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Abstract

We have employed laboratory and numerical experiments in order to investigate

propagation of waves in both long and short-crested wave fields in deep water.

For long-crested waves with steepness, ǫ = kcac = 0.1 (a fairly extreme case),

reliable prediction can be performed with the modified nonlinear Schrödinger

equation up to about 40 characteristic wavelengths. For short-crested waves the

accuracy of prediction is strongly reduced with increasing directional spread.

Keywords:

1. Introduction

Predictions are needed in many areas of science and technology. Applica-

tions range from the weather forecast to the financial market and the height

of the incoming waves that hit you in the sea. If we should propose a rough

categorization one could say that the prediction is stochastic if repeated cases5

with the same input give different output due to some inherent randomness in

such models. If identical input produces the same output one may talk about

deterministic prediction. Deterministic prediction reaches the final state from

the initial state by applying a deterministic propagation operator.
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The physics of ocean waves has been thoroughly studied for many years,10

and provides an excellent basis both for stochastic and deterministic prediction

on various spatial and temporal scales. In particular, the surface is weakly

nonlinear with the leading order contribution being a space/time Gaussian field.

Analysis of surface wave problems has led to a large number of nonlinear wave

equations, some of which are used as propagators in the deterministic predictions15

studied below.

Dynamic positioning of vessels during sensitive offshore operations such as

float-over installation, equipment lifting, LNG loading connection, ROV opera-

tions and helicopter take-off and landing will benefit from a real-time prediction

of the local wave conditions in an order of seconds to a few minutes ahead. Real20

time prediction could also warn against freak waves and could enable a helms-

man to decide how to maneuver vessels during dangerous situations within a

limited time horizon (e.g. Clauss et al., 2007, 2008, 2009). Another important

application is enhanced extraction of ocean wave energy, where the real-time dy-

namic control of floating wave energy converters can benefit from the possibility25

of real-time prediction of excitation force into the future (Fusco and Ringwood,

2012).

The majority of existing commercial systems rely on linear wave theory for

prediction of the encountering waves. Obtaining input data in the open ocean

with the quality demanded by nonlinear wave propagation models is currently30

not an easy task. Nevertheless, it is possible to obtain high quality input data

in a wave basin, for instance, with arrays of several wave probes (Naaijen et al.,

2009). Much work has been done to validate nonlinear wave propagation models

with long-crested wave experiments in a laboratory. Shemer et al. (1998) stud-

ied evolution of unidirectional nonlinear wave groups in a wave tank with the35

cubic Schrödinger (NLS) equation (Zakharov, 1968; Hasimoto and Ono, 1972).

They observed in deep as well as in relatively shallow water experiments that

the NLS equation is able to capture the overall features of nonlinear wave group

evolution. Trulsen and Stansberg (2001) applied both the NLS and the modified

nonlinear Schrödinger (MNLS) equation (Dysthe, 1979; Trulsen and Dysthe,40
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1997) in order to investigate the spatial evolution of unidirectional bichromatic

waves in a wave tank for deep water. Certain wave properties, which could

not be adequately described by the NLS, were successfully captured by the

MNLS. They suggested that the MNLS can be used to predict the evolution of

long-crested waves at least up to the dimensionless fetch ǫ2kcx = 3 compared45

to ǫ2kcx = 1 for NLS and linear wave theory, where kc is the characteristic

wavenumber and x is the evolution distance. Trulsen (2003, 2005) later extended

the consideration to evolution of irregular waves. The overall conclusions were

similar to Trulsen and Stansberg (2001), the main difference being reduced pre-

diction horizon for the irregular wave experiments. Moreover, Trulsen (2003)50

suggested a theoretical prediction range of the MNLS equation for various sea

states.

Unlike many other nonlinear wave propagation models, Schrödinger equa-

tions are computationally efficient, but at the cost of a constraint in the spectral

bandwidth. This prompted Shemer et al. (2001, 2002) to investigate evolution55

of an initially broad spectrum that formally violates the assumptions behind

the derivation of (M)NLS. They compared experimental results with simula-

tions based on the unidirectional Zakharov equation (Zakharov, 1968) accurate

to the third-order (fourth-order) in wave steepness and the NLS (MNLS) equa-

tions. For a sufficiently narrow spectrum, the Schrödinger equation yields good60

agreement with the Zakharov equation. However, for relatively broader ini-

tial spectrum the accuracy degenerates compared with the Zakharov equation,

which is free of bandwidth constraints. A recent comparison between experi-

ments of broad-banded unidirectional waves and the Zakharov equation show

satisfactory agreement (Shemer et al., 2007) suggesting the Zakharov equation65

as an effective computational tool for prediction. Shemer and Dorfman (2008)

reported comparison of experiments of unidirectional wave groups with both

spatial and temporal version of the MNLS equation. In addition to good agree-

ment between experiments and simulations, they observed a gradual transfor-

mation of an initially symmetric spectrum into a strongly asymmetric one, this70

is in agreement with Dysthe et al. (2003).
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Until recently, relatively few validation efforts have been made on nonlinear

directional wave fields. Some of these describe direct large-scale phase-resolved

computations of nonlinear ocean wave fields (Wu et al., 2007; Xiao et al., 2009).

However, simulation of typical nonlinear ocean wave fields with this method re-75

quires long computation time, limiting its applicability for short-time wave pre-

diction. Direct comparisons of numerical simulations based on Higher-Order

Spectral method to wave tank experiments can be found in Ducrozet et al.

(2012).

In this paper, we shall consider the prediction of both long and short-crested80

wave experiments with linear and nonlinear equations. We use bichromatic and

irregular waves from Marintek to validate long-crested wave models (Trulsen,

2005). We also use experiments from MARIN to validate directional seas

(Naaijen et al., 2009). Among our selection of models, and based on an ensem-

ble average of several realizations, the MNLS equation gives better prediction85

of the experiments for long fetch. For the irregular long-crested wave experi-

ments with steepness ǫ = kcac = 0.1 we achieve reliable prediction over a fetch

of about 40 characteristic wavelengths. For short-crested wave experiments we

find less accurate prediction for the same fetch.

2. Prediction theory90

2.1. Linear least squares prediction (LSQ)

We first consider a rather simple case of predicting the surface elevation. It

is based on a model which is calibrated using data both from observation and

prediction locations, which may then be validated on a new set of data. Assume

X denotes the input observation with dimension O ×N , where O is number of

observation locations and N is the number of discrete times. The output Y

denotes the prediction, in the simplest case, for only one prediction location it

has the dimension 1×N . The expression for the best linear prediction, Yp, takes

the form

Yp = qX, (1)
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where the weight q is chosen so as to make the prediction error, e = Y − qX,

as small as possible. Here q is a vector of size 1×O.

The calibration step consists of determining the parameters q, which may

then be applied to Eq. 1 so as to obtain a reasonable prediction of Y , Yp, for a

new sets of observations. The numerical problem thus consists of solving Eq. 1

for q. However, the resulting system of equations may be overdetermined, and

the system may not always have an exact solution. The aim is thus to consider

the error expression e = Y − qX and write the least squares problem

‖e‖2 = (Y − qX)(Y − qX)′. (2)

If X has full rank, one may consider solving the so-called normal equations that

appear from minimizing the linear least squares problem in Eq. 2

q = YX′(XX′)−1. (3)

Even if X has full rank, the normal equations may be numerically ill-conditioned

when the condition number of X becomes large. Numerical treatment, such as95

QR-factorization of X is thus necessary to avoid numerical problems, (see, e.g.

Nocedal and Wright, 2000; Golub and Van Loan, 2013).

Consider X(t) and Y (t) are measurements from two locations, where Y is

delayed in time relative to X by t0. In this case, Y should be compensated

for the forward shift in time compared to X, say Y = η(t + t0), where η is100

the surface displacement at the selected location. The optimal time-shift, t0 is

determined such that the prediction error is minimized.

2.2. Predictions based on covariance matrices (COV)

This method is a generalization of the LSQ method. In addition, we shall

now allow several simultaneous predictions. Assume that X and Y are real or105

complex multivariate stochastic variables with dimensions O × N and M × N

respectively, where M is the number of prediction locations. In order to keep

things simple, we shall in the following assume that all variables have zero mean.

For this method, the prediction Yp also takes the form given in Eq. 1 where in
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this caseYp is a vector, and q is anM×O-matrix determined by minimizing the110

error covariance matrix with respect to the partial ordering of positive definite

Hermitian matrices (see, Brillinger, 2001, for this elegant technique).

Let X and Y have covariance matrices

ΣXY = E

[

XYH
]

= ΣH
YX, (4)

and similarly for ΣXX and ΣYY. Superscript H means the Hermitian trans-

posed. Recalling e = Y − Yp, the unique minimum for Σee is obtained with

q = ΣYXΣ−1
XX = ΣH

XYΣ−1
XX, (5)

when ΣXX is nonsingular (Brillinger, 2001, Thm. 8.2.1). The optimal prediction

may thus be written as

Yp = ΣYXΣ−1
XXX, (6)

and the minimal error covariance matrix becomes

Σee = ΣYY − ΣH
XYΣ−1

XXΣXY, (7)

where the last term on the RHS is the prediction covariance matrix, ΣYpYp
=

ΣH
XYΣ−1

XXΣXY. Thus,

ΣYY = ΣYpYp
+Σee, (8)

(Brillinger, 2001). In conclusion, we may therefore always decompose Y into the

best linear predictor from X, as shown in Eq. 6, and an orthogonal component,

e = Y−Yp, which is completely uncorrelated. It is interesting to observe that115

e is additive and orthogonal to the prediction of Y. Obviously, should X be

orthogonal to Y, the prediction is simply YP = 0 and e = Y.

In the case that X and Y are Gaussian, a best prediction, Yp, always exists

and is denoted by the conditional expectation, E (Y|X) (Øksendal, 2003). Al-

though hard to find in general, when dealing with finite dimensional Gaussian120

variables the best prediction is simply the familiar multivariate linear regression

and the solution is similar to the one above. The prediction error in this case is

also uncorrelated to YP .
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2.3. Linear wave simulation based on synthetic directional spectrum

In the following, we present methods handy for the numerical assessment125

of the effects of directional parameters and the amount of input data on wave

predictability. The method combines LWT and the one discussed in Section 2.2.

For a more comprehensive treatment of LWT we refer to Kahma et al. (2005)

and Goda (2010).

For a weakly stationary and homogeneous stochastic field, the covariance

function, ρ, of the surface elevation, η, may be written in terms of the three-

dimensional (k, ω)-spectrum,

ρ (r, t) =

∫

k,ω

ei(k·r−ωt)dχ (k, ω) . (9)

where χ is the three-dimensional spectrum of the surface elevation, r = (x, y)

is the horizontal position vector, t is time, k is the wavenumber vector and

ω the frequency. The above integral may also be expressed in terms of the

wavenumber vector spectrum Ψ (k) by means of the formula,

ρ (r, t) =

∫

k

cos (k · r−ωt)Ψ (k) dkxdky, (10)

(Kahma et al., 2005). The wavenumber spectrum, Ψ(k), is an integration of

χ(k, ω) over frequencies, keeping k fixed. Further simplification may be achieved

by limiting the model to the leading order in wave steepness, which leads to the

dispersion relation connecting k and ω, e.g., ω2 = gk in deep water, where

k = |k|. In this case, the integral in Eq. 10 may be expressed in terms of the

directional spectrum, E (ω, θ) = S (ω)D (θ, ω):

ρ (r, t) =

∫

∞

ω=0

S (ω)

∫ 2π

θ=0

D (θ, ω) cos [k (ω) r cos (θ − ϕ)− ωt] dθdω, (11)

where k = (kx, ky) = k (ω) (cos θ, sin θ), r = r (cosϕ, sinϕ), S (ω) is the one-130

sided frequency spectrum, and D (θ, ω) the directional distribution normalized

such that
∫ 2π

0
D (θ, ω) dθ = 1.

In order to apply the prediction formulas in Eqs. 5–7 , it is necessary to have

reliable knowledge of the covariance matrices. In a theoretical LWT setting, the

matrices may be computed from Eq. 11, whereas in practice, the matrices need135
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to be estimated from the data. The choice is then whether to estimate the

directional spectrum and apply that in Eq. 11, or if it is possible, to estimate

the covariance matrices directly from the data by ensemble averaging. Estimates

of covariance matrices may be obtained from data in a lot of ways, utilizing e.g.

their special structure like the Toeplitz matrices for prediction in stationary140

time series (Burg et al., 1982).

For the numerical investigations reported in Section 4.1, we apply LWT

and the directional spectrum for simulation of the covariance function (See Eq.

11). The method is a useful tool for system assessment, but requires stationary

and periodic sea state conditions (in time t) and will experience problems if145

topography is important. However, for the experimental studies in Section

4.2, Eqs. 4–8 can be applied regardless of any additional assumptions beyond

stationarity. Note that we also apply a similar time-shift t0 as described in

Section 2.1.

2.4. Linear deterministic wave prediction (LDWP)150

We shall represent the wavy water surface, z = η(r, t) by linear wave theory,

where z is a vertical coordinate. In a Gaussian field, the wave propagation

model can be described as a superposition of many monochromatic waves with

different frequencies, phases and amplitudes traveling in different directions. We

impose periodic boundary conditions for the y- and t-coordinates, with periodic

intervals of length Ly and T respectively. For propagation in the x-direction we

may write

η(r, t) = Re







∑

j

∑

l

c(kyj , ωl)e
i(kxx+kyjy−ωlt)







(12)

where ωl = 2πl/T , kyj = 2πj/Ly and Re means taking the real part. The 2D

Fast Fourier Transform (2D-FFT) of η(x = 0, y, t) yields the complex coeffi-

cients, c(kyj , ωl). The wavenumber in the propagation direction x, kx, is related

to ωl and kyj by the dispersion relation, e.g., {kx}(j,l) = ±
√

ω4
l /g

2 − k2yj in

deep water, thus |kyj | ≤ ω2
l /g is the feasible domain.155
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2.5. Prediction with cubic and modified nonlinear Schrödinger equations

We shall employ a three-dimensional modified nonlinear Schrödinger model

that describes the evolution of the surface elevation indirectly using the evo-

lution of its complex envelope, B. In the following, all expressions are non-

dimensionalized by a characteristic angular frequency (ωc) and the correspond-

ing characteristic wavenumber (kc). We let ωc be the mean frequency with

respect to the power spectrum, i.e.,

ωc =

∑

l

∑

j ωl|η̂(x = 0, kyj , ωl)|2
∑

l

∑

j |η̂(x = 0, kyj , ωl)|2
, (13)

and determine kc from the linear dispersion relation in deep water, kc = ω2
c/g.

Here η̂ is the Fourier transform of the surface elevation at the observation loca-

tion. Assuming irrotational flow of an incompressible inviscid fluid, we expand

the velocity potential φ and surface elevation η of the free surface in harmonic

series

φ = φ̄+Re
{

Aei(x−t) +A2e
2i(x−t) +A3e

3i(x−t) + . . .
}

, (14)

and

η = η̄ +Re
{

Bei(x−t) +B2e
2i(x−t) +B3e

3i(x−t) + · · ·
}

. (15)

Here η̄, B2 and B3 are the zeroth, second and third harmonic bound waves.

They are slowly varying functions of space and time given by

η̄ = −∂φ̄

∂t
, B2 =

1

2
B2 + iB

∂B

∂t
, B3 =

3

8
B3. (16)

Provided that the steepness is small ǫ = kcac ≪ 1, the bandwidth is narrow

|∆k|/kc = O(ǫ), the depth is large (kch)
−1 = O(ǫ), and neglecting terms of rel-

ative order higher than ǫ4, we get the modified nonlinear Schrödinger (MNLS)

equation. Here ac =
√

2E [η2] is the characteristic amplitude, ∆k is a charac-

teristic modulation wave vector relative to the characteristic wave vector and h

is depth (Trulsen, 2005). The potential φ̄ of the induced mean flow is governed
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by the equations

∂φ̄

∂z
= −∂|B|2

∂t
at z = 0,

4
∂2φ̄

∂t2
+

∂2φ̄

∂y2
+

∂φ̄

∂z2
= 0 for − h < z < 0,

∂φ̄

∂z
= 0 at z = −h.

(17)

The first, second and third harmonic complex amplitudes of the potential, A,

A2 and A3, will not be considered here. The spatial evolution form of the modi-

fied nonlinear Schrödinger (MNLS) equation (Dysthe, 1979; Brinch-Nielsen and Jonsson,

1986; Trulsen and Dysthe, 1997; Toffoli et al., 2010) with exact linear dispersion

is given by

∂B

∂x
+ LB + i|B|2B −

[

8|B|2 ∂B
∂t

+ 2B2 ∂B
∗

∂t
+ 4i

∂φ̄

∂t
B

]

= 0, (18)

(Trulsen et al., 2000; Trulsen, 2005). The superscript ∗ means complex con-

jugate. The terms in the bracket should be discarded to recover the cubic

nonlinear Schrödinger (NLS) equation, while the first two terms comprise the

linear Schrödinger (LS) equation. The linear dispersive part, in its exact form

is defined by the operator L as

L = −i

{

[

(1 + i
∂

∂t
)4 +

∂2

∂y2

]1/2

− 1

}

. (19)

In agreement with the accuracy of the nonlinear truncation, for MNLS all

terms in Eq. 15 are used, for NLS only first and second-order terms are retained,

and for LS only first-order terms are retained.

Ocean wave fields are generally non-periodic. However, since our numerical

techniques depend heavily on representation with Fourier transform, we assume

periodic boundary conditions for the y-direction and for time. The discrete

Fourier representation of the first harmonic complex amplitude is

B(x = 0, ym, tn) =
∑

l

∑

j

B̂(x = 0, kyj , ωl)e
i(kyjym−ωltn) (20)

where ym and tn are collocation points in the y-direction and time, and B̂(x, kyj , ωl)160

the 2-D Fourier transform of B. We employ the numerical method of Lo and Mei
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(1985, 1987) with periodic boundary conditions in time and transverse direc-

tion. Evolution in the x-direction is achieved with a splitting scheme in which

the linear part of Eq. 18 is integrated exactly in Fourier space and the nonlinear

part is integrated by finite differences.165

The initialization of the Schrödinger equations entails prior determination

of ωc and kc followed by extraction of the first harmonic complex amplitude,

B. The envelope, B(x = 0, y, t), may be extracted from the data by low-pass

filtering the Fourier transform of the term on the left hand side of (2η(x =

x0, y, t)e
iωct = B + B∗e−2iωct) around the origin. Here, η(x = 0, y, t) is a 2-170

D surface displacement which could be used as initial condition for the wave

propagation models.

2.6. Error between predicted and experimental surface elevation

To quantify the accuracy of predictions in the experiments, we define a

normalized prediction error averaged over time,

error(r) =

√

∑

n(ηpred(r, tn)− ηexp(r, tn))2
∑

n(ηexp(r, tn))
2

, (21)

where ηpred and ηexp are predicted and experimental surface displacements re-

spectively. For all of the experiments in the present study, comparisons are made175

along the x-axis (for y = 0). The above error norm represents the normalized

sample standard deviation of the prediction error, with value 0 meaning full

agreement, and with value 1 meaning that magnitude of the discrepancy be-

tween the prediction and the measurement is equal to the magnitude of the

measurement itself.180

3. Descriptions of experiments

In the following, we present descriptions of Marintek towing tank (bichro-

matic), Marintek ocean basin (irregular) and MARIN basin (irregular) experi-

ments. In all of the experiments and simulations presented here, we adopt the

definition for the characteristic steepness as ǫ = kcac. We refer to Socquet-Juglard et al.185
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(2005, Fig.2) for scatter plots of Tp and Hs from the northern North Sea,

where curves of constant steepness are also plotted using the definition ǫ =
√
2π2Hs/(gT

2
p ). This definition is slightly different from the one we used above

since Tp ' Tc. The steepness for the present study, ranging from moderate

(ǫ = 0.05) to extreme (ǫ = 0.12) case, are listed in table 1.190

To keep resemblance with the reports provided from the respective labo-

ratories, we evaluate the bichromatic waves at model-scale and the irregular

waves at full-scale. However, to ease the interpretations most of our results are

presented in normalized form, time as t/Tc, space as (x/λc, y/λc) and surface

elevation as kcη.195

3.1. Long-crested seas

9.3
40

80

120

160

200

x

distance [m]10
8
9

76

Towing tank

5

4

32
1

y

(a)

10 15 20 25 29.6 34.6 40 45 50 55

Ocean basin

x

y

distance [m]

5 6 7 8 1 2 9 10 11 12

(b)

beach 

wave maker

beach wave maker

Figure 1: Sketches of Marintek Towing tank (a) and Ocean basin (b) with locations of the

wave staffs.
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3.1.1. Bichromatic waves

This experiment was performed in the 270m long and 10.5m wide towing

tank at Marintek (Stansberg, 1993, 1995, 1998). The depth of the tank is 10m

for the first 80m and 5m otherwise. The surface elevation was measured by200

10 wave staffs at different locations simultaneously. Apart from probe 9 all the

others were located along the centerline of the tank. A sketch of the wave tank

is shown in Fig. 1 (a). The bichromatic wave properties are given in Table 1. In

this case, the characteristic wavenumber is determined based on the arithmetic

mean value of nominal periods of the two wave components, i.e., following the205

dispersion relation in deep water kc = (2π/Tc)
2/g, where Tc = (T1+T2)/2. The

non-dimensional depth is thus kch = 11 for the former and kch = 5.5 for the

latter section of the wave tank, however, our numerical simulations are based

on kch = 11 for the entire tank. Since the prediction error due to ignoring

the jump at 80m in the tank is small, it will not be a primary source of error210

in the present study. We should also note that the given steepness applies to

the portion of the time series at probe 1 used for initialization of the numerical

models.

Normalized errors between predicted and measured waves are computed us-

ing Eq. 21 at probes 1, 2, 4, 5, 6, 7, 8 and 10 with a non-dimensional time215

of length 20, starting from t/Tc = 9 at probe 1. The normalized errors are

then ensemble-averaged over 1200 realizations obtained by moving the window

bounded by the two skew lines shown in Fig. 2. The realizations are ob-

tained by partially overlapping time trace sections, separated by a sample size

corresponding to 1/2Tc. Since realizations constructed in this way will be de-220

pendent, it requires larger ensemble size for sufficient convergence. We refer

to Naaijen et al. (2014) for further discussion about the time overlap and the

ensemble size required for optimal convergence. In Fig. 2, the slope of the

two skew lines corresponds to the magnitude of the LWT group velocity of the

characteristic wave.225
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Table 1: Summary of Marintek towing tank (bichromatic), Marintek ocean basin (irregular)

and MARIN ocean basin (irregular) tests. The Marintek towing tank experiments are given

in model scale, whereas all of the ocean basin experiments are given at full scale.

Wave types Wave periods [s] Wave heights [m] Dir. spread Steepness

T1 or T0 T2 H1 or Hm0 H2 σ1[
◦] ǫ

Marintek

Bichromatic 1.90 2.10 0.16 0.16 0 0.11

Irregular 14.0 - 14 - 0 0.12

MARIN (irregular)

Narrow 9 - 2.5 - 6 0.05

Medium 9 - 2.5 - 12.5 0.05

Broad 9 - 2.5 - 19 0.05

0 25 50 75 100 125 150

0

0.5

1

1.5

2

2.5

probe 1

probe 2

probe 4

probe 5

probe 7

probe 10

t/T
c

k cη 
+

 k
cx/

10
0

Figure 2: Marintek bichromatic wave records at selected probes along the centerline of the

towing tank. The slanted lines, given by the LWT group velocity of the characteristic wave,

bound the evolution of wave groups.
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3.1.2. Irregular waves

This experiment was performed in the ocean basin at Marintek. The sketch

of the wave tank is shown in Fig. 1 (b). The wave maker was programmed with

an irregular wave spectrum, with peak period 14 s and significant wave height

14m (after scaling with 1:200), see also Table 1. We use a non-dimensional time230

trace of length 1694, starting at t/Tc = 25 of the original time series (See Fig. 3).

The measurements at probe 5 are used for initialization of the numerical models.

Normalized errors between predicted and measured waves are computed using

Eq. 21 at all probes with a non-dimensional time trace of length 14, starting at

t/Tc = 25 at probe 5. The normalized errors are then ensemble-averaged over235

800 realizations made by moving the window bounded by the two skew lines

shown in Fig. 3. It is worth mentioning that the deviation of the propagation

velocity of groups from the linear group velocity (cg,lwt) seen in Figs. 2 and 3 is a

nonlinear effect captured by the MNLS equation(e.g., Trulsen, 1998). The above

assumption that the predictable zone is bounded just by cg,lwt is not an optimal240

choice both for broad-banded and nonlinear waves. There are numerical and

experimental evidences that wave groups propagate faster than the linear group

velocity (e.g., Trulsen, 1998). Moreover, for broad-banded waves, the group

velocity corresponding to the longest and shortest wave components present in

the initial time-trace should bound the spatio-temporal prediction horizon (Wu,245

2004; Naaijen and Huijsmans, 2010). As a consequence, the two bounding lines

will have different slopes, however, we do not incorporate the corresponding

effect in the present study.

3.2. Short-crested seas

Data for this study were collected by MARIN as part of the OWME project.250

A detailed description of the facilities and experiments is presented in Naaijen et al.

(2009). These experiments were carried out in the 40m long, 170m wide and

5m deep MARIN seakeeping and manoeuvering basin at a scale of 1 : 70. The

basin has flap type wave makers on two sides and absorbing beaches on the

opposite sides. The wave maker, parallel to the y-axis, was programmed with255
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Figure 3: Marintek irregular wave records at all probes in the ocean basin. The slanted lines,

given by the LWT group velocity of the characteristic wave, bound the evolution of wave

groups.

a directional spectrum which is obtained by multiplying a JONSWAP spec-

trum and a directional distribution similar to the standard cos-2s distribution

(Longuet-Higgins et al., 1963). The spectra were generated according to the

specifications given in table 1, where the three different test cases, ranging from

narrow to broad directional spread, are listed. Here, σ1 is the directional spread260

(circular standard deviation of the directional distribution (Mardia, 1972)). For

further discussion about its functional relation with other wave parameters, we

refer to Simanesew et al. (2016) and references therein.

The wave measurements were carried out using a 126m by 126m, 10 × 10

wave probe array of grid size 14m in both directions as shown in Fig. 4a in265

full-scale. The array was connected to a carriage which could be moved to

various locations in the basin between tests. Measurement locations for the

present study are shown in Fig. 4b. The main wave propagation direction

was along the x-axis. During the test, the input directional distribution was
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Figure 4: Probe arrangement and wave gauge array locations. In Fig. 4b, data along the

y-axis are used to initialize the models, whereas marked dots are locations where predictions

and experiments are compared.

limited to directions within (−15◦, 15◦) for narrow, (−30◦, 30◦) for medium and270

(−45◦, 45◦) for broad distribution.

We use a non-dimensional time domain of 380 from a total of about 650

starting from t/Tc = 50 (See Fig. 5). Detailed comparisons between predicted

and measured waves are made at (locations, probes): (8, A5), (3, K5), (2,

K5) and (1, K5) with a non-dimensional time trace of length 28, starting at275

t/Tc = 144 at the initial probes, moving with the magnitude of LWT group

velocity of the characteristic wave (See Fig. 5). The probes are located at

distances 677m, 1243m, 1668m and 2219m from the wave maker, respectively.

Normalized prediction errors are computed using Eq. 21 at selected probes,

starting at t/Tc = 50 at location 8 probe A5 and then ensemble-averaged over280

800 realizations.

For the medium wave fields, σ1 = 12.5◦, the models were initialized by the

outermost seventy time series located on the left sides of locations 5 to 11.

Grid resolution was set to 14m (0.13λc) over a length of fifteen characteristic
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Figure 5: MARIN: Short-crested seas (σ1 = 12.5◦) at selected probes. The slanted lines, given

by the LWT group velocity of the characteristic wave, bound the evolution of wave groups.

wavelengths (λc) in the transverse direction. For waves with narrow and broad285

directional distributions, available measurements were limited to locations 7, 8

and 9 covering only six characteristic wavelengths in the transverse direction.

This means that the most short-crested sea experiments have insufficient input

data to characterize waves that would influence the upstream wave field.

Moreover, due to the finite size of the movable 10 × 10-array, the measure-290

ments are non-equidistant in the y-direction, restricting the use of the standard

FFT-algorithm to reconstruct the initial envelope. We thus employed the 2D

bilinear interpolation technique, to provide equidistant measurements for our

numerical schemes with a possible trade-off prediction accuracy.

4. Results295

In this section we present results from numerical and laboratory experiments.

We shall consider measured time series at discrete spatial points to initialize

our models, and perform predictions forward in time and space. The setting is
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shown in Fig. 6, where the time series, in the initial domain, are distributed

uniformly over an interval of length IL. It turns out that the prediction error300

at a target with distance TD depends strongly on parameters such as wave

directionality and the ratio between IL and TD, alternatively expressed as

θp = 2atan(IL/(2TD)).

x

Target position

θ
p

y

Target distance (TD)

t

Input position

Input le
ngth (IL

)

Figure 6: Visualization of directional-wave prediction at a target with distance TD based

on input data along a transverse interval of length IL. The middle two dashed lines are

t =const., whereas the upper and lower curves have slope equal to the magnitude of the LWT

group velocity of the characteristic wave.

4.1. Linear numerical experiments

In order to investigate the effects of the above parameters, we carried out305

numerical experiments within the frame of LWT discussed in Section 2.3. We

use a JONSWAP spectrum with a peak period, Tp = 9 s and a peakedness fac-

tor γ of 3.3. Wave directionality is included by the standard cos-2s distribution

with various selection of directional spread. Figure 7 shows contour plots of

normalized prediction error variances as defined in Eq. 7 from a single observa-310

tion in space, located at (x, y) = (0, 0). All physical quantities are scaled with

the values corresponding the spectral peak.
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Figure 7: Prediction error variances from simulation with single observation located at r =

(0, 0). The directional spread is 6◦ for the plot on the left and 19◦ for the plot on the right

side. The slope of the two bounding dashed lines is given by the magnitude of the LWT group

velocity of the peak wave.

For a narrow distribution, with σ1 = 6◦, the spatio-temporal prediction

horizon is large, and the prediction error increases slowly both with respect

to space and time. For a moderately broad distribution, with σ1 = 19◦, we315

observe a significant reduction in the overall prediction horizon with a fairly

rapid change in the prediction error variances. Figure 8 shows various spectra

at about three peak wavelengths away from the observation. The error spectrum

clearly takes over the prediction spectrum for large evolution distance, and it

is obvious that the effect is enhanced for a relatively broad distribution. The320

observed large error spectrum in the high-frequency region is predominantly

due to canceling out of integrals like (11) when arguments kr or ωt increase.

It is known (Riemann-Lebesgue Lemma) that the Fourier transform of an L1-

function vanishes at infinity.

Since with only a single observation short-wave prediction may not reach325

the intended target location, adding more input data in the transverse direc-

tion partly reduces the effect as illustrated in Fig. 9. It shows the prediction

error variances according to Eq. 7 employing single and triple observations.

The space-time prediction horizon has been significantly improved for the sim-
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ulation with triple observations as expected. In the following, we investigate330

the required size of IL for a given directional spread. The separation distance

between transverse data points has been set to 50m (approximately equivalent

to 0.4λp), and distributed uniformly over the length IL.
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Figure 8: Example of input (solid curve), prediction (dashed curve) and prediction error

(dash-dot curve) spectra in logarithmic scale. The distance to target location is set to 500m.

The directional spread is set to 6◦ for the plots on left and 30◦ for the plots on the right side.

We have studied the convergence of prediction error variance at distance

TD/λp ≈ 8 by gradually increasing IL. A stopping criterion has been imposed335

in the algorithm when a given threshold is achieved by the absolute difference

between successive prediction errors. The result is shown in Fig. 10 where the

prediction error variances according to Eq. 7, are seen against the transverse

distance denoted by IL in Fig. 6. It indicates that the required size of IL

increases with increasing directional spread (See also table 2 for further detail).340

However, increasing the size of IL further does not significantly improve the

results. The above consideration is linear and purely numerical. We now turn

to laboratory experiments and nonlinear wave theory.
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Figure 9: Prediction error variances from (a) simulation with single observation at r = (0, 0)

and (b) from simulation with three observations at r ∈ {(0,−50m), (0, 0), (0, 50m)}. The

directional spread is set to σ1 = 30◦ and the slope of the two slanted dashed lines corresponds

to the magnitude of the LWT group velocity at the spectral peak.
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Table 2: Estimated ratio between IL and TD for optimal prediction in different sea states

σ1 [◦] 6 12.5 19 25 37

IL/TD 0.3 1.1 1.6 2 2.9

θp [◦] 17 58 77 90 111

4.2. Laboratory experiments

Sample comparisons between short-crested sea experiments in the MARIN345

basin and MNLS simulations are shown in Fig. 11. The comparisons are within

a window moving with the magnitude of the LWT group velocity of the charac-

teristic wave. The agreement between the experiments and simulations is quite

good. The figure suggests much better comparison than the indicated error

values would intuitively suggest. These error values are also dependent on the350

length of the sample time-trace we choose, and in most cases the normalized

errors are greater than twice the corresponding mean absolute errors. As an

example, from Fig. 11, the normalized prediction error at x/λc = 14.2 is 0.41

with prediction time, 28Tc. The mean absolute error, in this case, is about 0.2.

However, with shorter time-trace in the initial domain one may achieve a smaller355

normalized error without altering the physical comparison between prediction

and the experiments.

Ensemble-averaged prediction errors from all experiments employing Eq. 21

are shown in Fig. 12 for all of the above prediction methods. The linear least

squares model is fully empirical, it searches the required optimal time-shift be-360

tween observation and prediction sites leading to a reasonable prediction of

LWT group velocity. The agreement between prediction and experiment is per-

fect when the prediction site is quite close to the initial domain and becomes

progressively worse when the prediction distance increases. The least squares

prediction error is smaller than both linear theory and the NLS for bichromatic365

wave experiments, whilst in good agreement for the irregular wave experiments.

For the short-crested sea experiments in the MARIN basin, the least squares
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Figure 11: MARIN (σ1 = 12.5◦): MNLS prediction with exact linear dispersion. Comparison

between experiment (blue dashed curves) and prediction (red solid curves) at four locations.

The two slanted lines have slope given by the magnitude of the LWT group velocity of the

characteristic wave. The vertical dashed line separates the hind-cast and forecast.
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method is seen to provide the worst prediction. It is also found that the covari-

ance based prediction does not improve the accuracy of predictions as expected.

It gives exactly the same prediction as the LSQ. Due to truncation to narrow370

bandwidth, all Schrödinger equations do not in general reproduce the exact ini-

tial data, as a result one could expect a residual error at the initial condition.

Except at the initial condition, both LDWP and LS produce virtually identical

prediction. Although the NLS accounts for additional wave physics like nonlin-

ear increase in phase speed and modification of amplitudes within wave groups,375

it often over-predicts the maximum crest height observed in the experiments.

This can lead to poor prediction, sometimes even worse than the linear wave

theory as reported before. In most cases, the MNLS provides prediction with

accuracy better than that obtainable both by NLS and linear wave prediction

methods. Nevertheless, for the most short-crested waves with σ1 = 19◦, it is380

hardly possible to identify difference between linear and nonlinear predictions,

they all fail after a short propagation distances. This is mainly due to our lack

of adequate input data in the transverse direction, and perhaps partly due to

bandwidth limitation of the Schrödinger equations. However, we are not able to

distinguish between the levels of influence from bandwidth limitation and input385

data inadequacy.

The MARIN experiments with σ1 = 12.5◦ provide enough data to inves-

tigate the size of IL relative to TD required for an optimal prediction. The

setting is similar to Fig. 6 with parameters and measurement locations spec-

ified in Fig. 4b. Four setups were investigated for accurate prediction of the390

downstream wave field. The normalized prediction errors between experiments

and MNLS simulations are shown in Fig. 13 for the various cases. Obviously,

measurements from location 8 alone are not enough to characterize the wave

field. Measurements from locations 7–9 provide reliable prediction only up to

about 6λc, whereas by incorporating measurements from locations 6 and 10,395

the prediction can be extended farther than 9λc with good precision. Finally,

measurements from all locations, i.e. 5–11, were found to furnish the amount

of input data needed all the way out to 14λc. It may be noted that these val-
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Figure 12: Marintek and MARIN wave data: Ensemble normalized prediction errors as a

function of normalized propagation distance. (a) bichromatic long-crested waves, (b) irregular

long-crested waves, (c) directional waves with σ1 = 6◦, (d) directional waves with σ1 = 12.5◦,

(e) directional waves with σ1 = 19◦.
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Figure 13: MARIN (σ1 = 12.5◦): Normalized error of MNLS simulations as a function of

normalized propagation distance at subsequent probes. The simulations are initialized by the

leftmost probes of the locations indicated in the legend.

ues correspond approximately to the values obtained by the linear numerical

experiments in Sec. 4.1. This means that, both in the numerical and in the400

laboratory experiments, the ratio between IL and TD is approximately equal

to one for waves with σ1 = 12.5◦.

Figures 14 and 15 show comparisons of all experiments with LDWP and with

MNLS simulations respectively. We compare ensemble-average prediction errors

for bichromatic waves (σ1 = 0), irregular waves (σ1 = 0) and short-crested seas405

with directional spread σ1 = 6◦, 12.5◦ and 19◦. In order to ease the interpre-

tation, in all short-crested sea simulations, except the one denoted by (II), we

use initial data from locations 7–9. We observe large variations between these

experiments, mainly attributed to differences in wave directionality. In both

simulations, the prediction errors for the short-crested waves are situated above410

the prediction error for the irregular waves with the bichromatic waves below.

The bichromatic experiments yield the smallest prediction error providing the
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Figure 14: Marintek (lower two) and MARIN (upper four) experiments: LDWP ensemble-

averaged prediction error as a function of normalized propagation distance. The prediction

error is the lowest for the unidirectional bichromatic waves and the highest for the most short-

crested waves. Prediction errors are computed at probes A5, E5 and K5 of locations 8, 3 and

1. (I) and (II) denote inadequate and adequate input data respectively.
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longest prediction horizon. These waves are considerably more narrow-banded

than the other, making them more suitable for MNLS-type simulations. For

short-crested waves, the directional spread has a negative impact on the accu-415

racy of prediction. We also recall that lack of sufficient input data for some of

the above experiments lowers the accuracy (see also Fig. 16 for enhanced view

of results from the short-crested sea experiments in the MARIN basin).
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Figure 15: Marintek (lower two) and MARIN (upper four) experiments: MNLS ensemble-

averaged prediction as a function of normalized propagation distance. The prediction error is

the lowest for the unidirectional bichromatic waves and the highest for the most short-crested

waves. (I): inadequate input data, (II): adequate input data.

Moreover, Fig. 15 reveals that the MNLS prediction range for long-crested

irregular waves is more than twice as large as the LDWP range shown in Fig. 14,420

whereas for short crested seas no major improvement is observed. We believe

that the combination of peak period and steepness in the MARIN experiments

rendered the size of the basin too small to show a possible improved prediction

horizon for the modified nonlinear Schrödinger equation in this case.

For the long-crested irregular wave experiments in the Marintek towing tank,425
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Figure 16: MARIN experiments: MNLS ensemble-averaged prediction error as a function of

normalized propagation distance. Prediction errors are computed at probes A5, E5 and K5

of locations 8, 3 and 1. (I) and (II) are as described in Fig. 15

reliable prediction can be performed up to ǫ2kcx ≈ 2.4. For ǫ = 0.1, the MNLS

prediction distance is about 40 characteristic wavelengths.

Based on short-crested wave experiments in the MARIN basin we anticipate

a prediction range by ǫ2kcx = 1, which for ǫ = 0.05 would correspond to 65

characteristic wavelengths. However, in order to make definite conclusion about430

this prediction range, it is necessary to extend the validation effort at least up

to ǫ2kcx = 1.

5. Conclusions

In this paper we have presented validation of various prediction models for

long and short-crested waves in laboratory and numerical experiments. The435

modified nonlinear Schrödinger equation gives better prediction of the wave

fields in the experiments for long fetch. Due to the structure of nonlinear inter-

actions on deep water we anticipate the prediction range scales with ǫ2 where
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ǫ is the steepness of the wave field. The covariance based method is handy for

numerical assessment when combined with linear wave theory.440

The study indicates reliable nonlinear deterministic prediction can be per-

formed up to ǫ2kcx = 2.4 for long-crested irregular waves. For short-crested

waves we anticipate reliable nonlinear deterministic prediction up to ǫ2kcx = 1,

provided there is sufficient input data to initialize the model. We have ex-

amined the amount of transversal input data necessary for the upstream wave445

fields. Both numerical and basin experiments suggest that required input data

extension in the transverse direction increases with increasing directional spread.
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