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Abstract This paper considers a powerful approach to modeling, identification and
control of high-speed autonomous surface vehicles (ASVs) operating in the dis-
placement, semi-displacement and planing regions. The approach is successfully
applied to an 8.45 m long ASV capable of speeds up to 18 m/s, resulting in a high-
quality control-oriented model. The identified model is used to design four different
controllers for the vessel speed and yaw rate, which have been tested through full-
scale experiments in the Trondheimsfjord. The controllers are compared using var-
ious performance metrics, and two controllers utilizing a model-based feedforward
term is shown to achieve outstanding performance.

1 Introduction

The development of autonomous vehicles is moving rapidly forward. The automo-
tive industry is particularly leading this trend. At sea, there is also a great potential
for such vehicles, which are typically referred to as autonomous surface vehicles
(ASVs). The use of such vehicles have scientific, commercial and military applica-
tions, and can result in reduced costs, increased operational persistence and preci-
sion, widened weather window of operations, improved personnel safety, and more
environmentally friendly operations. In [1], an early overview of unmanned surface
vehicles is given, while a more recent survey is presented in [8].

In this paper, we focus on modeling and control of small, agile ASVs which can
operate at high speeds with aggressive maneuvers. These vehicles typically cover
the whole range of speed regions for a surface vehicle, namely the displacement,
semi-displacement and planing regions. Hence, they are challenging to model and
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control, and it therefore becomes challenging to develop a robust and precise motion
control system which allows the vehicles to utilize their full potential. Specifically,
this paper revisits the modeling and control approach originally suggested in [4]
and further developed and reported in [3]. The method represents a control-oriented
modeling approach and underlines the importance of developing and using good
feedforward terms in the control law. The high-quality performance of the resulting
motion control system was validated through several full-scale experiments with
ASVs in the Trondheimsfjord in 2008 and 2009, both for target tracking and forma-
tion control applications. In this paper, we further develop this approach and go into
greater details concerning the modeling and identification procedure and results.

Full-scale identification experiments based on the suggested modeling approach
are conducted with a dual-use (manned/unmanned) ASV named Telemetron, see
Figure 1, which is owned and operated by the company Maritime Robotics. The
resulting identified model is shown to be very precise and cover the entire opera-
tional envelope of the ASV. This model subsequently forms the basis for a detailed
performance comparison between four qualitatively different controllers, which are
implemented and experimentally tested to control the speed and yaw rate of the
Telemetron ASV. In particular, the controllers are: A PI feedback (FB) controller;
a pure model-based feedforward controller based on the identified model (FF); a
controller which is a combination of model-based feedforward and PI feedback
(FF-FB); and a controller using feedback signals in the model-based feedforward
term in combination with PI feedback, which can be characterized as a feedback
linearization (FBL) controller. Relevant performance metrics are defined and used
to compare these controllers to determine which is most precise and energy efficient.

Other relevant work concerning a control-oriented modeling approach can be
found in e.g. [11] and [10].

The rest of the paper is structured as follows: Chapter 2 presents the main charac-
teristics of the control-oriented modeling approach. Chapter 3 describes the model
identification in detail, from experimental design to parameter identification. Chap-
ter 4 describes the four controllers which are considered in the paper, while Chapter
5 presents the results from the motion control experiments. Finally, Chapter 6 con-
cludes the paper.

Fig. 1 The Telemetron ASV,
which is a Polarcirkel Sport
8.45 m long dual-use ASV
capable of speeds up to

18 m/s. Courtesy of Mar-
itime Robotics.
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2 2DOF control-oriented vessel model

The vast majority of surface vessel models are based on the 3DOF model [7]:
il =R(y)v (la)
MV +Crp(V)+Ca(V,)V,+D(V,)V, = T+ Twind + Twaves (1b)

where 1 = [N E y/| T ¢ R2 x §! is the vessel pose, V= [u v r| T ¢ R3 is the vessel

Fig. 2 Vessel variables. The
superscripts (-)" and (-)?
denote the NED and body-
frames [7], respectively. The
variables N,E and y are the
vessel pose, u,v and r are the
vessel velocity and U is the
vessel speed over ground. The
course ) is the sum of the
heading y and the sideslip f3.

velocity and v, denotes the relative velocity between the vessel and the water. The
terms T, Twind; Twave € R3 represent the control input, wind and wave environmental
disturbances, respectively. The matrix R(y) is the rotation matrix about the z-axis,
the inertia matrix is M = Mgp + M4 where Mgp is the rigid-body mass and My
is the added mass caused by the moving mass of water. The matrices Crp(V) and
C4(v,) represent the rigid-body and hydrodynamic Coriolis and centripetal effects,
respectively, while D(Vv,) captures the hydrodynamic damping of the vessel. An
important limitation of (1b) is that it can be challenging to use for vessels operating
outside of the displacement region. For approximating the operating region of a
surface vessel, it is common to use the Froude number, defined as [6]:

(@)

where U, is the vessel speed through water, L is the submerged vessel length and
g is the acceleration of gravity. For Fn less than approximately 0.4, the hydrostatic
pressure mainly carries the weight of the vessel, and we operate in the displacement
region. When Fr is higher than 1.0 to 1.2, the hydrodynamic force mainly carries
the weight of the vessel, and we operate in the planing region. For Fn between these
values, we are in the semi-displacement region [6].

Typical ASVs have vessel lengths of up to 10 m, submerged length of up to
8 m and operating speeds up to 18 m/s. From Table 1, we see that an ASV with
a submerged length of 8 m exits the displacement region already at 3.54 m/s, and
enters the planing region at 8.86 m/s. Hence, (1b) is typically only suited for a small
part of the ASV operating region, which motivates for an alternative model.

ASVs are generally underactuated, hence it it not possible to independently con-
trol surge, sway and yaw. We therefore choose to reduce the model to the 2DOF
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Table 1: Operating speeds for displacement and planing regions. *Supply ships typi-
cally operate with speeds up to 7 m/s. It is therefore clear that supply ships generally
operate in the displacement region.

Vessel type Submerged length Maximum speed in dis- Minimum speed in planing
placement (Frn = 0.4) (Fn=1.0)

Small ASV 4m 251 m/s 6.26 m/s

Large ASV 8m 3.54m/s 8.86 m/s

Small supply ship 50 m 8.86 m/s* 22.1 m/s*

Large supply ship 100 m 12.5 m/s* 31.3 m/s*

which we want to control, namely the speed over ground (SOG) U = vu? +v? and
yaw rate (rate of turn, ROT). The kinematic equation (1a) is therefore modified to:

cos() 0 m

D = | sin 0
] 1(§x) ! 3)
x=r+B,

where ¥ = W+ B is the vessel course angle and f3 is the vessel sideslip. It should be

noted that this model implies that:

e Since U > 0, we assume that the vessel is traveling forward, that is u > 0.

e The sideslip B enters the kinematic equation. For kinematic control (e.g. path
following), this must be addressed by e.g. controlling course instead of heading.

To relax the limitation of operating in the displacement region implied by (1b),
we propose a normalized non first-principles model. This is inspired by [4] and [3]
where a steady-state model in a similar form is developed. Since the actual control
input of the vessel is not forces, but rather motor throttle and rudder angle, we select
these as inputs to the model. As a result, we also implicitly model the actuator
dynamics. Let the motor throttle be given as 7, € [0,1] and the rudder input be
given as 75 € [—1,1]. Denoting the vessel velocity as x = [U r]T € R? and the

control input as T = [T, Ts] " € R2, we propose the model:

M(x)x+0(x) =T, “)
where the inertia matrix M(x) = diag (my (x),m,(x)) is diagonal with elements of
quantities [ﬁ ﬁ} ,and 6(x) = [oy(x) 0,(x)] " is a unit-less damping term. No-
tice that both are functions of x, which allows for a nonlinear model. The reader

should also note that centripetal effects are not explicitly included in (4) due to the
choice of coordinates.
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3 Model identification

Identifying the parameters of (4) require a series of experiments to be performed.
In this section, we describe the identification experiments, parameterization of the
inertia and damping terms, and the methodology used for parameter identification.

3.1 Vessel platform and hardware

As already mentioned, the vessel used in this work is the Telemetron ASV. It is a
dual-use vessel for both manned and unmanned operations, and is equipped with a
number of sensors and a proprietary control system. Some of the specifications are
summarized in Table 2.

Table 2: Telemetron ASV specifications.

Component Description
Vessel hull Polarcirkel Sport 845
Length 8.45m
Width 271 m
Weight 1675 kg
Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of throttle valve
Rudder control Hydraulic actuation of outboard engine angle with

proportional-derivate (PD) feedback control
Navigation system
Identification experiments Kongsberg Seatex Seapath 330+
Control experiments Hemisphere Vector VS330

3.2 Identification experiment design

Since we wish to identify damping and inertia terms, both steady-state and transient

information is required. We therefore construct a series of step responses:

e Step changes in 7, given a series of fixed rudder settings 7, illustrated as orange
trajectories in Figure 3.

e Step changes in 75 given a series of fixed throttle settings 7,,, illustrated as blue
trajectories in Figure 3.

The steps are performed both for increasing and decreasing values to include the
effect of hysteresis, and is designed to sample the U/r-space of the vessel as shown
in Figure 3. It is assumed that the vessel response is symmetric in yaw, such that
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it is sufficient to perform experiments only for positive rudder settings (which for
the Telemetron ASV result in positive yaw rate). The vessel shall reach steady state
between the step changes such that the damping terms can be identified from the
steady-state response, while the inertia is identified from the transient response. The
motor will be kept in forward gear throughout the entire experiment.

Fig. 3 Expected shape of the
vessel velocity space, where
the red line is the boundary
of the velocity space. The
orange and blue lines are
examples of step change tra-
jectories for fixed rudder and
throttle, respectively. Note
that only some trajectories are
illustrated. The dots on the
trajectories illustrate steady-
state points.

The step changes in 7, are performed as:

. Start at 7, = 0. Select 75 = 0.

2. Step 7, stepwise from O to 1 in steps of 0.1, letting the vessel SOG and ROT
reach steady state before the next step is applied. Let the vessel do at least one
full turn after reaching steady state, to be able to minimize the effect of external
disturbances through averaging.

3. Step 1, stepwise from 1 to 0, in the same fashion as in step 2.

4. Repeat step 2 and 3 with the next rudder setting.

—_

Step changes in 75 are performed by interchanging 7,, and 75. Identification exper-
iments were carried out in the Trondheimsfjord 17" and 18™ of December 2015.

3.3 Measurement extraction

To identify parameters for M(x) and &(x), we need measurements of oy, o, my
and m, for different vessel states x.

3.3.1 Extraction of damping data

When the vessel is in steady state, the model (4) gives the relation:
x=0—>0(x)=r1, (5)

hence measurements of the damping term can be taken simply as the control input
when the vessel is at steady state. To reduce the influence of external forces, the
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vessel state is averaged to extract measurements for oy and o,. This is shown for
one of the fixed rudder settings in Figure 4. We observed that the motor response is
greatly reduced for 7, > 0.6, hence measurements with 7,, > 0.6 are omitted.
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Fig. 4: Vessel response with a fixed rudder setting. The gray patches mark steady
state regions.

By averaging the steady-state regions, we generate a set of Ny measurements
Ds = {{x] s X2, ,XNG},{O'] ,002,... ,O'Ng}, {T] , T2, ,TNG}}, which can be used
for identifying parameters for the damping term. The damping measurements, with
mirrored values for negative rudder settings, are shown in Figure 5.

3.3.2 Extraction of inertia data

To extract measurements for my and m,, we have N, step changes, and we create
an estimate of the vessel response using N,, local first-order linear models. We ap-
proximate the SOG and ROT dynamics as SISO systems, hence for the i-th step, the
linear approximation of the vessel SOG can be written as:

mU,'A.Ui + klA Ui = A Tml‘a (6)

o
. . . . oy, —0y.

where the inertia my, is assumed to be constant during the step, k; = U; Ul , where

i Y

(1)~ and (-)* denotes the value prior to and after the step, is a linearized damping
term, AU; = U —U;” and ATy, = T, — Ty The only unknown in (6) is the inertia
my;, hence we can find a suitable inertia my; by simulating (6) for a set of possible
inertias and selecting the inertia with the smallest squared estimation error, as shown

. . . U,++Ui7 r;r+r;
in Figure 6. The measurement is taken as (x,my) = ( ( -, *5* ) ,my; ). The

same approach is employed for identifying inertia for ROT.
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Fig. 5: Damping term measurements from averaging of steady-state responses. Mea-
surements for negative rudder settings are obtained by mirroring the data.
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It should be noted that, in contrast to identifying damping, we obtain two sets
of measurements %, = {{xl,xz, s XNy, Y A{my, ,my,, ... MUy, }} and 9, =

{{xl,xz, e XNy b A My s Py }} containing N,,, and N, measurements
r
respectively. The inertia measurements are shown in Figure 7.

3.3.3 Data preprocessing

Before the measurements are used for parameter identification, some preprocessing
is required:

e Damping measurements with 75 = 0 should result in zero yaw rate. Even though
we average the steady-state response, some offset will be present. Hence, all
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Fig. 7: Inertia term measurements. Measurements for negative rudder settings are
obtained by mirroring the data.

measurements (U,r,0y,0,) € Dg with 75 = 0, = 0 should be be modified as
(U,r,oy,0,) = (U,0,0y,0;).

e Since the domains of U and r are different, the measurements should be normal-
ized. We have applied zero-mean and unit variance normalization individually
for each measurement set Yg, Zy,;, and Z,, .

3.4 Parameter identification

This section describes identification of the parameters of (4) based on the measure-
ment sets Do, Dy, and D, .

3.4.1 Linear regression

For identification of model parameters, we use linear regression [2]. This requires
that the terms in (4) are linear in the parameters, e.g. that the damping and inertia
terms can be written as:

ou(x) =9s(x) Bs,.  0:(x) = 05(x)" B,
U(x) = ¢M(x)TﬁmU’ mr(x) = ¢M(x)TBm,-’

where ¢, (x) and ¢,,(x) are vectors of basis functions (also called regressors) while
Bs, Bs,: B, and B, are parameter vectors. This generalizes as a function:

y=0(x)"B. (8)

(M
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For the model (8), one can, given a data set {{x1,x2,...,x8},{y1,Y2,-..,0n}}
and a parameter vector B, define the weighted square loss function:

Zw,, vi—o(x)"B)’, ©)

where W; is a weight for sample i. By defining ¥ = [y; y2 ... yN]T and X =
[0(x1)" ¢(x2)" ... o(xn)"] " one can find the B that minimizes (9) as:

B=XxX"wx)"'x"wy, (10)

where W = diag(W1,Way, ..., Wyy). This is known as weighted linear least-squares
regression.

A well known issue with linear regression, especially with large parameter vec-
tors, is the problem of overfitting. To reduce this problem, one can penalize large
parameter values by adding a regularization term to (9) as:

Zw,, vi—6(x)"B)* +AR(B), (11)

where A > 0 is a regularization weight, and the choice of the regularization term
R(P) is problem dependent. We choose ¢;-regularization where R(B) = || B, also
known as lasso, which has the property of driving parameters to zero for sufficiently
high values of A [2]. This penalizes basis functions with low sensitivities to the loss
function, and favors sparsity in the parameter vector.

It should be noted that introducing regularization provides one parameter more
to the problem, in form of the regularization weight A. Additionally, there exist no
closed form solution to minimizing (11) with respect to B. However, given a reg-
ularization parameter A, the solution can be found through quadratic programming
techniques.

3.4.2 Cross-validation (CV)

For identifying hyperparameters, such as the regularization weight A, one can use
cross-validation (CV). This involves dividing the available data into a training set
and a validation set, where the training set is used for solving the parameter esti-
mation while using the validation set for evaluating the loss. Hyperparameters can
then be identified by minimizing the loss with respect to the hyperparameters. There
exist different methods for dividing the available data, e.g. k-fold, leave-p-out and
leave-one-out (which is a special case of leave-p-out). Leave-one-out CV evaluates
all possible combinations of leaving one sample for the validation set, hence for a
data set of N samples this will result in N combinations of training and validation
sets. We chose to use leave-one-out CV based on this property, while the limited
data size ensures computational feasibility.

It should be noted that when performing both positive and negative step changes
(see Figure 4), steady-state points with the same T will have quite similar (U, r)
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coordinates. Hence, one should handle groups of measurements when dividing the
measurements into training and validation data.

3.4.3 Damping term

From the structure of the damping measurements in Figure 5, we propose to use
polynomial basis functions for the damping term in (4). This is also motivated by
[7]1 where polynomial damping terms are used. The power of the polynomial is
chosen as four, which is assumed to be sufficient to capture hydrodynamic damping
and actuator dynamics. Hence, the regressor is defined as the 15-element vector:

0o(x)=[1,U, r, U2, Ur, 2, U3, U, U2, P, U* U3, 022, U, )T (12)

The parameter vectors ﬁGU and B are identified by minimizing (11) with re-
spect to B. The regularization parameter is found as described in Section 3.4.2. A
surface plot of the damping function is shown in Figure 8.
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Fig. 8: Polynomial function for the damping term. The scatter points are the mea-
suring points, where red points have weight W = 1, blue points have W = 0.5 and
green points have W = 0.1.

3.4.4 Inertia term

From the structure of the inertia measurements in Figure 7, it is clear that a polyno-
mial model will struggle to fit the data well. We therefore introduce an asymptotic
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basis function tanh(a(U — b)) in addition to the polynomial terms. The regressor for
the inertia terms is hence defined as the 16-element vector:

oy(x)=[L,U, U U, U U, U P, U U (13)
U?r?, Ur?, r*, tanh(a(U —b))]T.

Notice that the asymptotic basis function introduces two more hyperparameters in
the regression problem, namely a and b. To identify these hyperparameters, we again
use leave-one-out CV, as described in Section 3.4.2. Notice that we use regulariza-
tion when we identify these hyperparameters, individually of the linear regression.
The motivation for this is that the position of the steep asymptote in the inertial
measurement will move with changing ocean currents and external forces. Adding
regularization when identifying the hyperparameters increases the robustness of the
identified inertia term by adding a cost to choosing high parameter values for the
asymptotic term and hence limiting the gradient of the asymptotic term.

The parameter vectors B my> B m, are, as for the damping term, identified by min-
imizing (11) with respect to B. The hyperparameters are identified using CV. It
should be noted that we use ¢;-regularization when identifying the hyperparameters
(amy s by ) and (@, , by, ).
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(@) my (x) (b) m,(x)

Fig. 9: Function for the inertia term. The scatter points are the measuring points.

3.5 Model verification

To qualitatively verify the identified vessel model, we simulate the model with the
input sequence from an experiment not used in the model identification and compare
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the results. The model (4), with damping and inertia parameterization and param-
eters as identified in Section 3.4, is simulated with the recorded input sequence to
obtain the response shown in Figure 10. Based on the comparison, we see that the
model captures the dynamics of the vessel, although with slight offsets especially for
ROT. The simulated transient response coincides well with the real vessel response.

A design choice for the identification experiments was the assumed shape of
the vessel operating space, discussed in Section 3.2 and illustrated in Figure 3. This
design choice is verified by estimating the actual vessel operating space. This can be
generated by using all the steady-state velocities obtained during the identification,
as shown in Figure 11. By comparing the actual and assumed operating spaces, we
see that the shapes are very similar.

U [m/s]

r [deg/s]

Time [s]

Fig. 10: Real and simulated vessel response. The deviation at high SOG is caused
by exiting the valid domain of the identified model.

Fig. 11 Identified steady- 5 -
state velocities. The red

boundary line is estimated 15 |

by least-squares curve fitting =

a fourth order polynomial. E 10 t

Note that that U < 0.75 m/s =

is not part of the vessel oper- 5

ating space as ocean current

lower-bound the SOG. O 0 i 0

7 [deg/s|
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4 Controller design

In this section, we design four controllers to be compared through experiments:

1. A proportional-integral feedback (FB) controller.

2. A feedforward (FF) controller.

3. A combined feedforward and feedback (FF-FB) controller.
4. A feedback-linearizing (FBL) controller.

4.1 Controller types

This section describes the controller formulations, and the resulting closed-loop dy-
namics.

4.1.1 Model uncertainties

The model (4) does not account for modeling uncertainties. For closed-loop analy-
sis, we therefore add an unknown bias term and modify the model as:

M(x)x+o(x)=1+Db, (14)

where b is assumed to be slowly varying, hence b ~ 0.

4.1.2 Proportional-integral feedback (FB) controller

The FB controller is a proportional-integral controller with gain scheduling of the
proportional gain using the inertia term of the identified model (4):

ot
Trs = —M(x)K,—K; /t 2(y)dy, (15)
J1g

where K, > 0 is a diagonal proportional gain matrix, K; > 0 is a diagonal integral
gain matrix and ¥ = x — x,;. By inserting (15) into (14) we derive the error dynamics:

=K,k +M(x)"! (b— o(x)—K; /Ii(v)dy) + %4, (16)

where we see that the integrator must compensate for modeling errors and damping.
Evenif K; flg X(y)dy=b—o(x) and X = 0, we will still not be able to track a chang-
ing reference since ¢'(x) is changing with x, and x, # 0 for a changing reference.

4.1.3 Feedforward (FF) controller

The model-based FF controller feedforwards the desired acceleration and velocity:

Trr = M(x)x;+ 0 (x4). 17
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Notice that we use the measured state x when computing the inertia term, and the
desired state x; when computing the damping term. The error dynamics becomes:
¥=Mx)" (0(xs) ~ 6(x) +b), (18)

which has an equilibrium x = 6~!(6(x,) + b), given that 6~ !(-) is well-defined.
Hence, if b # 0 we will have some tracking and steady-state offset.

4.1.4 Combined feedforward and feedback (FF-FB) controller

The FF-FB controller combines the FF and FB controllers as:
t

Trrrg = M(x)x;+ 0(xy) —M(X)Kpi—Ki/t x(y)dy. (19)
0

Inserting (19) into (14), we can derive the error dynamics:
t

Xx=- piﬂ—M(x)*1 (G(xd)—a(x)+b—K,~ i(y)dy) , (20)
where one should notice that if the o' (x,) would be substituted with o (x) we would
have a feedback-linearizing controller. The motivation for using &(x;) in (17) is
to increase the robustness and introduce an extra “driving” term in addition to the
proportional feedback driving the error to zero.

fo

4.1.5 Feedback-linearizing (FBL) controller

The FBL controller is similar to (19), but computes the damping term for the mea-
sured velocity:
!
TFBL :M(x)xd+0'(x) —M(X)KPX—KZ‘ .i(’}/)d’}/, 21
fo
which can cause poor robustness with respect to disturbances and time delays in the
control system. The FBL controller is often used for analysis of closed-loop systems
due to the simple error dynamics:

¥=-K,x+M(x)"! (b —-K; tic(y)cW) : (22)

fo

4.2 Control architecture

The FB, FF and FF-FB controllers in Section 4.1 are realized by enabling the feed-
back, feedforward and both functions shown in Figure 12, respectively. The FBL
controller is realized by combining the feedback and feedforward functions, while
computing the feedforward damping as 6 (x) instead of o' (x,).

To increase robustness in the implementation, saturation elements are placed at
each output except for the proportional feedback element.



16 Bjgrn-Olav Holtung Eriksen, Morten Breivik

|

|

|

Integral term Ti |

'ane L |

T,,:fKift“ Z(y)dy !
\TFB

|

Proportional term | 7, |

|

= —M (@)K &

Zd

xsp|Reference[ . | ~ "~ """ T T T T T oS TS oo oo oo o oo |7
filter | %2 o ______ WL} %

Damping FF To

|
|
|
|
| Toe = 0(q) :
| \ TFF
I |
| Inertia FF TM ~ |
] |

- 0 | TM= M(:l)):l)d

Fig. 12: Control architecture. The different controllers are realized through combi-
nations of the feedback and feedforward functions.

To ensure continuous reference signals x; and X;, we employ a second-order
reference filter from a possibly discontinuous, user-specified setpoint signal xsp.
Additionally, we limit the acceleration such that the reference signals are feasible
with respect to the vessel capability. The filter is parameterized as [7]:

Xq| 0 1 X4 0
o[l 2w
while imposing the acceleration limits:

Ui € [Ugpin-Udvan | > 7d € [Fin > Fanar ) - (24)

The relative damping ratio matrix A > 0 is chosen as identity to achieve a critically
damped system, while the diagonal natural frequency matrix £ > 0 is a tuning
parameter.

5 Motion control experiments

To evaluate the performance of the controllers described in Section 4.1, they were
implemented on the Telemetron ASV and tested in the Trondheimsfjord on the 13
and 14" of October 2016. During the first day, the sea state can be characterized as
calm, which refer to significant wave heights of 0—0.1 m, while the sea state for the
second day can be characterized as slight, which refer to significant wave heights of
0.5-1.25 m [9]. In total, three different scenarios were tested in different sea states.

It should be noted that the time between the model identification and motion
control experiments was about 10 months. The top speed of the vessel was reduced
from 18 m/s to about 16 m/s, probably caused by algae growth on the hull.
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5.1 Tuning parameters

The reference filter was tuned with a natural frequency of = diag(0.4,1) and
acceleration constraints Unax = 0.75 m/s?, Upin = —0.75 m/s?, fimax = 0.1 rad/s?
and Fy;, = —0.1 rad/ s2. The feedback tuning parameters were selected as shown
in Table 3. Unfortunately, an implementation error resulted in a too high integrator
gain for the yaw rate feedback controller during the experiments in calm seas.

Table 3: Feedback tuning parameters.

Parameters Values
FB FF-FB FBL
Sea state - Calm:
K, diag(0.15,0.75) diag(0.15,0.75) diag(0.15,0.75)
K; diag(0.015,0.5) diag(0.015,0.5) diag(0.015,0.5)
Sea state - Slight:
K, diag(0.15,1) diag(0.1,0.5) diag(0.1,0.5)
K; diag(0.01,0.25) diag(0.0067,0.125) diag(0.0067,0.125)

5.2 Performance metrics

To compare controller performance, it is beneficial to define suitable performance
metrics. To simplify the analysis, it is also beneficial to combine the control inputs
and outputs to one input and one output when calculating the metrics. Since the
outputs have different units, we define the normalized signals U,Uy, 7 and 7, that
are in the interval [0, 1] in the expected operation space of the vessel. A combined
error and control input can then be computed as:

&) = /(00 - 0s0)2 + () — 7)), T0)=\JBr72  29)

Given these signals, we can define the integral of absolute error (IAE):

t
IAE(t) = / le(y)ldy, (26)
T

which penalizes the error linearly with the magnitude and serves as a measure of
control precision. A similar metric is the integral of square error (ISE), which pe-
nalizes large errors more than small errors.

The integral of absolute differentiated control (IADC) has been used earlier in a
combined performance metric in [13], and is defined as:

t
IADC(1) = / I(7)[dy, @7
0
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which penalizes actuator changes and serves as a measure of actuator wear and tear.
The integral of absolute error times the integral of absolute differentiated control
(IAE-ADC) is a combination of IAE and IADC:

t o
IAE-ADC(1) = / 2(y)|dy / 1#(y)[dy, (28)
0 0

which serves as a measure of control precision versus wear and tear.

The integral of absolute error times work (IAEW) scales TAE with energy con-
sumption [12]: ‘ .
1AEW(0) = [ fe(r)ay [ Pay. 9)

0 0

where P(t) is the mechanical power applied by the engine. IAEW measures control
precision versus energy consumption, hence it quantifies the energy efficiency. It is
common to model the applied propeller force F as proportional to the square of the
propeller speed, hence, F o |n|n [7]. The mechanical energy can then be written as:

P(t) o< U (1) |n(t)|n(1). (30)

Since we use the metric in a relative comparison, we do not care about any scaling
constant and set P(¢) = U (¢)|n(t)|n(z).

5.3 Experiments in slight seas

All the scenarios were tested in slight seas, and here we present two of the scenarios.

5.3.1 Test 1 - High-speed trajectory tracking with steady states

The first test was intended to test a large portion of the vessel operating space while
measuring both steady-state and transient performance. The test is symmetric in Uy
and anti-symmetric in r,;. The vessel response in slight seas is shown in Figure 13.
Immediately, we observe that the FBL controller suffers from instability, caused
by the feedback term &(x) in (21). The oscillatory vessel state causes a dropout of
the navigation system, stopping the experiment at ¢ =~ 194 s. In general, using sen-
sor measurements in model-based feedforward terms reduces the robustness with
respect to time delays, sensor dropouts and noise. Using the reference in the feed-
forward terms avoids these problems. The FBL controller is not used in the other
tests. The FF controller achieves good tracking, but naturally with some steady-state
offset. The FB controller achieves poor tracking, while also being largely influenced
by disturbances. The FF-FB controller has similar (or better) tracking performance
than the FF controller while avoiding steady-state offsets, and at the same time bet-
ter disturbance rejection than the FB controller. The FF, FF-FB and FBL controllers
fail in tracking the first transient due to the control system time delay which causes
problems with capturing the steep transient in the inertia term. It might be beneficial
to limit the gradient V.M (x) or saturating the inertia M(x) to avoid this behavior.
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Fig. 13: Test 1 - High-speed trajectory tracking with steady states in slight seas. The
feedback linearizing (FBL) controller fails at =~ 194 s due to sensor dropout.
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Fig. 14: Performance metrics for Test 1 in slight seas.

The TAE (Figure 14a) shows that the FF-FB controller has the best control pre-
cision, while the FF controller is somewhat better than the FB and FBL controllers.
From the IADC (Figure 14b), it is clear that the FB controller is tough on the ac-

tuators, while the FBL and FF-FB controllers are comparable. The FF
as expected, the best with respect to wear and tear. From the IAEW
the FF-FB controller has the best energy efficiency, the FF controller i

controller is,
(Figure 14c),
s second best

and the FB controller places third. The FBL controller has a bad IAEW due to the
oscillatory behavior. The IAE-ADC (Figure 14d) shows the same tendencies as the
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IADC, but the FF-FB controller performs better than the FBL controller, and the
gap between the FF-FB and FF controllers is smaller.

5.3.2 Test 2 - High-speed trajectory tracking without steady states

The second test was intended to investigate the tracking performance of the con-
trollers. The reference is constantly changing without reaching steady state, and
both moderate and high velocities are tested. This test was performed only in slight
seas. From Figure 15, we observe that the FB controller again suffers from poor

0 10 20 30 40 50 60 70 80 90 100
Time [s]

Fig. 15: Test 2 - High speed trajectory tracking without steady states in slight seas.
The FF and FF-FB controllers far outperform the FB controller.

tracking and largely fails this test. The FF controller performs remarkably well and,
from the time plot, the FF and FF-FB controllers seem to have equal performance.

From the performance metrics in Figure 16, the FB controller has the lowest
performance, while the FF and FF-FB controllers are quite equal. The FF-FB con-
troller has slightly better control precision (IAE) than the FF controller, at the cost
of increased actuator wear and tear (IADC and IAE-ADC).

5.4 Experiments in calm seas

Two of the scenarios were tested in calm seas, and here we present one of them.
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Fig. 16: Performance metrics for Test 2 in slight seas.

5.4.1 Test 3 - Lower-speed trajectory tracking with steady states

The third test was intended to test lower velocities, especially for the yaw rate. The
vessel response in calm seas is shown in Figure 17. Note that the integral gain for the
yaw rate controller unfortunately was set too high by accident, causing oscillation
in the yaw rate.

FB
FF
10 |- FF-FB
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o
T

0 I I I I I 1

0 50 100 150 200 250 300
Time [s]

10

r [deg/s]

Time [s]

Fig. 17: Test 3 - Lower-speed trajectory tracking with steady states in calm seas.
Observe the low amount of noise in the SOG-response compared to Figure 13.
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From Figure 17, we observe that the FB controller again suffers from poor track-
ing, and struggles with steady-state offset in yaw rate (despite the high integrator
gain). The FF controller also struggles with steady-state offset, but has superior per-
formance in the transients. The FF-FB controller combines the performance of the
FB and FF controllers and provides good tracking and low steady-state offset.
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Fig. 18: Performance metrics for Test 3 in calm seas.

From the performance metrics in Figure 18, we can draw the same conclusions
as for Test 1. However, concerning the IADC, the FF-FB controller has the most
wear and tear, which is probably caused by the initial oscillatory behavior in yaw
rate due to the high integrator gain resulting in high initial condition sensitivity.

5.5 Motion control experiments summary

For controller evaluation, it is useful to compare the performance metrics. The final
performance metric values for all the tests are presented in Table 4. We observe that:
e The FF and FF-FB controllers have the best performance:
— The FF controller is best with respect to actuator wear and tear (IADC), also
when scaled with the control precision (IAE-ADC).
— The FF-FB controller is best with respect to control precision (IAE). In all
tests except Test 2, it also has the best energy efficiency (IAEW). For Test 2,
the FF and FF-FB controllers have near identical energy efficiency.

e The FF-FB controller has the most consistent control precision performance
(IAE) for varying environmental conditions.

e The FF and FF-FB controllers have quite similar consistency of energy efficiency
(IAEW) for varying environmental conditions.

e The FB controller has the worst metrics in all the tests, except for IADC in Test 2.
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Table 4: The performance metrics are normalized for each test, and the controller
performing best for each metric in each test is highlighted in bold. C/S refer to
calm (C) and slight (S) seas. *For Test 1 in slight seas, the FBL controller did not
complete the entire test, hence the S metrics of FBL Test 1 are not comparable.

Test case Controller IAE TIADC IAE-ADC TAEW

Test 1 FB 85.8/100.0 41.0/100.0 35.2/100.0 85.6/100.0

C/S FF 71.1/84.2 21.0/22.1 14.9/18.6 65.6/74.9
FF-FB 41.5/54.9 55.1/55.4 22.9/30.5 42.0/56.5
FBL* 84.9/78.3 45.7/33.9 38.8/26.5 87.2/71.5

Test2 FB 100.0 96.9 100.0 100.0

S FF 60.4 75.3 46.9 57.5
FF-FB 53.4 100.0 55.1 59.3

Test 3 FB 88.9/100.0 45.2/100.0 40.2/100.0 89.7/100.0

C/S FF 80.8/97.5 28.7/26.4 23.2/25.8 75.3/83.1
FF-FB 43.7/45.2 62.7/70.2 27.4/31.7 42.8/45.1

6 Conclusion

In this paper, we have presented a powerful approach to modeling, identification and
control of high-speed ASVs operating in the displacement, semi-displacement and
planing regions. We have used this approach on a high-speed ASV to successfully
identify a control-oriented model of the vessel covering all its operating regions.
Furthermore, we have through full-scale motion control experiments compared the
performance of four controllers all utilizing the identified model:

e A proportional-integral feedback (FB) controller with gain scheduling.

A feedforward (FF) controller.

A combined feedforward and feedback (FF-FB) controller.

A feedback-linearizing (FBL) controller.

By both qualitative and quantitative comparisons, it is shown that the FF-FB and
FF controllers have superior performance over the two others. The FF-FB and FBL
controllers are formulated almost identically, but the FF-FB controller has superior
robustness and performance over the FBL controller.

From the results, we observe that model-based feedforward control is a power-
ful tool, which when used correctly will result in outstanding performance. There
are, however, pitfalls reducing the robustness with respect to time delays, sensor
dropouts and noise. This is the case for the FBL controller, where using the mea-
sured vessel velocity in the damping feedforward term causes instability.

Possibilities for further work include:

e Use the SOG and ROT controllers for closed-loop pose control for e.g. path fol-
lowing and target tracking scenarios.

e Use the SOG and ROT controllers and the identified model in combination with
the dynamic window algorithm to achieve collision avoidance functionality, con-

tinuing the work in [5].
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e Use the SOG and ROT controllers for manual velocity control through a joystick.
e Use the modeling approach for automatic and/or recursive model identification.
e Use the identified model to online modify the reference filter acceleration limits.
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