
A Security Policy Infrastructure for Tactical Service
Oriented Architectures

Vasileios Gkioulos1 and Stephen D. Wolthusen1,2

1 Norwegian Information Security Laboratory, Norwegian University of Science and
Technology, Norway

{vasileios.gkioulos,stephen.wolthusen}@ntnu.no
2 School of Mathematics and Information Security, Royal Holloway, University of London,

United Kingdom

Abstract. Tactical networks are affected by multiple constraints related to the
limited node characteristics and the availability of resources. These constraints
within the highly dynamic tactical environment, impose significant limitations to
the functionalities and efficiency of current generic security policy frameworks.
Earlier studies have provided a risk analysis of tactical service oriented architec-
tures (SOA), and a set of fine-grained protection goals in correspondence to the
aforementioned constraints. Furthermore, web ontology language has been iden-
tified as a suitable mediator towards the requirements and opportunities imposed
by tactical SOA. Thus, in this article we present a security policy framework ded-
icated to tactical networks, as it has been developed within the project TACTICS.

Keywords: Ad-Hoc · Policy · Security · Service Oriented Architectures · Tacti-
cal networks.

1 Introduction

Tactical networks are of Ad-Hoc nature, subjected to a variety of constraints related
both to the limited operational characteristics of the deployed nodes and the scarcity of
network resources. Such constraints impede the attainment of requisite protection goals,
by rendering current generic solutions unsuitable, due to limited adaptability over the
network dynamics. For that purpose, within the project TACTICS (TACTICal Service
oriented architecture), suitable security solutions have been developed, tailored to the
characteristics of tactical service oriented architectures. Within this scope our study
aims to identify and support fine-grained protection goals over the initial over provi-
sioned operational stages, but mainly through the anticipated degraded and disrupted
mission execution phases.

Earlier studies [1],[2] presented a detailed risk analysis of tactical SOA, investigat-
ing the impact of the aforementioned constraints across the three stages of tactical op-
erations (Preparation-Execution-Debrief). Furthermore, suitable security requirements
and protection goals have been identified, referring to the security of communication
procedures, transitive information, data at rest and service choreography related pro-
cesses. Finally, the feasible benefits of exploiting the unique characteristics of service



oriented architectures have been identified, aiming to utilise them for the enhancement
of the implemented security mechanisms.

The results of these studies have been consequently utilised for the extraction of
functional requirements in respect to the developed security policy mechanisms [3],[4].
These requirements include constraints related to scalability, real time dynamic adapt-
ability, cross layer implementation and distributed deployment. A parallel evaluation
between the identified functional policy requirements and the constraints imposed by
the nature of tactical SOA, was undertaken for the examination of suitable security pol-
icy frameworks. This examination included commonly used mechanisms, such as WS
- Security, SAML[5], XACML[6] and Ponder[7], as well as recent semantic (REI[8],
KAOS[9], ROWLBAC[10], Kolter et al.[11], Trivellato et al.[12]) and trust manage-
ment frameworks (cassandra[13], Tulip[14], RT[15], Peer-Trust[16]). This analysis pro-
moted the use of web ontology language (OWL) as the most suitable solution in respect
to the requirements of tactical SOA. Thus, the same study presented a tactical policy
framework and our initial results regarding its conceptualisation.

In this paper we present a detailed analysis of this security policy framework ded-
icated to tactical SOA, as it has been designed within TACTICS. Section 2 introduces
the developed tactical service infrastructure, focusing on the security related services,
their interactions and functionalities. Section 3 presents the core policy model in accor-
dance to the decision process, along with the required steps for the policy formalization.
Finally, section 4 includes a simplified example of the prototype implementation devel-
oped for validation and demonstration purposes.

2 Tactical Service Infrastructure-TSI

Four distinct instances of tactical nodes have been assumed within TACTICS, each of
whom supports the delivery of a defined associated functionality set, through standard
interfaces. The studied tactical node types are:

– TSI Node-Dismounted: Carried by individual soldiers.
– TSI Node-Mobile: Integrated in single vehicles.
– TSI Node-HQ: Integrated in semi-permanent headquarters.
– TSI Node-Custom: Unmanned operational node.

The internal TSI components along with a subset of the defined core functionalities are
presented at figure 1, while the security related services are highlighted(Yellow). The
middle-ware has been divided into two vertical stacks, as it was presented in detail by
Thorsten et al. [17] namely:
1. Processing Pipeline: It comprise of the following sub-components:

– Service Mediator: Supports functionalities related to session management, mes-
sage exchange and message adaptation. The defined functionalities include but
are not limited to locate remote services, create proxy services, support various
message exchange patterns and adjust message priority.

– Message Handler: Supports functionalities related to message forwarding and
message transport. The defined functionalities include but are not limited to
message format translation, next hop identification, message monitoring and
message storage management.



Fig. 1. Defined internal components of TSI nodes.

– Packet Handler: Supports functionalities related to packet forwarding and packet
scheduling. The defined functionalities include but are not limited to reliability
handling, packet queue handling and packet release to radio.

2. Controller: It includes core services responsible for the supervision of the afore-
mentioned services, deployed across the processing pipeline layers. The defined
functionalities include but are not limited to trigger resource reservation, update
service endpoints, select routing protocol and enforce encryption mechanisms.

The aforementioned security services along with the interactions supported by the
defined interfaces are presented at figure 2. As described earlier in detail [18], the func-
tionalities of these elements can be summarised as:

– Security Handling Service-(SH): A service that monitors network parameters and
actors behaviour or requests, where actors can be users, nodes and services. Accord-
ingly it identifies the requirement for a specific action, initiating a corresponding
action request. Additionally, SH stores precomputed policy decisions, either from
the mission preparation stage or by earlier requests during mission execution, for
optimization of resource utilization.



Fig. 2. Interaction of security services within the TSI.

– Policy Management Service-(PM): A service that is responsible for the successful
resolution of the action request in accordance to the current network parameters and
its subsequent transfer for enforcement.

– Policy Decision Point-(PDP): It contains the policy rules mapped to the available
action requests, in the form of prioritised description logic queries.

– Metadata Handling Service-(MH): An ontological knowledge-base that incorpo-
rates static and dynamic attributes required for reasoning over the aforementioned
policy rules. Reasoning occurs at the MH in accordance to a static copy of the
ontological structure at the time of the action request in order to maintain policy
consistency.

– Contextual Monitoring Service-(CM): A service that monitors timely values of
the dynamic attributes utilised across the policy rules, while it computes statistical
and aggregated values populating MH upon request.

– Policy Enforcement Point-(PEP): A service responsible for the enforcement of
the generated or precomputed policy decisions, by use of the locally implemented
mechanisms.

While in respect to the functionalities of the implemented interfaces:

– 1: SH receives a trigger for the initiation of an action request. The trigger can
be either external (e.g. Access request by a user, service invocation request by a
service, message prioritization request by Quality of Service (Qos) mechanisms) or
internal by monitoring the values of the dynamic attributes stored at CM (e.g. node
trust levels, node location updates, service choreography statistics).

– 2: SH requests from CM the current values of the attributes related to the given
action request. These values are compared with a predefined range for which the
precomputed policy decisions are valid.

– 3: CM replies with the timely values of the requested dynamic attributes.



– 4a: If the received attribute values correspond to the predefined ranges, the precom-
puted policy decision is transferred to the corresponding PEP for enforcement. In
this scenario the procedure is successfully terminated at this stage.

– 4b: If the received attribute values are outside the predefined ranges, SH sends a
request to CM for a static copy of the monitored parameters with a unique identifier.

– 5: SH sends an action solution request to the PM including the unique identifier.
– 6: PM sends the same bundle (Action Solution Request, Unique Identifier) to the

PDP, which retrieves the stored set of prioritised rules corresponding to the given
action request.

– 7: PDP populates the bundle with the first priority rule (Action Solution Request,
Unique Identifier, 1st Priority Rule) and transfers it to the MH.

– 8: MH requests the values of the monitored parameters corresponding to the re-
ceived Unique Identifier.

– 9: MH receives the aforementioned values and populates a locally stored copy of
the ontological knowledge-base. At this stage, reasoning occurs using this copy and
the received 1st Priority Rule.

– 10: The identified instances are transferred to PM. (Note: If no instances have been
identified, steps 6 to 10 are repeated using the complementary prioritised rules)

– 11: The policy decision is transferred to the PEP for enforcement.

3 Formal Policy Modelling

3.1 Core Policy Model

The formal policy model has been constructed by mapping the aforementioned archi-
tectural elements to the required functionalities, as presented at figure 3. The decision
process within the formal policy model is:

Individual Domain∩ Individual Capability = {Individual Action(k),

Individual Action(k+1), ..., Individual Action(k+ i)}
(1)

Where:

Individual Action(k)=̂{Individual Rule[k(z)], Individual Rule[k(z+1)], ...,
Individual Rule[k(z+ j)]}

(2)

And:

Observable Ob jects
Individual Rulek(z)−−−−−−−−−−−→ Governing MechanismsIndividual Action(k) (3)

While the elements constituting the formal policy model have been defined as:

– Domains: The tactical policy domains have been identified in accordance to the
protection requirements as Planning, Protection, Detection, Diligence and Response.
These generic core domains can be extended or refined in order to support fine-
grained definition of policy governance.
– Individual Domain: A singular Domain corresponding to the evaluated action.



Fig. 3. Visualisation of the decision process within the formal policy model.

– Capabilities: TACTICS defined a distinct set of capabilities as part of the devel-
oped Tactical Reference Architecture (TRA), in accordance to contemporary oper-
ational requirements and the existing NATO Capability View (NAF-NCV-2/7 [19]).
The extended list of defined capabilities includes Effects Management, Fire Sup-
port, Combat Service Support and Shared Situational Awareness.
– Individual Capability: A singular Capability corresponding to the evaluated
action.

– Actions: Actions are defined as the intersection of Domains and Capabilities, in
the sense of enforcing the Domain requirements upon the operational Capabilities.
Thus, defining fine grained policy sub-trees such as Planning/Effect Management,
Protection/Shared Situational Awareness or Response/Intrusion Detection.
– Actions subset: A subset of available,suitable and prioritised responses in re-
spect to the defined Actions, by the activation and tailored management of the
available Governing Mechanisms. In that sense the Action ”Protection/Message
Transmission”, may correspond to an Action subset that includes various crypto-
graphic and credential management services
– Individual Action: A singular policy response across the examined Action sub-
set.
Note: The definition of these elements allow the Security Handling Services to iden-
tify and initiate fine-grained policy decisions, as mapped in a prioritised order to
the monitored Observable Objects and actor behaviour or requests.

– Observable Objects: Monitored network parameters of static and dynamic nature,
as predefined during the mission preparation stage. Observable Objects refer to
Service, Information, Network, Radio, Node and Subject attributes, formulating a
complete description of the tactical SOA ecosystem upon which policy reasoning
is achieved.
Note: The Metadata Handling Service maintains a static local knowledge accord-



ing to the values of Observable Objects in an ontological knowledge base, while
the Contextual Monitoring Service is responsible for the monitoring of dynamic
Observable Objects and the calculation of their timely, statistical and aggregated
values.

– Prioritized rule stack: A set of predefined and prioritized rules dedicated to the
governance of each Individual Action. Every rule is constructed as a description
logic query for instance identification, with increased granularity as a function of
Observable Objects.
Note: The definition of multiple rules for the governance of each Individual Ac-
tion allows the on-line adaptation of policy decisions to the dynamic network con-
ditions, in contrast to singular implementations. The communication between the
Policy Decision Point and Policy Management Service facilitates the selection of
the most suitable governing rule at the decision time, according to predefined pri-
oritizations

– Governing Mechanisms: Services deployed within the Policy Decision Point ca-
pable of enforcing the policy decision in respect to an examined Individual Action.
Note: The deployed Governing Mechanisms can be generic or mission specific, re-
lated to a variety of security requirements such as authentication, authorisation,
cryptography, session management, access control, integrity control, error han-
dling/logging, validation and public key infrastructure.

3.2 Policy Formalization

The formalisation of the core policy model elements within the security TSI services,
is based on suitable description logic fragments and executed in six consecutive steps.
These steps are in direct mapping to the decision process, as presented in equations 1,2
and 3. Various detailed resources exist in respect to knowledge representation with de-
scription logic[20]. Thus, the purpose of this subsection is not to provide an exhaustive
reference to this topic, but an insight to the elements crucial for the formalization of the
developed security policy model:

– Equation 1
– Step 1-Definition of Domains:
Individual Domains are initially formalised as empty disjoint ontology classes, us-
ing terminological box concept definitions. These classes are consequently popu-
lated with the defined Actions, formalising extensional knowledge in the form of
simple membership assertions, as:

hasDomain(AccessDenial,Response) (4)

A closed world assumption must be enforced in order to accommodate the func-
tionality of the Security Handling Services in respect to Action identification. This
is achieved in ontology editors by the definition of restricted equivalences for each
domain class using a functional data property (e.g. hasDomain). As an example in
OWL functional syntax, this is defined as:

Declaration(Class(:Domains))



Declaration(Class(:Response))
SubClassOf(:Response :Domains)
EquivalentClasses(:Response DataHasValue(:hasDomain ”Response”))
Declaration(DataProperty(:hasDomain))
FunctionalDataProperty(:hasDomain)
DataPropertyRange(:hasDomain DataOneOf(”Defined Domains”))
Declaration(NamedIndividual(:AccessDenial))
DataPropertyAssertion(:hasDomain :AccessDenial ”Response”xsd:string)

– Step 2-Definition of Capabilities:
Capabilities are formalised and populated similarly to Domains, as:

Declaration(Class(:Capabilities))
Declaration(Class(:MessageAuthenticityAssurance))
SubClassOf(:MessageAuthenticityAssurance :Capabilities)
EquivalentClasses(:MessageAuthenticityAssurance DataHasValue(:hasCapability
”MessageAuthenticityAssurance”))
Declaration(DataProperty(:hasCapability))
FunctionalDataProperty(:hasCapability)
DataPropertyRange(:hasCapability DataOneOf(”Defined Capabilities”))
Declaration(NamedIndividual(:DigitalSignatureValidation))
DataPropertyAssertion(:hasCapability :DigitalSignatureValidation
”MessageAuthenticityAssurance”xsd:string)

– Step 3-Definition of Actions and Grouping into Actions subsets:
Actions are formalised as individuals with the use of unary predicates and cate-
gorised into Action subsets with the use of existential quantifications and value re-
strictions. This is achieved in ontology editors with the definition of data properties
of suitable granularity. As mentioned earlier, the Security Handling Service initi-
ates an Action based policy request in accordance to external or internal triggers.
An external trigger is directed to a singular Action (e.g. Domain:Protection/ Ca-
pability:ServiceAccessControl/ Action:AccessMessagingService), but an internal
trigger is based on the dynamic values of predefined Observable Objects leading
to the identification and evaluation of multiple actions defined as an Action subset.
Thus the Actions forming each Action subset must be prioritised in order to accom-
modate this functionality, allowing the identification and enforcement of the most
suitable policy decision in accordance to the existing resources. Description logic
allows the fine-grained definition of Actions. In the previous simplified example,
the Action definition is represented in OWL functional syntax as:

Declaration(DataProperty(:hasActionSetID))
Declaration(DataProperty(:hasActionSetPriority))
Declaration(DataProperty(:hasCapability))
Declaration(DataProperty(:hasDomain))
Declaration(DataProperty(:hasGoverningMechanism))



Declaration(DataProperty(:hasRuleSetID))
Declaration(NamedIndividual(:AccessMessagingService))
FunctionalDataProperty(:hasActionSetID)
DataPropertyRange(:hasActionSetID xsd:integer)
FunctionalDataProperty(:hasActionSetPriority)
DataPropertyRange(:hasActionSetPriority xsd:integer)
FunctionalDataProperty(:hasCapability)
DataPropertyRange(:hasCapability DataOneOf(”Defined Capabilities”))
FunctionalDataProperty(:hasDomain)
DataPropertyRange(:hasDomain DataOneOf(”Defined Domains”))
DataPropertyRange(:hasGoverningMechanism xsd:string)
FunctionalDataProperty(:hasRuleSetID)
DataPropertyRange(:hasRuleSetID xsd:integer)
DataPropertyAssertion(:hasActionSetID :AccessMessagingService
”9632654”xsd:integer)
DataPropertyAssertion(:hasActionSetPriority :AccessMessagingService
”1” xsd:integer)
DataPropertyAssertion(:hasCapability :AccessMessagingService
”ServiceAccessControl” xsd:string)
DataPropertyAssertion(:hasDomain :AccessMessagingService
”Protection” xsd:string)
DataPropertyAssertion(:hasGoverningMechanism :AccessMessagingService
”AuthServ23” xsd:string)
DataPropertyAssertion(:hasRuleSetID :AccessMessagingService
”86514665” xsd:integer)
It must be noted that in terms of ease of implementation and deployment, the same
procedure can be used for the definition of Action clusters according to invoca-
tion and statistical patterns. Utilising constrained class equivalences and excep-
tions, Actions of separate Action subsets can be efficiently grouped and mapped
into common policy rules, significantly minimising resource consumption under
heavily constrained scenarios.

– Equation 2
– Step 4-Definition of Prioritised rule stack per Action:
The notable expressive power of description logic fragments originates from the
extended set of available constructors, including but not limited to elements of first
order logic (e.g intersection, union, complement, universal/ existential restriction)
and role oriented (e.g. role union/ chains/ transitivity/ hierarchy). The full extend
of available constructors can be exploited at this step for the definition of detailed
rules of increased granularity, incorporating both unary and binary predicates in
accordance to the security requirements.
Thus, a prioritized rule stack of increasing complexity is defined per Action, fa-
cilitating the adaptation of the security policy to dynamic network conditions. The
least-priority/least-complexity rule for each Action is defined as a default escape
policy expression (i.e. deny-override, permit-override, deny-by-default, permit-by-
default) depending on the type of the Action, for use in highly congested tactical



environments and node isolation scenarios. Concurrently, the rules of highest pri-
ority can designedly incorporate sets of unary and binary predicates, referring to
discrete adaptations of the security policy to the real time network conditions for
the given Action.

– Equation 3
– Step 5-Extraction of Observable Objects and knowledge base construction:
Observable Objects correspond to the aforementioned unary and binary predicates
referring to service, information, network, radio, node and subject attributes as in-
corporated within the policy rules. Observable Objects can be defined in ontol-
ogy editors as object and data properties, enforcing suitable schema constructs
(e.g. subPropertyOf, range), relations to other properties (e.g. inverseOf), logical
characteristics (e.g. transitive, symmetric) and global cardinality restrictions (e.g.
InverseFunctionalProperty, FunctionalProperty). Depending on the granularity re-
quirements of the defined policy rules aggregated and statistical Observable Objects
can also be constructed and incorporated, allowing their utilisation across rules of
distinct priority levels.
– Step 6-Mapping of Individual Actions to Governing Mechanisms:
This step is initiated during Step-3 by the definition of suitable DataPropertyAsser-
tions, and finalised by a constrained mapping between actions and suitable Govern-
ing Mechanisms for their enforcement. This is achieved by the definition of simple
membership assertions, similar to those presented in previous steps.

4 Prototype Implementation

TACTICS has defined sixty requirements with ”MUST” priority, forty with ”SHOULD”
and seven with ”COULD”, thirty-four of which are security dedicated as briefly dis-
cussed earlier [2][1]. An overall prototype implementation has been realised according
to sections 2 and 3, in order to validate the satisfaction of these requirements under the
distinct tactical constraints. This implementation was targeted to four common tacti-
cal operation types (1-Reconnaissance Surveillance and Target Acquisition, 2-MEDical
EVACuation, 3-Convoy mission, 4-Intervention Patrol), separated into a multitude of
corresponding episodes (e.g. Sensor data acquisition, Blue force tracking, Mobility
management, Improvised Explosive Device detection and report, Ordering and Task-
ing). Here we present the security policy formalization, in respect to the interface func-
tionalities as presented at sections 2 and 3, for one of the investigated episodes.

4.1 Transitive service invocation

The presented example is part of the transitive service invocation scenarios of the con-
voy mission use case. Nodes N1 and N2 are mounted on vehicles that belong to a
tactical convoy, with N1 being the command vehicle and N3 a hand-held device (TSI
Node Dismounted) allocated to a member of N2 personnel. The scenes of the episode
are:
1. N1 requires an image from the Area of Operation(AoO) of N2
2. N1 Identifies available services*



3. N1 Identifies local service provider*
4. N1 Transmits corresponding request to N2
5. N2 Transmits corresponding request to N3
6. N3 Evaluates service access request*
7. N3 Invokes service
8. N3 Identifies image compression requirement*
9. N3 Identifies local service provider*

10. N3 Transmits uncompressed image to N2
11. N2 Evaluates service access request * (According to image attributes and N3 cre-

dentials)
12. N2 Invokes service
13. N2 Transmits compressed image to N1

The overall execution of a transitive service invocation corresponds to a variety of Ac-
tions including interactions between the Information System, TSI, and Radio Access,
with load both on the northbound/ southbound interfaces and core service invocations
within and across the involved tactical nodes. For clarity these functionalities have been
distributed across multiple use cases, while those corresponding to this scenario are
marked as ”*”. Although multiple security policy decisions are involved within a tran-
sitive service invocation, this scenario is one of those dedicated to investigating specific
aspects of the service choreography functionalities. Thus, actions related to message
transmission and queuing, bandwidth allocation or service substitution refer to the in-
vocation of a variety of TSI core services[17], which are not within the scope of this
scenario.

Fig. 4. Visualisation of Transitive service invocation scenario.

The policy formalisation in OWL functional syntax for the presented steps 1-6, can
be extracted for this episode as:



– Step 1-Definition of Domain:
Only the Protection Domain is required within the given scenario, defined as pre-
sented as section 3.2.

– Step 2-Definition of Capabilities:
The given scenario refers to the Service Choreography and Situational Awareness
capabilities, defined as presented as section 3.2.

– Step 3-Definition of Actions and Grouping into Actions subsets:
The presented functionalities correspond to four of the Actions within the Ac-
tion subsets defined by the Protection/Service Choreography and Protection/Sit-
uational Awareness intersections, namely:
1. Service ServiceAvailabilityIdentification
2. Node LocalServiceProviderIdentification
3. Service ServiceAccessRequestVerification
4. Information ImageAttributeIdentification

which are defined as presented as section 3.2.
– Step 4-Definition of Prioritised rule stack per action:

As described earlier, making use of the extended expressive power of description
logic allows the construction of complex security policy rules, validating unary and
binary predicates as needed by the specific Action. Using as a simplified example
the Node LocalServiceProviderIdentification Action the Prioritised rule stack in
Manchester syntax can have the form:
1. 1st priority rule:

Node SupportsService value ”TacticsImaging”
Node hasUser some AllSubjects
(User hasTrustLevel value ”High”) and
((Node hasTrustLevel value ”High”) or (Node hasTrustLevel value ”Medium”))
Node hasAoO value ”AoO12341”
(User hasRank value ”COL”) or (User hasRank value ”CPT”)
Node hasMissionType value ”Convoy”
(Node hasOperationalGroup value ”G2”) and (Node hasType value ”TSI ND”)
Node hasSupportRadioITUDesignation value ”UHF”
Node hasSupportProtocol value ”TLS/SSH”

2. 2nd priority rule:
Node SupportsService value ”TacticsImaging”
Node hasUser some AllSubjects
(User hasTrustLevel value ”High”) and
((Node hasTrustLevel value ”High”) or (Node hasTrustLevel value ”Medium”))
Node hasAoO value ”AoO12341”
Node hasOperationalGroup value ”G2”
Node hasSupportRadioITUDesignation value ”UHF”
Node hasSupportProtocol value ”TLS/SSH”

3. 3rd priority rule:
Node SupportsService value ”TacticsImaging”
Node hasUser some AllSubjects
(User hasTrustLevel value ”High”) and ((Node hasTrustLevel value ”High”)
or (Node hasTrustLevel value ”Medium”))



Node hasAoO value ”AoO12341”
Node hasSupportProtocol value ”TLS/SSH”

4. 4th priority rule:
Node SupportsService value ”TacticsImaging”

– Step 5-Extraction of Observable Objects and knowledge base construction:
Using the previous rule set as an example the Observable Objects can be extracted
as:
1. Data properties (Unary predicates)

User hasTrustLevel, Node hasTrustLevel, Node hasAoO, User hasRank,
Node hasMissionType, Node hasOperationalGroup, Node hasType,
Node hasSupportProtocol

2. Object properties (Binary predicates)
Node SupportsService, Node hasUser, Node hasSupportRadioITUDesignation
The overall extracted Observable Objects incorporated within the security pol-
icy knowledge-base are defined as presented as section 3.2 and described ear-
lier [1].

– Step 6-Mapping of individual Actions to Governing Mechanisms:
This step depends on the locally implemented services across the nodes deployed
for a given tactical operation. Thus, as an example in the given scenario, the Ser-
vice ServiceAvailabilityIdentification Action would have as first priority Govern-
ing Mechanism the distributed service registry, while the security policy knowledge-
base could also serve as a secondary Governing Mechanism for redundancy pur-
poses.

5 Conclusions

In this article we have presented a security policy framework dedicated to tactical SOA,
aiming to satisfy the established protection requirements under the constraints of tacti-
cal environments. The developed architecture has been presented, focusing on the func-
tionalities of core services and an insight of the defined interfaces. Furthermore, the
formal policy model was presented along with the required policy formalisation steps.
The prototype implementation has provided a validation of the requirement for an eas-
ily deployed, lightweight, cross-layer and dynamically adaptable security infrastructure.
Thus, our future plans include the further evaluation with the use of the developed use
cases and the preparation of the field-demonstration along with the overall TACTICS
architecture.

Acknowledgments

The results described in this work were obtained as part of the European Defence
Agency project TACTICS (Tactical Service Oriented Architecture). The TACTICS project
is jointly undertaken by Patria (FI), Thales Communications & Security (FR), Fraunhofer-
Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE (DE), Thales



Deutschland (DE), Leonardo (IT), Thales Italia (IT), Norwegian University of Science
and Technology (NO), ITTI (PL), Military Communication Institute (PL), and their
partners, supported by the respective national Ministries of Defence under EDA Con-
tract No. B 0980.

References

1. V. Gkioulos and S. D. Wolthusen, “Securing Tactical Service Oriented Architectures,” 2nd
International Conference on Security of Smart cities, Industrial Control System and Com-
munications (SSIC), 2016.

2. A. Aloisio, M. Autili, A. D’Angelo, A. Viidanoja, J. Leguay, T. Ginzler, T. Lampe, L. Spag-
nolo, S. D. Wolthusen, A. Flizikowski, and J. Sliwa, “TACTICS: tactical service oriented
architecture,” CoRR, vol. abs/1504.07578, 2015.

3. V. Gkioulos and S. D. Wolthusen, “Enabling Dynamic Security Policy Evaluation for
Service-Oriented Architectures in Tactical Networks,” Norwegian Information Security Con-
ference 2015 (NISK-2015).

4. V. Gkioulos and S. D. Wolthusen, “Constraint Analysis for Security Policy Partitioning Over
Tactical Service Oriented Architectures,” Advances in Networking Systems Architectures,
Security, and Applications - of Springer’s Advances in Intelligent Systems and Computing,
2015.

5. OASIS, “OASIS Security Services (SAML) TC.”
6. C. D. P. K. Ramli, H. R. Nielson, and F. Nielson, “The Logic of XACML,” Science of Com-

puter Programming, vol. 83, pp. 80–105, Apr. 2014.
7. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Specification Lan-

guage,” in Policies for Distributed Systems and Networks (M. Sloman, E. Lupu, and J. Lobo,
eds.), vol. 1995 of Lecture Notes in Computer Science, pp. 18–38, Springer Berlin Heidel-
berg, 2001.

8. L. Kagal, T. Finin, M. Paolucci, N. Srinivasan, K. Sycara, and G. Denker, “Authorization and
privacy for semantic Web services,” Intelligent Systems, IEEE, vol. 19, pp. 50–56, Jul 2004.

9. A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. Aitken, “KAoS
Policy Management for Semantic Web Services,” Intelligent Systems, IEEE, vol. 19, pp. 32–
41, July 2004.

10. T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. H. Winsborough, and B. Thuraisingham,
“ROWLBAC - Representing Role Based Access Control in OWL,” in Proceedings of the
13th Symposium on Access control Models and Technologies, (Estes Park, Colorado, USA),
ACM Press, June 2008.

11. J. Kolter, R. Schillinger, and G. Pernul, “Building a Distributed Semantic-aware Security
Architecture,” in New Approaches for Security, Privacy and Trust in Complex Environments
(H. Venter, M. Eloff, L. Labuschagne, J. Eloff, and R. von Solms, eds.), vol. 232 of IFIP
International Federation for Information Processing, pp. 397–408, Springer US, 2007.

12. D. Trivellato, N. Zannone, M. Glaundrup, J. Skowronek, and P. S. Etalle, “A semantic se-
curity framework for systems of systems,” International journal of cooperative information
systems, vol. 22, pp. 1–35, April 2013.

13. M. Becker and P. Sewell, “Cassandra: distributed access control policies with tunable ex-
pressiveness,” in Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings, pp. 159–168, June 2004.

14. M. Czenko, J. Doumen, and S. Etalle, “Trust Management in P2P Systems Using Standard
TuLiP,” in Trust Management II (Y. Karabulut, J. Mitchell, P. Herrmann, and C. Jensen,
eds.), vol. 263 of IFIP The International Federation for Information Processing, pp. 1–16,
Springer US, 2008.



15. N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based trust-management frame-
work,” in 2002 IEEE Symposium on Security and Privacy, 2002. Proceedings. , pp. 114–130,
2002.

16. W. Nejdl, D. Olmedilla, and M. Winslett, “PeerTrust: Automated Trust Negotiation for Peers
on the Semantic Web,” in Secure Data Management (W. Jonker and M. Petkovi, eds.),
vol. 3178 of Lecture Notes in Computer Science, pp. 118–132, Springer Berlin Heidelberg,
2004.

17. T. A. Lampe, C. Prasse, A. Diefenbach, T. Ginzler, J. Sliwa, and S. McLaughlin, “TACTICS
TSI Architecture,” International Conference on Military Communications and Information
Systems ICMCIS, 2016.

18. V. Gkioulos, A. Flizikowski, A. Stachowicz, D. Nogalski, K. Gleba, and J. Sliwa, “Interoper-
ability of Security and Quality of Service Policies Over Tactical SOA,” Submitted for review
at: Military Communication conference-MILCOM, 2016.

19. NATO, “Nato c3 classification taxonomy.” https://www.act.nato.int/
article-8a, 2012 March.

20. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, eds., The
Description Logic Handbook: Theory, Implementation, and Applications. New York, NY,
USA: Cambridge University Press, 2003.


