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Abstract—In the activation market, the Transmission System
Operator selects and activates balancing energy bids to cover the
system imbalance. Growing use of intermittent energy sources
increases uncertainty in system operation and new EU regu-
lations, including a so-called Activation Optimization Function
and new Standard Products for manual frequency restoration
reserves (mFRR), will change the activation process significantly.
However, commonly used price-based bid selection approaches
are incapable of taking intertemporal constraints and uncertainty
into account in the activation process.

This paper presents a new optimization formulation, built on
stochastic unit commitment principles, using imbalance forecast
scenarios to propose bid activation schedules minimizing expected
activation costs. Unlike earlier approaches, intertemporal char-
acteristics of the proposed mFRR product are modeled in detail.

The optimization procedure is implemented in a rolling hori-
zon simulation and demonstrated using Norwegian imbalance
and market data. Compared to a corresponding deterministic
approach, the stochastic strategy significantly reduces activation
costs.

Index Terms—optimal scheduling, power generation dispatch,
power system modeling, stochastic processes

NOMENCLATURE

Indices
a aFRR price step
b Balancing bid
s Imbalance scenario
t, τ Time period
Parameters
ωts Predicted imbalance in time period t in scenario s
Xb Capacity of mFRR bid b
Y a Capacity of aFRR price step a
πs Probability of imbalance scenario s
CaFRR
a Activation cost of aFRR at price step a

CmFRR
b Activation cost for mFRR bid b

Sets
A Set of aFRR price steps
B Set of all mFRR bids
S Set of all imbalance scenarios
T Set of all time periods

Variables
ubts Commitment status of mFRR bid b in time period t

and scenario s (binary)
vbts Indicates bid b starts delivery in time period t and

scenario s (binary)
xbts Delivery power from bid b in time period t and

scenario s
xRbts Ramping power from bid b in time period t and

scenario s
xSbts Delivery setpoint for bid b in time period t and

scenario s
yats Activated aFRR from price step a in time period t and

scenario s
Specifiers
+ Upward direction
− Downward direction

I. INTRODUCTION

The instantaneous balance between generation and con-
sumption in the power system must be monitored and adjusted.
This is among the operational responsibilities of the Trans-
missoin System Operator (TSO), and adjustments are made
by activating balancing energy from reserves, either provided
by generating units with spinning reserve capacity or fast-start
capability, or by dispatchable consumption.

Through the balancing energy activation market, the TSO
aims at utilizing these reserves efficiently. Balancing Service
Providers (BSPs) submit bids for balancing energy products,
which will be activated by the TSO in the order of bid
price until the imbalance between generation and consump-
tion is covered. In Europe, balancing energy is activated
from Frequency Restoration Reserves (FRR), which can be
manually (mFRR) or automatically (aFRR) activated, or by
Replacement Reserves (RR), used to relieve FRR activation
for longer, persisting imbalances. While the activation of aFRR
can respond to a disturbance within a few minutes, mFRR
can typically need 15 minutes (and for RR, even more) before
delivering the requested amount of power. And while aFRR



follows a control error based on frequency and cross-border
flows, manual activations are subject to operator decisions
and can also be used proactively to cover an expected future
imbalance [1].

Following significant progress in the integration of Euro-
pean day-ahead and intraday markets for electricity, balancing
markets are currently also in the process of integration as a step
towards the vision of an internal energy market. Due to differ-
ing market rules and operational practices among Transmission
System Operators (TSOs), harmonization is necessary in order
to create a level playing field for market participants [2].
The European Network of Transmission System Operators for
Electricity (ENTSO-E) is developing new Network Codes, the
rules and regulations for European power markets, including
the Guideline on Electricity Balancing [3] aims to increase
pan-European welfare through secure and efficient balancing
operations. The Guideline requires the development of a set
of Standard Products to be shared among TSOs and used for
the exchange of balancing energy. Although several proposals
have been made, the exact specifications of these products are
still under discussion. The activation of balancing energy is
to be governed by an Activation Optimization Function, the
specifications of which are also still to be decided.

Several studies have been made on the integration of balanc-
ing markets, many including models of the balancing energy
activation market [4]–[10]. Other notable approaches include
[11] and [12]. As they are often used in long-horizon simula-
tions, they do not model the bid selection optimization using
detailed the product specifications, which requires modelling
the operating states and restrictions on duration and ramping,
as is done in the unit commitment problem [13].

Increasing share of power generation from intermittent
renewable sources increases uncertainty on all time scales,
and stochastic unit commitment [14], is a method managing
uncertainty through scenario representations which has been
used for day-ahead scheduling optimizations, but the technique
has not seen widespread use in balancing energy operations.

This paper provides a formulation of the balancing energy
activation problem, taking uncertainty into account through a
stochastic optimization approach and representing the oppor-
tunities and limitations provided by mFRR Standard Products
in greater detail. The optimization model is presented in
Section II, together with the description of a case study
based on a simplified representation of the Norwegian system,
disregarding network constraints. Section III presents results
and findings from the case study simulations, while their
validity and implications are discussed in Section IV. Section
V lists some of the most important conclusions.

II. METHODOLOGY

A. Model Formulation

The balancing energy activation model takes into account
the history of previous bid activations, the current imbalance
situation and expectations of the future imbalance to propose
a an optimal schedule for each available mFRR bid in the
market. The optimization routine is then re-run at regular

intervals, e.g. every 5 minutes, using updated imbalance in-
formation and forecasts. The optimization does not provide
a control signal for the aFRR, but includes a representation
of the expected aFRR response to the mFRR activation and
imbalance situation. The objective in (1) is to minimize the
expected costs from activation of mFRR and aFRR over the
scheduling horizon.

min
∑
s∈S

πs
∑
t∈T

(∑
a∈A

CaFRR
a yats +

∑
b∈B

CmFRR
b xbts

)
(1)

The model formulation uses 5 minute timesteps and dis-
tinguishes between mFRR power output during the delivery
period, for which the cost is reflected in the objective function,
and during the ramping period, xRbts. This energy is deliv-
ered before the bid is fully activated and contributes to the
power balance, but without driving activation costs. Ramping
constraints are disregarded for aFRR due to its fast-ramping
capability. The sum of power from mFRR and aFRR schedules
must equal the imbalance forecasts ωts for each time period
and scenario, as given in (2), which includes both upward and
downward activations:

(2)

∑
b ∈B+

(xbts + xRbts)−
∑
b ∈B−

(xbts + xRbts)

+
∑
a ∈A

(y+ats − y−ats) = ωts ∀t, s

Power from aFRR is limited only by the available capacities,
while delivery and ramping power from mFRR depends on the
commitment status ubts of the bid:

xbts ≤ Xbubts ∀b, t, s (3)

xRbts ≤ Xb(1− ubτs)τ = t− 1, t ∀b, t, s (4)

y+ats ≤ Y a ∀a, t, s (5)

y−ats ≤ Y a ∀a, t, s (6)

The mFRR activation is also subject to a set of ramping,
duration and other operating constraints, some of which use
the binary startup indicator variable vbts or the variable xSbst
which defines the requested power level at the beginning of a
delivery period. Then, for all b, t, s,



vbts ≥ ubts − ub(t−1)s (7)
vbts ≤ 1− vb(t−1)s − vb(t−2)s (8)

vbts ≤ xb(t−2)s + xRb(t−2)s (9)

xSbts ≤ vbts (10)

xRbts ≤ Xb(1− vb(t+3)s) (11)

xRbts ≤ Xb

(
2

3
xSb(t+1)s +

1

3
xSb(t+2)s

)
(12)

xRbts ≥
2

3
Xb(x

S
b(t+1)s − ubts) (13)

xRbts ≥
1

3
Xb(x

S
b(t+2)s − ubts) (14)

xbts ≥ Xbx
S
bτs τ = t− 3, ..., t (15)

xbts ≤ Xb

t∑
τ=t−3

xSbτs (16)

xbts ≤ xb(t−1)s +Xb(1− vb(t−1)s) (17)

xbts ≤ xb(t+1)s +Xb(1− vbts) (18)

xbts ≤ xb(t−1)s + xRb(t−1)s − x
R
bts +

1

3
Xb (19)

t+7∑
τ=t

ubτs ≤ 7 (20)

Eq. (10) requires a nonzero value for the binary decision
variable vbts for a new delivery period to start. This is ensured
by (7) when the commmitment status changes, and (8) prevents
prematurely starting a new delivery periods. Eq. (9) requires
the delivery period to be preceded either by ramping or an
earlier delivery period. Eqs. (11)-(14) govern the amount of
ramping power, which is related to the capacity limit Xb and
the delivery power setpoint xSbτs in subsequent periods τ , e.g.
setting ramping power to 1

3 of the delivery power setpoint
5 minutes into the ramping period through (12) and (14).
Eqs. (15)-(19) ensure delivery power xbts mathes the setpoint,
preventing change of output between periods unless a new
delivery period is started (17)-(18), and (19) limits the ramp
rate when such change is allowed. Eq. (20) sets a maximum
duration of for the delivery period of an activated bid.

Non-anticipativity constaints require first-stage decision
variables to take the same value across all scenarios before
the realization of uncertain parameters. For a scenario fan,
this only applies to t = 1.

ubts = ubtσ σ 6= s,∀b, t, s (21)
vbts = vbtσ σ 6= s,∀b, t, s (22)
xbts = xbtσ σ 6= s,∀b, t, s (23)

xRbts = xRbtσ σ 6= s,∀b, t, s (24)

xSbts = xSbtσ σ 6= s,∀b, t, s (25)
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Fig. 1. Imbalance forecast scenarios and actual imbalance realization over a
scheduling horizon
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Fig. 2. Implemented rolling horizon simulation procedure

Finally, we require variables to be non-negative or binary

xbts, x
R
bts, x

S
bts ≥ 0 ∀b, t, s (26)

y+ats, y
−
ats ≥ 0 ∀a, t, s (27)

ubts, vbts ∈ {0, 1} ∀b, t, s (28)

Note that the formulation includes no network representa-
tion, thereby disregarding congestion and losses.

B. Model Implementation

Uncertainty in the future imbalance is represented by three
scenarios in a scenario fan (cf. Fig 1), thus the model is a two-
stage problem with fixed recourse, and can be solved readily
using deterministic equivalents. For each re-optimization, the
scheduling horizon is 45 minutes ahead, as intraday markets
further ahead are not yet closed. Then, for each timestep in the
study period, the actual aFRR and mFRR output can be found
as the final plan, given at t = 0 in each timestep iteration.
Here, the mFRR output will be a sunk decision, while the
aFRR power will be chosen by the optimizer to satisfy the
power balance considering actual realized imbalance.

The model has been implemented in Xpress-Mosel1 together
with a file framework for rolling horizon simulations, cf. Fig.
2. Simulations were run on an Intel Core i7-6600U laptop
computer with 16 GB RAM.

1FICO R©Xpress Optimization Suite v7.9



C. Case Study Specifications

For the purpose of demonstrating the stochastic strategy,
the activation process was simulated for 18 consecutive time
periods, corresponding to 90 minutes of balancing operation,
and compared against a corresponding deterministic strategy.
For the imbalance realizations, Norwegian imbalance data
from June 16, 2016 were used. The imbalance forecasts were
generated from percentiles of probability distributions based
on historical imbalance data series, with probabilities calcu-
lated from a calibration of the forecasts against the realized
imbalance on a training data set. Fig. 1 shows the realized
imbalance and forecasts used by the model for a specific time
period in the simulation.

A list of 16 balancing activation bids for mFRR were created
based on prices and volumes in the Norwegian balancing
energy market, eight in each direction of power delivery. The
activation market for aFRR is yet to be introduced in the
Nordic system, hence activation prices are uncertain. When
aFRR prices are similar to or lower than mFRR prices, auto-
matic activations will be preferential due to shorter activation
time and flexible output levels. Manual activations will only
be rational when there is insufficient aFRR to cover the
imbalance. In this case study, the majority of aFRR is assumed
to have a higher activation price than mFRR, causing proactive
activations of mFRR to minimize expected activation costs. A
simple stepwise cost curve is assumed, resulting in the supply
curve in Fig. 3.
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Fig. 3. Supply curve of upward and downward mFRR and aFRR capacity

III. RESULTS

A. Activation Costs

Fig. 4 shows the realized activation costs for the stochastic
and deterministic optimization strategies in each 5 minute pe-
riod during the simulated case study. Although activation costs
are lower with the deterministic strategy during some periods,
it is outperformed over the 90 minute study period, with total
activation costs equalling 7 364 e in the deterministic case, 18
% higher than 6 035 e for the stochastic approach. Sensitivity
analyses were run using different aFRR price curves. When
almost the entire amount (290 of 300 MW in each direction)
of aFRR is priced at 100 e, activation costs increase to 17
491 e (det.), 9 % higher than 16 084 e (stoch.). For low
aFRR prices, the optimizer prefers to wait-and-see, rather than
activate mFRR in advance. This leads to inadequate response
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Fig. 4. Activation costs for each simulated time period with the stochastic
and deterministic strategies
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Fig. 5. Net activation volumes for mFRR and aFRR over the simulation
horizon

in several cases when the imbalance turns out to deviate from
the forecast.

B. Reserve Activation

Fig. 5 shows how the net activated mFRR and aFRR (i.e.
upward minus downward) volumes differ under the two op-
timization strategies. The most prominent deviations between
strategies occur in the period t = 10− 35, where mFRR and
aFRR are activated in opposite directions due to a significant
forecast error.

The composition of upward and downward activations also
differs between the strategies. Fig. 6 indicates the schedules
proposed in one of the re-optimizations. Here, the determin-
istic strategy proposes activating both upward and downward
reserves simultaneously to deal with imbalance fluctuations,
while the stochastic approach proposes using more aFRR.

C. Running Times

For the optimization runs in the case study (cf. II-C), the
solver is able to identify near-optimal solutions within a few
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Fig. 6. Upward and downward activation volumes under different strategies

TABLE I
SIMULATION RUNNING TIMES FOR STOCHASTIC MODEL

Duality gap Median 75th pct. Max Max, det. model
5 % 6 sec 10 sec 34 sec 4 sec
2 % 12 sec 44 sec >5 min 9 sec
1 % 40 sec 160 sec >5 min 33 sec

seconds. As Table I indicates, however, there are significant
differences in running time between different time periods, and
in a few cases the solver needs more than one minute to reduce
the duality gap below 2 %. The deterministic model is notably
quicker. It should be noted that most of the time and effort
used for closing the duality gap is related to improving the
lower bound, while optimal decisions are often found almost
immediately using built-in heuristics in the solver. In other
words, the additional running time required to converge rarely
improves the quality of the solution by a significant amount.

Sensitivity analyses indicate the running time increasing
with the scheduling horizon, number of bids and imbalance
forecast scenarios, all of which will increase the number of
binary variables. Running time was also found to decrease
with increasing amounts of low-priced aFRR available.

IV. DISCUSSION

While the case study indicates potential cost savings from
using a stochastic activation strategy, the added benefit de-
pends on the relation between mFRR and aFRR bid prices.
Higher aFRR prices increase activation costs, not only from
forecast errors, but also from a shift towards more mFRR
activations. On the other hand, a comparatively low aFRR
price removes the incentive to schedule mFRR proactively.

Assuming perfect information, the deterministic strategy
proposes minimum-cost schedules, sometimes including si-

multaneous upward and downward activations of mFRR to
closely match the imbalance forecast profile. The deterministic
strategy has no incentive to propose flexible schedules that
easily adapt to unexpected imbalance realizations. The simu-
lation reveals the consequence of overestimating the quality of
the forecast. The stochastic optimization, on the other hand,
proposes a compromise schedule which is not optimal for
any forecast scenario, but it appears to be less vulnerable to
forecast errors than the deterministic strategy.

Using the bid prices in the activation market, it is possible
to cross-optimize between mFRR and aFRR using a proactive
philosophy. While this can reduce activation costs, Fig. 5 gives,
however, a clear illustration of a proactive failure, where the
imbalance takes a different turn than expected, and the aFRR
must cover not only the imbalance, but also the mFRR recently
activated in the opposite direction.

For an optimization procedure to be applied in real-time
balancing operations, computational speed is crucial. Both
the Standard Product representation and imbalance forecast
scenarios significantly add to the complexity of the problem.
The case study simulations show that near-optimal solutions
can be found quickly. However, real-life balancing energy
activation markets not only include more bid providers, but
there may also be network constraints or other considerations
to take into account in the bid selection process, increasing
the running time of the algorithm. Still, there are ways to
improve the computational performance, including parallel
computing and faster hardware. Other options include using
tailored heuristics or a progressive hedging algorithm [15] or
another dual decomposition approach [16].

V. CONCLUSIONS

An optimization model has been developed to find minimum
cost solutions to the balancing energy activation problem.
It uses bid data and imbalance forecasts, includes a de-
tailed representation of an mFRR Standard Product and takes
uncertainty into account through a scenario representation.
Moderately-sized problem instances can be solved to near-
optimality in a few seconds, and opportunities for improving
the computational performance have been identified.

Case study simulations based on data from the Norwegian
power system show a substantial reduction in activation costs
by taking uncertainty into account in the optimization. The
cost savings depend on the relative price differences between
the mFRR and aFRR product, as well as the quality of the
imbalance forecasts.

Simulations also demonstrate the interaction between aFRR
and proactive activation of mFRR, including a proactive
failure, where a considerable amount of balancing energy is
activated in the upward and downward directions simultane-
iously due to forecast error.
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