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Abstract— Complex marine operations are moving further
from shore, into deeper waters, and harsher environments. The
operating hours of a vessel are weather dependent, and good
knowledge of the prevailing weather conditions may ensure
cost-efficient and safe operations. This paper considers the
estimation of the peak wave frequency of the on-site sea state
based on the vessel’s motion in waves. A sea state can be
described by significant wave height, peak wave frequency,
wave direction, and often wind speed and direction are added
as well. The signal-based algorithm presented in this paper is
based on Fourier transforms of the vessel response in heave,
roll and pitch. The measurements are used directly to obtain
an estimate of the peak frequency of the waves. Experimental
results from model-scale offshore ship runs at the Marine
Cybernetics Laboratory (MCLab) at NTNU demonstrate the
performance of the proposed sea state estimation algorithm.

I. INTRODUCTION

Most marine operations are highly dependent on the Cap-
tain’s experience, and his ability to make correct decisions
in stressful situations. In addition it is often difficult for
operators to judge the sea state only by visual observations
especially from large vessels. A decision support system
(DSS) containing detailed information about the on-site sea
state contributes to the Captain’s decision making process.
Developing such decision support tools has seen an increas-
ing interest over the years.

The sea state can for instance be estimated using a wave
rider buoy, wave radar, or satellite images of the ocean
topology. Traditionally the wave rider buoy has been a
provider of such data, contributing greatly to the weather
forecasts offshore. However, these are at fixed locations,
and most likely not able to provide information of the
on-site sea state where the particular operation is taking
place. Installing a wave radar is fairly costly, and the
system itself requires careful tuning on a daily basis. [1]
proposes an algorithm for predicting the short-crested sea
state based on wave radar measurements. The algorithm
estimates the local sea state, and in special conditions it
has been used to recreate actual wave trains. However it
is a computationally demanding algorithm which depends
fundamentally on the radar measurements to be regularly
calibrated, see [2] and [3]. Moreover, the algorithm requires
independent radar measurements and, thus two radar systems
are needed if navigation and sea state estimation should
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happen simultaneously. Satellite images are dependent on
low cloud cover for quality of the data gathered. Inevitably
the cloud cover becomes thicker at times when the sea state
estimate may be of greater interest.

Today, the majority of marine vessels are equipped with
various sensors to measure operational state and performance
such as global wave-induced motions, fuel consumption, hull
girder stresses and geographical position. One example is
DP ships which typically are installed with motion reference
units, gyros and position measurement systems. In this sense,
the marine vessels are indirectly equipped with sea state
measuring systems, since the sensor measurements can be
used to infer about the on-site sea state. Thus, the thought
of using ships as wave buoys has been explored quite
extensively the last 10-15 years, e.g. [4], [5], [6] and [7]. One
proposed method is called the wave buoy analogy, where the
ship motions in 6 degrees of freedom (DOF), or other global
ship responses such as hull girder stresses, are transformed
into the frequency domain, and an estimate of the wave
spectrum is obtained by means of parametric or Bayesian
modeling. This method takes the vessel’s motion response
amplitude operators (RAOs), also called transfer functions,
into account when estimating the wave spectrum and/or asso-
ciated sea state parameters such as the peak wave frequency
ωp, significant wave height Hs and relative wave direction β.
As noted, the estimation method relies on both measurements
– the measured signals – and transfer functions to model the
theoretical relation between the waves and vessel responses.
In this respect, the method is partly signal-based and partly
model-based. However, for referencing from here on the term
model-based will be used. This term is also useful to distinct
the procedure from a signal-based method which is based
solely on measured signals.

A signal-based approach has been applied in a hybrid con-
troller which switches between candidate controllers based
on an estimate of the peak wave frequency, see [8], [9],
and [10]. The method does not consider the vessel’s motion
RAOs, and hence cannot estimate Hs or β, but it has been
shown to track a changing sea state reasonably well. This
paper looks further into the properties of this particular
algorithm.

Other types of signal-based methods exist, as shown in
[11], [12], [13] and, although state-of-the-art techniques
allows for peak wave frequency estimation only, theoretical
studies have been initiated towards estimation of significant
wave height Hs and wave direction β as well, see [14]. The
development of a (complete) signal-based method for sea
state estimation, including Hs and β would be considered
a very important step improving planning and execution of



marine operations including DP and transit.
This paper presents one signal-based estimation algorithm,

and it is applied to measurements from a model-scale vessel
controlled by a DP system. The vessel is freely floating,
using the thrusters as sole means of keeping a constant
position. Model-scale experiments are done of different cases
including various relative wave directions β and loading
conditions in several sea states.

The paper is organized as follows: Section II gives a
brief introduction to DP, as this is a required tool for
collecting data to be used in the estimation method. Section
III describes the signal-based sea state estimation method
including a small example. The experimental setup as well as
validation of the experimental results is presented in Section
IV, before the estimation results are presented and discussed
in Section V. Section VI concludes the paper.

II. DYNAMIC POSITIONING OF MARINE VESSELS

A DP control system should control the vessel position
and heading to a fixed setpoint or pre-determined track (low
speed) solely by using the thrusters of the vessel [15]. This
control objective can be expressed as

lim
t→∞

ηLF (t)− η∗(t)→ 0 (1)

where ηLF (t) is the low frequency vessel position vector,
and η∗(t) is the desired position vector. Normally for a
ship in DP the position in surge and sway and the heading
angle are controlled. This means that the heave, roll and
pitch can be seen as uninfluenced by the control system,
and hence these degrees of freedom (DOF) can be used in
sea state estimation, as done later in the paper. However, as
shown in [16], this may not be the case for semisubmersibles
with small water-plane-area where the roll and pitch may
be influenced by the DP system. Normally the position
measurement at time t can be expressed as

y(t) = ηLF (t) + ηWF (t) + v(t), (2)

where ηLF (t) is the low frequency vessel position vector
induced by slowly varying forces from the environment and
thrusters, ηWF (t) is the first order wave frequency motion
and v(t) is the sensor noise vector.

ηLF (t) is not available directly from (2), so therefore
an observer of the type Kalman filter or nonlinear passive
observer, is required to provide a state estimate by filtering
out the wave frequency motions, sensor noise, and estimating
bias from slowly varying environmental forces and unmod-
eled dynamics. The wave frequency motion is filtered out to
reduce unnecessary wear and tear on the propulsion system.
Sensor-based observers such as IMU integration filters, see
[17], [18] and model-based observers such as the extended
Kalman Filter, see [19], [20] or passive nonlinear observers,
see [21] are often applied to DP.

The control algorithm takes in the estimated vessel po-
sition and velocity vectors η̂LF , ν̂ from the observer and
compares it with the desired vessel position η∗(t) to calculate

a control input u, here exemplified by a nonlinear PID
controller:

u = −RT (ψ)Kp(η̂
LF − η∗)−Kdν̂

−RT (ψ)Ki

∫ t

0

(η̂LF − η∗)dt, (3)

where Kp,Kd,Ki are the nonnegative proportional, deriva-
tive and integral gain matrices, respectively. The different
parts required for the DP system to fulfill the control objec-
tive (1) are described in detail in [22], [23], [24].

III. SIGNAL-BASED SEA STATE ESTIMATION
ALGORITHM

The signal-based method presented in this paper, is solely
based on the measurements, i.e. the procedure does not
require knowledge of the vessel motion RAOs, and in this
way it is a purely signal-based method. This is in contrast
to the wave buoy analogy which is model-based; because of
the need for RAOs. The present approach is based on Fourier
transforms, where N samples of heave, roll and pitch motion
in the time domain are transformed to the frequency domain,
and an estimate of the peak wave frequency ω̂p is computed
based on the resulting response spectra of the three motion
components heave, roll and pitch.

A. Assumptions on Time Domain Vessel Response

In small to relatively high sea states, linear theory is often
sufficient to describe irregular wave-induced motions on
marine vessels [25]. The first order wave-induced response
ηWF ∈ R6 in irregular waves can be written as a finite sum
of sinusoidal components with different amplitudes aj ∈ R6,
frequencies ωj , wave numbers kj , relative direction βj , and
random phases εj ∈ [0, 2π]:

ηWF =

J−1∑
j=0

aj sin(ωjt−kjx cos(βj)−kjy sin(βj)+εj+γj).

γj ∈ R6 is the vector of phase of the low frequency position
and phase of the RAOs. Here β = 0◦ is head sea, and β =
180◦ is following sea.

The low frequency vessel motion is usually modeled as
a mass-damper-spring system subject to forces from current,
wind, and mean and slowly varying forces due to wave loads.
For a vessel on DP the thrusters will produce mean and
slowly varying forces to cancel those from the environment.
Slowly varying forces are modeled as sinusoidal components
with frequency (ωj − ωi), and therefore:

η = ηLF + ηWF =

M−1∑
m=0

Am sin(ωmt+ Γm) (4)

where ωm spans both the low frequency and wave frequency
regime, Am ∈ R6 is the vector of low frequency and wave
frequency amplitudes, and Γm ∈ R6 is the total phase shift
vector relative to the wave elevation.

The Fourier transform approach requires that the response
due to any irregular wave train can be described by (4), and
that the wave-induced vessel motions are small and in steady



state. The steady state assumption may be relaxed, see for
instance [13].

B. Fast Fourier Transform of Vessel Response

The DP measurements (2) are sampled every T > 0
seconds, and N ∈ Z≥1 consecutive measurements are stored
in a shift register with state χ = [χ1, ...,χN ]T ∈ R6N ,
where χk ∈ R6, k ∈ {0, . . . , N − 1} are the stored
measurements. The state component χ1 contains the most
recent sample, and χN contains the least recent sample.

χ+
1 = y (5a)

χ+
2 = χ1 (5b)
...

χ+
N = χN−1 (5c)

The fast Fourier transform (FFT) is applied to χ in order
to generate the response spectra. The time for each sample
is defined as tk = Tk so that tk = {0, ..., Nk}. We want to
determine a complex polynomial q(χ) ∈ R6 with i =

√
−1

q(χ) =

N−1∑
n=0

cne
intk , (6)

which interpolates η in (4), i.e. we need to find the coeffi-
cients c0, ..., cN−1 so that ηk = q(χk). The coefficients are
found by the formula:

cn =
1

N

N−1∑
k=0

χke
−intk , n = {0, ..., N − 1}. (7)

The real part of the spectral amplitude Sη(f) ∈ R6N of the
measurements are then given by

Sη(f) = Re
{
F6
Nχ
}

(8)

where F6
N ∈ R6N×6N is the stacked N ×N Fourier matrix

for all 6 DOFs, i.e. all elements of FN are multiplied by the
6× 6 identity matrix. FN has the form

FN =


1 1 ... 1

e−it0 e−it1 ... e−itN−1

e−i2t0 e−i2t1 ... e−i2tN−1

...
...

...
...

e−i(N−1)t0 e−i(N−1)t1 ... e−i(N−1)tN−1

 .
The FFT solves (8) by splitting the problem into even
and odd parts, which reduces the number of operations
from O(N2) for normal discrete Fourier transform to
O(N) log2N . For more on Fourier transforms, see for in-
stance [26].

In this setting it is more convenient to have the spectrum
and frequencies related to angular frequency ω = 2πf

Sη(ω) =
T

π
Sη(f). (9)

The function Υ : R6N → R≥0 operates on Sη(ω), return-
ing the peak frequencies in each DOF ωp,i, i = {1, ..6}. In

this paper the estimate of the peak wave frequency is the
average of the heave, roll and pitch peak frequencies

ω̂p =
ωp,3 + ωp,4 + ωp,5

3
. (10)

In the case where the response has multiple peaks, the
frequency corresponding to the largest is utilized. In different
sea states the vessel responds little in some DOFs and more
in others. To make sure that the algorithm is robust, the
estimate is taken as the average of the heave, roll and pitch
motions.

Figure 1 shows a time series of heave and the correspond-
ing response spectrum when (8) and (9) are applied to the
series. The measured incident wave spectrum is also shown.
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Fig. 1. Signal-based algorithm applied to a time series in heave; time series
shown above and spectrum below. The spectrum of the heave response is
plotted together with the FFT of the measured incident wave.

The response spectrum in each DOF is here found by using
the Matlab toolbox WAFO [27], which is based on the built-
in matlab function fft. See [10] to see how the estimation
algorithm is implemented in a controller.

IV. EXPERIMENTAL SETUP AND VALIDATION OF
MEASUREMENTS

This section gives a brief introduction to the experimental
facilities and presents the test cases. A thorough validation
of the measurements was done, and it is also discussed.

A. Vessel and Laboratory Facilities

The Marine Cybernetics Laboratory (MCLab) at NTNU,
Trondheim was used for the experiments. It includes a basin
with dimensions (L × B × D) 40 m × 6.45 m × 1.41 m,
a camera positioning system that provides position and
orientation measurements to the DP system, and a wave flap1

for generating sea states from different wave spectra. Figure
2 shows the camera system and the model vessel in action.

The experiments were conducted with Cybership 3, a
1:30 scale model of a platform supply vessel (PSV) with
dimensions Lpp = 1.971 m and B = 0.437 m. It is equipped

1DHI Wave Synthesizer, www.dhigroup.com.



Fig. 2. Cybership 3 in action. The three cameras measuring position are
seen above the bridge structure, and the surface elevation is measured to
the far right at the wooden plank.

with three azimuth thrusters, two stern with fixed angles of
±30 ◦ and one in the bow at 90 ◦, see Figure 3. The vessel
has eight 12 V batteries supplying power to the thrusters and
a National Instruments CompactRio (cRIO) where the DP
control system is running. The operator supplies setpoints
and specifies controller gains from a laptop, see Figure 4.
Communication between the camera system, operator laptop
and cRIO is via ethernet.

Fig. 3. Thruster configuration of Cybership 3.

B. Experimental Test Cases

Different cases were run with combinations of wave
spectra with (Hs, Tp), relative wave direction β and loading
conditions (LC), see Table I. The sea state numbers (SSn) are
defined in Table II. The values within the parenthesis {...}
in Table I are the ones changing in the case, e.g. for Case
1-3 the heading is changed for three different JONSWAP
spectra J1, J2 and J3. Case a corresponds to β = 0◦, Case b
to β = 10◦, and Case c to β = 20◦.

Common wave spectra used in the North Sea include the
wind-generated JONSWAP (Joint North Sea Wave Project)

Fig. 4. Operator laptop where DP setpoints and controller gains are
specified. The wave flap is also seen directly behind the laptop.

for developing sea states and the Pierson Moskovitz spectra
for fully developed sea states, which are both single-peaked
spectra. The Torsethaugen spectrum is also widely used
to describe sea states in the North Sea. However, this is
a double peaked spectrum and is not investigated in this
paper. Experimental tests were done with a double-peaked
spectrum: Case 4, but these results are omitted here, as
further elaboration of the estimation method is needed to
handle double-peaked spectra.

TABLE I
THE TEST CASES RUN IN MODEL-SCALE. LC = LOAD CONDITION; LC =

1 NORMAL, LC=2 8.6% EXTRA WEIGHT.

Case no. SSn β[◦] LC
1a,b,c J1 {0, 10, 20} 1
2a,b,c J2 {0, 10, 20} 1
3a,b,c J3 {0, 10, 20} 1
5a,b,c J1 {0, 10, 20} 2
5d J4 0 2
6a,b,c {J1, J2, J3} 180 1
7 J4 0 1
8a,b,c PM1 {0, 10, 20} 1
9a,b,c {J1, J2, J3} 160 1
10a,b {J1, J2} 30 1

TABLE II
DEFINITION OF THE SEA STATE NUMBER (SSN) WITH SPECTER TYPE,

Hs AND Tp .

SSn Specter type Hs [m] Tp [s]
J1 JONSWAP 0.04 0.8
J2 JONSWAP 0.05 0.9
J3 JONSWAP 0.05 1.5
J4 JONSWAP 0.10 1.5

PM1 Pierson Moskovitz 0.05 0.9

C. Validation of Measurements

In this section the measurements of wave elevation and
vessel response are validated. Two main issues relating to
the measurements were found while processing the results,
the first relates to the motion RAOs, and the second involves



the sample time of the cRIO used for DP control and data
logging.

1) Motion RAOs: Cybership 3 is a model made by MAR-
INTEK in 1988, with RAO data from this time period as
well. Since then the instrumentation onboard has changed,
tha actual mass and mass distribution have changed as well.
New RAOs were made by first finding the new center of
gravity, the gyroradii and moments of inertia giving the
mass distribution, waterline and trim. A ship lines plan was
made from a rather coarse panel model, and the MARINTEK
software Veres ShipX was used to calculate the motion RAOs
in the center of gravity. The new motion RAOs have not
been verified experimentally, although dedicated studies in
this respect should be considered, as the effect of the coarse
geometry file is unknown.

The response measurements of the vessel were taken at a
point different from the center of gravity, so the new motion
RAOs were translated to this point. The measurement point
is r = [xm, ym, zm] = [110, 0, 153] mm forward and above
the center of gravity.

2) Sample Time of the cRIO: It was found that the cRIO
did not manage to log with the specified sample time of
T = 0.01 s. The reason for the lag is that the model needed
to wait for the other system loops in order to execute, and
the total loop time of all control loops2 was T = 0.0133
s. As a result all logged measurements have sample time
T = 0.0133 s. For future tests it is advised to log the loop
times of the individual control loops in addition to the
system sample time.

Figure 5 shows a typical validation result for the measured
surface elevation and pitch response. The top plot shows
the wave spectrum specified in the wavemaker (dashed
line) and the measured spectrum. The wave spectra have
similar shapes and contain similar amounts of energy. The
peaks are shifted slightly, and there are several possible
reasons for this, for instance that the waves might not have
been perfectly long-crested, the surface elevation was not
measured at the center of the basin, reflections from the
tank walls and wave beach, the tank filling, and calibration
of the measurement device.

The middle plot shows the motion RAO for pitch for
β = 0◦. Pitch has two prominent resonance peaks at 4.9
and 7.7 rad/s with the lower having the higher amplitude.
The resonance frequencies in heave are 6.2 − 6.9 rad/s for
the different headings, and roll has one narrow peak at 6.7
rad/s. The shapes of the RAOs reveal that heave and pitch
respond significantly to a broader range of frequencies than
roll.

The bottom plot shows the pitch response spectrum ob-
tained by the measured signal with corrected sample time
(bold), and the theoretical response calculated based on the
new motion RAO. It is observed that the frequency and
magnitude of both peaks correspond reasonably well, though

2An illustration of the system architecture of the National In-
struments Veristand Engine is found here: http://www.ni.com/product-
documentation/13033/en/
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Fig. 5. Validation of the wave elevation from the JONSWAP J1 spectrum
and pitch angle measurements for head sea β = 0◦. Above: Measured
and specified wave spectra, Middle: Pitch motion RAO for β = 0◦,
Below: Theoretical calculated response based on the RAO and the measured
response with corrected sample time.

the cancellation effect at around 7 rad/s is not captured in
the measurements.

Generally the frequencies of the peaks correspond very
well, but the amplitudes are often off. Usually the amplitude
of the measured response is higher than the theoretical
calculated using RAOs, which means that the energy present
at the different frequencies is larger in the experiment.

One explanation for this behaviour is that the DP system
keeps the specified heading relative to the waves β with an
accuracy of around ±3◦. Since the motion RAO changes in
amplitude with β, the theoretical and measured amplitudes
do not match up. This is very prominent in roll, where
the amplitude of the roll RAO more than doubles for each
10◦ when β ∈ {0◦, 90◦}, with a similar decrease for
β ∈ {90◦, 180◦}. The heave amplitudes generally agree
more than illustrated by pitch in Figure 5, though the fit
depends highly on the incident sea state. Alongside the DP
system, a sea state that is not perfectly long-crested, may
have the same effect on the response amplitudes.

In conclusion, the measurements correspond reasonably
well with theory, and the observed deviations are justified.

V. ESTIMATION RESULTS AND DISCUSSION

In this section the estimation results of the signal-based
estimation algorithm applied to the measurements are pre-
sented and discussed.

A. Results

An example of typical response spectra is shown in
Figure 6. The incident wave spectra (bold red) is from J3
(JONSWAP with (Hs, Tp) = (0.05, 1.5)) with β = 20◦, and
the response in all DOFs are plotted, even though only heave,
roll and pitch are used in the estimation. In the figure, the
response peaks are grouped around two main frequencies,
the wave, heave, pitch, surge and yaw around 4.2 rad/s
and roll, heave and sway around 6.2 rad/s. In the case of



headings β 6= 0◦ there are large couplings. A summary
of the estimation results is given in Table III presenting
the arithmetic mean and standard deviation for each sea
state. The error is the difference between the measured ωp
and each of ωp,3, ωp,4, ωp,5 as well as ω̂p, i.e for heave
error = (ωp − ωp,3)/ωp. Negative error means that the peak
frequency from the response is higher than the incident peak
wave frequency.

The following observations can be made:
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Fig. 6. Measured incident wave and measured response spectra for J3
(JONSWAP with (Hs, Tp) = (0.05, 1.5)) with β = 20◦.

• Based on all 45 series: Pitch has the smallest absolute
estimation error of 6.8%, closely followed by heave
with 7.4%. Both these have fairly small standard de-
viations on the error, so they are the most reliable.
Roll has the largest error and standard deviation of
22.2%± 14.8%.

• Roll has the largest errors and standard deviations for all
spectra except PM1, where pitch is worse. This behavior
can be explained by inspecting the RAO. It is zero for
small and high frequencies, and has one narrow peak at
6.7 rad/s . Only wave components with frequency close
to the natural frequency are transferred to the response,
and hence wave spectra with peaks far away from the
natural frequency in roll worsens the estimation, for
instance when Tp = 1.5 s.

• PM1 and J2 both have (Hs, Tp) = (0.05, 0.9), but ω̂p
is very different. It is due to the wave spectrum shape;
a spectrum with broader bandwidth will excite more
frequencies in the response, and then the RAOs amplify
a larger part of the incident wave spectrum. If the
incident wave spectrum is narrow-banded, the response
will naturally have smaller components outside the sea
state bandwidth. Running experiments with spectra that
have different peakedness would be very interesting.

• Roll estimates better for larger heading angles β, though
not as well as heave and pitch. For the studied cases,
better estimates would be obtained if roll was excluded.
It could be interesting to see what happens for β = 90◦.

TABLE III
SUMMARY OF THE RESULTS FOR ω̂p BASED ON ωp,3, ωp,4, ωp,5 , AND

ω̂p =MEAN(ωp,3, ωp,4, ωp,5) FOR ALL DIRECTIONS AND LOADING

CONDITIONS, SORTED BY SEA STATE (SEE TABLE II FOR DETAILS ON

THE SEA STATES).

Measured and estimated peak wave frequency [rad/s]
SSn ωp ωp,3 ωp,4 ωp,5 ω̂p

J1 mean 7.545 6.938 6.444 7.086 6.823
std 0.037 0.87 0.148 0.402 0.245

error - 8.0 % 14.6 % 6.1 % 9.6 %

J2 mean 7.056 6.655 6.332 6.615 6.534
std 0.000 0.107 0.089 0.213 0.136

error - 5.7 % 10.3 % 6.3 % 7.4 %

J3 mean 4.244 4.101 6.209 4.255 4.855
std 0.036 0.042 0.072 0.045 0.053

error - 3.4 % -46.3 % -0.3 % -14.4 %

J4 mean 4.257 4.109 6.199 4.224 4.844
std 0.038 0.063 0.087 0.025 0.058

error - 3.5 % -45.6 % 0.8 % -13.8 %

PM1 mean 7.517 6.411 6.334 6.151 6.299
std 0.153 0.107 0.040 0.337 0.161

error - 14.7 % 15.7 % 18.1 % 16.2 %

Measured and estimated ωp

Case Meas. ωp,3 ωp,4 ωp,5 ω̂p

1a,b,c mean 7.517 6.978 6.468 7.112 6.853
std 0.000 0.058 0.113 0.341 0.170

error - 7.2 % 13.9 % 5.4 % 8.8 %

5a,b,c mean 7.593 6.747 6.526 7.093 6.789
std 0.000 0.100 0.139 0.410 0.216

error - 11.1 % 14.1 % 6.6 % 10.6 %

Measured and estimated ωp

β ωp,3 ωp,4 ωp,5 ω̂p

0 abs error 7.3 % 27.1 % 5.2 % 13.2 %
10 abs error 8.1 % 20.2 % 6.4 % 11.6 %
20 abs error 8.6 % 20.3 % 9.8 % 12.9 %
30 abs error 5.8 % 12.4 % 9.7 % 9.3 %
160 abs error 4.6 % 24.4 % 7.9 % 12.3 %
180 abs error 3.9 % 24.6 % 0.7 % 9.7 %

• Pitch is marginally better than heave for head and
following seas, and heave is marginally better than pitch
for headings of 20, 30, 160◦. This can again be related
to the motion RAOs since the amplification in heave
is larger when β ∈ {30◦ − 160◦} and the opposite is
observed in pitch.

• Case 1 and 5 have the same environmental conditions,
but Case 5 has a 8.6% increase in mass. The estimation
errors are slightly smaller for Case 1 than for Case 5.
However, this may be a coincidence, as the difference
in the measured peak frequency is large. The same
timeseries of the wave elevation was run for these cases,
so the difference may be due to measurement errors.

• Inspecting the spectra for surge, sway and yaw, see
Figure 6, the influence of the control system at low
frequencies is noted, and the spectra do not go towards
zero. This is because the thrusters insert energy at these
frequencies. In the case where the observer does not
filter out the wave frequency motion, the thrusters may



also contribute to energy in the wave-frequency regime.

B. Discussion with a Broader Perspective

A topic that is always worth mentioning when model-
scale tests are done is whether or not the findings have
validity in full-scale. The vessel itself and the RAOs are
scaled using Froude scaling, meaning that gravity forces -
like those exerted by non-breaking waves - are in theory
scaled correctly. With Froude scaling, the vessel length and
water depth are scaled by the ratio λ = Lf/Lm (Lf is
the full-scale length and Lm is the model-scale length), and
time is scaled by

√
λ. In particular in the MCLab, the water

depth is only 1.5 m, which scaled up to full-scale is 45
m. The waves tested in the lab have full-scale heights of
Hs,f = 1.2−3 m and peak periods of Tp,f = 4.38−8.21 s,
which puts the waves firmly within the shallow water regime.
The thrusters and thrust losses should ideally be scaled by
Reynold’s scaling to get the viscous forces correct, but this is
practically not possible to obtain simultaneously with Froude
scaling. Effects from the DP system are probably larger than
thrust scaling effects. So, all in all, the model-scale results are
believed to be reasonably representative of expected behavior
in full-scale.

For a vessel in transit or operation, there may be many
frequencies of interest simultaneously: for instance the peak
wave frequency, the encounter frequency in the case of
forward speed, and the oscillation frequency of the different
DOFs. These estimates are e.g. used in detection of para-
metric roll before it happens so that the vessel speed can
be reduced, see [11], [12], active roll and pitch damping for
instance in ship-platform gangways, heave compensation in
cranes or risers, or directly in DP observers and controllers.

In most observers there is a wave filtering function. The
filter contains a simple (synthetic) second order model of
the wave motion of the vessel with a peak frequency and
a damping ratio. The believed peak frequency of the waves
is often applied here, see for instance [23], [22], [28], but
perhaps inserting the vessel’s oscillatory motions due to
waves could yield even better filtering. The same sort of
argument may be posed about hybrid controllers [8], [9],
[10], where the controller is tuned according to the vessel’s
motions in a sea state, and not to the sea state directly.

VI. CONCLUSION

The signal-based sea state estimation algorithm based on
Fourier transforms presented in this paper was demonstrated
to perform quite well in experiments with the model-scale
offshore ship run at the Marine Cybernetics Laboratory
(MCLab) at NTNU. It was found to be the most accurate
using heave and pitch responses, and for narrow-peaked
incident wave spectra.

Proposed further work includes more experiments with
beam seas as well as with forward speed, and looking into
sea states with different peakedness and double peaks.

TABLE IV
PARAMETERS FOR CYBERSHIP 3 (MODEL-SCALE). ”OLD” VALUES ARE

FROM 1988, AND ”NEW” VALUES ARE FROM 2015.

Parameter Old New Comment
Mass [kg] 74.7 86.5
Waterline [m] 0.153 0.154 Rel. to baseline
Trim [◦] 0 0
Center x [m] 1.005 0.925 Rel. to AP
of y ” 0 0
Gravity z ” 0.1956 0.1105 Rel. to baseline
Moment Jxx [kgm2] 2.192 1.584
of Jyy ” 19.72 18.939
Inertia Jzz ” 19.72 18.939
Radius rxx [m] 0.1713 0.135 Rel. to CoG
of ryy 0.5138 0.468
Gyration rzz 0.5138 0.468
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