87 a = AssignRate(a);

C.15 Jacobian.m

1 function J = Jacobian(a,xx,aeta,cp,M)

2 % Function J=Jacobian(a,xx,aeta,cp)

3 %

4 % Function for numerical differentiation of R

5 %

6 nxx = a.nxx;

7 h = (1+abs(xx))*1.e−8; % Perturbation size for each variable

8 J = zeros(nxx,nxx);

9 Rnom = feval(a.kinetics,xx,aeta,cp,M,a.Tref,a.pTot);

10 xp = xx;

11 for jj=1:nxx

12 xp(jj) = xx(jj)+h(jj);
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13 Rp = feval(a.kinetics,xp,aeta,cp,M,a.Tref,a.pTot);

14 J(:,jj) = (Rp−Rnom)/h(jj);
15 xp(jj) = xx(jj);

16 end

C.16 intMolarMass.m

1 function MolarMass = intMolarMass()

2 % Calcuating molecular weight for CO, CO2, H2, H2O and paraffins and

3 % olefins from C1 to C15 in whole numbers

4

5 %Witten by: Martin S. Foss, Spring 2013

6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 massH = 1; massC = 12; massCO = 28; massCO2 = 44; massH2 = 2; ...

massH2O = 18;

8 massParaffins = []; massOlefins = [];

9

10 for i = 1:15

11 massParaffins(i,1) = i*massC + (2*i+2)*massH;

12 massOlefins(i,1) = i*massC + 2*i*massH;

13 end

14

15 MolarMass = [massCO;

16 massCO2;

17 massH2;

18 massH2O;

19 massParaffins;

20 massOlefins(2:end)];

21 return

C.17 deltaHrx.m

1 function deltaH = deltaHrx(r)

2 % Input

3 % R − rate [kmole/(m^3*s)]

4 % Output

5 % deltaH − Heat of reaction []

6 % Written by: Martin S. Foss, Spring 2013

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
8 % Heat of reactions C1 − C5 (paraffins and olefins)

C-39



C.17 deltaHrx.m C MATLAB CODE

9 CH4 = −206124.000000000; %[kJ/kmol]

10 C2H6 = −173593.000000000; %[kJ/kmol]

11 C3H8 = −165854.000000000; %[kJ/kmol]

12 C4H10 = −162771.500000000; %[kJ/kmol]

13 C5H12 = −162142.000000000; %[kJ/kmol]

14 C6H14 = −159105.666666667; %[kJ/kmol]

15 C7H16 = −158065.428571429; %[kJ/kmol]

16 C8H18 = −157297.750000000; %[kJ/kmol]

17 C9H20 = −156689.555555556; %[kJ/kmol]

18 C10H22 = −156203.000000000; %[kJ/kmol]

19 C11H24 = −155814.000000000; %[kJ/kmol]

20 C12H26 = −155481.500000000; %[kJ/kmol]

21 C13H28 = −155200.153846154; %[kJ/kmol]

22 C14H30 = −154959.000000000; %[kJ/kmol]

23 C15H32 = −154756.666666667; %[kJ/kmol]

24

25 C2H4 = −105059.099609375; %[kJ/kmol]

26 C3H6 = −124414.333333333; %[kJ/kmol]

27 C4H8 = −135451.250000000; %[kJ/kmol]

28 C5H10 = −137579.800000000; %[kJ/kmol]

29 C6H12 = −140212.000000000; %[kJ/kmol]

30 C7H14 = −140129.428571429; %[kJ/kmol]

31 C8H16 = −145307.749023438; %[kJ/kmol]

32 C9H18 = −142734.000000000; %[kJ/kmol]

33 C10H20 = −144404.000000000; %[kJ/kmol]

34 C11H22 = −144396.727272727; %[kJ/kmol]

35 C12H24 = −145015.666666667; %[kJ/kmol]

36 C13H26 = −145531.692307692; %[kJ/kmol]

37 C14H28 = −145988.285714286; %[kJ/kmol]

38 C15H30 = −146384.000000000; %[kJ/kmol]

39

40 H = [CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 ...

C11H24...

41 C12H26 C13H28 C14H30 C15H32 C2H4 C3H6 C4H8 C5H10 C6H12 C7H14 ...

C8H16...

42 C9H18 C10H20 C11H22 C12H24 C13H26 C14H28 C15H30]; %[kJ/kmol]

43

44 deltaH = H*r(5:end);

45 return
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C.18 mid.m

1 function mn = mid(a,str)

2 %

3 % Calcualtes the mean over the path

4 %

5 sum = 0;

6 dxi = pathget(a,'dxi');

7 %if sum(dxi)

8 uX = pathget(a,str);

9 for i=1:a.ns

10 sum = sum+dxi(i)*0.5*(uX(2*i−1)+uX(2*i));
11 end

12 mn = sum;

C.19 AssignRate.m

1 function a = AssignRate(a)

2 for s=1:a.ns

3 uA = a.uA(s);

4 for j=1:a.ncol+2

5 k = (s−1)*(a.ncol+2)+j;
6 xx = a.Z(k,1:a.nxx)';

7 cp = a.cp*xx(1:a.nc);

8 [Ri,alphai] = feval(a.kinetics,xx,uA,cp,a.M',a.Tref,a.pTot);

9 a.R(k,:) = Ri';

10 a.alpha(k,:) = alphai';

11 end

12 end

C.20 pathget.m

1 function pv = get(a,pn)

2 % Overload function PHASEPATH\GET

3 % FLUIDPATH/GET get properties of the a FLUIDPATH object

4 % This file is an internal helper function to get object ...

properties.

5 s = ['pv=a.',pn,';'];

6 eval(s);

7 return
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C.21 MmCpMatrixLump.m

1 %% Calculation of molecular weight, Cp and liquid fraction of lumps

2 %% at different temperatures and pressures

3 % Produces 'MolarMassLump', 'CpMatLump.txt' and 'liqFracMatLump.txt'

4

5 % Written by: Martin S. Foss, Spring 2013

6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 clear all

8 clc

9

10 Tvec = [200 205 210 215 220 225 230]; %% [C]

11 Pvec = [1.5e6 2.0e6 2.5e6 2.7e6]; %% [Pa]

12 CpMat = [];

13 liqFracMat = [];

14

15 k = 1;

16 for i=1:length(Tvec)

17 for j = 1:length(Pvec)

18 [M, cpnom, liqFrac] = ...

uniSimPropertiesTodicLump(Tvec(i),Pvec(j));

19 CpMat(:,k) = cpnom; %% [kJ/(kg*K)]

20 liqFracMat(:,k) = liqFrac;

21 k = k + 1;

22 end

23 end

24

25 dlmwrite('CpMatLump.txt',CpMat,'delimiter','\t','precision','%.16f')

26 dlmwrite('liqFracMatLump.txt',liqFracMat,'delimiter','\t', ...

'precision','%.16f')

27 dlmwrite('MolarMassLump.txt',M,'precision','%.16f')

28 % type MolarMassLump.txt

29 % type CpMatLump.txt

C.22 uniSimPropertiesTodicLump.m

1 function [M, Cp, liqFrac] = uniSimPropertiesTodicLump(T,P)

2 % Function extracting the heat capacity for the components in ...

comstring

3 % from FlowPropertiesTodicLump.usc (Unisim file) at temperature T ...

and pressure P.
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4 % compString = ...

{'CO','CO2','H2','H2O','C1','C2','C3−4','C5−10','C11+'};
5 % Input:

6 % T − Temperature [C]

7 % P − Pressure [Pa]

8

9 % Output:

10 % Cp − Heat capacity [kJ/(kg*K]]

11

12 % Assumed weight fraction in lumps:

13 % Equal amounts (mole fraction) of each component

14

15 % Written by: Martin S. Foss, Spring 2013

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 serv = actxserver('UniSimDesign.Application');

18 usdCase = serv.ActiveDocument;

19

20 sheet = usdCase.Flowsheet;

21 stream = sheet.MaterialStreams;

22

23 compString = {'CO','CO2','H2','H2O','C1','C2','C3−4','C5−10','C11+'};
24 Cp = zeros(length(compString),1);

25 M = zeros(length(compString),1);

26 liqFrac = zeros(length(compString),1);

27

28 for i = 1:length(compString)

29 stream.Item(compString{i}).Pressure.Value = P/1000; %[kPa]

30 stream.Item(compString{i}).Temperature.Value = T; %[C]

31

32 Cp(i,1) = stream.Item(compString{i}).MassHeatCapacityValue;

33 M(i,1) = stream.Item(compString{i}).MolecularWeightValue;

34 liqFrac(i,1) = stream.Item(compString{i}).LiquidFractionValue;

35 end

36 return
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C.23 FTplotting.m

1 %% Plotting of data

2 clear all

3 fileName = {'1stage_uM.mat'

4 '1stage_uM_uH_uT.mat'

5 '1stage_uM_uH_uT_sigma1.mat'

6 '1stage_uM_uH_uT_sigma08.mat'

7 '1stage_uM_uH_uT_uF_H2CO07.mat'

8 '1stage_uM_uH_uT_uF_sigma1_H2CO07.mat'

9 '1stage_uM_uH_uT_uF_sigma08_H2CO07.mat'

10 '2stage_uM.mat'

11 '2stage_uM_uH.mat'

12 '2stage_uM_uH_uT.mat'

13 '2stage_uM_uH_uT_cstr.mat'

14 '2stage_uM_uH_uT_cstr2.mat'

15 '2stage_uM_uH_uT_cstr3.mat'

16 '2stage_uM_uF_uHuTfixed_H2CO157_2.mat'

17 '3stage_uM_uF_uHuTfixed_H2CO120_2.mat'

18 '3stage_uM_uF_uHuTfixed_H2CO125_2.mat'

19 '3stage_uM_uH_uT.mat'

20 '3stage_uM_uH_uT1_uF_uS07_H2CO125.mat'

21 '3stage_uM_uH_uT1_uF_uS1_H2CO125.mat'

22 '3stage_uM_uH_uT_uF1st_uS07_H2CO07.mat'

23 '3stage_uM_uH_uT_uF1st_uS07_sigma1_H2CO07.mat'

24 '3stage_uM_uH_uT_uF1st_uS07_sigma08_H2CO07.mat'

25 '3stage_uM_uH_uT_uF_simga08_H2CO07.mat'};

26

27 figureName = {'Case1:1stage_uM'

28 'Case2:1stage_uM_uH_uT'

29 'Case3:1stage_uM_uH_uT_sigma1'

30 'Case4:1stage_uM_uH_uT_sigma08'

31 'Case5:1stage_uM_uH_uT_uF_H2CO07'

32 'Case6:1stage_uM_uH_uT_uF_sigma1_H2CO07'

33 'Case7:1stage_uM_uH_uT_uF_sigma08_H2CO07'

34 'Case8:2stage_uM'

35 'Case9:2stage_uM_uH'

36 'Case10:2stage_uM_uH_uT'

37 'Case11:2stage_uM_uH_uT_cstr'

38 'Case12:2stage_uM_uH_uT_cstr2'

39 'Case13:2stage_uM_uH_uT_cstr3'
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40 'Case14:2stage_uM_uF_uHuTfixed_H2CO157_2'

41 'Case15:3stage_uM_uF_uHuTfixed_H2CO120_2'

42 'Case16:3stage_uM_uF_uHuTfixed_H2CO125_2'

43 'Case17:3stage_uM_uH_uT'

44 'Case18:3stage_uM_uH_uT1_uF_uS07_H2CO125'

45 'Case19:3stage_uM_uH_uT1_uF_uS1_H2CO125'

46 'Case20:3stage_uM_uH_uT_uF1st_uS07_H2CO07'

47 'Case21:3stage_uM_uH_uT_uF1st_uS07_sigma1_H2CO07'

48 'Case22:3stage_uM_uH_uT_uF1st_uS07_sigma08_H2CO07'

49 'Case23:3stage_uM_uH_uT_uF_simga08_H2CO07'};

50

51 n = length(fileName);

52 for k=1:n

53 clear a

54 load(fileName{k});

55 h = plotFT(a);

56 set(gcf,'Name',figureName{k});

57 end

C.24 plotFT.m

1 function err = plotFT(a)

2 defaultPlotSettings

3 figure()

4 err=0;

5 clf;

6 xi = a.xi;

7 ns = a.ns;

8 nc = a.nc;

9 x = [xi(1)];

10 for i=2:ns,

11 x = [x xi(i) xi(i)];

12 end

13 x = [x xi(ns+1)];

14 uM = a.uM;

15 uF = a.uF;

16 uF = (uF);

17 uH = a.uH;

18 uH = (uH);

19 uT = a.uT;

20 uT = (uT); uT = (1+uT)*a.Tref−273;
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21 uA = a.uA;

22 uA = (uA);

23 uF = a.uF;

24 uF = (uF);

25

26 xc = a.x;

27 Z = a.Z;

28 R = a.R;

29

30 colorSet5 = [

31 0 0 1.0000

32 0 0.5000 0

33 0 0.7500 0.7500

34 1.0000 0 0

35 0.5451 0.2706 0.0745

36 0.5 1 0

37 1.0000 0.5490 0

38 0 0 0

39 0.6275 0.1255 0.9412];

40

41 %%

42 subplot(2,2,1)

43 set(gca,'ColorOrder',colorSet5);

44 hold on

45 p1 = plot(xc,Z(:,1:nc)*100);

46 grid

47 axis([0 1 0 100])

48 tit = title('Mass fraction');

49 set(tit,'interpreter','latex','VerticalAlignment', ...

'baseline');

50 leg = legend('CO','CO$_2$','H$_2$','H$_2$O', ...

'CH$_4$','C$_2$H$_6$','C$_{3−4}$','C$_{5−10}$', ...

'C$_{11+}$');

51 set(leg,'interpreter','latex')

52 ylab = ylabel('$\omega$ [wt\%]');

53 set(ylab,'interpreter','latex');

54

55 subplot(2,2,3)

56 set(gca,'ColorOrder',colorSet5);

57 hold on

58 p3 = plot(xc,R(:,1:nc));

59 grid
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60 axis([0 1 −1.5 1])

61 ylab = ylabel('R [kg/(m$^3$ s)]');

62 set(ylab,'interpreter','latex');

63 tit = title('Reaction rate');

64 set(tit,'interpreter','latex','VerticalAlignment', ...

'baseline');

65 xlab = xlabel('$\xi$');

66 set(xlab,'interpreter','latex');

67

68 subplot(2,2,2)

69 p2 = plot(x,uM,'−',x,uH,'−',x,uA,'−',x,uF,'−−');
70 grid

71 xlim([0 1])

72 tit = title('Design functions');

73 set(tit,'interpreter','latex','VerticalAlignment', ...

'baseline');

74 leg = legend('$u_\mathrm{M}$','$u_\mathrm{H}/40$', ...

'$u_\mathrm{A}$','$u_\mathrm{F}$');

75 set(leg,'interpreter','latex');

76 box off

77

78 subplot(2,2,4)

79 p4 = plot(xc,(Z(:,nc+1)+1)*a.Tref−273,x,uT);
80 grid

81 axis([0 1 200 250])

82 ylab = ylabel('[$T$ $^\circ$C]');

83 set(ylab,'interpreter','latex');

84 tit = title('Temperature');

85 set(tit,'interpreter','latex','VerticalAlignment', ...

'baseline');

86 leg = legend('$T$','$T_\mathrm{W}$');

87 set(leg,'interpreter','latex')

88 xlab = xlabel('$\xi$');

89 set(xlab,'interpreter','latex');

90 box off
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C.25 defaultPlotSettings.m

1 %% Script defining plot settings

2 % Default axis fonts

3 set(0,'DefaultAxesFontName','Times New Roman')

4 set(0,'DefaultAxesFontSize',24)

5

6 % Default text fonts

7 set(0,'DefaultTextFontName','Times New Roman')

8 set(0,'DefaultTextFontSize',24)

9

10 % Default line width

11 set(0,'DefaultLineLineWidth',2.5)
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D Health, Security and Environment
In this appendix the health, security and environmental aspects of the work performed
with the thesis is assessed. In the following pages the pre-study risk assessment is at-
tached. This work included “Mapping of high risk activity” and “Risk assessment”,
respectively. There were not found any high risk activities associated with the work.
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