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Abstract

In this master work a thermodynamic model fitted to be used in connection with the flow simulator
VessFire has been generated. Based on the behavior of this simulator, the thermodynamic model
has to be able to take care of mass- and energy input and output, and that phases existing phases
might disappear, and new phases might appear. Based on this fact, mechanisms were developed for
these purposes. The starting point for this model was two control volumes, each consisting of a main
phase and a utility phase. To exclude phases from the system a norm criterion was applied, whilst the
mechanism to introduce a new phase was based on the tangent plane criterion. A main desire was
to verify the performance of the model when applied to variable heat– and mass input, as well as to
detect its shortcomings.

Three test cases were applied to the model, a two-component case, a one-component-case, and a
VessFire case with process data from VessFire as input. The results from the two component case and
VessFire case demonstrate that the model responds well to the heat- and mass inputs applied to the
system in these cases. For all time steps in these cases the system converges to the expected topolo-
gies in a relatively small number (5-10) of iterations. Both the norm criterion for excluding phases
and the initialization routine based on the tangent plane criterion, was proved to work. Further on,
the testing of the model reveals that a shortcoming exists when the temperature of the mixture ap-
proaches the critical temperature. At this point the initialization mechanism based on the tangent
plane criterion has no meaning anymore. Then an global initialization routine has to be applied to
the system. To develop routines to overcome these shortcomings was the focus of the next part of the
work.

In this work the stochastic initialization method Dynamic Multi Swarm — Particle Swarm Optimiza-
tion (DMS-PSO)(Liang and Suganthan, 2005) have been tested as a relevant initialization method to
be applied to the VessFire model. This is a global optimization routine that is based on the concept of
swarm intelligence.

The testing of an initialization routine for a vapor—liquid phase equilibrium system, requires feasible
one-phase states for the system to start the searches. To be able to perform a systematic and efficient
test regime, some knowledge is also needed about the properties of the system. In this connection it
is of considerable importance to obtain a knowledge about the stability conditions for the system.

In this work feasible one-phase states to test the initialization routine were obtained by converging
one-phase calculations in H p, UV , T p, and pV -coordinates. The main goal was to generate feasible
states to test DMS-PSO, a secondary goal of this part of the work was to investigate which coordinates
that would be appropriate for converging the states.

The main discovery of the investigation of the convergence- and stability properties for the different
grids, was that the calculated state for a single point in the T p-grid became very different depending
on the initialization of the calculations. The results from this work shows that the iteration sequence
converges to the closest of the three alternative solutions available on the pV -isotherm. The result-
ing states will differ according to this. This behavior was not present for the H p-scheme. Here the
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6 Contents

calculations converge to unique defined states regardless of the initialization point.

Based on the feasible states that were generated, (DMS-PSO) was implemented and tested for the four
component system, N2, CH4, C2, C3. The results from this testing revealed that the implemented rou-
tine was able to obtain a negative tangent plane distance at locations near the phase envelope. This
was true both on the vapor- and the liquid side of the unstable area. To include the trial phases to
the system, an UV n-flash was applied to calculate the equilibrium composition. For all trial phases
introduced to liquid systems, the equilibrium calculations converged to non trivial solutions. Never-
theless, for all trial phases included in the vapor system, the equilibrium calculations failed to con-
verge.

Although the implemented routine was able to find trial phases with negative tangent plane distance
for more than half of the metastable points, the current implementation of the routine has some con-
siderable drawbacks. Better solutions could have been found regarding the decisions of the bound-
aries, as well as to the choice of parameters to estimate.
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Chapter 1

Introduction

1.1 Background and Motivation

This work is part of a project at Petrell AS, where a new thermodynamic package for a process simula-
tor should be developed. The thermodynamic package in current use is a blackbox package by NIST
(NIST, 2011), known to give inconsistent results in some cases. To improve the thermodynamic be-
havior, as well as to get a better control over the thermodynamic calculations, it was decided to build
a new package, based on the thermodynamic function library developed by Tore Haug-Warberg and
Bjørn Tore Løvfall at NTNU (Lovfall, 2008).

The process simulator in question is called VessFire, and is a product offered by Petrell AS.

"VessFire is a simulation program for time-dependent non-linear analysis of thermo-mechanical
response during blow-down of process equipment, exposed, and unexposed, to fire. Vess-
Fire solves the problem of heat transfer, conduction, thermodynamics, and stress of object
contents using a coupled approach. The thermodynamic behavior of object contents is sim-
ulated to represent evaporation, condensing, boiling, vapor expansion and the pressure, as
the fluid are progressively heated up by the object shell" (petrell.no, 2011).

The software is able to simulate multi-phase fluids. In this context multi-phase means thermody-
namic material phases like e.g. vapor, liquid1, liquid2 etc. In the simulator each phase can be mod-
eled as a single control volume (CV), which means that there is one control volume for each phase
1. When the process equipment is exposed to external changes, like alterations in temperature or
pressure, the containment of the different phases will change. This means that the connected control
volumes have to exchange mass. One way to achieve this is by thermodynamic equilibrium calcu-
lations. Another way is to conduct mass transfer calculations based on diffusion, convection and
turbulence.

To perform the thermodynamic calculations, the program has first to detect whether the phase is un-
stable. This is done by a stability check at each time step. If the phase do not pass the stability check,
it means that it is unstable. The program then calls for the thermodynamic package, which performs
an equilibrium calculation, and returns the correct state of the control volumes to the simulator. The
calculation procedure is quite complex, however.

A thermodynamic package used in connection with this simulator have to be modeled from the same
basis as VessFire. Also the thermodynamic model has to be able to take care of mass- and energy

1A fluid mechanical CV is not equal to a thermodynamic CV. In a thermodynamic CV each phase is considered as a single
single CV. A fluid mechanical CV can include more than one thermodynamic phases

7
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8 Introduction

input and output, which leads to alternations in physical variables like temperature and pressure,
which again results in that phases are formed, disappear and are reintroduced. To be able to model
this dynamic behavior, the model must support the appearance and disappearance of phases. This
lead to the discussion of stability analysis, and initialization, which are the main foci of this thesis.

1.2 Historical Review

Mathematical models play a vital role in process system engineering. Nearly every area of application
contain some form of mathematical representation of the system behavior. Over the last 50 years,
there has been a widespread use of models for predicting both steady state and dynamic behavior of
processes (Hangos and Cameron, c2001). Phase behavior is essential to the modeling of all chemical
processes both land-based and offshore. Hence the task of phase equilibrium calculations enters into
the picture. Many applications in the fields of petroleum reservoir simulation and process simulation
require a considerable number of phase equilibrium calculations.

The problem of solving phase equilibria in multicomponent thermodynamic systems is usually com-
posed of three independent subproblems: Initialization, solving the equations, and checking whether
the calculated phase is stable (Ghiorso, 1994). Historically, the second of these subproblems, solving
the numerical problem, has received the greatest attention (Ghiorso, 1994). The traditional way of
solving the phase equilibrium problem has been based on solving the Rachford-Rice equation. Suc-
cessive substitution in combination with Newton’s method is used to solve the Rachford-Rice equa-
tion (Michael L. Michelsen, 2004). An advantage of this method is that the computing time grows as a
linear function of the components in the system. Nevertheless, the convergence order of this method
is only linear, and convergence becomes slower as it approaches the critical point of the mixture. Or-
bach and Crowe (1975) introduced the Dominant eigenvalue method. This method was a method
to accelerate the convergence of a computation sequence by transforming the sequence into a new
sequence with higher convergence order.

Besides the successive substitution method, there are methods based on the Newton scheme. These
methods can be divided into the two subclasses. The first subclasses consists of methods based on
the Newton-Raphson method. The Newton-Raphson method solves simultaneously the whole set of
descriptive equations in terms of all the problem unknowns (Ammar and Renon, 1987). The second
subclass consists of methods based on the minimization of Gibbs free energy. In these methods the
equilibrium problem is solved as a general optimization problem, minimizing the Gibbs energy of
the system (Michael L. Michelsen, 2004). A main advantage of the methods based on the Newton
scheme is that a second order convergence is obtained, as the iteration sequence approaches the
solution. Nevertheless, for these methods, calculation of the Hessian matrix of the energy function
is needed, which is associated with a large computing load (Nocedal and Wright, 2006). Also these
methods are more sensitive to initialization values (Ammar and Renon, 1987). Another drawback of
the Newton based methods is that the Hessian matrix approaches singularity near bubble points and
critical points (Trangenstein, 1987). Nevertheless, as the concept of stability analysis entered into
this area of science during the 1980’s, the second order convergence methods tend to gain popularity
(Michael L. Michelsen, 2004).

The most difficult and time-consuming part of the entire calculation can be the initialization part/to
establish a good initial guess. Michael L. Michelsen (2004) claims that by competent selection of ini-
tial estimates, based on stability analysis, combined with Newton-Raphson’s method, all two-phase
equilibrium problems could be solved (Michael L. Michelsen, 2004). Although this statement might
have been somewhat optimistic, stability analysis can be an advantageous tool associated with equi-
librium calculations. Stability analysis can be used both during the initialization phase, as well as to
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verify the stability of the different phases resulting from a calculated an equilibrium calculation, or
in checking the stability of an existing phase, to reveal if a new phase should be introduced (Ghiorso,
1994).

In the equilibrium state, an energy function is minimized. Which energy function that is minimized
depends on the physical conditions. An energy function is minimized in its extensive canonical
variables, whilst the intensive canonical variable is constant. During the numerical this minimum
is searched. A main challenge associated with stability analyses of phase equilibrium, is to decide
whether the calculated minimum is a local or a global minimum. Several researches have presented
work within the area of phase stability and initialization (Michelsen, 1982; Stateva and Tsvetkov, 1991;
Ghiorso, 1994; Radzyminski and Whiting, 1987; Hua et al., 1998). Stability analysis as discussed by
Michelsen (1982) involves applying the Gibbs’ tangent plane criterion in studying the energy surface.
The concept of this method is to detect whether a given solution is a global solution, based on testing
the tangent plane equations for different locations in the search space (Michael L. Michelsen, 2004).
This concept has served as a starting point for much research in the area.

The Tunneling method presented by Levy and Montalvo in 1977 (Boggs et al., 1985), was designed
to find the global optimum of a general non-convex smooth function (Nichita et al., 2004). The con-
cept of this approach is to minimize the tangent plane distance, using a modified tunneling function.
The Tunneling function is constructed to escape from local minima, and ending up at the global mini-
mum. This approach has been applied to different kind of phase equilibrium problems (Nichita et al.,
2004). Another branch of routines that have gained popularity in chemical engineering recently are
the stochastic global optimization routines. Their recent popularity is due to the fact that they provide
robust solution with relatively little computational effort (Srinivas and Rangaiah, 2007). Some of these
are routines based on the concept of swarm intelligence. A class of algorithms within this branch are
based on the Particle Swarm Optimization (PSO) routine developed by Kennedy and Eberhart (1995).
In PSO, a number of simple entities are placed in the search space of some problem or function. Each
of these entities evaluate the objective function at its current location. Each particle then determines
its movement through the search space by combining its own history and the history of the entire
swarm (Kennedy and Eberhart, 1995). Whilst PSO is based on the flock behavior of birds, another
class of minimization methods within this branch are based on the behavior of ants. These methods
were first introduced by the Ant Colony Optimization algorithm presented by Marco Dorigo in 1992
(Li et al., 2009).

1.3 Scope of Work

The aim of this master project was to develop a thermodynamic model for equilibrium calculations
to be used in a process simulator. This was done in collaboration with Anders Granskogen Bjørnstad
at Petrell AS. This model should be able to model phase behavior for a system exposed to alterations
in heat and mass input. To perform the equilibrium calculations, the Newton-Raphson method was
used. The partial derivatives of the energy function was supplied by a function library developed by
Tore Haug-Warberg et al at NTNU (Lovfall, 2008). Some important aspects associated with the model
was to generate mechanisms to reveal the occasions when a new phase should be formed, as well as
the occasions when an existing phase should be omitted from the system. To find solutions to these
challenges the attention had to be directed into the area of phase stability and initialization.

In this work a rigorous analysis on the stability of the system N2, CH4, C2, C3 was done. Concerning
initialization, the focus of this work has been on the tangent plane function and the probabilistic
initialization routine, Particle Swarm Optimization (PSO).

As the aim of this work was to develop a thermodynamic package to be used in a process simulator,
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10 Introduction

the first half of the time period for this master work was invested in the generation, as well as imple-
mentation, of a suitable model. The generated model was proved to respond well for heat- and mass
input for some real value cases supplied by VessFire, which was the process simulator in question. As
the model succeeds to function for the process data, the focus of the work was changed from model-
ing and implementation, to the question of developing/finding a suitable routine for initializing the
phase equilibrium calculations. Initialization methods like the Tunneling Method and the Particle
Swarm Optimization was studied (litt usikker på om eg skal ha med denne setninga, blir nesten ei
forteljing dette). It was chosen to implement and test the Particle Swarm Optimization method for
the four component system N2, CH4, C2, C3. This seemed to be an exiting method owing to the fact
that it is a relatively new method, and it does not appear to be used in any particular extent in this
area of science. The aim was to be able to make a statement whether a probabilistic routine like PSO
could be effectively used in the area of phase equilibrium calculations. To be able to test the routine,
starting states was generated from one-phase convergence of the system, and an rigorous analysis on
the stability of the system N2, CH4, C2, C3 was done.
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Chapter 2

Theoretical Background

2.1 Phase Stability

The determination of phase stability, whether a given phase will split into multiple phases, is a key
step in phase equilibrium calculations, and thus in the simulation and design of a wide variety of
processes in chemical process engineering (Hua et al., 1998). The resulting assemblage from an equi-
librium calculation must be evaluated for potential metastability, which means that the derived phase
compositions must fall outside the unphysical regions, and phases not included in the system must
be less stable than those currently in the equilibrium assemblage (Ghiorso, 1994). Also the system has
to be examined for whether or not the trivial solution is obtained. Then the thermodynamic stability
problem can be viewed as a complex problem, which aims to identify a multicomponent system un-
der given thermodynamic conditions as either stable unstable or metastable (Stateva and Tsvetkov,
1991). This problem of determining the phase stability conditions for a system has been (and is?) an
important area of research (Stateva and Tsvetkov, 1991). Baker et al and Michelsen have shown the ad-
vantage of studying the free energy area for this purpose (Radzyminski and Whiting, 1987). The phase
stability problem is frequently formulated in terms of the tangent plane, based on the approach by
the danish researcher Michelsen L. Michelsen, who has performed a main piece of work in this area.
Nevertheless, to be able to discuss on the phase stability property of a system, a clear formulation, as
well as definitions, of the characteristics of the various stability states are needed. This are given in
the following section.

2.1.1 Defining the Concept

Considerations of stability lead to some of the most interesting and significant predictions of ther-
modynamics (Callen, 1985). The criterion of stability is that the thermodynamic potential in ques-
tion (H,A,G,U) must be a convex function of its extensive parameters, and a concave function of its
intensive parameters (Callen, 1985). Figure 2.1 illustrates a possible situation for a thermodynamic
potential plotted against one of its extensive variables (for a two phase system?). From Figure 2.1 one
can observe two different convex regions, and one concave region.

Mathematically, for the statement of convexity for the energy function as expressed by its exten-
sive parameters, the Hessian matrix with respect to its extensive parameters has to be positive def-
inite, ∂2F

∂X∂X > 0. For this requirement to be satisfied, all the eigenvalues of the Hessian have to be
positive (Nocedal and Wright, 2006). The extensive variables associated with the energy functions,
H , A,U ,G are S,V , N . Then the second derivatives of the energy function, F , has to be positive def-
inite with respect to S,V , N . The inequality, ( ∂2F

∂N∂N )X 6=N , is known as the limit of diffusional stability

11
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12 Theoretical Background

(Radzyminski and Whiting, 1987). This is the most stringent condition, and is therefore said to be
the mathematical condition of intrinsic stability (Radzyminski and Whiting, 1987). The condition,
( ∂2F
∂V ∂V )X 6=V , is known as the condition of mechanical stability, this is a less stringent condition for

thermodynamic stability (Ghiorso, 1994). Nevertheless, there might be cases where both the thermo-
dynamic stability and the diffusional stability are violated at the same time.

Figure 2.1: Thermodynamic potential
with multiple minima (Callen, 1985).

More trivially speaking a system at given thermodynam-
ical conditions is said to be stable if there do not exist a
state with lower energy for the given mixture (Stateva and
Tsvetkov, 1991). According to this statement, the system
at Figure 2.1 is stable in the lowest minima, in this case,
corresponding to the largest value of the extensive quan-
tity. Mathematically, this means that the system is stable
at its global minimum, and not in its local minima. If the
criteria of stability is not satisfied a system breaks up into
two or more phases (Callen, 1985). Then for the location
of the convex part of Figure 2.1, the system will add an-
other phase. From a fundamental point of view, a stable
system is a system which will return to its original state
after it has been exposed to external fluctuations (Stateva
and Tsvetkov, 1991). An unstable system is classified as a
system which turns into another state when such fluctua-
tions ceases. Figure 2.1 at page 12, shows that such conditions for stability holds for both minimum.
At these area also the energy potential will be a convex function of the extensive variables. System
trapped in such secondary minima, are defined at metastable phases. These phases will be effective
in stable equilibrium, as if the deeper minima did not exist (Callen, 1985).

Figure 2.2: Competition of two minima
of the Gibbs potential near the coexis-
tence curve (Callen, 1985).

Nevertheless, according to the definition of stability as a
state where no other state, at given thermodynamic con-
ditions, have lower energy, the left minima will not be con-
sidered as a stable state. Mathematically this minima will
qualify as a stable state, as both the diffusional-, as well as
the mechanical, stability is satisfied. This makes it hard for
a mathematical equation solver to detect whether a system
is trapped in a metastable state, or if the global minimum
is found.

The form of the curve for the energy potential changes
with alterations in some of the thermodynamic parame-
ters (Callen, 1985). At two-phase equilibrium the value for
the energy potential will be the same for two distinct local
minima, which for these cases both constitutes the global
minima. If the point of interest was to move off the coex-
istence curve in either direction, then one or the other of
these minima are becoming the global minima. This is il-
lustrated for Gibbs’ energy as function of volume in Figure 2.2.

The shift of the equilibrium position from one local minimum to the other is known as a first order
phase transition (Callen, 1985). Such an incident is induced by a change in some of the thermody-
namic variables (Callen, 1985). Each transition can be viewed as the result of a failure of these stability
criteria (Callen, 1985). The two states between which a first-order phase transition occurs are distinct,
occuring at separate regions of the thermodynamic configuration space, which mean that they cor-
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2.1. Phase Stability 13

respond to very different molar volume, molar entropy, and so forth (Callen, 1985). This becomes
obvious based on observations from Figure 2.2 and Figure 2.1.

2.1.2 The Pressure-Volume Isotherm

The thermodynamical potentials (H, A, U, G) might be the fundamental entities to play with. Never-
theless, a more common description of a thermodynamic system is by its volume-pressure-isotherms.
For many gases the shape of these isotherms are described by the form of the isotherms predicted by
various cubic equation of states, which all have similar shapes, and are derived from the van der Waal
equation of state (Callen, 1985). The general shape of the van der Waal isotherm is illustrated in Figure
2.3, and in Figure 2.4a.

Figure 2.3: The general shape of the pV-
isotherms for a cubic equation of state
below the critical state (Callen, 1985).

The different letters marked in Figure 2.3 corresponds to
different pressures representing characteristic fundamen-
tal states. At pressure pS liquid is the only phase that might
exist for the given system. Reducing the pressure, whilst
the temperature is held constant, this fact will exist until
the pR is reached. At this pressure there exist two possible
phases. Continuing to reduce the pressure in the quasi sta-
tistical direction, with constant temperature, three states
of equal P and T are available for the system. This will be
valid until the pressure is reduced below pB . Which state
that will constitute the global minimizer of the energy po-
tential for a given pressure, are different dependent on the
pressure relatively to the curvature of the isotherm. Nev-
ertheless, it should be observed that the isotherm on Fig-
ure 2.3 do not satisfy the conditions of mechanic stability,

( ∂p
∂V )T,n, everywhere. This condition is clearly violated in

the portion of the isotherm from M to F, which means that
this region corresponds to unphysical states (Callen, 1985). At location M and F, ( ∂p

∂V )T,n = 0. These
points can be viewed as limits for mechanical stability, from the liquid side and from the gas side,
respectively.

Considering the pressure pQ , at this pressure, the possible states, Q, J, and E, might exist. As already
indicated, p J corresponds to an unstable state. At this particular pressure, the liquid state (Q) will
correspond to the global minima-, whilst the gas state (E) will represent the local minima of the energy
potential (Callen, 1985). This will be the case for all pressures in the interval

〈
pR , pO

〉
. The points K

and D represent the inflection points of the particular isotherm.

Pressure pO = pD represent the two-phase equilibrium state, which correspond to the state where the
two local minima of the AV —isotherm will have the same value for the energy potential. For pressures
below pO = pD , the gas phase volume will have the deepest lowest minima on the AV —isotherm, and
then represent the true stable state. At these locations a liquid state might exist as a metastable state
(Callen, 1985). The opposite is true in the region

〈
pO , pR

〉
. Here the liquid phase constitutes the global

minimum, and thus the stable state, whilst a gas phase might exist as a metastable state. Based on
the foregoing information, the isotherm in Figure 2.3 can be viewed as the underlying fundamental
isotherm, whilst a thermodynamic stable isotherm would be the curve S-O-K-D-A (Callen, 1985).
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14 Theoretical Background

2.1.3 Near the Critical Point

"The entired structure of thermodynamics appeared in the middle of the last century to be
logically complete, but the structure founded on one ostensibility detail. That "detail" had
to do with the properties of the system in the neighborhood of the critical point"

This quote is cited from Callen (1985), and introduce an important aspect of the behavior of a ther-
modynamic system. As the critical point is approached, the properties of the gas and liquid phases
tend to approach one another, resulting in only one homogeneous phase at the critical point. This
phase is defined as a supercritical fluid (Callen, 1985). Figure 2.4b and Figure 2.4a, demonstrate the
curvature of the GV —isotherm, and pV —isotherm as the critical state is approached.

(a) pV-isotherms (b) GV-isotherms

Figure 2.4: The development of the isotherms as the system approaches the critical point

From Figure 2.4b one can observe that the function of the given energy potential becomes flat, which
means that only small alterations in some thermodynamic parameters will change which state is the
stable, as the state draw near the critical point . At the point where the critical state is reached, the dis-
tinction between the to phases totally disappears, this corresponds to that only one minima exist at,
and beyond, this point (Callen, 1985). For a pV —isotherm the critical temperature can be observed
at the point where the isotherm no longer has minimum- or maximum points. In Figure 2.4a this can
be observed for isotherm T7. Above the critical temperature a liquid cannot be formed by an increase
in pressure, but with enough pressure a solid may be formed.

Summarized, in the near critical regions most probable values, which are the subject of thermody-
namic theory, differ from the average values which are measured by experiments (Callen, 1985). Ther-
modynamic behavior near the critical point are governed by a set of critical exponents (Callen, 1985),
and is beyond the scope of this thesis. As the temperature are raised sufficiently far beyond the critical
temperature, the minima of the thermodynamic potential get steeper, and the near critical behavior
ceases (Callen, 1985). This is illustrated for the GV —diagram in Figure 2.5.

Based on the knowledge from the previous sections, a foundation for the understanding of the
phase stability analysis, frequently performed associated to phase equilibrium calculations in the
in the process industry, has been built. Governing approaches to the phase stability analysis in these
area of science, have been based on the tangent plane method (sett inn nokre av artiklane som refer-
anse på dette). This method will be outlined in the next subsection.
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2.1. Phase Stability 15

2.1.4 The Tangent Plane Condition

Figure 2.5: Developement of GV beond
the critical point

The phase stability problem is frequently formulated in
terms of the tangent plane condition (Hua et al., 1998).
The practical application of the tangent plane condition
in connection with phase equilibrium was demonstrated
by Baker et al. in 1982 (Michael L. Michelsen, 2004). The
basics of this concept is to introduce a trial phase to the
given system, and then minimize the difference in a given
energy potential between these two phases. The choice
of energy potential, depends on the given working condi-
tions. Traditionally T and p are to be constant in chemical
processes, thus the Gibbs’ energy function have received
the greatest attention in this area of science (ref på dette,
termoboka kanskje, evt omformulera). The tangent plane
condition, as outlined by Michelsen (Michelsen, 1982), is
based on an Taylor expansion of Gibbs’ energy. From
this approach the following minimization problem are de-
duced to test the stability of an existing phase:

Given x ≡ n

eT n
and µ=µ(x)

where

n = [n1,n2 . . . ,nn]T , x = [x1, x2, . . . , xn]T , eT = [1,1, . . . ,1]

Minimize δ≡ xT (µ(x)−µ0)

Subject to eT x = 1 and x ≥ 0

where δ represent the tangent plane distance, and µ(x) and x denotes the chemical potential and
mole fraction of the new phase respectively.

If, at the solution x of this problem, δ ≥ 0, then the original phase is stable. Contrarily, if δ < 0, the
existing state is unstable and the new phase should be introduced (Trangenstein, 1987). Geometri-
cally the δ is the vertical distance from the tangent hyperplane to the molar Gibbs’ energy surface at
the original composition, to the energy surface for the two phase system (Michelsen, 1982). This is
shown schematically in Figure 2.6.

The tangent plane test outlined in the previous section is based on Gibbs’ energy, nevertheless the
same principals will apply to any other of the thermodynamical functions. In this master thesis the
calculations are based on Helmholtz energy. To get a clear picture of the foundations of the tangent
plane criteria, a fully derivation based on Helmholtz energy is outlined next.

Consider a multicomponent, single phase, mixture at a given temperature, T0. By Euler integra-
tion the Helmholtz energy, A(T,V,n), with canonical veriables T, V, and N, can be expressed as follows
(Haug-Warberg, 2006):

A =∑(
∂A
∂Xi

)
X j 6=i ,ζ j

Xi =−pV +µT n (2.1)
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Figure 2.6: Developement of GV beond
the critical point

where vector notation is used.

Assume that a new phase with an infinitesimal mole
amount, ε, is formed from the original mixture with mole
amount N . As the new phase is formed, the mole amount
of the original phase is represented by, N − ε. The change
in Helmholtz energy can then by expressed as follows:

∆A = AI + AI I − A0 = A(N −ε)+ A(ε)− A0 (2.2)

where A0 represent the original energy for the one-phase
system.

Then do a first order Taylor extension of A(N −ε):

A(N −ε) = A0 + (∇A)T∆X , where∆X =−
(
δV
δN

)
(2.3)

Set this expression into equation (2.37):

∆A = A(ε)+ (∇A)T∆X (2.4)

where,

∇A = (
∂A
∂X

)
T
=

[
( ∂A
∂V )T,n

( ∂A
∂N )T,V

]
=

[−p
µ

]

Then the following expression is obtained for ∆A:

∆A = A(ε)+pδV −µδN (2.5)

From Euler integration Helmholtz energy for the new phase can be expressed as:

A(ε) =−pV +µN

the volume and the mole amount of the new phase will be equal to δV and δN respectively. The final
expression for the alteration in Helmholtz energy by introducing the new phase is then:

∆A =−(p −p0)δV + (µ−µ0)TδN (2.6)

which represent the tangent plane function in a Helmholtz frame. As long as the original phase is the
most stable phase, Helmoholtz energy for this phase will be less than for the two-phase system. Then
equation (2.6) will give a positive result. Nevertheless, whenever this equation gives a negative value,
the original system is unstable or metastable, and the new phase should be introduced (Michelsen,
1982).

In theory, this tangent plane check would be able to determine whether a phase is stable or metastable.
The challenge is only to initialize the test with appropriate estimates for the composition of the trial
phase. For this problem numerous algorithms have been purposed in the literature (Stateva and
Tsvetkov, 1991; Ghiorso, 1994; Nichita et al., 2004). This will be the theme of the following chapter.



i
i

“Master_final1107” — 2011/7/26 — 12:58 — page 17 — #17 i
i

i
i

i
i
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2.2 Initialization

The thermodynamic model that are to be generated, has to be able to take care of mass- and energy
input and output. From time to time this have the outcome that phases are formed, disappear and
are reintroduced. To be able to solve this task, the thermodynamic package has to include some kind
of stability check to predict whether the existing phase is stable, unstable, or metastable. To detect
whether a phase is unstable, are be easily performed by mathematical testing for diffusive- (2.7), and
mechanical stability (2.8) conditions,

(
∂p
∂V

)
T,n

≤ 0 (2.7)

(
∂F

∂N∂N

)
T,n

≤ 0 (2.8)

where F denotes the thermodynamic potential. The distinction between metastable and stable mix-
tures are more difficult. The metastability is not reflected by the properties of the Hessian matrix
of the energy potential F and verification of intrinsically stability requires a global search (Stateva
and Tsvetkov, 1991). The manifold of algorithms on this theme is multitudinous in literature, some of
them available in (Michelsen, 1982; Stateva and Tsvetkov, 1991; Ghiorso, 1994; Radzyminski and Whit-
ing, 1987; Hua et al., 1998; Ammar and Renon, 1987). Nevertheless, it still seems to be a problem to
develope a routine to perform well, sufficiently accurate or within acceptable computation time, for
a wide range of cases. Optimization routines based on swarm intelligence constitute a relatively new
direction of algorithms used to solve multidimensional minimization problems. These are stochas-
tic methods that are based on the social behavior of various animals. Particle Swarm Optimization
(Kennedy and Eberhart, 1995) represents one such routine.

2.2.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) has root in two main component methodologies. The coupling to
the behavior of animals, like bird flocking, fish schooling, and swarming theory in particular, might
be the most obvious. Nevertheless, it is also related to evolutionary computation, and has ties to both
generic algorithms and evolutionary programming (Kennedy and Eberhart, 1995). PSO can be easily
implemented and is known to be computational inexpensive, owing to the fact that its memory and
speed requirements are low(Jiang et al., 2007). The basic concepts of this algorithm are presented in
the following paragraph.

The standard algorithm

PSO is a population based optimization tool, where the system is initialized with a population of
random particles, searching for optima for an objective function in the search space (Jiang et al.,
2007). The PSO algorithm is initialized with a population of random candidate solutions, the particles
(Trelea, 2003).

For a multidimensional system of d dimensions, a particle will be a vector of length n. For each
of these dimensions and upper and lower bound are to be given, this will define the search space
(Poli et al., 2007). Each particle is then given a randomized velocity, which is a vector of dimension
n, and its position is moved through the problem space in an iterative manner. The velocity, which
represents the step in the multidimensional space, is determined based on a combination of the best



i
i

“Master_final1107” — 2011/7/26 — 12:58 — page 18 — #18 i
i

i
i

i
i

18 Theoretical Background

Start

Input:
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(b) Local PSO

Figure 2.7: Flowchart for the PSO-alogoritm.
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position obtained by the individual particle and the best position obtained for the whole swarm, up
to a given time (Trelea, 2003). The equation used to express this step is given in equation (2.9):

Vk+1 = aVk +b1r1(p −xk )+b2r2(g −xk ) (2.9)

At iteration k, the velocity vk of a given particle is updated based on its current value affected a,
which is a factor known as the inertia weight a, as well as a term which attract the particle towards
its previously best known position, p, and the best position known by the entire swarm, g (Trelea,
2003). The strength of attraction against each of these best positions are determined by the ratio r1 to
r2. Randomness to achieve the ability to test various regions in the problem space, in order to locate
a good optimum, is introduced via the random numbers r1 and r2. These parameters are usually
chosen as uniform random numbers in the interval [0,1] (Trelea, 2003; Poli et al., 2007):

r1,r2 = uni f or m(0,1) (2.10)

Then the particle flies from its current position towards the new position according to equation (2.11).

xk+1 = xk + vk+1 (2.11)

At each iteration of the algorithm, the objective function is evaluated for the current position. If that
position is better than any positions that have been found for that particular particle, the current po-
sition is considered as the particles’ new best position (Poli et al., 2007). A particle by itself has almost
no power to solve any problem, progress only occur when particles interact (Poli et al., 2007). Each
particle has to execute some form of communication with other particles. Then given that a partic-
ular position has been considered as a particles’ best position, the objective value of this position is
compared with the best value found by the entire swarm. For each iteration the best value both for
the entire swarm and for each particle are stored for comparison on later iterations. This iterative
process is repeated until a user-defined criterion is reached (Jiang et al., 2007). Figure 2.7a illustrates
the steps in the standard PSO-routine.

A main drawback of the method is that premature convergence might be obtained (Trelea, 2003; Jiang
et al., 2007). Nevertheless, this limitation can to some extent be prevented by choosing the equation
parameters properly (Trelea, 2003). The parameters b1 and b2 are tuning variables for the algorithm.
The tuning of this variables will have a great effect on the performance of the algorithm (Trelea, 2003).
A main objective for the tuning of these variables is to achieve a good balance between the ability to
include the whole search space, to ensure the global optimum has been found, and the ability to
concentrate the search around promising candidates. This is known as the exploration-exploitation
trade off (Trelea, 2003). Trelea Trelea (2003) shows how the user can do well-informed decisions on
tuning these parameters based on dynamic system theory.

As researchers has learned about the routine, new versions have been evolved (Poli et al., 2007). In
this world of PSO routines, a partition can be made among global and local versions of PSO (Liang
and Suganthan, 2005). The original version can be considered as a global version, where the objective
function for each particle is compared with the value for best position in the entire swarm, the glob-
ally best value (Liang and Suganthan, 2005). In the local versions the swarm is divided into smaller
subswarms. Then the general search routine is performed within each subswarm. The local rou-
tines have demonstrated better properties for exploring the search space, but traditionally, the global
routines tend to converge faster (Poli et al., 2007). Nevertheless, the development of dynamic rou-
tines, where the subswarms are periodically schuffled, seemed to smarten up this drawback of the
local routines (Poli et al., 2007; Jiang et al., 2007; Liang and Suganthan, 2005). Dynamic versions of
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the local methods have shown to greatly elevate the ability of exploration and exploition (Jiang et al.,
2007). The Dynamic Multi-Swarm Particle Swarm Optimizer (Liang and Suganthan, 2005) is such an
algorithm. This routine is outlined in the following section.

Dynamic Multi-Swarm Particle Swarm Optimizer

The dynamic multi-swarm particle swarm optimizer method (Liang and Suganthan, 2005) is devel-
oped based on the local version of PSO. As in other local PSO-methods, the whole population is di-
vided into several small swarms, the sub-swarms. In this approach, a dynamic multi-swarm particle
swarm optimizer (DMS-PSO), whose neighborhood is dynamic and randomly chosen, is purposed.
The flowchart, which illustrates the step in this algorithm, is given in Figure 2.7.

In order to slow down the population’s convergence and increase diversity, the population is divided
into small sized swarms. Built on the fact that PSO with small neighborhood performs well on com-
plex problems (Liang and Suganthan, 2005), the size of the sub-swarms in DMS-PSO, are chosen to be
small compared to similar versions of PSO. Each swarm uses its own member to search for better area
in the search space of that particular sub-swarm. The search within each sub-swarm are performed
in an iterative manner, according to the standard PSO-routine, which is illustrated in Figure 2.7a.

Since its introduction in 1995, the particle swarm optimization has been used across a wide range
of applications where non-linear problems have to be solved(Kennedy and Eberhart, 1995). In an
overview article Poli et al. (2007) list applications in 26 categories, based on 1100 publications on par-
ticle swarm optimization stored in the IEEE Xplore database at that time (2007). Recently, also the
community of chemical engineers have shown interest for these stochastic optimization routines,
and PSO has been successfully used for several chemical applications, including thermodynamic cal-
culation (Bonilla-Petriciolet and Segovia-Hernández, 2010). In the next section this area of research
will be reviewed shortly.

2.2.2 PSO in Phase Equilibrium Calculations

In the way stochastic optimization routines only require calculation of the objective function, many
thermodynamic problems that are very difficult to solve by conventional techniques, due to the ill-
structure surface of the thermodynamic potential, can be solved by such methods (Bonilla-Petriciolet
and Segovia-Hernández, 2010). Recently several stochastic global optimization methods have been
applied to solve problems related to phase equilibrium (Bonilla-Petriciolet and Segovia-Hernández,
2010). Based on its simplicity, both in formulation and implementation, PSO has shown to be one
of the most promising stochastic methods in this area of science. Ferrari et al. (2009) tested the per-
formance of PSO to estimate the parameters in models describing liquid-liquid phase behavior of bi-
nary and multicomponent systems. They reported results in good agreement with experimental data
(Ferrari et al., 2009). Rahman et al. (2009) reported a variant of PSO to be able to locate global mini-
mum of tpd for a binary and a ternary three phase equilibrium system (Rahman et al., 2009). A wide
ranging study of various PSO variants was performed by (Bonilla-Petriciolet and Segovia-Hernández,
2010). In this study the standard PSO was compared with some of its variants applied to multicom-
ponent system for both non-reactive and reactive phase equilibrium systems (Bonilla-Petriciolet and
Segovia-Hernández, 2010). The conclusions of this work indicated that the classical PSO with con-
stant values for the tuning variables b1 and b2, performed best for both non-reactive and reactive
systems (Bonilla-Petriciolet and Segovia-Hernández, 2010). Nevertheless, the result indicated that
PSO was effective, but not reliable methods to perform the global optimization of the tangent plane
distance and the minimum Gibbs’ energy (Bonilla-Petriciolet and Segovia-Hernández, 2010).
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Due to the fact that higher dimensional problems are expected to be more complex and more dif-
ficult to solve, an important aspect should be to test PSO for multicomponent systems. Apart from
the research of Bonilla-Petriciolet and Segovia-Hernández (2010), the testing of PSO applied to mul-
ticomponent systems seem to be restricted in literature. In this work testing of the local dynamic PSO
version, DMS-PSO, should be tested on a four component two-phase system. The main goal is to test
the performance of DMS-PSO in the metastable area.

2.3 Calculating the Phase Equilibrium

Phase equilibrium calculations are of considerable importance within a wide range of chemical pro-
cesses. Therefore numerous algorithms have been applied for this purpose. Nevertheless, a starting
point for every equilibrium calculation is the statement of the thermodynamic criterion of equilib-
rium.

2.3.1 The Criterion of Equilibrium

The second law of thermodynamics for an isolated system (2.12) serves as the starting point for the
statement of the condition for thermodynamic equilibrium (Michael L. Michelsen, 2004).

(dS)U ,V ,n ≥ 0 (2.12)

An isolated system is a system that neither exchanges heat, work or matter with its surroundings
(Michael L. Michelsen, 2004). A consequence of (2.12) is that for an isolated system, the entropy
will approach equilibrium by increasing its entropy. The equilibrium state of a particular system is
obtained when the entropy of the system is maximized. At this point the following characteristics will
be true for the entropy:

(dS)U ,V ,n = 0 (2.13)

(d 2S)U ,V ,n < 0 (2.14)

To make a general statement of the equilibrium conditions for a non-reacting phase equilibrium sys-
tem, a multicomponent system must be considered. Since an isolated system do not exchange energy,
mass or work with its surroundings, these quantities must be conserved within the system, which
makes the system subject to the following expressions for the extensive independent properties U , V ,
and n:

ω∑
π=α

dUπ = 0 (2.15)

ω∑
π=α

dV π = 0 (2.16)

ω∑
π=α

dnπ
i = 0, ∀i ∈ [1,n] (2.17)
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where π denoted the different phases, and i denotes the different components in the system. Since
the fundamental equation relates changes taking place between equilibrium states in an isolated sys-
tem, we can write the condition of equilibrium in the following way:

(dS)U ,V ,n =
ω∑

π=α
dUπ

T π
+

ω∑
π=α

dV π

T π
+

ω∑
π=α

n∑
i=1

µπi
T π

dni = 0 (2.18)

where the independent variables are subject to (2.15)- (2.17). From these equations it is possible to
isolate dUω, dV ω, and dnω

i , ∀i ∈ [1,n]. The following equation emerge by insertion in (2.18):

(dS)U ,V ,n =
ψ∑
π=α

[(
1

T π
− 1

Tω
)dUπ+ (

pπ

T π
− pω

Tω
)dV π+

n∑
i=1

(
µπi
T π

− µωi
Tω

)dnπ
i ] = 0 (2.19)

It is assumed to be α,β, . . . ,ψ,ω phases in the system. Near the equilibrium point dUα, . . . ,dUψ,
dV α, . . . ,dV ψ, and dnα

1 , . . . ,dnψ
n are independent variables. Then to fulfill dSU ,V ,n = 0 the following

must be true:

Tα = T β = ·· · = Tψ = Tω (2.20)

pα = pβ = ·· · = pψ = pω (2.21)

µα =µβ = ·· · =µψ =µω (2.22)

where

µ= [µ1,µ2, . . . ,µn]

From Equation (2.20)- (2.22) it is evident that temperature, pressure, and chemical are uniform prop-
erties for the system at equilibrium. This serve as the generic criterion for phase equilibrium in ther-
modynamic systems (litt usikker på om den setninga er korrekt).

In many cases we do not use U ,V ,n as the independent variables, often it is more desirable to use
other variables like T, p,V and n (Michael L. Michelsen, 2004). Then one of the energy potentials
has to be considered as the optimizing goal. Whereas the entropy is maximized in its canonical vari-
ables at equilibrium, the equilibrium state corresponds to a minimization of the energy potentials in
their canonical variables at different conditions. Whether H , A,U or G are to be minimized, depends
on which variables that are to be constant for that particular situation (Haug-Warberg, 2006). Due
to the fact that an energy potential is minimized subjected to constraints in its canonical variables,
G(T, p,n) are the potential to minimize when the pressure and temperature are held constant for a
closed system. Correspondingly, A(T,V ,n) are minimized at equilibrium, when the temperature and
the volume are constant for a closed system, and so forth. These correlations can be easily deduced
from the first law of thermodynamics (Michael L. Michelsen, 2004).

Based on the equilibrium criterion outlined in this section, iterative methods can be applied to solve
the phase equilibrium problems. In the literature several algorithms have been developed for this
purpose. The Newton-Raphson method represents one such method. This method will be the theme
of the next section.
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2.3.2 Newton-Raphson

The generic criterion for thermodynamic equilibrium is given in Equation (2.20)- (2.22), and is that
the temperature, pressure and chemical potential are uniform for all phases in the specific system
(Haug-Warberg, 2006). For a closed system, also the extensive canonical variables of the energy po-
tential, have to be conserved in the system. The Newton-Raphson algorithm consists in solving si-
multaneously the whole set of descriptive equations, in terms of all the problem unknowns. The
equation set will have the following form:

f = b (2.23)

If an entropy, S(U ,V ,n), framework is convenient, the equation matrix for a two-phase system would
then be as demonstrated by (2.24): 

Tα − T β

pα − pβ

µα − µβ

Uα + Uβ

V α + V β

nα + nβ

=



0
0
0

Utot

Vtot

ntot

 (2.24)

where the left hand side represent f and the right hand side represent b. The Newton method solves
the equation system based on an first order Taylor expansion of the equation set:

fk+1 = fk + Jx∆x = b (2.25)

which leads to the following iteration step:

δx = (Jx )−1(b − f ) (2.26)

where x in (2.25) and (2.26) represent the iteration variables, and will depend on the energy function
chosen. The equation for a step in the iteration variables is then as shown by (2.27):

xk+1 = xk +τ∆x (2.27)

where τ ∈ 〈0,1] is a step shortener that shortens the step if some physical constraints are broken. This
shortener continue to shorten the step until the new state fulfills the given constraints. When iterating
on physical phenomena, which is the case in phase equilibrium calculations, some constraint will be
set on the iteration step due to physical constraints. The volume, and the mass can not be negative. A
phase equilibrium system will also be sensitive for large alterations in temperature and mole fraction.
Another possibility to guide the iteration sequence against the solution, is to set constrictions on the
objective function (Nocedal and Wright, 2006). Nevertheless, this will place a limitation on the flexi-
bility of the algorithm, and might inhibit the solver to find the global solution (Nocedal and Wright,
2006).

The first three equations in (2.24) represent the generic equilibrium criterion, and will be the same
independent of the choice of state function.

A strength for methods based on the Newton solver is that they obtain quadratic convergence (No-
cedal and Wright, 2006). It takes normally 3-5 iterations before a second order convergence is reached
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(Nocedal and Wright, 2006). Nevertheless, it is a common fact that the Newton method needs to be
initiated sufficiently close to the solution (Nocedal and Wright, 2006). Then if the starting point are
far from the solution, the Newton method might not find the global solution. This is because the
derivative matrix, that decide on the direction, might lead the sequence in a wrong direction as long
as the Hessian matrix is not positive definite (Nocedal and Wright, 2006). Whether the the solver is
able to find the right solution, as well as a solution at all, depends on the topology of the given energy
surface. If the energy surface exists of local minimas the solver might end up finding a local solution.

The successive substitution, which is the method traditionally used for phase equilibrium calcula-
tions, has second order convergence. In that way, the local convergence properties of the Newton
method are excellent. Nevertheless, the method successive substitution is less addicted to the qual-
ity of the start values (Haug-Warberg, 2006). Even though the Newton method might has preferable
convergence properties, the computational costs per iteration will be larger than compared to the
method of successive substitution (Haug-Warberg, 2006). This is because the Hessian of the state
function has to be calculated for methods based on Newton.

Condition and numeric stability

Applied to (2.24) specifically, and to phase equilibrium calculations based on Newton’s method in
general, the Jacobian will contain the second derivative of the the state functions. A main reason why
these methods have not been able to outperform successive substitution in general, is due to the fact
of the poor conditioning of the Hessian of the energy function, near critical points, bubble points and
dew points. In these situations the direction obtained by the Hessian will be heavily influenced by the
steepest decent. The result will be linear convergence rate, then to a much greater cost per iteration
than what would be the case using successive substitution (Trangenstein, 1987).

It is impossible for the particular energy potential to have a local minimum at a point where some
component is absent from one of the phases because this would lead to an infinite chemical poten-
tial. Whenever one of the phases becomes small, the Hessian of the state function becomes nearly
singular (Trangenstein, 1987). The same problem will occur if two phases have nearly the same com-
position. This is the reasons for the singularity of the Hessian matrix of the energy function as the
system approaches the boiling point or the critical point.

Trying to solve the Newton equation when the Jacobian in (2.26) is nearly singular the iteration is sus-
ceptible to run into numerical difficulties (Trangenstein, 1987). Most important, the factorization of
the second derivative matrix may involve catastrophic cancellation of one of the pivots corresponding

to the nearly non-singularity. To satisfy the stability conditions both the diffusive condition ( ∂µ∂N ) > 0

and ( ∂p
∂V ) < 0. Due to the rounding error that arrives due to the bad conditioning of the matrices, it may

be difficult to determine numerically whether a nearly singular matrix is positive definite (Trangen-
stein, 1987). Then it will be difficult to separate a minima from a saddle point of the energy surface.
Also the solution of the linear system may be inaccurate due to the errors in the factorization, and the
iterates may bubble around without making progress to the solution (Trangenstein, 1987).

It can be possible to at least partly overcome these problems, and then be able to make reliable de-
terminations of the positive definiteness of the second derivatives near the phase envelope, by nu-
merical efforts. Based on the Householder transformation, which is a method used to solve near
singularity problems by numerical, Trangenstein (1987) purposed that a solution can be to compute
a transformation to separate the poorly scaled direction from the well-scaled direction. A detailed
discussion of this is beyond the scope of this thesis.

Nevertheless to be able to perform the equilibrium calculations, a model for predicting the derivatives
of the state function is needed. Then the equations of state enters into the pictures.
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2.3.3 Equation of State

Although the interpretation of thermodynamics is quite mathematical, the overall foundation of ther-
modynamics rely on empirical relations (Haug-Warberg, 2006). Especially, this is evident by the use
of equations of state as a starting point for calculating thermodynamic properties. Except from a few
representations from statistic mechanics, there do not exist models founded on exact formulations.
The equations of state mostly in use are semi-empirical expressions based on some empirical and
adjustable model parameters (Haug-Warberg, 2006).

An equation of state expresses intensive quantities in terms of independent extensive parameters
(Callen, 1985). Based on the fact that the temperature, pressure and chemical potentials are partial
derivatives of S,V ,n, the following expressions will be valid:

T = T (S,V ,n) p = p(S,V ,n) µ=µ(S,V ,n) (2.28)

which constitute the fundamental equations of state. The fundamental equations of state (2.28) is
expressed as functions of S,V ,n, which represent the canonical variables for internal energy U . Then
intuitively U should be used as the energy function to describe the state. Nevertheless, due to the fact
that the expressions in Equation (2.28) only are known as implicit functions, it is more common to
use T, p,n or T,V ,n as a starting point for the calculations (Haug-Warberg, 2006). Traditionally, T, p,n
have received most attention in thermodynamic modeling, probably due to laboratory conditions.
Nevertheless, due to the equations of state using volume as independent variable give a consistent
description of vapor-liquid equilibrium applied to near critical conditions, T,V ,n are preferable for
theoretical applications (Haug-Warberg, 2006). The cubic equation of state is based on the Van der
Waal equation on the form p(T,V ,n). Examples of expressions within this familiy are Redlich-Kwong
(RK), Soave-Redlich-Kwong (SRK) and Peng-Robinson. In this work, the calculations of the thermo-
dynamic properties is based on Peng-Robinson equation of state.

Peng-Robinson equation of state

The Peng-Robinson equation of state (Peng and Robinson, 1976) was developed in order to improve
liquid density predictions as well as the ability to estimate vapor pressures and equilibrium ratios.
Also the model should provide reasonable accuracy near the critical point. Another objective was
that the parameters should be expressible in terms of the critical properties and the acentric factor,
and that the mixing rules should not employ more than a single binary interaction parameter, which
should be independent of temperature pressure and composition (Peng and Robinson, 1976). The
resulting equation became as follows:

p = RT

v −b
− a(T )

v(v +b)+b(v −b)
(2.29)

where b = ∑
xi bi is the hard core volume. The parameter a = ∑∑

xi x j ai j can be regarded as a
measure of the intermolecular attraction force. Tc represent the critical temperature. An evaluation
of (2.29) at the critical point gives the following expressions for the parameters a, b and the compres-
sion factor Z :

a(Tc ) = 0.45724
R2T 2

c

pc
(2.30)

b(Tc ) = 0.07780
RTc

pc
(2.31)
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Zc = 0.307 (2.32)

At temperatures different from Tc , the following relation yields:

a(T ) = a(Tc )α(Tr ,ω) (2.33)

where α(Tr ,ω) is a dimensionless function of reduced temperature and the acentric factor. This term
equals unity at the critical temperature. The hard core volume is not considered to be temperature
dependent:

b(T ) = b(Tc ) (2.34)

Based on empirical data the following expression was used for α(Tr ,ω):

ω
1
2 = 1+κ(1−T

1
2

r ) (2.35)

where κ is a constant characteristic of each substance, and expressed by (2.36):

κ= 0.37464+1.54226ω−0.26992ω2 (2.36)

which fulfills the Peng-Robinson expression.

The Peng-Robinson equation is on the form p(T,V ,n), and T,V ,n constitute the independent vari-
ables. In the way thermodynamic calculations are most easily performed using the canonical vari-
ables of the energy function in question, Helmholtz energy, A(T,V ,n), would be the natural choice
for equations of state on the form p(T,V ,n).

Using Helmholtz energy as a starting point, Equation (2.37) will serve as the starting point for an
expression of Helmholtz energy:

(d A)T =−pdV +
n∑

i=1
µi d Ni (2.37)

this expression can then be integrated as long as expressions for p(T,V ,n) as well as µ(T,V ,n) are
available. Unfortunately the last of these tend to constitute a very complicated expression when mul-
ticomponent systems are present (Haug-Warberg, 2006). A more convenient method is to use an ide-
alized model as a reference and then express the deviate between the real fluid and this hypothetical
idealized state, calculating the residual function:

Ar v,eos = A(T,V ,n)eos − A(T,V ,n)i g =̂
∫ V

∞
(
p(T,V ,n)eos −p i g

)
dV (2.38)

where p(T,V ,n)eos is the pressure calculated from a specific equation of state, whilst p i g are the ideal
contribution. Then an expression for the residual Helmholtz energy can be obtained by insertion of
p(T,V ,n) for a given equation of state. Given an expression for Ar v , its derivatives can be calculated,
and other thermodynamical properties can be deduced.

In this work the thermodynamic properties were supplied by a thermodynamic functional library
developed by Tore Haug-Warberg and Bjørn Tore Løfall at NTNU (Lovfall, 2008).
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Chapter 3

Methodology of Control Volumes

In this master work a thermodynamic model fitted to be used in connection with the flow simulator
VessFire (see section 1.1) has been generated. Based on the behavior of this simulator, the thermo-
dynamic model has to be able to take care of mass- and energy input and output, and that phases
existing phases might disappear, and new phases might appear. The foundation for such a thermo-
dynamic package is to be able to generate a model that captures the physics in a suitable manner.

This method part (as well as the whole master work) exist of two main parts. First a modelling part is
present. Here the foundation and the various mechanism of the model, as well as the implementa-
tion in Matlab, is given. Then the procedure for some mass- and heat input cases, that were applied
to the model to test its performance, are present (litt dårleg setning). These two stages represent the
first part of this master work, and are directly connected to the modeling part. Then the focus are di-
rected at initialization techniques and phase stability. Here the implementation of the particle swarm
optimization (PSO) method is given. To be able to perform a sufficiently rigorous testing regime for
this implementation, some preparations had to be done, these are also outlined. Finally the testing of
the PSO algorithm is outlined. First a test for a simple two component case is given, then a rigorous
testing regime on a four component mixture in the metastable area for the mixture is outlined. The
latter based on an enthalpy-pressure envelope generated by SINTEF, as well as own preparations.

3.1 VessFire Topologies

A thermodynamic package to be used in connection with VessFire has to be modeled from the same
basis as this simulator. To be able to model the dynamic behavior of heat- and mass input, the model
need mechanisms to support appearance and disappearance of phases. Based on these facts Tore
Haug-Warberg in cooperation with Petrell AS developed the control volumes given in Figure 3.1 as a
starting point for the thermodynamic package.

3.1.1 The Basics of the VessFire Model

The system in Figure 3.1 consists of two control volumes, CV1 and CV2, which mainly represent va-
por and liquid respectively. To be able to exchange mass and heat between the phases a utility- or
transport phase are present in each of the phases. CV1 is then composed of the main vapor phase,
V1, as well as a liquid utility phase, L1. The liquid phase L1 then represents condensation that may
appear when the system is cooled. In CV2 the liquid phase L2 serves as the main phase, whilst the
vapor phase V2 is the utility phase. V2 then represents evaporation that may be formed in the liquid

27
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V1

L2

V2

L1
δQ1

δQ2

δN2

δN1

Figure 3.1: The Petrell control volumes. Two control volumes, vapor (CV1) and liquid (CV2), and
four phases V1,L1,L2,V2 are present. Also mass- and heat input can be applied to each of the control
volumes. δN1, δN2, δQ1, δQ2 can be poistive (input), or negative (output).

phase when the system is heated. Each control volume is modeled as in an inherent local equilibrium
at each time step. This means that the main phase is supposed to be in equilibrium with its precipi-
tation, and the temperature, pressure, and chemical potential are equal between them. Furthermore
the pressure is assumed to reach a global equilibrium, which means that the pressures are equal for
both phases.

When the system is exposed to external mass- or heat input, the liquid phase may start to vaporize,
or the vapor phase may start condensing, then the utility phases will serve as transport mechanisms
for mass between the phases. In this way the system can respond to the alternating conditions. For
this transport the mass- and energy balances need to be fulfilled for the system. Also the volume of
the two main phases are assumed to be constant within the system.

Altogether, this give the following system of equations as a foundation for the thermodynamic model:



T V 1 −T L1

pV 1 −pL1

µV 1 −µL1

T L2 −T V 2

pL2 −pV 2

µL2 −µV 2

U V 1 +H L1 −HV 2

V V 1 +V L2

nV 1 +nL1 −nV 2

−H L1 +U L2 +HV 2

pV 1 −pL2

−nL1 +nL2 +nV 2



k+1

=



0
0
0

0
0
0

U V 1 +δU V 1

V V 1 +V L2

nV 1 +δn1

U L2 +δU L2

0
nL2 +δnL2



k

(3.1)

The equations for the mass- and energy balances are deduced in appendix A.1. The terms δU V 1,
δU L2, δnV 1, δnL2 in (3.1) equals δQ1, δQ2, δnV 1, δnL2 in Figure 3.1, and represent the heat- and mass
input applied to the system at each time step respectively.

The equation system (3.1) is in the form f = b, and is solved by the Newton in an iterative manner.
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This solution method is outlined in section 2.3.2.

In this work a function library, based on the Peng-Robinson equation of state, was used to provide
the thermodynamic properties for the calculations. The thermodynamic function library in question
is developed by Tore Haug-Warberg and Bjørn Tore Løvfall at Department of Chemical Engineering,
NTNU (Lovfall, 2008). The models are coded in an in-house language called RGrad supporting auto-
matic gradient calculations, and from there exported to C-code which is compiled into a set of DLL’s
accessible from Matlab, Octave and Ruby (Lovfall, 2008). In the way Peng-Robinson (outlined in sec-
tion ??subsec:eos)) equation is on the form p(T,V ,n), the function library are based on Helmholtz
energy as the starting point to calculate the thermodynamic properties (see section 2.3.3).

As the equilibrium calculations are based on a Helmholtz, A(T,V ,n), framework the iteration vari-
ables become T,V ,n, which represent the canonical variables for the energy function. Nevertheless,
in way the intensive canonical variable are to be held constant when minimizing the energy function,
only V and n are the true iteration variables for calculations based on a Helmholtz model. To make
the model general, for being used for thermodynamical models based on other then Helmholtz en-
ergy, all the canonical variables were included in the matrices. Then the expression for a Newton step
becomes:

δ



T V 1

V V 1

nV 1

T L1

V L1

nL1

T L2

V L2

nL2

T V 2

V V 2

nV 2



= J−1
T,V ,n

(
b − f

)
(3.2)

where b − f are evident from (3.1) and J−1
T,V ,n is the Jacobian matrix containing the first derivatives of

f with respect to the iteration variables T,V ,n . The next state is then defined by:



T V 1

V V 1

nV 1

T L1

V L1

nL1

T L2

V L2

nL2

T V 2

V V 2

nV 2



k+1

=



T V 1

V V 1

nV 1

T L1

V L1

nL1

T L2

V L2

nL2

T V 2

V V 2

nV 2



k

+τJ−1
T,V ,n

(
b − f

)
(3.3)

where τ ∈ 〈0,1e is the step shortener. The solver in this work was set to shorten the step if a call to the
function library returned a negative value, and if the total volume for the system became negative,
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as well as if the total amount of mole obtained a negative value. The function library will return a
negative value if the system representing some unphysical states. For further knowledge about this,
the interested reader are guided to the homepage of Tore Haug-Warberg (Lovfall, 2008).

In the way that the flow simulator assume each phase to be in a stable local equilibrium at each time
step, the set of equations (3.1) is solved for each time step.

3.1.2 Dynamics

According to the physics, input of heat and mass to the system might result in that phases disappear,
and that new phases are formed. This means that the thermodynamic model needs inherent mecha-
nisms to support these scenarios. In other words this means that the system should be able to change
between different topologies. The model in this work is generated to support a system of two main
phases, liquid and vapor, as illustrated in Figure 3.1. The model do not support solid precipitation.
Then a maximum of four phases can exist in this system, as illustrated in section 3.1.1. Nevertheless,
the model should be able to model that utility phases and any of the main phases disappear. Also
the starting topology might differ from case to case. Figure 3.2 illustrates the different topologies that
should be supported by the model.

From Figure 3.2 it is evident that the model should be able to change between six different topologies.
A challenge was to generate mechanisms to get the model to change between these topologies, both
to decide on a convenient criterion for throwing a phase away, and how to modify the equation set to
fit the new topologies.

Virtual Phases

For each topology the equation set (3.1) was modified, so that each topology had its own set of equa-
tions. Even though the most obvious solution for this had been to take the disappearing phases out
of the equation system, these phases remained in the system as virtual phases. The virtual phases
were then solved for the equilibrium equations apart from the pressure equation, but excluded from
the mass- and energy balances. Instead of the pressure equation the total mole amount of the vir-
tual phases were set to equal unity. In this way the intensive quantities were calculated and updated
for the virtual phases. The virtual phases could then serve as reference phases to reintroduce the real
phases. For topology 6 (V1,L1,L2,V2) illustrated in Figure 3.2f, the equation system (3.1) is modified as
evident from Equation (3.4). For topology 6, both utility phases serve as virtual phases. The variables
for the virtual phases are colored red.
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V1

L2

V2

L1
δQ1

δQ2

δN2

δN1

(a) Topology 1 (V1,L1,L2,V2). The original model.
All phases are present

V1

L2

V2

δQ1

δQ2

δN2

δN1

(b) Topology 2 (V1,L2,V2). The liquid phase (CV2)
is exposed to heating, δQ2 > 0. δQ1 = 0 and no
condense phase L1 is present

V1

L2

L1
δQ1

δQ2

δN2

δN1

(c) Topology 3 (V1,L1,L2). May exist when the va-
por phase (CV1) is exposed to cooling, δQ1 < 0,
and δQ2 = 0. Then phase L2 may not evaporate,
unless heated by L1

V1

δQ1

δN1

(d) Topology 4 (V1). Only the vapor phase (CV1)
is present. The conditions for the system is in the
vapor area.

L2

δQ2

δN2

(e) Topology 5 (L2). Only the liquid phase is
present. The conditions for the system is in the
liquid area.

V1

L2

δQ1

δQ2

δN2

δN1

(f) Topology 6 (V1,L2). Both main phases are sta-
ble, and no adjustment of the containment in the
different phases are needed. The system is at rest,
no external forces (heat or mass) disturb the sys-
tem.

Figure 3.2: The different topologies available to the thermodynamic model.



T V 1 −T L1

eT nL1

µV 1 −µL1

T L2 −T V 2

eT nV 2

µL2 −µV 2

U V 1

V V 1 +V L2

nV 1

U L2

pV 1 −pL2

nL2



k+1

=



0
1
0

0
1
0

U V 1 +δU V 1

V V 1 +V L2

nV 1 +δn1

U L2 +δU L2

0
nL2 +δnL2



k

(3.4)
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where eT = [11. . .1] with length equal to number of components in the system.

Nevertheless, only the utility phases can serve as virtual phases. If one of the main phases, V1 or L1,
disappears, also their utility- or virtual phase have to be excluded from the system, then the equa-
tion system have to be reduced. Equation (3.5) gives an example of the reduced equation set. This
equation set corresponds to topology 4 (V1,L1).



T V 1 −T L1

eT nL1

µV 1 −µL1

U V 1

V V 1

nV 1



k+1

=



0
1
0

U V 1 +δU V 1

V V 1

nV 1 +δn1



k

(3.5)

Similar equation systems yield for the other topologies as well. These equations are available in ap-
pendix A.1.

Nevertheless, not all topologies are directly reachable from another, without going via one of the other
topologies. Table 3.1 demonstrates witch topologies that should be reachable from each other.

Table 3.1: Interaction scheme for the different topologies. The white cells represents the topology
changes that should be possible from time step k to time step k +1. The cells colored black represent
the topology changes that are not possible without going through other topologies. The gray cells
represent a topology going to the same topology, and is not a transformation.

k
V1 L1
L2 V2

V1 L1
L2 V2

V1 L1
L2 V2

V1 L1
L2 V2

V1 L1 L2 V2

k
+1

V1 L1
L2 V2
V1 L1
L2 V2
V1 L1
L2 V2
V1 L1
L2 V2
V1 L1

L2 V2

Given the different topologies with their equation sets, as well as the knowledge of which topologies
that should be reachable from a specific topology, the next challenge was to decide on how to change
between the different topologies, and to implement the model into Matlab.

3.1.3 Changing between Topologies

To change between the topologies some control of the different phases needed to be established.
Two main aspects had to be decided on, when to leave a phase behind, and when to introduce or
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reintroduce a phase to the system. To be able to determine on whether a phase should be excluded
from the system a norm control was established. For this purpose the state norm,

p
S2 +V 2 +nT n,

was established. The following inequality was applied to each phase to decide on whether it should
be excluded from the system:

√√√√S2
i

S2
j

+ V 2
i

V 2
j

+ (nT n)i

(nT n) j
< ε (3.6)

where ε is a small number defined by the user. i denotes the phase to be tested, and j denotes the
phase it is tested relatively to. The utility phases are tested relatively to its main phase. Whilst the
norms of the main phases are tested relatively to each other. When the value of the relative state norm
are below a specified small number ε for a particular phase, the phase is considered to be absent from
the system.

As explained in section 3.1.2, when a utility phase is left behind, it stays in the system as a virtual
phase, and its intensive quantities are updated relative to its main phase. In this way the tangent
plane test (3.7) could be applied to the virtual phase relatively to its main phase, to test for stability:

−(p −p0)δV + (µ−µ0)TδN < 0 (3.7)

where p0,µ0 denotes the pressure and the chemical potential in the main phase and p,µ are the
corresponding quantities in the virtual phase. If the inequality in equation (3.7) is true, the virtual
phase should be reintroduced to the system. This mechanism for introducing phases are available
both to a system existing of a single control volume, and to a system where both control volumes
are present. When both control volume are present the utility phase is applied to the tangent plane
test, to check if it should be reintroduced to the system. Then if the tangent plane check gives a
negative value, the virtual phase are transformed to a real phase again, and it is included in the mass-
and energy balances. The new phase are taken in as a fraction of its main phase, and the intenive
quantities are adopted from the virtual phase.

The one-phase topologies, Topology 4 and Topology 5, exist of one real and one virtual phase. The
purpose of the utility phases are to serve as transport mechanisms to transfer mass from one control
volume to the other. Then when only one control volume exists there is no need for such a mecha-
nism. Nevertheless, a negative value from the tangent plane test applied to this system, does mean
that there exist a two-phase system with lower energy than the current configuration (Michelsen,
1982). In these circumstances this means that a main phase of the same type as the virtual phase
(vapor or liquid) should be included in the system.

As the new phase can be viewed as a precipitation of the main phase, this phase is assumed to be
in equilibrium with the other main phase, and a Newton-U ,V ,n flash are applied to these phases to
calculate the composition. As start estimates for these equilibrium calculations, the new phase adopt
molar volume and fraction from the virtual phase. The amount of the new phase are scaled as a small
fraction ε of the existing main phase. Equation (3.8)- (3.9) illustrate this procedure:

nβ1

k+1 =
nα2

k

eT nα2

k

εnk
α1 (3.8)

V β1

k+1 =
V α2

k

eT nk
εnα1

k (3.9)
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where α denote the existing control volume, and β represent the control volume to be introduced.
The subscripts 1 and 2, denote the main phase and the utility phase respectively, and e = [11. . .1]
deonotes the unit vector of length corresponding to the number of components in the system.

Then to keep the total amount of mole, as well as the total volume, in the system to a constant value,
the amount and the volume of the existing phase are adjusted by subtracting the amount of the pre-
cipitation:

nα1

k+1 = nα1

k −nβ1

k+1 (3.10)

V α1

k+1 =V α
k −V β1 (3.11)

In the way theβ-phase are introduced based on evaporation or condensation in theα-phase, it would
be reasonable to believe that theα-phase would continue to deposit the same amount during the next
time step. Based on that assumption the utility phase α2 are introduced equivalent to the β1-phase
resulting from the U ,V ,n-flash.

The volume and amount of the other utility phase, β2, are set to a small amount of α1, which rep-
resents the main phase of the same phase type as β2. In the way a local equilibrium is decided to
exist inside each control volume, the temperature of the utility phase β2 is set equal its main phase
β1. This procedure has been given the name, "SetFeasible", and is also performed to initialize the
utility phases when a two-phase system is available from the flow simulator. When phases are left
behind, based on the norm criterion, their properties are no longer reliable, then to keep them in the
system as virtual phases, these properties have to be adjusted. This is performed by the "Set Feasible"
routine.

Based on the norm control to detect whether a phase should be excluded from the system, and the
tangent plane, cooperating with the virtual phases to decide on the formation of phases, the model
should be able to change between the 6 topologies illustrated in Figure 3.2, and in Table 3.1. Never-
theless, in the way both the stability checks and the initialization of the new phases are based on the
virtual phases, the dynamics of this model to large extent rely on the existence of the virtual phases.
Then problems arrive when the system are exposed to conditions where the virtual phases cease to
be reliable. Since the utility phases are initialized based on the main phase from the other control
volume, the same problems will be present whenever the system provided by VessFire, are in the one-
phase area. Under these circumstances some external stability checks and initialization routines have
to be performed.

3.1.4 Implementation Details

Founded on the model basics and the dynamics of the model outlined in section 3.1.1- 3.1.3, the
model was implemented in Matlab. In Figure 3.3 this implementation is illustrated by a flow sheet.

The input to the model, which is the state of the different phases, is supplied by the flow simulator
VessFire. Then a Peng-Robinson model is initialized to calculate the state of each of the main phases.
Based on these main phases, the utility phases are introduced, as outlined in section 3.1.1. Then the
system is solved for a given number of time steps as function of heat- and mass input from VessFire.
Even though the system was developed to work with input from VessFire, it is also possible to type the
input manually, which can be appropriate in some stages of the testing of the system. The system is
solved due to the different topologies and the equation sets given in section 3.1.1.
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Figure 3.3: The implementation of the thermodynamic model in Matlab.

As a first step in the iteration loop, a topology choice based on the phases present in the system is
performed. Based on this choice an equation set is solved by the Newton solver (3.2). The length of
the Newton step is shortened as long as a call to the Helmholtz model returns a negative value or any
of volume, total mole amount is negative. When these constraints are fulfilled, the step is accepted,
the phase models are updated and prepared for the next step. To check whether a phase should be
excluded from the system a norm control of the norm given in Equation (3.6) is done. A phase that
due to the physics should not be in the system will not converge, and so it will create convergence
problems for the system as a whole. Due to that fact, it is important to perform the norm check. It is
important that the norm in use is able to detect the conditions where a phase should be left behind.
Also a norm that throws away phases when it is not necessary, will create instability in the iteration.

Whenever the convergence criterion is not satisfied, a new iteration is performed. On the other hand,
if the convergence criterion is fulfilled for the system, the next step is to check for phase stability.
Nevertheless, the stability check is done only when less then 4 real phases are present. This means it
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is not accomplished when Topology 1 is present. The stability check is performed by control of the
tangent plane distance. When the system is applied to the tangent plane test, the system has fulfilled
the convergence criterion. This means that its chemical potential, as well as the temperature are equal
for the virtual phase and the main phase. Then the sign of the tangent plane distance is evident from
the pressure differences between the virtual phase and the main phase. If the pressure in the virtual
is above the pressure of the main phase, the tangent plane distance is negative, and a phase should be
introduced to the system. The subsequent phase initialization is done as explained in section 3.1.3.
After the new phase is included, the system is assumed to be solved for that time step. Whenever the
tangent plane distance is negative or all phases are present in the system, the calculation sequence
for that particular time step is terminated on earlier stages, as evident from Figure 3.3.

This calculation scheme is repeated until the given number of time step tmax is reached.

To verify the model, as well as to detect its shortcomings, some test cases were applied to the imple-
mented model. These tests are outlined in the next section.

3.2 Testing the Model

The main target for the testing was to verify the dynamics of the model, to check whether it was able
to respond to external heat- and mass input, by changing between the different topologies. Then the
objectives to test were the norm control criterion for leaving phases behind, as well as the initializa-
tion mechanisms based on the virtual phases and the tangent plane check. To be able to test these
mechanisms, testing cases applied to the model should be constructed such that as many as possible
of the topology changes should occur due to the physics. The different topology changes the model
should support are illustrated in Table 3.1.

The test regime executed in this work consisted of three different test cases. Test Case I is a self con-
structed case, where the two component system ethane-n-butane is applied to input of heat. The
aim of this test case is to verify the function of the norm criterion for throwing a phase away, as well
as the initialization mechanisms, both for introducing an utility phase and to initialize a new control
volume. In the second case the model is applied to actual simulation data from VessFire. Here both
heat- and mass input are present. In this case too the two-component system consisting of ethane
and n-butane is the system in question. The last testing case is on the a component system containing
ethane. The purpose of this test is to illustrate some shortcomings of the model.

3.2.1 Experimental Details

The systems applied to the tests contained two different components, ethane and n-butane. In the
context of phase equilibrium calculations the knowledge of critical points and bubble points are of
considerable importance. For the components used in this work, these data are given in Table 3.2:

Table 3.2: Critical properties for the different components

pc[bar] Tc[K] Tbp[K]
Ethane 48.8 305.4 185.15
n-butane 38.0 425.2 272.6

The convergence criterion used was equal in all cases, and this was true for the norm criterion as
well. Otherwise the small number ε, used to initialize the amount of the utility phases as fraction
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of the main phases, as well as to initialize a main phase as a fraction of the other main phase, was
identical in all cases. The values of these parameters are given in Table 3.3:

Table 3.3: Critical properties for the different components

Norm-
criterion

Convergence
criterion

ε

1e-3 1e-6 1e-5

The convergence criterion was set on the delta norm of the iteration variables T,V ,n. The value of
this convergence criterion was set based on the numerical precision of the computer ε = 2.2204e −
016, and the rule of thumb that the calculations can only be considered as reliable to a precision of
the square of the computer precision, which is equivalent to a precision of 1.4901e −008. The state
norm, used as the criterion to decide whether a phase should be left behind, was set due to trial and
error. The small number ε, used to set the amount of a new phase introduced to the system, was set
relatively randomly, but with the thought in mind that the amount should reflect a precipitation of
the main phase.

3.2.2 Two Component Case

The aim of this test case was to verify the model’s functionalities for changing between the different
topologies. These functionalities exist of three different mechanisms, the norm criterion for leaving a
phase behind, as well as the initialization mechanisms both for introducing a utility phase and a for
the formation of a new control volume to the system. These mechanisms are outlined in section 3.1.3.

Then the target was to construct a heat input case, in such a way that all of these mechanisms were
to be needed. Also an objective was to do it as simple as possible. In that way only heat input, and no
mass input, was used in this case. Then the total mole amount was constant during the time steps.
The system was initialized in the two-phase area, with a total amount of 2 mol in the system. Firstly,
the liquid phase were exposed to heating, aiming to evaporate the liquid. At a later stage the system
was cooled. The objective was then to go from a four-phase (2 main phases and 2 utility phases)
system, to a one-phase system, and then to introduce the lost phases again. In this way all three
mechanisms should be applied to the system. The actual initialization variables, and the quantities
of heat and mass per time step to the system, are given in Table 3.4 and Table 3.5 respectively.

Table 3.4: Initialization values for the main phases used in Test Case I.

T [K] V [dm3] nC2H6 [mol] nC2H6 [mol]
V1 250 20.0 0.94 0.37
L2 250 5.87e −2 0.06 0.63

Table 3.5: Heat- and mass input for Test Case I. The number of time step, tmax = 150.

t δUV1 [J] δUL2[J] δNV1 [mol] δNL2[mol]
1-49 0 500 0 0
50-150 −500 0 0 0
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38 Methodology of Control Volumes

3.2.3 VessFire Case

In this case the model is applied to actual simulation data from VessFire. The objective of this testing
case was to see the behavior of the model when applied to both mass- and heat input. Due to the fact
that these data are taken from a real case in the process industry, this test may verify the potential of
the model for use in industrial simulations. This test case exists of a large number of time steps, and
the external input is more random compared to the self-constructed cases, which was constructed
for testing the mechanisms of the topology transitions. This enhance the possibility to obtain a wider
range of the topology transformations, given in Table 3.1, which the model should support. Also the
quantities of mass applied to the system is much larger in this case.

In the was this was a simulation case from VessFire, both the initialization of the phases as well as the
input of heat- and mass were supplied from that simulator. The initialization values for the phases
are given in Table 3.6. The heat- and mass inputs are given graphically in Figure 3.4.

Table 3.6: Initialization values for the main phases used in Test Case I.

T [K] V [dm3] nC2H6 [mol] nC4H10 [mol]
V1 250 48078.63 1946.293 902.2466
L2 250 3588.25 2776.001 38793.34
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Figure 3.4: Profiles for heat- and mass input for the VessFire case.

From Figure 3.4a- 3.4b one can observe that the system is exposed to heating. From 3.4c it is evident
that the system is discharged, in the way δn ≤ 0. Figure 3.4d demonstrates that no mass is taken from,
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or supplied to the liquid phase (CV2). The case exists of tmax = 14858 time step.

3.2.4 One Component Case

In this case the model is applied to a one-component system existing of ethane. The objective of this
case was to detect some shortcomings of the model. To eliminate the influence of the composition,
a one component system was used. This test consists of two parts. In the first case the system is
initialized in the two phase area, then the liquid phase is heated until it is totally vaporized. The
heating is continued beyond this point, until a point where the virtual phase L1 has gone into the
trivial solution. Then the system is cooled until a quite low temperature is obtained. Then if the
model works properly, the liquid phase should be reintroduced.

The initialization data and the input data are given in Table 3.7- 3.8:

Table 3.7: Initialization values for the main phases used in Test Case I.

T [K] V [dm3] nC2H6 [mol]
V1 180 10.0 1
L2 180 0.05 1

Table 3.8: Heat- and mass input for Test Case I. The number of time step, tmax = 150.

t δUV1 [J] δUL2[J] δNV1 [mol] δNL2[mol]
1-81 0 200 0 0
81-99 200 0 0 0
81-99 −200 0 0 0

In the second part of the one comp test the system was initialized with a large liquid phase and a tiny
vapor phase. The aim was to cool the vapor phase until it disappeared from the system. and then
investigate the conditions for when the virtual phase V2 was no longer reliable.

The initialization values and the inputs to the model are given in Table 3.9 and 3.10:

Table 3.9: Initialization values for the main phases used in Test Case I.

T [K] V [dm3] nC2H6 [mol]
V1 180 1e −4 1e −5
L2 180 0.05 1

Table 3.10: Heat- and mass input for Test Case I. The number of time step, tmax = 100.

δUV1 [J] δUL2[J] δNV1 [mol] δNL2[mol]
0 0 0 0

−100 0 0 0

3.3 Initialization

To be able to develop a thermodynamic model that are sufficiently robust and will perform well ap-
plied to a wide range of mass- and energy input, some kind of stability checks and initialization rou-
tines are needed. The initialization methods, as well as the stability check, used in the generated
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model described in section 3.1, and tested in section 3.2 rely on the existence of the virtual phases.
This seem to be a quite clever and efficient solution as long as the system is applied to moderate
physical conditions. Nevertheless, as the state of the system approaches the critical state, the virtual
phases will no longer be reliable. At this point the need for an external initialization routine is present.
In this work the stochastic optimization routine Particle Swarm Optimization (PSO) is tested for this
purpose. This routine is outlined in section 2.2.1. The implementation of this routine is given in the
following section.

3.3.1 Implementation of the PSO algorithm

In this work the local dynamic PSO version, Dynamic Multi-Swarm Optimizer (DMS-PSO), given by
Liang and Suganthan (2005) was tested for the four component system N2, CH4, C2H6, C3H8. This
routine is outlined in section 2.2.1. The flowchart given in Figure 2.7 illustrates its implementation.
The algorithm in this work was implemented according to this scheme. Nevertheless, the model need
some user defined inputs, and also some specifications are needed to fit the routine into the context
of equilibrium calculations. These are given in the following.

The user defined variables are listed in Table 3.11:

Table 3.11: User defined input variables used in the current implementation

m n R MaxIter
5 4 5 400

where m are the size of each subswarm, n are the number of subswarms, and M axI ter is the maxi-
mum number of iterations allowed, and are set to 400. Actually this serve as the convergence criterion
in this implementation.

In addition some parameters are to be set directly to the solver, which illustrated by (2.9) at page 19.
These are tuning variables that have been fitted in literature. In the current implementation, values
given by Trelea (2003) are used for these parameters. These are given in Table 3.12.

Table 3.12: Tuning parameters used in the current implementation

a b1 b2

0.6 1.7 1.7

Another issue related to the PSO-algorithm is to set lower- and upper bounds to the different vari-
ables, to define the feasible search space. Related to equilibrium calculations also an issue is to de-
cide on which variables to optimize in the algorithm. Based on the initialization routine applied to
reintroduce the virtual phases in the generated model (given in (3.8)- (3.9)), the PSO algorithm was
used to search for fractions of the various components, as well as the total density for the new phase.
Then the size of the new phase was estimated as a small fraction, ε, of the existing phase, according
to equation (3.8)- (3.9). Nevertheless, in the optimization routine, density was searched instead of
molar volume due to a suspicion that the limits should be easier to obtain that way.

Figure 3.5 illustrates how the DMS-routine is applied to phase equilibrium calculations in this work.
In the current implementation a Wilson flash was used in connection to set the upper and lower
bounds on the fraction. The Wilson routine approximates the states based on the critical properties
of the mixture, and then it uses a K-value method to estimate the phase fractions, as well as the com-
ponent fractions in the phases. These component fraction estimates was used as a starting point for



i
i

“Master_final1107” — 2011/7/26 — 12:58 — page 41 — #41 i
i

i
i

i
i

3.3. Initialization 41

Input: 

State (T,V,n)

Wilson flash to 

initialize PSO

DMS-PSO 

solver

tdp < 0?

Uvn-flash

Both phases 

stable?

Both phases 

stable?

The routine 

succeeded

No

No

No

Yes

Failed to find a 

new phase. 

Terminate 

calculations

Terminate

Figure 3.5: The implementation of the DMS-PSO used in this work.

the upper- and lower bounds of the component fractions in the new phase. The borders for the den-
sity was initially set to ρ = [0, eT n

b ] both for the search of vapor phases and liquid phases. Later this was

changed to [0, ρ10 ] in the search for a vapor phase, and to [ eT n
3b , eT n

b ]. This objective of this was to give
the algorithm a clever guidance against the solution. The though behind the choice of liquid bounds
was that the largest liquid volume for a given mixture under given conditions are the critical volume,
for the der Waal equation of state this is vc = 3b. Nevertheless b depends on the composition, which
means that this might not be a good choice of border. The bound for the search for the vapor phase
was set more randomly, aiming to eliminate the liquid volumes.

Then the DMS-PSO solver is applied to the system, using the variables given in Table 3.11- 3.12 as
input. As the objective with an initialization routine applied to equilibrium calculations is to detect
whether a state with a lower energy are present at the energy surface, the tangent plane distance is
used as the objective function. A negative value of this distance relatively to the current state, means
that a state with lower energy is found for the system (Michael L. Michelsen, 2004). If the tangent
plane is negative, the phases are applied to a stability check, before the composition of the phases
are adjusted in a UV n-flash. Finally the resulting phases are tested for stability, if this stability test is
positive, the initialization routine has succeed to find and introduce a new phase.

Nevertheless, to be able to start the test some initial state values for the system is needed. To obtain
this information is to converge all points in a particular x y-grid for one-phase calculations. Here x y
denotes a pair of thermodynamic variables such that T p, Sp, UV , H p and pV . This is outlined in the
next section.

3.3.2 Preparing the States for PSO

The objective of an initialization routine applied to vapor—liquid phase equilibrium calculations,
is that the routine should manages to find a two-phase solution when applied to an unstable or
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metastable one-phase system. Then to be able to perform a proper test regime for a given system,
feasible one-phase states is needed. Applied to phase equilibrium calculations also an important
aspect is to know which states that will be convenient to test for. This means that some knowledge
about the properties of the system is a benefit.

In this work feasible one-phase states were obtained by converging the rectangular H p-diagram for
one-phase calculations. The objective was to converge all the points in the physical range for these
coordinates in the one-phase area, and mark the locations where the stability conditions would not
be fulfilled. At these location the one-phase solution will not correspond to a feasible state. The phys-
ical range of enthalpy and pressure was defined from a H p-phase envelope for the current system,
generated by Olaf Trygve Berglihn at SINTEF.

Due to the fact that T p, Sp and UV , as well as H p, constitute standard approaches in chemical pro-
cesses, stability plots to obtain one-phase states were generated in all of these coordinates. Also the
pV –plot, which represent a common description of a thermodynamic system, was generated. The
procedures were similar in each case, Figure 3.6 illustrates this procedure in a flow diagram.

Start

Input: 

Range of x- and y-coordinates

Defining starting points in the 

xy-grid

Converging the state for 

each point in the grid by 

Newton iteration

Point stable?

Stable

∂2A/∂V∂V ≤ 0, 

∂2A/∂N∂N ≤ 0
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∂2A/∂V∂V ≤ 0∂2A/∂N∂N ≤ 0

Point 

converged?

Point did not 

converge

Yes

No
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No

Figure 3.6: The procedure used for generating stability plots. Each point are categorized according to
the stability conditions of the converged state. Not convergence is also an possibility. According to
this scheme the points are divided into 5 different categories.

According to Figure 3.6 the states for each point in the x y-grid was calculated by converging the states
for the specified variables by the Newton-Raphson scheme. This method is outlined in section 2.3.2.
The calculation of each point in the grid was initialized from the same starting point. Subsequent to
the convergence routine, each point was categorized according to its convergence properties. The
convergence criterion in these iterations was set on the delta norm of the iteration variables, and was
set to a small number ε= 1e−5. If a point did not converge in 200 iterations, the point was categorized
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as not convergent. After a point was converged a stability check was applied to the calculated state.
Then the given state was categorized as stable, or unstable. Given that the state was unstable, it was
noted whether the mechanical stability condition, ( ∂2 A

∂V ∂V )T,N > 0, or the diffusive stability condition

( ∂2 A
∂N∂N )T,V > 0 that was violated. Then a total of 5 stability categories were noted. These were marked

with different colors in the plots.

As a starting point plots were generated both for UV , T p and pV -coordinates. In a single plot, each
point was initialized from the same state.
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3.4 Testing of PSO

In this work the local and dynamic PSO version, Dynamic Multi Swarm PSO (DMS-PSO), developed
by Liang and Suganthan (2005), was implemented and tested for the four component system, N2,
CH4, C2, C3. A system of 4 components was chosen due to the fact that higher dimensional problems
are expected to be more complex and more difficult to solve than problems of fewer dimensions.
Also little testing of phase equilibrium calculations for multicomponent systems are evident from the
literature.

The starting point for the testing was a H p-grid that was converged for one-phase together with a
phase envelope generated by Olaf Trygve Berglihn at SINTEF. The converged one-phase grid supplied
the initialization routine with feasible states, whilst the phase envelope served as a reference for the
location of the two-phase domain of the system. In figure 3.7 the converged one phase states are
plotted together with the phase envelope.
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Figure 3.7: Enthalpy-pressure envelope for the system N2, CH4, C2, C3, generated by Olaf Trygve
Berglihn at SINTEF, revised in this work. The calculated one-phase volumes is given in each patch
in the grid. The colored patches represents unstable locations.

The implementation of the DMS-PSO is given in section 3.3.1.

Nevertheless, the differences between this plot and Figure 3.7 will represent the metastable area. A
main objective of the the initialization routine is that it is capable of finding solutions in the metastable
area.
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Chapter 4

Results

4.1 Testing the Model

In this part of the result chapter the results from the testing of the generated thermodynamic model
are given. The test regime consisted of three different test cases, hence this section is divided into
three subsections. The first subsection gives the results from the Test Case I which is a self-constructed
case. The results from the real scenario case from VessFire are given next. Finally the third part
presents the results from the one component case.

4.1.1 Two Component Case

This case was constructed aiming to verify the mechanism generated for leaving out phases, and the
corresponding mechanisms for adding utility phases, as well as main phases to the system. Starting
with a four-phase system the aim was to vaporize the liquid phase, until an one-phase system was
present. Then the system was cooled such that the liquid phase should be reintroduced. In that way,
both the function of the norm control criterion, the stability check, as well as the initialization routine
should be tested.

The results from this test case are given in Figure 4.1a- 4.2a. Figure 4.1 gives the temperature profile of
the different phases, as well as the pressure development in the vapor phase during the test. Accord-
ing to the modeling basics, outlined in section 3.1.1, the pressure are set to be equal in both control
volumes.

From the Figure 4.1 one can observe that the temperatures in both phases are elevated, until the liquid
phase disappears at time step 36. During this time period the liquid phase is heated. This heating will
lead to evaporation of liquid, and mass are transported from the liquid phase to the vapor phase.
The evaporation mechanisms are modeled by the utility phases. This mass exchange is illustrated by
the mass profiles of the different control volumes in Figure 4.2a. In the way the liquid phase and the
vapor phase were initialized at the same temperatures, the mass evaporating from the liquid phase
will elevate the temperature in the vapor phase. This is evident from the temperature profiles in 4.1a.

From time step 1-49, external heating was applied only to the liquid phase. In that way no precipita-
tion should be present in the vapor phase, and so no utility phase was needed for the vapor phase at
this time. Then the system converged to Topology 2 (V1,, L1,L2,V2) during the first time step.

From Figure 4.1a as well as Figure 4.2a one can observe that the liquid phase are totally evaporated
at time step 36. At this point the system is exposed to a topology change. The signal for this trans-
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(a) The development of the temperature in CV1 (V1) and CV2
(L2), applied to heat input according to test case 1.
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(b) Pressure developement in the system.

Figure 4.1: Temperature ans pressure profiles from Testing Case I.
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(a) The developement of the mole amount in CV1 applied to test case 1.

Top 1 Top 2 Top 3 Top 4 Top 5 Top 6
Converged to top 98 35 1 16 0 0

(b) Distribution of topologies present during the Test Case. Only converged
states are considered, which means the sum of the topologies in the table equals
the number of time step.

Figure 4.2: Simulation results from Testing Case I.

formation is given by the norm check (see Equation (3.6)). The mechanisms of the topology change
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Figure 4.3: The topology track of the model during the simulation

is illustrated in Figure 4.3, which gives the topology track during the test case. At the point where the
liquid phase is gone, the temperature in the vapor phase stays at a constant value. This because the
system is no longer exposed to the heat that were applied to the liquid phase.

From time step 50 and for the rest of the time period for the test, external cooling is applied to the
vapor phase. After a couple of time steps this results in condensation of the vapor phase, and the
liquid phase are reintroduced. (This is evident both from the plot of the mass in Figure 4.2, and from
the temperature plot in Figure 4.1a.) This topology transition involves both the tangent plane check
and the UV n-flash. The tangent plane check (3.7) applied to V1 and its virtual phase L1 signals that a
liquid phase should be introduced. Then a liquid phase is initialized based on V1 and L1. At this point
the reintroduced liquid phase L2 are assumed to be in equilibrium with the vapor phase V1, and the
equilibrium state is calculated from a Newton UV n-flash. This procedure is outlined in section 3.1.3.

Continued cooling is applied to the vapor phase. This reduces the pressure in the system, and the
liquid phase tends to evaporate. Then Topology 1 is applied to the system at time step 53. After this
point no further topology transformations is applied to the system. Nevertheless both Figure 4.1a
and Figure 4.2a show a break in the curves around time step 110. At this point the pressure p = 0.68
bar, and the temperature in V2 is T V 2 = 182.0K, which makes it likely to believe that this breaks are
associated with the boiling point for ethane.

Summarized Test Case I indicates that the mechanisms generated to perform initialization and ex-
pulsion of phases in a properly manner for a two-component system applied to moderate heat in-
put. Under these condition the topology changes seem to work satisfactory. During the time period
spanned by the case, the system converges to four different topologies. Table 4.2b gives the number
of time steps the system converged to the different topologies.
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4.1.2 VessFire Case

In this case the model is applied to actual simulation data from VessFire. The objective of this testing
case was to see the behavior of the model when applied to both mass- and heat input. Due to the fact
that these data are taken from a real case in the process industry, this test may verify the potential of
the model for use in industrial simulations. The results from this simulation follows in this section.

In this case the system was discharged. This is illustrated in Figure 4.4a, where a profile of the devel-
opment of the total amount in the system is given.
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(a) Development of total mole in the system as function
of time for the VessFire testing case.
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(b) The development of the temperature in CV1 (V1)
and CV2 (L2), applied to heat input according to test
case 1.

Figure 4.4: Results from the simulation case with initialization values and heat- and mass inputs from
VessFire.

The temperature profiles for the different phases are given in Figure 4.4b. From this figure one can
observe that the system is exposed to considerable amount of heat, as the temperature in the vapor
phase raises to a about 2000 K. Under such conditions the vapor phase will be supercritical as the
state is far above the critical point. The liquid phase ceases to exist after 10000 time steps. This is
also observable from Figure 4.5, which illustrates the development of the total mole amount in the
different phases.

From Figure 4.5 it is observable that the vapor amount are elevated markedly in the beginning, even
though the total amount in the system is reduced. This is due to the considerable heat that is applied
to the to the liquid phase during the first part of the case (see Figure 3.4). Nevertheless, at a point
around 8000 time steps, the discharging rate of the system is elevated, then also the amount of the
vapor phase is reduced considerably.

During this case five different topologies are applied to the system. The topology track is available
in Table 4.5c. In the very beginning the system alternates between Topology 3 (V1,L1,L2,V2) and
Topology 6 (V1,L1,L2,V2). This indicates that at that point, vapor is condensed to the liquid phase.
This is also indicated from the very first part of Figure 4.5a. Nevertheless, due to the extreme heating
of the system, most of the time the system is applied to Topology 2 (9777 time steps), and turns to
Topology 4 (5026 time steps) when the liquid phase is gone. In the way that this system are applied
to extremely high temperatures ≈ 2000 K, which is far beyond the two-phase area, no physical liquid
phase can be found. This means that at some point the virtual liquid phase (L1) must have ceased
to be reliable and the trivial solution has been attained. Based on this knowledge the density of the
virtual phase L1 was investigated. It was found that the trivial solution was obtained for L1 after 2362
time steps, at this point the temperature in the system equals T V 1 = 322 K. Figure 4.6a illustrates the
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(a) The developement of the mole amount in CV1 ap-
plied to test case 1.
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(b) The developement of the mole amount in CV2 ap-
plied to test case 1.

Time
step

Topology
Time
step

Topology
Time
step

Topology

1 Top 3 9 Top 3 58-65 Top 2
2 Top 6 10 Top 6 66 Top 6
3 Top 3 11 Top 3 67-68 Top 3
4 Top 6 12 Top 6 69 Top 1
5 Top 3 13-31 Top 3 71- Top 2
6 Top 6 32 Top 1 9835
7 Top 3 33-38 Top 2 9836- Top 4
8 Top 6 39-57 Top 1 14858

(c) Transition track of topologies present during the VessFire test case. Only converged
states are considered.

Figure 4.5: Results from the simulation case with initialization values and heat- and mass inputs from
VessFire.

path of the state of the virtual phase L1 in pV -isotherm plot as the trivial solution is approached for
L1.

The virtual phase is solved for the temperature and the chemical potential as in equilibrium with
its main phase. Also the total mol amount is set to be constant. Then the pressure (or volume) is
the degree of freedom left. From Figure 4.6a one can observe that at the point where the minimum
of a given pV -isotherm is reached, the virtual phase will approach the trivial solution whenever the
external input to the system continues in the same direction . At this point a liquid volume satisfying
the applied constraints will no longer exist.

Nevertheless, for the given case, no problems were associated with the trivial solution of the virtual
phase L1. Summarized the results show that the model respond well to external inputs both in mass
and heat. During the time period of this case, 7 of the 13 different topology transitions that the model
should support, were present (Table 4.8b). Even though, initialization problems had obviously en-
tered into the picture if the system were cooled sufficiently at a point were the trivial solution was
attained for L1. To get a better feeling with the shortcomings of the model, a one component system
was applied to some extreme conditions.
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(a) Approaching trivial solution for phase L1. The numbering 1-7 in the figure are relative to the
time steps in Table 4.8b, which means that 1 = 2357, 2 = 2358, etc.

Time step T V 1 ρV1 ρL1 ( ∂p
∂V )T,n ( ∂2A

∂N∂N )T,V > 0
2357 321.9 7.46e-010 4.458e-008 -0.43089 tr ue
2358 321.9 7.4642e-010 4.5929e-008 -0.95482 tr ue
2359 322.0 7.4684e-010 4.1198e-008 0.39258 f al se
2360 322.0 7.4726e-010 3.3284e-008 0.84066 f al se
2361 322.0 7.4748e-010 6.5775e-010 -0.00037742 tr ue
2362 322.1 7.4789e-010 7.4789e-010 -0.00049298 tr ue

(b) Comparing densities for V1 and L1. ρL1 = ρV 1 at t = 2362. The stability parameters

(
∂p
∂V )T,n and ( ∂2 A

∂N∂N )T,V are given

Figure 4.6: The main experiment.

4.1.3 One Component Case

In this case a one component system is tested. This test was constructed to illustrate some shortcom-
ings of the model. Then the aim was to expose the system to conditions that probably would make
trouble for the model. The results from the VessFire case showed that the trivial solution was obtained
for the virtual phase as the system was heated sufficiently beyond the point where the liquid phase
ceased to exist. Nevertheless, as no cooling was applied to the system after this point no problems
entered into the picture. Then this case is constructed to illustrate the problems the model would
meet under such circumstances. The results are given in the following.

The temperature profile as well as the mol amount in the different phases during the time period for
this testing case are given in Figure 4.9.

From Figure 4.9 one can observe that the temperature for both phases is elevated until the liquid
phase L2 disappears at time step 80. Nevertheless the heating of the system is continued until the
temperature T ≈ 260, which is relatively far below the critical temperature for the system. Then the
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(a) The temperature profile in V1 (CV1) and L2 (CV2)
applied to Test Case III.
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(b) The developement of the mole amount in CV1 ap-
plied to test case III

Figure 4.7: Simulation results from Tesing Case III.

system is cooled until a temperature of T ≈ 260 is reached. From both Figure 4.7b and Figure 4.7a is
is evident that even at this low temperature no liquid phase are modeled to condense from the vapor
phase V2.

To investigate why the system did not manage to introduce the liquid phase, the densities of V1 and
L1 were compared and the pV -isotherm plot was generated. The results from these are given in
Figure 4.8. From this figure it is evident that the trivial solution is obtained for the virtual phase L1
during time step t = 96.

The second part of the one-component case was to cool a system, initialized as Topology 1, mainly as
liquid, but with tiny vapor fraction. The aim was to get rid of the vapor phase and obtain a transition
from topology 3 (V1,L1,L2,V2). The results are given in Figure 4.9.

From Table 4.9c one can observe that no topology changes was present in this case. This means that
the cooling applied to the vapor phase V1 did not lead to disappearance of this phase, even though
its fraction is very low. From the temperature profiles in Figure 4.9 it is evident that the cooling of the
vapor phase leads to cooling of the liquid phase to the same extent. As the temperature is reduced,
also a pressure drop is present in the system. The system did not manage to converge for the 75 th
time step. At this point the conditioning of the Jacobian matrix is very poor. And finally the iteration
sequence was interrupted due to a negative volume in the liquid phase L1 in Figure 4.10 illustrates
the convergence properties at the time step 74.

4.1.4 Summary

All things considered the results from the testing of the model indicated that the model responded
well to both mass- and heat inputs. Applied to external heat and mass the model was able to change
between the different topologies in a satisfactory manner. From Table 4.1.4 one can observe that
there are four transitions that not has been accomplished by these test cases. These transitions are
occasions where the vapor phase (CV1) is excluded from the system. Due to the density differences
between the gas and the liquid phase, the norm criteria is not susceptible to leave the vapor phase
behind unless liquid is added to the system. This is not the case in the testing performed in this
work. Nevertheless, since the same mechanisms (see section 3.1.3) apply to both cases, introducing
the vapor phase control volume (CV1) should be no harder then the introduction of the liquid phase
control volume (CV2).
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(a) Approaching trivial solution for phase L1. The numbering 1-6 in the figure are relative to the
time steps in Table 4.8b, which means that 1 = 92, 2 = 93, etc.

Time step T V 1 ρV1 ρL1 ( ∂p
∂V )T,n ( ∂2A

∂N∂N )T,V

92 242.7 5.9561e-010 4.5974e-008 -9.786 0.041864
93 245.5 5.9561e-010 2.8844e-008 1.2065 -0.013112
94 248.2 5.9561e-010 1.8252e-008 0.4817 -0.013074
95 250.9 5.9561e-010 8.4589e-010 -0.0014025 0.017723
96 253.5 5.9561e-010 5.9561e-010 -0.00073996 0.01886
97 256.1 5.9561e-010 5.9561e-010 -0.00074913 0.019094

(b) Comparing densities for V1 and L1. ρL1 = ρV 1 at t = 2362. The stability parameters

(
∂p
∂V )T,n and ( ∂2 A

∂N∂N )T,V are given

Figure 4.8: The utility phase L1 approaches the trivial solution.

Nevertheless, the Test Case III revealed that there is a shortcoming with the model whenever the vir-
tual phase for a one-phase system ceases to be reliable. Under such circumstances the initialization
mechanisms for this model that are based on the virtual phases can no longer be applied to initialize
a phase. Then an external initialization method is needed.



i
i

“Master_final1107” — 2011/7/26 — 12:58 — page 53 — #53 i
i

i
i

i
i

4.1. Testing the Model 53

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Time step [#]

T
em

pe
ra

tu
re

 [K
]

 

 
V1

(a) The temperature profile in V1 (CV1) and L2
(CV2) applied to Test Case III, part 2.
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(b) The pressure profile in CV2 applied to test
case III, part 2.

Top 1 Top 2 Top 3 Top 4 Top 5 Top 6
Converged to top 74 0 0 0 0 0

(c) Distribution of topologies present during the Test Case. Only converged states
are considered, which means the sum of the topologies in the table equals the
number of time step.

Figure 4.9: Simulation results from Tesing Case III, part 2.
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Figure 4.10: Norm norm plot for the error norm of the delta norm of the iteration variables at the 74
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this point 140 iterations were needed to obtain convergence.
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4.2 Preparing the states for PSO

The testing of an initialization routine for a vapor—liquid phase equilibrium system, requires feasible
one-phase states for the system to start the searches. To be able to perform a systematic and efficient
test regime, also some knowledge about the properties of the system is needed. In this connection it
is of considerable importance to obtain a knowledge about the stability conditions for the system. To
obtain this information the starting point should be a pair of thermodynamic variables.

T p, H p, Sp and UV constitute standard approaches in chemical processes, and applies for initializa-
tion, irreversible stationary-, reversible stationary- and dynamic energy balances. pV represents the
quantity that can be deduced directly from an the equation of state. To be able to calculate on these
constraints it is necessary to converge the system in these coordinates. Then an element to obtain
knowledge about is the ease of the convergence for each of these grids.

In this work a starting point was to generate plots in the different variables T p, H p, UV and pV and
mark each point due to the stability properties of the current state.

To obtain a deeper understanding of the energy surfaces, the calculations scheme for the stability
plots were started from other starting points as well. Nevertheless, all points in a single grid was
initialized from the same state. The objective was to see whether the same states were obtained.
Table 4.1 gives an overview of relative placement of these starting points in the grid.

Table 4.1: Different starting points used to converge the physical space. Calculations performed in
this work are shaded. The dark shaded cells denote the main foci this work.

T p H p UV pV
C
LL
UL
UR
LR

The main focus of this work was on the schemes initialized from the center point, which represent a
point in the two-phase area.

The resulting states were categorized into 5 different categories, according to stability conditions and
convergence. This is outlined in Section 3.3.2. Figure 4.11 illustrates resulting plots for the center
starting state. The different coordinates in the figure are set to span the same physical area. For all
points in a single grid, all points were initialized from the same starting state.

From Figure 4.11 it is evident that whenever the mechanical stability criterion, ( ∂2 A
∂V ∂V )T,n is violated,

the diffusive stability criterion, ( ∂2 A
∂N∂N )T,V , are broken as well. This is in accordance with fundamental

theory (Radzyminski and Whiting, 1987). Furthermore the figure indicates that the propagation of
the unstable points, as well as the convergence properties, differs between the different frameworks.

For the pV - and T p-coordinates, sub-figure 4.11c and sub-figure 4.11d reveal the calculations re-
sulted in a large fraction of unstable points. For most of these points, both the mechanical stability
constraint ( ∂2 A

∂V ∂V )T,n > 0 and the diffusive stability constraint ( ∂2 A
∂N∂N )T,n were violated. Nevertheless,

none of the points in the pV -framework failed to converge.

On the other hand, sub-figure 4.11b illustrates that a large fraction of the points in the UV -plot did
not converge for these coordinates. For the non convergent points in the UV -grid, the temperature
became very low, regardless of strictness of the constraint on the temperature step.
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Figure 4.11: Stability plot in different coordinates for N2,C H4,C2,C3. The uncolored areas in the figure
represents the locations where the calculations converged to physical stable points in the one-phase
area. All grid are initialized from exactly the same state in the two-phase area..

An observation from Figure 4.11 is that the T p-calculations fail to converge for some seemingly ran-
dom points in the diagram. In any case, these points spread, and a non convergent point are sur-
rounded by convergent points. This is not the case for the plot in any of the other coordinates. This
was an interesting point owing to the fact that T p represents the most used approach in teaching
of chemical engineering. On the other hand, the convergence properties in the H p-scheme seems
to be good. Also the H p-scheme seem to find stable states at a larger area compared to T p. Then
an interesting point was to investigate why the H p-framework seem to behave so well, whilst the
T p-framework did not. In the rest of this work, the focus is directed to H p- and T p-coordinates.

4.2.1 The Step Functions

To solve the iteration problem the Newton-Raphson method was used. This method is outlined in
section 2.3.2. Then, to improve the understanding of the mechanism that influence the iteration
sequence, the step function (Jacobian inverse) was expressed in terms of thermodynamical variables.
The equation for the step in the iteration variables T,V becomes as shown in 4.1 below:

δ

(
T
V

)
=

(
J x y

T,V

)−1
(

xspec −x
yspec − y

)
(4.1)
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As the iteration sequence approaches the solution, the search direction will stabilize. From equa-
tion (4.1), it is evident that when the inverse of the Jacobian changes sign, the search direction will
change by somewhere around 180 degrees. When such situation apply two subsequent search will be
in opposite directions, which in most cases will not be advantageous for approaching the solution.

Applied to H p the expression in (4.1) become as expressed by (4.2).

δ

(
T
V

)
= 1

det (J H p
T,V )

(
( ∂p
∂V )T,n −T ( ∂p

∂T )V ,n −V ( ∂p
∂V )T,n

−( ∂p
∂T )V ,n CV +V ( ∂p

∂V )T,n

)(
hspec −h
pspec −p

)
(4.2)

In these equations the following are true for the thermodynamical variables,

(
∂p
∂T

)
V ,n

> 0
(
∂p
∂V

)
< 0 ∨

(
∂p
∂V

)
> 0

Intuitively also T > 0 and V > 0 for a physical valid state.

From Equation (4.2) it is evident that as the sign of the determinant is changed, the search direction
will change as well. From the expression of the determinant in equation 4.2 one can deduce that the
determinant will be negative if the following inequality is true:

(
T ( ∂p

∂T )V ,n +V ( ∂p
∂V )

)
T,n

(
∂p
∂T

)
V ,n

>
(
CV +V ( ∂p

∂V )T,n

)(
∂p
∂V

)
T,n

(4.3)

Intuitively the inequality in equation 4.3 has the potential to fail for to obvious evidents. If the tem-

perature turns very low in the physical area, such that T ( ∂p
∂T )V ,n <V ( ∂p

∂V ). Another occurrence is when

( ∂p
∂V ) turns positive in the unphysical area where. This leads to a positive left side of equation 4.3. Fur-

ther on, in the physical area, the proportions between T ( ∂p
∂T ) and V ( ∂p

∂V ), and between CV and V ( ∂p
∂V ),

as well as the ratio ∂p
∂V to ∂p

∂T decide on the sign of the determinant.

Equation (4.4)- (4.5) gives the corresponding expression in T p-coordinates.

δ

(
T
V

)
=

(
∂p
∂V

)
T,n

(
( ∂p
∂V )T,n 0

−( ∂p
∂T )V ,n 1

)(
Tspec −T
pspec −p

)
(4.4)

After some iterations the temperature will be set, then Tspec −T = 0 and a simpler expression will be
valid for the equation for Newton direction:

δ

(
T
V

)
=

(
∂p
∂V

)−1

T,n

(
0

pspec −p

)
(4.5)

From equation (4.5) it is evident that the only variable that decides on the direction of the step is

( ∂p
∂V )T,n , as well as which side of the specified pressure the given pressure of the system is. The next

subsection gives an evaluation of the iteration sequences for some of the points in the stability plots
in T p-coordinates shown in Figure 4.16.

In the next sections an iteration sequence from the T p-calculations are compared with a correspond-
ing iteration sequence calculated in H p-coordinates.
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4.2.2 Comparison between Hp and Tp

As a starting point for the investigation of the H p– and T p-calculation schemes, a single point in
each of the grids were chosen to calculate on. The feature of these point was that both H p- and T p-
coordinates had the same pressure specification, and they ended up at the same temperature. The
starting point for the calculation was also the same in both cases. Nevertheless, an important differ-
ence, and the objective of investigation, was that the iteration sequences ended up at two different
volumes, representing a stable and an unstable state for H p and T p respectively. Hence a target was
to have a closer look at the path of each of these sequences.
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Figure 4.12: Comparision of the iteration paths for Hp and Tp calculations aiming for the same pres-
sure

From sub-figure 4.12 one can observe how the T p – iteration- and the H p – iteration sequences, start-
ing from the same starting point, aiming for the same pressure and converging to the same tempera-
ture, follows different paths. The sequence for the T p – iteration converges to the target temperature
during the first iteration, then the iteration sequence follows this isotherm until a volume solution
that corresponds to the target pressure is reached. For this particular case the solution volumes turns
out to correspond to an unphysical state. Figure 4.13a on page 58 illustrates the development of the
placement of the iteration sequence relative to the isotherms in a pV plot. From this figure it is evident

that iteration sequence converges to an unphysical point where ( ∂p
∂V )T,n > 0.

Unlike the T p-sequence, the Hp-iteration has no specifications on the temperature. In fact, for the
Hp calculation none of the model variables T,V ,n, have specifications. Then this iteration scheme
has more degrees of freedom. For finding a stable state in this particular case this seemed to be an
advantage.

During the first iteration, the system has an almost isobaric compression, and the temperature raises.
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(b) Hp iteration to stable state.

Figure 4.13: Iteration path for Hp iteration sequence. The starting point was Vst ar t = 0.12 dm3, Tst ar t

= 200.6 K, and the pressure spesification was pspec = 1 bar.

This stands in opposition to the corresponding T p-path. A feature of the H p-path in that in Fig-
ure 4.12 is however that the path to some extent seem to follow the isobars.

Figure 4.13 on page 58 pictures the movement of the iteration sequence on several isotherms in a pV
– plot. From this figure one can observe that the H p-sequence converges to a volume at the liquid
side of the pV —isotherm. For the same temperature and pressure the T p – iteration converged to an
unphysical solution.

Euler integration of the Newton Step

The discovery presented in the former section, revealed that the H p-calculations manage to find a
path that allowed the sequence to get past the unstable region, while the correlating calculations for
T p ended up in the unstable area. One reasonable cause of this occurrence could be the length of
the Newton step. To investigate whether this could be the case, an effort was done to integrate the
Newton direction (with δT = 0.01). If the foregoing theory was true, the sequence was susceptive to
meet problems as the step became sufficiently small. Figure 4.14 compares the iteration path for the
integrated sequence, to the original sequence.

From Figure 4.14 it becomes evident that the integrated Newton direction path, ends up at the same
solution as the original sequence. Unlike the non integrated sequence, the pressure do not raise
during the iteration. The starting point for these iterations are in the unstable area.

The results from the integration of the Newton direction indicate that the integration continues to be
in the unstable area, goes into the stable area and continues to find a stable liquid solution. From
Figure 4.14 one can observe that the integrated sequence finds a solution that are nearly identical to
the solution found by the original sequence.

An investigation of the development of the determinant as the iteration proceed, reveals that the
determinant stays positive during the whole iteration. This indicate that the search direction do not
turn, or do sudden direction changes. This is also evident from Figure 4.14, the sequence path have
a steady curvature. During its journey aiming for the solution, the iteration sequence continues from
the starting point in the unstable area, crosses the the minimum of the pV – isotherm, and converges
to a stable liquid state.
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Figure 4.14: Iteration paths for Hp iteration sequence. The original iteration path, compared with the
Euler integration. Convergence to a physical state.

Integration of the Newton direction was also performed for the T p–sequence. The result are present
in Figure 4.15.

From Figure 4.15 it is evident that the integration line ends up at the same point as the iterated se-
quence. A main difference for the integrated line compared to the iterated sequence is that for the
former, the temperature specification is not reached before the solution point. This mean that the
line do not follow the isotherm. Nevertheless, the resulting state are the same. Both paths stays in the
the unstable area during the calculations.

An observation from Figure 4.14 is that the integrated line to a larger extent follows the isobar com-
pared to the iterated H p-sequence. This might indicate that if the calculations are initialized at spec-
ified pressure, the iterations will follow the isobar during its journey to obtain the solution. To do a
further consideration of this feature, the step function in Equation (4.2) can be investigated:

As the specified pressure is reached, the Equation (4.2) obtain the following form:

δ

(
T
V

)
= 1

det (J H p
T,V )

(
( ∂p
∂V )T,n(hspec −h)

−( ∂p
∂T )V ,n(hspec −h)

)
(4.6)

This implies that δT and δV are proportional to ( ∂p
∂V )T,n and ( ∂p

∂T )V ,n respectively:

δT ∝
(
∂p
∂V

)
T,n

δV ∝
(
∂p
∂T

)
V ,n

(4.7)

The pressure p is a function of T,V , a preturbation in δp in pressure can be expressed as follows:
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Figure 4.15: Iteration paths for T p – iteration sequence. The original iteration path, compared with
the integrated path. Convergens to a physical state.

δp(T,V )n =
(
∂p
∂T

)
V ,n

δT +
(
∂p
∂V

)
T,n

δV (4.8)

Then (4.7) can be inserted to (4.8) and the following expression is obtained for the alteration in the
pressure:

δp =−δV δT +δTδV = 0 (4.9)

Equation (4.9) shows that as the iteration sequence reaches the specified pressure, the asymptotic
behavior is that the search direction follows the isobar.

Then for this specific test case the T p-sequence converged to an unstable solution by following the
isotherm. The H p-sequence converged to a stable solution by tending to follow the isobars. Then
an interesting point would be to find out whether the same pattern would be present starting the
calculation from other starting states as well. To get a feeling of this, T p- as well as the the H p-
scheme was calculated from other starting points. The results from this part is given in the following
sections.

4.2.3 Calculation with other Starting Points

The former section revealed that searching a state with specified T, p, an iteration sequence in T p-
variables converged to a volume in the unstable area, whilst a H p-sequence, aiming for the same
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pressure converged to a stable state. Based on the knowledge of the pV –isotherm (see Figure 2.3),
it is known that the for given T and p, three different volume will exist, as long as the physical con-
ditions are below the critical. Under the circumstances given in the case above, the T p sequence
obviously found the solution in the unphysical part of the given isotherm. Based on the knowledge of
the curvature of the pV –isotherm, an interesting point would be to see whether the situation would
change, when changing the starting point for the calculations. As a starting point for this investiga-
tion, the T p-grid from sub-figure 4.11a in Figure 4.11, was generated starting from 4 other states in
the grid. Table 4.1 outlines the relative placements of these starting points in the grid.
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Figure 4.16: Stability plot in Temperature—Pressure coordinates for N2,C H4,C2,C3. The uncolored
areas in the figure represents the locations where the calculations converged to physical stable points
in the one-phase area.

From Figure 4.16 at page 61 one can observe that the stability properties for a given point in the grid,
to a great extend depends on the starting point used for the calculation. When the calculations are
started at low temperature, most of the points converges to stable states. This is evident from sub-
figure 4.16a and sub-figure 4.16b. None of the points in these figures converges to states where the
mechanical stability criterion is broken. Nevertheless some of the points converged to states where
the diffusive stability condition, ( ∂2 A

∂N∂N )T,V , did not hold. Worth noting is that for these grid, only a
small fraction of the points do not converge, and they are all located relatively close to the unstable
area.
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For the last starting point a larger fraction of the points do not converge. These points are relatively
spread and distributed in locations to the upper left in the figure. For this starting point also some
points are present where both stability conditions are violated.

The resulting volumes from the calculations of the different grids reveals that for the locations in the
grid, that in sub-figure 4.11d converged to unstable states, converges to different volumes, depen-
dent on whether the calculations were initialized as liquid states or vapor states. To investigate on
this behavior the iteration sequences are plotted at their pV —isotherms. This is illustrated in Fig-
ure 4.17. The temperature- and pressure specifications are equivalent for all points, which means
they represent the same point in the T p–grid.

Sub-figure 4.17b illustrates an iteration sequence that is initialized from the center point in Table 4.1.
In the same way as the iteration sequence that was compared with a H p-sequence, this sequence
converges to an unstable point. On the other hand, the sequences in sub-figure 4.17b and sub-
figure 4.17c, which both are initiated at the liquid side of the isotherm, converge to a stable liquid
volume. Sub-figure 4.17d in Figure 4.17 pictures the iteration sequence for the calculations initialized
at a temperature beyond the critical temperature. Also this iteration sequence converge to a stable
state at the liquid side.

The last iteration sequence is also initialized as a supercritical fluid (beyond the critical point). Com-
pared to the previous case, this starting point has a larger volume. Hence it corresponds to a state to
the right of the maximum of the pV —isotherm, and the iteration sequence converges to a point in
the vapor side of the isotherm.

Summarized, the results in Figure 4.16 and Figure 4.17 illustrates that the resulting volumes, as well
as the stability conditions become quite different depending on the state the calculations are ini-
tialized from. The volumes from the calculated states in Figure 4.16 also reveals that whenever the
calculations are initialized in the two phase area, an unstable state is found, as long as such a state
is available at the specified pressure. Correspondingly, if the calculations are started from the vapor
side, the calculations converge to stable vapor volume, and likewise to liquid volumes if a liquid the
initial state is a liquid.

To see if a similar pattern applies to the H p-coordinates, the 4 new H p-grid was calculated, each
scheme differs from the other scheme by the starting point for the calculations. The different schemes
were initialized from the same states as for the T p–grids shown in Figure 4.16. The calculated H p-
grids are shown in 4.18 at page 4.18.

Figure 4.18 reveals that the locations where the iteration sequence converged to unstable points,
are the same independent of the starting point used. This is in contrast to the corresponding T p-
calculations. Also the resulting volumes calculated in a specific location in the grid were identical in
each grid whenever the calculations converged.

For the starting point given in sub-figure 4.18d, there exist an area where the iteration sequences did
not converge. Nevertheless, the unstable area seems to be similar also in this plot. This particular
starting point are located at low pressure and high enthalpy, which corresponds to a large vapor vol-
ume. The area where the calculations did not converge belongs to the liquid area. This means that
the volume differences between these to points are large, and so the starting values for the Newton
iteration is not satisfactory to calculate these points.

Nevertheless, when a stricter constraint was set on the temperature step from one iteration to the
other the plot became equal to rest of the H p-plot. However this increased the number of iterations
needed, which made the equation scheme slower. Therefore, the criterion for the maximum temper-
ature step was set to δT = 0.15, which resulted in a non convergent area when the calculations was
started lower right in the H p–grid.
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(b) Start point located at the lower left of the figure.
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(c) Start point located at the upper left.
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(d) Start point locates upper right in the figure.
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(e) Start point located lower right in the figure.

Figure 4.17: Developement of the placement at the pV-isotherm as the iteration sequence proceed for
the different starting points. Trying to converge the point pspec = 0.001bar, Tspec = 80K

The same trick could not be applied to get rid of the non convergent point in the T p-framework.
Nevertheless, to detect why some random points upper left in the T p-grid, when initialized from the
two-phase area, did not converge, an analysis of one such point was performed. This is outlined in
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Figure 4.18: Stability plot in Enthalpy—Pressure coordinates for N2,C H4,C2,C3. The uncolored areas
in the figure represents the locations where the calculations converged to physical stable points in
the one-phase area.

the next section.

4.2.4 Investigation of a non convergent Tp-points

Figure 4.16 demonstrate that the locations where the calculations did not converge, are quite un-
ordered. Some points that did not converge are surrounded by points that did converge. This is
evident from all the sub-figures in Figure 4.16 at page 61. In this section the iteration sequence for a
non convergent point are evaluated and compared to a convergent neighboor point.

From equation (4.5) it is evident that the only variables that decide on the direction is ( ∂p
∂V )T,n , as well

as the sign of pspec −p. As long as the specified temperature is below the critical temperature for the
mixture, there will be three solutions for a given volume, one at the liquid side, one at the gas side, and
one in the unphysical area. From the knowledge of curvature(path/slope) of the pV —isotherm illus-
trated in section 2.1.2, it is known that in a single isotherm there are two locations where the sign of

the quantity ( ∂p
∂V )T,n will change. These locations are at the bottom and at top of the isotherm. Based

on this one should believe that convergence problems should enter into the picture if the iteration
sequence get stuck into either of these locations.

Figure 4.19 shows two different kind of occasions where the iteration sequence do not converge.

From Figure 4.19 one can observe that the iteration sequence in sub-figure 4.19a fails to pass the



i
i

“Master_final1107” — 2011/7/26 — 12:58 — page 65 — #65 i
i

i
i

i
i

4.2. Preparing the states for PSO 65

10
0

10
1

10
−2

10
−1

10
0

1

Volume/b [dm3]

P
re

ss
ur

e 
[k

B
ar

]

Iteration Path for pT iteration, Point not Converged

10

19
28

37

46

55

64

73

82

91

100

109

118

127

136

145154163172

181

190

199

 

 

(a) Non convergent seq, every 19’th iteration is shown.
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(b) Convergent sequence, every iteration is displayed.

Figure 4.19: Developement of the placement at the pV-isotherm as the iteration proceed. pspec =
0.001(both) Tspec = 202(left) Tspec = 206(right). The starting point is the same for both sequences.

maximum point of the pV –isotherm, whilst the sequence in sub-sequence 4.19b manage to find a
gas volume. A closer look at the sequences reveals that as the curvature of the pV –isotherm changes
direction, the direction of the step changes by nearly 180 degrees.

Examining sub-figure 4.19a it is evident that as long as the slope the pV –isotherm is in the same
direction for to subsequent points, the sequence proceed in the same direction along the isotherm.
As the sequence approaches the bottom point, the step becomes smaller, and two subsequent itera-
tion points becomes closer. This is also evident from Table 4.2, where some key values from the last
iterations in each of the sequences are given.

From the sub-figure 4.19b one can observe that at the nineteen’th iteration the sequence settles just

to the right of the maximum of the pV —isotherm. Hence the sign of ( ∂p
∂V )T,n did not change from the

previous iteration point. Then the search direction did not turn by 180 degrees, but continued to be
in the same quadrant. In this case the search direction continues in direction of a larger volume. After
25 iterations the sequence has converged to a volume at the gas side of the isotherm.

The data for the thermodynamic variables in Table 4.2 enforce the given interpretation of the it-

eration sequences in Figure 4.19. The results from this table indicate that ( ∂p
∂V )T,n , which for the

T p-calculations is the determinant, reaches a smaller value before it crosses the minimum of the
isotherm, for the convergent sequence than for the sequence that did not converge. This difference
seems to be the margin that makes one of the sequences to find a point just to the right of the maxi-
mum of the isotherm, and then continue to find a gas volume, whilst the other sequence finds a point
just to the left of the maximum, which leads the sequence to a liquid volume. As long as there do not
exist a volume for the given pressure at the liquid side of the isotherm, the sequence will never be able
to find a solution if it do not manage to cross the maximum.
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Table 4.2: Comparision of some key values from the 10 last iteration of one convergent and one non
convergent iteration sequence for the Tp calculations. pspec = 0.001 for both sequences. Tspec =
202(non convergent) Tspec = 206(convergent)

Convergent sequence

Iter detJTp
T,V ||J−1

T p || ( ∂p
∂V )T,n ( ∂p

∂T )V ,n ||δ
(

T
V

)
|| Tspec −T pspec −p

14 -3.51 1.47 -3.51 4.56 0.923 0 -0.0373
15 -0.655 4.62 -0.655 4.56 0.171 0 -0.0185
16 0.293 6.62 0.293 4.56 0.388 0 -0.0207
17 -0.128 20.7 -0.128 4.56 0.697 0 -0.0164
18 -0.00465 251 -0.00465 4.56 1.63 0 -0.0327
19 -0.000312 3.21e+003 -0.000312 4.56 34 0 -0.000745
20 -0.000178 5.61e+003 -0.000178 4.56 0.33 0 -0.000181
21 -0.000146 6.83e+003 -0.000146 4.56 0.106 0 -1.7e-005
22 -0.000143 6.98e+003 -0.000143 4.56 0.0109 0 -1.81e-007
23 -0.000143 6.98e+003 -0.000143 4.56 0.000118 0 -2.1e-011
24 -0.000143 6.98e+003 -0.000143 4.56 1.36e-008 0 -4.34e-019

Not Convergent sequence

Iter detJTp
T,V ||J−1

T p || ( ∂p
∂V )T,n ( ∂p

∂T )V ,n ||δ
(

T
V

)
|| Tspec −T pspec −p

190 -0.197 14.5 -0.197 2.68 0.125 0 -0.00664
191 0.36 5.05 0.36 1.49 0.45 0 -0.0167
192 -3.18 1.57 -3.18 3.76 0.428 0 -0.0231
193 -0.925 3.61 -0.925 3.06 0.117 0 -0.0095
194 0.123 21.3 0.123 2.42 0.148 0 -0.00655
195 -2.92 1.64 -2.92 3.69 0.67 0 -0.0214
196 -0.813 4.02 -0.813 3.02 0.117 0 -0.00895
197 0.183 14 0.183 2.35 0.158 0 -0.00676
198 -60.9 1.01 -60.9 8.33 0.456 0 -0.349
199 -21.2 1.04 -21.2 6 0.13 0 -0.138
200 -7.6 1.17 -7.6 4.56 0.13 0 -0.0522

4.3 Testing PSO-implentation

The implementation of the local dynamic multi swarm PSO version was tested for the four compo-
nent system, N2, CH4, C2H6, C3H8. The test regime was performed based on calculated one-phase
states for the physical area of the system. From these calculations the unstable one-phase area be-
came evident. As a reference for the locations of the two-phase area, a phase envelope generated by
SINTEF was used.

Based on this background information, testing of the algorithm was applied to the metastable area
of the one-phase calculation scheme. The results from this testing is given in Figure 4.20- 4.21 and
Table 4.3.

From Figure 4.20 one can observe that the initialization routine was able to detect negative tangent
plane values at locations close to the phase envelope. This was true both when the search was exe-
cuted from a liquid phase, searching for a vapor phase, and when the objective was to find a liquid
phase. Nevertheless, the liquid phases introduced to the vapor phases did not manage to converge
applied to the UV n-flash.

A well known outcome of a search after a new phase to be introduced in a system are the obtainment
of the trivial solution. In that way an important aspect of the evaluation of the results is to detect
whether the trivial solution is obtained. In Table 4.3 densities for the two phases in the obtained two-
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Figure 4.20: Results from tesing of DMS-PSO applied to phase equilibrium calculations of the a 4-
component system. X denotes the locations where a stable two phase equilibrium where obtained. Y
denotes locations where the tangent plane where negative, both phases stable, but UV n-flash failed
to converge.

Table 4.3: Some resulting densities from the optimization. The densities, ρβ, are for the new phases.
Note that the trivial solution is not obtained.

Searching liquid phase Searching vapor phase
ρβ ρα ρβ ρα

6.4102e-008 1.9943e-010 7.179e-010 6.4738e-008
6.2786e-008 2.5829e-010 1.7741e-009 6.2068e-008
6.299e-008 3.4118e-010 7.5453e-010 6.4622e-008

6.2775e-008 3.4118e-010 1.8862e-009 6.1837e-008

phase systems. The trivial solution do not seem to be obtained for any of these cases. The densities
are compared for the rest of the states where a negative tangent plane distance where present in
appendix B.

The movements of the PSO-particles are influenced by its own best position as well as the best ob-
tained position for the entire swarm. Dependent on the surface of the energy surface, the movement
of the best position for the swarm might bubble around before it approaches the minima. Figure 4.21
illustrates the trajectory for the second point from the left at the lowest pressure in Figure 4.20. This
point is also given in the second row, third column in Table 4.3.
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Figure 4.21: The movement of the best position for the swarm might bubble around before it ap-
proaches the minima
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Chapter 5

Discussion

5.1 The VessFire Model

The objective of testing the VessFire model was to examine its performance when applied to variable
heat- and mass input. The aim was to verify that the mechanisms for taking in, and leaving out phases
function satisfactory. Detecting possible shortcomings of the model was also an important perspec-
tive of the testing regime. Due to the fact that the initialization routines in this model was based on
relative quantities within the system, at some point an expected shortcomings would be related to
initialization of phases.

The results from the two component case and VessFire case demonstrate that the model respond well
to the heat- and mass inputs applied to the system in these cases. For all time steps in these cases the
system converge to the expected topologies in a relatively small number (5-10) of iterations.

The norm criterion for vanishing phases are formulated in a way such that phases are excluded from
the system based on their extensive quantities entropy, volume and moles. If the normed value
of these quantities, relative to the size of the system, is below a defined small number, the phase
should be excluded from the calculations. As a vaporizing or condensing phase becomes very small
in a multicomponent mixture, at one point some of the components will become absent from that
phase, which leads to an infinite chemical potential, at this point the Jacobian matrix will be singular
(Trangenstein, 1987). The purpose of the norm criterion is to eliminate phases that otherwise would
introduce singularities to the Jacobian matrix. In the way the model manage to converge the sys-
tem for all time steps within a few iterations (5-10) for these test cases, the norm criterion seemed to
perform well in this cases.

In the one component case, the vapor phase did not vanish from the system, even though extensive
cooling was applied to it. A reason for this was probably that the pressure was reduced concurrently
with the temperature. Then, also the boiling point is reduced. As a result, both evaporation and con-
densation are present in the system at all time steps. To achieve transition to the one-phase liquid
topology, mass must be added to the system, in order to keep the pressure up. Nevertheless, be-
cause of the big differences in density between liquid and vapor, the vapor phase will expand to large
volumes, even though its mass is small relative to the liquid phase. Then, unless mass is added to
the system, the vapor phase is not expected to be excluded. In the present case where the system is
cooled with no mass added, and an unphysical low temperature (40 K) is obtained for the system, the
Jacobian matrix is badly conditioned and the iteration sequence start to wiggle around without mak-
ing progress. Finally, the step size in the solver obtains a too small value, and the iteration sequence
is interrupted. The step size is shortened to avoid a negative volume for the liquid phase L1, which

69
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represent the condense from V1.

The initialization routines applied to the model were tested both in the two component case and in
the VessFire case. In the two component case both the initialization of a new main phase, and the
initialization of a utility phase were achieved. In the VessFire Case only initialization of utility phases
was needed.

Independent of whether a main phase or a utility phase are to be formed in the system, the sig-
nal to initialize a phase are given by the tangent plane check (2.6). A negative value of this check,
proves that the energy in the system would be reduced by adding a new phase to the system (Michael
L. Michelsen, 2004). Then the initialization of the new phase is based on the virtual phase and one
of the main phases. The initialization routines are somewhat different dependent on whether a main
phase or a utility phase should be included, this is described in section 3.1.3. Owing to the fact that
no problems were present for the model as these initialization routines were applied to it, the initial-
ization both for introducing a new main phase and a utility phase proved to perform well in these
cases.

Nevertheless, as the system, both in the VessFire Case and in the one-component case, were heated
sufficiently beyond the point where the liquid phase can exist, a trivial solution was obtained for the
virtual liquid phase. This means that the state found by the virtual phase, is exactly the same state as
the state of the main phase. At the point where the critical point is reached for the system, only one
minima will exist on the energy surface, and the trivial solution is the only solution (Callen, 1985).
Nevertheless the trivial solution is obtained for L1 before the critical temperature is reached. This can
be observed from Figure 2.4a. For a virtual phase the chemical potential as well as the temperature
are constricted to be equal its main phase.

µα1 =µα2 Tα1 = Tα2

and the pressure is a function of these:

p = p(T,µ)

As the temperature is raised further away from the two-phase area the constraints for T and µ are
fulfilled by reducing the pressure in the virtual phase. At the point where it is no longer possible to
find a physical liquid solution for a given isotherm, the virtual phase enters the unstable area of the
pV -isotherm and then of the energy surface, to satisfy the given constraints. At this point the results
from the tangent plane check will no longer be reliable.

The trivial solution for L1 was obtained both for the VessFire case and for the one-component case.
For the VessFire case this fact caused no problems. This is due to the fact that the system was not
cooled after the trivial solution was obtained for the virtual phase L1. Nevertheless, in the one-
component case, cooling was applied to the system after the trivial solution was obtained for L1.
As illustrated in Figure 4.9 no liquid phase was formed even though the system is exposed to exten-
sive cooling. Partly, this behavior can be explained due to the fact that the pressure is reduced with
the temperature. Then the dew point for the vapor is reduced. Nevertheless, the fact that the trivial
solution is obtained for the virtual phase, means that the virtual phase are the very same phase as its
vapor phase. Then there is no way that the tangent plane check will be negative, in fact it will always
be equal to zero, since the pressure and the chemical potential will not differ within the same phase.

Then as the virtual phase converges to the trivial solution, the stability check done by the tangent
plane check has no meaning anymore. The initialization routines applied to the model also base
their values on the virtual phases, and when these phases are no longer reliable, global initialization
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routines have to be performed. Global initialization routines are also needed to initialize the virtual
phases whenever the starting point for the calculations are in the one-phase area. To develop routines
that overcome these shortcomings of the model was the focus of the second half of this master work.

5.2 Preparing the states for PSO

The objective of this part of the work was to generate one-phase states to be used in the Dynamic
Multi Swarm—Particle Swarm Optimization (DMS-PSO) routine (Liang and Suganthan, 2005). This
was done by converging one-phase calculations in H p, UV , T p, and pV -coordinates. T p, H p, Sp
and UV constitute standard approaches in the chemical processes industry, and applies for initial-
ization, irreversible stationary-, reversible stationary- and dynamic energy balances. pV represents
the quantity that can be deduced directly from the equation of state. To be able to calculate these
constraints it is necessary to converge the system in these coordinates. Even though convergence of
the grid in one coordinate would have been sufficient to create starting states for the testing of DMS-
PSO, converged grid for multiple variable pairs were generated. This was done to obtain knowledge
about the convergence properties of each grid.

The main aim of this part of the work was to generate feasible states for the initialization routine, a
secondary goal was to investigate which coordinates that would be most appropriate to converge the
states for. Owing to the fact that H p, T p, UV and pV are different thermodynamic variables, it is not
expected that the all have the same convergence properties.

The resulting (stability) plots for the different coordinate pairs, demonstrates that the fraction of the
unstable points, as well as the convergence properties, differs between the different frameworks. For
instance a lot of points in the UV –grid did not converge. For these points, the iteration sequences
approach a temperature near 0 K, even with constraints on the temperature step down to δTmax =
1e − 5. This might indicate that the state is not physically defined for these locations in the grid. A
reason for this is that the range for the axes in the different grid were based on the maximum and
minimum values for the different variables obtained from the calculations of the H p-diagram.

This means that the grid in the H p-coordinates constitute the rectangular grid. The other grids are
then mapped from the rectangular H p-grid into their own coordinates. The physical defined domain
in the transformed plot might not be rectangular. Then it might be the case that not all coordinates
within a grid other then H p should be defined due to the physics. This might be the case for the
UV -grid. Here the calculations resulted in a large fraction of points that did not converge. To get an
answer to this, the corner point in the diagram could have been calculated, then it could have been
possible to make it clear whether these points represent physical locations.

Another feature of the stability properties of the plots where that the mechanical stability constraint,
( ∂2 A
∂V ∂V )T,n, never was violated unless the diffusive stability constraint, ( ∂2 A

∂N∂N )T,V , was violated as well.
This is in accordance with theory (Radzyminski and Whiting, 1987).

Owing to the fact that T p-calculations represents the most used approach in teaching of chemical
engineering, an interesting point was that the T p-calculations seem to overestimate the unstable
domain in the grid. A wide range of points converged to unstable points where both the mechanical-,
and the diffusive stability condition were violated. Also the calculations in this grid failed to converge
for some seemingly random points in the diagram.

It was found that for a H p- and a T p-sequence that with the same pressure specification that started
from the same starting point, and ended at the same temperature, the H p-calculations converged to
a stable state, whilst the iteration sequence for T p ended up at an unstable point. An investigation
of these sequences revealed that whilst the T p–sequence went directly to the specified isotherm, the
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H p–sequence tend to follow the isobars. In this way the H p–sequence manages to find a stable or
metastable liquid point, whilst the T p-sequence end up at a unstable location. In the way T,V ,n rep-
resent the variables to be set in the in the model used to serve the calculations with thermodynamic
variables, a H p-framework will have one more degree of freedom than a corresponding framework in
T p. The current results indicates that, in some situation, this can be an advantage. Nevertheless, it is
hard to tell whether the H p-sequence illustrated in the presented example converged to a stable- or
metastable state.

The results discussed above were obtained when the calculations were initialized in the two-phase
domain. When the very same T p-grid was generated starting from various points in the one-phase
area, the resulting stability plot became very different. For three of the four additional starting points
tested, the whole grid, apart from a small fraction of points in the middle of the grid converged to
stable states. Nevertheless, the calculated volumes for the converged states revealed that these be-
came very different dependent on whether the initialization was from the liquid side or the gas side.
An interesting aspect was that the very same locations in the grid that, according to the first starting
point was categorized as unstable, converged to liquid points when initialized from a liquid volume,
and to a gas state when initialized from a gas volume.

Figure 5.1: The general pV –isotherms
for a cubic equation, marked for
metastable locations.

These results indicate that the calculations initialized on
the liquid side converge to liquid states as long as a liq-
uid volume exist for the given pressure along the par-
ticular pV –isotherm. Correspondingly, the calculations
initialized in the two-phase area converge to unstable
points along the pV –isotherm as long as the pressure
are between pR and pB in Figure 5.1, which shows the
metastable areas as discussed in section 2.1. The inflec-
tion point of this curve, pD , denotes the border between
stability and metastability on the vapor side. Points on
the isotherm above this pressure are metastable. Corre-
spondingly, at the liquid side, points below this pressure,
pD , is metastable. It is evident from the curve of the pV -
isotherm that for these metastable locations the mechan-
ical stability condition will not be broken for these cases.
The results from this work shows that the iteration se-
quence converges to the closest of the three alternative so-
lutions. The resulting states will differ according to this.

Whilst the results from the T p-calculation was very de-
pendent on the state they were initialized from, the pH-
diagram converged to exactly the same states for each
point in the grid, regardless of choice of starting point.
Then a likely conclusion is that the S(h, p,n)-surface is
without folders.

Another feature with the T p-diagram initialized in the two phase area, was that the calculations failed
to converge for some seemingly random points in the diagram. An investigation was done of two
points in this domain, one non convergent point and a convergent neighbor point. The objective
of this investigation was to detect the reason behind this phenomena. The result illustrates that the
sequence that did not converge, got stuck in the curvature of the pV -isotherm. As the iteration se-
quence proceed, both sequences approaches the minimum of the pV –isotherm. The difference be-

tween the two sequences is that for the convergent sequence, the variable, ( ∂p
∂V )T,n , which for the

T p-calculations is the determinant, reaches a smaller value before it crosses the minimum of the
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isotherm. This difference seems to be the margin that makes one of the sequences to find a point just
to the right of the maximum of the isotherm, and then continue to find a gas volume, whilst the other
sequence finds a point just to the left of the maximum, which leads the sequence to a liquid volume.
As long as there do not exist a volume for the given pressure at the liquid side of the isotherm, the
sequence will never be able to find a solution if it do not manage to cross the maximum.

Nevertheless, the main objective of this part of the work was to investigate the convergence properties
and stability properties of the different grids, and to obtain feasible states for the initialization routine.
According to this, some information was obtained from the H p– as well as the T p-grid.

The results from T p demonstrated that when the calculations are initialized sufficiently far away from
the two-phase area, most of the points in the T p-grid will converge to stable- and metastable states.
For an initialization routine that needs a feasible one-phase state as a starting point, this will be an
advantage. On the other hand, that the T p-grid converges to stable states over most of the physical
domain, means that many of this states are metastable. Whether a state is unstable can easily be
revealed by checking the mechanical- and diffusive stability criterion, ( ∂2 A

∂V ∂V )T,n > 0 and ( ∂2 A
∂N∂N )T,V >

0. The distinction between metastable and stable mixtures is more difficult in the way the mentioned
stability criterion not will be reflected for these cases (Stateva and Tsvetkov, 1991). Then to check
whether a state is unstable require a global search.

In the way a global search is demanding, it would be preferable that a particular point was unstable
whenever the state belonged to the two-phase area. Nevertheless, the case for the T p–calculations,
when initialized in the two-phase area, are that they converge to unstable states, also at locations
where stable states exist. This will introduce unnecessary problems for the reliability of the calcula-
tion.

On the other hand the H p-scheme gave unique defined states for every points in the diagram, then
the locations in the grid that should belong to the stable one-phase area, are denoted as stable in all
cases. This is a benefit in the way no initialization efforts are needed for a stable phase (or system).
Nevertheless, the H p-calculation converged to a stable state for a point that converged to an unstable
point for the T p, then the H p–sequence has converged to a stable or a metastable point. If the point
in question is metastable, the point should belong to the two-phase area. This condition is more
easily detected by the T p-sequence that converged to an unstable state, owing to the fact that the
stability checks is more easily performed in the unstable area.

Nevertheless, the results for the T p–calculations showed that T p (initialized from two-phase) finds
unstable points as long as such points are present along a given isotherm, then the same path would
be present whether the H p-point is stable or metastable. When the point found by the H p–sequence
really are stable, this solution is preferable compared to the unstable solution found by the T p–
sequence. This is because no initialization efforts are needed for a stable phase (or system).

5.3 PSO

In this work the local and dynamic PSO version, Dynamic Multi Swarm PSO (DMS-PSO), developed
by Liang and Suganthan (2005), was implemented and tested for the four component system, N2,
CH4, C2, C3. The starting point for the testing was a rectangular enthalpy—pressure diagram, where
each state were converged for one-phase. In this way one-phase states were available, and testing
could be performed. A H p–envelope generated by SINTEF was used as a reference for where the
stable one-phase should be present.

The results from the testing revealed that the implemented routine was able to obtain a negative tan-
gent plane distance at locations near the phase envelope. This was true both on the vapor- and the liq-
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uid side of the unstable area. A negative tangent plane distance denotes that the system would reduce
its energy by introducing the trial phase that is found by the search mechanism (Michelsen, 1982). All
trial phases that were found to give a negative tangent plane distance, passed the mechanical- and
diffusive stability test.

Then the next step was to adjust the composition in the two phases, and they were applied to an
UV n-flash. For all trial phases introduced to liquid systems, the equilibrium calculations converged
to non trivial solutions. And for all cases the resulting phases was proved to be stable due to the local
stability conditions, ( ∂2 A

∂X∂X )X 6=T . The same was not true at the vapor side. Here the routine was able to
find stable phases that gave negative values for the tangent plane distance, but the UV n–flash failed
to converge for all cases. That the UV n-flash did not converge for the introduction of the liquid phase,
might have something to do with the size estimate of the phase. The size of the state is estimated as a
small fraction of the main phase.

Even though the results indicates that the current routine was able to find stable phases at locations
relatively close to the phase envelope, it fails to find such phases close to the unstable area. Intuitively
at these locations the tangent plane distance should be even more negative. This give rise to concern.

Furthermore the reliability of the calculations may be limited due to the boundaries set on the vari-
ables to estimate, as well as the choice of variables to estimate. In this approach the fraction of each
component in the new phase, as well as the density, represents the variables to be found in the opti-
mization. The upper- and lower bounds for the fractions of the different components are set based
on a Wilson approximation succeed by K-value equilibrium calculations. In this way a relatively large
computational load is placed on the PSO-routine, which will constitute a large disadvantage for a
computer program.

An alternative, and probably better, solution could have been to use the mol amounts to be estimated
by the PSO, and then set the corresponding boundaries based on the hard core volume of each com-
ponent, as well as the critical volume for that component, when a liquid phase should be introduced.
And correspondingly, the upper and lower bounds on the vapor side could be set based on ideal gas.

The borders for the density was initially set to ρ = [0, eT n
b ] both for the search of vapor phases and

liquid phases. Later this was changed to [0, eT n
10b ] in the search for a vapor phase, and to [ eT n

3b , eT n
b ]. The

objective of this was to give the algorithm a clever guidance against the solution. The though behind
the upper bound for the liquid volume was the critical volume for a van der Waal fluid, vc = 3b. The
critical volume of a mixture under given conditions will represent the largest possible liquid volume
for that mixture. Nevertheless, the calculations performed in this work is based on the Peng-Robinson
equation of state, which mean that the expression for the critical volume will not be the same. On the
other hand, the Peng-Robinson equation of state do in the same way as the van der Waal equation of
state, constitute a cubic equation of state, and a similar expression for the critical volume will exist.

The choice of the lower bound for the liquid was based on the fact that smallest possible volume will
be equal to the hard core volume. Nevertheless b depends on the composition, which means that
this might not be a good choice of border. The lower bound for the search for the vapor phase was set
more randomly, aiming to eliminate liquid volumes in the search for a vapor phase.

Although the implemented routine was able to find trial phases with negative tangent plane distance
for more than half of the metastable points, the current implementation of the routine has some con-
siderable drawbacks. Better solutions could have been found regarding to decide on the boundaries,
as well as to the choice of parameters to estimate.
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Chapter 6

Conclusion

6.1 The VessFire model

The results from the two component case and VessFire case demonstrate that the model respond well
to the heat- and mass inputs applied to the system in these cases. For all time steps in these cases the
system converge to the expected topologies in a relatively small number (5-10) of iterations. Also in
these cases the system was exposed to 8 of the 13 topology transformations that should be available
for the system. Both the norm criterion for excluding phases and the initialization routine based on
the tangent plane criterion, was proved to work.

Nevertheless, the test on the one component system reveals that as the virtual phase converges to a
trivial solution, the stability check done by the tangent plane check has no meaning anymore. The
initialization routines applied to the model base their values on the virtual phases, and when these
phases are no longer reliable, global initialization routines have to be performed. Global initialization
routines are also needed to initialize the virtual phases whenever the starting point for the calcula-
tions are in the one-phase area.

6.2 Preparation of feasible States

The main discovery of the investigation of the convergence- and stability properties for the different
grids, were that the calculated state for a single point in the T p-grid became very different depending
on the initialization of the calculations. The results from this work shows that the iteration sequence
converges to the closest of the three alternative solutions available on the pV -isotherm. The resulting
states will differ according to this. Then when the initial state belongs to the two-phase domain the
T p-calculations seem to overestimate the unstable domain of the grid. Correspondingly the calcu-
lations initialized on the liquid or vapor side will converge to liquid– or vapor states respectively, as
long as a such states exist for the given pressure along the particular pV –isotherm. This behavior was
not present for the H p-scheme. Here the calculations converge to unique defined states regardless of
the initialization point.

To test the initialization routine, the behavior of T p, where almost the whole grid converged to stable-
and metastable points, could be preferable, due to the fact that feasible one-phase states is needed.
Nevertheless, a global search routine is needed to detect whether a phase is stable or metastable. On
the other hand, whether a phase is unstable are easily detected by the mechanical- and the diffusive
stability condition. In the way a global search is demanding, it would be preferable that a particular
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point was unstable whenever the state belonged to the two-phase area. Nevertheless, the case for the
T p–calculations, when initialized in the two-phase area, are that they converge to unstable states,
also at locations where stable states exist. This will introduce unnecessary problems for the reliability
of the calculation.

6.3 PSO

The results from the testing of the local and dynamic PSO version, Dynamic Multi Swarm PSO (DMS-
PSO) for a four component system revealed that the implemented routine was able to obtain a neg-
ative tangent plane distance at locations near the phase envelope. This was true both on the vapor-
and the liquid side of the unstable area. All trial phases that gave a negative tangent plane distance,
passed the mechanical- and diffusive stability test. To include the trial phases to the system, an UV n-
flash was applied to calculate the equilibrium composition. For all trial phases introduced to liquid
systems, the equilibrium calculations converged to non trivial solutions. Nevertheless, for all trial
phases included to vapor system, the equilibrium calculations failed to converge.

Although the implemented routine was able to find trial phases with negative tangent plane distance
for more than half of the metastable points, the current implementation of the routine has some con-
siderable drawbacks. Better solutions could have been found regarding to decide on the boundaries,
as well as to the choice of parameters to estimate.
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Appendix A

Derivations

A.1 Equation set for the different topologies

To each topologies available for the thermodynamic model, there exist a corresponding set of equa-
tions. The equation sets for Topology 1, Topologi 4, and Topology 6 are available in chapter 3. The
equation set for the remaining topologies are given in equation (A.1), (A.2), and (A.3), for Topologi 2,
Topology 3, and Topology 5 respectively. Topology 2 (V1,L1,L2,V2) has the following configuration:



T V 1 −T L1∑n
i=1 nL1

i
µV 1 −µL1

T L2 −T V 2

pL2 −pV 2

µL2 −µV 2

U V 1 −HV 2

V V 1 +V L2

nV 1 −nV 2

U L2 +HV 2

pV 1 −pL2

nL2 +nV 2



k+1

=



0
1
0

0
0
0

U V 1 +δU V 1

V V 1 +V L2

nV 1 +δn1

U L2 +δU L2

0
nL2 +δnL2



k

(A.1)

In Topology 3 (V1,L1,L2,V2) the utility phase V2 has become a virtual phase:
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T V 1 −T L1

pV 1 −pL1

µV 1 −µL1

T L2 −T V 2∑n
i=1 nV 2

i
µL2 −µV 2

U V 1 +H L1

V V 1 + +V L2

nV 1 +nL1

−H L1 +U L2

pV 1 −pL2

−nL1 +nL2



k+1

=



0
0
0

0
1
0

U V 1 +δU V 1

V V 1 +V L2

nV 1 +δn1

U L2 +δU L2

0
nL2 +δnL2



k

(A.2)

Topology 5 represents the one-phase liquid system (L2,V2), modeled with the corresponding virtual
phase V2:



T L2 −T V 2∑n
i=1 nV 2

i
µL2 −µV 2

U L2

V L2

nL2



k+1

=



0
1
0

U L2 +δU L2

V L2

nL2 +δnL2



k

(A.3)

A.2 Deviation of mass- and energy balances

The mass and energy balances over the different control volumes are deduced from the general mass-
and energy balances, given in. The general mass balance for a non-reacting system are given by (A.4)
and (A.5):

(
Rate of accumulation

in the system

)
=

(
Rate of flow

into the system

)
−

(
Rate of flow out

of the system

)
(A.4)

(
dNCV

d t

)
= n̂i n − n̂out (A.5)

For a discrete framework the left hand side of (A.5) can be expressed as dNCV
d t = nk+1 −nk between to

subsequent time steps. Based on (A.5), the balance over the vapor phase is given by Equation (A.6):

nV 1
k+1 −nV 1

k = nV 2
k+1 −nL1

k+1 +δnV 2
k (A.6)

where δnV 2 is external mass input. k refer to the time step. nV 2
k+1 denotes the mass that evaporates

from L1 (CV1) to V2 (CV2) at time step k+1, and nL1
k+1 represent condensate from V1 (CV1) to L2 (CV2)

in the same time step. Then collecting the terms by time step, implies (A.16):
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nV 1
k+1 −nV 2

k+1 +nL1
k+1 = nV 1

k +δnV 2
k (A.7)

where the expression on the right hand side will be constant within each time step. The correspond-
ing energy balance are deduced based on the general energy balance (A.8)- (A.9):


Rate of

accumulation
of energy

within
the system

=


Rate of energy
added to the

system by mass
flow into the

system

−


Rate of
energy leaving
the system by
mass flow out
of the system

+


Rate of flow
of heat to the

system from the
surroundings

−


Rate of work
done by the

system on the
surroundings

 (A.8)

dECV

d t
= Ėi nn − Ėout +Q̇ −Ẇ (A.9)

where E = U + Ek + Ep , Ẇ represent the work term, and Q̇ denotes the heat input to the system.
Neglecting kinetic- and potential energy:

E ≈U (A.10)

The work term can be expressed by:

Ẇ =−pV̇i n +pV̇out +Ẇs (A.11)

where Ẇs are referred to as shaft work, and the pV terms denotes the flow work. Inserting (A.10)-
(A.11) into (A.9):

dUCV

d t
= U̇i n +pV̇i n −U̇out −pV̇out −Ẇs +Q̇ (A.12)

Internal energy can be expressed in terms of enthalpy through the following expression (A.13):

H =U +pV (A.13)

Applying (A.13) to (A.12), as well as neglecting the shaft work gives as follows:

dUCV

d t
= Ḣi nn − Ḣout +Q̇ (A.14)

For a discrete framework the left hand side of (A.14) can be expressed as dUCV
d t =Uk+1−Uk between to

subsequent time steps. Applied to the Petrell control volume, CV1, the the following expression will
emerge for V1:

U V 1
k+1 −U V 1

k = HV 2
k+1 −H L1

k+1 +δU V 2
k (A.15)

collecting the terms for the same time step on each side of the equality gives (A.16):
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U V 1
k+1 −HV 2

k+1 +H L1
k+1 =U V 1

k +δU V 2
k (A.16)

where δU V 2
k represent the external heat input. Similar expressions can be deduced for the liquid

control volume (CV2).
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Appendix B

Data from PSO

B.1 PSO-tables
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Stable Q(pressure level) q(temperature level) ρβ ρα

stab:1 Q: 1 q: 1 7.179e-010 6.4738e-008
stab:1 Q: 1 q: 2 1.7741e-009 6.2068e-008
stab:1 Q: 2 q: 1 7.5453e-010 6.4622e-008
stab:1 Q: 2 q: 2 1.8862e-009 6.1837e-008
stab:1 Q: 3 q: 1 7.4294e-010 6.4659e-008
stab:1 Q: 3 q: 2 1.9927e-009 6.1623e-008
stab:1 Q: 4 q: 1 7.9222e-010 6.4506e-008
stab:1 Q: 4 q: 2 1.9933e-009 6.1622e-008
stab:1 Q: 5 q: 1 1.9989e-009 6.1611e-008
stab:1 Q: 5 q: 2 3.8176e-009 5.8373e-008
stab:1 Q: 6 q: 1 2.0602e-009 6.149e-008
stab:1 Q: 6 q: 2 3.8599e-009 5.8307e-008
stab:1 Q: 7 q: 1 2.0198e-009 6.157e-008
stab:1 Q: 7 q: 2 3.836e-009 5.8345e-008
stab:1 Q: 8 q: 1 2.0599e-009 6.1491e-008
stab:1 Q: 8 q: 2 3.8413e-009 5.8338e-008
stab:1 Q: 8 q: 3 6.063e-009 5.4917e-008
stab:1 Q: 9 q: 1 3.8502e-009 5.8325e-008
stab:1 Q: 9 q: 2 6.0629e-009 5.4921e-008
stab:1 Q: 10 q: 1 3.835e-009 5.8351e-008
stab:1 Q: 10 q: 2 6.0473e-009 5.4947e-008
stab:1 Q: 10 q: 3 8.4857e-009 5.1326e-008
stab:1 Q: 11 q: 1 6.0134e-009 5.5001e-008
stab:1 Q: 11 q: 2 8.4596e-009 5.1375e-008
stab:1 Q: 12 q: 1 5.97e-009 5.507e-008
stab:1 Q: 12 q: 2 8.4124e-009 5.1456e-008
stab:1 Q: 12 q: 3 1.086e-008 4.7675e-008
stab:1 Q: 13 q: 1 8.3492e-009 5.1563e-008
stab:1 Q: 13 q: 2 1.081e-008 4.7786e-008
stab:1 Q: 13 q: 3 1.3097e-008 4.3914e-008
stab:1 Q: 14 q: 1 1.0731e-008 4.7946e-008
stab:1 Q: 14 q: 2 1.3062e-008 4.4063e-008
stab:1 Q: 14 q: 3 1.5087e-008 4.0234e-008
stab:1 Q: 15 q: 1 1.3002e-008 4.4266e-008
stab:1 Q: 15 q: 2 1.5148e-008 4.0355e-008

Table B.2: Density values from the iteration. These densities are the densities obtain after the UV n-
flash
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Stable Q(pressure level) q(temperature level) ρβ ρα

stab:1 Q: 3 q: 1 6.4102e-008 1.9943e-010
stab:1 Q: 3 q: 2 6.2786e-008 2.5829e-010
stab:1 Q: 3 q: 3 6.299e-008 3.4118e-010
stab:1 Q: 3 q: 4 6.2775e-008 3.4118e-010
stab:1 Q: 3 q: 5 6.2134e-008 5.9841e-010
stab:1 Q: 3 q: 6 6.189e-008 7.93e-010
stab:1 Q: 3 q: 7 6.1005e-008 7.93e-010
stab:1 Q: 3 q: 8 6.0959e-008 7.93e-010
stab:1 Q: 3 q: 9 6.0262e-008 7.93e-010
stab:1 Q: 3 q: 10 6.029e-008 7.93e-010
stab:1 Q: 3 q: 11 6.0019e-008 7.93e-010
stab:1 Q: 3 q: 12 6.2275e-008 7.93e-010
stab:1 Q: 3 q: 13 5.9159e-008 7.93e-010
stab:1 Q: 3 q: 14 5.7856e-008 7.93e-010
stab:1 Q: 3 q: 15 6.0644e-008 7.93e-010
stab:1 Q: 4 q: 1 6.096e-008 7.93e-010
stab:1 Q: 4 q: 2 6.0358e-008 7.93e-010
stab:1 Q: 4 q: 3 6.2073e-008 7.93e-010
stab:1 Q: 4 q: 4 6.025e-008 7.93e-010
stab:1 Q: 4 q: 5 5.8216e-008 7.93e-010
stab:1 Q: 4 q: 6 5.8096e-008 7.93e-010
stab:1 Q: 4 q: 7 5.9914e-008 7.93e-010
stab:1 Q: 4 q: 8 5.9742e-008 7.93e-010
stab:1 Q: 4 q: 9 5.9692e-008 7.93e-010
stab:1 Q: 4 q: 10 5.9893e-008 7.93e-010
stab:1 Q: 4 q: 11 6.0475e-008 7.93e-010
stab:1 Q: 5 q: 1 5.9453e-008 7.93e-010
stab:1 Q: 5 q: 2 5.8878e-008 7.93e-010

Table B.4: Density values from the iteration. Here the a liquid phase are searched. The values are
before the UV n − f l ash
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