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Abstract

This thesis compares the performance of the new static model based estimator

proposed by Skogestad et al. (2011) with least squares (LS), principal compo-

nent regression (PCR), and partial least squares (PLS) estimators on a linear,

binary, and multicomponent distillation model. The performance is classified

into two categories: “open-loop” performance (estimator used for monitor-

ing) and “closed-loop” performance (estimator used for control). The new

estimator is derived from a regression point of view, and it is shown that this

estimator is optimal for “closed-loop” estimation. Skogestad et al. (2011) also

presented a method called loss regression for applying the new estimator on

data. This thesis shows that this estimator is sensitive to noise and collinear-

ity, and a new improved method called the truncated “closed-loop” method

(truncated CLM) is proposed. It is found that the new estimator and the

truncated CLM have better “closed-loop” performance, but worse “open-loop”

performance than LS, PCR and PLS.
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Chapter 1

Introduction

The focus of this work was to compare the new static estimator proposed by

Skogestad et al. (2011) with conventional static estimators like least squares

(LS), principal component regression (PCR), and partial least squares (PLS)

on standard challenge problems and as a composition estimator for distillation.

The distillation problem gave much insight into the estimator properties, mak-

ing the standard challenge problems redundant. It was decided to only show

the results for the distillation problem in the report, and to summarize the

standard challenge problems in the appendix.

1.1 Estimators

In a chemical plant, there are usually a large number of hardware sensors

which are used for monitoring and controlling given processes. In some pro-

cesses there are process variables (e.g., composition) that are too difficult or

expensive to measure. Estimators, also called soft sensors, work by predicting

desired variables using existing measurements (usually variables that are easy

to measure like temperature). Thus, estimators can be a good alternative to

hardware sensors for these difficult process variables.

Estimators can usually be divided into four main groups based on whether they

are a static or dynamic estimator, or a linear or nonlinear estimator. Because

the new estimator is a static linear estimator, only this type of estimators are

treated in this thesis.

1
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Figure 1.1: Generalization of a chemical plant.

B
ŷx

Figure 1.2: Block diagram of an estimator B which uses measurements x to

predict the primary variable y.

Figure 1.1, show a typical generalization of a chemical plant. There are two

input variables u and d. u are degrees of freedom that can be used for

controlling the plant, and d are disturbances that affects the plant operation.

The system has two outputs, the primary variable y and the measurements x.

The goal of the estimator is to precisely estimate the primary variable y, called

the prediction ŷ, from the measurements x. Figure 1.2 shows a block diagram

of an estimator B.

The estimator is usually determined in two ways: (1) from data with regres-

sion techniques like least squares (LS), principal component regression (PCR),

or partial least squares (PLS), or (2) from detailed models most commonly

derived from first principles.

Model based estimators are primarily used for planning and designing of pro-

cessing plants and are based on ideal conditions. This makes them difficult

to adapt for real world processes as they are sensitive to noise and modeling

errors. On the other hand, data based estimators rely on recorded data from

the actual process, and are thus able to describe the real process conditions

(Kadlec et al., 2008). In this thesis, data will be generated from the process

models, and added random noise to mimic real data. The classical methods for

finding data based estimators are discussed further in the subsequent chapter.

Estimators can be used in two different ways: (1) for monitoring or (2) “con-

trolling” primary variables (actually it is the predicted primary variables which

are controlled). Estimators used for monitoring primary variables are termed

“open-loop” estimators (the predictions are not controlled), and estimators

used for controlling primary variables are termed “closed-loop” estimators (pre-

dictions are controlled).
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Figure 1.3: Block diagram of a “closed-loop” estimator

To clarify, all references to “open-loop” and “closed-loop” (in quotation marks)

refer to whether or not the predictions are controlled. On the other hand,

the terms open-loop and closed-loop (not in quotation marks) refers only

to whether the primary variables (sometimes also secondary variables) are

controlled.

A figure of a “closed-loop” estimator is shown in Figure 1.3. The controller K

adjusts u such that the difference between the setpoints ys and the predictions

ŷ are zero. In contrast, For a system with primary variables y in closed-loop,

it is the difference between the primary variables y and its setpoints ys which

goes toward zero. In the chapter about the model based estimators, we will

derive optimal estimators for both “open-loop” and “closed-loop” operations.

1.2 The Self-Optimizing Background of the New Es-

timator

When designing a plant-wide control structure, one usually finds that there

are degrees of freedom (valves) that are unconstrained degrees of freedom,

which need to be specified during operation. The idea behind self-optimizing

control is to use these extra degrees of freedom to control process variables

(measurements) that, for when kept constant, keeps the plant close-to its

optimal operation when the plant is subjected to disturbances. Optimal oper-

ation can refer to either economical or environmental considerations. That is,

maximizing profit or minimizing production of harmful waste products. There

are two common ways of finding the self-optimizing variables based on indi-

vidual measurements: the direct loss evaluation (Skogestad, 2000) and the

maximum gain rule (Halvorsen et al., 2003). Direct loss evaluation is a brute

force approach and is computationally demanding. The maximum gain rule is
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less accurate, but requires far less computations. A good introduction to the

topic of self-optimizing control is written by Skogestad (2004).

An alternative to controlling individual process variables, is to control measure-

ment combinations. The goal then becomes to find the optimal combination

of measurements which gives the best self-optimizing properties. Halvorsen

et al. (2003) found the optimal measurement combination by a quadratic op-

timization problem called the exact local method, and an analytical solution

to the optimization problem was presented by Alstad et al. (2009). In addi-

tion, one has the very simple nullspace method (Alstad and Skogestad, 2007)

but it cannot handle measurement noise. The new static estimator presented

by Skogestad et al. (2011) is a continuation of the work done by Hori et al.

(2005) and Alstad et al. (2009), and uses the exact local method to find an

optimal combination of measurements by using minimum prediction error as

the optimization objective.

1.3 Motivation

In distillation, control of product composition is of great importance, but is

usually complicated by problems associated with on-line measurements. Most

composition analyzers, like gas chromatographs, have high investment and

maintenance cost. Also, these type of analyzers have large time delays asso-

ciated with the measurements, which gives severe limitations on the control

performance.

Temperature measurements are inexpensive, fast, and reliable. The control of

a single tray temperature is a common method for indirectly controlling prod-

uct composition in the industry. This is possible because of the close physical

relationship between temperatures and composition in distillation. However,

temperature measurements are not a precise indication of product composi-

tion. Mejdell and Skogestad (1991) mentioned several sources of inaccuracies

of single temperature control, where improper tray mixing, pressure variations

and random noise are some.

As an alternative, multiple temperature measurements can be used to pre-

dict the product composition. Weber and Brosilow (1972) proposed a static

(Brosilow) estimator using linear model of the primary variables and measure-

ments, and reported that composition control using this estimator was far
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superior to the composition control achieved by fixing a single stage temper-

ature.

Using measurement data, a static estimator can be easily found from con-

ventional multivariate calibration methods such as LS, PCR and PLS. Mejdell

and Skogestad (1991) reported that PCR and PLS had good performance for

both binary and multicomponent distillation. Mejdell and Skogestad (1993)

reported that the proposed Brosilow estimator had poor performance for their

linear distillation example, and found that this was mainly caused by the es-

timators use of information about the degrees of freedom u. They found

also that the static PCR estimator had very good “closed-loop” performance,

rivaling that of the dynamic Kalman filter.

The new static estimator based on self-optimizing theory uses linear models

(like the Brosilow estimator), but uses only information about measurements

x, and not the degrees of freedom u. Because of the self-optimizing nature of

the estimator, it is thought that it will have good prediction ability. Skogestad

et al. (2011) also presented a data based extension to the new estimator

called loss regression, making it possible to extract the new estimator also

from measurement data.

1.4 Project Scope

In this thesis, the new estimator based on self-optimizing theory will be derived

from a regression point of view. We will show, for linear systems, that this

estimator is optimal for “closed-loop” estimation (systems where the prediction

is controlled), and the estimator will in this thesis be termed the optimal

“closed-loop” estimator.

The loss regression will in this thesis be referred to as the “closed-loop” method

(CLM). We found that this method was sensitive to collinearity and noise, and

a new improved method called truncated CLM is presented.

In addition, three optimal “open-loop” model based estimators (estimation only

used for monitoring purposes) were developed for comparison and insight.

Finally, the “open-loop” and “closed-loop” performance of the optimal “closed-

loop” estimator, the CLM estimator, and the truncated CLM estimator will be

compared with LS, PCR, and PLS estimators on three distillation examples
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(linear, nonlinear binary, and nonlinear multicomponent). It will be shown that

the performance of the optimal “closed-loop” estimator and the truncated

CLM estimator has better “closed-loop” performance, but have worse “open-

loop” performance than other estimators.



Chapter 2

Data Based Estimators

2.1 Introduction To Data Based Estimators

One way of finding a static estimator B is with multivariate calibration meth-

ods like least squares (LS), principal component regression (PCR) and partial

least squares (PLS). Given a system with one dependent variable y and one

independent variable x, where x have a direct relationship with y given by

y = f (x)

The object of multivariate calibration is to obtain the best relationship between

x and y. This relationship is called a model, or by the term estimator which will

be used in this thesis. LS, PCR, and PLS are linear methods for determining

the estimator, and finds the best linear relationship between x and y,

y = bx+ b0 + e

where the estimator is given by b and b0, and e is the residual (also called

the model error). To simplify calculations, all data in this thesis are given in

deviation variables, and the bias term b0 will be zero. The relationship can

then be expressed,

∆y = b ·∆x+ e

Because all variables can be assumed to be in deviation form, the deviation

notation will be dropped, giving

y = bx+ e

7
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In this example there is only one dependent variable and one independent

variable, but an estimator can as easily be found from multiple dependent and

independent variables, as will be shown in the next section.

2.1.1 Data Structure

Previously we mentioned a system with one independent variable y and one

dependent variable x, given by

y = bx+ e

If the relationship will be determined from observations, we would need to

obtain several measurements of x and y called samples, to make the estimator

as accurate as possible. Given that we have m samples and one independent

x1,i and dependent y1,i variable where i = 1, . . . ,m, the relationship can be

expressed

[
y1,1 . . . y1,m

]
= b

[
x1,1 . . . x1,m

]
+

[
e1,1 . . . e1,m

]

This relationship can be extended further to include multiple independent vari-

ables. Given that we have n independent variables xj,i (j = 1, . . . , n) the inde-

pendent variables can be written as a vector xi, and the estimator bj written

as bT . All vectors in this thesis are column vectors, and consequently row

vectors will be designated as transposed vectors. The expression becomes,

[
y1,1 . . . y1,m

]
= bT

[
x1 . . . xm

]
+

[
e1,1 . . . e1,m

]

Analog to this, the relationship can easily be extended to include multiple de-

pendent variables. Given that we have p dependent variables yh (h = 1, . . . , p),
the dependent variable can be expressed as the vector yi and will form the

columns of the matrix Y. The corresponding parameters bT
h will form the

rows of the matrix B, and the residual eh,i can be written as the vector ei and

will form the columns of the matrix E, giving

Y︷ ︸︸ ︷[
y1 · · · ym

]
=

B︷ ︸︸ ︷


bT
1
...

bT
p




X︷ ︸︸ ︷[
x1 · · · xm

]
+

E︷ ︸︸ ︷[
e1 · · · em

]
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Figure 2.1: Graphical representation of the matrices

resulting in the final matrix from1

Y = BX+E

A graphical representation of the relationship is shown in Figure 2.1. The

dependent variables are the top and bottom product compositions, and the

independent variables are three stage temperatures in a distillation column.

The response is for a bell shaped change in top and bottom composition as

a function of time. From this we can visually see how an estimator can be

found from data. We can see that the first temperature measurement is most

correlated with the top composition, and vice versa. Thus, we can assume

that the first model parameter will be large for the top composition, and the

third model parameter will be large for the bottom composition.

2.1.2 Finding the Estimator

Given that we have the independent X data with n independent variables and

m samples, and we want to find the solution to the problem

E = Y −BX = 0

there are three different cases which affects the solution of the problem:

n = m there are as many samples as variables. Assumed that X is of full rank,

the equation system is determined, and there is one unique solution

B = YX−1

This situation is rarely encountered in real situations.

1Notice that this expression is the transpose of the of the expression conventionally used

in multivariable calibration Y = XB + E, and implies that the estimator B found in this

thesis is actually the transposed of the conventional estimator. This was done to avoid

confusion in later chapters when comparing with results from control theory.
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n > m there are less samples than variables. The equation system is underde-

termined and there are an infinite number of solution to the problem:

BX = Y

A null space solution N(p× n) of X

NX = 0

can then be added to B and still be a solution to the problem.

Proof. (N+B)X = NX+BX = BX

n < m there are more samples than variables. The equation system is overde-

termined and there are no exact solutions. However, we can find the

solution that comes closest to solving the problem by minimizing the

residual, giving the solution

BX ≈ Y

where B is the optimal solution.

The most common case is the overdetermined case, and LS, PCR, and PLS are

the common methods for finding the optimal solution. LS finds the estimator

Bls by finding the maximum correlation between X and Y. PCR captures

the maximum variance in X, and uses this to find the estimator Bpcr. PLS

captures the maximum covariance between X and Y to find the estimator

Bpls.

2.1.3 Development of an Estimator

The development of an estimator is usually done in two steps. The first step

is calibration or training, where an estimator B is found from a calibration set

Xcal and Ycal. The second step is prediction testing or validation, where the

estimator’s ability to predict Y from a validation set Xval and Yval (data not

used in the calibration set) is tested and evaluated. This two step procedure

requires that the data set of X and Y is initially divided into a calibration

and validation set. The two step procedure is illustrated as follows. In the
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calibration step, the estimator is found (assume that the calibration set is

determined),

B = YcalX
−1
cal

In the validation step, the prediction Ŷ is calculated with the estimator from

the validation set

Ŷ = BXval

and the prediction error calculated

E = Yval − Ŷ

When testing multiple estimators, estimators which gives low prediction error

are kept, and estimators which gives high prediction error is discarded.

Cross-validation The above method of splitting the data set into a calibra-

tion and validation set, wastes one portion of the data on testing. For large

data sets, this might not be a problem, but for small data sets this could

greatly affect the estimators performance.

Cross-validation splits the data set into several segments I. Where I − 1 seg-

ments are used for calibration and one is used for validation. These segments

are rotated, and the calibration and validation process repeated such that each

segment are used for validation only one time. When the process is finished,

an average prediction error is calculated for the cross-validation. With this

method, data is not wasted on validating the estimators.

2.2 Mathematical Tools

2.2.1 Singular Value Decomposition (SVD)

One very effective and useful mathematical tool is the singular value decom-

position (SVD), and will in thesis be used to explain and derive LS, PCR,

PLS, and other concepts. Any matrix can by SVD be decomposed into three

matrices. The SVD of a matrix X (n×m) can be written

X = UΣVT
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where the U (n× n) and the V (m×m) are unitary, and called the left and

right singular vector matrix, respectively. The Σ (n×m) is a diagonal matrix

where nonnegative entries, called singular values σi (i = 1, ...,min{n,m}), are

ordered by descending magnitude. The left singular vector matrix indicates the

strongest and weakest output directions, and the right singular vector matrix

indicates the strongest and weakest input directions. The singular values give

the magnitudes of these directions. The ratio between the largest and smallest

singular value is called the condition number cond(X) = σ1/σmin{n,m}, and a

matrix with a large condition number is called ill-conditioned. The rank of the

matrix X (rank(X)) is equal to the number of nonzero singular values.

The left and right singular vector matrix has also the following useful proper-

ties:

UT = U−1

VT = V−1

2.2.2 Pseudoinverse

It is only possible to take the inverse of a matrix that is determined and of

full rank. For other cases, the matrix becomes singular and the matrix has

no inverse. The solution to the equation Y = BX can then be found by the

pseudoinverse.

Given that X = UΣVT is the SVD of matrix X, the pseudoinverse X† can

then be expressed as

X† = VΣ†UT

where Σ† is a diagonal matrix of the same dimensions as Σ, and its nonzero di-

agonal entries are the inverse of the nonzero singular values σk (k = 1, ..., rank (X)).
That is, a matrix of rank r will have

Σ = diag {σ1 > σ2 > . . . > σr > 0}

which have the corresponding

Σ† = diag
{

1
σ1

< 1
σ2

< . . . < 1
σr

> 0
}

The pseudoinverse of the full rank matrix X (n ×m) has the following prop-

erties:
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n = m The equation system is determined and X† = X−1

n > m The equation system is underdetermined and pseudoinverse becomes the

left pseudoinverse2, X† = X
†
L =

(
XTX

)−1
XT . Notice that this will not

give a real inverse XX
†
L = X

(
XTX

)−1
XT 6= I. However, known that

there are an infinite number of solutions to the problem, YX
†
L will give a

unique solution. That is, of all possible solutions for the underdetermined

equation system, YX
†
L will give the shortest solution (min

∥∥B
∥∥
F
)

n < m The equation system is overdetermined and the pseudoinverse becomes

the right pseudoinverse3, X† = X
†
R = XT

(
XXT

)−1
.

2.3 Least Squares (LS)

The basic principle behind the least squares problem, is to find an estimator Bls

which minimizes the sum of squared residuals Σe2. Given the linear relationship

Y = BX+E

the least square optimization problem can be stated as

Bls = argmin
B

‖Y −BX‖2F

where ‖·‖F is the Frobenius norm, and the analytical solution for Bls is 4

Bls = YXT
(
XXT

)−1

Proof. The least squares objective function, with the given residual matrix

E(p×m), can be stated as S (B) =
∑p

k=1

∑m
j=1 e

2
k,j = ‖E (B)‖2F = tr

(
EEH

)
,

where tr
(
A
)
=

∑
i aii. We are at the optimum solution when ∂S(B)/∂B = 0,

which gives the problem ∂
∂Btr

(
EEH

)
= 0. Assumed that all entries in the ma-

trix E are real, the conjugate transpose coincides with the transpose resulting

in EH = ET . The optimal estimator Bls is ∂
∂Btr

(
EET

)
= 2

(
Y−BX

)
XT = 0.

Assuming that XXT are of full rank (nonsingular) gives the solution Bls =

YXT
(
XXT

)−1
.

2This is called the left pseudoinverse because X
†
LX =

(

XTX
)−1

XTX = I.
3This is called the right pseudoinverse because XX

†
R = XXT (XXT )−1 = I. Remember

that this is for the transposed system.
4The conventional problem is BT

ls = argminB

∥

∥YT −XTBT
∥

∥

2

F
,which has the analytical

solution BT
ls =

(

XXT
)−1

XYT
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2.3.1 Least Squares with Pseudoinverse

Because of the inverse of XXT in the expression for the LS estimator Bls,

we can only find estimators for equation systems that are determined (m =
n) or overdetermined (m > n). In the cases where the equation systems

are underdetermined (m < n) or X is rank deficient (rank lower than the

highest possible rank), the matrix XXT is singular and has no inverse, and

the expression for Bls breaks down.

To cope with this, a more general expression for the Bls, can be found using

the pseudoinverse of X, and the analytical solution to the LS problem becomes

Bls = YX†

2.3.2 Collinearity

Collinearity is defined as approximate linear dependence, and occur when the

independent variables are highly correlated. Collinearity in the matrix X when

performing LS can result in poor estimation of the Bls parameters. This is

easily shown by the singular values of the matrix. As mentioned before, the

singular values indicate the magnitudes of the input and output directions.

This can also be interpreted as amount of information about X in the direc-

tion. Direction with large singular values contain much information about X.

Directions that are highly correlated, contain little new information and will

have singular values close to zero. Perfectly correlated directions contains no

new information and will have a zero singular value.

When the pseudoinverse is taken of X, all nonzero singular values are inverted.

Therefore, the strongest directions becomes the weakest, and the weakest di-

rections becomes the strongest. Thus, for an ill-conditioned matrix, directions

containing irrelevant information have a big impact on the LS estimator, and

small errors in the calibration data can give very different estimators Bls.

2.4 Principal Component Regression (PCR)

As mentioned above, if there is collinearity in the data when performing LS, the

estimator will be very sensitive to errors in the data. The idea behind PCR



2.5. Partial Least Squares (PLS) 15

is to only use directions in the data with relevant information and exclude

directions with little and no information, and hence remove the problem with

collinearity.

The PCR starts with the principal component analysis (for further reading see

Shlens (2005)), where truncated SVD is used to remove directions with little

information. Given the data matrix X (n×m), the SVD is

X = UΣVT

with the matrices U (n × n), Σ (n×m) and V (m×m). The matrices are

truncated to rank l, where l is the number of principal components, and gives

X̃ = ŨlΣ̃lṼ
T
l

where Ũl (m× l), Σ̃l (l× l) and Ṽl (n× l) are the truncated matrices. The

number of principal components is usually determined by cross-validation. For

the linear relationship

Y = BX+E

when using only l principal components, the optimal estimator is

Bpcr = YṼlΣ̃
−1
l ŨT

l = YX
†
l

where X
†
l is the inverse of the truncated SVD.

Proof. See Schreyer et al. (2002)

2.5 Partial Least Squares (PLS)

The basic PLS regression was developed by H. Wold and have found wide

usage within the field of chemometrics. The main idea behind PLS is to find

directions in X which have the greatest covariance with Y and ensuring that

these are treated first. This is advantageous to PCR which only prioritize

directions in X that have the greatest variance.

PLS is an iterative process, and there are several algorithms for finding the

estimator. One of the more common methods are the SIMPLS algorithm,

which is the standard PLS tool in Matlab. A simplified summary of SIMPLS

is shown in Algorithm 2.1. For further reading and the full Algorithm, see

de Jong (1993). For an alternative algorithm see Höskuldsson (1988), and

for a non-iterative procedure see Di Ruscio (2000).
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Algorithm 2.1 Simplified SIMPLS algorithm for PLS regression

1. mean center the X and Y data, giving X0 and Y0.

2. compute the cross-product S = X0Y
T
0

3. for number of components i = 1, . . . , l

if i = 1: compute SVD of S

if i > 1: compute SVD of S−P(PTP)−1PTS

get weights wi = first left singular vector

compute scores ti = XT
0 wi

compute loadings pi = X0ti/(t
T
i ti)

store vectors wi, ti and pi into W,T, andP respectively.

end

4. compute regression coefficients Bpls = Y0(TWT )



Chapter 3

Optimal Model Based
Estimators

Another way to develop estimators are by using detailed models of a given

system. In this chapter we will derive three optimal “open-loop” estimators

and one optimal “closed-loop” estimator for linear systems. With optimal is

implied estimators which gives the smallest prediction error e = y − ŷ for a

given set of conditions. In the next chapter, the usage of the optimal “closed-

loop” estimator will be extended to also apply for data. Note that the model

based estimators are denoted H to distinguish them from the data based

estimators.

With the term “open-loop” estimator, it is implied that the predicted primary

variables ŷ are used for monitoring purposes, and not for control. It should

noted that this is not the same as implying that primary variables (also sec-

ondary variables) are uncontrolled. They can in fact be controlled by other

means than the predictions.

We have thought of three main types of “open-loop” control scenarios where

ŷ are used for monitoring purposes:

S1: Predicting primary variables from a system with no control (u is a free

variable) .

S2: Predicting primary variables from a system where primary variables y are

controlled (u is used for keeping y = ys).

17
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S3: Predicting primary variables from a system where secondary variables z

are controlled (u is used for keeping z = zs).

With a “closed-loop” estimator it is implied that the ŷ will be used for control

purposes. That is,

S4: Predicting primary variables from a system where the predictions ŷ are

controlled (u is used to keep ŷ = ys).

The block diagram of the four scenarios are shown in Figure 3.1. The esti-

mators have been developed from the following linear system:

Linear System

For the four cases, we will consider the prediction error (residual) e defined as

e = y − ŷ (3.1)

when using a linear estimator

ŷ = Hxm (3.2)

assuming linear models for measurements x, primary variables y, and sec-

ondary variables z

x = Gxu+Gd
xd (3.3)

y = Gyu+Gd
yd (3.4)

z = Gzu+Gd
zd (3.5)

where the actual measurements xm, containing measurement noise nx, is

xm = x+ nx (3.6)

It is also assumed that dim (y) = dim (z) = dim (u).
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d

u

y

B
+

Plant

nx

x xm ŷ

(a) S1: No control and u is a free variable. B is an “open-

loop” estimator.

d

u

y

B
+

Plant

nx

x xm ŷ
K

−ys

(b) S2: Control of primary variable y. The controller K

adjusts u such that y = ys. B is an “open-loop” estimator.

d

u

y

B
+

Plant

nx

x xm ŷ
K

−
zs

z

(c) S3: Control of secondary variable z. The controller K

adjusts u such that z = zs. B is an “open-loop” estimator.

d

u

y

B
+

Plant

nx

x xm ŷ
K

−

ys

(d) S4: Control of the predicted primary variable ŷ. The

controller K adjusts u such that ŷ = ys. B is an “closed-

loop” estimator.

Figure 3.1: Block diagrams of the four control scenarios.
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3.1 Optimal “Open-Loop” Estimators

3.1.1 Open-Loop Operation (u free variable)

To find the optimal estimator for open-loop operation, prediction error has to

be expressed as a function of the system and the estimator.

Lemma 1. Prediction error for a given “open-loop” estimator H (u is a

free variable). For a given linear estimator H, the prediction error e, when

applied to the system defined above, and considering the degrees of freedom

u as free variables, can for a given input u, disturbance d and noise ny, be

expressed as

e (H) =
[
(Gy −HGx)

(
Gd

y −HGd
x

)
−H

]



u

d

nx


 (3.7)

Proof. An expression for ŷ as an explicit function of u, d and nx is obtained

by combining (3.2), (3.6) and (3.3).

ŷ = H
(
Gxu+Gd

xd+ nx

)

Using the definition of prediction error with the expression for ŷ and (3.4)

gives

e (H) = (Gy −HGx)u+
(
Gd

y −HGd
x

)
d−Hnx

which is the same as (3.7)

Given that the operation will have different variations in the input variables u,

d and nx, it must be factored in to find the best estimator. For the “open-

loop” estimators, we decided to minimize the expected prediction error. That

is, input variables are expected to have a normal distribution, and we want to

find the estimator that gives the best prediction for the expected variation.

We could also use some bounds on the input variables and optimize for worst

case scenarios. This will be done for the “closed-loop” estimators, but it was

not taken into account for the “open-loop” estimators.

Lemma 2. Expected prediction error for a given “open-loop” estimator

H. Let the disturbance and noise be normalized on the form
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u = Wuu
′

d = Wdd
′

nx = Wnxn
′
x

so that the prediction error from Lemma 1 can be expressed

e (H) =
[
(Gy −HGx)Wu

(
Gd

y −HGd
x

)
Wd −HWnx

]
︸ ︷︷ ︸

Mol(H)




u′

d′

n′
x




For the expected prediction error, assume normal distribution for the degrees

of freedom, disturbances and noise, and let the normalized variables be scaled

such that

u′ ∼ N (0, 1) d′ ∼ N (0, 1) n′
y ∼ N (0, 1)

where u′, d′ and n′
y are the elements of the normalized vectors u′, d′ and n′

y

respectively, and N (0, 1) denotes a normal distribution with a zero mean and

unit standard deviation. The diagonal scaling matrices Wu, Wd and Wnx

contain the standard deviations of the elements in u, d and nx, respectively.

The expected prediction error (Kariwala et al., 2008) then becomes

‖e (H)‖2,exp =
1

2
‖Mol (H)‖2F

In Theorem 1, we find the optimal estimator for the given expression.

Theorem 1. Optimal “open-loop” estimator H for open-loop operation.

The optimal “open-loop” estimator H for open-loop operation where the de-

grees of freedom u are considered free variables, when applied to the system

defined above and considering the expected prediction error (see Lemma 1

and 2), is

H1 = Y1X
†
1

where X† is the pseudoinverse of X, and

Y1 =
[
GyWu Gd

yWd 0
]

X1 =
[
GxWu Gd

xWd Wnx

]
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Proof. In Lemma 2 we showed that minimizing ‖e (H)‖2 is equivalent to min-

imizing 1
2 ‖M (H)‖2F for the expected prediction error. Because the scaling

factor 1/2 and the squaring of the norm will not affect the optimal solution

of H, they will be omitted from the optimization problem. By expanding the

optimization problem minH ‖M (H)‖ to

min
H

∥∥[ GyWu Gd
yWd 0

]
︸ ︷︷ ︸

Y1

−H
[
GxWu Gd

xWd Wnx

]
︸ ︷︷ ︸

X1

∥∥ = min
H

‖Y1 −HX1‖

we recognize that this is the least squares problem with the known optimal

solution

H1 = Y1X
†
1

3.1.2 Closed-Loop Primary Variables (y)

In Theorem 1, we find the optimal estimator when primary variables y are

controlled. The derivation is analog to the derivation of the previous estimator.

Theorem 2. Optimal “open-loop” estimator for closed-loop operation

(controlled y). The optimal “open-loop” estimator H for closed-loop op-

eration where the degrees of freedom u are adjusted such that the primary

variables y are kept at the setpoints ys

y = ys

when applied to the system defined above and considering the expected pre-

diction error, is

H2 = Y2X
†
2

and

Y2 =
[
Wys 0 0

]

X2 =
[
Gcl

xWys FWd Wnx

]

where Gcl
x = GxG

−1
y and F = Gd

x −GxG
−1
y Gd

y

Proof. Considering that u is used for keeping y = ys. Solving (3.4) with

respects to u when y = ys gives

u = G−1
y ys −G−1

y Gd
yd
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An expression for ŷ as an explicit function of ys, d and nx is obtained by

combining (3.2), (3.6), (3.3) and the expression for u.

ŷ = H
[
GxG

−1
y ys +

(
Gd

x −GxG
−1
y Gd

y

)
d+ nx

]

Here
(
Gd

x −GxG
−1
y Gd

y

)
is recognized as the optimal sensitivity F (see section

A.1 for derivation), and GxG
−1
y as the closed-loop gain Gcl

x . The expression

becomes

ŷ = H
[
Gcl

x ys + Fd+ nx

]

Using the definition of prediction error with the expression for ŷ and the

assumption y = ys gives

e (H) =
[ (

I−HGcl
x

)
(−HF) −H

]



ys

d

nx




Proceeding analogous to Lemma 2 and Theorem 1, will result in the given

proposition.

3.1.3 Closed-Loop Secondary Variables (z)

In Theorem 1, we find the optimal estimator when secondary variables z are

controlled. This is probably the most common way of controlling distillation

columns, where a single stage temperature is controlled instead of composi-

tion.

Theorem 3. Optimal “open-loop” estimator for closed-loop operation

(controlled z). The optimal “open-loop” estimator H for closed-loop op-

eration where the degrees of freedom u are adjusted such that the secondary

variables z are kept at the setpoints zs

z = zs

when applied to the system defined above, assuming a linear model for the

secondary variables

z = Gzu+Gd
zd (3.8)

and considering the expected prediction error, is

H3 = Y3X
†
3
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and

Y3 =
[
Gcl

y Wzs F′
yWd 0

]

X3 =
[
Gcl

xWzs F′
xWd Wnx

]

where Gcl
y = GyG

−1
z , Gcl

x = GxG
−1
z , F′

y = Gd
y − GyG

−1
z Gd

z and F′
x =

Gd
x −GxG

−1
z Gd

z

Proof. Considering that u is used for keeping z = zs. Solving (3.8) with

respects to u when z = zs gives

u = G−1
z zs −G−1

z Gd
zd

An expression for y as an explicit function of zs, d and nx is obtained by

combining (3.4) and the expression for u

y = GyG
−1
z zs +

(
Gd

y −GyG
−1
z Gd

z

)
d

Recognizing the optimal sensitivity F′
y and the closed-loop gain Gcl

y for the

primary variable (when y2 in closed-loop), gives

y = Gcl
y zs +F′

yd

An expression for ŷ as an explicit function of zs, d and nx is obtained by

combining (3.2), (3.6), (3.3) and the expression for u

ŷ = H
[
GxG

−1
z zs +

(
Gd

x −GxG
−1
z Gd

z

)
d+ nx

]

Recognizing the optimal sensitivity F′
x and the closed-loop gain Gcl

x (when y2

in closed-loop), gives

ŷ = H
(
Gcl

x zs + F′
xd+ nx

)

Using the definition of prediction error with the expression for ŷ and y gives

e (H) =
[ (

Gcl
y −HGcl

x

) (
F′
y −HF′

x

)
−H

]



zs
d

nx


 (3.9)

Proceeding analogous to Lemma 2 and Theorem 1, will result in the given

proposition.
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3.2 Optimal “Closed-Loop” Estimator

In Lemma 3 we find an expression for the prediction error under the assumption

that the prediction is used for controlling the primary variables.

Lemma 3. Prediction error for a given “closed-loop” estimator H. For a

given linear estimator H, the prediction error e, when applied to the system

defined above, and considering the “closed-loop” case where the degrees of

freedom u is adjusted such that the predicted variables ŷ are kept at the

setpoints ys

ŷ = ys

can for given disturbances d, noise ny and setpoints ys, be expressed as

e = y − ŷ = −Gy (HGx)
−1

H
[
F I

] [ d

nx

]
+

[
Gy (HGx)

−1 − I
]
ys

(3.10)

Proof. An expression for ŷ as an explicit function of u, d, and nx is obtained

by combining (3.2), (3.6) and (3.3)

ŷ = H
(
Gxu+Gd

xd+ nx

)

We assume that the predictions ŷ are held at the setpoints ys by manipulating

the free variable u. Solving ŷ with respect to u when ŷ = ys, gives

u = − (HGx)
−1

H
(
Gd

xd+ nx

)
+ (HGx)

−1
ys

and inserting the expression u for into (3.4) gives y as an explicit function of

d, nx and ys

y = −Gy (HGx)
−1

H
(
Gd

xd+ nx

)
+Gy (HGx)

−1
ys +Gd

yd

= −Gy (HGx)
−1

H
[(

Gd
x −GxG

−1
y Gd

y

)
d+ nx

]
+Gy (HGx)

−1
ys

Here
(
Gd

x −GxG
−1
y Gd

y

)
is recognized as the optimal sensitivity F (see section

Appendix A.1 for derivation), and the expression becomes

y = −Gy (HGx)
−1

H (Fd+ nx) +Gy (HGx)
−1

ys

the prediction error is then

e = y− ŷ = y − ys = −Gy (HGx)
−1

H (Fd+ nx) +Gy (HGx)
−1

ys − ys

which is the same as (3.10)
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Lemma 4. Simplifying the minimization problem. As shown in Lemma 3,

the prediction error can be written as the sum of two terms

e (H) = −Gy (HGx)
−1

H
[
F I

] [ d

nx

]

︸ ︷︷ ︸
e1(H)

+
[
Gy (HGx)

−1 − I
]
ys

︸ ︷︷ ︸
e2(H)

Consider minimizing the prediction error ‖e1 + e2‖2 with the estimator H as

a degree of freedom. In the first term (e1) we have extra degrees of freedom

in H, which always can be used to set the second term to zero (e2 = 0) by

adding the constraint HGx = Gy.

This means that the problem of finding the optimal H that minimize the

prediction error for a given d, ny and y1s is reduced to minimizing ‖e1 (H)‖2
where

e1 (H) = −H
[
F I

] [ d

ny

]

subjected to the constraint

s.t. HGx = Gy

Proof. There are extra degrees of freedom (D) related to the first term

e1 (H). Specifically e1 (H) = e1 (DH) where D is any square nonsingular

matrix. This follows because

(DHGx)
−1

DH = (HGx)
−1

D−1DH = (HGx)
−1

H

D can be chosen freely without affecting e1 (H), so we may choose it such that

the last term is zero, e2 (H) = 0, corresponding to having HGx = Gy.

It might seem reasonable that the optimum solution for H would be if e1 =
−e2. This would be possible if the specific disturbance and noise where known

in advanced. In Lemma 5, the prediction error will be expressed for a set

of disturbances and noise, where the specific disturbances and noise can be

positive or negative, and are unknown in advance. Thus the terms cannot be

used to counteract each other.

The above Lemma shows that the prediction error for a given d, nx and ys

is not affected by the setpoint ys as long as the constraint HGx = Gy is

fulfilled. Because of this, and to simplify further derivations, only e1 will be

considered in the Lemma below, where expressions for the expected and worst

case prediction error for a given set of d and nx are proposed.
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Lemma 5. Expected and worst case prediction error for a given “closed-

loop” estimator H. Let the disturbance and noise be normalized on the

form

d = Wdd
′

nx = Wnxn
′
x

so that the first term in the prediction error from Lemma 4 can be expressed

e1 (H) = −Gy (HGx)
−1

H
[
FWd Wnx

]
︸ ︷︷ ︸

M(H)

[
d′

n′
x

]

1. For the expected prediction error, assume normal distribution for dis-

turbances and noise, and let the normalized variables be scaled such

that

d′ ∼ N (0, 1) n′
y ∼ N (0, 1)

where d′ and n′
y are the elements of the normalized vectors d′ and

n′
y respectively, and N (0, 1) denotes a normal distribution with zero

mean and unit standard deviation. The diagonal scaling matrices Wd

and Wnx contain the standard deviations of the elements in d and ny,

respectively. The expected prediction error (Kariwala et al., 2008) then

becomes

‖e1‖2,exp =
1

2
‖M (H)‖2F

2. For the worst case prediction error, let the normalized variables be scaled

such that the combined norm is smaller or equal to one
∥∥∥∥

d′

n′
y

∥∥∥∥
2

≤ 1

Then the worst case prediction error (Halvorsen et al., 2003) becomes

‖e1‖2,wc =
1

2
σ̄ (M (H))2

where σ̄(M (H)) is the larges singular value of M (H)

Proof. From the definition of the norm, the negative sign in the prediction

error e will not affect the solution and can be omitted. The expected and

worst case prediction error follows from the definition of the norm, and are

proven by Kariwala et al. (2008) and Halvorsen et al. (2003), respectively.
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Theorem 4. Optimal “closed-loop” estimator H. The optimal “closed-loop”

estimator H for both the expected and worst case prediction error (see Lemma

5), can be found by solving the optimization problem

H4 = argmin
H

∥∥H
[
FWd Wnx

]∥∥
F

s.t. HGx = Gy

(3.11)

Proof. In Lemma 4 we showed that by introducing the constraint HGx =
Gy, we only need to consider minimizing the term ‖e1 (H)‖2. In Lemma 5

we showed that minimizing ‖e1 (H)‖2 is equivalent to minimizing ‖M (H)‖F
and σ̄ (M (H)) for the expected and worst case prediction error, respectively.

It turns out that for this particular problem, the optimal H that minimizes

‖M (H)‖F also minimizes σ̄ (M (H)). This is not obvious, but is proven by

Kariwala et al. (2008). Thus, we only need to consider minimizing ‖M (H)‖F ,

which by introducing the constraint HGx = Gy (using the extra degrees of

freedom in H), becomes (3.11).

When scaled for normal distributions, the weights Wd and Wnx will contain

the standard deviation of the elements in d and nx. This scaling might be

smaller than for the 2-norm bound case, where we might have chosen to scale

with two standard deviations to ensure that the 2-bound constraint is fulfilled.

However, if the relative sizes between the weights are the same for both cases,

the absolute sizes of the weights will not affect the optimal H.

The optimization problem in Theorem 4 is expressed with open-loop gains (Gx

and Gy), but can also be expressed with closed-loop gains by just substituting

the open-loop gains for the closed-loop gains. This can easily be shown by

multiplying the constraint HGx = Gy with G−1
y on both sides of the equality

s.t. HGxG
−1
y︸ ︷︷ ︸

Gcl
x

= GyG
−1
y︸ ︷︷ ︸

Gcl
y

It can also be shown by using the system defined above when considering a

cascade like arrangement where the exact values of y is known. In the inner-

loop, u is used for keeping y at the setpoints y′
s given by the outer-loop. In

the outer-loop, y′
s is used for keeping the estimates ŷ (expressed as a explicit

function of y′
s, d and nx) at the setpoints ys. Assuming perfect control of the

inner- and outer-loop such that y = y′
s and ŷ = ys, expressing the prediction
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error as a function of ys, d and nx, and following Lemma 4, Lemma 5 and

Theorem 4 will give the following optimization problem

min
H

∥∥H
[
FWd Wnx

]∥∥
F

s.t. HGcl
x = Gcl

y = I

This is also the case when using secondary variables. For detailed derivation

see Appendix A.2.1 and A.2.2.

The optimization problem of finding the optimal estimate H can be solved

by using conventional optimization techniques, but as we show in Theorem

3.2.1, the optimal estimate H has, under certain assumptions, an analytical

solution.

3.2.1 Analytical Solution

Writing the optimization problem (3.11) from Theorem 4 as

min
H

∥∥H
[
FWd Wnx

]
︸ ︷︷ ︸

F̃

∥∥
F

s.t. HGx = Gy

Under the assumption that
(
F̃F̃T

)
is of full rank, the optimal “closed-loop”

estimator H have the following analytical solution (Alstad et al., 2009)

HT
4 =

(
F̃F̃T

)−1
Gx

(
GT

x

(
F̃F̃T

)−1
Gx

)−1
GT

y (3.12)
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Chapter 4

Optimal “Closed-Loop”
Estimator Used on Data

In the previous Chapter, we derived a “closed-loop” estimator based on explicit

models of a system. Now, we want to extend the usage of this estimator to

also apply for systems where all available information is given by data. That

is, situations where all available information about the primary variables y and

the measurements x are given by the data matrices Y and X, respectively. To

use the presented “closed-loop” estimator, we would need to separate the data

into data blocks that contain information equivalent to the information given

by Gy, Gx and F̃. The data block equivalent to F̃ must contain information

about y for “optimal” variation in u. Here “optimal” refers to variations in u

that keeps y constant regardless of disturbances d. The data blocks equivalent

to Gy and Gx must contain information about y and x for “non-optimal”

variations in u. That is, variation in u that does not keep y constant.

We then present the following two step procedure for using the optimal “closed-

loop” estimator on data:

1. Separate data into “optimal” and “non-optimal” data, using techniques

described below.

2. Use the “non-optimal” data as Gy and Gx, and the “non-optimal” data

as F̃ in the expression for the optimal “closed-loop” estimator.
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Separation into data block can be achieved in two ways, by selecting an ex-

perimental design that yields the blocks directly, or by transforming the data

such that the blocks of interest can be identified.

4.0.2 Experimental Design

Assume that the data contained in both Y and X are obtained from two

different sources of data (“non-optimal” and “optimal” data), and the data

constructed as follows

Y =
[
Ynon−opt Yopt

]

X =
[
Xnon−opt Xopt

]

The “non-optimal” data Ynon−opt and Xnon−opt (for y and x respectively)

are found by varying u and keeping d constant. Note that the data must be

expressed as deviation variables. By scaling this data with the perturbations

in u we obtain Gy and Gx.

It is strictly not necessary to scale the “non-optimal” data with the perturbation

of u. This comes from the constraint HGx = Gy used in the optimization

problem, where the scaling used for obtaining Gy and Gx are the same for

both. Thus we can equivalently use the constraint HXnon−opt = Ynon−opt.

The “optimal” data Yopt and Xopt are found by keeping y constant for various

disturbances d (including noise). Because the data is expressed as deviation

variables, the optimal data Yopt becomes a zero matrix. The variations in d

and consequently the variation in Xopt should be representative for expected

operation. This will then directly give F̃ with representative weights.

We can now find the optimal “closed-loop” estimator H by solving (3.11)

using the following equivalent data blocks Gy = Ynon−opt, Gx = Xnon−opt

and F̃ = Xopt.

4.0.3 “Closed-Loop” Method (CLM)

Assume that the data matrices Y and X do not have separate “optimal” and

“non-optimal” data blocks, and that x and y are subjected to perturbations in
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u and disturbances d simultaneously. The data can then be divided into “opti-

mal” and “non-optimal” blocks by the following two-step procedure (Skogestad

et al., 2011).

1. Perform a singular value decomposition (SVD) on the data matrix Y

Y = UΣVT

2. Multiply the data matrices Y and X with the unitary matrix V

YV =
[
Ynon−opt 0

]

XV =
[
Xnon−opt Xopt

]

We can then use the same approach as above, where we find the optimal

“closed-loop” estimator H by solving (3.11) and using the following equivalent

data blocks Gy = Ynon−opt, Gx = Xnon−opt and F̃ = Xopt. This method is

termed closed-loop method (CLM), and its estimator is denoted Bclm.

Proof. Given that V is a real unitary matrix from the SVD of the p × m
data matrix Y, the magnitude of the prediction error

∥∥e
∥∥
F
=

∥∥Y −HX
∥∥
F

when multiplied by V will not be affected, and
∥∥YV − HXV

∥∥
F

=
∥∥Y −

HX
∥∥
F
. Thus we can use V to divide the data up without changing the

results. Multiplying Y with V, and remembering that VT = V−1, gives

YV = UΣ

where Σ contains a diagonal matrix Σ1 of real non-zero singular values σi
arranged in descending order

Σ =

[
Σ1

0

]

and

Σ1 = diag {σ1, σ2, . . . , σk} ; k = min (p,m)

Writing the unitary matrix U in block form as U =
[
U1 U2

]
gives

YV = US =
[
U1 U2

] [ Σ1

0

]
=

[
U1Σ1 0

]

Thus by multiplying Y and X with the unitary matrix V, the data is trans-

formed into the same shape as the “non-optimal – optimal” data arrangement

(zeros in the right part of Y), without affecting the optimal H.
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4.0.4 Truncated “Closed-Loop” Method (Truncated CLM)

CLM suffers from the same weakness as LS, giving poor results for ill-conditioned

matrices and underdetermined systems. As an improvement, we propose to

perform a principal component analysis prior to the CLM on the X data.

Thus, removing the weaker directions containing collinearity and noise. Also,

because of the mathematical constraint imposed by (F̃F̃T )−1 in the analyti-

cal expression for the optimal “closed-loop” estimator, the expression breaks

down if the system becomes underdetermined. Therefore, it is proposed to

use the truncated pseudoinverse on the F̃F̃T in the analytical expression. The

procedure then becomes as follows,

Before the CLM, perform a principal component analysis on the X data. Given

the data X, with the following SVD

X = UΣVT

Truncate the decomposition to l number of principal components, giving

X̃ = ŨlΣ̃lṼ
T
l

Continue with the CLM described above, but using X̃ instead of X. Given

the SVD Y = UΣVT , the data transformation becomes

YV =
[
Ynon−opt 0

]

X̃V =
[
X̃non−opt X̃opt

]

Using the following equivalent data blocks Gy = Ynon−opt, Gx = X̃non−opt

and F̃ = X̃opt, the truncated CLM estimator can then be fund by the following

expression

(B†
clm)

T =
(
F̃F̃T

)†
l
Gx

(
GT

x

(
F̃F̃T

)†
l
Gx

)−1
GT

y (4.1)

where l is the number of principal components used in the initial step.



Chapter 5

Example System: Distillation
Column

The distillation model used in this thesis is the multicomponent distillation

model made by Antonio Arauju, which is a modification of the model made

by Stathis Skouras. The model is based on the “column A” model described

in Skogestad and Postlethwaite (2010). The model is readily available on

Skogestad’s homepage.

Please notice that in this chapter, x, y, and z stands for liquid, vapor and feed

composition, and not measurements, primary and secondary variables.

The column has 40 theoretical stages (including the reboiler) and a total

condenser, for a total of 41 stages. The feed is introduced on stage 20 as

saturated liquid. The column is shown in Figure 5.1 with the used notation,

and mass and component balances for the column is shown in Table 5.1.

We assumed constant molar flows, and no vapor holdup. Because the feed

was saturated, the vapor flow throughout the column becomes equal to the

vapor boilup in the reboiler.

Vn = VB

Further we assumed equilibrium on all stages, constant pressure and constant

relative volatility. The vapor composition for component i on stage n, then

becomes

yi,n =
αixi,n

1 + ΣNC−1
i (αi − 1) xi,n
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cooling

heating

LC

LC

D,xD
LD

F, zF

VB , yB

B, xB

V40

stage 2

stage 3

stage 39

stage 40

...

condenser

Reboiler

(a) Distillation setup with stage numbering

{weir

Ln

stage n

Ln+1, xi,n+1 Vn, yi,n

Mn, xi,n

Vn−1, yi,n−1

(b) General stage with used notation

Figure 5.1
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Table 5.1: Mass and component balances for example column

Reboiler (n = 1 = B)

dMB

dt = L2 − VB −B

d(xi,BMB)
dt = xi,2L2 − yi,BVB − xi,BB

Feed stage (n = 20 = F )

dMF

dt = F + V19 + L21 − VF − LF

d(xi,FMF )
dt = zF,iF + yi,19V19 + xi,21L21 − yi,FVF − xi,FLF

Condenser (n = 41 = D)

dMD

dt = V40 − LD −D

d(xi,DMD)
dt = yi,40V40 − xi,DLD − xi,DD

Generic stage for enriching and stripping section (n = 2, . . . , 19, 21, . . . , 40)

dMn

dt = Vn−1 + Ln+1 − Vn − Ln

d(xi,nMn)
dt = yi,n−1Vn−1 + xi,n+1Ln+1 − yi,nVn − xi,nLn

where αi is the relative volatility for component i, and NC is the total number

of components.

Liquid dynamics where implemented with the Franci’s weir formula

Ln = K · (Mow)
3/2

where K is a flow constant and Mow is the holdup that is over the weirs

capacity. Mow can also be expressed as

Mow = Mn −Muw

where Mn is the holdup on stage n, and Muw is the holdup limit (holdup under

weir) for the weir. See Table 5.2 for specifications.

Stage temperatures where estimated from the linear relationship

Tn =

Nc∑

i=1

xi,nT
b
i
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Table 5.2: Constants for liquid dynamics

symbol description constant

Kof weir constant over feed 21.65032

Kuf weir constant below feed 29.65032

Muw holdup under weir 0.25

where xi,n is the mole fraction for component i on stage n, and T b
i is the

components boiling temperature. This might seem as a crude estimation, but

is sufficient for our needs.

5.1 Column Control

The liquid levels in the condenser and reboiler are controlled by the top and

bottom product streams, respectively. The column has two remaining degrees

of freedom, namely the reflux LD and vapor boilup VB. These are used in

the subsequent chapters for controlling either product compositions directly

by measuring product compositions, indirectly by the predicted product com-

positions, or by using specific stage temperatures.



Chapter 6

Linear System

Model based estimators have been developed for four different control scenar-

ios, that is:

S1: no control, and u is a free variable. (“open-loop” estimator)

S2: control of primary variables y where u is used for keeping y = ys.

(“open-loop” estimator)

S3: control of secondary variables z where u is used for keeping z = zs.

(“open-loop” estimator)

S4: control of the predicted primary variables ŷ where u is used for keeping

ŷ = ys. (“closed-loop” estimator)

6.1 Problem Definition

Estimators performance for the four scenarios will be tested when using a

linear system, and the following problems will be treated in the first part of

this chapter:

1. Which of the optimal “open-loop” and “closed-loop” estimators performs

best on the different scenarios.

39
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2. Which calibration data gives the best estimators. This especially apply

to scenario 4, for which we cannot generate calibration data. This is a

consequence of the implicit nature of scenario 4. That is, the estimator

B is a part of u, and thus we cannot generate calibration data before

the estimators is known.

3. Which regression method gives the best estimators.

In the second part, a further investigation into “closed-loop” performance is

conducted where the following problem will be treated:

1. For different number of available stage temperature measurements, which

method gives the best performance.

6.1.1 Linear Example Column

The system used in this chapter is the linear approximation to “column A”

example with binary mixture from Chapter 5. The degree of freedom u is

the internal streams LD and VB, and the disturbance d are changes in feed

composition. The primary variable (top and bottom composition) is given by

y =

[
−1.297 1.278
−1.503 1.522

]
u+

[
−0.847
−0.921

]
d

For the first part, only the eight stage temperatures Tn (n = 5, 10, 15, 20, 25, 30, 35, 40)
were used, and expressed by

xm =




67.6 −67.4
188.6 −189.4
303.1 −204.2
217.0 −216.3
293.1 −291.2
242.2 −239.8
104.6 −102.3
28.8 −28.4




u+




44.1
119.7
192.9
154.4
198.1
165.6
76.4
45.7




d+ nx

In the second part, all stage temperatures were used, and the linear model is

shown in Appendix B. The secondary variables, LD and stage temperature
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Table 6.1: Summary of the four scenarios

scenario expression for u variable distribution

S1 (u) u u ∼ N (0, 0.0052I2)

S2 (y = ys) G−1
y

(
ys −Gd

yd
)

ys ∼ N (0, 0.0052I2)

S3 (z = zs) G−1
z

(
zs −Gd

zd
)

zs ∼ N (0, [0.052 0.52]I2)

S4 (ŷ = ys) (HGx)
−1

[
H

(
Gd

xd+ nx

)
+ ys

]
ys ∼ N (0, 0.0052I2)

all scenarios d ∼ N (0, 0.052I2) and ny ∼ N (0, 0.22I8)

T25, is given by

z =

[
1 0

293.1 −291.2

]
u+

[
0

298.0

]
d

Nominal operation of the system was decided to have a variation in the product

specification (primary variable) equal to std ≈ 0.005. The linear system was

arranged into the four different control scenarios described previously, and are

summarized in Table 6.1.

The variation in input variables for scenario 2, 3 and 4 were chosen such that

the resulting standard deviation in the primary variable y was similar for the

three systems (std ≈ 0.005).

Because scenario 1 has no control, the primary variable is very sensitive to

disturbances which gives rise to large standard deviations in y (std ≈ 0.08),
and the product specification cannot be met. The standard deviation in u

(std ≈ 0.08) was selected to give a small standard deviation in y, but also

sufficiently large to give noticeable contribution to the variation (std ≈ 0.10).

6.1.2 Testing Procedure

Table 6.2 gives an overview of the testing procedure. For data based estima-

tors, this procedure had three dimensions (calibration, regression method and

validation). Estimators were trained on each of the three scenarios with each

of the four regression methods. In all, 12 estimators were trained, which in

turn were validated on the four scenarios. For the model based estimators,
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Table 6.2: Overview of the testing procedure

dimension 1 dimension 2 dimension 3

calibration method estimator validation

m
o
d
el

optimal S1 H1 S1

optimal S2 H2 S2

optimal S3 H3 S3

optimal S4 H4 S4

S1 LS Bls,i S1

d
a
ta S2 PCR Bpcr,i S2

S3 PLS Bpls,i S3

CLM Bclr,i S4

explanation: S1(u), S2(y = ys), S3(z = zs) and S4(ŷ = ys)

the testing procedure had only two dimensions. The estimators were found

from the model using the analytical expressions given in Chapter 3 with scaling

equal to the distribution of the input variable, and validated against the four

scenarios.

It was found through trial and error, that 4 principal components gave the

best performance for PCR, and 3 components gave the best performance for

PLS and truncated CLM.

6.1.3 Calibration and Validation Data

For the data based estimators, calibration data was generated by drawing

32 random values for u ,d, nx, ys, and zs with the distributions given in

Table 6.1, and calculating the corresponding output variables xm and y for

the respective scenarios (except scenario 4). This gave one set of calibration

data with 32 samples: X (8× 32) and Y (2× 32).

Validation data, was created in the same way as the calibration data. Because

of the implicit nature of scenario 4, validation data was generated after the

estimators were found and used in “closed-loop”.

6.1.4 Evaluation Criteria

The square norm of the prediction error was used as a measure of the esti-

mators performance, that is
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Table 6.3: The mean prediction error of the model based estimators when

applied to the four operation scenarios.

validation data

S1 S2 S3 S4

H1 0.0085 0.2749 0.0215 0.0506

H2 0.0591 0.0093 0.0104 0.0104

H3 0.0599 0.0166 0.0098 0.0132

H4 0.0099 0.0099 0.0099 0.0099

explanation: S1(u), S2(y = ys), S3(z = zs) and S4(ŷ = ys)

e =
∥∥∥Y − Ŷ

∥∥∥
F

were Y is the primary variable from the validation data, and Ŷ is the predicted

primary variable. To average out the random nature of the system, the testing

procedure was repeated 150 times, each time with a new set of calibration

and validation data. At first, the mean prediction error of the 150 times was

used as a measurement of the estimators prediction performance, but because

of random noise and variation of input variables, some data sets had severe

deteriorating effect on the performance. This affected the mean prediction

error by giving an unstable and distorted picture of the performance. By

taking the median of the prediction error for the 150 times, the sets with

severe deterioration in performance are excluded as only the middle prediction

error is used. This gives thus a more stable and more “accurate” picture of

the estimators performance.

6.2 Results

Model Based Estimators Resulting median prediction errors for the model

based estimators are given in Table 6.3. As expected, the optimal estimators

were best when applied to its intended scenario, and can be seen by a minimum

prediction error along the diagonal.

The optimal “closed-loop” estimator H4 had a constant prediction error when

applied to all four scenarios, and is probably due to the constraint Gy = HGx.

The three optimal “open-loop” estimators H1−3 does not have this constraint
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and Gy 6= HGx. The prediction ability will therefor change from one scenario

to another. It should be mentioned that the three “open-loop” estimators

can come very close to having Gy = HGx, but this depends heavily on the

scaling (which in turn depends on the operation of the system). If expected

disturbances are large compared to expected changes in u (as in this case),

then the estimators will prioritize the prediction of disturbances by approaching

Gd
y = HGd

x.

When using “closed-loop” estimators (scenario 4), the optimal “closed-loop”

estimator gave the best performance. This was expected, as the optimal

“closed-loop” estimator derived to be optimal for linear systems with the given

distribution. The optimal “open-loop” estimator H2 gave also good perfor-

mance when used in “closed-loop”, and it is expected that data based estima-

tors trained on scenario 2 will give good performance as “closed-loop” estima-

tors. Scenario 2 is usually not feasible or is irrelevant in real life. This because

we would normally use estimators to predict primary variables that we cannot

measure (measurements that are too slow, too expensive or not possible). If

the primary variables could be measured, we would use this measurement in-

stead of the predicted variable. However, scenario 2 is still interesting as this is

the most common scenario for finding estimators from computer simulations

when working with complex models.

Scenario 3 is the most used arrangement in the industry, where a secondary

variable is controlled instead of the more desired primary variable. The opti-

mal “open-loop” estimator for scenario 3 gave fair performance when used in

“closed-loop” (though this is dependent on the operation of the system).

Data Based Estimators The performance of the data based estimators

are shown in Table 6.4. The data based estimators performed best for the

scenarios they where trained on, and estimators trained on scenario 2 gave the

best “closed-loop” performance. This is reasonable because scenario 2 and 4

have similar control structures, and the two scenarios will have similar internal

variation in the column. The directions in the calibration data generated from

scenario 2 will then be similar to validation data generated for scenario 4 (given

a good estimator).

Figure 6.1 shows the largest left singular vector for the calibration data for

the first three scenarios, and for the validation data for scenario 4 (given all

column temperatures). As expected scenario 2 and 4 were almost identical,

while scenario 3 was similar for the lower part of the column. Scenario 1
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Table 6.4: Performance of Data Based Estimator

validation data

S1 S2 S3 S4

ca
lib

ra
ti
o
n

d
a
ta

S1 Bls,1 0.0100 0.2788 0.0223 0.0523

S2 Bls,2 0.0788 0.0108 0.0116 0.0119

S3 Bls,3 0.1053 0.0346 0.0113 0.0265

S1 Bpcr,1 0.0092 0.3339 0.0257 0.0534

S2 Bpcr,2 0.0812 0.0101 0.0112 0.0112

S3 Bpcr,3 0.1064 0.0315 0.0105 0.0241

S1 Bpls,1 0.0092 0.2935 0.0232 0.0552

S2 Bpls,2 0.0813 0.0101 0.0111 0.0112

S3 Bpls,3 0.1099 0.0333 0.0105 0.0239

S1 Bclr,1 0.0103 0.2900 0.0233 0.0516

S2 Bclr,2 0.0641 0.0113 0.0115 0.0115

S3 Bclr,3 0.0872 0.0368 0.0118 0.0266

S1 B
†
clr,1 0.0094 0.3863 0.0291 0.0530

S2 B
†
clr,2 0.0552 0.0105 0.0107 0.0107

S3 B
†
clr,3 0.0800 0.0359 0.0107 0.0244

explanation: S1(u), S2(y = ys), S3(z = zs) and S4(ŷ = ys)
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Figure 6.1: The first vector of the left singular matrix of X calibration data

for Scenario 1–3 , and X validation data for Scenario 4.

differed most from the others, and explains why estimators trained on scenario

1 performed poorly on other control scenarios.

For estimators trained on scenario 1–3, there is little consistency in the relative

performance between LS, PCR, PLS and CLM, and there is no clear overall

advantageous method. For estimators trained and validated on the same

scenario, that is the diagonal elements, PCR and PLS gave slightly better

results. CLM had lower performance than PCR and PLS, and is assumed to be

caused by assimilation of noise. Truncated CLM filters out this noise resulting

in the improved performance. When trained on scenario 2, the truncated CLM

gave the best “closed-loop” estimator (scenario 4).

When comparing the model based estimator in Table 6.3 with their data based

counterparts in Table 6.4, we see that the model based estimators gave better

results. This is reasonable because, as proven in Chapter 3, for a linear system

with an estimator on the form y = Hxm, where the variation in the variables

follows a normal distribution, the model based estimators are the optimal

estimators for their respective system. Thus for our linear system, the data

based method can at best give the same performance as their model based
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counterparts. Therefore, given enough variation in the calibration data, it is

expected that estimators trained on scenario 1 (B1) will approach the optimal

“open-loop” estimator H1. Similarly it is expected that B2 → H2 and B3 →
H3.

Because the CLM uses the analytical expression for the optimal “closed-loop”

estimator, it is expected that Bclr → H4 . As seen in Table 6.4, the truncated

CLM trained on scenario 2, B
†
clr,2, comes close to this. Notice also that the

performance is nearly constant for the scenarios 2–4, and the performance for

scenario 1 is greatly improved compared to the other methods. The untrun-

cated CLM gave similar results when trained on scenario 2, but with slightly

reduced performance.

6.2.1 Performance of Estimators in “Closed-Loop”

Figure 6.2a, shows estimators “closed-loop” performance for a range of used

stage temperatures (number of measurements increased from 8 to 41, see

Appendix B for model). All data estimators were trained on calibration sets

generated from scenario 2, and model based estimators were found from the

linear model. The estimators were validated on scenario 4. Calibration and

validation data with each 32 samples were generated, and the test was re-

peated 300 times. The median prediction error for the 300 times was used

as a measurement of estimator performance. The order of the temperature

measurements can be seen in Table 7.2 on page 53.

H4 gave the best performance for all measurements. H2 gave poor per-

formance for few measurements, but approached H4 when the number of

measurements increase. PLS and PCR gave very similar performance.

Because the calibration sets had only 32 samples, the equations system went

from overdetermined to underdetermined when the number of measurements

increased. For the overdetermined systems (4-31 temperature measurements),

LS had similar performance to PCR and PLS, but deteriorated rapidly as the

system became more determined. For determined and underdetermined sys-

tems (32-41 temperature measurements) PCR and PLS gave much better

performance than LS. The reason for this is the existence of collinearity and

noise in the data set. When the system is overdetermined, the collinearity and

noise will be filtered out as only the strongest directions in the data will be

used. When the system is close to determined, LS is forced to use the weaker
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(a) Median prediction error for 150 datasets with 32 samples.
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(b) Median prediction error for 150 datasets with 200 samples.

Figure 6.2: “closed-loop” performance for estimators trained on scenario 2,

and for the optimal “open-loop” and “closed-loop” estimator H2 and H4.
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directions. Thus assimilating much/all of the collinearity and noise, resulting

in a deterioration of the performance. PCR and PLS uses only the strongest

directions (equal to the number of principal components), thus reducing the

assimilation of collinearity and noise, giving better results.

The CLM estimator Bclm, gave good results when the system was very overde-

termined (4-10 temperature measurements), but there was a fast deterioration

in the performance when the system became more determined and the perfor-

mance converged with the LS estimator. As the case with LS estimator, the

deterioration in performance for the overdetermined system is assumed to be

caused by assimilation of collinearity and noise.

When the system became underdetermined, the Bclm performance becomes

unstable. The unstable performance for the underdetermined system is due to

the mathematical constraint imposed by (F̃F̃T )−1 in the analytical expression

(3.12) for the optimal “closed-loop” estimator. When the system is under-

determined, the inverse of F̃F̃T becomes singular and the inverse does not

exists. However, because of numerical error in Matlab the inverse was still

found (becoming the inverse of very ill-conditioned matrix), which results in

the unstable and poor performance.

The truncated CLM estimator B
†
clm gave improved performance for all mea-

surements, resulting in the best “closed-loop” estimator. This is accredited

to filtration of waker directions in the calibration data, and to the truncated

pseudoinverse of F̃F̃T .

As mentioned in the previous section, the model based estimators, when ap-

plied to the exact model, represents the optimal estimator for their respective

scenarios. Thus data estimators can at best become as good their model

based counterparts. To show this, the number of samples in a given set were

increased to 200, and the results are shown in Figure 6.2b. It can be clearly

seen that as the data methods get enough data, they do approach their model

based counterparts. It is also clearly seen that LS, PCR and PLS cannot per-

form better than the scenarios they are trained on. Given enough data, the

truncated CLM estimator B
†
clm approaches H4, becoming close-to optimal for

“closed-loop” estimation.

6.2.2 Summary

• The optimal “open-loop” and “closed-loop” estimators gave the best per-

formance on their intended scenario.
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• “Closed-loop” estimators (that is, estimators validated on scenario 4),

had the best performance when trained on Scenario 2.

• The truncated CLM estimators had the best “closed-loop” performance,

while the PLS and PCR estimators had the best “open-loop” perfor-

mance.

• The PLS and PCR estimators approached the optimal “closed-loop”

estimator for higher number of temperature measurements (independent

variables).

• The truncated CLM estimator approached the optimal “closed-loop”

estimator for few temperature measurements (independent variables),

given that there is sufficient variation in the calibration data.

• The truncated CLM estimator performed better than CLM estimator.



Chapter 7

Nonlinear System

7.1 Problem Definition

Given a range of possible temperature measurements, find the best estimators

when used in “open-loop” (scenario 2) and “closed-loop” (scenario 4) on a non-

linear model. Only PCR, PLS, and truncated CLM estimators will be tested,

as initial tests showed that the other methods gave poor performance.

Two cases will be considered: (1) binary feed mixture and (2) multicompo-

nent feed mixture composed of one heavy and one light nonkey component in

addition the key components in the binary mixture. Physical data and nominal

operation of the column was set equal to the specifications used in Mejdell

and Skogestad (1991), and are given in Table 7.1.

The multicomponent mixture consists of four components were the objective

is, as for the binary distillation, to separate the two key components. This

separation can be quantified with the pseudobinary mole fraction,

x′ =
xL

xL + xH

where x′ is the pseudobinary mole fraction of the light key component, and xL
and xH are actual mole fraction for the light and heavy key components re-

spectively. For both binary and multicomponent distillation, nominal operation

of the column gives x′D = 0.99 and x′B = 0.01.
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Table 7.1: Data for Distillation Column

binary mixture

nominal operation (F = 1)
i compt zF xD xB αi,i+1 T b [K]

1 LK 0.500 0.990 0.010 1.5 341.9

2 HK 0.500 0.010 0.990 355.4

multicomponent mixture

nominal operation (F = 1)
i compt zF xD xB αi,i+1 T b [K]

1 LNK 0.050 0.125 0.000 2.0 321.4

2 LK 0.350 0.866 0.006 1.5 341.9

3 HK 0.350 0.009 0.577 2.0 355.4

4 HNK 0.250 0.000 0.417 381.6

7.1.1 Calibration Set

The calibration set used in this thesis was generated with the same specifica-

tions used in Mejdell and Skogestad (1991). The calibration set consists of

32 different simulated runs where zF , xB and xD were specified as shown in

Table 7.2, and the temperature profiles recorded. The first run is the nominal

operation point, and the next 15 runs were randomly chosen. The last 16

runs were selected by a 2-composite design in four levels. Normal distributed

random noise with a standard deviation of 0.2 was added to the temperature

profiles. For the multicomponent case, the pseudobinary composition were

the same as in the binary case. In addition, the feed composition of the light

nonkey component was randomly varied between 0.025 and 0.075, and the

heavy nonkey between 0.15 and 0.35. Noise was added to the temperature

profiles in the same way as the binary case.

7.1.2 Testing Procedure

Estimators were trained, and estimator performance was measured when using

only four temperature measurements. This was repeated, but with one ad-

ditional temperature measurement, until all column temperatures were used.

The order of the temperature measurements are shown in Table 7.3. The first

four temperatures were chosen to give a cross-section of the column, the rest
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Table 7.2: Specifications used in simulations to obtain column temperature

profiles

run zF xD xB
1 0.5000 0.9900 0.0100

2 0.5375 0.9913 0.0262

3 0.4250 0.9738 0.0151

4 0.5250 0.9700 0.0132

5 0.4125 0.9801 0.0058

6 0.6000 0.9849 0.0044

7 0.5125 0.9942 0.0066

8 0.5500 0.9827 0.0076

9 0.4875 0.9962 0.0189

10 0.4750 0.9956 0.0087

11 0.5625 0.9934 0.0115

12 0.4625 0.9772 0.0300

13 0.4375 0.9950 0.0038

14 0.4500 0.9924 0.0173

15 0.5750 0.9868 0.0228

16 0.5875 0.9885 0.0050

17 0.4000 0.9700 0.0300

18 0.4000 0.9700 0.0033

19 0.4000 0.9967 0.0300

20 0.4000 0.9967 0.0033

21 0.6000 0.9700 0.0300

22 0.6000 0.9700 0.0033

23 0.6000 0.9967 0.0300

24 0.6000 0.9967 0.0033

25 0.4500 0.9827 0.0173

26 0.4500 0.9827 0.0058

27 0.4500 0.9942 0.0173

28 0.4500 0.9942 0.0058

29 0.5500 0.9827 0.0173

30 0.5000 0.9827 0.0058

31 0.5500 0.9942 0.0173

32 0.5500 0.9942 0.0058
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Table 7.3: Order of available stage temperatures Tn

n 25,15,5,35,20,22,17,27,34,4,14,24,3,37,19,23,6,36,16,26,2,38,21,18,

28,12,39,9,29,40,10,30,7,11,31,8,32,13,33,41 and 1

were chosen in a semi-random order. That is, random, but a certain spread

in the measurements were ensured.

7.1.3 Number of Principal Components

To estimate the optimum number of principal components to use in the re-

gression, the calibration set was cross-validated as follows. From one principal

component to the maximum number of principal components: The 32 runs

were divided into seven groups, were six of the groups were used for calibra-

tion and the last group used for validation. This was repeated seven times,

but rotating the groups such that all groups had been used for testing once.

For each cross-validation, the mean squared error of prediction (MSEP) was

calculated by

MSEP (l) = 1/32
32∑

i=1

(yi − ŷi (l))
2

where l is the number of principal components, and yi is xD or xB for the

ith run. Because we are estimating both top and bottom compositions, the

MSEP for both compositions were summed and used as the performance

for the respective number principal components. The number of principal

components giving the lowest summed MSEP was used in the regression,

and the specific number of principal components for each run are shown in

Appendix C.

7.1.4 Evaluation

For the binary case, each estimator was tested when used in “open-loop” and

“closed-loop” with dynamic simulations. Normal distributed random noise was

added each 0.1 time unit to the temperature profile with standard deviation

of 0.2. Disturbances in composition and changes in setpoints were changed

according to the calibration data in Table 7.2. A typical response can be seen

in Figure 7.1. For each run, the median prediction error was taken of the last
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Figure 7.1: The dynamic response of the primary variable for run 18 in the

calibration data for binary distillation.

50 time units and the summed MSEP was calculated for the 32 runs.

Given the time consuming nature of dynamic simulations, the multicomponent

case was tested by solving the control problem as an constrained optimization

problem. Further, noise was not added to the temperatures column tempera-

tures. This is assumed to have little effect on the relative performance of each

estimator. Because of steady-state offset in the estimators predictions, cer-

tain runs in Table 7.2 were not achievable (runs: 18 an20). For these runs, the

pseudobinary compositions were set as close to the unachievable compositions

as possible. For the 32 runs, the summed MSEP was calculated.

7.2 Results

The estimator’s “open-loop” and “closed-loop” performance are shown in figure

7.2 for binary mixture, and figure 7.3 for multicomponent mixture. The results

will be discussed further below.
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7.2.1 Binary Mixture

Seen in Figure 7.2a, PLS gives good performance for “open-loop” prediction,

and is only surpassed by PCR and CLM for higher number of temperature

measurements. Noise added to calibration have corrupted the smaller PLS

components, resulting in a lower number of principal components used in the

regression. Figure 7.2b shows the estimators “closed-loop” performance. PLS

had the worst performance, and CLM had the best.

For both “open-loop” and “closed-loop” predictions, CLM and PCR had very

similar performance, but for “open-loop” cases PCR was better, and for “close-

loop” cases CLM was better. Given that these two methods uses the same

pre-treatment it is reasonable that they will give similar results.

7.2.2 Multicomponent Mixture

Figure 7.3a shows the estimators “open-loop” performance, and we see the

results are similar to the binary case. PLS gave the best performance for

most temperatures, and the performance of PCR and CLM was similar to

each other.

The estimators “closed-loop” performance are shown in Figure 7.3b. CLM had

the best performance for all measurements. PCR had worse performance for

few temperature measurements, but the performance approached CLM for

higher number of measurements. PLS had the worst performance for most

number of measurements.

The poor performance of PLS and PCR are mainly due to runs 12, 17, and 19

were the estimators have twice the prediction error compared to CLM. The es-

timators also have large prediction error for these runs on binary distillations,

but on the same level as CLM. The runs have large perturbations in feed,

top, and bottom compositions, and it is expected that the estimators would

have larger prediction errors than other runs with smaller perturbations. For

multicomponent distillation, these perturbation is amplified by the presents of

nonkey components. If too few principal components are used in the regres-

sion, the estimators would have trouble predicting the primary variables when

subjected to large disturbances in nonkey compositions.

As all estimators used the estimated optimal number of principal components

found from cross-validation, the poor performance for PLS might be caused by
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Figure 7.2: Estimator performance binary distillation
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Figure 7.3: Estimator performance for multicomponent distillation
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under estimating the number of components. In the cross-validation process,

the estimators are trained on Scenario 2 and validated on Scenario 2. The

estimated optimal number of components, is in fact for “open-loop” estima-

tion. We see from Figure 7.3a, that cross-validation gives good “open-loop”

performance for the given estimators.

For cross-validating “closed-loop” estimators, it would be more correct to val-

idate the performance on Scenario 4. This would be possible when working

on computer models, but would also be very be time consuming.

Figure 7.4 shows the estimators “closed-loop” performance for 15 and 25

temperature measurements as a function of the number of principal compo-

nents. To avoid over fitting, the column temperatures were added random

normal distributed noise of magnitude 0.2 to each run. As seen from the

figure, the performance can be improved for the three methods. PLS have

the best performance with six principal components while PCR and CLM have

the best performance with about 10 components. This indicated that the

cross-validation process underestimated the number of principal components

needed in the PLS regression and the performance can be improved. It is also

seen that even though the performance of PLS can be improved, it will not

outperform the truncated CLM with the given noise and disturbances.

7.2.3 Summary

• CLM estimators had generally the best “closed-loop” performance for

both binary and multicomponent distillation.

• PLS estimators had generally best “open-loop” performance for both

binary and multicomponent distillation.

• Cross-validation on Scenario 2 works well for “open-loop” estimators,

but works only to a lesser degree for “closed-loop” estimators.



60 Nonlinear System

0 5 10 15
0

1

2

3

4
x 10

−4

number of principal components

M
S

E
P

 

 

B
†
c lm

Bpcr

Bpls

(a) 15 temperature measurements

0 5 10 15 20 25
0

1

2

3

4
x 10

−4

number of principal components

M
S

E
P

 

 

B
†
c lm

Bpcr

Bpls

(b) 25 temperature measurements

Figure 7.4: Estimators “closed-loop” performance (multicomponent distilla-

tion) for given number of temperature measurements as a function of the

number of principal components. (△) is the estimated optimum number of

components from cross-validation. (©) is the optimum number of component

for the given noise.
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Discussion

8.1 Optimal “Open-Loop” Estimators

Shown previously, the three optimal “open-loop” estimators have the same

solution as LS, but uses model gains and scaling matrices instead of data.

The model gains with scaling can be thought of as having data with only

the relevant directions. From this we can deduce that, for linear systems, an

optimal estimator can be found from data with an LS method (given that

the calibration data contain the same variation as expected from nominal

operation). Methods like PCR and PLS, which can be thought of as LS with

different preprocessing of the data before regression, will also give an optimal

estimator. PCR and PLS, will have an advantage when the calibration data

contains collinearity and noise.

8.2 Optimal “Closed-Loop” Estimator

Seen from the expression for the optimal “closed-loop” estimator, the opti-

mization problem does not have the same form as LS (Though, it can be

claimed that the optimization problem is a weighted LS problem). Thus from

data, we would expect that we cannot find the optimal “closed-loop” esti-

mator with conventional techniques like LS, PCR and PLS. For conditions

were expected variation in setpoints are large compared to disturbances, the
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optimal “open-loop” estimator with closed-loop primary variable y, will give ap-

proximately the same estimator as the optimal “closed-loop” estimator. The

optimal “open-loop” estimators for closed-loop y is

H2 = argmin
H

∥∥ (I−HGcl
x )Wys (−HFWd) (−HWnx)

∥∥
F

Relatively large variations in setpoint gives (I ≈ HGcl
x ) and the optimization

problem can be approximated to

H2 = argmin
H

∥∥H
[
FWd Wnx

]∥∥
F

s.t. HGcl
x = I

which is the same as the optimization problem for the optimal “closed-loop”

estimator. This can also be shown for the two other optimal “open-loop”

estimators. This is not immediately obvious, but it is easily shown when

recognizing that, with the given constraint, F reduces to Gd
y −HGd

x. Thus,

for some conditions the “open-loop” estimators are also optimal “closed-loop”

estimators.

For linear systems with no constraints on the product compositions (that is,

setpoint changes can be set arbitrarily large), all the “open-loop” estimators

could also be an optimal “closed-loop” estimator. If there are constraints on

the product compositions or the system is nonlinear, this would not be the

case, and the optimal “open-loop” estimators would probably not result in an

optimal “closed-loop” estimator.

8.2.1 Further Improvements of CLM

We have seen throughout this thesis, that the truncated CLM estimators have

correlated performance with the PCR estimators. And as mentioned before,

this is thought to be an effect of the principal component analysis, which both

methods have in common. This belief is amplified further when comparing the

performance of the untruncated CLM estimator with the LS estimator, and

notice a similar correlation between the performance (Figure 6.2a on page 48).

This leads to the conclusion that the untruncated CLM improves the “closed-

loop” performance of LS, and that the truncated CLM improves the “closed-

loop” performance of PCR. A natural extension to this would be to use PLS

in combination with the CLM, and improve the “closed-loop” performance of

PLS. We have tried several novel approaches to this by using the PLS scores

and loading matrices, but non have been successful.
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8.2.2 Weighting and Logarithmic Transformations

The temperatures in the column ends contain the most representative infor-

mation about the product compositions, but are also affected most by nonlin-

earities and noise. Top and bottom temperatures vary little with disturbances

and product compositions compared to other temperatures. Mejdell and Sko-

gestad (1991) reported that weighting the variables such that the information

in the column ends are not lost, gave better results. They also reported that

logarithmic transformations of the temperatures gave very good results, but

also that it was imperative that the transformed data was weighted to reduce

the noise sensitivity. Due to limited time, weighting and logarithmic transfor-

mations of the temperatures were not tested, but it is believed that this will

also improve the performance of the truncated CLM.
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Chapter 9

Conclusion

9.1 The Optimal Model Based Estimators

The new static estimator proposed by Skogestad et al. (2011) was found to be

optimal for “closed-loop” estimation, and was termed the optimal “closed-loop”

estimator. When using the optimal “open-loop” estimators (especially H2) in

“closed-loop” on the linear distillation model, we found that their performance

approached the optimal “closed-loop” performance when using additional tem-

perature measurements.

9.2 The "Closed-Loop" Method

CLM, which is a data based extension to the optimal “closed-loop” estimator,

was found to approach the optimal “closed-loop” estimator for few tempera-

ture measurements. However, the CLM was found to be sensitive to noise and

collinearity. The proposed truncated CLM uses a principal component analysis

on the temperature data, filtrating out this collinearity and noise. The trun-

cated CLM was found to have significantly improved performance on noisy

data compared to CLM when dealing with closed-to determined calibration

data. For the distillation examples, the truncated CLM was found to give the

best “closed-loop” performance of the data methods.
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CLM has, due to the mathematical constraint imposed by (FFT )−1, requiring

FFT to be of full rank in the analytical formula (3.12), no solution for under-

determined calibration data. The truncated CLM use the truncated pseudoin-

verse of FFT , circumventing the requirement of full rank. The truncated CLM

was found to give good “close-loop” performance for these underdetermined

systems.

9.3 PLS and PCR

PLS and PCR were both found to have lower “closed-loop” performance on the

distillation examples than the truncated CLM. PCR performance was found

to be often very correlated with the truncated CLM, giving in most cases

a very similar performance. Of the two methods however, PCR gave the

best “open-loop” performance, and truncated CLM gave the best “closed-loop”

performance. PLS gave generally the best “open-loop” performance.

9.4 “Closed-Loop” Systems

One inherent problem of “close-loop” systems are their implicit nature, which

inhibits us from generating calibration data. Thus, it is necessary to use cal-

ibration data from “open-loop” systems to train the estimators. We found

from the linear distillation example that estimators trained on calibration data

from “open-loop” operation with controlled primary variables y (Scenario 2)

gave the best “closed-loop” performance. Controlling the primary variables y

are usually not feasible in real distillation columns, and it is more common to

control certain stage temperatures. That is, “open-loop” operation with con-

trolled secondary variables z (Scenario 3). We found for our linear distillation

example that estimators trained on this control scenario gave fair “closed-loop”

performance.



Nomenclature

α relative volatility

B data based estimator

B bottom liquid flow rate

d disturbances

D distillate flow rate

d′ normalized disturbance

e prediction error

F optimal sensitivity

F Feed flow rate

Gx,G
d
x gain matrix from inputs (degree of fredom u and disturbance d) to

measurements x

Gy,G
d
y gain matrix from inputs (degree of fredom u and disturbance d) to

primary variable y

Gz,G
d
z gain matrix from inputs (degree of fredom u and disturbance d) to

secondary variable z

H model based estimator

In identity matrix with n diagonal entries

K controller

LD reflux flow rate
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68 Nomenclature

M stage holdup

Muw stage holdup under weir

Mow stage holdup over weir

nx measurement noise

n′
x normalized measurement noise

Σ sigular value matrix

Tn stage temperature for stage n

U left sigular vector matrix

u degres of freedom / manipulated variable

u′ normalized degres of freedom

V right sigular vector matrix

VB vapor boiluop flow rate

Wd scaling matrix for the disturbance d

Wu scaling matrix for the degree of freedom u

Wnx scaling matrix for the mesurement noise nx

X dependent variable data matrix

x measurements, independent variable

x′ pseudocomposition of light component

xB mole fraction of light component in bottom product

xD mole fraction of light component in top product

Y independent variable data matrix

y primary variable, dependent variable

ys setpoint for primary variable

ŷ predicted primary variable

zF feed mole fraction of light component
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Appendix A

Extra Derivations

A.1 Optimal Sensitivity F

The optimal sensitivity F is the sensitivity of the optimal measurements x with

respects to disturbances d. For our purposes the measurements that keep the

primary variables at the setpoints are the optimal. The optimal sensitivity can

then be defined as

F =

(
dxopt

dd

)
=

(
dx

dd

)

y=ys

Given the linear expression for the primary variables and measurements

y = Gyu+Gd
yd

x = Gxu+Gd
xd

Assume that u is used to keep the predicted primary variable ŷ at their setpoint

ys. The optimal value for y, is when y = ys (which implies no prediction

error), and gives

uopt = G−1
y ys −G−1

y Gd
yd

The optimal variation in the measurements x can be written as

xopt = Gxuopt +Gd
xd

xopt =
(
Gd

x −GxG
−1
y Gd

y

)
d+GxG

−1
y ys

Applying the definition of optimal sensitivity gives

F =
dxopt

dd
= Gd

x −GxG
−1
y Gd

y
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A.2 Cascade Arrangements

The following derivations will show that we can use closed-loop gains in the

expression for the optimal “closed-loop” estimator. Also, it will show that

when using closed-loop gains we assume a cascade control arrangement.

A.2.1 Inner Loop - Closed-Loop y

The following expressions will be derived from the linear system on page 18.

For the inner loop, assume that u is adjusted such that y = y′
s, and for the

outer loop assume that y′
s is adjusted such that ŷ = ys.

The expression for the primary variable and the predicted primary variable

y = y
′

s = Gyu+Gd
yd

ŷ = ys = H
(
Gxu+Gd

xd+ nx

)

Finding u as an explicit function of y′
s

u = G−1
y

(
y′
s −Gd

yd
)

Finding y′
s as a function of ys

ys = H
(
GxG

−1
y︸ ︷︷ ︸

Gcl
x

(
y′
s −Gd

yd
)
+Gd

xd+ nx

)

y′
s =

(
HGcl

x

)−1 (
ys −H

(
Gd

xd+ nx

))
+Gd

yd

Expressing the prediction error as a function of ys

e = −
(
HGcl

x

)−1
H

((
Gd

x +Gcl
xG

d
y

)
d+ nx

)
−

(
HGcl

x

)−1
ys − ys

e = −
(
HGcl

x

)−1
H

[
F I

] [ d

I

]
−

[(
HGcl

x

)−1
− I

]
ys

Using Lemma 4 and Lemma 5, we find the optimal “closed-loop” estimator

H = argmin
H

∥∥H
[
FWd Wnx

]∥∥
F

s.t. HGcl
x = I

Where Gcl
x = GxG

−1
y , and I = Gcl

y = GyG
−1
y .
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A.2.2 Inner Loop - Closed-Loop z

The following expressions will be derived from the linear system on page 18.

For the inner loop, assume that u is adjusted such that z = zs, and for the

outer loop assume that zs is adjusted such that ŷ = ys.

The expression for the secondary variable and the predicted primary variables

z = zs = Gzu+Gd
zd

ŷ = ys = H (Gxu+Gxd+ nx)

Finding u as an explicit function of zs

u = G−1
z

(
zs −Gd

zd
)

Finding zs as a function of ys

ys = H
(
GxG

−1
z︸ ︷︷ ︸

Gcl
x

(
zs −Gd

zd
)
+Gxd+ nx

)

zs =
(
HGcl

x

)−1
ys −

(
HGcl

x

)−1
H (Gxd+ nx) +Gd

zd

Expressing the primary variable as an explicit function of ys (Gcl
y = GyG

−1
z )

y = Gcl
y

(
HGcl

x

)−1
ys −Gcl

y

(
HGcl

x

)−1
H (Gxd+ nx) +Gd

yd

y = Gcl
y

(
HGcl

x

)−1
ys −Gcl

y

(
HGcl

x

)−1
H
([
Gx −Gcl

x

(
Gcl

y

)−1
Gd

y

]
d+ nx

)

Recognizing that

Gcl
x

(
Gcl

y

)−1
= GxG

−1
z

(
GyG

−1
z

)−1
= GxG

−1
z GzG

−1
y = GxG

−1
y

and the optimal sensitivity (F = Gx −GxG
−1
y Gd

y) gives

y = Gcl
y

(
HGcl

x

)−1
ys −Gcl

y

(
HGcl

x

)−1
H (Fd+ nx)

Expressing the prediction error as a function of ys

e = y− ŷ = −Gcl
y

(
HGcl

x

)−1
H (Fd+ nx) +

[
Gcl

y

(
HGcl

x

)−1
− I

]
ys

Using Lemma 4 and Lemma 5, we find the optimal “closed-loop” estimator

H = argmin
∥∥H

[
FWd Wnx

]∥∥

s.t. HGcl
x = Gcl

y

Where Gcl
x = GxG

−1
z , and Gcl

y = GyG
−1
z .



78 Extra Derivations



Appendix B

Full Linear Model

The linear approximation to the binary mixture “column A” for all 41 stage

temperatures are given in the following table. The model was found by induc-

ing small perturbations, and recording the response.

Gx Gd
x

u1
(LD)

u2
(VB)

d (zF )

-14.6 14.5 -16.1

-20.8 22.0 -22.8

-28.5 27.3 -31.4

-38.3 40.7 -41.9

-50.1 48.2 -55.3

-64.8 68.0 -71.0

-81.9 80.2 -90.2

-102.0 105.3 -111.8

-124.2 123.5 -136.3

-148.1 150.9 -161.9

-171.9 172.4 -187.8

-194.2 196.5 -211.3

-212.4 213.7 -230.5

-224.7 226.8 -243.0

-229.6 231.1 -247.4

-226.3 227.9 -243.3
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80 Full Linear Model

-215.4 216.7 -231.3

-198.4 199.4 -213.2

-177.2 177.9 -191.0

-154.1 154.5 -167.0

-130.8 130.9 -143.0

-149.1 148.9 -160.1

-166.0 165.5 -175.5

-180.2 179.3 -187.7

-190.2 189.1 -195.5

-195.0 193.7 -197.9

-194.1 192.5 -194.6

-187.4 185.7 -185.9

-175.6 174.0 -172.5

-160.0 158.4 -155.7

-142.0 140.5 -137.0

-122.9 121.6 -117.7

-104.0 102.8 -99.0

-86.2 85.2 -81.7

-70.0 69.2 -65.9

-55.8 55.0 -52.2

-43.5 42.9 -40.6

-33.2 32.7 -30.8

-24.6 24.2 -22.8

-17.5 17.3 -16.2

-11.8 11.6 -10.9



Appendix C

Number of Principal
Components

The table below gives the number of principal components used for each

regression in Chapter 7.

Table C.1: Number of principal component used in regression for column A.

number of Binary Mixture Multicomponent mixture

measurements CLM PCR PLS CLM PCR PLS

4 4 4 4 4 4 4

5 4 4 4 4 4 4

6 5 5 4 4 4 4

7 5 5 4 5 4 4

8 5 5 5 4 4 4

9 6 6 6 5 5 4

10 7 7 6 5 5 4

11 7 7 6 5 5 4

12 7 7 5 5 5 4

13 7 7 5 5 5 4

14 7 7 6 5 5 4

15 8 8 4 5 5 4

16 9 9 4 5 5 4

17 9 9 4 5 7 4

18 9 9 4 6 7 4

21 12 12 4 7 7 4
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82 Number of Principal Components

19 10 10 4 7 5 4

20 11 11 4 5 7 4

22 12 12 4 7 9 4

23 9 9 4 9 9 4

24 14 14 4 5 10 4

25 14 14 4 10 9 4

26 14 14 4 5 9 4

27 12 14 4 9 10 4

28 6 6 4 10 15 4

29 6 6 4 15 15 4

30 6 6 4 15 16 4

31 7 7 4 19 16 7

32 8 8 4 16 17 7

33 8 8 4 17 16 4

34 9 9 4 17 17 4

35 12 12 4 17 16 4

36 13 13 4 16 17 4

37 13 13 4 6 6 4

38 13 13 4 16 16 4

39 14 14 4 16 6 4

40 13 9 4 6 6 5

41 9 9 4 11 6 5



Appendix D

Standard Challenge Problems

The truncated CLM, PCR, and PLS will in this chapter be tested on two

standard regression problems. The two examples are “open-loop” system.

That is, the estimator will only be used for monitoring purposes.

D.1 Gluten Test Example

The object is to precisely predict the gluten concentration from NIR ab-

sorbance. The data set (Martens et al., 2003) has one dependent variable

y (gluten concentration), 100 independent variables x (NIR absorbents) with

each 100 samples. The data set was split up into two parts, and cross-

validated.

Figure D.1, shows the performance of the truncated CLM, PLS, and PCR as a

function of the number of principal components used under calibration. PLS

had the best performance when using 10 principal components, while both

CLM and PLS (performing almost identical) had their best performance when

using 19 components. PLS had the best performance of the three method.

D.2 Wheat Test Example

The object is to predict water and protein content from NIR absorbance. The

data set (Kalivas, 1997) has two dependent variables y (wheat and water
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Figure D.1: Estimator performance for different number of principal compo-

nents used under calibration for the gluten test example.

contests), and 701 independent variables x (NIR absorbent) with each 100

samples. The data set was split into two parts; even numbered samples in one

part and odd numbered samples in the other, and cross-validated.

Figure D.2, shows the performance of the truncated CLM, PLS, and PCR as

a function of the number of principal components used under calibration. PLS

had the best performance for 28 principal components, while CLM and PCR

had their best performance when using 47 components . PLS gave the overall

best performance.
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Figure D.2: Estimator performance for different number of principal compo-

nents used under calibration for the wheat test example.
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Appendix E

Matlab Code

E.1 Truncated CLM

% Function for finding the truncated "closed-loop"

% method (truncated CLM) estimator

% written by Chriss Grimholt, april 2011

function B = tclm(Y,X,n)

% Y is the dependent variables

% X is the independent variable

% n is the number of principal components

% Principal Component Analysis

[u,s,v] = svd(X);

u = u(:,1:n); s = s(1:n,1:n); v = v(:,1:n);

X = u*s*v’;

% The Truncated CLM

[u,s,v] = svd(Y); Y = Y*v; X = X*v;

p = size(Y,1); % number of independent variables

G1 = Y(:,1:p); Gy = X(:,1:p); Ftilde = X(:,p+1:end);

[u,s,v] = svd(Ftilde*Ftilde’);

u = u(:,1:n); s = s(1:n,1:n); v = v(:,1:n);

s=sˆ-1; invF = v*s’*u’;

% Optimal "Closed-Loop" Estimator

B = invF*Gy*pinv(Gy’*invF*Gy)*G1’; B=B’;

end
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88 Matlab Code

E.2 Cross-Validation

E.2.1 Data Rotation Function

% splits up data into SPLIT number of blocks and assigns block P as the

% validation block. The remaning blocks are merged into the calibration

% blocks. written by: Chriss Grimholt, 3/5-2011

function [Ycal,Xcal,Yval,Xval] = datarot(Y,X,split,p)

m = size(X,2); % number of samples in data

set = 1:m; % generating index for the samples

d = mod(m,split); % finds the leftover after split

n=(m-d)/split; % finding number of samples in split

% split into split sets

setval={}; n_set = 0;

n0 = 1; % start sample

n1 = n; % number of samples in plit

while n0 <= m % distributing data between the sets

temp = n0 : n1;

if d > 0

temp = [temp, n1+1]; d = d-1; n1=n1+1;

end

n0 = n1+1; n1 = n0+(n-1); n_set = n_set+1; setval{n_set}=temp;

end

% validataion data

Yval = Y(:,setval{p}); Xval = X(:,setval{p}); setcal=[];

% finding which samples are not in the validation data

for i = 1:m

if ismember(i,setval{p})

i=i+1;

else

setcal = [setcal;i];

end

end

Ycal = Y(:,setcal); Xcal = X(:,setcal); % calibration data

% special case for no split

if split == 1

Yval = Y; Xval = X; Ycal = Y; Xcal = X;

end

end
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E.2.2 Cross-Validation Function

% Cross-Validation Function, B is the optimal estimator,

% nopt is the estimated optimal number of components,

% MSEP_opt is the squared error,

% Y and X is the input data, and split is the CV split.

% written by Chriss Grimholt, april 2011

function [B, nopt, MSEP_opt] = cvtclm(Y,X,split)

% maximum number of principal components

n_max = min(size(X,2)-ceil(size(X,2)/split), size(X,1));

% Cross-Validating for n = 1 to n = n_max

for n = 1:n_max

res = [];

for p = 1:split

[Ycal,Xcal,Yval,Xval] = datarot(Y,X,split,p);

B=tclm(Ycal,Xcal,n);

error(:,p) = sum((Yval-B*Xval).ˆ2,2); % validating

end

MSEP(:,n)=sum(error,2)/size(X,2); %storing MSEP for each n

end

MSEP=sum(MSEP);

% summing up MSEP for multiple independent variables

[MSEP_opt, nopt] = min(MSEP); % findng best component

% Estimator

B=hdata(Y,X,n);

% Plot of crossvalidation

Pl = plot(1:n_max,MSEP,nopt,MSEP_opt,’or’,nopt,0,’xr’);

set(Pl(1),’LineStyle’,’-’,’LineWidth’,1.5,’color’,’blue’)

set(Pl(2),’LineStyle’,’o’,’LineWidth’,1.5,’color’,’red’)

set(Pl(3),’LineStyle’,’x’,’LineWidth’,1.5,’color’,’red’)

axis([0 n_max 0 max(MSEP)])

set(gca,’FontSize’,14)

grid on

xlab = xlabel(’Number of principal components’);

ylab = ylabel(’MSEP’);

set(ylab,’FontSize’,14,’interpreter’,’tex’)

set(xlab,’FontSize’,14,’interpreter’,’tex’)

end


	Title Page
	MsD4.dvi

