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Abstract

A long-lived software project for using the advantages of a computer in
modelling of physical-chemical-biological processes has been under develop-
ment by my supervisor Prof Heinz A. Preisig. The software is designed to
assist the modeller in making consistent and structurally solvable models,
reducing the time frame and the amount of random mistakes. The model
is built as a basic graph in the bottom, with subsequent layering of infor-
mation onto the graph, describing its physical nature. The finished models
is meant to have automatic code generation for existing solvers, so that it
can be used for simulation, system identification or for control optimization
problems.

The scope of the project has been to assist Prof Presig with software de-
sign and overall strategy. The biggest concepts faced were on how to deal
with phase change in models, what physical descriptions should be avail-
able for the graph and how these physical descriptions are best structured
to prevent infeasible systems. The current version of the computer-aided
modelling project is written in Python, using the graphical user interface
environment PyQt4.

1



2



3

Acknowledgments

I would like to thank my parents and siblings for an unwavering support
throughout my studies. My partner Ruth has also earned my deepest grat-
itude. She is my anchor.

Thank you, Prof Heinz A. Preisig, for every single discussion we have had.
The academically themed talks were insightful, but the personal conversa-
tions are the ones that I will remember when I look back at my life as a
student.



4



Contents

1 Introduction 1

1.1 Goal and scope . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Software basis 3

2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Software overview . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Nodes and connections . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8.1 Token as energy . . . . . . . . . . . . . . . . . . . . . 13

2.9 Attributes from a tree structure . . . . . . . . . . . . . . . . . 14
2.10 Attribute as patterns . . . . . . . . . . . . . . . . . . . . . . . 15

2.10.1 Proposed attribute pattern generators . . . . . . . . . 16
2.11 Phase and species . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.12.1 Connection rules . . . . . . . . . . . . . . . . . . . . . 18
2.12.2 Rules for graph editor . . . . . . . . . . . . . . . . . . 18

2.13 Treatment of phase boundary . . . . . . . . . . . . . . . . . . 19
2.13.1 Phase boundary as lumped capacity . . . . . . . . . . 19

2.13.2 Event-dynamic system . . . . . . . . . . . . . . . . . . 19

2.13.3 Boundary with capacity . . . . . . . . . . . . . . . . . 20
2.13.4 Handling undeclared phase transition . . . . . . . . . 22

2.14 Software structure . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14.1 Levels of Design . . . . . . . . . . . . . . . . . . . . . 23

2.14.2 Division into subsystems . . . . . . . . . . . . . . . . . 23

i



CONTENTS 1

2.14.3 Modulization . . . . . . . . . . . . . . . . . . . . . . . 25
2.14.4 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.14.5 Equations . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Implementation and discussion 29

3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Modelling example . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Directed graph . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Species flow matrix . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Balance equations . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Transport . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.5 Transposition . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.6 Non-modelled reactions . . . . . . . . . . . . . . . . . 42
3.2.7 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.8 Equations and variables . . . . . . . . . . . . . . . . . 45

4 Conclusions and future work 47

A Thermodynamic basics 51

A.1 Degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Conjugate pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.3 Legendre transformation . . . . . . . . . . . . . . . . . . . . . 52
A.4 Maxwell relations . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.5 Phase equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 53

B Newton’s method 55

C Pydot 57

C.1 Attribute tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.2 Bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D Installation procedure 61

D.1 Pydot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
D.2 Py2exe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



2 CONTENTS



List of Figures

2.1 DiagramModelling . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Graph of a mass transfer system . . . . . . . . . . . . . . . . 5

2.3 Architecture for the software ProcessModeller. . . . . . . . . . 6

2.4 Token attributes influence neighbouring units. . . . . . . . . . 12

2.5 Token attributes influence neighbouring units. . . . . . . . . . 12

2.6 Token attributes influence neighbouring units. . . . . . . . . . 13

2.7 Token attributes influence neighbouring units. . . . . . . . . . 13

2.8 Gibbs interface . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Phase boundary as lumped capacity. . . . . . . . . . . . . . . 19

2.10 Method for establishing a phase boundary. . . . . . . . . . . . 21

2.11 Boundary with capacity. . . . . . . . . . . . . . . . . . . . . . 21

2.12 Liquid capacity with two mass connections. . . . . . . . . . . 22

2.13 New phase in computation time . . . . . . . . . . . . . . . . . 22

2.14 Subsystems with anarchic hierarchy . . . . . . . . . . . . . . 24

2.15 Subsystems with structured hierarchy . . . . . . . . . . . . . 25

2.16 Software architecture . . . . . . . . . . . . . . . . . . . . . . . 26

2.17 Deleting equations from editor. . . . . . . . . . . . . . . . . . 27

3.1 Old editor for attribute tree structure. . . . . . . . . . . . . . 29

3.2 Model of a flash tank . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Graph modeller. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Editor for attribute pattern generators. . . . . . . . . . . . . 33

3.5 Basic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Attributes on graph . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Tokens in graph . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Reactions in graph . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Phase transition in graph . . . . . . . . . . . . . . . . . . . . 35

3.10 Equation editor. . . . . . . . . . . . . . . . . . . . . . . . . . 39

B.1 Newton-Raphson method for one variable . . . . . . . . . . . 55

3



4 LIST OF FIGURES

D.1 Attribute tree visualized using Pydot. . . . . . . . . . . . . . 62
D.2 Bipartite graph showing relationships between equations and

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Tables

2.1 Attributes for giving context to the basic graph. . . . . . . . 10
2.2 Attributes with values. . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Propagation rules for tokens. . . . . . . . . . . . . . . . . . . 14

3.1 Primary states . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Secondary states . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



6 LIST OF TABLES

Nomenclature

A Helmholtz energy, (J)
G Gibbs energy, (J)
U Internal energy, (J)
H Enthalpy, (J)
h Molar enthalpy, (J/mole)
S Entropy, (J/K)
N Mole number, (mole)
k Heat transfer coefficient, (W/(m2K))
p Pressure, (Pa)
C Number of components, (-)
P Number of phases, (-)
µ Chemical potential, (J/mole)
β Valve constant, (-)
D Diffusion coefficient, (m2/s)
V Volume, (m3)
cp Heat capacity at constant pressure, (J/K)
T Temperature, (K)



Chapter 1

Introduction

1.1 Goal and scope

Process modelling is often a time-consuming and arduous task. It is prone
to inconsistencies and accidental errors. There is much to gain from having
a modelling tool to automate what can be automated, enforcing consistency
in the model while maintaining richness in modelling options.

The tool described in this report is meant to ensure completeness and cor-
rectness in the process of modelling. It is designed around the concept of
ontology, which can be understood as a formal, explicit specification of a
shared conceptualization. The finished software is meant to create models
for process simulation, system identification or optimal control solving.

This report will introduce the concept and functions of the modelling tool,
as well as some theoretical basis.

1.2 Problem description

The objective of the project is to generate an ontology to be used in con-
nection with the process modeller developed by Prof Preisig. The project
involves structuring of the knowledge associated with generating models for
chemical and related processes. Further, software objects are being defined
to capture the knowledge, being first used to define the ontology, for which
a wizard-class editor is to be adapted accordingly. The ontology is then
used in configuring and utilization of the modelling tool.

1



2 CHAPTER 1. INTRODUCTION

1.3 Outline of thesis

Chapter 2 presents the program and the basis upon which its modules are
built. The directed graph is explained and the way it is given context by use
of attributes. The issue of phase transition in a software modelling context
is also discussed. Chapter 3 presents the software interfaces and gives an
example on how the software would be used in practice. Conclusion and
future work is summarized in chapter 4.



Chapter 2

Software basis

2.1 Modelling

The approach to creating a complete description of a model is best shown
in figure 2.1 [6].

The variables explained:

� x0: initial conditions of primary states

� v(x, θ): secondary states are computed from primary state variables
and parameters

� x̃(v): transposition is dependent on the state and parameters

� x̂(v, θ): transport equations from secondary state variables and pa-
rameters

� ẋ(x̂, x̃): state time differential from flows and transpositions

� x =
∫ t+dt

t
ẋ: integrate state time differential for a new primary state

value

The procedure of modelling starts with a directed graph that shows ca-
pacities and how they interact. The graph consists of nodes and connection,
and these units are coloured with certain attributes. This graph gives rise
to the balance equations. For a mass system:

ṅs = Fn

s
n̂s +RT

s
ñs (2.1)

3



4 CHAPTER 2. SOFTWARE BASIS

Figure 2.1: DiagramModelling

Here, the time differential of component mass in system s (ṅs) is equal
to the sum of flows to and from the system (F n

s
n̂s) and the transposition

of species inside the system (NT

s
ñs). F

n

s
is the directionality matrix for the

species in the graph, n̂s is the flow rate of the species, NT

s
is the stoichio-

metric matrix and ñs is the kinetics of species transposition.

The next step is determining the flow rate n̂s and transposition rate ñs.
They usually depend on some conjugate variable of the energy function,
such as temperature, pressure or chemical potential. These variables are
called secondary state variables, because they in turn depend on the pri-
mary state variables. The primary state variables is most likely, but not
necessarily, defined in the Kalman sense, meaning ”the minimal informa-
tion required to compute the future given the current input.” [8]. For all
part of this thesis, the primary state variables are component mass and in-
ternal energy.

The secondary state variables are expressed as functions of other secondary
state variables, primary state variables, and parameters. The final link is
the one between the primary state variables and the balance equations [7].
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Figure 2.2: Graph of a mass transfer system

Let us consider a simple set of nodes and connections. The figure 2.1
shows the concept of systems (nodes) and how they interact. The nodes are
containers of an extensive quantity, in this case mass, and the connections
are mathematical boundaries in which the nodes transport their extensive
quantities. The graph gives rise to the incidence matrix.

2.2 Incidence matrix

An incidence matrix is matrix that shows the connection between two dif-
ferent types of objects. If an element of row-indexed object A is connected
to an element of column-indexed object B, the intersection of the column
and row is 1. In a modelling context, the incidence matrix is row-indexed
with nodes and column-indexed with arcs.

The model 2.1 has the incidence matrix:









−1 0 −1 0
1 −1 0 0
0 1 1 −1
0 0 0 1









(2.2)

Reading from the first column (node 1), it has non-zero elements in the first
and third column, indicating that node 1 is connected to connection 1 and 3.
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2.3 Software overview

The modelling software is made of the following parts:

� Graph editor and appearance+automaton editor

� Attributes and attribute editor

� Rules and rules editor

� Equations and equation editor

The graphic in figure 2.16 shows the parts and their information flow
(graphic from Ontology approach to model construction by H.A. Preisig and
Tore H. Warberg (2012))

Figure 2.3: Architecture for the software ProcessModeller.
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2.4 Ontology

The Greek word ontology comes from the word onto, ”being, that which is”
and logia, ”study,theory”. One definition popular in information science is:
”An ontology is a formal, explicit specification of a shared conceptualisa-
tion. (Gruber, 1993). A more simplified explanation proposed by Fredrik
Arvidsson and Annika Flycht-Eriksson is: ”An ontology provide a shared
vocabulary, which can be used to model a domain, that is, the type of ob-
jects and/or concepts that exist, and their properties and relations” [1]. In
the specific case of the modelling tool, the ontology is explained as the in-
formation framework that is needed to give meaning to the basic graph.

The process modelling tool is based on an ontology approach in the fact
that the graph editor is decoupled from what gives the graph meaning.
Since the basic graph structures (nodes and connections) are so fundamen-
tal, they can be used for electric circuit modelling, information flow and
much else. A super-user can add to or alter the existing attribute library
(attributes is the data that gives context to the graph), or edit the rules
that the attributes adhere by. In computer-science terms, this is like being
able to edit the class itself (the ontology) to be able to create a different
type of object (the instantiated model).
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2.5 Nodes and connections

In this report, nodes and connections are collectively termed units.

Nodes

The model in its most fundamental form consists of nodes and arcs. Nodes
are considered to be indivisible objects that may hold mass, energy or in-
formation. The entirety of any extensive property exists inside nodes.

Connections

A connection, or arc, represents interactions between nodes. It is defined
as a transport of extensive quantities across a mathematical boundary that
couples two systems together. This means that even though connections
are transporting units, they don’t actually hold any of the quantity that is
transported.

The connection has a head node and a tail node, or is bi-directional (no
head nor tail). If ”physical”, arcs carry transport equations, either in mass
or energy. Arcs can also represent information flow, in which case there is
no transport equation. A connections driving force is the potential created
by a deviation between the head and tail node of an intensive property. [5]
Examples of intensive quantities that create boundary potential are:

� Pressure: Drives mass flow through convective transport

� Chemical potential: Drives mass flow by diffusion

� Temperature: Driving force for heat transport

� Electrical potential: Electrical work

Mass flow through a connection also applies a transport of energy, in the
form of internal, kinetic and potential energy, in addition to the pressure-
volume work needed to displace the surroundings. The internal energy is
the energy required to create the mass in its thermodynamic state from a
vacuum, standing still and being outside any force fields. Kinetic energy
constitutes the momentum gained from motion of the mass as a whole,
and potential energy is the energy that comes from the mass being in non-
equilibrium to a force field (e.g. gravity). Since mass transport implies
energy transport, this means that both systems adjoined by the boundary
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must be considered to be an energy capacity, albeit potentially a negligi-
ble capacity, unless energy as a whole is not in the scope of the modelling
process. In other words, if a system has mass dynamics, it must also have
energy dynamics. Energy dynamics, however, does not imply mass dynam-
ics.
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2.6 Attributes

Nodes and connections need a context to give it meaning. Nodes and arcs
in itself only give information about the network structure of the model.
In order to use it, one must give an explanation as to what the nodes and
connections represent, and what is in them. This is where the concept of
attributes come in. For physical-chemical-biological systems, reasonable at-
tributes for describing a model can be found in table 2.1. The attributes
with values are shown in table 2.6.

Table 2.1: Attributes for giving context to the basic graph.
Attribute Description
Distinction is the unit a system (node) or a link (connection).
Nature is a node or connection of physical nature or is it a pure information unit?
Directionality Does the flow in a connection go one way or both ways?
Dynamics can we make any assumptions on the capacity of the node?
Distribution lumped system or distributed in any of the three euclidean space dimensions?
State is there energy, mass or information (or a combination of them) in the unit?
Phase What phase is a node/connection in?
species are there any species in the node/connection?

Table 2.2: Attributes with values.
Attribute Values
distinction node | dynamic
system constant | dynamic | event | -
directionality unidirectional | bidirectional | -
nature physical | information
phase liquid | solid | gas | fluid | - | ?
morphology distrubuted | lumped
state mass | energy
species *

There are two goals that should be aspired for setting up the attributes
and the structure that holds the attributes. Firstly, it needs to give suffi-
cient information about the basic nature of the units in the model. Secondly,
the structure of attribute combinations should only reflect reasonable com-
binations. An information node cannot have mass in it. It would give no
meaning to use the dynamics attribute for connections. An important ob-
jective when designing the attribute structure is to minimize the amount of
higher-level rules necessary to ensure feasible models.
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2.7 Dynamics

The attribute dynamics is intimately related to the node. The value dy-
namic represents a system where the extensive properties (primary state
variables) change when there is transport from the system, and both the
intensive and extensive properties changes when transport comes in to it.

Event-dynamic nodes have no capacity, so there is no accumulation of mass
or energy in the node. This reduces its differential algebraic equation (DAE)
to an algebraic equation because the primary states does not change from
in- and outflow (because they are always zero). Event-dynamic nodes can
carry components of different phases. This enables them to be used as phase
boundaries.

A reservoir is defined as a node that has a constant state, i.e. it has no
dynamics. Their state differentials are not included in the equation set, but
rather their intensive physical properties such as temperature, pressure and
component concentration. These properties usually show up in the trans-
port equations in and out of the reservoir.

2.8 Tokens

At this point it is helpful to introduce a concept termed tokens. When
looking at the attributes that can be assigned to a units, one sees that some
of them can influence neighbouring units. This is the case for the state,
phase and species attribute. If a connection has the attribute state with
value mass, then the same must apply for the head and tail node, and this
attribute value should be added if it’s not there already. A token is a col-
lection of the attributes which describes the extensive quantity that is held
and transported within a unit.

Tokens have some interdependencies. If the token mass exists in a sys-
tem, then there should be a mass balance over that system. But there is
now also energy in that system, since mass has enthalpy (the internal en-
ergy of the mass in addition to the pressure-volume work done by the mass).
Therefore, when a system receives a mass token, it should also receive an
energy token and a momentum token if energy is considered in the model
scope. Each token gives a differential equation for one of the primary states.
A mass token gives a differential equation in component mass and an energy
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Figure 2.4: Token attributes influence neighbouring units.

token gives a differential equation for internal energy.

Figure 2.5-2.7 shows token copy from Node A to Connection 1, and again
from Connection 1 to Node B. The transitions are fired by the algorithm if
specific rules are met.

Figure 2.5: Token attributes influence neighbouring units.

Token propagation from node:

if nature in Connection 1 is physical
AND token is not in Connection 1
AND ((head of Connection 1 is not Node A) OR (Connection 1 is bidi-
rectional)) then

Token → Connection 1
end if

Token propagation from connection:

if nature in Node B is physical then

if token is not in Node B then

Token → Node B
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Figure 2.6: Token attributes influence neighbouring units.

Figure 2.7: Token attributes influence neighbouring units.

end if

if token is not in Node A then

Token → Node A
end if

end if

Tokens are propagated as shown in table 2.3 [8]. Here t is mass and
θ is energy. The first frame shows that a token injection in a connection
will trigger the copy of the token to the connections nodes. The second and
thirds frame shows mass and energy tokens spreading through unidirectional
and bidirectional nodes respectively.

2.8.1 Token as energy

An energy token in a node represents the internal energy of the node. While
in transport, the energy token can be in the form of conductive heat, radi-
ation, work or similar. The head node receives the energy token and there
it will be added to an internal energy balance. When mass-less energy is
transported from the node to another node, the token in the connection
cannot be considered internal energy. If the form of energy is to be repre-
sented in the node, the energy token would have to be transformed. First
the token would be internal energy, then it would have another form in the
connection (conductive heat, radiation, work), and back to internal energy
again in the receiving node.



14 CHAPTER 2. SOFTWARE BASIS

Table 2.3: Propagation rules for tokens.
state node arc node rule

Initialise

before - t -
after t t t 0

before - θ -
after θ θ θ 0

unidirectional

before t,θ t t
after t,θ t t,θ 1

before t t t,θ
after t t t,θ -

bidirectional

before t,θ t t
after t,θ t t,θ 1

before t t t,θ
after t,θ t t,θ 1

This method of keeping the form of energy in the attribute definition space
requires rules to maintain. After deliberation with supervisor, the best place
to handle the ambiguity in energy form is in the equation editor. By this
logic, the attributes only presents the picture ”this is energy transfer”, not
specifying the form off energy. This is done when the user chooses the en-
ergy transport equation. The equations should then have a tag, indicating
if this is an equation typical for conduction, radiation, work or otherwise.

2.9 Attributes from a tree structure

The first thought out way of structuring attribute definitions is to set ar-
range them in a tree structure. The root is a dictionary with key=”graph”,
and the value was a list. The list contains other lists. Each list is unique
and always contains the same information, regardless of where it is being
used. The end branches of the tree structure represent a full definition of
the items, in this case nodes and arcs. All branches in the tree structure is
unique and together they form the full spectre of attribute permutations.

The node and arc types defined by the attribute tree seems to work, up
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until the phase boundary is determined to be an event-dynamic node carry-
ing two phases. The list describing the phases in the tree structure always
points to some other list. If an event-dynamic node is to be defined with
two phases, the phase list will create an infinite loop, since all its values will
point back to the phase list.

phase = [liquid — solid — gas — used-defined — *], choose liquid
liquid = [phase], choose phase
phase = [liquid — solid — gas — used-defined — *], choose solid. Now we
have the two phases that is needed.
solid = [phase], must choose phase. This is an infinite loop.

One could define a second phase attribute, say phase2, which list elements
point to the original phase list. Then the sequence for defining two phases
for the event-dynamic node would be:

phase2 = [liquid2 — solid2 — gas2 — used-defined2 — *], choose liquid
liquid2 = [phase], choose phase
phase = [liquid — solid — gas — used-defined — *], choose solid. Now we
have the two phases that is needed.
solid = [species], Next attribute, in this case species.

The elements in the phase2 attribute list must be different from the ele-
ments of the phase list. This solution is unintuitive and messy, as it adds
at least four new lists (phase2, liquid2, solid2, gas2). Additionally, any new
user-defined phases must be added two times, once to each phase list. This
requires higher-level rules to implement.

2.10 Attribute as patterns

As described earlier, using the attribute tree is a challenge when it comes
to event-dynamic systems having two phases, because of the following:

phase = [liquid]
liquid = [-]

The solution that is implemented in the software is as follows: You start
with defining a list consisting of the list name, for example phase, and prop-
erty values, such as [liquid | solid | gas | fluid | - | ?]. The list would then
look like this: phase = [liquid | solid | gas | - | *]). Here ”-” is undefined
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and * is user defined.

A unit keeps more information about itself than just the phase, so one
would need a list of these lists to define the unit. This list of possible per-
mutations is called a pattern generator in the ontology. If an instance of
the pattern generator is made in which a value or a set of values is chosen
among the alternatives, this instance is then called a pattern. A pattern
contains the information connected to an object. It is fully specified, but
it can also be edited, in which case the connected objects might also be
affected.

If there were to be only one pattern generator containing all possible prop-
erties, it would imply the existence of many higher-level rules that asserts
certain conditions. For example, if the following pattern generator was the
only one:

<arc|node><directionality><system><token><phases><state><species*>,

then there would have to be rules that stated:

� If <token> = information, <species*> must be set to ”undefined”.

� If <arc|node> = node, <directionality> is ”undefined.

� etc..

Therefore, a set of possible pattern generators are necessary to minimize
the number of higher-level rules.

2.10.1 Proposed attribute pattern generators

When defining a set of pattern generators, some syntax must be introduced.
The ”+” marker indicates that the value can be edited by the user. When
a bracket is replaced with a value, such as when <nature> is replaced by
physical, this means that <nature> is already specified to be physical and
can have no other value.

Syntax:

<nature>: The choice between physical|information is exclusively calcu-
lated.
+<nature>: The choice is calculated, but can also be edited by the user.
+physical: The choice is user specified and it cannot be edited thereafter.
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physical: The choice for <nature> is calculated and determined to be phys-
ical.

nodes:

+<constant|dynamic>.+physical.+<phase>.mass.+distribution>.+<species*>
+<constant|dynamic>.+physical.+<phase>.energy.+distribution>
+<constant|dynamic>.+physical.+<phase>.entropy.+distribution>
+<constant|dynamic>.+information

+event.+physical.+<phase a>.+<phase b>.mass.+<distribution>.¡species*>
+event.+physical.+<phase a>.+<phase b>.energy.+<distribution>
+event.+physical.+<phase a>.+<phase b>.entropy.+<distribution>
event.+information.+<token>

arcs:

+unidirectional.+physical.+<phase>.+<state.<distribution>.<species*>
+bidirectional.+physical.+<phase>.+<state.<distribution>.<species*>
+unidirectional.information

2.11 Phase and species

There is a way of handling phase transposition described in Westerweele,
2003 [9]. The flow matrix Fn usually does not have any information about
the phase of the species. A species in the liquid phase must be distin-
guishable from the same species in the gaseous phase. The distinction can
be made by treating them like two different species altogether in the flow
matrix. The flow matrix would then use the product of species and phase
instead of only species. For a hypothetical species C, a phase transition of
C would increase the species space by 1, from [C*(old phase)] to [C*(old
phase), C*(new phase)].
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2.12 Rules

Rules facilitate the need for wanted behaviour that does not come from
anywhere else. As an example, the attribute patterns makes sure that a user
cannot define a node that has the unidirectional/bidirectional distinction
attribute that is meant for connections. The attribute patterns do not,
however, dictate what nodes can be connected to each other. Generally, if
a certain behaviour can be accomplished without use of explicit rules, then
that is preferred.

2.12.1 Connection rules

Not allowed:

� An arc cannot have mass node at tail and energy node at head.

� A node that is not event-dynamic cannot have more than one phase.

� A reservoir can not have both incoming and outgoing arcs.

The program will run a check for rule breach after every user action. If
a rule breach is identified, the program reverts to request user action.

2.12.2 Rules for graph editor

The rules can also be regarding interface. These are just a few examples of
what rules should exist for the graph editor.

� If a units nature attribute only has the element information, then
represent the unit with dashed lines. Else (mass,energy,nothing), use
a solid line.

� Different node representations between elements in the dynamics at-
tribute.

� Colour the graph differently when it is deemed inconsistent or incom-
plete.
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V α V α

σ

Figure 2.8: Gibbs interface

2.13 Treatment of phase boundary

There are several different ways of handling the concept of a phase boundary.
The Gibbs model treats the phase boundary as ideally thin (figure 2.8), so
the volume of the boundary is VB = 0, and Vα + Vβ = Vtot. This could
very well be a sufficient assumption for many situations and it should be
possible to create with the software, but it is an over-simplification. In
reality, the interface is a thin stratum in which the physical properties will
vary continuously. [2]. This representation of a phase boundary should also
be possible to create in the model.

2.13.1 Phase boundary as lumped capacity

liquid -> gasliquid gas

Figure 2.9: Phase boundary as lumped capacity.

Let’s first consider the possibility of using a lumped capacity to describe
a phase boundary, visualized in figure 2.9. A phase boundary contains more
than one phase. The definition of a lumped system is a control volume with
uniform intensive properties. A multi-phase system does not have uniform
intensive properties, therefore a lumped system cannot be used as a phase
boundary.

2.13.2 Event-dynamic system

The phase boundary can be defined as an event-dynamic system, i.e. a node
with instantaneous dynamics. Two different phases can reside in this zero
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or negligible capacity node.

The sequential routine for creating a liquid-gas system is shown in figure
2.10. The steps are:

1. Nodes are established

2. Connection between the nodes

3. The middle node is set to zero capacity by setting the attribute dy-
namics to event-dynamic

4. The phase attribute is set to liquid. The phase will spread to the head
and tail node because of the rule set.

5. The boundary already has a phase liquid. The second phase is set to
gas.

6. The second phase is spread to the right node because of the rule set.

2.13.3 Boundary with capacity

For the cases where a boundary must be treated like a three-dimensional
space that can hold a capacity, the software needs to be able to facilitate
this. One way to do it is to introduce two (or more) capacity nodes on each
side of the event-dynamic node, as shown in figure 2.11. These capacity
nodes can be used to include the continuous change of physical properties
over the phase boundary.
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Figure 2.10: Method for establishing a phase boundary.

gasliquid gas

liquid -> gas

liquid

Figure 2.11: Boundary with capacity.



22 CHAPTER 2. SOFTWARE BASIS

Liquid

Figure 2.12: Liquid capacity with two mass connections.

Figure 2.13: The liquid capacity becomes a two-phase system in computa-
tion time.

2.13.4 Handling undeclared phase transition

When a model is made and ready for computational work, each physical
system has a phase assigned to it. In figure 2.12, a system has a liquid
phase.

If the intensive properties in a system changes, so that a species would be
in a different phase than the one specifies, the program can handle this au-
tomatically by creating a new node and a boundary (event-dynamic node).
The new system is then connected to the existing one with bidirectional
arcs. Figure 2.13 shows a new system with gas phase. Note that the gas is
not transported anywhere but back into the liquid phase.
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2.14 Software structure

Software architecture is something that should be carefully considered when
working on big projects. A big software project is usually made of separate
parts that are designed to be as independent of each other as possible.
Sometimes some parts also have a stand-alone editor feature in the places
where it is useful.

2.14.1 Levels of Design

When starting a new software project, it can be tempting for a beginner to
skip the design process. Its a common mistake to start writing classes and
routines before a firm overview of the project is established. This can lead
to poor structure, redundant code and a lot of time spent on rewriting.

A developer should take design into consideration in all levels of the soft-
ware system. According to Code Complete (McConnell, 2004) [4], the levels
are:

1. Software system: What is the wanted functionality for the software
system?

2. Division into subsystems/packages: What subsystems can I divide the
software into? How should these subsystems communicate with each
other?

3. Division into classes within packages: What classes seems natural to
define? How do they relate to the rest of the system?

4. Division into data and routines within classes: Are the data and rou-
tines consistent within each class?

5. Internal routine design: What algorithm is best suited for doing what
is supposed to be done by the routine?

The most challenging part of software design is the third point, dividing
the program into subsystems.

2.14.2 Division into subsystems

Imagine a request for a piece of software that could scour statistical data
from the web, and represent this data in a 3D environment. The natural
thing to do is to identify the canonical subsystems. An example is shown
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Figure 2.14: Subsystems with anarchic hierarchy

in figure 2.14.2.

The readers attention is probably on how the subsystems are linked in
terms of communication. The figure shows an anarchic structure, which is
not good for several reasons:

� A developer working on one subsystem probably needs to know some-
thing about the other subsystems it is connected to.

� The subsystems cannot easily be copied into different software projects
because of all of its dependencies.

� If one wants to replace a subsystem, it could have an impact on many
other subsystems.

By introducing structure in the way subsystems communicate, they be-
come more portable, easier to maintain and more comprehensible for other
developers. Allow communication between subsystems on a need to know
basis-and it had better be a good reason. [4]

The computer-aided modelling software has a strict communication hi-
erarchy between its subsystems. It is sequential in many parts, in that
one subsystem inherits objects from previous ones. This structure is called
context free, and is highly modular.



2.14. SOFTWARE STRUCTURE 25

Figure 2.15: Subsystems with structured hierarchy

2.14.3 Modulization

Special focus has been made on separating information handling into com-
partments. The compartments are made so that if a change must be made
in one area of the program, the editing process is confined to as few parts of
the software as possible. As an example, if one needed to have commands
that were specific for one operating system, for example folder management,
it would be a good idea to make a separate module for these operating sys-
tem dependent commands. So that instead of doing a Windows-specific
procedure everywhere in the code, one could do a call to the module that
would then do the procedure. In such a case, porting the program to a
different operating system would not require searching the entire code for
these procedures, only require editing in that particular module.

2.14.4 Attributes

Because of this modular way of designing the way attributes are handled,
completely new phenomena can be incorporated into the ontology very eas-
ily. If a user wished to expand the scope of the model to include electrical
charge build-up in capacity boundaries, he could add attributes to the event-
dynamic system to facilitate for this in his models.

2.14.5 Equations

This module contains equations that the user can choose among when con-
structing a model. It contains secondary states equations, transport equa-
tions, reaction kinetic equations and parameters. Equations can be added,
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Figure 2.16: Architecture for the software ProcessModeller.

deleted and edited by an the editor. There may be one single or several
different equations for a particular variable. As an example, mass transport
from one node to another could have a range of equations to be chosen from.

Note that the primary state differential equations are not generated here,
as they are automatically generated from the information provided by the
graph. There may also be many distinct sets of equations, depending on
what the model is meant to reflect. In cases where only mass should be
considered as primary state, a new equation set could be generated, omit-
ting all energy equations. in that case, the user is not presented with any
choice regarding energy transfer. The equation editor accepts variables and
equations that are specific for the ontology one wishes to construct. One
can make a simplified ontology that is suited for basic modelling projects,
or a more comprehensive ontology that might require more user input data
from the model.

Deleting variables

When deleting variables, one will have to check if it is located in any of
the equations. Since the variable cannot exist in equations made prior to
it (equations can only use pre-existing variables), only the equations that
were made after the variable have to be checked.
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Figure 2.17: Deleting equations from editor.
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Chapter 3

Implementation and

discussion

3.1 Software

Figure 3.1 was an editor for the old attribute setup, the tree structure. The
structure is itself represented as an expanded pane tree. Attributes could
be added and deleted as branches through the edit option.

Figure 3.1: Old editor for attribute tree structure.

The tree structure editor in figure 3.1 was replaced by an editor for
the new pattern generator attribute structure (figure 3.4). The radio box

29
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define indicates possibility for a user to choose between the attribute values.
The radio box combi allows multiple values to be chosen for that particular
attribute. The attribute token:[mass, energy] is an example of where both
values should be possible in a system.

L

G

F

T

B

B

1  2

3

4

5

2

1

3

Figure 3.2: Model of a flash tank
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3.2 Modelling example

As the modules are still not finalized at the moment of writing this thesis,
the best way to describe the modelling procedure is to do it manually and
explain where the different steps would take place in the software.

Figure 3.2 is a model of a flash tank, coloured with dynamics, state,
phase and morphology. The model also shows a work energy transfer from
liquid to gas phase. In terms of the software, this means that the connection
is state=energy, and that the equation for that particular energy transfer is
chosen to be a work term equation.

The program starts by defining primary states (figure 3.1).

Table 3.1: Primary states

symbol function description

n Component mass
U Internal energy

3.2.1 Directed graph

The graph modelling part is the users interface for making the basic graph
and typing the graph with attributes.The interface is shown in figure 3.3.
The multiple drop-down boxes in the lower left quartile of the window are
used for typing the graph with attribute patterns.

The available attribute patterns generators would have already been cre-
ated using the pattern generator editor shown in figure 3.4.

The sequence for building the graph with attribute patterns is shown in
figure 3.5-3.9.
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Figure 3.3: Graph modeller.

3.2.2 Species flow matrix

The Khatri-Rao product is the matrix formed by a block-by-block Kro-
necker product. The Khatri-Rao product has syntax ⋆, while the Kronecker
product has syntax ⊗.

A ⋆ B =









A11 A12

A21 A22

A31 A32

A41 A42









⋆









B11 B12

B21 B22

B31 B32

B41 B42









=









A11 ⊗B11 A12 ⊗B12

A21 ⊗B21 A22 ⊗B22

A31 ⊗B31 A32 ⊗B32

A41 ⊗B41 A42 ⊗B42









(3.1)

In the mass balance vector equation, one needs the stoichiometric ma-
trix, the flow matrix, the flow rate equations and the transposition rate
equations. The following example shows how to get the species directional-
ity matrix by using the Khatri-Rao product.

The mass flow matrix F is computed directly from the user-generated graph.
There are five mass connections (columns) and three nodes with mass bal-
ance equations. The sources and sinks have attribute dynamics=constant,
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Figure 3.4: Editor for attribute pattern generators.

so they are not included because their mass balance is not consistent:

F =

















1 −1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

















Ss: all species (A, B, C, c)

[

1 1 1 1

]

S1
n: species in node L,

[

1 1 1 0

]

S1
m: species in arc L|F ,

[

1 1 0 0

]
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Figure 3.5: Model consists of nodes and connections. This is the basic
graph, nodes representing feed, liquid bulk, phase boundary, gas bulk, top
sink and waste sink.

Figure 3.6: Attributes are defined for nodes and arcs. Dynamics, phases,
morphology, directionality

Figure 3.7: Energy token placed in some arcs. Species placed in Feed node,
this then propagates the mass token and species to other nodes of the same
phase.
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Figure 3.8: Reaction takes place in Liquid node.

Figure 3.9: Phase transition ”reaction” of component C at the phase bound-
ary. C in gas phase, now named c, is propagate throughout the gas phase
nodes.
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SS1
n,SS

: Diagonalized species in node L,

















1 0 0 0

0 1 0 0

0 0 1 0

















SSS ,S1
m
: Diagonalized species in arc L—F,









1 0 0 0

0 1 0 0









S1,1 = SS1
n,SS

× S′
SS ,S1

m
=

















1 0 0 0

0 1 0 0

0 0 1 0

















×

























1 0

0 1

0 0

0 0

























=

















1 0

0 1

0 0

















S1,1 =

















1 0

0 1

0 0

















, S1,2 =

















1 0 0

0 1 0

0 0 1

















, S1,3 =

















0

0

1

















, S1,4 =

















0

0

0

















, S1,5 =

















0

0

0

















S2,1 =









0 0

0 0









, S2,2 =









0 0 1

0 0 0









, S2,3 =









1

0









, S2,4 =









0

1









, S2,5 =









0

1
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S3,1 =

[

0 0

]

, S3,2 =

[

0 0 0

]

, S3,3 =

[

0

]

, S3,4 =

[

1

]

, S3,5 =

[

1

]

All the diagonalized species matrices are then inserted into a block ma-
trix S.

S =











































1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1











































Taking the Khatri-Rao product of S with the flow matrix F:

S⋆F = Fn











































1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1











































⋆

















1 −1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1
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Fn =











































1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 −1 −1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 −1











































The generated species flow matrix are used in the mass balance equations
and also in the energy balance equations, since mass flow induces enthalpy
change in the system.

3.2.3 Balance equations

The balance equations written out are:

ṅL = n̂F |L − n̂L|B − n̂L|W + VRN
T η̃

L
(3.2a)

ṅB = n̂L|B − n̂B|G + VRN
T η̃

B
(3.2b)

ṅG = n̂B|G − n̂G|D (3.2c)

No potential or kinetic forces (system is not moving): E = U + P + K
= U

U̇L = ĤF |L − ĤL|W − ĤL|B − q̂L|B − ŵL|B (3.3a)

U̇B = ĤL|B + q̂L|B + ŵL|B − ĤB|G − q̂B|G − ŵB|G (3.3b)

U̇G = ĤB|G − q̂B|G − ŵB|G − ĤG|D (3.3c)

3.2.4 Transport

The transport equations are chosen from the ones available from the equa-
tion library. The same goes for secondary state equations and parameters.
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Figure 3.10: Equation editor.

The equation library for the specific ontology is created in the equation ed-
itor, shown in figure 3.10. The physical units are checked on both sides of
the equation to ensure correctness. Algebraic and differential equation can
be made.

Mass transport

For the flash tank example, there is diffusive transport between liquid phase
and boundary, and between boundary and gas phase:

n̂L|B = −DL|B(µB
− µ

L
) (3.4a)

n̂B|G = −DB|G(µG
− µ

B
) (3.4b)

Convective transport, to and from the reservoirs (source (F) and sinks
(W and D)).
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n̂F |L =
cF |L ∗ V̂

MF

=
cF |L

MF

(−βF |Lsign(pL − pF )
√

|pL − pF |) (3.5a)

n̂L|W =
cL|W ∗ V̂

ML

=
cL|W

ML

(−βL|W sign(pW − pL)
√

|pW − pL|) (3.5b)

n̂G|D =
cG|D ∗ V̂

MG

=
cG|D

MG

(−βG|Dsign(pD − pG)
√

|pD − pG|) (3.5c)

Energy transport

q̂L|B = −kL|B(TB − TL) (3.6a)

q̂B|G = −kB|G(TG − TB) (3.6b)

ĤF |L = hTF n̂F |L (3.6c)

ĤF |W = hTF n̂L|W (3.6d)

ĤL|B = hTLn̂L|B (3.6e)

ĤB|G = hTBn̂B|G (3.6f)

ĤG|D = hTGn̂G|D (3.6g)

h = h0 + cp(T − Tref ) (3.6h)

Secondary states (table 3.2) will have been chosen with the assistance
of the program. They would have been previously been generated in the
equation editor.

3.2.5 Transposition

Phase transposition

The boundary has zero capacity in mass and energy:

n̂B = 0 (3.7a)

ÛB = 0 (3.7b)

Flow to and from boundary is fast:

CC,L = CC,B (3.8a)

CC,G = CC,B (3.8b)
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Table 3.2: Secondary states

symbol function description

A U − TS Helmholtz energy

T δU
δS

temperature

µ δU
δn

chemical potential

p
i

nRT
V

, bernoulli partial pressure

p eT p
i

total pressure

V δU
δp
,
nt

ρi
volume

c
ns

Vs
concentration

h n0 + cp(T − Tref) molar enthalpy

h V
A

height

Phase transition is fast:

CC,B = k ∗ Cc,B (3.9)

Steady-state reduction in boundary:

ṅC,B = 0 (3.10a)

ṅc,B = 0 (3.10b)

Here we need to treat C (liquid C) and c (gaseous C) as the same species.

nB = n̂L|B − n̂L|B = 0 (3.11a)

−DL|B(µB − µL)− (−DB|G(µG − µB)) = 0 (3.11b)

µ
B
= −

DL|BµL
−DB|GµB

DL|B +DB|G
(3.11c)
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N =

















−1 −1 1 0

0 0 −1 1

0 0 0 0

















A+B→C reaction in L is proportional to concentration A and B, inverse
proportional to concentration of C.

ξ̃L = kABCACB − kCCC =
kABnanbMaMB − kcnCMC

VL
(3.12)

Phase transposition is equal to to transport of C to the boundary:

ξ̃B = n̂L|B,C = −DL|B(µB,C
− µ

L,C
) (3.13)

ñ = NT ξ =

























−1 0 0

−1 0 0

1 −1 0

0 1 0









































kABnanbMaMB−kcnCMC

VL

−DL|B(µB
− µ

L
)

0

















F
n
n̂ =





































1 0 -1 0 0 0 0 0

0 1 0 -1 0 0 0 0

0 0 0 0 -1 -1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 -1 1

0 0 0 0 0 0 1 -1



































































−
c
F |L
MF

(βF |Lsign(pL − pF )
√

|pL − pF |

−
c
L|W
ML

(βL|W sign(pW − pL)
√

|pW − pL|

−DL|B(µ
B

− µ
L
)

−DB|G(µ
G

− µ
B
)

−
c
G|D
MG

(βG|Dsign(pD − pG)
√

|pD − pG|































3.2.6 Non-modelled reactions

The phase transition is assumed to be a pseudo steady-state system. This
reaction can be separated from the other.
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ṅ = Γ∑A
k
n̂+ Γ∑S

eq
ξ
eq

+ Γ∑S
r
ξ
r

(3.14a)

Ω is defined as the left null space of Γ∑S
eq
, transposed. Finding the left

null space of a matrix is equal to finding the null space of the transposed
matrix.

ST

eq
=

[

0 0 −1 1

]

(3.15)

Γ∑ = I (3.16)

Ω = nullspace(Γ∑S
eq
)T =

















1 0 0 0

0 1 0 0

0 0 1 1

















(3.17)

Define a new primary state variable n∗:

n∗ = Ωn (3.18a)

ṅ∗ = ΩΓ∑A
k
ΓT

m
n̂+ΩΓ∑S

r
ξr (3.18b)

K1 =
cc
cC

(3.18c)

This type of index reduction can also be done with unmodelled flows.
This reduces the primary state space by 2.

3.2.7 Solvability

In computation, a new value for the internal energy is calculated for every
time step by Ut+δt = Un +

∫ t+∆t

t
U dt. Using this value for U, one can use

a thermodynamic package to determine the temperature and volume of the
system. By saying that the calculated U should be equal to U(T, V, n) from
the package, the equation system has one less degree of freedom.

For a phase boundary system with phases L and G, the temperature and
volume can be gained by solving the equation set:



44 CHAPTER 3. IMPLEMENTATION AND DISCUSSION

U(T, V, n)L = Ucalc,L (3.19a)

U(T, V, n)G = Ucalc,GVL + VG = VtotpL = pG (3.19b)

U(T, V, n)L − Ucalc,L = 0 (3.20a)

U(T, V, n)G − Ucalc,G = 0 (3.20b)

VL + VG − Vtot = 0 (3.20c)

pL − pG = 0 (3.20d)

The internal energy is a primary state for the equation system. It is
however more convenient to get Helmholtz energy then internal energy from
a thermodynamic package. This is solved by transforming internal energy
to a Helmholtz surface using Legendre transformation:

U(S, V, n) = A(T, V, n)− T (
δA

δT
)V,n (3.21)

Pressure is expressed as a Helmholtz derivative:

p = (
δA

δV
)T,n (3.22)

( δA
δT

)V,n and ( δA
δV

)T,n are also obtained from the thermodynamics package.
Insert (3.22) into (3.20d), and (3.21) into (3.20a) and (3.20b):

A(T, V, n)L + T (
δA

δT
)V,n,L − Ucalc,L = 0 (3.23a)

A(T, V, n)G + T (
δA

δT
)V,n,G − Ucalc,G = 0 (3.23b)

VL + VG − Vtot = 0 (3.23c)

(
δA

δV
)T,n,L − (

δA

δV
)T,n,G = 0 (3.23d)

This set of four equations can be solved numerically, using for example
Newtons method (appendix B), to get the four unknowns TL, TG, VL, VG.
Equation (3.23c) is a constraint, and (3.23d) is a coupling condition.
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3.2.8 Equations and variables

The following secondary state equations are defined:

A = U − TS (3.24a)

H = U + pV (3.24b)

T = root(A(T, V, n)) (3.24c)

V = root(A(T, V, n)) (3.24d)

S = −(
δA

δT
)V,n (3.24e)

µ = (
δU

δn
)T,V (3.24f)

p = −(
δA

δV
)T,n (3.24g)

p
i
= px

c =
n

V
S

hB|G = n0
B|G + cp,B(TB − Tref) (3.24h)

cp = (
δH

δT
)p (3.24i)

The variables that needs to be defined for modelling is:

� Temperatures TL, TB , TG. Ta = ∂Ua

∂Sa

∣

∣

∣

∣

V,n

� Pressures pF , pL, pW , pG, pD. pa = ∂Ua

∂Va

∣

∣

∣

∣

S,n

� Chemical potentials µ
L
, µ

B
, µ

G
. µa = ∂Ua

∂na

∣

∣

∣

∣

S,V

� Molar masses of all components Mi, i ∈ (A,B,C, c).

� Volumes VL, VG.

� Transport parameters DA|B, βA|B , kA|B .

� Molar enthalpies hF , hL, hB , hG.

Necessary parameters listed in table 3.3.
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Table 3.3: Parameters

symbol description

ρ density

A area

g gravitational field

h0 enthalpy

β valve constant

D diffusion coefficient

k heat transfer coefficient

M molar mass

Cp heat capacity, constant pressure

Cv heat capacity, constant volume

Tref reference temperature

h0 reference enthalpy



Chapter 4

Conclusions and future work

The ongoing development of a computer-aided modelling program was done
together with supervisor Prof Heinz A. Preisig. Underlying principles that
serve as the basis for the software were discussed at length, at the basic
graph level and on the ontology level. Much of the program was redesigned,
both in code and interface.
The biggest theme of interest was the attribute story. Attributes are the
entities that gives physical meaning to the directed graph. The attributes
defined in the current ontology are:

distinction: node | dynamic
system: constant | dynamic | event | -
directionality: unidirectional | bidirectional | -
nature: physical | information
phase: liquid | solid | gas | fluid | - | ?
morphology: distributed | lumped
state: mass | energy
species: *

A new attribute structure was created, called the attribute pattern gen-
erator. A pattern generator consists of a string containing a specific order
of attribute values. The pattern generator structure is designed so that
the systems and connections are ensured only feasible combinations of at-
tributes. This way, the number of higher level rules are kept at a minimum.

The modelling program is still a project under development. The following
work remains to be done:

� Finish the rules and context editor module.
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� Connect modules together.

� Included and test a thermodynamics package together with the equa-
tion editor.

� Facilitate creation of distributed systems.
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Appendix A

Thermodynamic basics

A.1 Degrees of freedom

Gibb’s phase rule states that the number of independent variables needed
to define a system is:

F = C − P + 2, (A.1)

where C is the number of components and P is the number of phases.
The variable F is called the degrees of freedom (DOF) of the system. For a
multi-component system, a system constraint arises, namely that the sum
of all component fractions must be 1. This reduces the DOF by one.

A.2 Conjugate pairs

Variables that are needed describe the energy of a system come in pairs,
one extensive and one intensive. These pairs are called conjugate variables.
S and T, V and p, n and µ, are conjugate variable pairs. You only need one
of each to describe the system. The chosen variables dictates which energy
function is natural to use. The energy functions have what is called canoni-
cal variables, which are the natural variables for describing the system. For
example,

dA = SdT − pdV −
n
∑

i=1

µidNi (A.2)

Shows that the canonical variables for A is T,V and n. If they are
known, then S, p and µi can be found as they are the partial derivatives of
A(T,V,n).
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A.3 Legendre transformation

A Legendre transform transforms a real-value function of a real value into
another. The function variable can be transformed into the function deriva-
tive of that variable so that:

fi(ǫi, xj , xk, ..., xn) = f(xi, xj , xk, ..., xn)− ǫixi, ǫi = (
δf

δxi
)xj ,xk,...,xn (A.3)

The internal energy has canonical function variables S,V and N. We
define another function H(S, pi, n)

H(S,
δU

δV
), N) = U −

δU

δV
)S,NdV = U + pV (A.4)

Where − δU
δV

is defined as p. This energy function is called enthalpy.
Enthalpy is the internal energy in addition to the pressure-volume work
required to displace its environment and to replace it with its own volume
and pressure. It is natural to use enthalpy when describing the energy of in-
coming or outgoing mass, since the mass must ”make room” for itself when
it moves in space.

Helmholtz energy, A(T, V, n), is defined as the Legendre transform of U(S, V, n)
with respect to S:

A(T, V,N) = U −
δU

δS
)V,NdS = U − TS,

δU

δT
= T (A.5)

Gibbs energy, G(T, p, n), is defined as the Legendre transform of U(S, V, n)
with respect to S and V:

G(T, p,N) = U − (
δU

δS
)p,NdS −

δU

δV
)T,NdV = U − TS + pV (A.6)

These relationships can all be used to fully describe the energy of a
system, since they contains the same amount of information. They have,
however, different uses. Helmholtz energy is a function of temperature,
volume and component mass. It is useful for cases where the systems volume
is constant. Enthalpy is best suited is one wants the energy of a system at
constant pressure, as it is a function of entropy, pressure and component
mass. [3]
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A.4 Maxwell relations

The Maxwell relations arise from the commutative nature of the energy
function derivatives. They are derived from second derivatives of the energy
functions:

δ2f

δxδy
=

δ2f

δyδx
(A.7)

A.5 Phase equilibrium

Phase equilibrium in the thermodynamic sense means equal mass transfer
in both directions of the phase boundary. The most common specification is
equality of µ. Phase equilibrium conditions can be found by a minimization
of all the energy functions. Minimum found by total differential of function
equal to zero Minimization of Helmholtz energy at constant temperature:
Aeq = minA(V,N)T
The sum of V and n of both phases is V0 and n0

A thermodynamic phase equilibrium is the state in which a thermodynamic
system has minimum total energy. There are no driving forces acting on the
system, as the transport between the phases are the same in each direction.

U(S,V,N), H(S,p,N), A(T,V,n) and G(T,p,n) is minimized at equilibrium,
meaning that the total differential of the energy function is zero. The chem-
ical potential µ is equal in both phases.
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Appendix B

Newton’s method

Newton’s method is a numerical method used to solve real-valued functions
of the form f(x)=0. It uses the functions derivative, so it must be contin-
uous in neighbourhood of a zero. It starts with the definition of a simple
derivative:

f ′(xn) =
f(xn)− 0

xn − xn+1
(B.1)

xn+1 = xn −
f(xn
f ′(xn)

(B.2)

and converges if the function is well-behaved. If the the function uses
an xi value in which f ′(xi) is close to zero, the method may fail, as the next
point may fall far from the corresponding zero function value.

x(n)x(n+1)
x

f(x)

f(x(n))

Figure B.1: Newton-Raphson method for one variable
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Appendix C

Pydot

C.1 Attribute tree

Graphical representation of an attribute tree, using Pydot:

def makeDiagram ( s e l f , f ) :
s e l f . graph = pydot . Dot ( graph type=’ graph ’ ) #in s t a n t i a t e s a Pydot o b j e c t

l i s t s = s e l f . t r e e . data
root = s e l f . t r e e . root
t r e e = ListTree ( l i s t s , r oot )
paths = t r e e . getPaths ( )
counter = 0

idTag = {}
idTag [ counter ] = root
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#Fi r s t path i s drawn
for i in range (1 , l en ( paths [ 0 ] ) ) :

counter += 1
idTag [ counter ] = paths [ 0 ] [ i ]
root1 = pydot . Node ( counter −1, l a b e l= ’ ” ’+idTag [ counter−1]+ ’ ” ’ , s t y l e=” f i l l e d ” , f i l l c o l o r=” red” )
var = pydot . Node ( counter , l a b e l=’ ” ’+idTag [ counter ]+ ’ ” ’ , s t y l e=” f i l l e d ” , f i l l c o l o r=” green ” )
s e l f . graph . add node ( root1 )
s e l f . graph . add node ( var )
edge = pydot . Edge ( root1 , var )
s e l f . graph . add edge ( edge )

for i in range (2 , l en ( paths ) ) : #runs through the l i s t o f l i s t s
f i r s t = False #f l a g . Needed because the f i r s t node to be drawn in each l i s t needs to be
connected to the e x i s t i n g t r e e . The f o l l ow in g nodes in the l i s t j u s t
connects to each other
openI fStatement = False
#f l a g . Needed to a c t i v a t e the i f−sentence a f t e r the f i r s t requi rement i s f u l f i l l e d
for j in range (0 , l en ( paths [ i ] ) ) : #runs through the e l ements in each l i s t o f l i s t s

i f paths [ i ] [ j ] not in paths [ i −1] or openI fStatement == True :
#the f i r s t node tha t i s not in a prev i ous l i s t ( and the f o l l ow i n g ones ) are connected

openI fStatement = True
counter += 1
idTag [ counter ] = paths [ i ] [ j ] #puts a unique tag on the new node
#pr i n t paths [ i ] [ j −1] , ”−−>”, paths [ i ] [ j ]
i f f i r s t== False : #the f i r s t new node i s connected to the e x i s t i n g t r e e s t ru c tu r e

lastUniqueNode = [ item [ 0 ] for item in idTag . i t e r i t em s ( ) i f item [ 1 ] == paths [ i ] [ j −1] ]
root1 = pydot . Node ( lastUniqueNode [−1] , l a b e l=’ ” ’+idTag [ lastUniqueNode[−1]]+ ’ ” ’ ,\
s t y l e=” f i l l e d ” , f i l l c o l o r=” red ” ) # changed v a r i a b l e name from roo t to root1
f i r s t=True

else :
root1 = pydot . Node ( counter −1, l a b e l= ’ ” ’+idTag [ counter−1]+ ’ ” ’ , s t y l e=” f i l l e d ” ,\\
f i l l c o l o r=” red” ) # changed v a r i a b l e name from roo t to root1
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var=pydot . Node ( counter , l a b e l=’ ” ’+idTag [ counter ]+ ’ ” ’ , s t y l e=” f i l l e d ” , f i l l c o l o r=” green ” )
s e l f . graph . add node ( root1 ) #adds node to pydot o b j e c t
s e l f . graph . add node ( var ) #adds node to pydot o b j e c t
edge = pydot . Edge ( root1 , var )
s e l f . graph . add edge ( edge ) #adds arc to pydot o b j e c t

f = f + ’ . png ’ #f i l ename
s e l f . graph . wr ite png ( f ) #wr i t e s the graph to f o l d e r as a png

C.2 Bipartite graph

def draw( l i s tA , l i s tB , f i l ename=”temp . png” ) :
digraph = pydot . Dot ( graph type=’ graph ’ , rankd i r= ’LR ’ , s p l i n e s=” f a l s e ” )#, ro ta t e = ’90 ’)
c lu s t e rEqs = pydot . C lu s t e r ( ”Equations” , l a b e l=”Equations” )
c l u s t e rVar s = pydot . C lu s t e r ( ” v a r i a b l e s ” , l a b e l=”Var iab l e s ” )
v a r i a b l e s = {}
equat ion s = {}
for item in l i s tA :

v a r i a b l e s [ item ] = pydot . Node ( ”var ”+s t r ( l i s tA . index ( item ) ) , l a b e l=s t r ( item ) , \
shape = ”box” , s t y l e=” f i l l e d ” , f i l l c o l o r=”green ” , width=”3” , penwidth=”1” )
c l u s t e rVar s . add node ( v a r i a b l e s [ item ] )

for key in l i s tB :
count = 0
count2 = 0
i f type ( l i s tB [ key ] [ 0 ] ) i s l i s t and l en ( l i s tB [ key ])>1:

n i c e = pydot . C lu s t e r ( s t r ( count ) , l a b e l=s t r ( count ) )
count += 1
for i in range ( l en ( l i s tB [ key ] ) ) :

count2 += 1
named = ”eq”+s t r ( key)+ s t r ( count2 )
b = pydot . Node (named , l a b e l=s t r ( key ) , shape = ”hexagon” , s t y l e=” f i l l e d ” ,\
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f i l l c o l o r=” red” , width=”3” )
n i c e . add node (b)
for j in l i s tB [ key ] [ i ] :

d igraph . add edge ( pydot . Edge (named , ”var ”+s t r ( l i s tA . index ( j ) ) ) )

e l i f type ( l i s tB [ key ] [ 0 ] ) i s s t r :
for eqs in l i s tB [ key ] :

a = pydot . Node ( ”eq”+s t r ( key ) , l a b e l=s t r ( key ) , shape = ”hexagon” , \
s t y l e=” f i l l e d ” , f i l l c o l o r=” red” , width=”3” )
c lu s t e rEqs . add node ( a )
digraph . add edge ( pydot . Edge ( ”eq”+s t r ( key ) , ” var ”+s t r ( l i s tA . index ( eqs ) ) ) )

digraph . add subgraph ( c lu s t e rEqs )
digraph . add subgraph ( c l u s t e rVar s )
c lu s t e rEqs . add subgraph ( n i ce )

digraph . wr ite raw ( ’ examplethings . dot ’ )
digraph . wr ite png ( f i l ename+” . png” , prog=’ dot ’ )



Appendix D

Installation procedure

Python is a popular scripting language. In addition to the standard library,
there is a myriad of external packages available for download throughout
the internet. External packages are most easily installed in Linux through
a software user interface such as the Advanced Packaging Tool (apt):

sudo apt−get i n s t a l l <package>

In windows, installation is usually performed by downloading and extract-
ing a zipped file that contains the necessary files. Developers often put a
Python file called setup.py. Installing is done in the command line:

python setup . py i n s t a l l

The most popular scientific distribution for Python is Pythonxy. This dis-
tribution includes the necessary packages, including PyQt, except for the
following external packages that were added and used during the project.

D.1 Pydot

Pydot is a Python package that extends the Graphviz software to the
Python environment. Graphviz is a graph visualization software that can
be generated by code in several different languages. This enables a program
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to automatically draw graphs based on dynamic information within the pro-
gram. Graphviz for Python requires the module pyparser.py and pydot.py.

Graphviz can be used in the context of this project as visualization of the
attribute tree. This visualization can be showed upon request or placed in
an automatically generated pdf-document. Documentation for the modelled
system, including graphical information, would be beneficial for the user.
Graphviz is free software licensed under the Eclipse Public License.

Graphviz is used for the modeller software in two different ways: visualizing
node and arc attribute trees, and constructing a bipartite graph showing
the relationship between equations and variables.

The following code generates a tree graph representation of all possible
node attributes.

Figure D.1: Attribute tree visualized using Pydot.

Pydot is also used to generate a bipartite graph between equations and the
equation variables.

The code for creating these graphics are found in Appendix C
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Figure D.2: Bipartite graph showing relationships between equations and
variables.

D.2 Py2exe

The py2exe package converts Python scripts to Windows executables, en-
abling a user to run Python scripts without needing to install a Python
interpreter. py2exe scans the main python script recursively for dependen-
cies, and add them all in the same folder as the generated executable.

This package is particularly useful for this software project, as it uses PyQt4,
Pyparser, Graphviz and Pydot for graphical GUI and data representation.
These packages must be installed, in addition to Python itself, for the pro-
gram to run. It is more convenient to send a Windows executable so that the
modeller program can be run without any prerequisites. The output of the
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convertion is a folder containing the executable (.exe), Windows libraries
and Python modules (.pyd, .dll), a zip file with all pure source modules, the
Python interpreter library (python27.dll).

The script theory wizard task.py was converted as a proof of concept.
This was done by creating a setup.py file:

from d i s t u t i l s . core import setup
import py2exe
setup (windows=[{” s c r i p t ” :” theory w izard task . py ”} ] ,

op t i on s={”py2exe ” :{” in c l ud e s ” : [ ” s i p ” ]}} )

Note that sip is required when dealing with programs produced with PyQt4.
The folder system is generated with the following command in Window’s
command line:

python setup . py py2exe

It was necessary to have a specific library file in the source folder, called
msvcp90.dll. This is a dll for Visual Studio 2008. It is recommended to not
download this file from an untrusted source. file was obtained by renaming
an excisting file in the system32 folder called msvcp90.dll.
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