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ABSTRACT
A ghost-point immersed boundary method is devised for the
compressible Navier–Stokes equations by employing high order
summation-by-parts (SBP) difference operators. The immersed
boundaries are treated as sharp interfaces by enforcing the solid wall
boundary conditions via flow variables at ghost points using bilin-
early interpolated flow variables at mirror points. The approach is
verified and validated for compressible flow past a circular cylinder
at moderate Reynolds numbers.

Keywords: High order finite difference method, Immersed
boundary method, Compressible viscous flow .

NOMENCLATURE

Greek Symbols
ρ Mass density
µ Dynamic viscosity
τ Viscous stress tensor
γ Ratio of specific heats
κ Heat conduction coefficient
φ Generic variable
G Set of body intercept points that are part of the inter-

polation stencil
Λ Parameter
σ Source term in steady state heat equation
ξ,η Transformed coordinates in computational domain

Latin Symbols
t Physical time
E Specific total energy
H Total entalpy
p Pressure
Sc Sutherland constant
T Temperature
U Vector of conservative variables
V Vandermonde matrix
x,y Cartesian coordinates in physical domain
J−1 Jacobian determinant

Sub/superscripts
GP Ghost point
IP Image point
BI Body intercept
c′ Conservative perturbation
ν′ Viscous perturbation

INTRODUCTION

Many applications in engineering, biology and medicine in-
volve low and moderate Reynolds number flow problems
with complex boundaries between fluid and structure. Sim-
ulating these problems with conventional methods requires
the process of generating high quality and body-conforming
grids which is challenging and time-consuming. Recently,
there has been a growing interest in the development of non-
boundary conforming methodologies for the solution of the
Navier–Stokes equations (Mittal and Iaccarino, 2005). In
such methods, the requirement that the grid should conform
to a solid boundary is dropped, and the effect of the im-
mersed boundary of the solid body on the flow is introduced
through the proper treatment of the solution variables near
the boundary. The basic advantage of these formulations is
the simplicity compared with conventional body-conforming
grid generation, especially in cases of complex stationary or
moving boundaries where the demand for regeneration or de-
formation of the grid is eliminated. Therefore, efficient non
boundary conforming strategies with robust Cartesian coor-
dinate solvers can directly be applied to a wide range of flow
problems.
Over the past decades a variety of non-body conforming
approaches with various degrees of accuracy and complex-
ity have been proposed. The so-called immersed-boundary
method (IBM) was introduced by (Peskin, 1972). IB meth-
ods are categorized into continuous forcing and discrete (di-
rect) forcing approaches. In the first category, a continuous
forcing term is added to the governing equations to repre-
sent the interaction between the immersed boundary and the
fluid, and a discrete Dirac–delta function is used to smooth
this singular force on the Euler grid (Peskin, 1972; Gold-
stein et al., 1993; Saiki and Biringen, 1996). Numerous
modifications and improvements have been implemented in
this category (Haeri and Shrimpton, 2012; Sotiropoulos and
Yang, 2014). The second category, including the sharp in-
terface method, mimics the presence of a surface force ex-
erted by the boundary on the fluid by adjusting the discretiza-
tion in the vicinity of the immersed boundary in order to di-
rectly take into account the boundary conditions at the IB (Ye
et al., 1999; Fadlun et al., 2000; Mohd-Yusof, 1997; Balaras,
2004). The ghost cell immersed boundary (GCIB) method as
sharp interface method is proposed in the studies by (Tseng
and Ferziger, 2003; Ghias et al., 2007; Mittal et al., 2008).
Ghost cells are defined as a layer of cells within the solid
body having at least one nearby point in the fluid domain



i.e., adjoining to the immersed boundary. The flow variables
at the ghost points are calculated with the boundary condi-
tions at the immersed boundary and the flow variables at
grid points near the IB in the fluid domain. The presence
of the immersed boundary is introduced by the flow vari-
ables at the ghost points. The idea of image points inside the
fluid domain is adopted to ensure suitable weighting coeffi-
cients in the reconstruction formula in order to avoid numeri-
cal instability caused by the large, negative weighting coeffi-
cients in the extrapolation formulation (Tseng and Ferziger,
2003). The ghost point method has shown large potential to
deal with different fluid-solid interaction problems, includ-
ing those involving highly complex geometries and moving
or deforming bodies (Mittal et al., 2008).
In the IBM, all the equations can be solved on a body non-
conformal, Cartesian grid which does not require to be up-
dated for moving or deforming bodies. Due to the flexibil-
ity of the method, many different types of IBM have been
developed in incompressible and compressible flow solvers.
However, most of the attention on IBM is devoted to incom-
pressible flows (Mittal and Iaccarino, 2005). Works on vis-
cous compressible flows are still scarce and a few IBM for
viscous compressible flows has been developed (De Palma
et al., 2006; Ghias et al., 2007; de Tullio et al., 2007; Brehm
et al., 2015). Due to the different nature of the Navier–Stokes
equations for compressible and incompressible flows, i.e. the
requirement of equation of state for compressible flows, there
are differences in implementation of the boundary conditions
between these two types of equations as well as in the spatial
discretisation schemes employed.
In this study, the ghost point IB approach has been
adopted for a high order finite difference method based on
summation-by-parts operators (SBP) to provide an accurate
and efficient approach for studying low Mach number com-
pressible viscous flows. The major ambition of the present
work is to extend this approach for fluid structure interaction
(FSI) in the upper airways to study the obstructive sleep ap-
nea syndrome. The main focus in our study is subsonic flow
which permits us to characterize the acoustic wave propa-
gation induced by the structure oscillation in FSI to obtain
a better understanding of snoring. The proposed approach is
verified and validated for two dimensional flows over a circu-
lar cylinder. In the following sections, a brief review of the
governing equations and their numerical solution is given.
Then, the IB approach is described in detail. Finally, results
are provided and compared with numerical and experimental
ones available in the literature.

MODEL DESCRIPTION

Governing equations

The 2D compressible Navier–Stokes equations in perturba-
tion form are solved. To minimize cancellation errors when
discretizing the Navier–Stokes equations for compressible
low Mach number flow, the perturbation formulation is em-
ployed (Sesterhenn et al., 1999; Müller, 2008). The conser-
vative form of the 2D compressible Navier–Stokes equations
in perturbation formulation can be written as

U′t +Fc′
x +Gc′

y = Fv′
x +Gv′

y (1)

where U′ = U−U0 is the vector of conservative perturba-
tion variables with U= (ρ,ρu,ρv,ρE)T the vector of the con-
servative variables and U0 = (ρ0,0,0,(ρE)0)

T the stagnation
values.

The conservative perturbation variables U′ and the inviscid
(Fc′, Gc′) and viscous perturbation flux vectors (Fv′, Gv′) are
defined by Fc′ = Fc(U)−Fc(U0), etc.

U′ =

 ρ′

(ρu)′

(ρv)′

(ρE)′

 ,

Fc′=

 (ρu)′

(ρu)′u′+ p′

(ρv)′u′

((ρH)0 +(ρH)′)u′

 ,Gc′=

 (ρv)′

(ρu)′v′

(ρv)′v′+ p′

((ρH)0 +(ρH)′)v′

 ,

Fv′=


0

τ′xx
τ′xy

u′τ′xx + v′τ′xy +κT ′x

 ,Gv′=


0

τ′yx
τ′yy

u′τ′yx + v′τ′yy +κT ′y

 ,

where t is physical time and x and y are the Cartesian coordi-
nates. ρ denotes density, u and v the x- and y-direction veloc-
ity components, E the specific total energy, T the tempera-
ture and κ the heat conduction coefficient calculated from the
constant Prandtl number Pr = 0.72. ρ0, (ρE)0 and (ρH)0 de-
note the stagnation values of density, total energy density and
total enthalpy density. The perturbation variables are defined
as:

ρ
′ = ρ−ρ0, (ρu)′ = (ρu),

(ρE)′ = ρE− (ρE)0, (ρH)′ = (ρE)′+ p′, u′ =
(ρu)′

ρ0 +ρ′
,

τ
′ = µ(∇u′+(∇u′)T )− 2

3
µ(∇ ·u′)I, T ′ =

p′/R−ρ′T0

ρ0 +ρ′

Here, R is the specific gas constant and µ is the vis-
cosity which is determined from the Sutherland law
µ
µ0

= ( T
T0
)1.5[(1+Sc)/(

T
T0
+Sc)] with the non-dimensional

Sutherland constant Sc =
110

301.75 .
Since perfect gas is considered, the pressure perturbation
can be related to the conservative perturbation variables by
p′ = (γ−1)[(ρE)′− 1

2 ((ρu′ ·u′))], where the ratio of specific
heats γ = cp/cv = 1.4 for air.
The viscous flux vectors Fv′ and Gv′ are the same as for the
standard conservative form, except for using the temperature
perturbation T ′ instead of temperature T for the heat flux
terms. The momentum density and velocity perturbations
are taken as the same as their unperturbed counterparts, i.e.
(ρu)′ = ρu (Larsson and Müller, 2009). For convenience the
variables are non-dimensionalized with ρ0, stagnation speed
of sound c0 and ρ0c2

0 as reference values. In order to general-
ize the geometry for non-uniform Cartesian grids, the equa-
tions of motions are transformed from the physical domain
(x,y) to the computational domain (ξ,η) by the following
relations,

x = x(ξ,η)
y = y(ξ,η) (2)

Thus, the transformed 2D compressible Navier–Stokes equa-
tions in perturbation form are expressed as:

Û′t + F̂′
ξ
+ F̂′η = 0 (3)

where Û′ = J−1U′, F̂′ = J−1(ξx(Fc′−Fv′)+ ξy(Gc′−Gv′))

and Ĝ′ = J−1(ηx(Fc′−Fv′)+ηy(Gc′−Gv′)). The chain rule
for partial differentiation provides the expressions for Carte-
sian derivatives in the viscous flux vectors Fv′ and Gv′, e.g.



u′x = u′
ξ
ξx +u′ηηx and u′y = u′

ξ
ξy +u′ηηy. The Jacobian deter-

minant of the transformation is J−1 = xξyη−xηyξ and metric
terms are

J−1
ξx = yη, J−1

ξy =−xη,

J−1
ηx =−yξ, J−1

ηy = xξ.
(4)

Numerical methodology

The summation-by-parts (SBP) operator Q is an approxima-
tion to the first ξ- and η- derivatives in (4) and (3). In the
interior, it corresponds to the standard sixth order central
operator, while being third order accurate near the bound-
aries. Through a special boundary treatment, SBP opera-
tors permit energy estimates for discrete problems similar to
those for the continuous ones that are approximated. There-
fore, SBP operators can yield strictly stable schemes for gen-
eral boundary conditions (Strand, 1994; Gustafsson et al.,
1995; Gustafsson, 2008). The global order of accuracy of
the present SBP operator Q is fourth order (Müller, 2008).
The energy method and the summation-by-parts operators
are discussed in the Appendix A and B, respectively.
Second derivatives of viscous parts of F̂ξ

′
and Ĝη

′
are ap-

proximated by applying the SBP operator for first derivatives
twice. However, successively applying the first derivative op-
erator makes the scheme wider, which requires special treat-
ment for the immersed boundary method, and will be dis-
cussed in section boundary conditions below. Spurious high
wave number oscillations are suppressed by a sixth order ex-
plicit filter (Visbal and Gaitonde, 2002; Müller, 2008). The
classical fourth order explicit Runge–Kutta method is em-
ployed for time integration.

Immersed boundary formulation

The sharp interface method is well suited for compressible
viscous flow, due to imposing the boundary conditions at im-
mersed boundaries, without computing any forcing term and
introducing any force distribution function. The ghost point
immersed boundary method employed in this study is based
on the ghost cell immersed boundary approach for second
order methods (Ghias et al., 2007; Mittal et al., 2008).
The basic idea in this method is to compute the value of the
flow variables at each of the ghost points (referring to the
layer of points inside the solid body adjoining the immersed
boundary) such that the boundary conditions at the immersed
boundary are satisfied. As illustrated in Fig. 1, the procedure
begins by determining the immersed boundary and then dis-
tinguishing the solid points, i.e. the nodes lying inside the
solid body, and the fluid points, i.e. the nodes lying outside
the body in the fluid domain. The ghost points (denoted by
GP) are identified by those nodes that lie inside the body and
adjacent to the immersed boundary which have at least one
neighbour node in the fluid domain with the difference sten-
cil centered at the ghost point. The image point (denoted by
IP ) can be found by extending a normal probe, i.e. a line
normal to the immersed boundary, from the ghost point to
intersect with the immersed boundary at the body intercept
point (denoted by BI) such that the body intercept point lies
at the midpoint of the line connecting the ghost point and the
image point. Once the flow variables at the image point are
computed, the ghost point variables can be determined by im-
posing the boundary conditions. In other words, the general
strategy is to compute the flow variables at the image point
by taking into account the nodal values at the surrounding
fluid points and then use the boundary conditions to obtain
the values at the ghost point.

Among the available options for determining the flow vari-
ables at the image points, the computationally most effi-
cient scheme will be the bilinear interpolation scheme in
2D (Ghias et al., 2007; Mittal et al., 2008) where the flow
variables are linearly interpolated from four nodal points
surrounding the image points. This interpolation scheme
leads to a nominally second order accuracy of the immersed
boundary condition. The high order SBP operator used in
this study for spatial discretization, corresponding to the
sixth order central finite difference method at interior grids,
requires three layers of ghost points inside the immersed
boundary in order to maintain the overall high order of ac-
curacy, as shown in Fig. 2.
In the case of bilinear interpolation, the interpolating polyno-
mial involves four nodes and hence four nodal values need to
be specified. The bilinear interpolation for a generic variable
φ can be expressed as

φ(x,y) =C1 +C2x+C3y+C4xy. (5)

Figure 1: Schematic of points used to interpolate the variable lo-
cated at a ghost point.

Figure 2: Schematic of 3 layers of ghost points inside immersed
body on a Cartesian mesh.



The four unknown coefficients Ci, i = 1, ..,4, can be deter-
mined using values at the four nodes surrounding the im-
age point. Thus, the variable at the image point is recon-
structed through bilinear interpolation using unknown coef-
ficients and known flow variables at surrounding fluid nodes.
The four weighting coefficients are evaluated as the solution
of the linear system

VC = φ, (6)

where
C = {C1,C2,C3,C4}T (7)

is the vector of the unknown coefficients and

φ = {φ1,φ2,φ3,φ4}T (8)

is the vector of the four surrounding node values. The matrix
V is the Vandermonde matrix which is expressed as

V =

 1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4

 (9)

In this classical formulation, the unknown coefficient values
Ci, i = 1, ...,4, would depend on the solution at each time
step. However, the approach can be reformulated such that
new coefficients are only dependent on the coordinates of the
image point and the geometry of the grids. The reformula-
tion is discussed in detail in Appendix C. Thus, the image
point value can be expressed as

φIP =
4

∑
i=1

αiφi (10)

where αi, i = 1, ...,4, are coefficients depending on the co-
ordinates only. They can be established once the grid, im-
mersed boundary and image point coordinates are specified.
When a ghost point is close to the immersed boundary, its
corresponding image point might not have four surround-
ing fluid points. One case would be that the ghost point
itself is part of the interpolation scheme. Since the ghost
point value in an interpolation scheme would be unknown,
the ghost point is then replaced by the body intercept point
where the values are determined by the boundary conditions,
cf. Fig. 3.
For Dirichlet boundary condition in this case, the corre-
sponding row in Eq. (9) is replaced by

φBI(x,y) =C1 +C2 xBI +C3 yBI +C4 xBIyBI (11)

where xBI and yBI are the coordinates of the body intercept
point. Thereby, for a Dirichlet boundary condition the linear
system corresponding to Eq.(6) for this case becomes 1 x1 y1 x1y1

1 x2 y2 x2y2
1 x3 y3 x3y3
1 xB yB xByB


 C1

C2
C3
C4

=

 φ1
φ2
φ3
φBI

 (12)

For a Neumann boundary condition, the variable gradient at
the body intercept is known instead of the actual value. The
most obvious choice in such a case is to use the specified
gradient value ∂φBI

∂n to compute the value at the image point.
The gradient of φBI at the boundary can be determined by
taking the normal derivative of Eq.(11),

∂φBI

∂n
=C2nx +C3ny +C4(yBInx + xBIny) = ζ (13)

where nx and ny are the components of the unit vector normal
to the boundary.
Thus, the linear system corresponding to Eq.(6) for this case
becomes

 1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
0 nx ny yBInx + xBIny


 C1

C2
C3
C4

=

 φ1
φ2
φ3
ζ

 (14)

As shown in Fig. 4, it might also be the case that two inter-
polation points would lie inside the immersed body, one at
the corresponding ghost point itself and one at another ghost
point. The procedure we used to handle this case is to repeat
the above steps for the other ghost point as well, resulting in
a Vandermonde matrix where another row is also replaced by
Eqs. (11) or (13) in the same way as the fourth row, in con-
trast to (Ghias et al., 2007; Mittal et al., 2008). Applying our
procedure for this case, it is no longer necessary to solve a
coupled linear system by using iterative processes like (Ghias
et al., 2007; Mittal et al., 2008). This situation does not pose
any consistency issues and ensures that the interpolation pro-
cedure for the image point is well-posed without affecting
the accuracy of the interpolation.
The value of the variable at the ghost point is computed by
employing a linear approximation along the normal probe
which takes into account the boundary condition at the
boundary intercept. For a Dirichlet boundary condition this
can generally be expressed as

φBI =
1
2 (φIP +φGP)+O(4l2) (15)

where 4l is the length of the normal probe from GP to IP.
Solving for φGP using Eq. (15) and neglecting the truncation
gives

φGP =

(
2− ∑

j∈G
α j

)
φBI−∑

i/∈G
αiφi (16)

Figure 3: Schematic of the situation when one surrounding inter-
polation point is the boundary intercept.



where G is the set of body intercepts that are part of the in-
terpolation stencil. For a Neumann boundary condition on
the immersed boundary, the following second-order central-
difference is written along the normal probe

(
∂φ

∂n
)BI =

φIP−φGP

4l
+O(4l2) (17)

Thereby, the general formulation for a non-homogeneous
Neumann boundary condition is expressed as

φGP =

(
∑
j∈G

α j−4l

)
(

∂φ

∂n
)BI + ∑

i/∈G
αiφi (18)

Boundary conditions

The no-slip boundary condition at the immersed bound-
ary for a stationary body is considered. Thereby, Dirichlet
boundary conditions are employed for the velocity compo-
nents at the IB. For each velocity components, the corre-
sponding value at the body intercept φBI = 0 is set in Eq.
(11). Applying the no-slip condition at the body surface,
the convective flux contribution should be zero. The pres-
sure gradient normal to the immersed interface is set zero
as a boundary layer approximation, ∂p

∂n = ∂φBI
∂n = 0 in Eq.

(13). The boundary condition for the temperature depends
on the whether the immersed surface of the body is adiabatic
or isothermal. Assuming an adiabatic boundary condition at
the immersed body, the temperature gradient normal to the
surface ∂T

∂n = 0 is set to zero by enforcing a zero density

gradient ∂ρ

∂n = 0. Thus, for the variables ρ and p Neumann
boundary conditions are employed. According to the bound-
ary conditions considered for the immersed body, the values
of the conservative perturbation variables at the ghost points
are determined once the flow variables at the image points

Figure 4: Schematic of the situation when two of the surrounding
interpolation points lie inside the immersed body.

are interpolated using:

ρ′GP = ρ′IP
(ρu)′GP =−(ρu)′IP
(ρv)′GP =−(ρv)′IP
(ρE)′GP = (ρE)′IP

(19)

As mentioned above, applying the first derivative approxi-
mation twice for computing the second derivative will make
the stencil wider. For the proper treatment of wide stencils in
computing the second derivative, the first derivatives of the
viscous terms are computed up to and including the ghost
points, treating the solid points inside the ghost point layers
as domain boundaries when employing the differencing sten-
cil. Using this procedure, we ensure that the derivatives of
the viscous fluxes at the fluid points closest to the immersed
boundary are computed with high order.
Non-reflecting characteristic boundary conditions are em-
ployed at the inflow and outflow boundaries to minimize
wave reflections. The Navier–Stokes characteristic boundary
conditions (NSCBC) developed by (Poinsot and Lele, 1992)
are employed to approximate incoming waves based on lo-
cal one-dimensional inviscid (LODI) relations. The primi-
tive variables can be related to the wave amplitude (Li) by
LODI relations. The amplitudes of the characteristic waves
are L1 = λ1(

∂p
∂x −ρc ∂u

∂x ), L2 = λ2(c2 ∂ρ

∂x −
∂p
∂x ), L3 = λ3(

∂v
∂x )

and L4 = λ4(
∂p
∂x +ρc ∂u

∂x ). Since fully non-reflecting condi-
tions may lead to an ill-posed problem (Poinsot and Lele,
1992), this approach is partially reflecting. Imposing a con-
stant pressure at the outlet requires L1 =−L4. To keep the
reflections low and the pressure close to atmospheric pres-
sure, the incoming wave amplitude is set to

L1 = K(p− patm) (20)

where K is a relaxation coefficient. Rudy and Strikwerda
proposed the relaxation coefficient as K = Λ(1−Ma2)(c/Lt)
where Ma is the Mach number, c the speed of sound, Lt
the total length of the domain and Λ a parameter (Rudy and
Strikwerda, 1980). The optimum value Λ = 0.25 derived by
(Rudy and Strikwerda, 1980) is employed. For reverse flow
(negative velocity in x-direction) at the outlet, L1, L2 and
L3 are set to zero. A similar boundary treatment at inflow
and outflow was used by (Khalili et al., 2016).

RESULTS

In order to assess the accuracy of the immersed boundary
methodology, a two-dimensional steady state heat problem is
first solved. Then, the IBM is applied to a two-dimensional
flow past a circular cylinder at a range Reynolds numbers to
demonstrate the ability and performance of the method for
simulating compressible viscous flow.

Steady state heat equation

To verify the order of spatial accuracy of the current im-
mersed boundary scheme, a steady state heat transfer prob-
lem has been considered. Since the ghost point immersed
boundary method is second-order accurate (Ghias et al.,
2007; Mittal et al., 2008), care has been taken to maintain
a second-order spatial accuracy in the imposition of bound-
ary conditions on the immersed boundary. The steady state
heat equation reads

∇
2T = σ (21)



where σ is a source term, i.e. −κσ is the rate of heat genera-
tion per unit volume. The exact solution for this case in polar
coordinates can be expressed as

T (r) = σ
r2

4
+A ln(r)+B (22)

where A and B depend on the boundary conditions type and
their values.
The numerical solution by means of IBM is implemented
to solve Eq.(21) in Cartesian coordinates. The second and
fourth order central finite difference methods for second
derivatives are employed for spatial discretization of the reg-
ular fluid points.

T (2)
xx = (Ti+1−2Ti +Ti−1)/∆x2 (23)

T (4)
xx = (−Ti+2 +16Ti+1−30Ti +16Ti−1−Ti−2)/(12∆x2)

(24)
The temperature distribution is solved between two concen-
trical cylinders with inner and outer diameters Dinner = 3.5
and Douter = 8.5, respectively, embedded in a square domain
of edge length L = 10. The σ = −0.45 is chosen and the
temperatures of the inner and outer cylinders are Tinner = 5
and Touter = 10, respectively. The immersed boundary ap-
proach is implemented at the cylinder interfaces. The results
from different grids on a uniform Cartesian grid (N×N) from
N = 100 to 1000 are compared with the exact solution to
compute the L2 and L∞ norms. Fig. 5 shows the errors for
different grids.
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Figure 5: L2 and L∞ norms computed at various grid levels with
IBM for 2D steady heat Eq. (21).

The first, second and third–order convergence rates are also
included in Fig. 5 for reference. This figure indicates that
a second-order rate of convergence has been achieved by
the Poisson solver for Dirichlet boundary conditions at im-
mersed boundaries. The error are slightly lower for the fourth
order difference method than for the second order one.

Flow past circular cylinder

To verify and validate the present immersed boundary treat-
ment for a compressible flow solver, the benchmark flow over
a circular cylinder is firstly simulated at the Reynolds num-
bers of 20 and 40 based on the free-stream velocity and di-
ameter of the cylinder. It is known that steady flow over a
circular cylinder can persist up to Reynolds numbers of about
40. The free-stream Mach number for the simulation is set as
a small number Ma = 0.03 in order to be comparable to the
simulations performed using incompressible solvers. Then,
the unsteady flow over a circular cylinder has been chosen

to verify the proposed IB method at the Reynolds number of
100 and Mach number 0.25.
The computational domain size is 90D×40D where D is the
diameter of the cylinder. The center of the cylinder is lo-
cated at the point (20D,20D) of the coordinate system. The
computational domain is sizeable to reduce the effects of do-
main boundaries and wave reflections form the inlet and out-
let boundaries. It has been observed that those could lead to
a momentous error when computing the lift and drag coef-
ficients. In the present work, the block structured computa-
tional domain has been discretized with non-uniform Carte-
sian grids, where the block corresponding to the cylinder has
a much finer grid spacing of (∆x = ∆y = D/25) at Re = 20
and 40, and grid spacing of (∆x = ∆y = D/50) at Re = 100.
At these grid resolutions, the lift and drag coefficients are
sufficiently converged. Sufficient grid resolution around the
cylinder is crucial to obtain the drag and lift coefficients ac-
curately. Additionally, to capture the von Kármán vortex
shedding, the wake region needs to be resolved properly.
The grid spacing ∆x and ∆y was smoothly stretched from
(∆x = ∆y = D/25 at Re = 20 and 40, and ∆x = ∆y = D/50
for Re=100 to ∆x = ∆y = D/2 near the inflow, outflow, top
and bottom boundaries. Symmetry boundary conditions are
applied on the top and bottom of the computational domain.
At the inflow, the velocities in the x- and y-directions are im-
posed using a uniform inlet profile normal to the boundary,
u(x = 0, t) = U∞ and v = 0. In addition, the inlet tempera-
ture is set to T = T0 = 310 K. The outlet pressure is set to
atmospheric pressure, i.e., p′ = p− p0 = p− patm = 0 Pa.
The drag and lift coefficients are defined as CD = FD

1
2 ρ∞U2

∞D
and

CL =
FL

1
2 ρ∞U2

∞D
, respectively, where FD and FL are the drag and

lift forces. The total force on the cylinder is given by the sum
of the pressure and viscous force integrated over the cylin-
der surface F = −

∮
pB · n ds +

∮
τB · n ds where n is the

outer unit vector normal to the cylinder, and pB and τB are
pressure and the viscous stress tensor on the body surface,
respectively. These quantities are based on the evaluation of
surface pressure and viscous stress. The procedure used to
compute these surface quantities needs some explanation. In
the current solver, four nodes surrounding a body-intercept
point corresponding to the first layer of ghost points are iden-
tified and then a bilinear interpolation is used to estimate the
pressure and viscous stress tensor at the body intercept. The
viscous stress at the involved ghost points and fluid points
are computed in a straightforward manner by using our high
order method.
Figs. 6 - 9 show streamlines and vorticity contours for Re =
20 and Re = 40, respectively. The geometrical properties of
the vortices behind the cylinder are schematically illustrated
in Fig. 10 (Canuto and Taira, 2015). The quantitative com-
parison of these parameters as well as the drag coefficient
with available numerical and experimental results are given
in Table 1.
Fig. 11 presents the instantaneous spanwise vorticity ωz con-
tours for Re = 100 indicating the presence of the von Kár-
mán vortex street. The vortex shedding leads to time-varying
lift and drag forces until they reach to a periodic oscillatory
form. The Strouhal number St = f D

U∞
, where f is the vortex

sheding frequency, is computed from the temporal variation
of the lift coefficient. Due to the unsteadiness of the flow, the
comparison of the average values of the lift and drag coeffi-
cients as well as the amplitude of the sinusoidal variation in
time of the lift and drag coefficients is central. The results for
the time-averaged lift and drag coefficients, the amplitude of
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Figure 6: Streamlines for computed flow past a circular cylinder at
Re = 20 and Ma = 0.03.

Figure 7: Vorticity contours for computed flow past a circular
cylinder at Re = 20 and Ma = 0.03.
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Figure 8: Streamlines for computed flow past a circular cylinder at
Re = 40 and Ma = 0.03.

Figure 9: Vorticity contours for computed flow past a circular
cylinder at Re = 40 and Ma = 0.03.

Table 1: Comparison of computed data with available numerical
and experimental data at Re = 20 and Re = 40. (Exp.)
indicates the experimental results.

Re = 20
Ma L a b θ(deg) CD

(Tritton, 1959)(Exp.) - - - - - 2.09
(Dennis and Chang, 1970) 0 0.94 - - 43.7 2.05

(Coutanceau and Bouard, 1977)(Exp.) - 0.93 0.33 0.46 45.0 -
(Fornberg, 1980) 0 0.91 - - 45.7 2.0

(Linnick and Fasel, 2003) 0 0.93 0.36 0.43 43.5 2.06
(De Palma et al., 2006) 0.03 0.93 0.36 0.43 44.6 2.05

(Canuto and Taira, 2015) 0 0.92 0.36 0.42 43.7 2.07
Present study 0.03 0.93 0.36 0.43 43.9 2.05

Re = 40
Ma L a b θ(deg) CD

(Tritton, 1959)(Exp.) - - - - - 1.59
(Dennis and Chang, 1970) 0 2.35 - - 53.8 1.52

(Coutanceau and Bouard, 1977)(Exp.) - 2.13 0.76 0.59 53.8 -
(Fornberg, 1980) 0 2.24 - - 55.6 1.50

(Linnick and Fasel, 2003) 0 2.28 0.72 0.60 53.6 1.52
(De Palma et al., 2006) 0.03 2.28 0.72 0.60 53.8 1.55

(Canuto and Taira, 2015) 0 2.24 0.72 0.59 53.7 1.54
Present study 0.03 2.22 0.72 0.59 53.1 1.52

their changes as well as the Strouhal number of the present
study are compared to published results in Table 2. Table 1
and 2 confirm that for the present study all results compare
very well with results reported in the literature.

Figure 10: Definitions of the relevant geometrical parameters of
the symmetric deperation region behind the cylinder
(Canuto and Taira, 2015).

Figure 11: Vorticity contours for computed flow past a circular
cylinder at Re = 100 and Ma = 0.25



Table 2: Comparison of computed data with available numerical
and experimental data at Re = 100.

Re = 100
Ma St CD CL

(Berger and Wille, 1972) 0 0.16-0.17 - -
(Liu et al., 1998) 0 0.165 1.35 ±0.012 ±0.339

(Linnick and Fasel, 2003) 0 0.166 1.34±0.009 ±0.333
(Mittal et al., 2008) 0 - 1.35 -

(Karagiozis et al., 2010) 0.25 0.168 1.336 ±0.319
(Canuto and Taira, 2015) 0.25 0.163 1.378 ±0.325

Present study 0.25 0.1667 1.33±0.013 ±0.323

CONCLUSION

In this paper, we have combined highly stable high-order
SBP operators with an immersed boundary method which
permits us to use Cartesian grids for arbitrary geometries for
solving the compressible Navier–Stokes equations accurately
and efficiently. SBP operators which are 6th order accurate
in the interior and 3rd order accurate near the boundaries is
employed. To achieve high accuracy and easy paralleliza-
tion, the 4th order explicit Runge–Kutta method is applied.
The methodology is applied to compute steady and unsteady
flow problems to demonstrate its versatility as well as its ac-
curacy. The flow past a circular cylinder for moderate values
of Reynolds number and Mach number is assessed. A good
agreement with available experimental and numerical results
is achieved.
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APPENDIX A. ENERGY METHOD

To demonstrate the energy method, we apply the procedure
to a simplified PDE, that is, rather than analysing the full
Navier–Stokes equations in this section, we only focus on
the 1D convection–diffusion equation as a model equation.

ut +aux = buxx, 0≤ x≤ 1 t ≥ 0
u(x,0) = f (x)
u(0, t) = u(1, t) = g(t) = 0

(25)

where a and b are assumed to be constant and positive, and u
is the dependent variable. The L2 scalar product for two real
functions v and w is defined by

(v,w) =
∫ 1

0 v(x)w(x)dx (26)

which then defines the L2 norm of the continuous solution at
time t and energy E(t) = ‖u(·, t)‖2 = (u,u). Using integra-
tion by parts (v,wx) = v(1, t)w(1, t)− v(0, t)w(0, t)− (vx,w),
the energy method leads to

dE
dt = d

dt ‖u(·, t)‖
2 = (ut ,u)+(u,ut)

= (−aux +buxx,u)+(u,−aux +buxx)
=−a[u2(1, t)−u2(0, t)]+2b[u(1, t)ux(1, t)−u(0, t)ux(0, t)]
−2b(ux,ux)≤ au2(0, t)+2b[u(1, t)ux(1, t)−u(0, t)ux(0, t)]
= 0

(27)
which yields a non growing solution, i.e.
E(t)≤ E(0) = ‖ f (x)‖2. Thus, the energy is bounded
by the initial condition.

APPENDIX B. SUMMATION BY PARTS OPERATORS

(Khalili et al., 2016)
The SBP operators are constructed to guarantee a discrete
energy estimate similar to the continuous energy estimate
above.

ut +aux = buxx, 0≤ x≤ 1 t ≥ 0
u(x,0) = f (x)
u(0, t) = u(1, t) = g(t) = 0

(28)

where a and b are assumed to be constant and positive, and u
is the dependent variable.
The basis of getting such an energy estimate is to satisfy in-
tegration by parts in the discrete sense called Summation–
By–Parts (SBP) property (Gustafsson, 2008; Svärd and
Nordström, 2014). To outline this technique for model
problem (28), we consider u j = u j(t) the numerical so-
lution of the convection–diffusion equation at grid point
x j = jh, j = 0, ...,N, with grid spacing h = 1

N . The solution
vector containing the solution at the discrete grid points is
u = [u0(t),u1(t), ...,uN(t)]T . Using a difference operator Q
approximating the first derivative in space, the semi-discrete
form of the model equation can be expressed as

du
dt =−aQu+bQQu, u j(0) = f (x j) (29)

The discrete scalar product and corresponding norm and en-
ergy can be defined by

(u,v)h = huT Hv,
Eh(t) = ‖u‖2

h = (u,u)h
(30)

where H is a diagonal and positive definite matrix defined
by H = diag(HL, I,HR). The SBP property is satisfied by the
difference operator Q, if

(u,Qv)h = uNvN−u0v0− (Qu,v)h (31)

or if Q can be written on the form hQ = H−1P for P satisfy-
ing

P+PT = EN−E0 = diag(−1,0, ...,0,1) (32)

where E0 = diag(1,0, ...,0) and EN = diag(0,0, ...,1). Using
the semi–discrete equation 29, the energy estimate for the
semi–discrete problem can be obtained as

dE
dt = d

dt ‖u(·, t)‖
2 = (ut ,u)h +(u,ut)h

= (−aQu+bQQu,u)h +(u,−aQu+bQQu)h
=−a[u2

N−u2
0]+2b[uN(Qu)N−u0(Qu)0]

−2b(Qu,Qu)h≤ au2
0 +2b[uN(Qu)N−u0(Qu)0].

(33)

We would get non-growing energy in time if the homoge-
neous boundary conditions could directly be imposed in (33).
However, this will change the difference operator Q such that
its SBP property might be lost. To avoid this problem, bound-
ary conditions are weakly imposed by the simultaneous ap-
proximation term (SAT) technique (Gustafsson, 2008). A
first derivative SBP operator with diagonal quadrature ma-
trix H in 30 is a O(h2s) accurate central difference operator
which is O(hs) accurate at and near boundaries s = 1,2,3.
Such an SBP operator is globally O(hs+1) accurate.

APPENDIX C. REFORMULATION OF COEFFI-
CIENTS

The four unknown coefficients Ci, i = 1, ..,4 can be deter-
mined using values of the four variables surrounding the im-
age point. It can be expressed as

C = V−1{φ} (34)



where V is the Vandermonde matrix corresponding to the bi-
linear interpolation scheme for four surrounding nodes. The
value at the image point can be expressed as

φIP =
[

1 xIP yIP xIPyIP
] C1

C2
C3
C4

 (35)

The vector in bracket can be expressed as

VIP =
[

1 xIP yIP xIPyIP
]
=

4

∑
i=1

αiVi (36)

where Vi is the ith row of V and αi depends on the coordinates
of the image point and the four surrounding nodes.
Thereby, the matrix equation for α can be written as

 1
xIP
yIP

xIPyIP

=

 1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4

x1y1 x2y2 x3y3 x4y4


 α1

α2
α3
α4


(37)

By rearranging, α can be obtained as

α = V−T VT
IP. (38)

Thus, the value at the image point can be expressed as

φIP = φ
T V−T VT

IP (39)

Inserting the result obtained in Eq. (38), the value at the
image point can obtained be as

φIP =
4

∑
i=1

αiφi (40)
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