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Abstract 

Speckle noise is a form of multiplicative noise that corrupts the quality of medical images. It is well described 

and studied in medical ultrasound imaging, but less attention has been paid to its presence in reflectance 

microscopy images. Presence of the speckle noise not only limits the application of further post-processing 

and computer vision techniques, like edge detection, it also makes diagnosing more difficult and less reliable 

for the physicians.  

Many speckle mitigation techniques have been studied by various researchers, but the vast majority of them 

limit itself just to single image of the target tissue. While averaging of uncorrelated images of the same tissue 

taken from different spatial conditions is mentioned among the possibilities of speckle mitigation, it is 

considered too complicated due to the need of several image acquisitions.  

In my study, I decided to use the videos recorded by dual-axis confocal microscopes that contain lots of 

redundant data and can be considered a substitute for several independent image acquisitions. The separate 

frames extracted from the video sequence contain the overlapping regions of the same tissue – providing 

uncorrelated data from different spatial positions. The study was dedicated to explore the potential usage of 

this redundant data for speckle mitigation purposes. On the one hand, optimal ways for detection and 

registration of the overlapping regions among several frames were studied, whilst on the other hand, 

different ways of utilization of the redundant data was explored and I tried to go beyond simple averaging 

and apply more sophisticated approaches. Finally, our approach was compared against conventional 

methodologies under different circumstances. 

The Molecular Biophotonics Laboratory at the University of Washington, led by Prof. Jonathan T.C. Liu is 

focused on designing dual-axis confocal microscopes. As their microscopes use reflectance based technology 

(in contrast to fluorescence-based microscopes that are free from speckle noise), mitigation of the speckle 

noise is named among the primary concerns of the team at the University of Washington.  

The project carried out by Davit Gigilashvili was a collaboration between Norwegian University of Science 

and Technology and the University of Washington – supervised by Prof. Jon Yngve Hardeberg and Prof. 

Marius Pedersen on Norwegian side and by Prof. Jonathan T.C. Liu on American side.  
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Chapter 1: Introduction 

1.1. Problem and Motivation 

Speckle noise is a multiplicative noise of granular shape often present in medical 

images. The project this report is dedicated to is based on the images captured with 

dual-axis confocal-microscope (details discussed in subsequent chapters). Even 

though the vast majority of the literature regarding speckle noise is related to either 

ultrasound medical imaging, or sometimes SAR – Synthetic Aperture Radar, the 

similar nature of images (grayscale images, suffering from speckle noise – in case of 

medical imaging, the structures of the tissue (e.g. cellular structures) are essential to 

diagnosing) makes it applicable to microscopy images as well. It is worth explicitly 

mentioning that all the images discussed later in this project are grayscale images and 

any type of processing of the color images was beyond the scope of this project.  

Even though some sources do not consider speckle as true noise, justifying this with 

the fact that it might be carrying useful information about the image and is not truly 

random in its nature [1], from image processing point of view, it is still considered a 

noise that deteriorates the quality of the images, obscures key structures and makes 

diagnosing difficult for the physicians [1][2]. 

As mentioned above, speckle is a high frequency granular multiplicative noise and its 

causes should be searched in the interference phenomenon. Speckle was described and 

characterized by various researchers even back in 1970s, Goodman [2], Wagner [3] 

and Burckhardt [4] being among the worth mentioning examples.  

The cause of granularity was studied as early as in 60s of the past century, by Rigden 

and Gordon [5], and Oliver [6]. The causes and formation of speckle noise is well 

summarized by Goodman [2]:  

“The vast majority of surfaces, synthetic or natural, 

are extremely rough on the scale of an optical 

wavelength. Under illumination by coherent light, 

the wave reflected from such a surface consists of 

contributions from many independent scattering 

areas. Propagation of this reflected light to a distant 

observation point results in the addition of these 

various scattered components with relative delays 

which may vary from several to many wavelengths, 

depending on the microscopic surface and the 

geometry, Interference of these dephased but 

coherent wavelets results in the granular pattern we 

know as speckle, Note that if the observation point is 

moved, the path lengths traveled by the scattered 

components change, and a new and independent 

value of intensity may result from the interference 
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process. Thus the speckle pattern consists of a 

multitude of bright spots where the interference has 

been highly constructive, dark spots where the 

interference has been highly destructive, and 

irradiance levels in between these    extremes. “ [2] 

The typical speckle pattern can be seen on Figure 1.1.1. below. 

 

Figure 1.1.1.1 – A typical speckle pattern 

As the thorough review of the nature of the speckle noise is beyond the scope of this 

project, further details can be found in the references [7][8][9][10]. 

Considering again above cited paragraph from Goodman’s work [2], the speckle is not 

truly and completely random in its nature, but it’s dependent on various factors, like 

microscopic structure of the object viewed and the point of observation. The details of 

the system will be provided later the following chapters, but to explain it shortly:  

The device in question is a miniature, handheld dual-axis confocal microscope used for 

in vivo examination of the tissues recording the video sequences as the operator 

manually moves the microscope across the tissue [11]. As the living tissue is constantly 

deforming and as the microscope is moving (even if it is held static, some tilting is 

caused by natural movement of a human hand holding the device), we can conclude 

that different frames of the video sequence that are overlapping at some extent 

depicting the same parts of the tissue (as the microscope is moving smoothly) are 

uncorrelated images with independent from each other speckle pattern. Theoretically, 

the speckle pattern can be reproducible, but considering the importance and impact of 

the microscopic units, in practice, it can be considered impossible and the speckle 

pattern can be considered random for a given frame.  

If we get back to the study of Goodman [2],  

“How is it possible to reduce the fluctuations present 

in a detected speckle pattern? The answer to this 

                                                           

1
 Credit for the figure: Goodman [2] 
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question follows from the fundamental result of 

probability theory that the sum of M identically 

distributed, real-valued, uncorrelated random 

variables has a mean value which is M times the 

mean of any one component, and a standard 

deviation which is √M times the standard deviation 

of one component. Thus, if we add M uncorrelated 

speckle patterns on an irradiance basis, the contrast 

of the resultant speckle pattern is reduced… 

Uncorrelated speckle patterns can be obtained from a 

given object by means of time, space, frequency, or 

polarization diversity.”[2] 

This opinion is explicitly substantiated by Suri et al. [1], as they name “averaging of 

uncorrelated images of the same tissue recorded under different spatial positions” 

among speckle mitigation techniques. Although they mention the approach as effective 

but too complicated, we are going to challenge this opinion within this project.  

Thus, to summarize the idea, thesis or a key statement of the project - averaging 

uncorrelated images of the same tissue can lead to speckle noise mitigation and thus, 

improved quality of the image in terms of diagnosing difficulty.  

But there are other challenges related to this issue. We should understand that while 

speckle noise is too apparent in some cases (e.g. Figure 1.1.2.), sometimes it is too 

challenging to identify what is speckle and what is inherent part of the tissue (e.g. 

Figure 1.1.3.)– thus, what has to be removed and what should be kept? This is one of 

the reasons objective metrics for quality and speckle quantification are needed and will 

be addressed later.  

 

Figure 1.1.2.2 – the noise is too apparent here 

                                                           

2
 Credit for the figure: 

https://www.researchgate.net/publication/274202418_A_Comparative_Study_on_Approaches_to_Speckl
e_Noise_Reduction_in_Images   [20 August 2017] 

https://www.researchgate.net/publication/274202418_A_Comparative_Study_on_Approaches_to_Speckle_Noise_Reduction_in_Images
https://www.researchgate.net/publication/274202418_A_Comparative_Study_on_Approaches_to_Speckle_Noise_Reduction_in_Images


Measuring and Mitigating Speckle Noise in Dual-Axis Confocal Microscopy Images 

 

4 

 

 

Figure 1.1.3. – it is too challenging to decide what is noise and what is not. 

1.2. Aim of the Work 

The aim of the project is to study speckle mitigation opportunities using uncorrelated 

images of the single tissue. The exact details of the approach will be provided in 

Chapter 3, but to summarize it shortly, the aim of the project is to utilize the 

redundant data of the overlapping regions present in the consecutive frames of the 

video sequence recorded by the handheld miniature dual-axis confocal microscope, as 

this particular application is less studied in terms of speckle removal techniques, in 

contrast to extensively studied ultrasound medical imaging applications. Using video 

footage solves the complication problems related to several image acquisition 

procedures stated as one of the advantages of the approach in the survey of Suri et al. 

[1] 

Secondary aim of the project is to go beyond the simple averaging of the uncorrelated 

images and to try more sophisticated ways of processing of this redundant data to 

either improve the speckle mitigation quality, or to overcome the artifacts present due 

to improper registration of the consecutive frames (this point will be addressed 

thoroughly in subchapter 3.2. 

Additional point of interest is to examine ways of image registration and detection of 

overlapping regions that as we will see later in the report (subchapter 3.2.) is a pivotal 

part of this approach.  

I realize that this problem is not possible to be fit within a single master’s thesis 

research project, but considering the follow-up opportunities, the global goal of the 

work can be defined as creation of a robust fully automatic framework that will take a 

video footage recorded with a dual-axis confocal microscope designed by the 

Molecular Biophotonics Laboratory team, will utilize the redundant data present in the 

consecutive frames (the same region is present in several frames of the video) to 

reduce the speckle noise in the video, or at least in individual frames to visualize the 

key structures (e.g. cellular borders and shapes, blobs) and fine details better and to 

make diagnosing easier for the physician.  
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 As the project is a product of a collaboration between ColourLab at the Norwegian 

University of Science and Technology in Gjøvik, Norway and the Molecular 

Biophotonics Laboratory at the University of Washington in Seattle, Washington, 

United States – an additional aim can be defined as building further, long-term 

collaborations and follow-up research project opportunities between the two 

institutions.  

1.3. Report Outline 

The report is composed of 6 chapters. Initially, the first chapter is dedicated to the 

introduction into the problem and the aim of the work. The bibliography of the 

respective chapter is provided as the last sub-chapter at the end of each chapter. 

The 2nd chapter provides detailed overview of the background knowledge used as a 

basis for this project: the principles of dual-axis confocal microscopy – the 

architecture of the devices in question are overviewed, followed by the description of 

the objective metrics used for evaluation purposes, then description of speckle 

mitigation metrics examined within the project follow and finally, the chapter is 

concluded with subjective evaluation methodologies and bibliography, as already 

mentioned.  

The 3rd chapter provides all the details about the approaches and techniques 

implemented within the framework of this project, as well as the difficulties faced 

during this implementation and their solutions and workarounds found. 

The next, 4th chapter, puts all the results together after evaluation of the approaches 

discussed in the previous chapter. The results of objective evaluation methodologies 

are presented separately in two sub-chapters for the two different approaches, while 

the chapter ends with the third sub-chapter discussing the results of psychometric 

scaling experiments and the bibliography is given in the fourth one.  

The 5th chapter summarizes the whole project, implementations and approaches 

completed within the project, their results, and finally, findings and conclusions drawn 

from them.  

The last, 6th chapter puts together all the open questions left for the future work – 

defining the possible directions for the follow-up projects.  

Finally, one of the algorithms used within the project can be found in the appendix. 
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Chapter 2: Background 

2.1. Dual-axis Confocal Microscopy – Architecture Overview 

Dual-axis and confocal microscopy concepts are developed separately and neither are 

new. Confocal design of the microscopes was studied by Shaw [1] back in 1995 and was 

well summarized in the works of Pawley as well [2].  

The key idea of confocality of the microscope is the following: a pinhole or a slit is 

installed in front of the detector in order to detect light only from the focal plane of the 

system and eliminate out-of-focus light. Detection of out of focus light creates haze 

and blurs the image of the specimen. Elimination of out-of-focus light and isolated 

collection of in-focus light leads to haze-free, sharper images – thin optical sections of 

it, to be more precise [1][3][4][5], - and can achieve sub-cellular resolution and clear 

images of optically “thick” tissues according to Piyawattanametha and Wang [6]. On 

the other hand, diffraction and high signal-to-noise-ration limit the size of the pinhole 

[3]. 

The basic setup of the confocal microscope is illustrated on Figure 2.1.1. [3] 

 

Figure 2.1.1. 3- Basic setup of a confocal microscope. Light from the laser is scanned across the 

specimen by the scanning mirrors. Optical sectioning occurs as the light passes through a 

pinhole on its way to the detector. [3] 

 

The idea of dual-axis architecture is the separation of illumination and collection axes 

that ensures that no or negligible amount of backscattered light from the tissue enters 

and biases the collection beam. This enables achieving longer working distance, higher 

dynamic range of acquisition and scalability of the device without sacrificing the 

resolution [6][7][8] – and hence, it is especially helpful while miniaturizing the device 

[7].  

                                                           

3
 Credit for the figure: Semwogerere and Weeks [3] 
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The illustration of basic dual-axis architecture can be seen on Figure 2.1.2. 

 
Figure 2.1.2.4 – illustration separate illumination and collection axes of the microscope 

 

The actual microscope used within the project was designed by the team of Molecular 

Biophotonics Laboratory of the University of Washington and combines the 

advantages of confocal and dual-axis microscopy and relies on reflectance-based 

technology, as it is intended for in vivo usage [5].  

 

Reflectance-based confocal microscopes have been used earlier for in vivo diagnosing 

of malignant melanoma [9], as well as directly within intra-operative process [10]. The 

microscope is intended for in vivo noninvasive point-of-care pathology, free from 

chemical preprocessing of ex vivo histopathology. 

 

The architecture of the microscope in question is illustrated below on Figure 2.1.3. 

Two tilting MEMS (microelectromecanical systems – electro mechanical technology of 

microscopic devices, mostly with moving or tilting parts [11]) mirrors (M1 and M2) are 

used for scanning and two separate axis – blue from 660 laser source for illumination 

and green for collection – are used, which intersect at the back focal plane of the 

objective lens. The miniature size of the device is illustrated on Figure 2.1.4. The 

further details of the device are beyond the scope of the report and can be found the 

cited paper [5].  

 

All further work described in the thesis is dedicated to speckle mitigation in the images 

captured with the device illustrated below. It is worth mentioning that the primary 

task to be fulfilled with this device is in vivo detection of oral cancer, although the 

device is extensively used for skin examination as well [5]. 

 

 

                                                           

4
 Credit for the figure: Piyawattanametha and Wang [6] 
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Figure 2.1.35 – the dual-axis architecture of the device in question 

 

 
 

Figure 2.1.46 – the size of the device in relation to US 1-cent coin 

2.2. Speckle Quantification and Quality Evaluation Metrics 

The summaries of despeckling techniques [12][13] offer various ways of speckle and 

despeckling quality quantification, from the approaches as simple as mean-square-

error and peak-signal-to-noise-ratio, to sophisticated image quality metrics and 

classification tasks.  

The example of the latter was initially found very interesting. Christodoulou et al. [14] 

suggest running a classification task on a set of symptomatic and asymptomatic 

images using kNN classifier (k-nearest-neighbor – a statistical classifier using 

Euclidean distance for neighborhood determination. k was equal to 7 in the case 

discussed [12][14]) classifying images as symptomatic or asymptomatic before and 

after speckle mitigation processing. If the application of speckle mitigation technique 

increases the classification accuracy, the technique is considered acceptable. 

Unfortunately, this way of evaluation was impossible to implement due to lack of 

symptomatic images in the available datasets. But the approach was still worth 

mentioning, as it can be used in further, follow-up works.  

                                                           

5 Credit for the figure: Yin et al. [5] 

6 Credit for the figure: Yin et al. [5] 
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Two simple quality evaluation metrics – MSE (mean square error) and PSNR (peak 

signal to noise ratio) were initially applied but were found inappropriate due to their 

inconsistence and inability to reflect structural and spatial changes.  

Finally, two metrics were used for evaluating the success of particular speckle 

mitigation algorithms: widely cited and used Speckle Index and conventional image 

quality metric SSIM – structural similarity. Both of them are shortly summarized 

below. 

2.2.1. Speckle Index 

Speckle index was suggested by Crimmins [15] back in 1986. Crimmins suggested that 

finding a ratio of the deviation of the intensities and the mean intensity values could 

be a reasonable metric to quantify the speckle noise, due to its multiplicative nature. 

The ratios are initially found locally, within 3-by-3 windows. The deviation is defined, 

as the difference between maximal and minimal values (Equation 2.2.1.1). The mean is 

defined as the mean value within the 3-by-3 window (Equation 2.2.1.2.). Finally, one 

speckle index value is defined as an average of all local (all possible 3-by-3 windows) 

values (Equation 2.2.1.3., Figure 2.2.1.1.).  

 

For 1<m ≤ M and 1< n ≤ N, 

 

σ (m,n) = max f(m+a, n+b) – min f(m+a, n+b) , where -1≤a, b≤1 
 

Equation 2.2.1.1. 
 

       1 

μ(m,n) = (1/9)∑ f(m+a,n+b) 
        a,b,=-1 

 
Equation 2.2.1.2. 

 
                M N 

speckle index = (1/MN) ∑ ∑ σ (m,n) / μ(m,n)  
m=1 n=1 

 

Equation 2.2.1.3. 
 

where, 

 

  f is a function representing the image, 

  M and N are the dimensions of the image. 
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Figure 2.2.1.1. – the local ratios are found within 3-by-3 window, diving the deviation by the 

mean 

Initially, I thought that the deviation on the edges could bias the result. But empirical 

and practical examination showed that it had insignificant influence on the final value 

of the metric.  

Finally, it is important to mention that the value of the speckle index varies between 0 

and 1 and the lower value means lower level of speckle noise.  

2.2.2. Structural Similarity 

Decreasing the speckle, thus decreasing the ratio between deviation and mean, 

logically leads to blurrier images. As keeping the cellular structures sharp enough is 

important for proper diagnosing, and as we are working with the grayscale images, 

SSIM – Structural Similarity [16] was selected as another metric for quality evaluation, 

particularly, for evaluating how well the key structures were preserved after speckle 

mitigation.  

It is intuitive that decreasing speckle and blurring the image blurs and weakens the 

key structures as well. Therefore, simultaneous usage of the Speckle Index and 

Structural Similarity was defined as a way to find the golden mean and optimal extent 

of speckle mitigation. 

The work by Wang et al. [16], describes the approach into details. While MSE, PSNR 

and even Speckle Index measure only the absolute difference, SSIM takes features of 

human visual system into consideration – namely, luminance masking and contrast 

masking phenomena – and measures the similarity between the structural elements 

separately from luminance and contrast within the image (refer to Figure 2.2.2.1. 

below). 
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Figure 2.2.2.1.7 – the workflow of SSIM algorithm [16] 

For more detailed understanding of the approach, refer to the Equation 2.2.2.1. below: 

SSIM (x,y) = (2 μx μy+C1)(2 σxy+C2) / (μx
2+μy

2+C1) (σx
2+σy

2+C2) 

Equation 2.2.2.1[16][17] 

where, 

μx is the average of x, 

μy is the average of y, 

σx
2 is the variance of x, 

σy
2 is the variance of y, 

σxy is the covariance of x and y, 

C1 = (k1L)2, C2 = (k2L)2 are two variables to stabilize the division with weak 
denominator 

L is the dynamic range of pixel-values (typically 2#bits per pixel -1), 

k1=0.01 and k2=0.03 by default. [16][17] 

Finally, it is important to mention that the value of the structural similarity also varies 

between 0 and 1 as that of speckle index, but in contrast to speckle index, lower value 

means lower structural similarity and is considered less acceptable.  

                                                           

7 Credit for the image: Wang et al. [16] 
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2.3. Conventional “Single-channel” approaches 

As mentioned earlier, the vast majority of speckle mitigation techniques use just a 

single image for despeckling this very image, disregarding other frames depicting the 

same part of the tissue. 

One commonly used technique for speckle noise removal is usage of wavelet domains 

[18][19][20]. The idea that the speckle noise is high-frequency noise in its nature, 

inspired difference research works that transform the images into wavelet domains 

and try to remove speckle through thresholding or discarding HH, HL and LH high 

frequency domains. But the biggest disadvantage of this technique is the fact that 

sometimes key structures and useful information is also completely discarded from the 

image.  

Initially, I tried to explore this approach, but it dramatically biased the final mosaic 

after automatic registration of several frames (will be addressed later) apparently 

through diminishing the key structures (Figure 2.3.1.). As the conventional 

methodologies were not the point of primary focus for this research work and the time 

and resources were limited, I left this question open for further exploration.  

Finally, I came up with several simple conventional speckle removal approaches cited 

throughout the literature [11][19] to compare my approach against.   

 

Figure 2.3.1. – left: ground truth – video sequence frames registered without any pre-

processing (3829x3961px original resolution)  right: video sequence frames registered after 

wavelet-domain pre-processing (1663x2304px resolution) 

2.3.1. Median Filtering 

Median filtering is one of the simplest and oldest techniques used for image  blurring. 

The main idea of the approach is that the intensity value of a pixel is replaced by the 

median value of its neighbors. The neighborhood is defined as m-by-m window with 

the given pixel in the center. m can be any odd number, with 3-by-3 smallest possible 
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window size [21][22]. The blurriness increases as the window size increases. Several 

options were examined within the project and it will be addressed later.  

The biggest advantage of median filtering is its simplicity, low computational cost and 

the fact that biased values (e.g. saturated pixel) cannot affect the median value. 

For a better illustration, how median values are found, refer to the Figure 2.3.1.1. 

below : 

 

Figure8 2.3.1.1.- the illustration how median values are found 

2.3.2. Gaussian Filtering 

Gaussian filter is rotationally symmetric lowpass filter that can have not only square, 

but rectangular kernel window as well. Instead of taking the median value among the 

neighbors, Gaussian filter puts weight on the value of each neighboring pixel 

depending on the distance from the central pixel and manually defined standard 

deviation. Higher the standard deviation is, higher the weights of the neighboring 

pixels are. And on the contrary, lower the standard deviation - lower is the FWHF of 

the Gaussian function and the weight is more “concentrated” at the center. For 

illustration, refer to Figure 2.3.2.1. 

 

Figure 2.3.2.1. (a) – 5-by-5 lowpass filter with default standard deviation (0.5) 

                                                           

8 Credit for the figure: https://jiteshgupta1192.files.wordpress.com/2013/11/image-denoising.pdf   [20 
August 2017] [23] 

https://jiteshgupta1192.files.wordpress.com/2013/11/image-denoising.pdf
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Figure 2.3.2.1. (b) – 5-by-5 lowpass filter with standard deviation equal to 1.0 

 

Figure 2.3.2.1. (c) – 5-by-5 lowpass filter with standard deviation equal to 0.25 

2.3.3. Bilateral Filtering 

Previously described methodologies are “edge-blind”, smoothing any area, regardless 

it is a homogenous region or an edge. As mentioned earlier, it is crucial to keep 

structures as good as possible. One of the solutions for this problem is bilateral 

filtering – blurring the image, while keeping the edges. Similarly to Gaussian filtering, 

it is based on the filters composed of the weights. Bilateral filter is a weighted-average 

filter, where value of each pixel is calculated as the average of its neighboring pixels, 

weighted by the Gaussian of not only spatial distance, but intensity distance as well. 

Considering intensity distance within the weighting process, enables the approach to 

preserve edges and blur different areas of the image at different extent depending on 

the content and presence of the edges [24][25]. The method can successfully used for 

denoising tasks as demonstrated in the literature [26]. 

For a better illustration, refer to Figure 2.3.3.1. 

 

Figure 2.3.3.1.9 – (a) A 100-gray-level step perturbed by Gaussian noise with std= 10 gray levels. 

(b) Combined similarity weights for a 23 x 23 neighborhood centered two pixels to the right of 

                                                           

9 Credit for the figure: Tomasi and Manduchi [24] 
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the step in (a). The range component effectively suppresses the pixels on the dark side. (c) The 

step in (a) after bilateral filtering with stdintensity = 50 gray levels and stdgeometric distance = 

5 pixels. [24] 

 

2.4. Other Approaches 

Further sophistication of edge-preserving filtering and the state-of-the-art for speckle 

mitigation is guided image filtering [25][27]. As it is intuitive from its name, guided 

image filtering uses an image as a guide for filtering - this can be the same image that 

has to be filtered, thus filtering guided by itself, or this can be filtering guided by 

another image.  

While applying this technique, we do have predefined guidance image I, predefined 

input image p and output image q. The idea is based on the assumption that q is a 

linear transform of I in a window wk centered on a pixel k. In order to determine the 

linear coefficients, constraints are taken from input image p, as output is modeled as 

input image after subtraction of unwanted noise components. 

q = p –n, 

Equation 2.4.1. 

where,  

q is output image, 

p is input image, 

n is unwanted noise. 

 The solution is found through minimization of a cost function. The algorithm of the 

guided filter can be found in appendix. 

The difference between bilateral filtering and spatial filtering is well illustrated on the 

Figure 2.4.1. below. The guide I is the identical image in case of bilateral filter, while 

guide I for guided image filtering can be an image. While bilateral filter takes spatial 

kernel and range kernel from itself and simply applies those ones combined - the 

bilateral kernel, guided image filtering takes two guide and filtering input images, 

finding the optimal output q through cost minimization function. As the output is a 

linear transform of the guide I, the empirical study has demonstrated an interesting 

feature that in case of dissimilarity between the structures of I and p, the structures 

from I are prioritized in the output in the majority of the cases.  
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Figure 2.4.1. 10– (left) bilateral filtering; (right) guided image filtering 

Finally, we come up to a regularization parameter ε. If the variance within wk is above 

ε, the window is considered high variance region and is not smoothed a lot, while if the 

variance is below ε, the window is considered a “flat patch” and higher degree of 

smoothing is applied. Therefore, there are two parameters that we can control 

manually : the windows size and regularization parameter ε. Tuning those parameters, 

we can control the “agressiveness” of the technique and find the optimal setup for a 

given dataset. This point is explored further in the next chapters. 

2.5. Psychometric  Scaling Experiments 

Even though the objective metrics provide very interesting information for 

understanding the speckle noise amount and general image quality, as already 

mentioned above, the final purpose of the speckle mitigation techniques is still to 

make diagnosing easier and more reliable for the doctors. Therefore, ideally, the most 

reliable and effective way of evaluation is evaluating the resulting images by the 

experts, i.e. the physicians, who should actually use the images for diagnosing 

purposes.  

Unfortunately, there were no opportunities to collaborate directly with the clinicians 

and evaluation by the experts was left open for the future development of the research. 

Approval by the experts is one of the key factors impacting the implementability of the 

developed technique.  

Regardless of the lack of expert observers, the task in question: “decreasing the speckle 

noise level, while keeping the key structures” was still intelligible for the observers 

without medical background. Hence, I considered organizing a psychometric scaling 

experiment and analyzing its results could still provide very interesting insight into the 

performance comparison of several different techniques.  

Psychometric scaling methods are used for image evaluation purposes, for instance, to 

determine compression quality and its limit, color tolerances, watermarking quality 

                                                           

10 Credit for the figure: He et al. [25] 
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and many more. Three most common and conventional ways for conduction 

psychometric scaling experiments are: [28]  

a) Category Judgment 

b) Paired Comparison [28][29] 

c) Rank Order  

 In category judgment [28], several categories (usually, 5 or 7, from worst to best) are 

defined and the observer should assign each stimulus to a particular category. It is 

usually faster, as lower number of judgments/comparisons is needed and gives 

valuable information about the distance between the stimuli (i.e. the images, in our 

case). On the other hand, it can become too complicated for the observer [28] and can 

suffer from extreme aversion bias [29], when observer demonstrates the tendency of 

avoiding extreme categories (too bad or excellent) and tries to select the intermediate 

values [30]. 

The example of category judgment is visualized on the Figure 2.5.1. below, where the 

patches (30,40,50,60,70), are assigned categories 1-to-7 based from their difference 

extent from the reference patch. 

 

Figure 2.5.1. 11- the patches (30,40,50,60,70), are assigned categories 1-to-7 based from their 
difference extent from reference patch. 

In case of paired comparison [28][29], the observer is shown the pairs of the stimuli 

and he/she should judge which one is preferable according to a predefined criterion. 

The original may or may not be present (e.g. questions like: “which of the two is more 

similar to the original?”, or “which of the two has a better quality?”). In contrast to 

category judgment, it does not record distance information, and number of 

comparisons can be high, if the image set is large, but it is still very popular approach 

                                                           

11
 Credit for the figure: “IMT 4172 Color Image Quality and Processing in an Imaging Workflow” course 

materials. Autumn 2016. Credit belongs to: Assoc. Prof. Marius Pedersen, The Norwegian Colour and Visual 
Computing Laboratory, Norwegian University of Science and Technology.  
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due to its simplicity, as it is very easy to understand and judge, and little knowledge is 

required from the observer [28][29]. It is the most popular method to evaluate gamut 

mapping [31]. 

The example of paired comparison is visualized on the Figure 2.5.2. below, where the 

two patches are judged according to their similarity to the reference patch (50). 

 

Figure 2.5.2.12 - the two patches are judged according to their similarity to the reference patch 
(50). 

The rank order [28] is similar to paired comparison, but in contrast to it, several 

images are judged simultaneously and ranked from “best” to “worst” according to a 

given criterion. Even though it can be very fast (small number of comparisons), it can 

become too complicated and confusing for the observer, when the number of the 

stimuli/images is high.  

The example of rank order is visualized on the Figure 2.5.3. below, where five patches 

(30,40,50,60,70) are ranked according to their similarity to the reference patch (50) 

from closed to most different one. 

                                                           

12
 Credit for the figure: “IMT 4172 Color Image Quality and Processing in an Imaging Workflow” course 

materials. Autumn 2016. Credit belongs to: Assoc. Prof. Marius Pedersen, The Norwegian Colour and Visual 
Computing Laboratory, Norwegian University of Science and Technology. 
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Figure 2.5.3.13 - the five patches (30,40,50,60,70) are ranked according to their similarity to 
the reference patch (50) from closed to most different one. 

Considering the importance of the simplicity of the task, Paired Comparison approach 

was selected for psychometric scaling experiments. The primary reason, why the 

simplicity was important was the lack of expertise and little knowledge about the 

stimuli among the observers. On the other hand, small image sets allowed shorter and 

relatively faster experiments.  

It is important for successful psychometric scaling experiment that best practices were 

taken into consideration, therefore, the work by Engeldrum [32], was used as a key 

reference while determining the practical issues for the experiment.  

The reference [32] states that the number of observers is primarily dependent on 

availability of the observers and increasing the number of the latter, increases the 

precision. The recommended number of observers is from ten to thirty. In our case, I 

selected the mean of the two – twenty observers. The group of the observers was 

diverse in terms of age, gender and nationality. Observers of both genders participated 

with the age ranging from 12 to 61, with 25 years being a median age and 26.75 the 

mean age of them. The observers were representing seven different nationalities. The 

national, age or gender groups were not studied separately within this project, but the 

information is still mentioned for possible future enquiries.  

The expert and average observers are differentiated in the literature [32], considering 

their skills and knowledge related to the stimuli. As mentioned earlier, no observers 

with medical expertise were available, but they were still differentiated for balance’s 

sake – 10 observers had no technical/IT/engineering/image processing background, 

                                                           

13
 Credit for the figure: “IMT 4172 Color Image Quality and Processing in an Imaging Workflow” course 

materials. Autumn 2016. Credit belongs to: Assoc. Prof. Marius Pedersen, The Norwegian Colour and Visual 
Computing Laboratory, Norwegian University of Science and Technology. 
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while the remaining 10 had it. To mention again, for more credibility, the participation 

of the observers with medical background were left open for future studies.  

The reference [32] suggests that the number of stimuli (images in our case) should be 

dependent on the method of scaling experiment used. For paired comparison, the 

number of comparisons is defined as: 

 

 

(n*(n-1)*m)/2 

Equation 2.5.1. 

where,  

n is the number of reference images (different frames or pairs of the frames, in 

our case) 

 m is the number of reproductions (frames processed with different speckle 

mitigation algorithms, in    our case).  

In order to avoid exhaustingly long experiments, five 64-by-64 patches and 5 large 

scale images were selected, therefore, 10 “reference images” in total. It is worth 

mentioning that in this case, the samples were not compared against the original and 

no original was shown explicitly. But the original was secretly put among the 

“reproductions”, in order to study, whether any speckle mitigation algorithm is 

preferable or needed at all. More than ten speckle mitigation approaches were 

addressed in this project, but considering them all could make the experiments 

extremely long and unrealizable. Thus, I selected three of them that demonstrated the 

most interesting and promising results (discussion in Chapter 4): bilateral filtering, 

the point-wise average and guided image filtering when the point-wise average of the 

two consecutive frames is filtered with the guidance of the first frame. Adding the 

unprocessed original among them, I ended up with 4 different “reproductions”. This 

means 60 comparisons.  

But to avoid the possible bias - some observers opting mostly either for the left or the 

right image, the same pair of the stimuli were presented twice – in a flipped order. 

That increased the number of comparisons up-to 120 per experiment in total. The 

practice has shown that average time needed for completion of each experiment was 15 

minutes. The observers could control the time through the explicit clock present on the 

screen and no complaints from the observers about the duration of the experiment 

were recorded. Besides, the pairs were shown in a random order to avoid any 

significant bias by previous pairs.  
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Another important factor considered was forced choice versus possible tie option – 

whether to force the observer to choose between the two, or not. As the majority of the 

pairs had subtle difference, I considered allowing tie too tempting and opted for the 

forced choice option.   

In order to simplify the observer recruitment process (no enough observers were 

present in the lab), the experiment was held online with the help of QuickEval [33] 

platform developed at Norwegian University of Science and Technology with the very 

purpose of organizing psychometric scaling experiments by its researchers. All the 

experiments were held on the personal computers and no smartphones were allowed 

due to incompatibility with the platform. I realize that the difference among the 

displays of the observers, as well as uncontrolled ambient surround could lead to some 

bias, but as we were not dealing with colors (but with structures), nor having access to 

actual calibrated devices used in practice for diagnosing by the physicians and as small 

number of the “reproductions” in question and clear and obvious difference between 

them were assumed to have little impact on decision making, the experiment was 

considered still worth organizing. In order to claim more credibility, in the future 

study, the experiment should be repeated under controlled conditions, on calibrated 

displays actually used in the clinical field and most importantly, with the observers 

having expertise in medical field.  

The background color was set to neutral gray, as mentioned in the literature [32]. The 

interface with the actual images used in the experiment can be seen on the Figures 

2.5.4 and 2.5.5 below: 

 

Figure 2.5.4. – Interface of the platform used for the experiment: comparing 64-by-64 px 
patches 
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Figure 2.5.5. – Interface of the platform used for the experiment: comparing large scale 
images (512-by-512 px on this particular one) 

Another crucially important aspect needs detailed review is the instruction given to the 

observers. Refer to the practices again summarized by Engeldrum [32]: 

“ Next to the sample image set, observer instructions 

are the most significant item that controls the 

context of the observers' judgments in a scaling 

study.’’  [32] 

The instructions define how the observers behave and how do they define their 

preferences. As the observers did not have medical expertise, they were given explicit 

and detailed instruction to select the image that seems to them having lower level of 

noise and at the same time(!) better visualization of key structures (like edges, 

corners, cellular shapes). The idea was to consider both parameters and find the image 

balancing the two better. For the observers without technical background, Figure 1.1.2. 

was shown while explaining what does the speckle noise and noise generally mean. In 

addition to this, the platform displayed the instruction before starting the experiment, 

stating:  

“ Judge which image (either left or right) keeps the 

better balance between low level of noisiness on the 

one hand – and visibility of the structures and fine 

details, on the other hand.’’   

Finally, the data was analyzed using Thurstone’s Law of Comparative Judgment [34] – 

the data collected through pair comparisons was converted into interval scale data. 

The final results, z-scores, from this data represent the distance of a given image from 

the mean of the whole set examined. This is a kind of standardization of the data 

setting mean to zero and standard deviation to 1, while keeping skewness and kurtosis 

of the original data set.   
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The details of the approach can be found in the reference [34]. The key idea is to build 

the frequency matrix, how many times each image is preferred over another one. Then 

this frequency is converted to percentage matrix. E.g. if A is considered more 

preferable over B in 9 cases out of 10, it is considered more preferable in 90% of the 

cases. Table 2.5.1. and 2.5.2. represent sample frequency and percentage matrices 

respectively. In the first table, we see that stimulus A is preferred over B 2 times, while 

B is preferred over A 18 times. A is preferred over C 6 times, while the latter is 

preferred over A 14 times by observers. B is preferred over C 4 times out of 20. Those 

numbers are converted into percentages in Table 2.5.2.   

 A B C 

A  2 6 

B 18  4 

C 14 16  

Table 2.5.1. – sample summed frequency matrix representing preferences among 3 

samples: A,B and C 

 A B C 

A  0.1 0.3 

B 0.9  0.2 

C 0.7 0.8  

Table 2.5.2. – sample summed percentage matrix representing preferences among 3 

samples: A,B and C 

Afterwards, logistic Function Matrix is built with the equation proposed by Bartleson 

[35]. 

 

LFM = ln ( (f+x) / ( N – f + c) ) 

Equation 2.5.2. 

where,  

 f is the value from the frequency matrix,  

 N is number of observations, 

 and c is arbitrary constant, usually equal to 0.5. as proposed by Bartleson [35]. 
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Finally, LFM is transformed to z-scores by simple scaling coefficient that is found 

through linear regression considering the relationship between the standard normal 

cumulative distribution for percentage matrix and LFM.  

Z-scores are represented usually by error bar plots, illustrating their 95% confidence 

interval, which defines the range that includes the unknown parameter with 

probability of 95% [36]. CI (confidence interval) is calculated with the equation below 

[36]: 

 

 

CI = 1.96 * σ / √N 
Equation 2.5.3. 

 

where, 

 σ is standard deviation,  

and N is the number of observations.  
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Chapter 3: Approach used within the project 

3.1. Overview of the approach 

“Early attempts to suppress speckle noise were implemented by averaging of 

uncorrelated images of the same tissue under different spatial positions Although 

these methods are effective for speckle reduction, they require multiple images of the 

same object to be obtained.” [1] 

As mentioned earlier, the idea of my approach is to make use of the redundant data 

present in the consequtive frames of the video sequence recorded by the dual-axis 

confocal microscope. While capturing several images might make the process too 

complicated, the overlapping areas are inherently present in the consequtive frames of 

the video sequence. For illustration, refer to Figure 3.1.1.  below : 

  

(a)                                               (b) 

Figure 3.1.1. (a) and (b) examples of the two consequtive frames extracted from the video 

sequence 

Figure 3.1.2. below represents the mosaic of the two images mentioned in the figure 

above (Figure 3.1.1. (a) and (b)), automatically registered through the software 

provided by the MSKCC (Memorial Sloan Kettering Cancer Center) by the partner 

laboratory. The details about the software cannot be revealed due to confidentiality 

agreement, but the general information could be found in the references below [2][3]. 

The overlapping utilizible area is marked with the red frame on Figure 3.1.2. Indeed 

the general overlap is bigger, but there were several limitations that will be named 

below. 
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Figure 3.1.2. – overlapping and utilizable region marked with red frame 

Several challenges and limitations are worth mentioning : 

First of all, as mentioned in [4], due to curved nature of the objective lens, the edges of 

the image are out of focus and are useless for our task. Therefore, just the central parts 

of the image could be utilized.  

Secondly, due to the fact mentioned above and the fast movement of the handheld 

microscope, sometimes overlaps between consequtive frames are too small to be used 

for making some significant improvements in terms of speckle noise.  

And thirdly, automatic registration of the consequtive frames are sometimes extremely 

challenging and even impossible. The first reason is that the microscope is constantly 

moving and tilting as it is manually held and moved across the tissue by a human-

operator. Furthermore, the tissue as a living object, is never completely static during 

the in vivo scanning and is deforming from time to time. Therefore, even if the overlap 

is big between the two consequtive frames,  the transform needed for registration can 

differ dramatically between different parts of the same image. The situation is even 

worsened with the fact that near-to-perfect registration is needed, as one of the 

fundamental techniques within this approach of the speckle mitigation is pixelwise 

averaging of the overlapping regions. And in case the alignment is poor, we will 

definitely end up with apparent artifacts biasing the result even further and making 

the outcome even more complicated for the physician. Finally, another constraint was 

induced due to the fact that the tissue images were too complex, without apparent 

characteristic structures, and detection of the matching points was not possible by the 

system (discussed later in this chapter). 

The exact details for the approach used and the workaround found for above 

mentioned problems are discussed below in this chapter.   

3.2. Registration Problem 

The pivotal part of the approach is to extract the redundant data, the overlapping 

regions depicting the same part of the tissue present in both frames. The idea sounds 
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simple: average the overlapping regions in the consecutive frames of the video 

sequence. There are two key challenges here: firstly, how to extract the redundant 

data, how to find the overlap and corresponding pixels between the two frames? It is 

important to consider, as mentioned earlier, that near-perfect registration is needed 

for pixel-wise averaging of the parts of the images. And second: after best possible 

alignment is reached and redundant data is extracted, how should this data be 

utilized? Is pixel-wise average the best approach, or can more sophisticated ways of 

processing improve the result, or can they even mitigate the artifacts created due to 

some extent of misalignment?  

The second question will be addressed later. As for the registration problem, that was 

caused irregular movements of the handheld microscope and constant deformations of 

the tissue during in vivo scanning. 

The primary aim of the project was finding the ways of speckle mitigation through 

utilization of the redundant data in the overlapping regions. As the primary goal of the 

project was not studying the ways of accessing those redundant data, the first idea was 

simply to use the code of the software of our partner laboratory at the Memorial Sloan 

Kettering Cancer Center [2][3], which was thought that was detecting the overlapping 

areas, registering the two images and discarding some deduntant data that was the 

primary point of our interest. But during the examination of the code, it turned out 

that the software extensively uses stichting technique, where optimal seam is detected 

and two consecutive frames are simply stiched across this seam. In this case, the 

software preserves some data from either frame, and no redundant data and 

overlapping information is accessible.  

It became obsious that I had to tackle the registration problem myself. Initially, 

conventional ways of feature detection – SIFT [5][6] and SURF [7] were tried, but due 

to the limitations and complexities described above, the registration of the images 

went sometimes terribly wrong, apparent even to the naked eye, or was not possible at 

all (Figure 3.2.1.- as we see on the figure, the overlapping area is blurry, inconsistent 

with the true movement of the microscope and creating the artifacts with unnatural 

seams arisen), or due to insufficient number of detected control points (Figure 3.2.2.).  

 

Figure 3.2.1. – The automatic registration went terribly wrong 
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(a) (b) 

Figure 3.2.2. – Sometimes the registration was not possible at all, as the frame was too 

complicated to find enough matching points. (a) the frame. (b) screenshot from the MATLAB 

software documenting the registration failure. 

The workaround found for this problem, was the following : the dataset was split into 

two types of images :  

1. The frames, where no single transform can lead to satisfactory registration of 

the images. To solve this problem, the large images were split into smaller square 

patches, translation was assumed between those patches for simplicity’s sake and the 

registration was carried out manually.  

2. The frames, what are recorded with very smooth and slow movement of the 

microscope that enables us to automatically and reliably register the two consecutive 

frames with nearly-perfect registration that enables us find the pixelwise average 

without creating subtancial artifacts. 

The both approaches are discussed in the sub-chapters below. 

3.3. Approach Based on the Smaller Patches 

As mentioned in the sub-chapter above, the larger images were split into smaller 

patches where automatic registration of the whole images was not possible. Different 

sizes, like 32-by-32 pixels or 128-by-128 pixels were examined for the patches, but the 

empirical study has shown that the optimal size was 64-by-64 pixels. The larger 

patches were difficult to register well enough, while smaller patches did not cover 
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enough key points necessary for the registration. The out of focus part of the images 

was discarded and the remaining part of the frame was split into 64-by-64 pixel 

patches. Due to limitedness of time and resources, simple translation was assumed 

between those locally selected sub-regions of the two frames. Afterwards, manually 

selected corresponding sub-regions were manually registered with the help of Adobe 

Photoshop and GIMP softwares. In this case, the study of the speckle mitigation was 

prioritized and automatization of the registration with more sophisticated tools was 

left open for future projects. 

 

Figure 3.3.1. – In-focus part of the frame was split into 64-by-64 smaller patches 

The idea of manual registration was that the patch from the first frame was registered 

manually against the second frame and the corresponding patch was cropped out, as 

the patch from the first frame and the second, full frame were overlaid one over 

another. The opacity of the patch was decreased and the the key structures were 

matched manually, as good as possible. The coordinates of the overlapping regions 

was detected and later processed in MATLAB software.  

The principle is demonstrated on the Figure 3.3.2. below (for illustration’s sake, larger 

patches are shown on the figure, but in practice, it was further split into 64-by-64 pixel 

sub-regions). 

  

Figure 3.3.2. – Consequtive frames were placed on top of one another and after decreasing the 
opacity of the top one, the registration was carried out manually. 



Measuring and Mitigating Speckle Noise in Dual-Axis Confocal Microscopy Images 

 

34 

 

In some particular cases, even manual registration was not perfect that led to the 

substantial artifacts above I was talking about. Refer to the figures below: 

 

Figure 3.3.3. – The pixelwise average of two manually best possiblly aligned patches 

 

Figure 3.3.4. - The bilateral filtered version the pixelwise average illustrated n Figure 3.3.3. 

above 

Finally, in total 10 pairs of the corresponding patches were selected as a focus set for 

the examination. The patches were selected from the frames of different types of 

tissues with various mean luminance, speckle noise level and structural layout to make 

the generalization of the results more reliable.  

Another point of interest was to study, how much does misalignment influence the 

final result and what extent of misalignment can be considered satisfactory. In order to 

study that, the patches were intentionally misaligned after best possible manual 

alignment by 3, 7 and 12 pixels. The direction of the misalignment was randomly 

selected. The example set can be seen on the Figure 3.3.5. below, where 

the first column is the patch cropped from the first frame. 

The second column is the correspoinding part from the second frame after best 

possible alignment.  
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The third, fourth and fifth columns depict misaligned “corresponding” areas from the 

second frame after 3-, 7- and 12 pixels of misalignment respectively. It is worth 

mentioning that those numbers, 3 pixel, 7 pixel and 12 pixel were selected empirically, 

as misalignment beyond 12 pixel led to extremely biased results, while misalignment 

of 1 pixel had little effect on the final outcome.  

 

Figure 3.3.5. – 1st column – patch from frame 1 ; 2nd column – corresponding patch from 

frame 2 ; 3rd column – corresponding patch from frame 2 misaligned by 3 px ; 4th column – 

corresponding patch from frame 2 misaligned by 7 px ; 5th column – corresponding patch 

from frame 2 misaligned by 12 px ; 
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So, in total, we come up with 4 different pairs of images from the two frames: one with 

best-possible alignment, and three with varying degree of misalignment. 

Various methods of utilization of the overlapping date were studied. They can be 

divided into two groups: the ones, where only single frame is used, and in this case, 

this is the frame present in column 1 in Figure 3.3.5. - or the approaches, where 

information from both frames are used. 3D median filter is one example of those, 

where in contrast to the 2D median described in sub-chapter 2.3.1. , the values from 

both overlapping regions are used and the median is found among 18 values, instead 

of 9.  

Special point of interest was optimal selection of the input and guidance images in 

guided image filtering. The approaches or the combinations of the approaches are 

summarized in the Table 3.3.1. 

Using single frame only 

2D median filtering 

Gaussian Filtering 

Average Filtering (average instead of median) 

Bilateral Filtering 

Guided Filter – 1st frame guided by itself 

Guided Filter – 1st frame guided by median of itself 

Guided Filter – 1st frame guided by average of itself 

Using double-frame approach  

3D median filtering 

Point-wise Average 

Guided Filter – 2nd frame guided by the 1st frame 

Guided Filter – 2nd frame guided by the median of the 1st frame 

Guided Filter – Point-wise Average guided by the 1st frame 

Table 3.3.1. – summarizing the ways of speckle mitigation 

As mentioned above, the parameters can be tuned for some of the functions that can 

itself change the performance dramatically. The performance and influence under 

several different parameters was studied empirically and the best-performing ones 

were brought into the report for comparison.  

For median filtering, the default 3-by-3 neighborhood was found optimal, while for 

Gaussian filtering, the neighborhood was defined as 5-by-5, while standard deviation 

was left as a default value, equal to 0.5. 
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For bilateral filter, spatial distance was defined as 3-pixels, while the isotropic (equal 

in all directions) standard deviation was set to 0.1. For guided image filtering, the 

default values are 5-by-5 pixel window, and a default regularization parameter is 

defined as: 

0.01*diff(getrangefromclass(G)).^2 

Equation 3.3.1. 

where, 

diff(X) – is a function which calculates differences between adjacent elements of X 

along the first array dimension whose size does not equal to 1. 

getrangefromclass(I) – is a function which returns the default display range of the 

image I, based on its class type. 

The default parameters turned out to be too blurring. The visual evaluation was held to 

compare the combination of two possible window sizes 3-by-3 and 5-by-5 and three 

possible regularization parameters: the default value, 10% of the default value, and 1% 

of the default value.  

The visual examination has shown that the optimal parameters were 3-by-3 window 

and 1% of the default regularization parameters, as they kept the key structures 

necessary for medical evaluation and hence, those values were applied for further 

study. The examples can be seen on the Figure 3.3.6. below: 

 

(a)                                                                (b) 
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(c)                                                              (d) 

Figure 3.3.6. – (a) original image, (b) guidance image (c) default parameters for guided image 

filtering (d) selected parameters as optimal 

While splitting the images into smaller patches, it was though that they could be 

stitched back together seamlessly, assuming near-perfect alignment. But another 

problem arouse, as the practice have shown that sometimes blocking artifacts are 

visible to a naked eye, when stitching the 64-by-64 patches after separate processing. 

On the illustration below (Figure 3.3.7), the seams, the blocking artifacts are visible 

more in case of pixelwise averaging approach, while it is less salient for guided image 

filtering.  

 

In any case, this question remains open and makes us conclude that if possible, the 

automatic registration and processing of the whole image should be applied, while 

splitting into blocks should be implemented only in the extreme cases, when no 

automatic alignment is possible at all. But the question about techniques and 

improvements in automatic registration of the larger images remains open for follow-

up work.  
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(a)                 (b)                             (c) 

Figure 3.3.7. – (a) original 256-by-256 pixel image (b) the image in (a) reconstructed by 

stitching of 16 64-by-64 pixel patches that are separate point-wise average of the 64-by-64 

pixel the two frames. (c) the image in (a) reconstructed by stitching of 16 64-by-64 pixel 

patches that are the result of filtering the second frame guided by the first one. 

 

3.4. Full Image Processing (automatic registration) Approach 

In some cases, that was unfortunately the minority of the cases in the dataset available 

during the project, we have insignificant deformations of the tissue and very smooth 

and slow motion of the microscope. In this case, very slight difference is present 

between two consecutive frames and they can be automatically registered and the 

overlapping regions can be automatically found, without further simplification of the 

task (splitting into smaller patches and assuming translation).  

In those cases, similarity transform was found sufficient and the SURF features were 

used for automatic alignment of the larger images. Even though the texture of some 

images is still quite complicated, the system successfully found enough matching 

points (Figure 3.4.1.). 
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Figure 3.4.1.- the system successfully found enough matching points 

Finally, the same processing techniques were applied to 256-by-256 images, that were 

used in case of smaller patches, but with one significant difference – no back-stitching 

was needed in this case and the results are seamless  and free from blocking artifacts, 

even if we compare them against single-image solutions. One of the illustrations of 

this, can be found on the Figure 3.4.2. below: 

  

(a)                                                          (b) 

  

(c)                                                          (c) 

Figure 3.4.2 – (a) Original frame 1 (b) Original frame 2 (c) 2D-median filtered version (using 
frame 1 (a) only) (d)3D-median filtered version, using both ( (a) and (b) ) frames 
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Chapter 4: Results 

4.1. Smaller Patches 

The ten sample patches were processed by twelve speckle mitigation techniques, and 

their speckle index together with that of original were found. Besides, the performance 

was evaluated using Structural Similarity. Furthermore, each case was reviewed for 

well aligned cases, as well as different degrees of gradual misalignment.   

As we remember from Chapter 2, lower value of speckle index, means less amount of 

speckle noise. But we should not be tempted with too low values, as it might mean too 

blurry images with key structures and fine details lost. Therefore, the most interesting 

picture will be comparing speckle index against structural similarity. But before that, it 

will be still interesting to study the behavior of each metric under various conditions.  

Let’s start by reviewing the statistics given in the figures. Each line represents each 

pair of the images – 10 in total. Let’s refer to the table below to clear up how each 

speckle mitigation technique is mentioned on the figures. 

Speckle Mitigation Approach How it is abbreviated on the 
figures 

Median Filtering using 1 image – 2D 

median filtering 

Med-1 

Median Filtering using 2 images – 3D 

median filtering 

Med-2 

Bilateral filtering Bilateral 

Gaussian filtering Gauss 

Average filtering (average using single 

image) 

Avg-1 

Poinwise average (average using two 

images) 

Avg-2 

Guided Image Filtering – 1
st
 image 

filtered guided by itself 

Guide-1-1 

Guided Image Filtering – 1
st
 image 

filtered guided by the median of itself 

Guide-1-med 

Guided Image Filtering – 1
st
 image 

filtered guided by the average of itself 

Guide-1-Avg 

Guided Image Filtering – 2
nd

 image 

filtered guided by the first image 

Guide-2-1 

Guided Image Filtering – 2
nd

 image 

filtered guided by the median of the first 

image 

Guide-2-1med 
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Guided Image Filtering – 2
nd

 image 

filtered guided by the average of the first 

image 

Guide-Avg1 

Original Image (first frame) Original 

Table 4.1.1.-abbreviations used for speckle mitigation algorithms 

Let’s start by reviewing Figure 4.1.1. 

The first thing that can be concluded from this figure is that even though there are a 

pair of exceptions, the shapes of the plots for all then pairs of the images is similar – 

that means that the performance of each particular speckle mitigation technique is not 

dependent on the content of the medical image.  

It is quite logical that highest speckle is present in the original images. This means that 

all the techniques blur it and remove speckle at some extent.  

The most effective ones in terms of speckle index decrease are bilateral filter and 

guided filter when the image is filtered by its own average. On the other hand, the 

worst performing one is the case, when the image is filtered and identical image is 

used for guidance. In most of the cases, it is close to the original speckle level.  

 

Figure 4.1.1. – Speckle Index for Well Aligned Samples. Each line represents separate pair of 

the sample images (patches) 

It is quite logical that misalignment does not really affect the speckle mitigation extent. 

The similar traits are demonstrated by 3-,7- and 12-pixel misaligned pairs of the 

images. This can be observed on the figures 4.1.2 through 4.1.4. 
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However, all of them have slightly lower level of speckle in comparison of that of the 

original image. This can be explained with the fact that misalignment creates 

additional artifacts that in case of complex and high frequency structures can lead to 

higher degree of blur. But this conclusion needs further examination for more 

credibility. 

 
Figure 4.1.2. – Speckle Index for the samples with 3-pixel misalignment. Each line represents 

separate pair of the sample images (patches) 

 

Figure 4.1.3. – Speckle Index for the samples with 7-pixel misalignment. Each line represents 
separate pair of the sample images (patches) 
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Figure 4.1.4. – Speckle Index for the samples with 12-pixel misalignment. Each line 

represents separate pair of the sample images (patches) 

A way more appropriate method of evaluating, how misalignment influences the final 

result, is examining the structural similarity values. As mentioned in Chapter 2, higher 

value means higher structural similarity with 1 for the perfect match, while 0 is worst 

possible case in terms of structural similarity.  

Figure 4.1.5. represents the values for all speckle mitigation techniques. This makes 

the picture too complicated, because it is logical that the approaches that use only 

single image, should have very high structural similarity, close to 1. The original is not 

represented on those plots, because it is indeed equal to 1 for all cases, as we compare 

and calculate the structural similarity in relation to the original frame. And therefore, 

its similarity with itself is always equal to 1.  

If we draw parallels with the speckle index statistics, we see that in this case guided 

image filtering, when the image is filtered guided by itself, is still the extreme case and 

the most similar one to the original. Thus, we can already start concluding that this 

could be the worst performing approach. But we will return to this topic later in this 

subchapter.  
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Figure 4.1.5. – Structural Similarity for well aligned pairs given for all speckle mitigation 
techniques. 

In order to make the plot more visually understandable and clear, I left only double-

image approaches on the plot. Refer to Figure 4.1.6. The shape among the approaches 

is still similar that makes us conclude that the performance of the processing 

techniques in terms of SSIM is neither too dependent on the content of the image.  

It is interesting to note that the pixel-wise average option, as well as its filtered version 

the one using the first frame as a guidance is the best performing in terms of structural 

similarity. But it is quite logical, as this is cited in the literature discussed in the 

previous chapters as a “default” way of data processing in case of near-perfect 

alignment.  

 

Figure 4.1.6. – Structural Similarity for well aligned pairs given for double-image-based 

speckle mitigation techniques. 

But let’s have a look, how they perform when we induce some degree of misalignment. 

Refer to the figures 4.1.7. through 4.1.9. 
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It is quite understandable that generally SSIM values have decreased, but it is now a 

bit surprising that a point-wise average and its filtered version guided by the first 

frame are among the best. We have seen earlier in the report that in case of 

misalignment, point-wise average creates very apparent and substantial artifacts.  

But the explanation for this is in nature of the guided image filtering. Even though in 

majority of the cases the structures from the guidance image is prioritized in the 

output image, the visual examination of those images in question has demonstrated 

that when the misalignment is substantial, then the structures are kept from the input 

image. As we have frame number 2 as an input image in those cases, we compare it 

against frame 1 and as the two are clearly misaligned, structural similarity is 

decreased, while point-wise average creates artifacts and intermediary version of the 

two, being closer with either in structure.  

 

Figure 4.1.7. – Structural Similarity for 3-pixel misaligned pairs given for double-image-based 
speckle mitigation techniques. 

 

Figure 4.1.8. – Structural Similarity for 7-pixel misaligned pairs given for double-image-based 
speckle mitigation techniques. 
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Figure 4.1.9. – Structural Similarity for 12-pixel misaligned pairs given for double-image-

based speckle mitigation techniques. 

The separate plots for each image enables us observe the trends and their dependence 

on the content of the image, but it is still difficult to perceive the global picture. 

Therefore, it is interesting to have a look at the average values.  

Let’s refer to the figures 4.1.10. and 4.1.1. In those plots, as single line represents the 

single alignment-misalignment degree, while speckle index and SSIM values are the 

average of the 10 separate pairs of the images.  

As we obviously see from Figure 4.1.10. the alignment issue does not have much 

influence on the speckle noise level and it is quite logical. The only interesting 

exception is guided image filtering in case of “perfect” alignment. In this case, slightly 

more speckle is remaining in the images. While median, Gaussian and bilateral 

filtering are unambiguously blurring the image, the structures and borders are sharply 

preserved when they match in input and guidance images. This happens due to the 

fact that we decreased the regularization parameter 100 times, thus blurring only low 

variance areas and keeping high variance areas intact and thus, keeping their speckle 

noise as well. The solution in this case could be gradual increasing of the regularization 

parameter, but in this case we have to control the performance in terms of SSIM as 

well. 

The similar plot for structural similarity can be found on Figure 4.1.11. The shape is 

the same as in case of the plots for individual images, but the interesting phenomena 

are still observed here. It is very logical and obvious that SSIM is higher when we have 

good alignment, it is slightly declined when we induce 3-pixel misalignment, but 

interestingly, the misalignment extent does not matter that much, when we have 7- 

and more-pixel misalignment. In my opinion, the reason for this is the small size of the 

patches. Just to get back to the approach, we are processing 64-by-64 pixel patches. 

Therefore, misalignment of 7 or more pixels takes some key structures out of the 

corresponding patch and increases the dissimilarity dramatically regardless the fact, 
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how much was the misalignment further increased. The structures in two 

“corresponding” patches are already significantly different. 

 

Figure 4.1.10.- speckle index – average of the 10 images 

 

Figure 4.1.11.- structural similarity - average of the 10 images 

The average values give us some interesting clues, but it is still interesting to look 

deeper into this data. The figures 4.1.12 and 4.1.13. illustrate not only average values, 

but maximal and minimal values among 10 images, as well as the standard deviation.  

The majority of the approaches demonstrate quite consistent performance in terms of 

speckle index – while the mean of the original and the standard deviation are closer to 

the maximum meaning that we have more images with higher speckle index, this 

parameter is balanced in majority of the cases, where the mean is right in the halfway 
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between maximum and minimum – meaning proportionally more images with lower 

speckle index.  

It is worth mentioning that the point-wise average and filtering the image guided by 

itself keep higher degree of speckle index. And wherever we have outliers for those 

approaches with minimum values, we can conclude that those are the images were the 

level of speckle was low even from the very beginning, in the original.  

In terms of speckle index, filtering the image guided by the average of itself, as well as 

the simple 2D median filtering and bilateral filtering seem most promising. But for 

bilateral filter, we can observe slightly high standard deviation that means slightly 

higher instability.  

 

Figure 4.1.12 – Mean, maximum and minimum values of speckle index for each speckle 

mitigation, as well as the standard deviation,  algorithm for well aligned images. 

It is even more interesting to refer to the similar plot for SSIM.  

The first fact that stands out of others is that while filtering the first image guided by 

itself, minimum and maximum values are almost equal, standard deviation is zero and 

all the values are close to 1. This means that filtering the image by itself leaves the 

structures almost intact, while still imposing some degree of blur. Filtering the point-

wise average by the first frame also demonstrates very low standard deviation and high 

degree of keeping the structures.  

Highest spread of the values and the largest standard deviation is observed in the 

cases where two different images are used as input and guidance in guided image 

filtering. This can be explained with the fact that the structures are prioritized 

sometimes from one, and sometimes from another image.  

It is also worth mentioning that the performance of the bilateral filter is better than 

that of most of the approaches.  
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Figure 4.1.13 – Mean, maximum and minimum values of structural similarity, as well as the 

standard deviation, for each speckle mitigation algorithm for well aligned images. 

Even though we were discussing performance in terms of SSIM and in terms of speckle 

reduction, the pivotal concept of the whole project was that the tradeoff between the 

two had to be found. Therefore, I think that the Figure 4.1.14. representing SSIM as a 

function of Speckle Index, is the most informative figure to evaluate the global picture.  

The information is color coded on this plot.  

The red diamonds are for the approaches that use the information from two images. 

The sky blue diamonds are for the approaches that use the information from the 

single image only. 

 The red labels correspond to the pairs with satisfactory alignment. 

The blue labels correspond to the pairs with 3-pixel misalignment.  

Figure 4.1.14. – SSIM as a function of Speckle Index 
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As mentioned earlier, low speckle index (horizontal axis) and high structural similarity 

(vertical axis) are optimal outcome and while improving one usually compromises the 

other - the best tradeoff had to be found. 

This means that closer the upper left corner the approach’s corresponding diamond is, 

better can it be considered, while on the other hand, the ones close to bottom right 

corner are the worst performing ones.  

While filtering the image by itself provides almost intact structural similarity, it 

removes hardly any speckle noise being located on the upper right corner of the plot.  

The “default” approach mentioned in the literature, the point-wise average, keeps the 

structures well enough but is not that good in speckle mitigation.  

In the majority of the cases, the single image approaches perform better than double 

image approaches. Or from the other way around, introducing the second image in the 

process, is not always a better idea. Bilateral filter, simple 2D median filter and 

filtering image by the average of itself can be considered the best performing ones 

among single image techniques.  

On the other hand, the point-wise average filtered under the guidance of the first 

frame can be considered best among the double image approaches. While reducing the 

speckle noise through blurring the low variance regions of the image and through 

applying the “default” and most commonly cited way of pixel-wise averaging, it 

manages to ignore the artifacts introduced by the pixel-wise averaging, prioritizes the 

structures from the original image and keeps structural similarity high enough.  

3D median filtering can looks also quite tempting due to its low speckle level, but its 

structural similarity is not really satisfactory.  

The two blue labeled red diamonds in the very bottom left corner make us conclude 

that it is a bad idea to use different guidance and input images, when the alignment is 

not perfect.  

Another interesting point can be observed on the plot: we have five techniques that use 

two images and five pairs of the red diamonds with blue and red labels, which signify 

well aligned and 3-pixel misaligned versions. It is quite apparent that in all five cases 

the shift from well-aligned to 3-pixel misaligned version is towards bottom left corner, 

meaning that misalignment degrades the structural similarity (that was quite logical), 

but at the same time slight misalignment decreases the speckle noise level. The 

explanation for this phenomenon was provided while discussing the Figure 4.1.10. 

Even though low speckle noise is tempting, I think that we have to prioritize higher 

structural similarity of the well aligned images, in order to avoid the visual artifacts 

that degrade the image even more than slightly higher level of the speckle noise.  
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4.2. Full Image Approach 

In some cases, it was possible to mosaic directly the large images without splitting into 

the patches. Therefore, manually imposed misalignment lost its importance and only 

automatically aligned images were considered.  

10 images with varying dimensions were examined (starting from 256-by-256 pixels 

up-to 1000-by-1000 pixels). The images were selected from the same or maximally 

similar videos, as the ones for splitting them into 64-by-64 pixel sub-regions, in order 

to minimize the impact of the content difference, even though we demonstrated in the 

previous subchapter that the content does not have dramatic impact on the overall 

performance. But it was still important to keep the absolute values of speckle index 

and structural similarity close to each other.  

The results are illustrated on the figure 4.2.1. and 4.2.2. They are similar to Figure 

4.1.12 and Figure 4.1.13. 

The general trend is the same as in case of splitting the images into the patches. 

Guided image filtering for a single image filtered by itself is still performing worse in 

terms of speckle index and best in terms of structural similarity.  

It is interesting that the speckle index values are relatively low for the originals, as well 

as for all techniques. This can be explained by the fact that larger homogenous black 

background areas are present on the larger images than it was in case of small patches  

that were selected to be covering the cellular structures. One of the illustrations of this 

kind of image can be seen on Figure 4.2.3. This can be considered a drawback of 

speckle index as a metric and the solutions can be explored in the future work.  

 

Figure 4.2.1.- maximum, mean, and minimum speckle indices, as well as the standard 

deviation for 10 large images. 



Measuring and Mitigating Speckle Noise in Dual-Axis Confocal Microscopy Images 

 

54 

 

Again the same trend is followed for the structural similarity as well, filtering the 

images with guidance of another image still leading to high standard deviations in 

structural similarity. The interesting point here is that the mean values for structural 

similarity are around 0.8, while minimal values are well above o.6, except for the two 

just mentioned exceptions of the guided image filtering. 

This structural similarity of the output images in some double-image based 

approaches, like point-wise average, that is one of the best performing in this case, 

means that the registration was in total satisfactory due to the challenges mentioned in 

subchapter 3.2.  

This is the promising outcome that means that after further refinement of the 

automatic registration, the need of manual alignment will be minimized and reaching 

fully automatic robust model is a very realistic aim.  

 

Figure 4.2.2.- maximum, mean, and minimum speckle indices, as well as the standard 
deviation for 10 large images. 

 

Figure 4.2.3. – Large homogenous black backgrounds lead to lower speckle index values. 
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4.3. Psychometric Scaling Experiments 

 The psychometric scaling experiments were held to compare best performing bilateral 

filtering and guided image filtering approaches, as well as conventional point-wise 

average and original image according to their appearance to the human observer. The 

details of the psychometric scaling experiments are explained in Chapter 2.  

The results of the psychometric scaling experiments are summarized in the figures 

below. The vertical axis is the value of z-score, while the horizontal axis represents the 

Original and three different versions of it after speckle mitigation processing: Bilateral 

– bilateral filter applied on the first frame; Guided Filter – point-wise average of two 

consecutive frames filtered guided by the first frame; Pointwise Avg – pointwise 

average of the two consecutive frames.  

 For deeper insight into the data, each pair of the consecutive frames is represented 

separately. The legend below the plot lists 10 pairs processed as reference: Small_1 

through Small_5 signify 64-by-64 pixel patches, while Large_1 through Large_5 

signify larger, 512-by-512 pixel images. Each of them has its corresponding symbol 

(e.g. blue circle, blue diamond) signifying the mean z-score on the plot. The upper and 

lower limits of the error bar define the range of 95% confidence interval. If the name of 

the pair of the images is in bold on the legend, its z-scores are present on the plot, if 

not – then they are not.  

It is very important to note that all pairs are assumed with best-possible alignment. 

Misalignment cases were not included in the psychometric experiments for avoiding 

extra-long experimental sessions. It can be considered and studied in future works.  

Another important thing to note is that if the confidence intervals are overlapping, we 

cannot claim with 95% of the confidence that one approach or version is better than 

the other.  

Let’s refer to the Figures 4.3.1. through 4.3.5. below. 

All but the third of the 64-by-64 patches demonstrate the similar trend: Bilateral filter 

has the least mean z-score, while the original has slightly higher mean z-score and 

guided filter and point-wise average have highest values almost equal to each other.  

In most of the cases, there is no or minor overlap between the confidence intervals of 

the bilateral filter on the one hand and guided filter and point-wise average on the 

other hand. This allows us conclude that the latter are perceived more balanced in 

terms of speckle level and visualization of the key structures than the bilateral filter. 

The same can be said about bilateral filter and the unprocessed version. But the 

original, guided filtered version and point-wise average overlap with their confidence 

intervals a lot and it is difficult to conclude, which one better. While guided filtered 

version and point-wise average have generally higher mean z-score, in case of the fifth 
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pair the original is best performing with 95% of confidence. There is another 

interesting exception, pair 3, where bilateral filter is best performing one.  

In order to explain those kinds of behavior, let’s refer to Figure 4.3.6. which illustrates 

all the patches used in the experiment. The labels are located directly on the figure 

below the images. 

The third image original is special in its nature. From the visual judgment, it has very 

high speckle noise level that is substantiated with high speckle index value as well. The 

structures of this patch, in contrast to other patches, is not contiguous and is 

segmented into several parts. Bilateral filter that demonstrated highest blurring 

capability, removes the extreme level of noise, while blurring small bright parts as 

well, leaving just larger segments of cellular structures - making the structures stand 

out of the background. That was not that apparent in other cases, because the 

structures were visible well enough from the very original.  

It is even more challenging to explain the performance of the 5th pair, where original, 

thus, no processing at all, is considered the best. While the lack of speckle mitigation 

algorithm makes it the patch with highest speckle noise, it is a fact that the structures 

are what make it more preferable to the observers. The structures alongside the 

speckle are present on dark black background. While some of the structures are 

heavily segmented, speckle mitigation algorithms do not consider them as edges and 

blur them. This leads to the fact that the observer prefers the original, where the edges 

look apparently sharper, and speckle noise level is however high, but not disturbing to 

them, as the results show.  

 

Figure 4.3.1. – z-scores for 1st pair of 64-by-64 pixel patches 
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Figure 4.3.2. – z-scores for 2nd  pair of 64-by-64 pixel patches 

 

Figure 4.3.3. – z-scores for 3rd pair of 64-by-64 pixel patches 

 

 

Figure 4.3.4. – z-scores for 4th pair of 64-by-64 pixel patches 
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Figure 4.3.5. – z-scores for 5th  pair of 64-by-64 pixel patches 

 

 

Figure 4.3.6. 64-by-64 patches used in the psychometric scaling experiments 

The larger images processed at once were studied the same way. The original frames 

(1st one) are illustrated on Figure 4.3.7., while the results are illustrated on the figures 

4.3.8. through 4.3.12.  
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Figure 4.3.7. – the large frames used for psychometric scaling experiments 

Those results are more consistent, bilateral filter being the worst performing one, 

without no, or insignificant overlaps with the confidence intervals of the rest of the 

approaches. On the one hand, it is a bit surprising, because bilateral filter uses single 

frame and it should be completely free from registration artifacts. On the other hand, 

its parameters discussed in Chapter 3, seemingly make it the most blurring approach 

among the three in question. At large scale, the observers feel the blur and miss the 

fine details.  

It is difficult to conclude with confidence which one is considered better among the 

rest, due to the overlapping 95% confidence intervals. The only exception is Large_3 

image on Figure 4.3.10. 

I think the reason for this was the fact that registration of those pair of consecutive 

frames was a bit challenging and some minor artifacts present in point-wise average 

(Figure 4.3.13.) made the observers opt for the original. The similar could be the 

reason for smaller overlap for Large_4 image (Figure 4.3.11.). Its point-wise average is 

illustrated on Figure 4.3.14. 
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Figure 4.3.8. – z-scores for 1st  pair of 512-by-512 images 

 

Figure 4.3.9. – z-scores for 2nd pair of 512-by-512 images 

 

 

Figure 4.3.10. – z-scores for 3rd  pair of 512-by-512 images 
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Figure 4.3.11. – z-scores for 4th  pair of 512-by-512 images 

 

Figure 4.3.12. – z-scores for 5th pair of 512-by-512 images 

 

Figure 4.3.13. – minor artifacts present in point-wise average could be the explanation why 
the observers preferred the unprocessed version 
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Figure 4.3.14. – minor artifacts present in point-wise average could be the explanation why 
the observers preferred the unprocessed version 

Another interesting figure is Figure 4.3.15., illustrating the confidence intervals for all 

small patches except for the outlier Small_3. If this outlier is absent, we clearly see 

that the original, guided filter and point-wise average outperform the bilateral filter.  

The same thing can be concluded without any doubt about large images, where the 

confidence intervals for all large images are present and none of the z-score 95% 

confidence intervals of bilateral filtered version overlap with that of any other 

“reproduction”. See the illustration of this fact on Figure 4.3.16. 

 

Figure 4.3.15. – all the 95% confidence intervals of bilateral filter are located below of the 
remaining three. The outlier image is not present on the plot. 
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Figure 4.3.16. – none of the 95% confidence intervals of bilateral filter are overlapped with 
that of any other “reproduction”, making the bilateral filter worst performing one for large 

images. 

If we put the confidence intervals of small and large images together (refer to Figure 
4.3.17.), excluding the obvious outlier, we will still see the same trend that bilateral 
filter is worst performing one, while the rest are overlapping, making any claims and 
conclusions unreliable.  

 

Figure 4.3.17. – 95% confidence intervals of small and large images put together 

 

 

 

 

 

 

 

 

 



Measuring and Mitigating Speckle Noise in Dual-Axis Confocal Microscopy Images 

 

64 

 

Chapter 5: Summary 

To summarize, I have implemented and explored poorly studied way of speckle 

mitigation – usage of uncorrelated images, as I benefited from the overlapping regions 

and redundant data present in the videos acquired by the dual-axis confocal 

microscopes designed at the Molecular Biophotonics Laboratory of the University of 

Washington.  

The key novelty of our approach was using videos, with automatic extraction of 

redundant data for this purpose and especially, techniques other than simple 

averaging after extraction of this redundant data.  

Major problem, as already mentioned several times was the mosaicing of the images 

for extraction of the overlapping areas. The registration problem was quite 

demanding, as nearly perfect registration was needed for point-wise average. I tried to 

find the workaround for the lack of perfect alignment through applying several 

different techniques other than averaging, state-of-the-art guided image filtering being 

among the most interesting ones studied.  

Limited dataset was also a big problem that makes generalization still a bit risky and 

leaves need for further credibility. In total 10 pairs of small patches and 10 pairs of 

large medical microscopy images were studied under twelve speckle mitigation 

techniques: seven of them were using only single image for speckle mitigation, while 

the remaining five used the data from two consecutive images. Commonly used 

application specific speckle index was used as an objective metric for quantifying the 

speckle noise, while image quality metric SSIM – Structural Similarity was used to 

measure how good the cellular structures were preserved. On the other hand, 

psychometric scaling experiments were held to further explore the performance of the 

most interesting (according to their objective metric performance) approaches.  

The performance of the speckle mitigation techniques was quite consistent not only 

among different images, but between the two approaches – translation-assumed 

patches and automatically registered larger images as well.  

While still larger datasets are needed for further generalization and more thorough 

case-by-case study is necessary to characterize the performance of a particular 

technique under give conditions, some conclusions still could be drawn:  

The essential and most significant conclusion is the fact that the quality of registration 

is dramatic influence on the outcome for the techniques that use several consecutive 

frames. The recommendation would be the following: if no satisfactory alignment is 

possible, introducing the second image will just lead to further problems and 

therefore, it is better to use single-image-based approach.  
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Among single image based approaches, bilateral filtering and filtering the image under 

guidance of its own average performed the best. While conventional 2D median 

filtering can be also mentioned for its simplicity, flexibility and computational 

efficiency. On the other hand, filtering the image guided by itself should be avoided. 

Although it provides almost perfect preservation of the structures, its performance in 

terms of speckle noise mitigation is pretty poor.  

When misalignment is observed, it is better to avoid using different images as input 

and guide in guided image filtering. Otherwise, you will end up with substantial 

artifacts, much blurriness and low structural similarity.  

When the alignment is good enough, two- (or more in the future works) image 

approaches can be used. Pixel-wise average that is most commonly mentioned in the 

literature, can be used, but the registration should be really nearly-perfect, in order to 

avoid very apparent, image spoiling artifacts. Another option that works even in case 

of slight misalignment is filtering the pixel-wise average guided by the first frame of 

the sequence.  

But the question, whether it is worth introducing the second channel even in case of 

satisfactory alignment remains open and needs to be applied to larger, more diverse 

databases to be answered decisively.  

Even psychometric scaling experiments failed to answer this question decisively. 

Wherever minor artifacts due to misalignment were present, unprocessed original 

image was considered more preferable than double-image approaches by the 

observers.  

According to psychometric scaling experiments, the bilateral filter was apparently least 

preferable among all small and large images, except for one outlier that had very high 

speckle noise level and specific content composition. We have seen other cases, where 

content seemingly played the role in determination of observer preferences. The 

psychometric scaling experiments increased interest in content dependence of the 

approach performances. Furthermore, if the selected parameters for bilateral filter 

were considered optimal for objective metrics, it turned out being too blurring for 

human observers. As it was the only single-image speckle mitigation technique studied 

within those experiments, future works should definitely expand to other same type of 

approaches. Considering the given setup, the recommendation would be to avoid the 

bilateral filter, unless the noise level is too high – masking the key structures. Another 

interesting finding was that if the misalignment is an issue, not only single-channel 

approaches outperform multi-channel ones, but in some cases, even no processing at 

all is considered preferable.  

And last, but not least, it should be considered that those solutions could be intended 

for real-time applications, where except for structural similarity and noise, new 

constraint - computational efficiency is introduced. In such cases, slightly worse in 
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terms of speckle mitigation, but way faster approaches could be prioritized and simple 

and classical approach of 2D median filtering can be a nice example of this. It could be 

studied in psychometric scaling experiments as well. 
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Chapter 6: Further Work 

Still large amount of work has to be done to reach the ultimate goal of creating fully 

automatized robust framework of speckle noise mitigation. Therefore, several follow-

up research projects can be built upon this one.  

First of all, the essential point of the approach and the most significant challenge was 

the automatic registration of the video sequence images. At the last stage of the 

project, the partners from the Stanford University provided the works by Loewke et al. 

[1][2] together with the software and its source code. It tries to solve in-vivo real-time 

image mosaicing problem for handheld dual-axes confocal microscopes and tries to 

tackle the problems that we faced during this project, e.g. tissue deformation. 

Unfortunately, no time was left to examine this tool into details within this project, but 

it could be a great starting point for the follow-up work. And generally, ways of 

automatic image mosaicing should be defined as one of the most significant challenges 

to be solved for successful implementation of this approach.  

The second point of further work can be more refined ways of evaluation, as speckle 

index has demonstrated some shortcomings while applying for large microscopy 

images. Various ways of evaluation are described in the work of Suri et al. [3], 

classification tasks using kNN classifier being one of the most promising among them, 

if the dataset is built with symptomatic and asymptomatic images. This can be a good 

starting point in this direction.  

And generally speaking, building and processing the larger datasets are essential to the 

success of the future work and its generalization possibilities, as limitedness in the 

proper datasets was one of the biggest challenges faced during this project.  

Additional point worth mentioning about evaluation techniques can be applying 

machine learning approach to identify the optimal tradeoff between speckle noise 

removal and keeping the cellular structures, as it was challenging without medical 

expertise to identify the optimum.  

Apart from this, it is important to note that manually defined parameters have 

enormous impact on the performance of some of the techniques. While I tried to find 

the optimal parameters empirically through my own subjective judgment, this 

question still can be considered open for further improvements and generalization.  

Furthermore, I think that it is worth paying extra attention to the phenomenon, when 

misalignment decreases the speckle noise. This can lead to interesting findings in 

terms of speckle mitigation and in terms of finding the optimal degree of alignment, 

and generally, in terms of the nature of the algorithm applied.  

Larger number of conventional approaches can be compared against ours, as well as 

larger number of techniques can be applied to extracted redundant data of the 
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overlapping regions, while commonly cited pixel-wise average needs perfect 

alignment, more sophisticated and refined techniques can be more robust and work in 

more limited conditions as well. Wavelet-based approach is among the interesting 

conventional techniques that our approach is worth comparing against.  

Besides, there is one more interesting point worth mentioning for the follow-up: the 

whole project carried out within the framework of the master’s thesis was focused on 

processing just two consecutive frames. While introduction of the second frame led me 

to lots of complications and challenges, the limitedness in time and resources did not 

allow me to go further within the scope of this project. But in fact, the same part of the 

tissue is present in more than two consecutive frames and even larger amount of the 

redundant data of the overlapping regions can be extracted. Therefore, one of the 

interesting directions for the future work can be usage of more than two consecutive 

frames, like three, four or more frames. This will indeed lead to further challenges, as 

the registration of 3- or more-layer data will be even more difficult, but pixelwise 

averaging of more uncorrelated data could be the way to further improvement.  

Apart from this, psychometric scaling experiments demonstrated need for further 

directions. First of all, the content dependence of the approaches and the impact of the 

speckle amount in the original image need further study and understanding. Secondly, 

psychometric scaling experiments should be extended to misalignment cases and 

simple single-channel approaches, like 2D median filtering, to understand the need of 

introduction of multiple frames in speckle mitigation process. And most importantly, 

in order to gain extra credibility for psychometric experiments, especially, before 

actual implementation in real-life medical solutions, the experiments should be held 

on specific and calibrated medical devices under controlled conditions and the 

observers should be the people with the expertise in the medical field – they are the 

people final product is intended for and the average observers were used due to 

limitedness of our resources and opportunities, and just for general insight.  

And finally, the collaboration should work both ways: while post-processing is one of 

the ways of solving the problems with speckle noise, the thorough study of issue can 

help us come up with some hardware improvement recommendations for the 

designers of the microscope, and on the other hand, the nature of the videos can be a 

good reason to create a guide of the best practices for the operator of the microscope, 

as high quality (e.g. smoothly moving) videos can simplify speckle mitigation task 

dramatically.   
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