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ABSTRACT 

Kinematics in two-dimensional regular and irregular swface waves is described based on the 
Lagrangian form of the equations of motion, with particular emphasis 011 the conditions in the 
so-called splash zone in irregular waves. A practical method for accurate calculation of 
kinematics in broad-banded irregular waves is developed based on Gerstner's wave theory, 
and theoretical calculations are compared with laborat01:y wave data. A review of basic 
hydrodynamics has also been called for, and is presented from a Lagrangian as well as 
Eulerian point of view. The results of the analytical study and the study of the wave data 
question the applicability of certain universally accepted fluid dynamical principles. 

The basic equations of fluid motion are presented on Eulerian and Lagrangian form, including 
the general Lagrangian form of the Laplacian. The relations governing vortex motion are also 
presented, including the theorems of Helmholtz, Kelvin and others on the rate of change of 
vorticity and circulation. Rotation of fluid elements is also studied from a Lagrangian point of 
view, showing that vorticity is not suited to express how a fluid element actually rotates about 
itself. It is found reason to question the common Lagrangian form of the continuity equation, 
namely that the Jacobian must be constant and that it in general can be set equal to 1, since 
this requirement results in some ambiguities and fundamental inconsistencies. Further, when 
considered in a Lagrangian frame of reference, we have that the theorems of Helmholtz, 
Kelvin and others require that a given Lagrangian point always represents the same 
identifiable material "particle", i.e. that the Jacobian is constant and equals 1. Hence, there is 
also reason to question the common assumption of irrotational (potential) flow in motions 
generated by conservative (potential) forces only, since this requirement is based on a 
material (Lagrangian) interpretation of the theorems on vortex motion. The weaker 
requirement of zero curl of the acceleration in such flows still applies, irrespective of the 
behaviour of the Jacobian. 

The Lagrangian wave theories of Gerstner and Miehe are presented, pertammg to regular 
waves in deep and intermediate water, respectively. These wave theories represent closed 
orbital particle motion, i.e. without any net transport of mass. They also contain vorticity 
(rotationality) at second order, and are therefore traditionally considered invalid beyond first 
order. The classical solution for surface waves is Stokes 211

d order wave theory. The difference 
between this theory and the two above is Stokes drift; a second order forward transport of 
mass. Stokes waves and Stokes drift are here also studied from a Lagrangian point of view. It 
is found that Stokes waves violate continuity and cause a vorticity at second order within less 
than one wave period, even for waves of small amplitude. Stokes waves are therefore 
theoretically inconsistent in the Lagrangian frame of reference, which in turn questions the 
arguments rendering Gerstner's (and Miche's) theory invalid, i.e. the above-mentioned 
assumption of irrotational motion. The wave theories of Gerstner and Miehe are concluded to 
be applicable basic solutions for regular waves in the limit of negligible viscosity. 

Irregular waves are here modelled as a sum of linear regular Gerstner or Miehe waves, 
superposed in the Lagrangian frame of reference. The Lagrangian approach is better suited to 
show the physics of the wave motions than the Eulerian approach, and the linear Lagrangian 
model of irregular waves automatically includes what are known as nonlinear interactions 
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from an Eulerian point of view. The irregular approach presented here is still only a solution 
of the linearized Lagrangian problem; it is not a model for nonlinear irregular waves in a 
mathematical sense. 

Iterative methods have been developed that determine which water particle occupies a 
specific spatial (Eulerian) position at a specific instant in time. This means that also Eulerian 
quantities can be calculated, in a practical manner, based on the Lagrangian solutions. The 
iteration methods apply to regular as well as broad-banded irregulm· waves, and yield 
theoretically consistent values everywhere, also in the splash zone. Since the models of 
irregular waves presented in this thesis are based on the linear (first order) parts of the regular 
solutions only, they are not affected by the above questions regarding continuity, vorticity and 
mass transport at second order. 

The Lagrangian theories and models are compared with laboratory wave data for both regular 
and irregular wave cases. The wave data include measurements of the surface elevation and 
LDV-measurements of water particle velocities at different vertical positions, also above the 
still water level. The mean horizontal velocity in a vertical cross-section has been studied 
closely, and the instantaneous horizontal velocity in a vertical cross-section beneath 
individual crests and troughs has also been considered. 

The analysis of the experimental data show that distinct transitions in the mean horizontal 
velocity in the flume take place after a relatively short period of time. These analysis, along 
with visual observations, also indicate that water particles actually move in more or less 
closed orbits, i.e. similar to Gerstner and Miehe waves, which is fundamentally different from 
the commonly assumed Stokes drift and associated return current. Again, this supports the 
above questioning of Stokes waves, Stokes drift and irrotational motion. 

For regular waves, the wave theories of Gerstner and Miehe are found to compare 
exceptionally well with the measurements after the transitions have taken place and a 
relatively steady mean velocity profile has been established. For irregular waves, the 
Lagrangian models also compare well with the measurements, although these results are more 
subject to uncertainties. In particular, the horizontal velocity beneath crests and troughs 
predicted by the Lagrangian approach is compared with calculations according to the widely 
used Wheeler's method. The Lagrangian approach is generally found to compare better with 
the measurements than Wheeler's method does, and it accounts for the discrepancies typically 
observed when Wheeler's method is compared with wave flume measurements. It should be 
noted that Wheeler's "ad hoe" method does not satisfy the basic equations of motion, while 
the Lagrangian approach presented here does satisfy the basic equations consistently, even in 
the splash zone. 

Hence, this study raises some fundamental theoretical questions with respect to continuity, 
vorticity and mass transport. For waves, it is of the utmost importance to resolve the issues of 
non-uniform mass transport when higher order solutions are sought. Caution should be taken 
when analyzing wave flume measurements, in particular for irregular wave cases. Such 
measurements may not be satisfactorily suited for comparisons with, or verification of, 
theoretical models of irregular ocean waves. 

Anyhow, the Lagrangian approach presented herein should be of great practical and 
theoretical value, very well suited for simulations and design purposes. The potential for 
further development seems considerable, and may e.g. open for theoretically consistent 
superposition of nonlinear Lagrangian components and detailed modelling of wave-wave 
interactions and wave-current interactions. 
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NOMENCLATURE & 
GLOSSARY 

Special symbols and notations 

2D 
3D 
V 
f 

O(f) 
Re[fl 
Im[fl 
sign{!} 

two-dimensional, (x, z)-plane 
three-dimensional, (x, y, z)-space 
nabla/del-operator 

overbar denotes mean value off 
order of magnitude off 
real part off 
imaginary part off 
sign off, returning + 1 or -1 

Subscripts 

E 

L 

submerged 

surface 

to 

on Eulerian form 
on Lagrangian form 
pertaining to Eulerian points always submerged in water 
pertaining to Lagrangian points constituting the free surface 
denoting value at time t 
denoting initial value at time to 

The meaning of other sub- and superscripts are as given by the lists of symbols below, or 
assumed to be directly apparent from the context in which they are used. 

Latin symbols 

area 
constant in pressure term 

ratio between the representative narrow band frequency (e.g. OJ 20) and OJp, viz. 

C = (1) representative 
a, 

O)p 

diagonals of a material fluid element 
energy 
kinetic energy 
potential energy 
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G 
Gx, Gy, Gz 
H 
Hmo 
Hs 
J 
N 
p 

s 
S(m) 
T 
T 
Tµ 
Tw 
Tw 
TN 
U(zo) 
V 
Vo 
z 
Zo 
a 
a 
ax, ay, az 

C 

Cg 

dA 
dS 
ds 
dso 
dx; 
es 
es 
e 

ex,m 

ez,m 

em 

eo 
ex0,m 

Czo,m 

eom 
f 
f 
/Nyquist 

/sample 

fs( w),Gerstner 

/s(w),Miche 

g 
g 
h 
i, j, k 
k 
kp 
kw 

Nomenclature & Glossary 

body force 
body force components in a right-handed Eulerian Cartesian coordinate system 
wave height 
significant wave height defined by O'h spectral moment 
significant wave height, identical to H,d! in this thesis 
Jacobi-determinant 
number of sample points in a timeseries / components in a Fourier-series 
energy flux 
surface 
wave frequency spectrum 
stress tensor ( surface force) 
wave period 
spectral peak period 
spectral mean period 
spectral mean zero crossing period 
duration of timeseries 
added drift velocity in Miche's solution 
velocity vector 
3D Lagrangian region defining a specific volume of mass 
complex Eulerian variable 
complex Lagrangian variable 
wave amplitude 
acceleration vector 
acceleration components in a right-handed Eulerian Cartesian coordinate system 
phase velocity / wave celerity 
group velocity 
differential Eulerian area 
differential surface area in Eulerian coordinates 
differential curve segment in Eulerian coordinates 
differential curve segment in Lagrangian coordinates 
differential of x; 
unit tangential vector of ds 
unit normal vector of dS 
tolerance of error in approximated Eulerian coordinates 
error in approximated Eulerian x-coordinate after m iterations 
error in approximated Eulerian z-coordinate after m iterations 
highest value of ex,m and ez,m 

tolerance of error in approximated Lagrangian coordinates 
error in approximated Lagrangian x0-coordinate after m iterations 
error in approximated Lagrangian z0-coordinate after m iterations 
highest value of ex0,m and ez0,m 

general scalar / function 
wave frequency (s-1

) 

Nyquist frequency (s-1
) 

sampling frequency (s-1
) 

maximum effective surface steepness in a realization of irregular Gerstner waves 
maximum effective surface steepness in a realization of irregular Miehe waves 
gravity field 
gravity constant (g= 9.81 m/s2

) 

water depth 
Eulerian unit vectors in x-, y- and z--direction, respectively 
wave number 
wave number associated with spectral pealc frequency 
wave number associated with spectral mean frequency 
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kw 
m 
m; 
p 
px(x) 
q 
s 

to 

U Stokes drift 

u, v, w 

WJ 
x,y,z 
Xo, Yo, zo 
X; 

X;o 

Zwheeler 

wave number associated with spectral mean zero crossing frequency 
mass 
i'h spectral moment of frequency spectrum 
pressure 
Rayleigh distribution function of the parameter x 
scalar defined by V · V = q2 
curve 
time 
initial instant in time 
Stokes drift, a drift velocity of fluid "particles" 

velocity components in a right-handed Eulerian Cartesian coordinate system 
suggested multiplication factor in Wheeler's method 
coordinates in a right-handed Eulerian Cartesian coordinate system 
coordinates in a right-handed Lagrangian coordinate system 
x,y,z 
Xo, Yo, zo 
stretched vertical coordinate in Wheeler's method 

Greek symbols 

Azoerstner 

/J,.zMiche 

r 
X 
0 

<p 
(f) acc. 

(f)complex 

{f)L 

(f) L,complex 

r 
17 
1( 

A, 

µ 
e 
Bo 
p 
<Y11 

<Y,i 

V 

0) 

ffiDJ 

ffiD2 

ffiM 

ffi(xO,zO) 

difference 
temporal spacing between timeseries sample points 
frequency spacing between components in the wave spectrum 
vertical shift in Gerstner waves 
vertical shift in Miehe waves 
circulation 
horizontal displacement of Lagrangian point in Gerstner waves 
increment, difference 
constant relative phase of wave components 
velocity potential 
acceleration potential 
complex potential function 
Lagrangian velocity potential 
complex Lagrangian potential function 
peakedness parameter in JONSW AP spectrum 
surface elevation 
angle between two curves defined by xo = canst. and z0 = canst. 
wavelength 
coefficient of viscosity / dynamic viscosity ( water: µ = W-3 kg/ms) 
phase 
limiting phase; determining when an Eulerian point is submerged in water 
density (fresh water: P= 1000 kg/m3

, sea water: p = 1025 kg/m3
) 

standard deviation of the surface elevation 
variance of the surface elevation 
kinematic viscosity ( water: v = µ/ p = W-6 m2 /s) 
(rigid body) rotation vector 
rotation of the diagonal DI of a deformable fluid element 
rotation of the diagonal D2 of a deformable fluid element 
mean of roDI and ffiD2 

mean rotation of the two basic lines in a material element 

ix 
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ffi; 

OJ 

OJNyquist 

OJp 

OJ10 

OJ20 

t 
1/f 

1/fL 

l/f1 
1/fz 
s 
~ 
s,;, Sy, sz 

Glossary 

(rigid body) rotation about i-axis 
wave circular frequency (rad/s) 
Nyquist frequency (rad/s) 
spectral peak frequency 
spectral mean frequency 
spectral mean zero crossing frequency 

Nomenclature & Glossary 

vertical displacement of Lagrangian point in Gerstner waves 
stream function 
Lagrangian stream function 
scalar whose gradient is the gravity field 
scalar representing the "total head", cf. Eq. (3.31) 
vorticity 
vorticity vector 
vorticity components in a right-handed Eulerian Cartesian coordinate system 

It is found appropriate to include a short glossary of some essential terms. Many of them 
should be well known, and most of them are explained in the text as well. It still seems useful 
to emphasize their meaning here and foreshadow some of the subtleties involved. Several of 
the terms are defined and treated in a more formal manner in Sections 3.1 and 3.4, and the 
reader is also referred to Section 7.1.4 for a historical note on the terms 'rotation' and 
'vorticity'. 

circulation The line integral of the velocity along a closed curve at a given instant. Note that 
this is a strictly mathematical definition, circulation does not necessarily express 
a flow of mass along the boundary of a deforming fluid element (shown in 
Section 4.1.3). Circulation is related to vorticity through Stokes' theorem. 

continuum model/hypothesis (The following is based on Lin and Segel (1988, their section 
13.1) and Batchelor (1967, his section 1.2)). A continuum may be explained as a 
medium that is continuously distributed in space. The properties of this medium 
are smoothly varying functions of position, so that each point in space occupied 
by the medium is assigned a value of any of these properties. A continuum model 
disregards molecular variations, and therefore requires that we consider small 
'lumps' of fluid that are large enough for molecular variations to be insignificant. 
For water, the smallest typical dimension for this to be physically correct may be 
estimated to be of the order 10-9 m. The value of a property in a point may thus 
be considered an average over a small surrounding 'lump' of fluid. 

deep water Normally defined by h/}i, > 0.5, where h is the water depth and Ji, is the 
wavelength. 

emergence effect The effect of a fixed spatial position in the splash zone sometimes being 
submerged in water and sometimes left in air (emerged) due to the waves. 

Eulerian current The mean velocity in a point fixed in space, which does not necessarily 
describe a mass transport. 

Eulerian spectrum The amplitude spectrum of the surface elevation measured at a fixed x­
position. 
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first transition The first distinct transition, associated with the passing of the initial wave 
front, in the horizontal velocity in the experiments in Skjelbreia et al. (1991), cf. 
Sections 6.2, 6.3, 7.3 and 7.4. 

intermediate water Normally defined by the interval 0.05 - 0.1 < h/}., < 0.5, where }., is the 
wavelength in deep water, i.e.}.,"" 1.56 T 2 [m]. 

irrotational/irrotationality These terms are used exclusively for rotation defined as half the 
vorticity, cf. rotational/rotationality also, expressing motion with zero 
vorticity, i.e. I; = 0. 

Jacobian The Jacobi-determinant, also denoted by J, defined in Eqs. (2.19) and (2.24) for 
the 2D and 3D case, respectively. 

Lagrangian current The mean velocity of a Lagrangian point, i.e. a real transport of mass. 

Lagrangian (orbital amplitude) spectrum The amplitude spectrum of the vertical 
displacement in the orbital motion of a given Lagrangian point. 

physical rotation The actual rotation (expressed e.g. by an angular velocity) of a fluid 
element, i.e. how it turns/spins about itself. There are several alternative ways of 
defining and describing such rotation, and its magnitude will depend on the 
actual instantaneous shape of the material element under consideration. Physical 
rotation therefore describes e.g. angular velocity qualitatively rather than 
quantitatively. Note that physical rotation is not the rotation associated with 
vorticity, circulation or potential flow. 

potential flow A flow with irrotational motion, i.e. zero vorticity, where the velocity vector 
may be expressed as the gradient of a scalar function; the velocity potential. 

potential force A force that can be expressed as the gradient of a scalar function (also called 
conservative force). 

potential theory The theory of solutions of Laplace's equation. Note that potential flow does 
not necessarily imply that potential theory is applicable. Potential flow only 
means that a velocity potential exists, i.e. that the curl of the velocity is zero, 
while the use of potential theory also requires the divergence of the velocity to 
be zero, i.e that the flow is incompressible. Still, whenever a velocity potential is 
used it is also normally assumed that the flow is incompressible, making this 
distinction unnecessary in most cases. 

However, the curl of the acceleration in inviscid flow is zero, enabling us to 
speak of an acceleration potential, while the divergence of the acceleration need 
not be zero. Hence, potential theory cannot generally be applied to determine 
this acceleration potential. 

rigid body rotation The angular velocity of a rigid body. 

rotation No specific meaning is associated with this term, its meaning being a matter of 
definition. In fluid mechanics, rotation is normally defined as half the curl of the 
velocity, and is then a strictly mathematical quantity equivalent to vorticity. 
However, by rotation we normally mean how something physically turns about 
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itself, i.e. what is called physical rotation above. It is found that vorticity is not 
suited to express how a deforming fluid element turns about itself, and rotation 
defined as half the vorticity may therefore be physically misleading. 

rotational/rotationality These terms are used exclusively for rotation defined as half the 
vorticity, cf. irrotational/irrotationality also. 

second transition The second distinct transition, taking place after roughly 1-2 minutes, in 
the horizontal velocity in the experiments in Skjelbreia et al. (1991), cf. Sections 
6.2, 6.3, 7.3 and 7.4. 

shallow water Normally defined by h/}., < 0.05 - 0.1, where }., is the wavelength in deep 
water, i.e.}.,"' 1.56 T 2 [m]. 

splash zone The region near the still water level, where, due to the waves, a fixed spatial 
position is sometimes submerged in water and sometimes left in air. 

vertical shift The shift in mean vertical position of a Lagrangian point during motion as 
compared to a state of rest. 

vorticity Vorticity is defined as the curl of the velocity. Note that this is a strictly 
mathematical definition, vorticity does not unambiguously describe how a 
deforming fluid element turns about itself. Vorticity is related to circulation 
through Stokes' theorem. 
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CHAPTER 1 
INTRODUCTION 

1.1 Background and Objectives 

Proper modelling of waves and wave kinematics, i.e. the displacements, velocities and 
accelerations of water particles in waves, is essential in marine engineering and in several 
other aspects of marine activity. It is also of general interest in any subject related to seas and 
the motion of fluids. With respect to offshore engineering applications, the importance of 
accurate information about wave kinematics is especially apparent with respect to calculations 
of wave forces on slender structures. This is often done according to Morison's formula 
(Morison et al., 1950), where the total force consists of one term proportional to the fluid 
acceleration (inertia term) and one term proportional to the square of the fluid velocity (drag 
term). Reliable information about the kinematics, and thus the pressure in the fluid and the 
magnitude and geometry of the surface elevation, is also of importance for estimation of wave 
loads on other types of marine structures, and for prediction and description of specific wave 
conditions that may be of significance for e.g. conduction of marine operations, safe operation 
of ships or for coastal matters. 

However, due to the nonlinear and irregular nature of the problem, no complete or quite 
satisfactory models of ocean waves or their kinematics exist. In particular, the conditions in 
the splash zone in irregular waves are not satisfactorily modelled by the traditional Eulerian 
approaches. The reason for this is that the surface profile is an unknown in an Eulerian 
analysis, and the boundary conditions at the free surface can therefore only be satisfied in an 
approximate manner. By the splash zone is meant the region near the still water level, where, 
due to the waves, a fixed spatial position is sometimes submerged in water and sometimes left 
in air. This deficiency in the splash zone is unfortunate, since this is where the water motion 
due to surface waves is most pronounced. So-called engineering methods have been 
developed in order to improve the results in the splash zone, e.g. Wheeler's method (Wheeler, 
1970), but these methods do not satisfy the basic hydrodynamic equations properly. Their 
accuracy and reliability is therefore limited. See Gudmestad (1993) for a review of 
engineering practice and recommendations for further developments. However, the particular 
problems encountered in the splash zone can be avoided by considering the problem from a 
Lagrangian point of view, e.g. as in Gerstner's and Miche's wave theories, since the free 
surface can there be specified at once. 

The immediate background for this thesis work is the paper by Moe and Arntsen (1996), 
where calculations of kinematics based on Gerstner's wave theory were found to compare 
remarkably well with wave flume measurements, for irregular as well as regular wave cases, 
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also in the splash zone. Since Gerstner's theory is rotational, and therefore traditionally 
considered invalid as a basic solution for waves, these findings require some explanation. It 
would then normally be assumed that the agreement between measurements and Gerstner's 
theory is a result of Stokes drift and associated return current in a closed flume. However, the 
measurements and further observations also indicate that the waves in the experiments 
actually have closed orbits, i.e. as in Gerstner waves, which is fundamentally different from a 
Stokes drift and return current. 

The main objective of this thesis is analytical modelling of regular and irregular surface 
gravity waves in intermediate to deep water, with particular emphasis on the splash zone 
kinematics, based on the Lagrangian form of the equations of motion. More specifically, 
Gerstner's wave theory is applied for regular waves in deep water, and Miche's solution is 
applied for regular waves in intermediate water. Irregular waves are modelled as a sum of 
linear regular Gerstner/Miehe components. Only the two-dimensional case is treated, and 
shallow water or varying depth is not considered. 

After closer investigations of experimental measurements, the theoretical consequences of 
Stokes drift and Gerstner's theory itself, it is found reason to question the arguments rendering 
Gerstner's theory invalid. Therefore, this thesis also includes a rather thorough review of some 
basic equations and principles, in order to investigate the assumption of irrotational flow. 

Also, linear Gerstner waves are better suited to show the physics of wave motion than linear 
Stokes waves (Airy waves) are. Irregular waves modelled as a sum of linear Gerstner (or 
Miehe) components are seen to automatically include effects that are considered nonlinear 
from an Eulerian point of view, and allow more extreme wave forms than the common 
Eulerian approaches. This was shown by Pierson (1961, 1962), cf. Neumann and Pierson 
(1966) and Kinsman (1965) also, who along with Tick (1963) recommended that the 
Lagrangian approach be studied more closely with respect to irregular waves. The irregular 
approach presented here is still only a solution of the linearized Lagrangian problem; it is not 
a model for nonlinear irregular waves in a mathematical sense. However, it seems that the 
Lagrangian approach may also open for theoretically consistent superposition of nonlinear 
wave components. 

A state-of-the-art survey for ocean wave kinematics was given in T0rum and Gudmestad 
(1990), and more recently in Zhang (1998). Comparisons of measured and predicted 
kinematics that are of particular relevance for the present study are Johnsen (1987), 
Gudmestad et al. (1988), Skjelbreia (1987, 1988, 1991), T0rum and Skjelbreia (1990), 
Skjelbreia et al. (1991), Cieslikiewicz and Gudmestad (1994b), Moe and Arntsen (1996) and 
Moe et al. (1998). 

Works on wave modelling, wave interactions and wave kinematics are often based on 
potential, i.e. irrotational, flow. It is also customary to represent the surface elevation as a sum 
of linear wave components of different frequencies. Zhang et al. (1996), cf. Spell et al. (1996) 
also, have recently developed the Hybrid Wave Model for irregular waves, not only adding 
the components but also accounting for interactions among them. In this model, interactions 
between two components of close frequencies are modelled by a conventional perturbation 
approach, while interactions between two components well separated in frequency are 
modelled by a phase modulation approach. The hybrid model has later been extended to 
account for directionality (Zhang et al., 1998). Stansberg (1994), cf. Stansberg and 
Gudmestad (1996) also, presents a 211

d order random wave model. In this model, the first and 
second order velocity potentials of each component are both included up to the still water 
level. Above the still water level and up to the free surface, linear extrapolation is employed 
for the first order potential and vertical extrapolation is employed for the second order 
potential. A stochastic Eulerian approach is taken by Cieslikiewicz and Gudmestad (1993, 
1994a, 1994b, 1995, 1996), taking into account the influence of the emergence effect (see 



1.2. About the Work, Results and Outline of the Thesis 3 

Glossary) on stochastic parameters in the splash zone as well as studying weak nonlinear 
effects. Baldock et al. (1996) and Swan et al. (1998) give particular attention to accurate 
laboratory measurements of kinematics beneath steep focused wave groups and compare to 
numerical calculations. Instead of modelling an irregular sea surface as a sum of different 
wave components, it may be considered a modulated wave group. This approach is taken by 
Trulsen and Dysthe (1996), cf. Trulsen et al. (1998) also, modelling irregular waves and their 
kinematics based on a modified nonlinear Schrodinger equation, and Peregrine et al. (1996), 
studying kinematics in steep wave events that result from the so-called Benjamin-Feir 
instability. Finally it may also be noted that Naciri and Mei (1992) have studied the evolution 
of a short wave on a very long wave of finite amplitude, representing the latter by the 
rotational Gerstner wave. They conclude that Gerstner's exact solution may serve as a 
convenient stepping stone towards a better understanding of such aspects. 

An essential part of wave modelling is a proper description of the flow, in the sense of real net 
mass transport, beneath the surface. Theoretical and experimental studies of mass transport in 
waves have been presented by Longuet-Higgins (1953, 1960), -Ontilata and Mei (1970), Mei 
et al. (1972) and Liu and Davis (1977). These studies are treated in Kinsman (1965, his 
section 10.4), Sarpkaya and Isaacson (1982, their section 4.8) and Mei (1989, his section 9.6) 
also. However, neither of the solutions presented in these works appears to be applicable for 
wave amplitudes that are not very small (Sarpkaya and Isaacson, 1982). Also, the physical 
processes involved are unclear and the time required establishing the proposed flows appear 
to be unreasonably long. More recent studies of mass transport in waves include Hudspeth 
and Sulisz (1991), Cieslikiewicz and Gudmestad (1994b) and Groeneweg and Klopman 
(1998). These works assume that a return current exists in wave flume experiments. 
Monismith and co-workers (2000) have studied results from four sets of laboratory 
experiments. They find that waves generated mechanically in the laboratory do not change the 
mean Lagrangian velocity until they are sufficiently steep to break, suggesting that these 
waves have closed orbits and may be better described as Gerstner waves than as Stokes 
waves. Woltering and Daemrich (1994), cf. Woltering (1996) also, have studied mass 
transport and orbital velocities in regular and two-component Stokes waves from a 
Lagrangian point of view. They arrive at similar conclusions as indicated above, i.e. that a 
low order Lagrangian model is equivalent to a higher order Eulerian model, and that 
(Eulerian) nonlinearities are automatically included. It is unclear if and how Stokes drift is 
included in their formulation. 

Anyhow, whereas a generally accepted model for mass transport in waves does not seem to 
exist, wave flume experiments clearly indicate a positive mean Eulerian horizontal velocity 
near the surface and a negative mean velocity further down in the fluid, also for irregular 
waves. As shown in Moe and Arntsen (1996), this mean velocity profile is well described by 
Gerstner's theory. If the depth is not too great compared to the wavelength, a forward creeping 
flow will also eventually develop at the bottom. An important question is then if the mean 
Eulerian velocity profile in experiments is a result of a Stokes-like drift and associated return 
current, or if fluid elements actually move in more or less closed orbits, and why the motion is 
the way it is. The actual generation of the waves and the time required establishing a 
relatively steady mean velocity profile is essential in this respect. 

1.2 About the Work, Results and Outline of the Thesis 

As stated in Section 1.1, the agreement in Moe and Arntsen (1996) between Gerstner's tl1eory 
and experimental measurements would normally be assumed to stem from so-called wave 
flume effects. The motion is then assumed to be irrotational, with a Stokes drift near the 
surface and, due to the end-walls of the tank, a return current further down in the fluid. 
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However, the assumption of irrotational motion relies heavily on some quite strict 
fundamental theoretical assumptions and approximations, in particular the concept of "point 
particles". When studying these and their consequences more closely, it seems that some 
misinterpretations and inconsistencies are involved. Examples of this is vorticity not 
describing the physical rotation of fluid elements, cf. Section 3.4, and Stokes drift actually 
violating continuity and causing a vorticity at second order within less than a wave period, cf. 
Section 4.3. This, in turn, questions the relevancy of imposing physical conditions on 
quantities such as the vorticity and circulation, and thus the very foundation for requiring 
irrotational flow. A large part of the work has therefore been focused on investigations of 
fundamental theoretical issues like continuity, vorticity and mass transport, primarily from a 
Lagrangian point of view. Hence, even if the wave problem described in Section 1.1 is limited 
to two-dimensional inviscid incompressible flow, the basic equations and relations presented 
in Chapters 2 and 3 pertain to more general fluid flow conditions. 

A lot of effort has also been put into "exact" transformation of the Lagrangian solution to the 
Eulerian frame of reference, also for broad-banded irregular waves, since the use of e.g. 
Taylor-expansions is not satisfactory for this purpose. Due to the form of the Lagrangian 
solutions, numerical iteration seem appropriate for the transformation, and such methods have 
therefore been developed as a part of this thesis work. The performance and speed of the 
methods are found satisfactory for the present needs, and it has not been prioritized to further 
optimize the methods with respect to e.g. convergence or computation time. All calculations 
are performed in MATLAB (version 5.3.l/Rl l.1), where also all plots are generated. 

With respect to calculations and comparisons with measurements, these mainly focus on the 
horizontal velocity. A few results for the vertical velocity are included, while no results are 
presented for accelerations or pressure. The results for regular waves have been given more 
attention than the results for irregular waves. Modelling of irregular waves should be based on 
a proper understanding of regular waves, and a proper interpretation of the mean horizontal 
velocity in regular wave experiments is then of the utmost importance. Irregular waves are 
also subject to more theoretical and practical uncertainties, making it hard to distinguish 
between deficiencies in the theoretical models and unfortunate effects due to the experimental 
conditions. The Lagrangian approach for irregular wave kinematics is therefore compared 
with Wheeler's method as well as with measurements, which should be quite informative with 
respect to the performance and usefulness of the Lagrangian approach. 

The measurements used for the comparisons are from the extensive experiments carried out 
by Skjelbreia et al. (1991) at the Norwegian Hydrotechnical Laboratory (NHL, now SINTEF 
Civil and Environmental Engineering, Department of Coastal and Ocean Engineering) in 
Trondheim. These include measurements of the surface elevation and LDV-measurements of 
water particle velocities, also in the splash zone, for irregular as well as regular wave cases. 
While most of the theoretical considerations in this work pertain to Gerstner's theory, and thus 
deep water, the experiments pertain mainly to waves in intermediate water. The 
measurements have therefore been compared with Miehe waves. However, the differences 
between applying Gerstner's and Miche's expressions are of a minor quantitative nature for 
the experimental cases under consideration. The results found when comparing measurements 
with Miche's theory are therefore representative also for Gerstner's theory. 

At an early stage of the work on this thesis, some of the runs in the above-mentioned 
experiments, and a few more, were reproduced in the same flume and under the same 
conditions as in the original experiments. No velocity measurements were conducted, but the 
development of the mean horizontal velocity was observed visually by employing a thread in 
the glass section of the flume. The thread was fixed at the bottom and above the wave flume, 
at two points on a straight vertical line above the centerline of the flume, but had sufficient 
slack to form according to the flow in the flume. Also, short threads were fixed in a transverse 
manner along the main thread, giving a more detailed picture of the flow. The behaviour of 
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the thread(s) in these runs was video-filmed. No further presentation of these simple 
experiments is given in this thesis, but they proved quite helpful in order to interpret and 
verify the results from the analysis of the LDV-measurements. 

It may also be in its place to emphasize the use of a few terms: 

• By the term order, e.g. of a solution or of the magnitude of a term, is meant the order in 
wave amplitude, meaning that e.g. k!"a" is of order n. 

• The reference level of the Eulerian frame of reference is traditionally placed at the so­
called still water level. This is also the general rule in this thesis. However, in order to 
take full advantage of the Lagrangian solutions, it is sometimes necessary to place the 
reference level a small distance (of second order) above the still water level. It might then 
seem appropriate to define designated Eulerian variables for each specific reference level. 
However, it is believed that this would reduce the readability of the thesis. Instead, it has 
been chosen to emphasize which reference level applies for specific expressions 
whenever relevant, although it is realized that this may also be a source of confusion. 

• In general, the same symbol is used to describe a quantity irrespective of it being 
Lagrangian or Eulerian, e.g. u for the horizontal velocity. The distinction between a 
Lagrangian and Eulerian description is apparent from the form of the expressions and 
which variables are dependent and independent. Still, the variables are not always 
included along with the symbol. It is then either explicitly stated whether the quantity in 
question is Lagrangian or Eulerian, or it is assumed to be apparent from the context. 

• Finally, it is recommended that the reader take a quick look at the Glossary on pages x -
xii before commencing with the rest of the thesis. In particular, the definitions and 
perceptions of the terms rotation and physical rotation are essential. 

The outline of the thesis is as follows: 

In Chapter 2, the basic equations of motion are presented on Eulerian as well as Lagrangian 
form, including the general Lagrangian form of the Laplacian. The relations governing vortex 
motion are presented in Chapter 3, along with considerations on the existence of a velocity 
potential and expressions describing the physical rotation of a specific fluid element. 

The Lagrangian wave theories of Gerstner and Miehe are presented in Chapter 4. By the use 
of Taylor-expansions they are also given on Eulerian form, correct to second order. In 
addition, Stokes waves and Stokes drift are considered from a Lagrangian point of view. 
Modelling of irregular waves in the Lagrangian frame of reference is treated in Chapter 5, 
including numerical (iterative) methods for transforming the Lagrangian solutions to the 
Eulerian frame of reference. 

In Chapter 6 are presented the results from calculations and comparisons with wave flume 
measurements. A short description of how to obtain the necessary Lagrangian wave 
component parameters from Fourier analysis of the measured surface elevation is also given. 

Chapter 7 contains a discussion of some of the theoretical issues treated in this thesis as well 
as a discussion of the results presented in Chapter 6. Conclusions and recommendations for 
further work are given in Chapter 8. 

Appendix A contains the basic form of the inverse partial derivatives needed when applying 
the chain rule between the Lagrangian and Eulerian frames of reference. 
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Appendix B contains plots showing the temporal development of the mean Eulerian 
horizontal velocity in the regular wave experiments, cf. Section 6.2.1 also. 

Appendix C contains photocopies (from the proceedings in which they were published) of the 
papers by Moe and Arntsen (1996) and Moe et al. (1998). This means that the pagination of 
these is also as in the respective proceedings. 



THE BASIC EQUATIONS OF 
MOTION 

This chapter presents the equations of motion on Lagrangian as well as Eulerian form. The 
fluid is assumed to be a continuum and the motion is assumed to be continuous. The 
governing equations are derived by ensuring conservation of mass (continuity) and linear- and 
angular momentum (Newton's second law) of a material fluid element. The fundamental 
unknowns are the velocity and pressure. Further considerations with respect to vortex motion 
are presented in Chapter 3. 

In the case of ordinary surface gravity waves, water may be considered an incompressible 
Newtonian fluid. However, starting from a more general point of view will clarify some 
relations between the different forms of the governing equations. 

2. 1 Eulerian and Lagrangian Descriptions 

The Eulerian frame of reference is a right-handed Cartesian coordinate system (x, y, z), with 
the positive z-axis pointing vertically upwards. The Lagrangian frame of reference (x0, y0, z0) 

may also be considered right-handed, with the positive z0-axis pointing towards the free 
surface. Directions and absolute lengths are defined in an Eulerian frame of reference, i.e. 
relative to the Eulerian unit vectors. 

Assuming that the Lagrangian representation of a specific portion of matter remains the same 
for a period of time, the Eulerian position (x, y, z) of a specific Lagrangian point (x0, y0, z0) 

followed in this period of time is 

x = x (xo, Yo, zo, t) 

y = y (xo, Yo, zo, t) 

z "' z (xo, Yo, zo, t) 

and the Lagrangian point "occupying" a specific Eulerian position (x, y, z) at time t is 

Xo = Xo(X, y, z, t) 

Yo= Yo(X, y, z, t) 

zo = zo(x, y, z, t) 

7 

(2.1) 

(2.2) 
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Values of any scalar quantity f, such as velocity (component-wise), pressure, gravity, density 
etc., may be given by functions of Eulerian as well as Lagrangian variables. 

When a quantity pertains to a specific spatial position, it is Eulerian. The value off is then 
given by functions where the independent variables are the Eulerian coordinates and time, as 
in Eq. (2.2). An Eulerian description off may therefore be given as 

f = fE (x, y, Z, t) = /L [xo(X, y, z, t), Yo(X, y, z, t), Zo(X, y, z, t), t] (2.3) 

When a quantity pertains to a specific material element, it is Lagrangian. The value off is 
then given by functions where the independent variables are the Lagrangian coordinates and 
time, as in Eq. (2.1). A Lagrangian description off may therefore be given as 

f = /L (Xo, Yo, Zo, t) = fE [x(xo, Yo, zo, t), y(Xo, Yo, zo, t), z(xo, Yo, zo, t), t] (2.4) 

Note thatfE is a functional expression of the variables (x, y, z, t), i.e. on Eulerian form, and/L 
is a functional expression of the variables (x0, y0, z0, t), i.e. on Lagrangian form. The variables 
in either of these functions are dependent or independent according to an additional relation 
from Eq. (2.1) or Eq. (2.2). An Eulerian quantity may therefore be given on Lagrangian as 
well as Eulerian form, and a Lagrangian quantity may be given on Eulerian as well as 
Lagrangian form. Eqs. (2.3) and (2.4) thus equate the values of the functions !E and A in a 
given Eulerian or Lagrangian point at a given instant in time, not the functional expressions. 
No explicit distinction is made between/£ andfE in this thesis, except for in a few cases where 
it is of some importance, since that would generally reduce the readability. 

At one instant in time, a specific Lagrangian point corresponds to some Eulerian point. 
Applying the chain rule, partial derivatives with respect to spatial and material variables may 
then be found as 

df df dx0 dj dy0 df dz0 -=--+--+--
dX dXo dX dYo dX dZo dX 

(2.5) 

etc. 
etc. 

df df dX df dy df dZ 
-=--+--+--
dXo dX dXo dy dXo dZ dXo 

(2.6) 

etc. 
etc. 

assuming that the partial derivatives exist at a point defined by either of Eqs. (2.1) or (2.2). 

Note that when applying the chain rule on an expression of the form in Eqs. (2.3) and (2.4), an 
additional term in Eq. (2.5) and (2.6) including time as 

will not appear, because time is a variable that is independent of the spatial variables. 

Gravity may be given as a vector expressed by the gradient of a scalar field If/I (x, y, z) == gz, 
viz. 
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g=-v'\J/1=-gk (2.7) 

where g for most practical cases is considered a constant, and 

\7 o. o. ok 
V =-1+-J+-

OX oy oz (2.8) 

A complete physical understanding of material motion and its effects requires both 
Lagrangian and Eulerian information. The relations in Eqs. (2.1) and (2.2) must then both be 
known. These relations may not be possible to find on explicit analytic form, but 
corresponding coordinates at one instant of time may always be found numerically or by other 
approximate methods. 

2.2 The Eulerian Equations 

Motion, i.e. displacements, velocities and accelerations, is most conveniently described by 
vectors in an Eulerian frame of reference. The equations are therefore normally derived for an 
infinitesimal fixed control volume [dx, dy, dz], e.g. by the use of Reynolds' transport theorem, 
cf. e.g. White (1988). This means that the equations are derived in an Eulerian frame of 
reference. However, the conservation laws apply to specific portions of matter, and are 
therefore Lagrangian by nature. A slightly different approach is therefore followed here, in 
order to clarify the role of the so-called material derivative. Eqs. (2.12) - (2.14) below 
therefore form a basis also for the Lagrangian equations for conservation of momentum. 

The Eulerian equation of continuity is 

(2.9) 

In incompressible flow, Eq. (2.9) reduces to 

(2.10) 

Euler's equations for conservation of linear momentum of a frictionless (i.e. inviscid) 
incompressible fluid are 

du _ _!_ op 
a =-=G 

X df X POX 

a = dv = G _ _!_op 
y dt y p oy (2.11) 

a = dw = G _ _!_op 
z dt z p oz 

where Gx, Gy, and Gz are forces per unit mass (i.e. 'body' forces, e.g. gravity) in the respective 
directions. In the case of gravity being the only 'body' force, the components are Gx = 0, Gy = 
0 and Gz =-g. 

Including friction and compressibility as well yields Cauchy's differential equation. This 
equation may be written on vector form as, cf. e.g. Aris (1989) or Lin and Segel (1988), 
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d 
pa=p-V=pG+V · T 

dt 
(2.12) 

The forces are divided into to types, G being a mass-dependent 'body' force as in Eq. (2.11), 
and T a stress tensor representing 'surface' forces acting on the boundaries between the 
material elements. The stress tensor T includes quantities such as thermodynamic pressure, 
viscosity and compressibility. Eq. (2.12) holds for any continuum no matter how the stress 
tensor is related to the rate of strain (Aris, 1989). 

Conservation of angular momentum yields the result that the stress tensor and shear stresses 
are symmetric, except for in so-called 'polar fluids' (Lin and Segel, 1988, and Aris, 1989). 

For a compressible Newtonian fluid, Eq. (2.12) yields Navier-Stokes equation. A Newtonian 
fluid is one that exhibits a linear relation between the shear stress and the rate of strain. 
Assuming further that the fluid is incompressible, eliminating the problem of bulk viscosity, 
Navier-Stokes equation takes the form (cf. White, 1991) 

where lf/1 is given by Eq. (2.7), and on component form 

du= _ _!_ op+ v(a2
u + a2

u + a2
u J 

dt p ox ox2 oy2 oz2 

dv = _ _!_op+ v(a2
v + a2

v + a2
v J 

dt p oy ox2 oy 2 oz 2 

dw =-(_!_op+ g)+v(d
2

W + d
2

W + o
2

w) 
dt p OZ dX 2 dy 2 oz2 

(2.13) 

(2.14) 

No subscripts are used in the preceding equations. However, since they are Lagrangian by 
nature, all functions may be written on the form!E [x(xo, y0 , zo, t), y(xo, Yo, zo, t), z(xo, Yo, zo, t), 
t], cf. Eqs. (2.1) and (2.4). However, this section aims at presenting equations for Eulerian 
quantities on the form/£ (x, y, z, t), cf. Eqs. (2.2) and (2.3). Therefore, the Eulerian form of the 
time derivative of the material velocity is required. 

The time derivative of the material velocity may be found by differentiating the function !L 
(x0, y0, z0 , t) with time, keeping the Lagrangian variables constant. According to Eq. (2.4), this 
is equivalent to differentiating the function /E [x(xo, Yo, zo, t), y(xo, Yo, zo, t), z(xo, Yo, zo, t), t] 
with time, viz. 

dfL DJ E djE dfE dx df E dy djE dz 
-=--=-+--+--+--
dt Dt dt OX dt dy dt oz dt 

= aJE +uaJE +vaJE +waJE = i)JE +(V. VIfE 
at ax ay az ac 

(2.15) 

Invoking Eq. (2.2), i.e. keeping the Eulerian variables fixed, makes the derivative Eulerian, 
i.e. applying to JE(x, y, z, t). Eq. (2.15) then gives the instantaneous time rate of change of a 
quantity of the Lagrangian point that happens to be in this Eulerian position at this instant in 
time, hence the term 'material derivative', cf. e.g. Lin and Segel (1988), Kinsman (1965) or 
Lighthill (1989). This does, however, require that fluid is present at this instant in time in the 
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spatial point under consideration. This is clearly not always the case, e.g. in the splash zone of 
surface waves, but approximations still yield valuable solutions. 

Eq. (2.15) is valid for scalar quantities only. It can be applied on any vector if the components 
are treated separately as scalars, cf. Kinsman (1965) and Lighthill (1989). In e.g. the velocity 
vector V = u i + v j + w k, we have that u, v and w are scalars. 

The Eulerian equations of motion of an incompressible Newtonian fluid are therefore as given 
by Eqs. (2.10) and (2.14), where all functional expressions are of the forrn/E(x, y, z, t) and the 
left-hand side of Eq. (2.14) must be written according to Eq. (2.15). 

2.3 The Lagrangian Equations 

In some classic textbooks (e.g. Lamb, 1932), the Lagrangian coordinates are denoted by (a, b, 
c).However, since a is a common symbol for amplitude and acceleration, and c is a common 
symbol for celerity, (x0, y0, z0) have been chosen to denote the Lagrangian coordinates in this 
thesis. They are also often referred to as 'tags', since they are used to identify specific material 
elements. Lamb (1932, Art. 16) states that the Lagrangian coordinates need not be restricted 
to mean the initial (still water) Eulerian coordinates of a particle, they may be any quantities 
which serve to identify a particle, and may vary continuously from one particle to another. 
Note therefore that the subscript 'O' do not indicate an initial Eulerian position of the 
Lagrangian point. 

2.3.1 Conservation of mass 
The continuity equation on Lagrangian form (cf. Lamb, 1932, Arts. 14 and 16) may be 
derived from the change of variables theorem given in Eq. (2.22). For a plane area, it can be 
found by considering an infinitesimal area oA as in Figure 2.1. 

z 

Zo 

-~&,I.. 
y 

'-------------------------3,>x 
Figure 2.1 Motion and deformation of a 2D element. The approximate form is indicated by 
the grey shade, while the exact form is indicated by the dashed lines. 
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After a time increment ot, the area oA assumes, approximately, the shape of a parallelepiped 
(grey shade in Figure 2.1 ), whose area can be found by the cross product 

(2.16) 

where J is known as the Jacobi-determinant or the Jacobian. Conservation of a specific 
portion of matter requires, cf. Eqs. (2.3), (2.4) and (2.22), 

J pdA = const. 

u 
1rIJ pe(x, z,t )dxdz = :t JI PE [x(x0 ,z0 ,t 1z(x0 ,z0 ,t )}Tdx0dz0 

= :tJJ PL(x0 ,z0 ,t)Jdx0dz0 

ff[ dJ dpL d(dx0dz0 )] = PL-dx0dz0 +J--dx0dz0 +JpL~~~~ 
dt dt dt 

= JJ(PL ~ +J d:rL }x0dz0 

=0 

u 
]_ dJ =--l_dPL 
J dt PL dt 

since dxodzo is assumed to be constant. For incompressible flow, Eq. (2.17) yields 

i.e. 

dJ =!!:_[ a(x,z) J=o 
dt dt a(xo,zo) 

Expanding Eq. (2.18) one finds 

(2.17) 

(2.18) 

(2.19) 
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dJ d [ d(x, z) ] d [ dX dZ dX dZ ] 
df = dt d(Xo, Zo) = dt dXo dZo - dZo dXo 

du dZ dX dW du dZ dX dW =--+--------
dXo dz0 dX0 dz0 dz0 dX0 dZ0 dX0 

d(u,z) d(x,w) = +__,.~-
d(Xo,zo) d(Xo,zo) 

By means of Eq. (2.28), in the 2D case, the above becomes 

l dJ --= V · V [x(xo, zo, t), y(xo, zo, t), z(xo, zo, t), t] 
J dt 

Combining Eqs. (2.17) and (2.20) yields 

13 

(2.20) 

1 dpAx(x0 ,z0 ,t)] ..., V ) 
[ ( )1 + v · E [x(xo, zo, t), y(xo, zo, t , z(xo, zo, t), t] = 0 (2.21) 

PE x x0 ,z0 ,t 1 dt 

Eqs. (2.17) - (2.21) are Lagrangian. Eq. (2.21) is equivalent to the Eulerian equation of 
continuity, i.e. Eqs. (2.9) and (2.10), if Eqs. (2.2), (2.3) and (2.15) are invoked, cf. Kinsman 
(1965, his section 2.2). The densities p E and p L may be set equal, e.g. constant, but they may 
also be kept different in order to express non-uniform density. These derivations may be 
shown to be correct also for the 3D case, cf. Lin and Segel (1988) and Kinsman (1965). 

The true area after deformation of an incompressible area DA of finite size is the one bounded 
by the dashed lines in Figure 2.1. This area may be found exactly by the change of variables 
theorem Eq. (2.22), cf. e.g. Edwards and Penney (1990), 

yielding 

fJ FE(x,z) dxdz = fJ FAx(x0 ,z0 ),z(x0 ,z0 )] IJ(x0 ,z0 ~ dx0dz0 

= fJFL(x0 ,z0 ) IJ(x0 ,z0 ~ dx0dz0 

(2.22) 

(2.23) 

The equations in this section may be extended to 3D in a straightforward manner, considering 
volumes instead of areas. The 3D Jacobi-determinant is 

J = d(x,y,z) = dX dy dZ +[ dX dy dZ + dX dy dZ J 
d(x0 ,y0 ,z0 ) dX0 dy0 dz0 dz0 dX0 dYo dy0 dZ0 dX0 

[ 
dX dy dZ dX dy dZ dX dY dZ J 
dX0 dz0 dy0 + dz0 dy0 dX0 + dy0 dX0 dz0 

(2.24) 

It is again emphasized that in the above equations, subscripts 'O' denote Lagrangian 
coordinates, and not the initial Eulerian coordinates at some initial time instant. In the special 
case of (x0, y0, z0) being the initial (still water) Eulerian coordinates, the Jacobian takes on the 
(constant) value 1. The difference between a Lagrangian coordinate and an initial coordinate 
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is further clarified in Section 4.1.1, where it is applied to Gerstner's wave theory. Note that the 
absolute value of the Jacobian must be greater than zero, or else it is unphysical. 

2.3.2 Conservation of linear momentum 
The Lagrangian form of the equations for conservation of linear momentum may be derived 
from Eq. (2.14). Only the incompressible case will be considered here. For inviscid flow, 
these equations can be found in Lamb (1932). Pierson (1962) and Monin and Yaglom (1971) 
present them for viscous flow also, but only for the case where the Jacobian equals 1. 

The Lagrangian form of Eq. (2.14) may be found following Lamb (1932), Pierson (1962) and 
Moe et al. (1998). First, recall that the chain rule may be applied as follows, cf. Eq. (2.6), 

op op ox op oy op dz 
-=--+--+--
OXo ox ox0 oy ox0 oz ox0 

op op ox op oy ap oz 
-=--+--+--
cfyo ox oy0 oy oy0 oz oy0 

(2.25) 

op op ox op oy ap oz 
-=--+--+--
OZo ox OZo oy OZo oz OZo 

In order to express the pressure term ofEq. (2.14) by Lagrangian variables, the components of 
Eq. (2.14) are multiplied by 

respectively, i.e. 

ox oy oz 
ox0 ' ox0 ' ox0 

and then added, yielding 

--vV u + --vV v -+ -+g-vV w -
(

du 2 lx (dv 2 Joy (dw 2 J dz 
dt ox0 dt ox0 dt ox0 

=-- --+--+-- ----1 (op ox op ay op oz ) 1 op 
p ox dXo oy OXo oz dxo p OXo 

where the last equality is due to Eq. (2.25). Similarly, multiplying Eq. (2.14) by 

ox oy dz 
oyo 'oyo ';)yo 

yields 
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(
du 2 ) dx (dv 2 & (dw 2 ~ 1 dp 
dt-vV u dyo + dt-vV v )dYo + dt+ g-vV w )dYo =- p dyo 

and multiplying Eq. (2.14) by 

yields 

dx dy dz 
dz0 ' dz0 ' dz0 

--vV u + --vV v + -+g-vV w =---
(

du 2 tx (dv 2 lY (dw 2 tz 1 dp 
dt dz0 dt dz0 dt dz0 p dz0 

In the Lagrangian frame of reference, the time derivative following the motion is simply 

so that 

d d 
dt dt 

U = dX and du = d
2 
X 

dt dt dt2 

etc. 
etc. 

Hence, the Lagrangian form of Eq. (2.14) becomes 

(a2x -vV2u ~+(d2y -vV2v &+(a2z + g-vV2w ~=-_!_ dp 
dt2 jax0 dt2 jax0 dt2 Jax0 p dx0 

--vV u + ---vV v -+ -+g-vV w =---(d
2
x 2 *x (d

2
y 2 J dy (d

2
z 2 *z 1 dp 

dt2 dy0 dt2 dy0 dt2 dy0 p dy0 

--vV u -+ ---vV v -+ -+g-vV w -=---(d
2
x 2 Jax (d

2
y 2 Jdy (d

2
z 2 Jdz 1 dp 

dt2 dz0 dt2 dz0 dt2 dz0 p dz0 
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(2.26) 

(2.27) 

In Eq. (2.27), the Laplace operator is still on Eulerian form. A general procedure for 
transformation to Lagrangian variables is given in the following section, yielding the general 
Lagrangian form of the Laplacian as well as an additional Lagrangian form of the equations 
for conservation of linear momentum. 

2.3.3 Transformation of partial derivatives (obtaining the general Lagrangian 
form of the laplacian) 

In general, for a scalar f = /L (xo, Yo, zo, t) = !E [x(xo, Yo, zo, t), y(xo, Yo, zo, t), z(xo, Yo, zo, t), t], the 
set of equations 

df df dx "Jf dy "JJ dz -=--+--·-+-­
dXo dx dx0 dy dx0 dz dx0 

df df dx df dy df dz ----+---+-­
dyo dx dy0 dy dy0 dz dy0 
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df df dx df dy df dz 
-=--+--+--
dzo dx dz0 dy dz0 dz dz0 

may be solved for the partial derivatives 

e.g. by Cramer's rule, yielding 

df df df 
dx 'dy 'dz 

df 1 a(! ,y,z) 
dx = J 'd(x0 ,y0 ,z0 ) 

df 1 a(x,f ,z) 
dy = l 'd(xo,Yo,zo) 

df _ 1 a(x,y,J) 
dz - J d(x0 ,y0 ,z0 ) 

(2.28) 

Applying Eq. (2.28) on the pressure, an additional Lagrangian form of Eq. (2.14) may be 
found as 

d2x 
ar2=-
a2y 
dt 2 = 

d2z 
-=-g 
dt2 

cf. Gerber (1949), Corrsin (1962) and Pierson (1962). 

(2.29) 

Note that even if Eqs. (2.27) and (2.29) are equivalent, their components are not individually 
corresponding or interchangeable. 

The analytic form of the inverse partial derivatives 

dx0 dx0 dx0 dy0 dy0 dy0 dz0 dz0 dz0 

~'~'~'~'~'~'~·~·~ 

may be found directly from Eq. (2.28), inserting the Lagrangian coordinates in tum as the 
scalar quantity f. The results are listed in Eqs. (A.13) - (A.21) in Appendix A, where the 
expressions have been simplified according to 

dX;o = {1 , 
dxkO 0 

(2.30) 

Eq. (2.28) verifies the 2D inverse partial derivatives in Eqs. (A.9) - (A.12) in Appendix A, 
which are derived in a different, but equivalent, manner. 

The Lagrangian form of the Laplacian may now be found by differentiating J twice with 
respect to x, y and z, respectively, viz. 
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C\ a(J,y,z) 
a ( ),y,z 

1 o(l,y,z) o(/,y,z) 1 d Xo,Yo,Zo 
=--· . +-·__._----~ 

12 o(x0 ,y0 ,z0 ) o(x0 ,y0 ,z0 ) 1 2 o(x0 ,y0 ,z0 ) 

a(1,y,z) a(J,y,z) 
o(x0 ,y0 ,z0 )· o(xo,Yo,zo) 

and similarly 

The general Lagrangian form of the Laplacian operating on a scalar quantity may therefore be 
written 

(2.31) 

C\ 1 a(/,y,z) 
a ( ),y,z 

1 la Xo,Yo,Zo 
l o(xo,Yo,zo) 

c, 1 a(x,J,z) C\ . 1 a(x,y,J) 
a X, ( ) , Z o X, y, ( ) la Xo,Yo,Zo la Xo,Yo,Zo +-'----,----,.-~+_,__--c-_-c_~ 

o(x0 ,y0 ,z0 ) o(x0 ,y0 ,zo) 
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1 [ d(J,y,z) a(J,y,z) a(x,J,z) d(x,J,z) a(x,y,J) a(x,y,f) ] 
-]2 d(xo,Yo,zo). d(xo,Yo,zo) + d(xo,Yo,zo). d(xo,Yo,zo) + d(xo,Yo,zo). d(xo,Yo,zo) 

fu the special case of J = 1, the terms in the last brackets in Eq. (2.31) vanish, yielding the 
same expression for the Laplacian as in Pierson (1962). Pierson's presentation of the 
Laplacian is based on Gerber (1949) and Corrsin (1962). Gerber and Pierson both only 
consider the case J = 1, whereas Corrsin includes a Jacobian in the expression for the 
Laplacian. However, it seems that Corrsin applies the inverse Jacobian 

1 . _ 1 -1 _ d(xo,Yo,zo) 
Corrsm - - ~( ) 

a x,y,z 

in his presentation. 

Derivations similar to those above can be performed on equations for compressible and non­
Newtonian fluid flow as well. 



VORTEX MOTION 

It is customary to assume that the flow of an inviscid incompressible Newtonian fluid must be 
irrotational if it has only been subject to potential forces. Rotation is then defined by (half) the 
curl of the velocity vector. In this chapter, the available proofs of the foregoing statement, 
known as Lagrange's theorem, are reviewed, in order to clarify and examine the assumptions 
and initial conditions on which they are based. A discussion of these is given in Section 7.1, 
Sections 7.1.3 and 7.1.4 in particular, and a summary is given in Section 8.1.1. 

3.1 Common Terms and Definitions 

The relations between circulation, vorticity and rotation are normally given on Eulerian form, 
and may be presented as in the following, cf. e.g. Sarpkaya and Isaacson (1981). 

The curl of the velocity vector Vis defined by the cross product, cf. Eq. (2.8), 

curlV=VxV 

The components of the rotation of a fluid "particle" is commonly defined as 

which can be recognized as 

1 
ro = -curl V 

2 

Note that Eq. (3.3) is also how the rotation (angular velocity) of a rigid body is defined. 

(3.1) 

(3.2) 

(3.3) 

The curl of the velocity at a Lagrangian point is quite essential in this thesis. Making use of 
Eqs. (A.9) - (A.12) in Appendix A, this may be found for the 2D case as 

19 
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au aw au OXo au OZo aw OXo aw OZo ---=--+--------
az ax OXo az dZo az OXo ax OZo ax 

1 ( au ax au ax aw az aw az ) 
=- ---+-----+--

] ox0 oz0 oz0 ox0 ox0 oz0 oz0 ox0 

(3.4) 

The circulation r is defined as the line integral of the velocity vector taken around a closed 
curves enclosing a surface S, viz. 

r= f V· til'es==f(udx+vdy+wdz) 

which after applying Stokes' theorem 

If curl V · dS es = f V · ru es 
s 

and making use of Eq. (3.3) becomes 

r= f(udx+vdy+wdz) == Jf curl V· dSes=2fJro· dSes 
s s 

and on component form 

r = JI 2mx dydz + If 2roy dzdx + If 2m, dxdy 

In the above, es is the unit tangential vector of ds, and es is the unit normal vector of dS. 

The vorticity~ is then often introduced as twice the rotation defined by Eq. (3.3), viz. 

~ = 2ro 

Vorticity may also be defined directly as the curl of the velocity vector in Eq. (3.1), viz. 

~ =curl V=VxV 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Eq. (3.10) is a definition more consistent with that of circulation in Eq. (3.5) since it defines 
vorticity as a pure mathematical quantity, whereas Eq. (3.9) defines it as twice the assumed 
physical rotation of a material fluid "particle". 

If the curl in Eq. (3.1) is zero, an exact differential and independence of path is established, 
and a velocity potential exists. In the Eulerian description the velocity may then be written as 

V(x, y, z, t) = u(x, y, z, t) i + v(x, y, z, t) j + w(x, y, z, t) k 

o<p(x,y,z,t). o<p(x,y,z,t). o<p(x,y,z,t) ,, 
=----I+ J+ & 

ax ay oz 
= V <p(x, y, z, t) 

(3.11) 
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where rp is an Eulerian velocity potential. A potential function is a scalar function whose 
gradient is a vector function. Further, if the fluid is incompressible, i.e. Eq. (2.10) applies, the 
velocity potential satisfies Laplace's equation, viz. 

n2 ( )- drp
2
(x,y,z,t) drp

2
(x,y,z,t) drp

2
(x,y,z,t) 

V {fJ X, y, Z, f - 2 + 2 + 2 
dx dy dz 

0 (3.12) 

Solutions of Laplace's equation are called harmonic functions, assuming they have continuous 
2nd order partial derivatives. The theory of solutions of Laplace's equation is called potential 
theory. However, recall that potential theory does not apply to the velocity potential unless the 
fluid is also incompressible, cf. Glossary also. 

3.2 Rotationality 

3.2.1 Lagrange's theorem on the existence of a velocity potential 
Lagrange's theorem (Lagrange, 1781), cf. e.g. Kochin et al. (1964), states that if an inviscid 
fluid is subject to potential forces only, and the density is a function of the pressure only, then 
a part of the fluid which at an initial instant in time contained no vorticity, did not contain any 
vorticity in the past, and will not contain any vorticity in the future. This is equivalent to 
stating that if a velocity potential exists for a part of the fluid at one instant in time, it will 
always exist for this part of the fluid (given the same assumptions as above). 

The available proofs of Lagrange's theorem include Cauchy's vorticity equations (cf. Lamb, 
1932, footnotes to Art. 17, and Stokes, 1845), Weber's transformation and the theorems of 
Helmholtz and Kelvin. In light of Stokes' theorem, relating vorticity and circulation (cf. 
Section 3.2.7), these are different derivations of the same quantity. However, Cauchy's 
vorticity equations and Weber's transformation consider an existing motion as compared to a 
state of rest, while the theorems of Helmholtz and Kelvin strictly speaking only consider an 
existing motion. Also, Cauchy's equations and Weber's transformation invokes Lagrangian 
variables, while the theorems of Helmholtz and Kelvin are normally given on Eulerian form 
only. Kelvin's theorem is here derived using Lagrangian variables. 

Inviscid incompressible flow of a Newtonian fluid is assumed for all cases. 

3.2.2 Cauchy's vorticity equations 
Cauchy's vorticity equations (Cauchy, 1827) may be found in Goldstein (1960, his section 
4.2), Lamb (1932, footnotes to Art. 146) and Batchelor (1967, his section 5.3). 

The integral of the vorticity over a surface may be written, cf. Goldstein (1960), 

ff 1:,· dS Cs = ff (S< dydz + 1:,y dzdx + /:,2 dxdy) 
s 

} 
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where S; are the components of the vorticity vector. If the initial conditions are set to 

dX; ={1 , 
dXkO 0 

Eq. (3.13) may be written (fort= 0) 

JJ ~- dS es = fJ ( S, dtrfi,Yo + Sx dyod,zo + ~Y dzodto ) 
s 

(3.13) 

(3.14) 

Following Goldstein, assuming that the total value of Eq. (3.13) is constant and that the 
Lagrangian coordinates are fixed, and accounting for variations in density according to Eq. 
(2.17), one may equate Eqs. (3.13) and (3.14) and solve for s_., Sy and 1,;" viz. 

(3.15) 

Eq. (3.15) are Cauchy's vorticity equations. 

The preceding presentation, based on Goldstein (1960), is not a proof of Lagrange's theorem, 
since the integrated vorticity (i.e. the circulation) is pre-assumed to be constant. Lamb (1932), 
in the footnote to his Art. 146, makes use of Weber's transformation in order to derive 
Cauchy's vorticity equations, and states that this constitutes Cauchy's proof of Lagrange's 
theorem. Cauchy's equations will therefore be verified by considering Weber's transformation. 

3.2.3 Weber's transformation 
Weber's transformation (Weber, 1868) of the inviscid form of Eq. (2.27) may be used to 
investigate the conservation of a velocity potential during the very initiation of the motion 
from a state ofrest, cf. Lamb (1932, Arts. 15 and 17). 

For simplicity, only the 2D case is considered, but the results may be extended to 3D in a 
straightforward manner. Gravity is given by the scalar 1//J_, cf. Eq. (2.7), and we may write Eq. 
(2.27) as 
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;)2 x dx d2z dz dlf/1 1 dp 
--+--=------
dt2 dx0 dt2 dx0 dx0 p dx0 
d2x dx d2z dz dlf/1 1 dp 
--+--=------
dt2 dz0 dt2 dz0 dz0 p dz0 

(3.16) 

Integrating the terms on the left hand side of Eq. (3.16) with respect to time from to tot yields 

~~t - dx l!_ - dx i_ l!_ t - wl!_ - wl!_ - .!__i_ dz dt / 2 [ JI I ( } ( J ( J I ( )2 l dt2 dx0 - dt dx0 10 
l dt dt dx0 - dx0 1 

dx0 10 
2 dx0 [ dt 

I 2 [ JI I ( } ( J ( J t ( )2 ~~t- dx ~ - dx i_ ~ t- u~ - u~ _.!__i_ dx dt f dt2 dz0 - dt dz0 f dt dt dz0 - dz0 dz0 2 dz0 f dt 
lo t0 t0 t to t0 

I 2 [ JI / ( } ( J ( :-, J :-, I ( :-, )2 ~~t _ dx l!_ _ dx i_ l!_ t = wl!_ _ w-o_z _.!__a_ ~ dt 
f dt2 dz0 - dt dz0 f dt dt dz0 dz0 dz0 2 dz0 f dt 
t0 t0 t0 t 10 t0 

where the prevailing integrals have been transformed as follows 

f
t dx i_(~ lrlt-ft dx _i_(dx j,Jt _.!__i_ft (dx)2 dt 

10 
dt dt dx0 J -

10 
dt dx0 dt J - 2 dx0 10 

dt 

etc. 
etc. 
etc. 

Defining a scalar <p1 by 

and 

where q2 = u2 + w2
, the time-integrated form of Eq. (3.16) may be written 

u-+w- - u-+w-
(

dx dzJ(dx dzJ 
dx0 dx0 1 

dx0 dx0 10 

( 
dx dz J ( dx dz J u-+w- -- u-+w-
dz0 dz0 1 

dz0 dzo 
10 

The initial conditions at t0 are set to 

(3.17) 

(3.18) 

(3.20) 

(3.21) 
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(3.22) 

Note that Eq. (3.22) defines the Lagrangian coordinates as the Eulerian coordinates at t = t0• 

Invoking initial values in Eq. (3.21) according to Eq. (3.22) yields 

dx dz d<p1 u-+w--u =---
dx0 dx0 

10 dx0 

dx dz d<p1 u-+w--w =--
dz0 dz0 

10 dz0 

Multiplying the equations in Eq. (3.23) by dx0 and dz0, respectively, and adding, yields 

+ 

udx + wdz = -d<p1 + (u
10 

dx0 + w
10 

dz0) 

Assuming that a velocity potential exists at t = t0, i.e. 

we may write Eq. (3.24) as 

udx + wdz = -d<p1 - d<p
10 

= d<p 

meaning that a velocity potential exists also at time t. 

Eq. (3.25) may be confirmed for an initial state of rest, since then 

u10 = w10 = 0 => d<p
10 

= 0 , <p,
0 

= canst. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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Note that Weber's transformation, and thus Cauchy's vorticity equations, rests on the initial 
assumptions Eqs. (3.22) and (3.27), and that the Lagrangian coordinates representing a 
specific portion of matter are assumed to remain the same from t0 to t. 

3.2.4 Helmholtz' theorem on the rate of change of vorticity 
Helmholtz' theorem (Helmholtz, 1858) pertains to the rate of change of the vorticity. 
Considering Navier-Stokes equation on (Eulerian) vector form, i.e. Eq. (2.13), invoking Eq. 
(2.15) and making use of the vector identity 

we may write 

1 
Vx(VxV)=-V(V· V)-V · VV 

2 

d r p I 2 2 
-V-Vx.,= -V(-+f/F1+-q )+vVV 
dt p 2 

(3.28) 

(3.29) 

where V· V = q2 is a scalar and the vorticity is an Eulerian vector field~= ~(x, y, z, t). Taking 
the curl of both sides of Eq. (3.29) yields 

since 

where f/F2 is a scalar field defined by 

p I 2 
I/F2 = -(-+f/F1 +-q ) 

p 2 

The first term on the right-hand side of Eq. (3.30) may be written 

Vx(VxQ=(~· V)V-(V· V)~+V(V ·~)-~CV· V) 

since 

V-V=O 

V · ~=V· (VxV)=O 

Eq. (3.30) may therefore be simplified to 

i!._ ~ = (( V)V - (V· V)~ + vV2
~ 

dt 

(3.30) 

(3.31) 

(3.32) 

V and , are mutually perpendicular vectors, and the first two terms on the right-hand side of 
Eq. (3.32) therefore vanish in a 2D flow. Eq. (3.32) is often re-written according to Eq. (2.15), 
viz. 

D -,= c,- V)V + vV2
~ 

Dt 
(3.33) 
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Eqs. (3.30), (3.32) and (3.33) all represent Helmholtz' theorem on vorticity. 

3.2.5 The acceleration potential and the persistence of vorticity 
The acceleration in inviscid incompressible flow of a Newtonian fluid may be expressed by a 
potential function. Invoking Lagrangian variables, the persistence of the curl of the 
Lagrangian velocity may be shown to follow directly from this acceleration potential. 

Considering the inviscid form of the equations of motion Eq. (2.13), expressing gravity by the 
potential function lj/1 as in Eq. (2.7), we have 

a = ~ V = V (- .!!_ - If/, J = V <p dt p acc. 
(3.34) 

where the time differentiation represents a material derivative. Taking the curl of both sides of 
Eq. (3.34) yields 

curl a= V x(V (f)acc) = 0 (3.35) 

D. 

The following applies to the 2D case only. Invoking Lagrangian variables, we may now 
derive the following relation 

d (du dw) d ( du dx0 du dz0 dw dx0 dw dz0 J 
dt dz dx - dt dx0 dz + dz0 dz dx0 dx dz0 dx 

d [ 1 ( du dx du dx dw dz dw dz j~ 
= dt J dx0 dz0 + dz0 dx0 dx0 dz0 + dz0 dx0 ~ 

_ _!_(- dax ~-~~+ dax ~+~~J 
J dx0 dz0 dx0 dz0 dz0 dx0 dz0 dx0 

1 ( da 2 dz dw dw da 2 dz dw dw J 
+ J - dx

0 
dz

0 
- dx

0 
dz

0 
+ dz

0 
dx

0 
+ dz

0 
dx

0 

(3.36) 

_ _!_(-- dax ~+ dax ~- da 2 ~+ da 2 ~J 
J dx0 dz0 dz0 dx0 dx0 dz0 dz0 dx0 

_ da x dx0 da x dz0 da 2 dx0 da 2 dz0 ---+---------
dxo dz dz0 dz dx0 dx dz0 dx 

= dax - daz 
dz dx 

where use has been made of Eqs. (A.9) - (A.12) in Appendix A, and the Jacobian is assumed 
to be constant. Note that the time differentiation has been done while following the 
Lagrangian points. In light of Eq. (3.35), we may therefore write 

d 
-(curl V)=curla =v'X(V(f)acc)=O dt . (3.37) 
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for the type of motion defined in the beginning of Section 3.2.1. Considering a fixed 
Lagrangian point, zero curl of the acceleration vector thus implies a constant curl of the 
velocity vector in 2D flow. 

Differentiating Eq. (2.18) with time yields 

-lJ, 

V-a-_2(au aw_au dWJ- 2 a(u,w) 
] l dX0 dZo dZ0 dX0 ] cJ(x0 , z0 ) 

(3.38) 

where, again, use has been made of Eqs. (A.9) - (A.12) in Appendix A. Combining Eqs. 
(3.34) and (3.38) yields 

2 a(u,w) 
V· a= V· IY <f)acc) = V 2

<pacc. = 
J a(xo,zo) 

(3.39) 

Eq. (3.39) differs from Laplace's equation by the magnitude of the right-hand side. Potential 
theory can therefore not be used to determine this acceleration potential, unless the divergence 
of the acceleration can be required to be zero. Eq. (3.35) still serves as a fundamental 
condition on the solution of flow problems as defined in the beginning of Section 3 .2.1. 

3.2.6 Kelvin's theorem on the rate of change of circulation 
Kelvin's theorem (1869) considers the rate of change of circulation around a closed curve. 
The circulation around the closed curve is defined as 

r= f VE(x,y,z,t)· dses (3.40) 

Performing a change of variables by invoking Eq. (2.1) yields 
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r = f V £ [x(xo, Yo, zo, t), y(xo, Yo, zo, t), z(xo, Yo, zo, t)] 

=f 
ds 

V L (Xo, Yo, zo, t) · - d So es 
ds0 

ds 
-dsoes 
ds0 

(3.41) 

Eqs. (3.40) and (3.41) are mathematically equivalent. Hence, the curve is always defined by 
the same Lagrangian points, presumably always representing the same material "paiticles". 

Finding the time rate of change of the circulation around a curve defined by a specific set of 
Lagrangian coordinates is clearest if the equation is treated component-wise. The component 
form of the last term in Eq. (3.41) is 

ds dx dx dx . 
-· dsoes=(-dx0 +-dy0 + :;-dz0 )1 
ds0 dx0 dy0 az0 

dy dy dy . 
+(-dx0 +-dy0 + -dz0 )j 

dx0 dy0 dz0 

dz dz dz 
+ (-dx0 +:;-dYo + -:::;-dz0 ) k 

dx0 oy0 az0 

(3.42) 

For simplicity, only the 2D case in the (x, z)-plane is considered in the following, but the 
results may be extended to 3D in a straightforward manner. 

When following a specific Lagrangian curve, the differential ds0 is constant. This yields 

D d t ds -r = - VL(Xo, Zo, t). -dsoes 
Dt dt ds0 So 

= !!_ f_[ U (Xo, Zo, t) i · ( ddX dxo + ddX dz0 )i 
dt j x0 z

0 So 

dz dz ] + w (xo, zo, t) k · (-dx0 +-dz0 ) k 
dx0 dz0 

! d [ ( ax ax J ( az az )~ = :r- u -dxo+-dzo +w -a-dxo+-dzo 
dt dx0 dz0 X 0 dz0 So 

_f_[du(dxdx dxd J dw(dzdx dzd· J - j - - o +- Zo +- - o +- Zo 
dt dx0 az0 dt ax0 az0 So 

( 
au au J ( aw aw J~ +u -dxo+-dzo +w -a dxo+-dzo 
ax0 az0 x0 az0 
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+udu+wdw] 

+ v \7 u- + \7 w- dx0 + V \7 u- + \7 w-:;- dz0 
[ 

2 dx 2 dz J [ 2 dx 2 dz J 
dx0 dx0 dz0 az0 

+ d(-u2
) + d(-w2

) 1 1 1 2 2 

(3.43) 

where Eq. (2.29) is inserted for the time rate of change of the velocity and the Lagrangian 
form of the Laplacian is defined by Eq. (2.31). The last transition to the common Eulerian 
form is true because a Lagrangian curve at one instant in time is identical to an Eulerian 
curve. The determinants containing the pressure were simplified in the following manner 



30 Chapter 3. Vortex Motion 

1 op 1 op . ac_!_p) 
== ---ldxo == ---dxo = __ P __ dxo 

pJ ox0 p ox0 ox0 

yielding the exact differential form and therefore cancellation over the closed curve along 
with the gravity term and the squared velocity term. 

3.2.7 Stokes' theorem relating circulation and vorticity 
Circulation and vorticity are related through Stokes' theorem, cf. Eq. (3.6), viz. 

fJ (VxVE)· dSes== j VE· dses 
s 

jJ. 

E._ [Jf (V xVE) · dS esl== E._ ( f VE · ds es) 
Dt s Dt s 

== f V'\f
2VE · ds Cs 

Assuming incompressible flow, Eq. (3.44) may be written 

Note that Stokes' theorem is defined in an Eulerian frame of reference. 

(3.44) 

(3.45) 

3.3 Eulerian Potential Theory and Lagrangian Variables 

The continuity requirement in incompressible 2D flow, cf. Eqs. (2.10) and (2.21), may be 
written 

aw -(- au) oz ox 

meaning that an exact differential dl/fexists as 

dl/f = udz -wdx 

where 

0 

u=al/f oz, 
01/f w=--ox 

The scalar function 1/f(the stream function) is now defined as 

l/f = f udz - wdx 

where s is the curve of integration. If the curl of the velocity is zero, i.e. 

(3.46) 

(3.47) 
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an exact differential d<p exists as 

d<p = ud.x + wdz 

where 

d<p 
u=-

dx' 
d<p 

w=-
dz 

and the scalar function <p(the velocity potential) is defined as 

<p = J ud.x + wdz 

Comparing Eqs. (3.47) and (3.49) shows that 

dl/f d<p - dl/f = d<p 
dz= dx' dx dz 
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(3.48) 

(3.49) 

(3.50) 

These are recognizable as the Cauchy-Riemann equations, verifying the existence of a 
complex analytic function 

({)complex (Z) = rp(x,z )+ ilfl(x, Z) (3.51) 

where 

Z=x+ iz 

Since the complex function of Eq. (3.51) is analytic, <p and If/both satisfy Laplace's equation, 
cf. Eq. (3.12), and have continuous 211

d order partial derivatives, i.e. they are harmonic 
functions. This may be verified by combining Eqs. (3.47) and (3.48), yielding 

(3.52) 

and combining Eqs. (3.46) and (3.49), yielding 

(3.53) 

However, as in the equations of motion, these potential functions are assumed to apply to a 
specific portion of matter. The potential in Eq. (3.51) must therefore exist on Lagrangian 
form, which imposes certain conditions on the relations between the Lagrangian and Eulerian 
variables. The following is based on the proof of the theorem of harmonic functions under 
conformal mapping, as presented in Kreyszig (1988, his section 17.2: "Use of Conformal 
Mapping"): 

Eq. (3.51) yields 
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<flcomplex (Z)= <p(x, Z )+ il/l(X, Z) 

= <p[x(x0, z0 ), z(x0, z0 )]+ il/l[x(x0, z0 ), z(x0, z0 )] 

= <fJL (x0, z0 )+ il/lL (x0, z0 ) 

where the last line results from invoking Eq. (2.2) again, and 

Zo == Xo + izo 
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(3.54) 

Due to continuity, the stream function always exists in 2D incompressible flow. Therefore, if 
the curl of the velocity is zero, Eq. (3.52) is satisfied. If a velocity potential also exist, Eq. 
(3.53) is satisfied and the complex function in Eq. (3.54) is analytic in the (x, z)-plane. 

It is now claimed that the Lagrangian and the Eulerian forms of the complex potential in Eq. 
(3.54) must both be analytic. The relations x0(x, z) and z0(x, z) must then be analytic in a 
complex sense, i.e. satisfying the Cauchy-Riemann equations, viz. 

axo(x,z) 

az 

(3.55) 

where use has been made ofEqs. (A.9) - (A.12) in Appendix A. Note that analyticity implies 
that the Eulerian region defining a material element is a conformal mapping of the Lagrangian 
region defining the element. 

Inserting Eq. (3.55) into the Jacobian, which by assumption equals 1, yields 

(~)2 + (~)2 = \dxf = 1 
ox0 ox0 dx0 

(3.56) 

(~)2 +(~)2 = \dzf =1 oz0 oz0 dz0 

The area of an infinitesimal 2D element is found by a cross product, cf. Eq. (2.16), and may 
be written 

(3.57) 

where K is the angle between two curves defined by x0 = canst. and z0 = canst. The 
differentials dx0 and dz0 may be set to 1. Comparing Eqs. (3.56) and (3.57) then shows that 
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sinKmust always be 1, i.e. that lines of constant x0 and z0 cross each other orthogonally in an 
Eulerian frame of reference, if J = 1 in the point where they cross. This also follows from the 
definition of conformal mapping. The condition J ,t; 0 is a sufficient condition that X(Xo, z0) + 
iz(Xo, z0) represents a one-to-one mapping of a Lagrangian region onto an Eulerian region. See 
Kreyszig (1988, his section 16.1: "Conformal Mapping") also. 

If the Jacobian is everywhere and always 1, i.e. uniform and constant, requiring an Eulerian 
velocity potential to exist then allows very simple forms of deformation only, if any at all. 
However, the ability to deform into "arbitrary" and curved shapes is quite essential for a fluid. 
With respect to waves, a trochoidal or sine-shaped surface is not possible if lines of constant 
x0 and z0 have to cross orthogonally, cf. Figure 4.1, if there is no mass transport. Hence, a 
mass transport must be set up in order to restore orthogonality. Such a mass transport should 
follow from a potential solution, which is also the case, namely Stokes drift. Stokes drift does 
restore orthogonality, but only in a part of the wave and only quite instantaneously. fu Section 
4.3, Stokes drift and Stokes waves are considered from a Lagrangian point of view. It is there 
shown that this solution violates continuity after a very short period of time, and that it 
therefore is theoretically inconsistent in the Lagrangian frame of reference. 

3.4 Physical Rotation of a Fluid Element 

By rotation we normally mean how an element turns about itself, expressed e.g. by an angular 
velocity about its own axis if such an axis can be specified. However, rotation of a fluid 
element is normally defined as half the curl of the velocity vector, cf. Eqs. (3.1) - (3.3), and 
this is not suited to describe how a deformable fluid element turns about itself. Expressions 
that do describe the actual physical rotation of a deformable fluid element better may be 
found for a small element defined in Lagrangian coordinates, considering the rate of change 
of relative positions of different points on or within the element boundaries. 

z 

w (Xo + OXo, Zo + ozo) 

u (Xo + OXo, Zo + ozo) 

,__ ______________________ .,,,.x 

Figure 3.1 Motion of a 2D element ( ox0, ozo). xo and zo are constant along the respective solid 
lines in the figure. The dashed line represents diagonal D 1, and the dotted line represents 
diagonal D2. 
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As in Figure 3.1, we may consider the diagonals of a small element defined by the four 
"corners" (x0, zo), (Xo + ox0 , z0), (x0, zo + Ozo) and (Xo + OXo, zo + Ozo). The rotation of the 
diagonal Dl may be expressed by the difference in the velocities at the two "corners" (x0, z0) 

and (Xo + OXo, zo + OZo), viz. 

The differentiation is done following the two lower lines in Figure 3.1, meaning that the 
derivative with respect to x0 is taken at z0 = const. and the derivative with respect to z0 is taken 
at Xo + ox0 = const. Alternatively, differentiation may be done following the two upper lines. 

If the changes in the velocity components are not symmetric, the diagonal will appear to 
rotate in a fixed Eulerian frame of reference. Note that the diagonal is a straight line, and will 
therefore not generally consist of the same Lagrangian points throughout the motion, except 
for the endpoints. Considering the element to be infinitesimal, i.e. ox0 and oz0 -f 0, and 
assuming that the 2nd order derivatives in the derivation above are not infinite, a qualitative 
measure of the angular velocity of this diagonal is 

(3.58) 

where the signs are according to Figure 3.1. Quantification of the actual angular velocity must 
be done considering the Eulerian dimensions of an element of finite size at a given instant in 
time. For the other diagonal in Figure 3.1 (D2, dotted line) we find 

OU= u(x0 +ox0 ,z0 )-u(x0 ,z0 + &0 ) 

""-~OXo +.!. a2~ (&0)2 -~&o _ _!_ a2~ (&0)2 
dx0 2 dx0 dz0 2 dz0 

=~& -~& +.!. a
2
u (& )2 _ _!_ a

2
u (& )2 

dX
0 

O dZo O 2 dX5 O 2 dZ5 O 
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bw = w(x0 +ax0 ,z0 )-w(x0 ,z0 +&0 ) 

"" dW OX + 1 d
2
W (ax )2 _ dW oz _ 1 d

2
W (oz )2 

dXo O 2 dXt O dZ0 O 2 dzt O 

=~a\'. _ dW OZ +.!.. d2
W (& )2 _ _!__ d

2
W (oz )2 

dXo O dZo O 2 dXt O 2 dzt O 

hence 

[ 
dU dU dW dW ] ( dU dW J ( dU dW J 

ffivz = - dX
0 

- dz
0 

+ dX
0 

- dZ
0 

= - dX
0 

- dZ
0 

+ dZ
0 

- dX
0 

(3.59) 

An expression for the physical rotation of an infinitesimal element may then be found as the 
mean of the rotation of the two diagonals, viz. 

1 dU dW 
ffiM = -( ffim + rovz) = ---

2 dz0 dX0 

(3.60) 

Note that Eq. (3.60) describes physical rotation qualitatively rather than quantitatively. 

Eq. (3.60) is identical to a definition of rotation given in Segel (1987), although it is there 
derived in a different manner assuming J = 1. It is there (Segel's section 4.1) stated explicitly 
that "In many classical texts, the infinitesimal strain tensor is denoted by e;k, although each 
component is interpreted as if one were considering the material strain tensor". The tensor e;k 

referred to is equivalent to the curl defined in Section 3.1, and the material strain tensor is 
equivalent to Eq. (3.60). It is further shown that the difference between these two definitions 
is of second order, and therefore negligible for infinitesimal strains (deformations) only. 

However, it is customary to consider the two "basic" lines originating at the "corner" (x0, z0) 

in Figure 3.1. By the same reasoning as for the diagonals, we find that a qualitative mean 
angular velocity for these two lines is 

1 [( au dW J ( dU dW J~ 1 [( du dW J ( du dW J~ 
ffi(xO,zO) = 2 c)z

0 
- i)z

0 
+ ox

0 
- dX

0 
~ = 2 dX

0 
- dz

0 
+ dz

0 
- dX

0 
~ (3.61) 

i.e. equivalent to rom. We may of course also consider the two lines originating in the points 
(x0, z0 + oz0), (x0 + OXo, z0) and (x0 + ox0, z0 + oz0), respectively. These are all likely to yield 
expressions equivalent to ro v1 and ro DZ· Note that Eq. (3.61) is also only a qualitative 
measure. The difference between this equation and Eq. (3.2) does not imply that there is an 
error anywhere, but that they describe different quantities. However, it is clear that Eqs. (3.2) 
and (3.3) do not describe how a material element turns about itself very well, they do not 
describe the angular velocity of a material fluid "particle" unambiguously, as will be shown 
for the Gerstner wave in Section 4.1.3. See also Section 7.1.4 for a historical note on vorticity 
and its interpretation. 

There is no obvious "correct" choice between the above different expressions for physical 
rotation of material elements. Whereas rigid body rotation is a clear and unambiguous 
concept, mathematically as well as physically, there are several ways of defining and 
describing the physical rotation of a deformable material element. 
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WAVE THEORY 

This chapter covers the basic Lagrangian theory of 2D regular waves in intermediate and deep 
water. As usual, water is considered incompressible, and viscosity is ignored. Modelling of 
irregular waves is treated in Chapter 5, but some simplified expressions for narrow-banded 
irregular waves are included in Sections 4.1.6 and 4.2.3. 

The case of deep water, i.e. h/J. > 0.5, is covered by Gerstner's wave theory, and the case of 
intermediate water is covered by Miche's theory. Intermediate water is normally defined by 
the interval 0.05 - 0.1 < h/J. < 0.5. In the limit of infinite depth, Miche's theory equals 
Gerstner's theory. Shallow water or varying depth is not considered. 

4. 1 Gerstner's Wave Theory 

Gerstner's wave theory (Gerstner, 1802 and 1809) is an exact analytical solution of the full 
nonlinear Lagrangian equations of motion. It applies to 2D motion on infinite depth. Detailed 
presentations of Gerstner's wave theory may be found in Lamb (1932), Milne-Thomson 
(1996), Wiegel (1964), Kinsman (1965), Kochin et al. (1964) and Le Mehaute (1976). 

4.1.1 Kinematics and continuity 
Gerstner's solution for the motion (displacement) of a Lagrangian point is 

x = x0 - aekz0 cos(mt - kx0 ) 

z = z0 + aekzo sin(mt - kx0) 
(4.1) 

where x and z represent the Eulerian position of the Lagrangian point (x0, x0). The Eulerian 
frame of reference is here defined by z = 0 a distance \/2 ka2 above the still water level, and z0 

runs from O to (- h - \/2 ka2
) where h is the depth in still water. This follows from conservation 

of mass, as will be shown in the following. The phase in Eq. (4.1) is a matter of definition, 
and may be found to be different in other presentations. 

The velocities and accelerations are 

37 



38 

u = ox = tmekz0 sin(OJt- kx
0

) ot 
w = oz = tmekzo cos(ox- kx ) ot 0 

d2x 
a x = -2 = oP aekzo cos(ox- kxo) ot· 
a,= a

2

: =-o>2aekz0 sin(ox-kxo) ot 
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(4.2) 

For reference, the expression for the partial derivatives of the displacements, velocities and 
accelerations are also given, viz. 

~ = 1-kaek'o sin(ox-kx0 ) 

ox0 

~ = -kaekz0 cos(ox-kx0 ) 
dz0 

OZ kzo { ) - = -kae cos,ox - kx0 
dXo 

~ = 1 + kaekz0 sin(OJt - kx0 ) 
oz0 

~ = -mkaek'o cos( OX - kx0 ) 

dx0 

j!!:._ = mkae kzo sin (OJt - kx
0 

) 

dz0 

ow = mkaek'o sin( OX - kx
0

) 

ox0 

ow = mkaekzo cos(OJt- kx
0

) 

oz0 

OQ X = oi kaekzo Sin(OX ·- kxo) 
ox0 

oa X = oP kaekzo cos(OJt - kxo) 
oz0 

oa, = oP kaekz0 cos(OJt - kx
0

) 

ox0 

oa, = --oikaekzo sin(ox - kxo) 
oz0 

(4.3) 

(4.4) 

(4.5) 

The inverse partial derivatives of the spatial variables are, cf. Eq. (4.3) and Eqs. (A.9) - (A.12) 
in Appendix A, 
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dX0 1 + kaekzo sin(ax - kx0 ) 

"a;= l-k2a2e2kz0 

dX0 kaekzo cos(ax- kx0 ) 

dZ 1-k2 02 e2kzo 

dz0 kaekz, cos(ax - kx0) 
"a;= l-k2a2e2kz0 

(4.6) 

dz0 1- kaekz, sin(ax - kx0) 
az= 1-k2a2e2kzo 

Eq. (4.1) describes a closed circular orbit, with radius decaying exponentially with depth. The 
wave amplitude is a, the wave circular frequency is m, the wave number is k, and the wave 
celerity/phase velocity, i.e. the speed of propagation of the wave form in an Eulerian frame of 
reference, is c. The latter three quantities are defined as 

2n: 
m=2n:f =r, 

where T is the wave period and ..i is the wavelength. 

m 
c=-

k 
(4.7) 

Eq. (4.1) is a parametric representation of the motion, which makes construction of a spatial 
picture of Gerstner waves a bit more troublesome than by ordinary "formulas" of the surface 
elevation. Figure 4.1 shows a snapshot of one wavelength of a Gerstner wave. The depth 
included in the figure equals half a wavelength. Figure 4.1 is equivalent to Lamb's figure of 
the Gerstner wave (Lamb, 1932, Art. 251), and represents the limit steepness ka = 1, cf. Eq. 
(4.8). Steepnesses approaching 1 may be physically unreasonable, but considering the limit 
case clarifies the geometrical properties of Gerstner waves. The steepness cannot be greater 
than 1, since lines of constant z0 would then cross themselves near the free surface. This 
would be unphysical, since two different material elements would then occupy the same 
Eulerian region simultaneously. 

Figure 4.1 Eulerian snapshot of a Gerstner wave with the limit steepness lea = 1. V marks the 
still water line, and the dashed line represents the vertical shift of a surface "particle" given by 
Eq. (4.13). 
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The wave crest propagates to the right. The longitudinal lines are lines of constant z0, and the 
"standing" lines are lines of constant x0• The circles show the orbital paths of the Lagrangian 
point on each of the lines of constant z0 that are now directly beneath the crest. The direction 
of the orbital velocity gives the direction of wave propagation, as shown for the uppermost 
orbit. 

The lines of constant z0 form what is known as trochoids, cf. e.g. Le Mehaute (1976). A 
trochoid may be explained as the path followed by a point on a circular disk that rolls without 
slipping along a straight line. For the above Gerstner wave, the disk rolls with its center 
always on a straight horizontal line through the center of the circular orbit associated with the 
trochoid under consideration. Since the wavelength in a Gerstner wave is equal at all depths, 
all trochoids throughout the depth are formed by disks of radius A/21t. The disk must therefore 
roll "upside-down", since the cusps are directed upwards, on a straight line that lies }./21l 
above the orbital centre. The distance from the center of the disk to the point followed is 
a exp(kz0). When the point followed lies on the circumference of the disk, as for the limit case 
ka = 1 in Figure 4.1, this is the extreme shape of a trochoid; a cycloid. 

The Jacobian resulting from Eq. (4.1) is 

a(x,z) 
J Gerstner == a ( ) Xo,zo 

(4.8) 

Since the Jacobian is constant, the Lagrangian equation of continuity in Section 2.3.1 is 
satisfied. Since the Jacobian must be greater than zero, the steepness must satisfy the 
condition ka < 1. The theoretical limiting steepness in Gerstner waves is therefore 
considerably higher than in e.g. znd order Stokes waves, which have a limiting steepness ka < 
n:/7 ("' 0.45), approximately (cf. e.g. Wiegel, 1964). 

However, the Jacobian is not uniform, meaning that infinitesimal Lagrangian elements dxodzo 
do not represent Eulerian elements of equal size throughout the depth. This is easily seen by 
the sub-elements of Figure 4.1. These are bounded by crossing lines of constant x0 and z0, 

respectively, and are all defined by the same values of Ax:0 and &o (both set to be A/24 in 
Figure 4.1). The non-uniform Jacobian may therefore be explained as a continuous decrease 
in the "mesh-size" of the Lagrangian frame of reference as the free surface is approached from 
below, since Eulerian unit vectors are fixed. 

The Jacobian alone ensures conservation of mass of infmitesimal elements. However, mass 
must also be conserved on a larger scale. Following Kochin et al. (1964), one may consider 
the integral 

;[ 

A= J (z - z0 ):ix 
0 

(4.9) 

Considering a "frozen" wave as in Figure 4.1, this integral represents the (Eulerian) area 
bounded by the trochoidal surface defined by z0 == const. and O:::; x0 :,; A, and the strnight 
horizontal line defined by z == z0 and O :::; x :,; A. Note that the interval in x0 equals the interval 
in x. If not, the terms T, OJ, A, k and c would not have the physical meaning they are normally 
assumed to have. From Eq. (4.3) we may write 

dx = 1-ka/zo sin(wt - kx0 )dx0 (4.10) 
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since the integration is performed along a line of constant z0• The area in Eq. ( 4.9) may then 
be found as 

l l 

A= J (z - z0 }ix = J~ekz0 sin(OJt-kx0 Xl-kaek'o sin(0Jt-kx0 ))]tx0 

0 0 

l l 

=aek'o J sin(OJt-kx0 )dx0 -ka 2e2k'o J sin2 (ax-kx0 }ix0 

0 0 

(4.11) 

If Eq. ( 4.1) described symmetric waves, e.g. pure sine waves, the area in Eq. ( 4.11) would be 
zero. The negative area in Eq. ( 4.11) means that in there is an asymmetry in the wave profile, 
yielding an amount of pA more mass below z = z0 than above, pr. wavelength. 

Compared to the still water situation, the mean vertical level of a Lagrangian point is 
therefore "shifted" upwards by 

& _lk22kz0 
Gers/Iler - 2 a e (4.12) 

A Lagrangian point therefore moves in a circular orbit about a point that lies a distance 
Llzoerstner above its still water position. The vertical shift is not uniform, but increases towards 
the surface in accordance with the decrease in the Jacobian. 

For the Lagrangian points constituting the free surface, the vertical shift is 

1 2 
/::;.zGerstner,surface = 2, ka (4.13) 

The vertical shift is not directly apparent from Eq. (4.1). Considering Figure 4.1, the Eulerian 
frame of reference would "normally" be defined by z = 0 at the still water level (the solid 
line). However, the form of Eq. (4.1) requires that z = 0 a distance V2 ka2 above (the dashed 
line), if the solution is to remain exact. Therefore, z0 must run from Oto (- h- V2 ka2

) where h 
represents the depth in still water. This increase in the interval of z0 also follows from Eq. 
(2.23), since the Jacobian is everywhere less than 1. It may seem that the vertical shift could 
be "absorbed" by the infinite depth, but that is not the case. It is a real effect that has its 
maximum at the free surface and vanishes towards the bottom, hence the choice of reference 
level for the Eulerian frame of reference and the associated interval for z0 in Eq. (4.1). Note 
that this is just a change in Eulerian reference level, not in the Eulerian unit vectors. 

This yields the asymmetric surface profile of Gerstner waves, with long troughs and steep 
crests, resembling that of higher order Stokes waves and real ocean waves. The top of the 
crests lie a + '!2 ka2 above the still water level, and the bottom of the troughs lie - a + V2 ka2 

below the still water level. 

The still water level may be used as Eulerian zero-level, correct to 2m1 order, by writing Eq. 
(4.1) as 

x = x0 -aekz0 cos(OJt- kx0 ) 

z* = z
0 

+aekzo sin(OJt-kx
0

)+.!.lw 2e2k'o 
2 

(4.14) 
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The Jacobian now equals 1 to 2"d order, but has a non-constant term at 3rd order, viz. 

(4.15) 

In this case, z0 runs from Oto - h. Eq. (4.14) may also be found as a perturbation solution of 
the linearized form of the governing equations. The Eulerian frame of reference is then by 
assumption defined by z = 0 at the still water level, and the 211

d order vertical shift appears as 
the 2"d order perturbation solution, cf. Pierson (1961, 1962) and Moe et al. (1998). 

4.1.2 Pressure and the dispersion relation 
Inserting the acceleration from Eq. (4.2) and the partial derivatives from Eq. (4.3) into the 
inviscid form of Eq. (2.27) yields 

--_ -=---- -+ g -=-vu -gkpe cos OJt-kxo 
p ox0 dt2 dx0 dt 2 dx0 

1 dp d2 
X dx [d2

z J dz { 2 \ kz0 ( ) 

(4.16) 1 dp d
2

X dX [d2
z J dz { 2 \ kzo • ( ) 2 2 2kz --=---2 -- - 2 + g -=vu -gkpe Slll 0Jt-kx0 -g +OJ ka e 0 

p clz0 clt clz0 clt clz0 

The dynamic free surface boundary condition requires that the pressure is constant along the 
free surface, i.e. 

_!._ ap I -o 
p ~L.=0 

jJ, 

OJ2 = gk (4.17) 

Eq. (4.17) is recognizable as the dispersion relation from Airy wave theory (Airy, 1845). It 
follows that the pressure is independent of x0 over the entire depth. The fact that the free 
surface boundary conditions are exactly satisfied on the true free surface is perhaps the most 
important property of the Gerstner wave. 

The expression for the pressure may now be found by integrating the second line of Eq. ( 4.16) 
with respect to z0, viz. 

1 dp 2k 2 2kz0 --=-g+OJ a e 
p dz0 

P 1 222kzo C -=-gz-t--OJae + p O 2 p 
(4.18) 

where Cp is a constant independent of x0• Setting the pressure on the surface to zero yields 

1 2 2 1 2 C =---OJ a =--gka 
P 2 2 

(4.19) 

hence 

(4.20) 
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or 

(4.21) 

Lines of constant zo are therefore also lines of constant pressure, and a given Lagrangian point 
always experiences the same pressure in a Gerstner wave. 

Considering Eqs. (4.14) and (4.15) instead, the pressure is found to leave only one term to 
second order, viz. 

p* =-pgzo 

with a periodic term at third order. 

4.1.3 Vorticity, circulation and rotation 
The non-zero vorticity in Gerstner waves may be found according to Eq. (3.4), viz. 

1; = du _ dW = 1 [- du dX + du dX _ dW dZ + dW dz ) 
dZ dX J dXo dZo dZo dXo dXo dZo dZo dXo 

_ 2mk2a2e2kz0 

l- k2 a2 e2kz0 

(4.22) 

(4.23) 

The vorticity is constant and negative. Interpreting it as a rigid body rotation of a "particle", it 
means that the direction of the angular velocity is in opposite sense to the orbital velocity in 
Figure 4.1. From Stokes' theorem, cf. Section 3.2.7, it follows that the circulation in Gerstner 
waves also is constant and negative. 

However, from Eq. (4.1) it can be seen that the velocity along the vertical boundaries in 
Figure 4.1, considering the entire wave, is zero. Since the Lagrangian points constituting the 
surface move in closed orbits, there is no net flow along the free surface. Also, the velocity 
vanishes at the bottom. Therefore, the circulation is not a flow of mass along the boundary of 
an element. The negative vorticity and circulation in Gerstner waves is merely a result of an 
elongation of the elements in the troughs, where the horizontal velocity is negative, and a 
converse shortening in the crests, where the horizontal velocity is positive. The elongation 
and shortening is associated with the elements becoming "shallower" in the crests and 
"deeper" in the troughs, respectively, as apparent from the uppermost elements in Figure 4.1. 
The line integral defining the circulation, cf. Eq. (3.5) and Section 3.2.6, only accounts for 
variations in the lengths of the boundary elements, variations in the thicknesses are neglected. 
McClimans (1980) has shown that the elongation and shortening of elements in surface waves 
explains an increase in the wave generated drift velocity of Spar buoys, which have a 
significant penetration into the water, as compared to that of surface floats. 

We may now consider a small element of a Gerstner wave, and follow it through one wave 
period. In Figure 4.2, a "band" of elements defined by O ::;; x0 ::;; A a n d z0 - & 0 ::;; z0 ::;; z0 + & 0 

is shown. Each element in this band may also be considered representing one specific element 
in different phases of a wave period. The behaviour of the diagonal Dl, defined in Section 
3.4, is an indication of how the element rotates. 
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C 

Figure 4.2 A "band" of elements from Figure 4.1 (the third from the free surface). The 
element boundaries are given in solid lines while the diagonals Dl are given in dashed lines. 

The wave profile propagates to the right. Therefore, the element farthest to the right 
represents the element in the first phase, while the element farthest to the left represents the 
element one wave period (almost) later. The curved arrows indicate the direction of rotation 
of the diagonal before and after the element has constituted the crest. 

Figure 4.2 shows that there is not a constant negative physical rotation of material elements in 
Gerstner waves. The rotations of the diagonals vary periodically. It can be seen that the 
angular velocity of the diagonal in the figure is zero in the crest and in the trough, negative 
(counterclockwise) as the element "moves" from the trough to the crest, and positive 
(clockwise) as the element "moves" from the crest to the trough. The converse diagonal D2 
will behave conversely. The elements in Figure 4.2 are not quite "infinitesimal", but the 
behaviour of the diagonals is qualitatively the same no matter how small the elements are. 

Eqs. (3.58) and (3.59) predict the following rotation of the respective diagonals in Gerstner 
waves 

roDI = --- + ---- =-20Jkae •cos OJt.-kx0 [ au ow J [ au ow J kz ( ) 

ox0 oz0 oz0 ox0 

[[ au ow J [ au ow J~ kz ( ) roD2 = - - - - + - - - = 20Jkae O cos OJt. - kx0 ox0 oz0 oz0 ox0 

(4.24) 

The rotation roDI in Eq. (4.24), which is of first order, is in opposite phase to the vertical 
velocity of a Lagrangian point, cf. Eq. (4.2). This is in accordance with Figure 4.2. The same 
agreement is found for the other diagonal. 

Defining the physical rotation of an infinitesimal Gerstner element by Eq. (3.60) yields 

(4.25) 

The rotation of the diagonals should not be considered the physical rotation of the element, 
but they are to some extent observable quantities. The actual rotation of an element appears to 
be more adequately described by the mean rotation of both diagonals, given by Eqs. (3.60) 
and ( 4.25), but this quantity is somewhat harder to observe and confirm visually for elements 
of finite size. We may therefore say that there is no physical rotation of material elements (or 
"particles") in Gerstuer waves, even if there is vorticity, but this is a matter of definition of the 
term 'rotation', cf. Section 3.4. The common definition of rotation given by Eq. (3.3), i.e. half 
the vorticity, does not describe the behaviour of elements in Gerstner waves very well. 
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Moe (2000) also points out the difference between the constant negative vorticity in Gerstner 
waves and the actual behaviour of fluid elements in Gerstner waves. He calculates the angular 
velocity of the diagonals and finds, as above, that they "wiggle" back and forth. 

4.1.4 Energy 
Energy is not considered to any extent in this thesis, and the expressions below, based on 
Kochin et al. (1964) and Milne-Thomson (1996), are included for completeness only. 

The kinetic energy pr. wavelength may be found as, cf. Eqs. ( 4.2) and ( 4.8), 

Ek = ]:__mq2 = ]:__ p ff (uz + w2 ~dxodzo = _!. p fJ a.J2a2e2kzo (1-k2a2e2kzo )txodzo 
2 2

30 
2

30 

=±pga2 ff (ke2kzo -k3a2e4kzo )txodzo =±pga2 I[±e2kzo -±k2a2e4kzo r d.xo 

~ 0 -

=±pga
2
(1-fk

2
a

2 J ,i (4.26) 

The potential energy pr. wavelength may be found as, cf. Eqs. (4.1), (4.8) and (4.12), 

= pg ff ±ka2e2kz, (1- k2a2e2kzo }txodzo = i pga2 f f[ke2kzo -k3a2e4kzo }txodzo 

~ ~ 

J 0 

=ipga2 f[ie2kz0 -±k2a2e4kz0 J d.xo 

0 -

=±pga
2
(1-fk2a

2 J ,i (4.27) 

The contribution from (z - z0) is periodic and cancel out over a wavelength. 

The kinetic and potential energies pr. wavelength are therefore equal also in Gerstner waves, 
and the total energy pr. wavelength is 

(4.28) 

There is no net flux of kinetic energy, since the elements move in closed orbits, but the 
potential energy moves with the wave form, i.e. with the phase velocity. The potential energy 
is half of the total energy, so the total energy moves with half the phase velocity, i.e. what is 
known as group velocity Cg, Hence, the mean flux of energy (averaged over a wavelength) is 

1 1 m 
C =-C=--

g 2 2 k 
(4.29) 
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4.1.5 Gerstner waves on Eulerian form and mean values in fixed Eulerian 
points 

The Eulerian form of Gerstner's wave theory may be found by Taylor-expansions of the 
expressions in the preceding sections, and values in fixed Eulerian points in the splash zone 
may be found by determining when this Eulerian point is in water. The derivations below are 
based on the work by Moe and Arntsen (1996), and the expressions include terms up to 
second order in wave amplitude. 

First, it is useful to define two variables X and ,; by 

X = x - x0 = -aekzo cos(aJt - kx0 ) 

,; = z - z0 = aekz0 sin(OJt - kx0 ) 

and introduce the following expansions, correct to first order in kz and k,;, 

sin(aJt-kx0 )= sin(aJt-k[x- X ])= sin(OJt-kx+ kX) 

= sin(OJt- kx )cos(kx )+ cos(ax - kx )sin(kx) 

= sin(ax-kx )· 1 + cos(ax-kx )· kz 

= sin(OJt - kx )+ kX cos(aJt - kx) 

cos(ax-kx0 )= cos(mt-k[x-x])= cos(mt-kx + kz) 

= cos(ox- kx )cos(kX )- sin(mt- kx )sin(kx) 

= cos(ax -kx )· 1- sin(mt- kx )· kX 

= cos(ox-kx )-kzsin(mt-kx) 

Eq. (4.30) may now be written as 

X = -aekz (1-k,;Jcos(mt-kx )-kzsin(mt-kx )] 

c; = aekz (1-k,;Jsin(mt-kx)+ kzcos(mt-kx)] 

(4.30) 

(4.31) 

and solved by successive approximations. The order of approximation is in the following 
given by superscripts. To zeroth order we have 

(4.32) 

The 1 '' order solution is found by inserting the Otl1 order solution into Eq. ( 4.31 ), viz. 
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%1 = -aek' cos(mt - kx) =} X6 = x + aek' cos(mt - kx) 

;1 = aek' sin(mt - kx) =} Z6 = z - aek' sin(mt - kx) 

and the 2"ct order solution is found by inserting the 1" order solution into Eq. ( 4.31 ), viz. 

%2 = -a/' (1- k/;1 Xcos(mt- kx )-kX1 sin(mt- kx )]= -aek' cos(mt- kx) 

/;
2 = aekz (1- k/;1 Xsin(mt- kx )+ kz 1 cos(mt - kx )]= aekz sin(mt- kx )- ka 2 e2kz 

and therefore 

xt = x + aekz cos(mt-- kx) 

zt = z-aekz sin(mt-kx)+ka 2e2k' 
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(4.33) 

(4.34) 

(4.35) 

However, since a perturbation solution assumes that J = 1 and that z = 0 at the still water 
level, the vertical shift in Eqs. (4.12) and (4.14) cannot be ignored. Since the shift itself is of 
second order, it may be included simply by adding it to the right-hand side of Eq. (4.34). It 
could also have been included in Eq. (4.30) and downwards, i.e. expanding Eq. (4.14) instead 
ofEq. (4.1). 

The Lagrangian point occupying the Eulerian point (x, z) at time t, correct to second order in 
wave amplitude, is therefore given by 

x0 = x + aek' cos(ox - kx) 

Zo = Z -aekz sin(ox-kx)+..!.ka 2e2kz 
2 

where z = 0 at the still water level. 

(4.36) 

The expressions for the velocities and accelerations, cf. Eq. (4.2), may be expanded in the 
same way as above, inserting xand !; from Eq. (4.34), yielding 

U = cruekz sin{@ - kx )- tdw 2e2kz 

w = cruekz cos(mt-kx) 

ax = oiaek' cos(mt - kx) 

a,= -oiaekz sin(mt-kx)+ oika2e2kz 

V· V=O 

(4.37) 

The vertical shift has no significance for the expressions in Eq. (4.37), since it will only 
contribute at third order. The pressure is found by inserting z0 from Eq. (4.36) into (4.22), 
since z = 0 at the still water level, yielding 

p = pg[-( z +1ka2 e2kz )+aekz sin(mt-kx )] (4.38) 
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The surface profile rJ may be found by setting z0 = 0 in Eq. (4.1), and inserting Xo from Eq. 
(4.36) with z = rJ, viz. 

rJ = asin(ox - kx0 )= asin(OJt- k[x + aek11 cos(OJt- kx)] 

= asin((OJt - kx )- kaek11 cos(OJt- kx)) 

= a[sin(ox- kx )cos(kaek'J cos(OJt- kx ))- cos(OJt - kx )sin(kaek'J cos(OJt -- kx))] 

= a[sin(ox - kx )· 1- cos(ox- kx )· kaek" cos(ox- kx )] 

= asin(ox - kx)- ka 2 cos2(ox- kx) 

Again, the vertical shift must be accounted for if relating the surface elevation to the still 
water level, yielding 

1J = asin(OJt-kx )-ka2 cos2 (ox-kx )+..!_ka 2 

2 

Inserting Eq. (4.39) into Eq. (4.38) yields to second order 

..l!_ = -17 + aek11 sin(ox- kx )-..!.ka2 e2
k11 

pg 2 

= -asin(ox-kx )+ ka 2 cos2 (0Jt --kx )-..!.ka2 

2 

+a[l +kasin(ox-kx )]sin(ox-kx )-..!.ka2 

2 

= -asin(ox-kx )+ ka 2 [cos2 (ox-kx )+ sin2 (ox-kx)]+ asin(ox-kx)-ka2 

=0 

(4.39) 

so that constant (zero) pressure on the free surface is satisfied. Also, inserting Eq. (4.39) into 
z0 in Eq. ( 4.36) shows that z0( 17) = 0, i.e. that z0 running from - h to O defines z from - h to rJ. 
This is as expected, since z = 0 at the still water level means that J = 1, and therefore that the 
intervals in Lagrangian coordinates equals the still water intervals in Eulerian coordinates. 

Using trigonometric relations, Eq. (4.39) may be rewritten 

rJ = asin(OJt--kx)-ka 2
[ cos2 (ox-kx )-}] 

= a sin(O)t- kx )-..!_ka2 [cos2 ((I){- kx )- sin2 (ox·- kx )] 
2 

= asin(O)t-kx )-..!.ka2 cos[2(ox-kx )] 
2 

c= --aco{ mt-kx+f )+f ka
2 
co{ 2( ox-kx+f )] 

(4.40) 

(4.41) 
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Eq. (4.41) is equivalent to an expansion of the trochoid given by Kinsman (1965, his 
equations 5.2:41 and 5.2:42) to second order. Kinsman's expansion is to fourth order, and he 
concludes that the surface profile of Gerstner waves (the trochoid) to third order is identical to 
the surface profile of 3rd order Stokes waves on infinite depth, with a divergence at fourth 
order. This result can be found in Wiegel (1964) also. 

The surface profile resulting from Eqs. (4.39) - (4.41) as compared to a pure sine wave is seen 
in Figure 4.3. 

\ 
\ 

- JC \ 

' 

z 

rc/2 

-a+ l/2ka2 

e =mt-kx 

Figure 4.3 Trochoid to 2nd order (solid line) compared to a sine wave (dashed line). The 
horizontal axis is the still water line (marked by V). The figure is based on a similar figure in 
Moe and Arntsen (1996). 

In order to find the correct timeseries and mean values in the splash zone, it is necessary to 
determine in which phases of a wave period a fixed Eulerian point is submerged in water, cf. 
Figure 4.3. A fixed Eulerian point is in water if z0 from Eq. (4.36) is equal to or less than zero, 
i.e. z0 s; 0. This yields the following condition from Eq. (4.36), cf. Moe and Amtsen (1996), 

z + .!.ka2e2kz 
sin(mt- kx )= sin00 >--2~,-----

aekz 

1 
z +-ka2 

2 
a(l+kz) 

(4.42) 

If this condition is not satisfied, the Eulerian point is out of water. Velocities, accelerations, 
pressure etc. must then be discarded and excluded from the analysis. 

From Eq. ( 4.37) it follows that the mean horizontal velocity below the splash zone, i.e. in 
Eulerian points that are always below the wave trough, is 

- r.,1, 2 2kz u submerged = -UJl(,a e (4.43) 

Eq. ( 4.43) is valid irrespective of how the Eulerian frame of reference is defined with respect 
to the still water level, since this will only make a difference at third order in this case. 

The mean Eulerian horizontal velocity in the splash zone, averaged over one wave period 
keeping x fixed, is now found as, cf. Figure 4.3 and Moe and Arntsen (1996), 
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tr-B0 

"ii= _1_ f [m:iekz sin(}-0Jka2e2kz] d(} 
21l Oo 

1 ,c/2 

=- f [m:iekz sin()-0Jka2e2kz] d(} 

1[ Oo 

(4.44) 

where (} 0 is given by Eq. ( 4.42). Below the splash zone, (} 0 always equals - rc/2, cf. Figure 
4.3, and Eq. (4.44) then yields the same result as Eq. (4.43). The typical form of the mean 
horizontal velocity is shown in Figure 6.2 and Figure 6.3. These figure strictly speaking 
pertain to intermediate water and Miche's solution, but the form of the profile is qualitatively 
the same. 

It may be difficult to see how a closed orbital motion produces a mean Eulerian velocity. A 
simple explanation is as follows: Consider a fixed Eulerian point. This point will be occupied 
by different fluid "particles" at different instants throughout a wave period. "Particles" that 
come from below, i.e. that have their orbital centres below the Eulerian point in question, will 
have a positive horizontal velocity in this point, while "particles" that come from above will 
have a negative horizontal velocity. "Particles" with orbital centres at the same vertical level 
as the Eulerian point in question will only have a vertical velocity component here. Since the 
orbital velocities decay exponentially with the depth of the orbital centres, the negative 
contributions from above outweigh the positive contributions from below, resulting in a mean 
negative Eulerian velocity in a fixed Eulerian point below the splash zone. In the splash zone, 
i.e. - a + Yi ka2 < z < a + Yi ka2

, there will not always be water, since no "particle" has its 
orbital centre above z = Y2 ka2

• The contributions from above will become fewer as we move 
upwards in the splash zone, and vanish entirely at z == Yi ka2

• All contributions from below has 
prevailed to this level, but these also become fewer as we move further up, and of course no 
contributions are found above z =a+ Y2 ka2. The greatest negative mean horizontal velocity is 
therefore found at z < - a + Y2 ka2

, i.e. at the level of the trough, and the greatest positive 
value is found at z = Y2 ka2, i.e. at the level of the orbital centre of the surface "particles". 

It is also interesting to note that there is a mean vertical acceleration below the splash zone, 
directed upwards, viz. 

- 2k 2 2kz 
a z ,submerged ::::: OJ a e (4.45) 

In the splash zone, its mean value is 

- o>2a kz[ kz(1l Jl a, =--;;-e _--cos(}0 +kae 2 -e0 )J (4.46) 

The mean values of the vertical velocity and horizontal accelerations are zero below the 
splash zone. In the splash zone, however, these will also produce mean values, viz. 

usubmerged = W.rnbmerged = 0 
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w = OXl ekz [1-sin8
0

] 

1C 

2 

ax = m a ekz [1- sin8
0

] 

1C 

For the pressure, the mean values below and in the splash zone, respectively, are 

- ( 1 2 2kz) P submerged = - pg Z + 2 ka e 

p = ': [ aekz cose0 -( z + ~ka
2
e

2
kz If- 80 )] 

where the pressure is based on Eq. (4.38). 
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(4.47) 

(4.48) 

Note that all results in this section are based on z = 0 at the still water level. The free surface 
is always defined by z0 = 0, irrespective of how the reference level of the Eulerian frame of 
reference is defined. 

4.1.6 Mean Eulerian horizontal velocity in narrow-banded Gerstner waves 
It is also of interest to determine mean Eulerian values in irregular Gerstner waves. Following 
Moe and Arntsen (1996), it is assumed that the involved processes are ergodic and narrow­
banded and that the velocities and surface elevation are Gaussian with Rayleigh distributed 
peaks. The latter assumptions are in conflict with the asymmetry and vertical shift associated 
with Gerstner waves. However, the vertical shift is of second order and appears as a nonlinear 
contribution in a perturbation approach, cf. Pierson (1961) and Moe et al. (1998). Including it 
is therefore anyhow in conflict with straightforward superposition of components. 

The mean (time averaged) value of a quantity in an ergodic stochastic process may be 
expressed by its expectation. For the horizontal velocity, which is a function of the wave 
amplitude, the expectation may be written 

u(z)=E[u(z)]= J Pa(a)E[ula}ta 
0 

a' 
a 2ai Pa=-2 e a:2::0 

(J' T/ 

(4.49) 

(4.50) 

where Pa is the Rayleigh distribution, q, is the standard deviation and oJ is the variance of 
the surface elevation. Since in a narrow-banded sea the waves occur sequentially rather than 
simultaneously, E[ula] may be given by Eqs. (4.42) and (4.44). Also, since the surface 
elevation is assumed to be a Gaussian process with expectation E[17] = 0, the variance equals 
the 0th spectral moment of the surface elevation, i.e. 

0'1~ = m0 = J S(m }:tm, 
0 

= 
m; = J m; s(m }:tm 

0 

(4.51) 

The horizontal velocity is also a function of a representative circular frequency. Moe and 
Amtsen (1996) apply the mean zero crossing frequency of the surface elevation as the 
representative frequency in the expectation of the horizontal velocity. The mean zero crossing 
frequency of the surface elevation is defined by 
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(4.52) 

The wave number to apply must be that associated with this frequency through the dispersion 
relation in Eq. ( 4.17). Inserting into Eq. ( 4.49) yields for infinite depth 

u(z)=E[u]= f p 0 (a)E[ula}ta 
0 

= f 0)20~

2 

e k,oz· 2
:,; [cos(sin -I B

0 
)- k

20
aek,,z (!.:.- sin-1 B

0 
)~Aa 

0 !((J'T/ 2 lr (4.53) 

where Bo is given by Eq. (4.42) since z = 0 at the still water level. The 2"d order vertical shift 
is included in the expression for B0• This is not strictly consistent in the irregular case, but it is 
included since the analysis is done on a wave by wave basis. The dependency on z in Eq. 
(4.42) is kept on exponential form, in order to avoid the denominator ever being zero. Eq. 
(4.53) must be solved numerically for each value of z. Although Eq. (4.53) is derived for the 
splash zone, it is applicable throughout the entire depth by ensuring that BO always equal -
1(/2 below the splash zone, cf. Eq. (4.44) and related comments. In MATLAB, this may be 
handled by considering the real part of sin-1( B 0). Since the wave amplitudes are Rayleigh 
distributed, we also have that 

a,,= Hrrd4 (4.54) 

where Hmo is the significant wave height in a Gaussian sea. 

A simple expression for the mean horizontal velocity below the splash zone may now be 
found by inserting Eq. (4.43) instead of Eq. (4.44) into Eq. (4.49), and integrate analytically 
by integration by parts. Making use of Eqs. ( 4.17) and ( 4.54) also, this yields 

3 2 2aJioz 
-( ) _ 2 k 2k20z 2 _ Ol20H mO g 
U z submerged - - 0)20 we (J' TJ - e 

8g 
(4.55) 

Further, w20 may be given approximately e.g. by the peak frequency in Pierson-Moskowitz 
(P-M) type spectra and JONSW AP spectra, cf. e.g. Faltinsen (1990, pp. 23-31), viz. 

W20 "'l.4wP Pierson - Moskowitz 
(4.56) 

A coarse estimate of the mean horizontal velocity below the splash zone in narrow-banded 
irregular Gerstner waves, assuming Pierson-Moskowitz type spectra and JON SWAP spectra, 
respectively, is then 

I 
H2 ~ 2 

-9---1'.!Q_er,; [m!s], Pierson-Moskowitz 
-() - TI~ 
U Z submerged - 14 

H2 -z 
-7---1'.!Q_er,; [m!s], JONSWAP 

TI~ 

(4.57) 
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It is not obvious that the chosen representative frequency is the most appropriate, and it must 
be kept in mind that the components attenuate differently with depth. The spectral mean- and 
peak frequencies, with corresponding wave numbers, may turn out to be equally good choices 
in some cases, and may be inserted into Eqs. (4.53) and (4.55) instead of llho and k20• For 
points always submerged, assuming that we have a ratio Cw between the representative 
frequency and the peak frequency, a more general form of Eq. (4.57) is 

2 8Jr2 
3 H2 Cw----,:Z 

-( ) C3 l[ mO gTP 
U z submerged ~ - w --3-e 

gTP 
[ml s] , C = OJ representative 

t,) {J)p 

3 
, z<-4Hmo (4.58) 

The region of validity given at the end of Eq. (4.58) is based on Figure 6.35 and is only 
approximate. Considering profiles of u(z) over the entire depth as in Figure 6.35, and making 
use of the knowledge of the solution below the splash zone given by Eq. (4.58), it should be 
possible to construct simple approximate "formulas" for the splash zone also. Mean values for 
other quantities than the horizontal velocity may be determined in the same manner as above. 

4.2 Miche's Solution 

There are several works on waves on finite depth based on Lagrangian frames of reference. 
Miche's solution for uniform depth is presented here, but Miehe also considered the effect of a 
gradually shoaling bottom. Biesel (1952) extended Miche's results for shoaling bottoms, and 
according to Neumann and Pierson (1966) this was probably the most realistic solution for 
waves normal to a sloping beach. Carrier and Greenspan (1958) have also treated waves on a 
sloping beach from a Lagrangian point of view. Dubreil-Jacotin (1934) worked on Gerstner 
waves and similar waves on finite depth, cf. Wehausen and Laitone (1960). She has also 
shown that a wave motion may be superposed upon a steady current having an arbitrary 
velocity distribution, and that mass transport may then take any desired value (Longuet­
Higgins, 1953). However, in light of Section 4.3 at the end of this chapter, the latter 
statements may be questionable. 

4.2.1 Miche's 2nd order solution for finite and uniform depth 
Miehe (1944) derived a 2"d order solution for finite and uniform depth by perturbation. The 
perturbation procedure is also described in Moe et al. (1998). A phase-shift of - l[j2 is 
introduced as compared to Miche's original publication, in order to have the expression on the 
same form as Gerstner's theory in Section 4.1. 

In the limit of infinite depth, Miche's solution is equivalent to Gerstner's. However, Miehe 
added a 2nd order Stokes-like drift in order to make the solution irrotational. The effect of 
adding such a drift is considered in Section 4.3 (for the case of infinite depth only). 

Miche's solution is 

coshk(z0 +h) ( kx ) k 2 sin2({J)f-kx0 )[1 3 cosh2k(z0 +h)J x = x0 - a cos {J)f - 0 + a 
sinhkh 4sinh2 kh 2 sinh2 kh 

(4.59) 

sinhk(z0 +h) . ( kx ) k 2 sinh2k(z0 +h)[1 3 cos2({J)f-kx0 )] z=z0 +a sm{J)f- 0 + a -
sinhkh 4sinh2 kh 2 sinh2 kh 
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Eq. (4.59) satisfies J = 1 to second order. The Eulerian frame of reference is here defined by z 
= 0 at the still water level, and z0 runs from O to - h. This follows from the perturbation 
approach, as for Eqs. (4.14) and (4.15). 

The "particle"-orbits in Miche's solution are ellipses to l't order. An example of the orbital 
path described by Eq. ( 4.59) is shown in Figure 4.4, where it is assumed that U(z0) = 0 and 
therefore the equation describes a closed orbit over a wave period. 

Figure 4.4 Orbital path of a surface "particle" in a 2nd order Miehe wave with ka "' 0.6, h/}., 
"' 0.2. The solid horizontal line represents the still water line, and the dashed horizontal line 
shows the vertical shift for a surface "particle", i.e. its mean vertical position, cf. Eq. ( 4.61 ). 

The steepness is chosen quite high in Figure 4.4, and the depth to wavelength ratio relatively 
small, in order to visualize the effects of the periodic 2nd order terms. They can be seen to 
make the "particle"-orbits more circular above the mean vertical position, and more flattened 
below the mean vertical position. Thus, their effect is to sharpen the crests and flatten the 
troughs, cf. Moe et al. (1998). 

A 2nd order constant vertical shift is directly apparent from Eq. (4.59), viz. 

& . =kaz sinh2k(z0 +h) =_!_kaz coshk(z0 +h)sinhk(z0 +h) 
Miehe 4sinh2 kh 2 sinh2 kh 

(4.60) 

which in the limit of infinite depth equals Eq. (4.12). The points constituting the free surface 
get the following shift in mean vertical position 

& _ 1 k 2 coshkh 
Miche,swface - 2 a sinhkh 

If in Eq. ( 4.59) U(z0) == 0, the solution has a constant 2nd order negative vorticity, viz. 

1;, == _ 2mk2a 2 coshk(z0 +h)sinhk(z0 +h~ 
sinh2 kh 

The solution is (initially) hrntational if U(z0) equals 

U(z0 )= OJk-. -
2 

- cosh2k(z0 +h) 1 [ sinh2kh] 
2smh kh 2kh 

(4.61) 

(4.62) 

(4.63) 

However, re-inserting Eq. (4.59) with the 211
d order current as given by Eq. (4.63) into the 

governing equations, yields a 3rd order term growing in time in the Jacobian as well as in the 
vorticity. In Section 4.3, it is shown that this term is of second order in magnitude after less 
than one wave period. 
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The velocities and accelerations in Miche's solution are 

coshk(z0 + h) . ( kx ) ,.,,. 2 cos2(mt-kx0 )[1 3 cosh2k(z0 + h)J 
U = {J)(1 Sill mt - 0 + WK.ll -

sinhkh 2sinh2 kh 2 sinh2 kh 

+a 2U(z0 ) 

sinhk(z0 +h) ( kx) ,.,,. 2 3sinh2k(z0 +h)sin2(mt-kx0 ) w =ma cos mt- 0 +WK.a 
sinhkh 4 sinh4 kh 

(4.64) 

_ 2 coshk(z0 +h) ( kx) 2k 2 sin2(mt-kx0 )[1 3cosh2k(z0 +h)J 
ax -{1} a . hkh cos mt- o -(1) a z 2 s1'nh2kh 

Sill sinh kh 

2 sinhk(z0 +h) . ( kx) 2k 2 3 sinh2k(z0 +h)cos2(mt-kx0 ) 
a

2 
= -(1) a Sill 0Jt - 0 + (1) a 

sinhkh 2 sinh4 kh 

and the pressure is 

p sinhkz0 • ( ) -=-z0 -a smmt-kx0 pg sinh kh cosh kh 

k 2 sinhkz0 { 3 2( kx lcoshkz0 + a cos OJt- ---
4sinh2 kh 

O sinh2 kh 
2coshk(z0 +h)]- 2coshk(z0 +h)} 

cosh kh cosh kh 

(4.65) 

The pressure can be seen to equal that of Eq. (4.22), and not that of Eq. (4.21), in the case of 
infinite depth, since the perturbation is based on z = 0 at the still water level. 

The dispersion relation is the same to second as well as to first order, equivalent to that of 2"d 
order Stokes waves, viz. 

w2 = kg tanhkh (4.66) 

It will often be sufficient to consider only the 1 '' order terms combined with the constant 2"d 
order vertical shift of Miche's solution. The first order terms yields the following Jacobian 

1 . =l- k2
a

2[cosh2 
k(z0 +h)-cos

2
(mt-kx0 )] 

Miehe, 1st sinh 2 kh 
(4.67) 

Including only the constant vertical shift of the 2"d order terms yields 

k2a2[.!.-cos2(mt-kx )] 
2 ° 1 k2

a
2 

J . = l = 1 + cos2(mt - kx ) (4 68) 
Miehe, lst+i\z Sinh 2 kh 2 sinh 2 kh O • 

The vorticities in these two cases have comparable 2nd order periodic terms. The last term on 
the right-hand side of Eq. ( 4.68) is of third order or less if 
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k 2 2 
__ a_<k3 3 

z - a 
2sinh kh 

_1_-:;,,.fjI;; 
sinhkh 
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(4.69) 

For a steepness of e.g. ka = O.Ol, Eq. (4.69) yields h/1 > 0.42, for ka = O.l it yields h/1 > 0.25, 
for ka = 0.2 it yields h/1 > 0.20, and for ka = 0.5 it yields h/1 > 0.14. Miche's 1" order 
solution, combined with the constant 2nd order vertical shift, is therefore a reasonable 
approximation also to second order in the deeper range of intermediate water, since the 
vertical shift is then the only 2nd order term that prevails. The applicability of this simplified 
approach is seen to increase with increasing steepness, and is only of practical interest if ka c 
0(0.01). 

4.2.2 Miche's solution on Eulerian form and mean values in fixed Eulerian 
points 

By the same procedure as in Section 4.1.5, one may find the Eulerian form of Miche's 
solution to second order, with z = 0 at the still water level, viz. 

coshk(z+h) ( kx) k 2 sin2(mt-kx)[1 3 cosh2k(z+h)J x0 == x + a cos mt - + a + 
sinhkh 4sinh2 kh 2 sinh2 kh 

sinhk(z+h) . ( kx) k 2 sinh2k(z+h)[1 3 cos2(mt-kx)J z0 ==z-a smmt- + a + 
sinhkh 4sinh2 kh _ 2 sinh2 kh 

coshk(z+h) . ( kx) ,.,,. 2 cosh2k(z+h)[1 3 cos2(ox-kx)J u == @ sm mt - - wt<.a + 
sinh kh 2sinh2 kh 2 sinh2 kh 

sinhk(z+h) ( kx) ,.,,. 2 3sinh2k(z+h)sin2(mt-kx) 
w = Ol'.l cos mt - + wt<.a 

sinhkh 4 sinh4 kh 

_ 2 coshk(z+h) ( -kx)- 2ka 2 sin2(mt-kx)[1 3cosh2k(z+h)J 
ax - m a sinhkh cos mt m 2sinh2 kh sinh2 kh 

(4.70) 

2 sinhk(z + h) . ( kx) 2 ka 2 sinh2k(z + h )[1 3 cos2(mt-kx )] 
az ==-ma sm mt- +m + 

sinhkh 2sinh2 kh 2 sinh2 kh 

p [ sinhkz sinhk(z + h )] . ( kx) -=-z+a - + sm mt-
pg sinhkhcoshkh sinhkh 

ka
2 

{ 1 . hk( h) hk( h) sinhkz coshk(z + h) + --sm z+ cos z+ 
sinh2 kh 2 2coshkh 

+ - - + cos mt - \'.X 
3[ sinh2k(z+h) sinhkzcoshkz 2sinhkzcoshk(z+h)l 2( "·)} 
4 . 2sinh2 kh sinh2 kh coshkh . 

7J ==asin(mt-kx)-ka2 c~shkh[cos2 (mt-kx)+~ 3 . \ cos2(mt-kx)-] 
smhkh 2 2 smh kh . 
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In the limit of infinite depth, the above expressions equal those of Gerstner' theory in Section 
4.1.5. It is easily verified that the Eulerian velocities satisfy continuity and give the expected 
vorticity to second order, viz. 

V· V=O 

1;, =-
2

0Jk 2a 2 coshk(z+h)sinhk(z+h) 
sinh2 kh 

The mean values to second order in fixed Eulerian points that are always submerged are 

u =-mka 2 cosh2k(z+h) 
submerged 2 sinh 2 kh 

wsubmerged = 0 

ax,su/Jmerged = 0 

_ 2k 2 sinh2k(z+h) 
a =m a 

z,submerged 2sinh2 kh 

Psubmerged ka
2 

[ 1 . hk( h) hk( h) sinhkzcoshk(z + h )] --~=-z+--- --sill z+ cos z+ -----~-~ 
pg sinh2 kh 2 2coshkh 

(4.71) 

The condition on the phase for points to be submerged in the splash zone, cf. Eq. (4.42), is 
found for the 2nd order case by requiring z0 ::;; 0 in Eq. (4.70), yielding 

z-a Sill ox- + a + = sinhk(z+h) . ( kx) k 2 sinh2k(z +h)[1 3 cos2({J)f-kx)J 0 
sinhkh 4sinh2 kh 2 sinh2 kh 

V. 
sinhk(z + h) . ( kx) k 2 sinh2k(z + h) z-a Sill ox- + a 

sinhkh 4sinh2 kh 

3 ka 2sinh2k(z+h) 2( kx) 0 + cos {J)f- = 
8 sinh4 kh 

sinhk(z+h) . ( kx) k 2 sinh2k(z+h) z-a Sill ox- + a 
sinhkh 4sinh2 kh 

+ 3 ka
2

sinh2k(z+h)[1_ 2sin2(ox-kx)]=o 
8 sinh4 kh 

V. 
3 ka

2 sinh2k(z+h) . 2( kx) sinhk(z+h) . ( , ) 
4 

Sill OX- +a Sill OX-KX 
4 sinh kh sinhkh 

-[z+ka2 sinh2k(z+h) + 3 ka
2

sinh2k(z+h)]=O 
4sinh2 kh 8 sinh4 kh 
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. -B+.JB 2 -4AC 
smeo = ------

2A 

where 

A= 3 ka 2 sinh2k(z+h) 
4 sinh4 kh 

Bcc:asinhk(z+h) 
sinhkh 

C [ k 2 sinh2k(z+h) 3ka2 sinh2k(z+h)J 
=- z+ a + 

4 4sinh2 kh 8 sinh kh 

(4.72) 

(4.73) 

In Eq. (4.72), the plus sign in front of the square root turns out to be the appropriate. A minus 
sign will always return 80 = -1l/2, also for points in the splash zone. 

The mean values in the splash zone are found in the same way as in Section 4.1.5, yielding to 
second order 

_ OJacoshk(z+h) 11 u = COSuo 
ff sinhkh 

oi<a
2 

cosh2k(z+h)[(n _ 8 )- 3 sinWo] 
ff 2sinh2 kh 2 ° 4sinh2 kh 

__ OJa sinhk(z+h)[l . n] oi<a
2 

3sinh2k(z+h)[l 2n] w - -smv0 + +cos u 0 re sinh kh 1& 8 sinh 4 kh 

__ ola coshk(z+h)[l . (}] oha2 [1+cos280 ][1 3cosh2k(z+h)J ax - -sm O -
ff sinhkh ff 4sinh2 kh sinh2 kh 

_ ola sinhk(z+h) (J oi2ka
2 

sinh2k(z+h)[(ff (J ) 3 J a
2 

= cos O + -- 0 sin280 re sinhkh 1t 2sinh2 kh 2 4sinh2 kh 

(4.74) 

p a [ sinhkz sinhk(z+h)J e -=- + cos o 
pg ff sinhkhcoshkh sinhkh _ 

1 [ ka
2 

• hk( h) hk( h) sinhkzcoshk(z+h)J(n (J) -- z + sm z + cos z + + - - 0 
ff 2sinh2 kh 2coshkh 2 

1 3ka2 
[ sinh2k(z+h) sinhkzcoshkz 2sinhkzcoshk(z+h)J . 28 - - + sm 0 

ff 8sinh2 kh 2sinh2 kh sinh2 kh coshkh _ 

The expressions for the simplified form suggested at the end of Section 4.2.1 are 
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coshk(z + h) ( ) 
x0 =x+a cos OJt-kx 

sinhkh 

sinhk(z + h) . ( kx) k 2 sinhk(z + h )coshk(z + h) 
z0 = z -a sm OJt- + a 

sinhkh 2sinh2 kh 

coshk(z+h) . ( kx) ,,,. 2 cosh2k(z+h) u = ()}(l sm OJt - - Wl<G 
sinhkh 2sinh2 kh 

sinhk(z + h) ( kx) w = ()}(l cos OJt -
sinhkh (4.75) 

2 coshk(z + h) ( kx) a, = m a cos OJt -
~ sinhkh 

2 sinhk(z+h) . ( kx) 2k 2 sinh2k(z+h) 
az =-ma sinhkh sm OJt- +m a -2-s-inh~2-k-h~ 

_p_ = -z +a sinhk(z + h) sin(OJt-kx )-.!.ka2 sinhk(z + h )coshk(z + h) 
pg sinhkh 2 sinh2 kh 

1/ = a sin(OJt- kx )- ka 2 c~shkh [cos2 (OJt - kx )+.!.] 
s1nhkh 2 

The resemblance to the Eulerian form of Gerstner waves is obvious from Eq. (4.75). 

The mean values for point always submerged are the same as given by Eq. (4.71), except for 
the mean pressure that now becomes 

Psubmerged _ 2 _ _!.ka2 sinhk(z+h)coshk(z+h) 
pg 2 sinh2 kh 

The "splash zone condition" 80 is now found by requiring z0 :;;; 0 in Eq. (4.75), yielding 

. hkh lk 2 • hk( h)coshk(z+h) zsm +- a sm z+ 
sin8

0 
= 2 sinhkh 

asinhk(z+h) 

which in the limit of infinite depth equals Eq. ( 4.42). 

The mean values in the splash zone according to the simplified form are found to be 

(4.76) 

(4.77) 
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__ {J)(l coshk(z+h) e wka
2 

cosh2k(z+h)(!C 8 J 
U - cos o -- o 

IC sinhkh IC 2sinh2 kh 2 

_ {J)(l sinhk(z+h)r1_ . e] 
W- l S1ll 0 

IC sinhkh 

__ oia coshk(z+h)[I- . 8 ] ax - sm 0 
JC sinhkh (4.78) 

__ oia sinhk(z+h) 8 oika 2 sinh2k(z+h)(n 8 J az- cos 0+ -- 0 
JC sinhkh JC 2sinh2 kh 2 

p = a sinhk(z+h)cose _ _!_[z+_!_ka2sinhk(z+h)coshk(z+h)J(!!__-e J 
pg JC sinhkh 

O 
JC 2 sinh2 kh 2 ° 

The typical form of the mean Eulerian horizontal velocity is similar to that of Gerstner waves, 
and is shown in Figure 6.2 and Figure 6.3. 

Note that the simplified form of Miche's 2nd order solution referred to in this section is based 
on a Taylor-expansion of the "full" 2nct order Lagrangian expressions in Eqs. ( 4.59), ( 4.64) and 
(4.65). Taylor-expansion of the 1 '' order terms only, plus the vertical shift, will yield 2nct order 
terms that are different from those in the simplified Eulerian form presented above. This 
means that one must distinguish between a simplified Lagrangian form and a simplified 
Eulerian form. Recall also that all expressions in this section are based on z = 0 at the still 
water level. 

4.2.3 Mean Eulerian horizontal velocity in narrow-banded Miehe waves 
Expressions equivalent to those in Section 4.1.6 may also be found for Miehe waves. As for 
Gerstner waves, 2nct order terms are included in the narrow band analysis. This yields 

a' 
-() s= m2oa

2 
2cri{coshk20(z+h) e u z = --e cos 

0 !CO"~ sinhk20h 
0 

-k a cosh2k20 (z+h)[(!!__-e J 20 
2sinh2 k20h 2 ° ~ sin2e0J}da 4sinh k20h 

(4.79) 

where 0 0 is given by Eqs. (4.72) and (4.73). The relation between m 20 and k20 is now given 
by the dispersion relation for finite depth, i.e. Eq. ( 4.66). 

For the simplified form, where 00 is given by Eq. (4.77), we get 

-( )-f= m20a
2 

-;;,;[coshk20 (z+h) 0 -k cosh2k20 (z+h)(!!__-e )Jd u z - 2 e cos O 20a 2 0 a 
0 !CO" 

17 
sinhk20h 2sinh k20h 2 _ 

(4.80) 

As in Section 4.1.6, m20 and k20 may be replaced by other representative values. 

We may also find estimates for the mean horizontal velocity in points always submerged, 
corresponding to those in Eq. (4.57), viz. 
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U(z tubmerged ::::::: 

and more generally, corresponding to Eq. (4.58), we have 

[ 
81r

2 

] cosh C!--
2 

(z+h) 
- 3 Jr3 H;,o gTP 
u(z),ubmerged "'-Cw T3 [ 2 l 

g P 2sinh2 C! 41r 
2 
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Pierson- Moskowitz 

(4.81) 

JONSWAP 

[ml s] , z < -iH,,.0 (4.82) 

Eqs. (4.81) and (4.82) apply to the "full" 2nd order case as well as to the simplified approach, 
because the higher order periodic terms cancel out. 

4.3 Stokes Waves from a Lagrangian Point of View 

In light of Section 3.3, and the result of Dubreil-Jacotin referred to in the introduction to 
Section 4.2, it is of interest to consider a potential solution including a non-uniform drift in a 
Lagrangian frame of reference. Since Miehe made his solution irrotational by adding a 
Stokes-like drift, cf. Section 4.2.1, it is reasonable to start out by considering this solution. It 
is then simplest to consider the limit case of infinite depth, where the drift is identical to 
Stokes drift and Miche's solution without drift is identical to Gerstner's solution. In the limit 
of infinite depth, Miche's solution including Stokes drift is identical to the Lagrangian form of 
2nd order Stokes waves. 

The Lagrangian form of 2nd order Stokes waves may be found by Taylor expansions, cf. e.g. 
Newman (1977) or Dean and Dalrymple (1991). The "particle"-paths are then found to be 
(open) circular orbits with a net forward drift; Stokes drift. The expression for Stokes drift in 
intermediate water is (cf. e.g. Dean and Dalrymple, 1991) 

gk 2a2 cosh2k(z0 + h) 
u . = 

Stokes drift OJ sinh 2kh 
(4.83) 

Note that Eq. ( 4.83) is often given as a function of the Eulerian variable z in textbooks, which 
by itself may be a source of confusion. The expression is however best given on Lagrangian 
form, e.g. as for infinite depth in Faltinsen (1990). Then the Lagrangian form of 2"d order 
Stokes waves becomes 

x = x0 - aekzo cos(lVt - kx0 )+ 0Jka 2e2k'0 t 

z = z0 + aekzo sin(lVt - kx0) 

which is easily recognized as Gerstner's theory with Stokes drift added. 

(4.84) 

An expression for the mean Eulerian horizontal velocity in 211d order Stokes waves, including 
Stokes drift, may be found in the same manner as in Eq. (4.44), yielding 
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- ma kz e u =-e cos 0 
TC 

where 00 is given by Eq. (4.42). For finite depth, the corresponding expression is 

(4.85) 

_ ma coshk(z+h) ,, 
U = COSu0 (4.86) 

TC sinhkh 

where 00 is now given by Eq. (4.77). The typical form of Eqs. (4.85) and (4.86) is compared 
to that of Miehe (and Gerstner) waves in Figure 6.2 and Figure 6.3. Note that the mean 
horizontal velocity according to Eqs. (4.85) and (4.86) is zero below the splash zone. 

The limit of validity of Stokes' 2nd order wave theory (Stokes, 1847 and 1880) in deep water is 
approximately (cf. e.g. Wiegel, 1964, or LeBlond and Mysak, 1978, also) 

ka < !!... ""0.142TC ""0.45 
7 

The Jacobian resulting from Eq. (4.84) is 

J dX dZ dX dZ l k2 2 2kz0 2 ,.,,.3 3 3kz0 ( kx ) =-----= - a e + UA<. a e tcos mt- 0 dx0 dz0 dz0 dx0 

(4.87) 

(4.88) 

which has a constant deviation from 1 of 2nd order and a term initially of 3rd order growing in 
time. The corresponding vorticity also includes an initial 3rd order term growing in time, viz. 

~ = 
2 

oic3a 3 e3
kzo [mtcos(mt - kx0 )- sin(wt - kx0 )] 

1- k 2a2e2
kzo + 2oic3 a 3 e3kz0 tcos(mt - kx

0
) 

The amplitude of the increasing term in the Jacobian is 

2oic3a3e3kzot 

The length of time until this term is of order n may be found as 

t (ka )" e"kzo r = 4rck3 a3 e3k,. 

where T is the wave period. This gives for the respective orders 

otll order: 

1'' order: 

2nd order: t 
T 

1 

(4.89) 

(4.90) 

(4.91) 

(4.92) 
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The time t/T, which may be called a relative length of time until breakdown at the given 
order, is also dependent on the vertical coordinate. Some example values will therefore be 
given for each order, for different values of ka and kz0• The ka-values are chosen to be 0.1, 0.2 
and the assumed approximate limit value m7, cf. Eq. (4.87). The kz0-values are chosen to be 
0, - 0.5ka and - ka, since this thesis emphasize on the splash zone conditions. The results are 
given in Table 4-1, Table 4-2 and Table 4-3. Plots of 211

d order Stokes waves at different 
instants in time are also included below, in order to visualize the "breakdown". 

Table 4-1 t/T to 2nd order 
kzo=O kz0 =-0.5ka kz0 =-ka 

ka = 0.1 0.80 0.84 0.88 
ka =0.2 0.40 0.44 0.49 
ka = m1 0.18 0.22 0.28 

Table 4-2 t/T to 1 '' order 
kzo=O kzo =-0.5ka kzo=-ka 

ka =0.1 7.96 8.79 9.72 
ka = 0.2 1.99 2.43 2.97 
ka = 1[j7 0.39 0.62 0.97 

Table 4-3 t/T to 0th order 
kzo=O kz0 =-0.5ka kz0 =-ka 

ka = 0.1 79.58 92.46 107.42 
ka = 0.2 9.95 13.43 18.12 
ka = m1 0.87 1.72 3.37 

The plots below are based on Eq. (4.84). The longitudinal lines are lines of constant z0, and 
these were horizontal in the still water situation. The "standing" lines are lines of constant x0, 

and these were vertical in the still water situation, cf. Figure 4.1 also. Note that the scales are 
not the same in the different plots. It is assumed that at time t = 0, Stokes waves exists in 
which Stokes drift has not yet "acted". The plots are based on the assumed steepest possible 
waves, i.e. ka = 1d7, but the effects are qualitatively the same for lower steepnesses. The 
waves propagate to the right. 

Figure 4.5 Stokes wave, ka = 1d7, t = 0. 

Figure 4.6 Stokes wave, ka = l{j7, t = O.lT. 
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Figure 4.7 Stokes wave, ka == ll/7, t == T. 

Figure 4.8 Stokes waves, ka = ll/7, t == 2T. 

Figure 4.6, Figure 4.7 and Figure 4.8 show that the inclusion of Stokes drift to a certain 
degree restores the orthogonality of element boundaries in front of the wave crest, as 
conformal mapping would require (cf. Section 3.3). It can also be seen that the elements in 
front of the crest are "enlarged", while the elements behind the crest are "reduced". This 
periodic variation, which is growing in amplitude with time, is the one described by the 3rd 
order term in Eq. (4.88). 

Figure 4.8 includes three wave crests, showing that a regular wave profile of the smface is 
apparently maintained even if continuity is eventually violated to the leading order. The 
amplitude is also maintained. However, after a few wave periods the profile of these waves 
eventually resemble that of a spilling breaker. For lower values of the steepness ka, the 
regular wave profile is maintained for a longer period of time. 

From the above tables and figures the following conclusions may be drawn for the conditions 
in the splash zone: 

" 2nd order Stokes waves of steepness ka ~ 0.1 break down at 2nd order well within one 
wave period, practically immediately, and are therefore theoretically inconsistent in the 
Lagrangian frame of reference. 

" znd order Stokes waves of steepness ka ~ 0.1 break down at 1'' order within a few wave 
periods. 

" 2nd order Stokes waves of steepness ka "" ll/7, i.e. the assumed limit steepness, brealc 
down at 0th order within a couple of wave periods. 

" The dependency on depth is practically insignificant in the surface region. 

The increasing and periodic variation of the size of the elements is unphysical. The elements 
cannot "grow" in one part of the wave and "vanish" in another. 

For Stokes' wave theory to be theoretically consistent in this Lagrangian sense to 211
d order for 

at least 10 to 20 wave periods for - a < z0 < 0, i.e. within the splash zone, the maximum 
allowable ka-values can be found from Eq. (4.92) to be approximately 0.005. 

" Therefore, for 211
d order Stokes waves to be theoretically consistent in the Lagrangian 

frame of reference also in the splash zone for more than a couple of wave periods, the 
steepness ka can at most be of the order 0(0.01). For the theory to be consistent over 
"many" wave periods, the limit steepness is of the order 0(0.001) or less. 
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As stated above, Eq. ( 4.84) may be considered a superposition of regular orbital motion and a 
non-uniform Lagrangian current, both individually satisfying the nonlinear equations of 
motion exactly. Note in particular that Stokes drift alone, which may be considered a simple 
shear current, does satisfy J = 1, meaning that it is the combination of a shear current with 
waves that causes the analytical inconsistencies in the Lagrangian frame of reference. The 
imposed combination of nonlinearity and superposition is itself also an indication of 
inconsistency to second order. However, Gerstner's solution is a solution of the governing 
equations for the wave problem, satisfying the boundary conditions at the true boundary, 
suggesting that imposing irrotationality is incorrect. 

Also, the initial value of Jin Eq. (4.88), i.e. at t = 0, has a 2"d order deviation from 1. Hence, 
Eq. (4.88) does not satisfy the initial conditions in Cauchy's equations and Weber's 
transformation, cf. Sections 3.2.2 and 3.2.3 and Eq. (3.22), which are there necessary for an 
initial velocity potential to exist. This supports the findings in Section 3.3, namely that there 
appears to be a fundamental conflict between satisfying continuity and requiring 
irrotationality, if the motion and deformation of fluid elements is not (at best) very simple. 
However, it is unclear how to best "choose" the length of time Stokes drift has acted. In Table 
4-1 -Table 4-3 and Figure 4.5 - Figure 4.8, it is assumed that Stokes drift "starts" at an instant 
in time where regular waves without mass transport already exist. This choice may itself be 
quite questionable, but including Stokes drift from the very initiation of the waves will only 
make Stokes waves even more inconsistent in the Lagrangian frame of reference. 

Hence, vertically non-uniform Lagrangian currents and waves occurring simultaneously must 
seemingly eventually lead to some sort of breaking of the waves, since the situations shown in 
Figure 4.6 - Figure 4.8 are unphysical. By breaking is then meant violation of continuity and 
impenetrability, i.e. that a small element of fluid is split up and penetrated by other small fluid 
elements. This means that a small fluid element does not remain a material entity in time, and 
that it therefore cannot be considered an identifiable continuum element in time. This is not 
unphysical, but it expresses a limitation of the continuum model with respect to interpretation 
of material (Lagrangian) quantities in time. Some may prefer to speak of material "point­
particles" instead of small elements, and claim that such particles cannot be penetrated or split 
up. However, it must then be recalled that the Jacobian, e.g. as in Eq. (4.88), applies to a 
single Lagrangian point. The inconsistency of Stokes waves therefore remains the same, 
irrespective of whether we speak of "point-particles" or small elements. 

Note that it is here not concluded that waves, even regular, and non-uniform mass transport 
cannot exist simultaneously. The main objective of this section has been to show that one 
such solution resulting from the assumption of irrotational flow, namely Stokes waves, is 
inconsistent if interpreted literally in the Lagrangian frame of reference. Therefore, the results 
of this section do question the foundation for speaking of identifiable material particles in a 
continuum, and for how long and under which circumstances it may be relevant to do so. 
Hence, they also question the general applicability of the assumption of irrotational flow, and 
thus the correctness of Stokes waves as a basic solution for regular waves. 
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CHAPTERS 

WAVE MODELLING 

Irregular waves are here modelled as a sum of linear regular Lagrangian wave components, 
according to the superposition principle. However, adding linear components in the 
Lagrangian frame of reference is seen to exhibit so-called nonlinear interactions when the 
surface elevation is plotted parametrically in an Eulerian frame of reference, e.g. as when 
shorter waves ride on longer waves. This is shown in Section 5.1. 

A Lagrangian description alone has a limited practical value, and a method for transforming 
the Lagrangian solution to an Eulerian frame of reference is needed. One such method, 
applicable for broad-banded irregular waves as well as regular waves, is presented in Section 
5.3. Producing timeseries of the surface elevation at a fixed Eulerian x-position from the 
Lagrangian solution requires a specific method, which is presented in Section 5.4. 

Analysis of irregular waves in a Lagrangian frame of reference requires that the Lagrangian 
orbital amplitude spectrum is known. In experiments, the surface elevation is often measured 
by fixed gages, and a spectrum based on such measurements is not identical to the Lagrangian 
orbital amplitude spectrum. Section 5.4 therefore also includes a short discussion on the 
relation between these two types of spectra. 

5.1 Superposition of Lagrangian Components 

Eq. (4.1) is an exact solution of the nonlinear Lagrangian equations of motion. Eq. (4.14) is a 
perturbation solution of the same equations, and the first order terms of Eq. (4.14) is the 
solution of the linearized Lagrangian equations of motion. The first order terms of Eq. (4.14) 
look identical to Eq. (4.1), but there is a difference at second order in the definition of the 
vertical Eulerian variable z in these two equations. Therefore, Eq. (4.1) is strictly speaking not 
linear and superposing must be based on linear terms as in Eq. (4.14), i.e. with z = 0 at the still 
water level. The vertical shift in Eq. (4.14), which is equivalent to that in Eq. (4.12), is of 
second order, i.e. nonlinear, and therefore not included in the superposing. 

Only Gerstner waves is considered in the following, but irregular Miehe waves may be 
modelled in the same manner by superposing components given by the first order terms in Eq. 
(4.59). 

In·egular Gerstner waves as a sum of N linear components may therefore be written 

67 
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N 

x = x0 - I,a
11

ek,zo cos(0>
11
t - k,,x0 + e,,) 

n=l 
N 

z = z0 + I,a,,ek,z, sin{m,,t - k
11
x0 + e

11
) 

n;;;:;l 

where, when related to an amplitude spectrum, 

a,, = ~2S(0>11 )L\0>11 

(5.1) 

(5.2) 

and e11 are constant relative phases. When generating a synthetic wave spectrnm, each 
component should be assigned a value of £ 11 from a probability distribution Pe (e) uniform 
over O ::,; e ::,; 21C, if they are all considered free wave components. 

The velocity, acceleration and pressure of a Lagrangian point in irregular Gerstner waves are 
then found as a sum of the component velocities, accelerations and pressures, respectively, 
viz. 

N 

U = L,O>nallek,zo sin(0>nt-k11xo +e.) 
n=l 

N 

w= I,m,.anek,zo cos(mnt-knxo +e,,) 
n=l 

N 

ax = I,m;a 11 ek,z, cos(0>11 t-k
11
x0 +e11 ) 

n=l 

N 
_ ~ 2 k,z0 • ( f k ) az - - £..,.0>11 a,,e sin OJ,, - 11 x0 +e11 

n=1 

p=-pgzo 

(5.3) 

cf. Eqs. (4.2), (4.21) and (4.22) and recall that z = 0 is now at the still water level. The 
kinematics and pressure in irregular Miehe waves are found in a similar manner from the first 
order terms of Eqs. (4.64) and (4.65). Note that there is a first order term in the pressure in Eq. 
( 4.65) that should be included or excluded according to Eq. ( 4.69). 

It is straightforward to construct a spatial picture ('snapshot') l](x) of the surface from the 
parametric representation Eq. (5.1), including as many components as desired, by keeping t 
fixed, setting z0 = 0 and letting x0 tun over some interval. Spatial snapshots of specific 
volumes (areas) of water in irregular waves may also be constructed, as in Figure 4.1, by 
letting z0 run over an interval as well. 

The common Eulerian model of irregular waves is a sum of sine waves added in the Eulerian 
frame of reference, viz. 

N 

1J = I,a11 sin(m11 t - k11 x + e11 ) (5.4) 
n=l 

Applying the same values for a,,, 0>11 , k11 and e,,, and comparing a surface based on Eq. (5.1) 
with one based on Eq. (5.4), the ability of the Lagrangian representation to automatically 
include so-called nonlinear interactions among the wave components is seen. In Figure 5.1 is 
shown the interaction between a short wave riding on a longer wave, based on a parametric 
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plot of Eq. (5.1). Figure 5.2 shows the superposition of the same two components according 
to Eq. (5.4). Only one crest of the longer wave is included. 

Figure 5.1 Eulerian spatial snapshot of the surface 17(x) in two-component waves according 
to Eq. (5.1). AJons/Ashort"' 8, ka1ong"' 0.2, ka,hort"' 0.4. 

Figure 5.2 Eulerian spatial snapshot of the surface 17(x) in two-component waves according 
to Eq. (5.4), with the same component parameters as in Figure 5.1. 

Figure 5.3 shows the superposition of two components defined by either of Eqs. (4.39) -
(4.41). These equations are equivalent to Eq. (5.4) plus a 2"d order higher harmonic from each 
component. The component parameters are as in Figure 5.1 and Figure 5.2. 

Figure 5.3 Eulerian spatial snapshot of the surface 17(x) in two-component waves according 
to Eq. (4.39), with the same component parameters as in Figure 5.1 and Figure 5.2. 

In Figure 5.4 is shown the interaction between two components of more comparable 
wavelengths. 

Figure 5.4 Eulerian spatial snapshot of the surface 7](x) in two-component waves. A100g/Ashor1 

"' 3, ka long = ka short "' 0.4. The solid line represents the parametric form equivalent to the case 
in Figure 5.1, the dotted line is equivalent to the case in Figure 5.2, and the dashed line is 
equivalent to the case in Figure 5.3. 

It can be seen that superposition in the Lagrangian frame of reference and parametric plotting 
produces physically reasonable interactions directly. The shorter wave is seen to be shortened 
in the crest and elongated in the trough of the longer wave, i.e. what would be called 
'nonlinear interactions' from a purely Eulerian point of view. Modelling such interactions 
requires quite complex models in an Eulerian approach, if feasible to model adequately there 
at all. 
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One may argue whether or not the constant vertical shift should be included when adding 
components based on Eq. (4.39). It is included in Figure 5.3 and Figure 5.4, but the result is 
anyway seen to be closer to the added sine waves than the parametrically plotted surface 
elevation. Also, if the constant vertical shift is not included, it is not consistent to include the 
other znd order term either, leaving only the first order sine component as in Eq. (5.4). This 
underlines the importance of performing the superposition in the Lagrangian system if we 
want to take full advantage of the Lagrangian approach also in irregular waves. 

The steepnesses of the components in the above figures are relatively high, but not unrealistic. 
In a way similar to Pierson (1961), we may find a condition on the combined ka-values in a 
sea state. If x(.xo) in Eq. (5.1) is not monotonically increasing, r,(x) will be (at least) triple 
valued at some value(s) of x. The surface is then either forming a loop (which is unphysical), 
being vertical, or forming a "tongue" similar to a plunging breaker. 

A condition for the combined ka-values in irregular Gerstner waves is therefore 

N 

Lknanek,zo sin(wnt-k11Xo +en)< 1 
n=l 

(5.5) 

which must hold for any value of z0, not just the free surface. The "equal to" part of the 
inequality is excluded in the last expression above, since Eq. (5.5) must hold for a single 
regular component as well. The steepness ka must then be less than 1 for the Jacobian to exist, 
cf. Eq. (4.8). This means that the surface cannot be vertical or forming a "tongue" anywhere 
either, if the model is to remain valid with respect to continuity. A part of the surface being 
vertical and/or forming a "tongue" is not unphysical, since this occur in real seas. However, it 
is hard to see how such effects can be formed by superposition of circular orbits on uniform 
depth alone, and how the wave can be restored without breaking. It seems that such surface 
profiles can only be formed by an actual breaking event, e.g. due to depth variations or the 
presence of a non-uniform current (cf. Section 4.3). 

A condition equivalent to Eq. (5.5) for (1 '' order) Miehe waves is 

dx f coshk,,(z0 +h) . ( ) 
-=1- L .. / 11a11 . smw1,t-k11 x0+e,, 20 
dx0 n=l smhk,,h 

Jj. 

fk coshk11 (z0 +h) . ( ) 1 ,,c_, 11 a11 . sm 0>11 t - k11 x0 + e11 < 
11
=1 smhk11 h 

(5.6) 

Eqs. (5.5) and (5.6) may be considered effective steepnesses of irregular waves. 

5.2 Wheeler's Method 

Besides comparing the Lagrangian theories with measurements, it is also useful to include 
comparisons with standard methods for calculations of irregular wave kinematics. Due to its 
widespread use, Wheeler's method (Wheeler, 1970) is found appropriate for this purpose. See 
Gudmestad (1993) for a review of applied methods for calculating wave kinematics. 
Wheeler's method is a modification of linear Eulerian wave theory, developed to give a better 
description of the kinematics in the surface zone of irregular waves than linear Eulerian 
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theory is capable of. In Wheeler's method, the vertical coordinate is stretched in such a way 
that it is always effectively zero at the free surface, viz. 

h(z-rJ) 
z -Wheeler-~ (5.7) 

Wheeler's method therefore has some resemblance to the Lagrangian models. However, it 
must be remembered that as a consequence of the stretching of coordinates, the expression in 
Wheeler's method does not satisfy the basic equations of motion properly. In deep water Eq. 
(5.7) simplifies to 

Zwheeler = z - rJ (5.8) 

The hodzontal velocity according to Wheeler's method is then given by 

f coshk (z + h) . ( ) u = L .. i°J a n Whee/e, Sill OJ t - k X + £ 
n=I " n sinhknh n n n 

N (5.9) 
U = "' OJ a ek,zw,,,,,, sin(OJ t - k X + £ ) 

~nn n n n 
n=l 

for intermediate and deep water, respectively. Corresponding expressions may also be found 
for the vertical velocity, although Wheeler's method is stdctly speaking only given for the 
horizontal velocity. 

The highest values of the horizontal velocity occur beneath crests, and many published 
comparisons of theory with measurements therefore focus on this situation. Even if the results 
from these comparisons are not unambiguous, there is a tendency that Wheeler's method 
agrees reasonably well with measurements close to the free surface, while it gives to low 
values further down in the fluid. The underprediction is typically highest near the still water 
level, cf. e.g. Gudmestad (1993), Stansberg and Gudmestad (1996) and Trulsen et al. (1998). 
This type of deficiency is also to be expected from a theoretical point of view, cf. Figure 6.20. 

Based on analysis of the irregular wave data from the experiments in Skjelbreia et al. (1991), 
i.e. the same expedments that are considered in Chapter 6, Gudmestad and Haver (1993) 
suggested that Eq. (5.9) be multiplied by the factor 

-h<z<O 

(5.10) 

0 < Z < r/cresl 

where rJcrest is the surface elevation at the very crest. Eq. (5.10) represents a 20 % increase at 
the still water level, reducing to 0.8 % at the crest and at the bottom. These modifications are 
based on values beneath crests in irregular waves, and include " ... proper corrections due to 
the return flow in the wave tank ... " (Gudmestad and Haver, 1993). Since this thesis questions 
the existence of such a return flow, calculations according to Wheeler's method are not 
modified according to Eq. (5.10). Note that all these considerations pertain to the horizontal 
velocity beneath crests only. Note also that Wheeler's method was developed to calculate 
kinematics from measured non-linear timeseries of the surface elevation. Using Wheeler's 
method to calculate kinematics from synthetic timeseries of linear irregular waves is expected 
to underpredict the velocities in the crests (Gudmestad, 1993). 
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5.3 Transforming the Lagrangian Solutions to an Eulerian 
Frame of Reference by Iteration 

In order to determine Eulerian quantities from a Lagrangian solution, we need to determine 
the relations x0(x, z, t) and z0(x, z, t). Analytical approximate forms may then be attempted, 
such as Eqs. (4.36), (4.70) and (4.75) obtained by Taylor-expansions. However, these are not 
satisfactory when irregular waves are concerned, since superposition of components should be 
performed in the Lagrangian frame of reference, cf. Section 5.1. The implicit form of Eq. 
(5.1) therefore suggests that the relations x0(x, z, t) and z0(x, z, t) be found numerically by 
iteration. 

One such iteration method is developed as a part of this thesis work. The basic idea is to take 
advantage of the periodicity of a regular wave, and is thoroughly explained for Gerstner 
waves in Sections 5.3.1 and 5.3.2. The procedure is then expanded to the irregular case in 
Section 5.3.3, and to regular and irregular Miehe waves in Section 5.3.4. Only the 2D case in 
the (x, z)-plane is considered. 

The method described in the following sections applies to Eulerian points in the splash zone 
as well as points that are always submerged in water. However, when describing the method it 
is convenient to assume that the point in question is always submerged. Points in the splash 
zone are addressed in Section 5.3.5. 

5.3.1 Regular Gerstner waves 
The Eulerian position of a Lagrangian point at time t is 

x = x0 - aekz0 cos(mt- kx0 ) 

z = z0 + aekz0 sin(ox - kx0) 
(5.11) 

It is here assumed, without loss of generality, that the relative phase c is 0. The constant 
vertical shift is not included in Eq. (5.11). It must still be accounted for when comparing 
results from the procedure outlined below with experimental measurements, if the results are 
to be correct to at least second order. Depending on how we define the Eulerian frame of 
reference, the method applies to the exact solution in Eq. ( 4.1) as well as the 2nd order solution 
in Eq. (4.14). Eq. (5.11) may be considered identical to Eq. (4.1), i.e. with z = 0 a distance 
1/zka2 above the still water level. Eulerian quantities may therefore be found exactly for 
regular Gerstner waves, whereas 3rd order errors will always exist for Miehe waves. 

We now seek the Lagrangian point (Xo,, z0,) that occupies the specific Eulerian point (x1, z,) at a 
fixed time instant t. Subscript t is thus used to denote the Eulerian point (x,, 21) under 
consideration and the sought solution (x0,, z01), since other points (x0, z0) and (x, z) will also be 
involved. The unknowns are therefore the Lagrangian coordinates x01 and z01, while the 
Eulerian coordinates x, and 21, as well as the time t and the wave parameters a, k, and OJ, are 
known. 

Use will also be made of the position of a Lagrangian point half a wave period after t, cf. 
Figure 5.5, which may be written 

x * = x0 - aekzo cos(ox - kx0 + lC) 

z * == z0 + aekzo sin(mt-kx0 + lC) 
(5.12) 

For convenience, the notations e, = mt - kx, + s and e = mt - kx0 + s are introduced. Note 
that since t and x, are fixed, so is e ,. In the figures below, it is assumed that e 1 = 0, but the 
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method is independent of the value of e ,. Numbers after the commas in the sub- and 
superscripts denote the number of iterations performed. 

(x*·', z*·') = (x*(xo = x,, zo = z,), z* (xo = x,, zo = z,)) 

z 
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X 

Figure 5.5 The solid circle represents the path traversed by the "particle" (x0 = x,, z0 = z,) over 
one wave period. The dashed circle represents the path traversed by the "particle" (x0 = x*·', z0 

= z*·') over one wave period. 

From Figure 5.5, a reasonable first approximation of (x0,, z0,) is 

*( ) *I z0,,1 = z x0 = x,,z0 = z, = z · 
(5.13) 

Inserting Eq. (5.13) into Eq. (5.11) yields (x,,1, z,,1). This first approximation of (x,, z,) will 
generally not be satisfactory, cf. Figure 5.5. The second approximation (xo,,2, z0,,2) is then 
obtained according to Figure 5.6, viz. 

x*·2 = X -aekzo,.i cos(mt-kx +lr) 
Ot,I Ot,1 

* 2 kz ( ) z · = z + ae 0
'·

1 sin mt - kx + 7r Ot,I Ot,I 

(5.14) 

x =x -ai2°'·1 co/mt-kx +lr) Ot,2 t ~ Ot,I 

- kzo,.1 . ( /, ) z0,.2 - z, + ae sm OJt- u:0,,1 + 7r 

(5.15) 
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(Xo1,1, Zo1,1) 

Figure 5.6 Step two of the procedure determining the Lagrangian tag (x0,, z01) occupying the 
Eulerian position (x1, z1) at time t, yielding the second approximation (x01,2, z0t,2). The dashed 
circle is identical to the dashed circle in Figure 5.5. 

When reinserted into Eq. (5.11), Eq. (5.15) yields the second approximation of (x1, z1) 

- kzo,,2 { r.>f kx ) 
x 1,2 - x 01,2 -ae COS\u,' - 01,2 

_ kzo,,2 ' f kx ) z1,2 - z01,2 + ae Slll\mt - 01,2 

(5.16) 

If Eq. (5.16) do still not approximate (x1, z1) satisfactorily, we proceed in an iterative manner. 
We may now actually simplify the procedure, since the variables (x*, z*) turn out to be 
superfluous. They were only useful in order to establish the first approximation in Eq. (5.13) 
and explain the basic idea. The additional relative phase £ may also be included, given any 
constant value. The iteration scheme is therefore simply 

kzo,m { kx ) 
Xoi,m+I = X1 - ae ' COS\mt - Ol,m + e + 7r: 

kzo,m·f kx ) 
Zoi,m+I = Z1 + ae ' Slll\mt - Ol,m + e + 7r: 

(5.17) 

with initial values 

(5.18) 

Note that the first term on the right-hand sides of Eq. (5.17) always are the fixed values (x1, 
z1), respectively. The new approximations of (x1, z1) are 

X 1,m = Xo1,111 - aekzo,,m cos(mt - kx01 ,111 + e) 

Z1,m = Zoi,m + aekzo,,m sin(mt - kx01 ,m + e) 
(5.19) 

and the procedure is repeated until (x1,m, z,,111) are close enough to (x1, 21). How to determine 
what is "close enough" is discussed in the next section. 

Applying the latest available approximation of x01, assuming it is an improved approximation, 
might be expected to speed up the iteration, viz. 
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Xot.m+I = X1 - aekzo,.m cos(mt - kxot,m + e +JC) 

Zot,m+I = Z1 + aekzo,.m sin(mt- kxot,m+I + e +JC) 

Alternatively, one may change the order of calculation to 

kzo,m · {,,,, kx I- ) 
Zo1,m+1=Z1+ae . Sln\.,,,- Ot,m- e+JC 

- kzo,.m+l /,,,, kx ) 
Xoi,m+I - X 1 - ae COS\"" - Ot,m + e + JC 

(5.20) 

(5.21) 

However, no significant reduction in necessary number of iterations is found by using Eqs. 
(5.20) or (5.21) instead ofEq. (5.17). 

5.3.2 Convergence of the iteration and accuracy of the solution 
An error e,,. in the approximation of (x1, z1) after m iterations may be defined as the highest 
value of 

ex.m = Ix/ - x,,ml 

ez,m = Jz, - zt,ml 
(5.22) 

where x1,m and 21,111 are given by Eq. (5.19). We may assume that sufficient accuracy is obtained 
when e,,. < e, where e is a pre-defined tolerance, em is easily controllable, since the correct 
values of (xi, z1) are known. However, there is no guarantee that the accuracy of the 
Lagrangian point, which is the solution we seek, is equally accurate. This is exemplified in 
Figure 5.7, where two different phases are considered; the crest and the trough. It is seen that 
even if the error e,,m in (x1,m, Z1,m) is small in the trough, the error eom in (Xo1,m, Zo1,m) may be 
considerably greater. This effect will not be a problem in the crest. fu Figure 5.7 it is assumed 
that there is an error in z0 only. 

(Xo1, Z01 ) 
ez,m,crest 

(Xo1, Zoz) 

Cz,m,trough 

l<igure 5.7 Paths of two "particles" with equal x0 but slightly different z0• It can be seen that 
eom is greater than the vertical distance between the "particles" in the trough, e,,m,trough, while it 
is less than the corresponding distance in the crest e,,m,crest· The dimensions are not 
quantitatively correct. 

The problem is therefore to determine a suitable value of e ensuring an accuracy of e0 in the 
obtained approximation (x01,m, z01,",) of the unknown (x0,, z01). This may be done, at least for 
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most values of the steepness ka in regular waves that are of practical interest, by expressing e,,, 
as a function of eom· We should then consider the general case, with possible errors in Xo as 
well as in z0• The error in x0 is named ex0,m, and the error in z0 is named e,o,m- This yields for 
e,,111 (absolute values are ignored for now), cf. Figure 5.7, 

_ [ kzo, · ( kx )) [ kzo2 · ( kx )] e,.m - z01 -ae sm OJt- 01 1- z02 -ae sm OJt- 02 

=e -arekz0, sin(OJt-kx )-ir'o,-e,o .... 1sin10Jt-krx -e D1 
zO,m ~ 01 ~ l 01 xO,m 1 

_ kzo1 r , ( fa ) -ke,o.... , /(1)( fa k )l - e,o,m -ae LSlll OJ/:- 01 -e sm~ -- 01 + e xo,m 'j 

_ kz01 J , / /a ) -ke,o,m [ · ( kx ) k { kx )l} - e zO,m - ae 1_Slll\0Jt - 01 - e LSlll OJt - 01 + e xO,m COS\OJ/: -- 01 'j 

= e - aekzo, sin(OJt- kx il-e -ke,o,m )+ kaek201 e -ke,o .... e cos(OJt - kx ) zO,m 01 J\ xO,m 01 

= e zO,m - aekzo, Sin(OJt - kxo1 )[1- (1 - ke zO,m )] 

+ kaekzo, (1- ke zO,m ~ xO,m COS(OJt - kxo1) 

< (1- .,J2ka ~om 

where it has been assumed that 

O(ke,O,m )= O(ke xO,m )= 0(ke0m )« 1 

The minus-sign in the parenthesis in Eq. (5.23) is the appropriate one, since in the case 

(5.23) 

(5.24) 

(5.25) 

the error in the Lagrangian coordinates is less than the error in the Eulerian coordinates, e.g. 
as for the crest in Figure 5.7, and therefore not a problem. Eq. (5.25) may be applied if 
performing too many iterations is a concern. The additional constant phase te1m £ was 
excluded from the above derivation, but may be included, as in Eq. (5.17), without additional 
complications. 



5.3. Transforming the Lagrangian Solutions to an Eulerian Frame of Reference by Iteration 77 

We may derive an expression for the error ex.m in a similar manner, yielding 

"" e0m + kae0m ~kzo, [cos( OX - kx01 )- sin( OJt - kx01 )]}+ 0 (k 2 etm) 

< (1 - ../2ka ~om (5.26) 

i.e. equivalent to em,z-

If we want an accuracy in the approximation of Lagrangian coordinates of eo, we must 
therefore iterate until 

(5.27) 

i.e. the appropriate tolerance for the error in the iteration procedure is 

(5.28) 

Eq. (5.28) is only applicable, for all values of x0 and z0, if the term in the parenthesis is 
positive and less than 1. This imposes the following condition on the steepness 

1 
ka < ..fi, = 0.707 (5.29) 

However, making use also of the exponential term in the second last lines of Eqs. (5.23) and 
(5.26), we find that the tolerance 

e=(l-ka:Jeo (5.30) 

is applicable if 

(5.31) 

Eq. (5.30) is applicable for all theoretically allowable values of ka, i.e. 0 ::::; ka < I. Making 
use of k = 271/A in Eq. (5.31) yields the following conditions on z0 for the limits of the interval 
in ka not covered by Eqs. (5.28) and (5.29) 

ka =l 
I A a 

=} -a=--A=-- =} z <---
2n: 6 0 3 

(5.32) 

1 I A a 
ka=- =} -a=---A=-- =} z <--

../2 2../21r 9 0 2 
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Therefore, Eq. (5.30) will always ensure that an accuracy of e0 is obtained for O :;; ka < 1 and 
z0 < - a/2. However, the correct value of z0 is still unknown. Inserting z0 from Eq. (5.32) into 
Eq. (5.11) yields for the worst case e= 3n:/2 (trough) 

1 
ka=-

..fi 

(5.33) 

Therefore, Eq. (5.30) may be used for cases where O:;; ka < 1 and z < - 5/4a (approximately). 
Cases where both 0.707 :;; ka < 1 and z > - 5/4a may therefore require special attention with 
respect to the accuracy of the obtained values. Recall that z = 0 a distance Yzka2 above the still 
water level in this case. 

Eqs. (5.28) - (5.33) show that it is not possible to ensure a certain accuracy of (xo,,m, zo,,m) for 
all values of ka and (x,, z,), based on the easily controllable accuracy of (x1,m, z,,11) alone. Also, 
Eq. (5.24) assumes that the method actually converges. A formal argument why this method 
will converge has not been found, but one may easily be convinced of its convergence (when 
the point is in water) by studying the above scheme and considering some examples. In 
principle, it is possible to find accurate values at any point for any steepness by performing 
enough iterations. 

Some examples of the necessary number of iterations are given in the tables below. e = (mt­
kxo + £) is the phase of the Lagrangian point occupying the Eulerian point. The examples are 
all chosen to yield Xo = zo = 0, i.e. surface "particles", making the accuracy easily controllable. 
This is convenient in order to ensure that the desired accuracy is obtained also for the last five 
rows of Table 5-3 and Table 5-4, as well as the last row of Table 5-1 and Table 5-2. These are 
cases where neither Eq. (5.28) nor Eq. (5.30) are applicable, since ka > 0.707 and z0 = 0. For 
the other cases, i.e. ka = 0.1 and ka = 0.5, Eqs. (5.28) and (5.29) are applied. 

Xo =0, zo =0 

/ 

x=-a,z=O 

Figure 5.8 Spatial plot 17(x) of the surface. The dot represents the orbital centre of the path of 
the Lagrangian point ("particle") occupying the Eulerian point represented by the star, at e = 
0. 

T bi 5 1 N a e - ecessary num er o · 1terat1ons m ort e case m 1gure .. b f" ( )£ h . F' 58 
eo = 10-6 a e0 = lff3 a eo = 10·2 a 

ka = 0.1 6 3 2 
ka =0.5 21 11 7 
ka =0.9 116 50 29 
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x = -0.707 a, z= 0.707 a 

/ 
x0 = 0, z0 = 0 

Figure 5.9 As Figure 5.8, but with 8= n:/4. 

T bi 5 2N b f' ( )£ h . F' 59 a e - ecessary num er o 1terat1ons m ort ecasem 1gure .. 
eo = 10-0 a eo = 10-3 a eo = 10-2 a 

ka=0.1 5 3 1 
ka =0.5 21 11 8 
ka =0.9 120 56 34 

x=a,z=O 

Xo = 0, zo = 0 

Figure 5.10 As Figure 5.8, but with 8= n:/2. 

T bi 5 3 a e . b f' Necessary num er o 1terat1ons m or the case m 1gure ( )£ . F' 510 
eo = 10-0 a eo = 10-3 a eo = 10-2 a 

ka =0.1 6 3 2 
ka =0.5 22 12 9 
ka = 0.9 129 64 42 
ka=0.95 261 127 82 
ka =0.98 645 303 189 
ka =0.99 1.265 578 349 
ka =0.999 11.593 4.689 2.389 
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x0 =0, z0 =0 

/ 

/ 
x=O, z=-a 

Figure 5.11 As Figure 5.8, but with 8= 3n;/2. 

T able 5 f' -4 Necessary number o 1terat1ons (m )£ h . F' ort ecasem 1gure 5 11 
eo = 10-0 a eo = 10-0 a eo = 10°' a 

ka = O.l 5 2 1 
ka =0.5 20 10 6 
ka =0.9 114 49 27 

ka =0.95 222 88 45 
ka = 0.98 522 182 77 
ka =0.99 983 300 107 

ka :::0.999 7.594 1.094 178 

It can be seen that the method converges very fast for all practically interesting cases in 
regular waves. It was also found that it is possible to find accurate solutions even as (1 - ka) is 
close to Oby letting the number of iterations approach infinity. 

5.3.3 Irregular Gerstner waves 
As stated in the beginning of Section 5.1, it is not theoretically consistent to include the 
vertical shifts in Gerstner's (or Miche's) solution when modelling irregular waves. The shifts 
are therefore ignored for the irregular case for now, and we return to an Eulerian frame of 
reference with z = 0 at the still water level. The calculations are therefore not exact as 
solutions of the problem, as the case was for regular Gerstner waves in Section 5.3.1. 
However, the iteration ensures that all spectral components may be included in an equally 
consistent manner anywhere in the fluid. Thus, the common problem of overprediction of 
high-frequency contributions near and above the still water level is eliminated. Appropriate 
spectral cut-off frequencies may then be based solely on considerations on e.g. component 
energies in the spectrum as well as on the range of validity of the dispersion relation. 

In this section it is assumed that the Lagrangian amplitude spectrum, as well as the phases £ ,,, 

are known. 

It may not be obvious that the reasoning in Section 5.3.1 applies to the irregular case as well, 
but it turns out that 

N 
* "' k Zo ( k ) x = x0 - £.,,ane " cos m,,t - nXo + £ 11 + 1C 

n=I 

N 
(5.34) 

z* = z0 + La
11

ek,,zo sin(m,J-k
11
x0 +£

11 
+tc) 

w=l 

mirror the image of 
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N 

x = x0 - 2,allek,zo cos(wllt- kllx0 +ell) 
n=l 

N 

z = z0 + 2,allek,zo sin(w,J-kllx0 +ell) 
n=l 

(5.35) 

about (x,, z,), just as for the regular case which was shown in Figure 5.5. The method is 
therefore equally applicable for the irregular case, assuming that Eq. (5.5) is satisfied (Eq. 
(5.6) for Miehe waves). 

The iteration scheme for irregular Gerstner waves is 

with initial values 

N 
~ k,,zo, m { f k + + ) Xot,m+I = Xt - ,t_,ane , COS\O)ll - llXOt,m ell ff 

ll=l 

N 

Zot,m+I = zt + 2,allek,,zo,,m sin(O)n(- k11XOt,m + ell +ff) 
n=l 

Xo,.o = x" Zo1,o = z, 

The new approximate values of (x,, z,) are 

N 
~ k,,zo,"' { t t + ) Xt,m+I = Xor,ll - ,t_,alle ' COS\OJll - tCllXOt,m e 11 
n=l 

N 

zt,m+I = Zot,m + 2,allek,zo,,m sin(ro11t - kllXOt,m +ell) 
n=l 

According to Eq. (5.28), an appropriate tolerance may be 

where the tolerances are defined as in Section 5.3.2, and 

f S(w ),Gerst11er (k ,a, 0) = max[ tknall sin[Oll (xo ,t,e11 )]] < 1 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

is the maximum effective steepness based on Eq. (5.5) with z0 = 0. e II are the phases of the 
spectral (Fourier) components. As in Eq. (5.29), Eq. (5.39) is then expected to be valid for 

1 
fs(w),Gersmer(k,a,0)< Ji, 

5.3.4 Regular and irregular Miehe waves 

(5.41) 

Only the first order terms of Miche's solution are considered. According to Eq. ( 4.69) and 
related comments, we may assume that excluding the 211

d order terms in regular waves is 
correct when e.g. ka > 0.2 and h/}., > 0.2. For the irregular case it will anyhow be inconsistent 
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to include 2nd order terms. As for Gerstner waves, the constant vertical shift must be 
accounted for when comparing with experimental measurements for regular waves. 

The scheme for regular (1 '' order) Miehe waves is 

coshk(z01 m + h) ( ) 
Xo,.m+I == x, -a . · cos OJt-kx01 m +c + TC 

smhkh · 

sinhk(zo,,m + h) . ( ) 
zo,m+I == z, +a . sin OJt-kx0,m +c+TC 

· smhkh · 

with initial values 

Xo,,o = x,, zo,,o = z, 

and new approximate values of (x,, z,) 

coshk~0,,,,, + h) ( ) 
x,,,,,=x0,m-a cosOJt-kx0,m+c 

· sinhkh · 

sinhk(zo,m +h) . ( ) 
z,m =z0,,,,, +a . ' sm 0Jt-kx0,m +c 

· smhkh · 

The appropriate tolerance corresponding to Eq. (5.28) is 

-(l ~2k coshkh) e- -,vL.. a--- e0 sinhkh 

which for some limiting values of h/2requires (approximately) 

h/2> 0.2 => e=(l-}ka) eo => 

h/2 > 0.1 => e=(l-%ka) e0 => 

h/2> 0.05 => e = (1- 5ka) e0 => 

0.2 <ka <0.6 

0.25 < ka < 0.4 

0.3 < ka < 0.2 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

The lower limits of ka in Eq. (5.46) are determined by Eq. (4.69). The upper limits are 
determined by requiring that the term in the parenthesis in Eq. (5.45) is positive and less than 
1. It can be seen that the requirement on ka for h/2 = 0.05 is illegal. Eq. (5.45) can therefore 
only be used for h/2 > 0.1 (approximately). Note that the znd order vertical shift is not 
included in Eqs. (5.42) and (5.44), meaning that the vertical Eulerian coordinate is here 
defined by z = 0 a distance Y2ka2coshkh/sinhkh above the still water level, cf. Eq. (4.61). This 
is not quite in accordance with the definition of the Eulerian frame of reference form Miche's 
solution, but it simplifies the iteration scheme and has no effect on the results of the iteration 
to second order. 

For irregular (l'' order) Miehe waves, where z = 0 at the still water level, the iteration scheme 
is 
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~ coshkn (zo,,m + h) ( ) 
Xot,m+I = X1 - _L..,a 11 • COS (J)11 f - k11 X01 ,111 + e11 + 1C 

n=I s111hk11 h 

~ sinhk11 (zo,,m + h) . ( ) 
z01,n+I = z1 + .L..,an . sm W11 t - knxo,,m + e11 + 1C 

11=1 smhk11 h 

with initial values 

and new approximate values of (x,, z,) 

~ coshk)z01 , 11 +h) I ) 
x,,n+I = Xo,,m - .L..,an . COS\W11t-k11 x0 ,,m +e11 

11=1 smhk11 h 

~ sinhk11 (zo,,m + h) . / ) 
z,,m+I = Zo,,m + .L..,a11 • Slll\W11 t-k11 x0,,m +e11 

n=I Slllhknh 

A tolerance corresponding to Eq. (5.45) is 

e = ll-v'lfs(w},Miche (k,a,e)}o 

where 

fs(w},Miche (k,a,8)= max[})na,, c~shknh sin[e,, (x0 ,t,e11 )]l < 1 
n=I smhknh J 

cf. Eqs. (5.6) and (5.40). Eq. (5.50) is thus expected to be valid for 

1 
fs(w),Miche(k,a,8)< v'2 

5.3.5 Points in the splash zone 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

When the Eulerian point in question is out of water, the method will either return converged 
values with z0 > (0 + e0), which is unphysical, or simply not converge. The first alternative is 
easily checked and dealt with. If the method does not converge, the tables in Section 5.3.2 
show that one may conclude that the point is out of water if the desired accuracy is not 
obtained after a specific number of iterations. MATLAB, which is the numerical tool applied 
in this work, may also return values as NaN ('not a number') or ± inf ('infinity') when the 
exponential terms grow beyond the numerical limits, and allows such values to be treated in a 
very simple manner. 

Convergence to a specific accuracy for regular waves may be ensured e.g. by iteration until 
the error e in (x,.m, z,,m) satisfies Eqs. (5.28) and (5.29) for Gerstner waves and Eqs. (5.45) and 
(5.46) for Miehe waves. However, the corresponding conditions for irregular Gerstner and 
Miehe waves, as given by Eqs. (5.39) - (5.41) and Eqs. (5.50) - (5.52), respectively, have not 
been derived or verified properly. For practical purposes, it is therefore found preferable to 
choose a quite high accuracy, e.g. e = 104 a, and terminate the iteration if convergence its not 
obtained after a maximum number of iterations, e.g. 100, for the regular as well as the 
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irregular case. The iteration itself is then practically "exact". However, for irregular waves, 
this is still the solution of the linearized governing equations only. 

Therefore, a point may be concluded to be out of water if 

• the method converges but returns z0 > (0 + e0) 

• convergence has not been obtained after e.g. 100 iterations 
• returned values of Xo and/or z0 are NaN or ±inf (in MATLAB) 

If the point is found to be out of water, one may in MATLAB e.g. set z0 = - inf Kinematics 
and pressure are thus assigued the value O when the point is out of water. 

In addition to the tests on (x,,,,,, z,,,,,) described in Section 5.3.2, one may also check how the 
differences (Xom+I - Xom) and (zom+I - z0,,,) behave, and stop the iteration when these are both 
less than e.g. e0• However, choosing a specific accuracy e and a specific maximum number of 
iterations is still believed to be preferable and sufficient. 

The iteration method described above may possibly be extended to the 3D case, although the 
increase in computational effort, especially for the irregular case, may be considerable. 

A non-uniform mass transport, i.e. a Lagrangian current such as Stokes drift, may in principle 
also be included. However, this has not been done for two reasons; there is no obvious choice 
for the period of time the drift has acted, and the considerations in Section 4.3 suggests that 
superposing a non-uniform current on the wave solution may be theoretically inconsistent. 

5.4 Wave Spectra and Timeseries of the Surface 
Elevation 

As stated in the introduction to this chapter, we do not know the exact theoretical relation 
between the spectrum of the Lagrangian orbital motion of a specific "particle" and the 
spectrum of the surface elevation at a fixed Eulerian x-position. Since comparisons of theory 
with measurements are often based on the latter, it is of some importance to find whether 
there is a significant difference between these two types of spectra. 

It is then reasonable to start with a timeseries of the surface elevation at a fixed x-position. A 
Fourier analysis of the timeseries, cf. Section 6.1.2, gives a set of components with amplitude 
an, circular frequency OJ,,, wave number kn and relative phase en. We may then attempt to 
reproduce the timeseries of the surface elevation by considering the same spectrum as the 
Lagrangian orbital amplitude spectrum. This requires an iteration procedure similar to that 
presented in Section 5.3. 

In Section 5.3, the unknowns were the Lagrangian coordinates (x0, z0) as functions of the 
known Eulerian coordinates (x, z). However, now the unknowns are x0 and z, while z0 and x 
are known. Since we consider the surface, we have that z0 = 0 by definition. We may choose 
any value of x, and it is most convenient to consider x = 0. The relations between the different 
coordinates are still as given by Eq. (5.1), and inserting the present values of z0 and x gives the 
following implicit problem 

N 

x0 (t) = La,, cos(m,,t- knxo (t )+ £,,) (5.53) 
n=l 

This may be formulated as an iteration scheme, viz. 
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N 

Xo.m+i(t)= I,a 11 cos(m11t-k11 x0,m(t)+t:,,) (5.54) 
n=l 

where the initial values may be set as x0,0(t) = 0 and iteration is performed e.g. until lxoin+i(t) -
x0,m(t)I < 'a given tolerance'. For Miehe waves we get 

( ) f coshk11 h I k ( ) ) Xo,m+I t = ,t,..011 , COS~OJ11t- 11 Xo,m t + £ 11 

ll=I smhk11h 
(5.55) 

Solving Eq. (5.54)/(5.55) for each discrete t yields a vector x0, which inserted into the 
expression for z in Eq. (5.1), still with z0 = 0, yields the timeseries of the surface elevation 17 
(t)atxas 

N 

17(t)= I,a 11 sin(m,,t-k11 x0 (t)+t:,,) (5.56) 
n=l 

Eq. (5.56) is identical for Miehe and Gerstner waves. The timeseries of Eq. (5.56) may now 
be compared with the original measured timeseries. We may also perform a Fourier analysis 
of the new timeseries in Eq. (5.56) in order to obtain the 'output' spectrum and phases of this 
process, and compare this with the 'input' spectrum and phases. 

Figure 5.12 shows the measured surface elevation spectrum of Case 5 (run 118_23), cf. Table 
6-1. 

-3 
x10 3.5~------------------~------~ 
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m [rad/s] 
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Figure 5.12 Raw spectrum of surface elevation, Case 5 (run 118_23), Tp = 1.8 s. 

The highest value of the surface elevation in this experimental run, i.e. the highest crest, was 
found to lie at t "' 553.5 s (the record has a total duration of 819.2 s). In Figure 5.13 is shown 
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a 20 second interval including this highest wave, while Figure 5.14 includes only the highest 
wave and the preceding and following waves. 

0.3 

0.25 

0.2 

0.15 · 

0.1 · 

z 0.05 
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-0.i 

-0.15 

-0.2 

540 545 550 555 560 

Figure 5.13 Measured timeseries in solid line, timeseries reproduced by Eqs. (5.54) and 
(5.56) in dotted line. Case 5 (run 118_23). 
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Figure 5.14 Excerpt from Figure 5.13, showing the highest crest of the timeseries. 
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It can be seen that the original timeseries is reproduced quite well, but not perfectly. The 
highest peak is clearly underestimated, while the other peaks are reproduced quite accurately. 
This is also evident from Figure 5.13 where several peaks are included. All frequency 
components are included in the example, from Oto the Nyquist frequency. A considerably 
narrower frequency range is of course sufficient and physically more correct for practical 
purposes, and the results will only be slightly different from Figure 5.13 and Figure 5.14. 
Adding all components as Eulerian components, i.e. according to Eq. (5.4) with x = 0, 
reproduces the discrete points of the timeseries exactly. 

The timeseries in the above figures is seen to qualitatively exhibit the same difference in 
steepening of crests and flattening of troughs as the spatial snapshots in Section 5.1. Hence, 
the difference between a Lagrangian and Eulerian description is apparent in the time domain 
as well as in the spatial domain. Simulations based on a synthetic spectrum reveal that this 
difference prevails even if the spectrum is divided into more frequency components with 
smaller amplitudes. Figure 5.1 - Figure 5.3 show that these differences stem from the 
interactions between components, and comparing Eq. (5.56) with Eq. (5.4) shows that they 
are governed by the phase, i.e. x vs. Xo. 

Therefore, the "true" Lagrangian orbital amplitude spectrum differs somewhat from the 
Eulerian surface elevation spectrum, and it seems to be a very complex task to obtain one 
from the other, if possible at all. Still, the measured Eulerian spectrum is found to be a 
reasonable approximation to the Lagrangian input spectrum, as seen in the above figures, and 
is therefore applied as such in the calculations presented in Section 6.3. Peak values of 
quantities that are in phase with the surface elevation should then be reproduced quite well, 
e.g. the horizontal velocity. Ways of modifying the experimentally measured spectrum in 
order to get something closer to the "true" Lagrangian spectrum has therefore not been 
considered here. The results for irregular waves in Chapter 6 must be interpreted and 
discussed with this in mind. 

However, ocean waves are often measured by buoys, and wave spectra based on such 
measurements may be considered more Lagrangian than Eulerian, and typical design spectra 
are anyhow subject to uncertainties. Hence, even if perfect agreement between Eulerian 
measurements and calculations based on Lagrangian expressions may be difficult to obtain, 
the Lagrangian approach should be very well suited for simulations and practical design 
purposes. 
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CHA=R6 
COMPARISONS OF THEORY 

WITH MEASUREMENTS 

6.1 Experiments, Analysis and Calculations 

6.1.1 The experiments 
The measurements used for the comparisons are from the extensive experiments carried out 
by Skjelbreia et al. (1991), where water particle velocities were measured using a laser 
doppler velocimeter (LDV). A more detailed description of the experiments may be found in 
Skjelbreia (1991), only a summary is given here. 

The experiments were carried out in a wave tank at the Norwegian Hydrotechnical Laboratory 
(NHL, now SINTEF Civil and Environmental Engineering, Department of Coastal and Ocean 
Engineering) in Trondheim, cf. Figure 6.1. 
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Figure 6.1 The wave tank at NHL (from Skjelbreia et al., 1991). 
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The tank is 33 m long, 1.02 m wide and 1.8 m deep. It is constructed of concrete with a glass 
section 4.22 rn long, located approximately 10 m from the end of the tank, that allows 
viewing over the entire depth. The wavemaker is hydraulically driven, and can be discretely 
varied from a pure hinge mode to a pure piston mode. The wave absorber at the end of the 
tank consists of a series of vertical perforated steel plates, having a reflection coefficient of 
approximately 5% for the frequency range containing significant energy in these experiments. 
In addition, a floating plastic mat 2.5 m long was placed in front of the wave absorber, in 
order to reduce high frequency reflections from the absorber as well as cross waves. 

The surface elevation was measured with standard resistive gages having streamlined 
supports to minimize disturbances. 7 wave gages were employed, cf. Figure 6.1. Wave gage 1 
was placed at the longitudinal position of the LDV-station, but displaced 0.34 m from the 
centerline to avoid disturbances near the LDV measurement point. The wave gages 2, 3, 4, 5, 
6 were placed to decompose incoming and reflected waves. Wave gage 7 was placed near the 
end of the tank to monitor the performance of the wave absorber. 

Velocity measurements could be made in one point only for each experimental run. They 
were all made at the longitudinal position of wave gage 1, in a point on the centerline of the 
tank, whereas the vertical position of the measurement point could be varied from one run to 
another. The positioning of the LDV was accurate to ±0.1 mm. The LDV measured the two 
velocity components u and w in a plane parallel to the side-walls of the tank. The LDV 
allowed measurements as close as 1-2 mm from the free surface, and the measurement 
volume had a cross-section diameter of approximately 100 µm. The accuracy of the velocity 
measurements were estimated to ± 0.005 rn/s with better than 95% confidence. However, 
there are occasions when a lack of sufficient matter in the measurement volume, or possibly 
oversized particles passing through the measurement volume, results in erroneous 
measurements (Skjelbreia, 1991). These may be recognized e.g. as clearly deviating spikes in 
the timeseries. See Skjelbreia (1991) for further details on the technical and functional aspects 
oftheLDV. 

The surface elevation and LDV-data were sampled at a rate of 40 Hz without any filtering. 

The test program consisted of nine wave conditions (cases), cf. Table 6-1. Six were irregular 
wave cases, two were regular wave cases and one case considered two-component waves. 
Approximately 30 runs were recorded for each case, yielding a total of 269 runs, with velocity 
measurements at several vertical levels for each case. The input control signal to the 
wavemaker was constructed from a JONSW AP spectrum using y = 3.0. The spectrum was 
divided into 1000 frequency components, each assigned a random phase. The water level was 
maintained for each run to within± 1 mm, and a period of 20-30 minutes elapsed between 
consecutive runs to maintain reproducibility of the runs. The latter is of importance when 
constructing a snapshot of the flow throughout the depth, since measurements of the velocities 
could only be performed in one point for each run. The water depth h was 1.3 m, except for in 
two cases where it was 0.6 m. The bottom in the tank is horizontal. Each run had a duration of 
819.2 s, yielding 32.768 = i15 sample points. 

The velocity measurements were made at vertical levels in the region --1.105 < z < 0.22 for 
the cases where h = 1.3 m, and-0.40 < z < 0.125 for the two cases where h = 0.6 m (z = 0 at 
the still water level and z = - h at the bottom). 

Based on the pealc period, all cases may be classified as 'intermediate water' cases. Cases 1, 2 
and 8 are relatively close to the 'deep water' limit, while Cases 4, 6 and 7 are closer to the 
'shallow water' limit. 

Runs from Cases 2, 5, 6, 8 and 9 were available for the comparisons in this thesis. 
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Table 6-1 Test program in Skjelbreia et al. (1991). The identifyer of each case in the first 
column is as given by Skjelbreia. For Cases 7, 8 & 9; Tp = T. For Cases 8 & 9; Hs = H. The 
last two columns indicate the region of applicability of different wave theories according to 
Dean (1970). 

Case Wave Tp [s] Hs [m] h [m] Hs h 
conditions (input (measured gT} 

--
gT,; 

values) values) 
1: 112 Irregular 1.2 0.11 1.3 0.0078 0.092 
2: 114 Irregular 1.4 0.16 1.3 0.0082 0.068 
3: 1165 Irregular 1.65 0.17 1.3 0.0064 0.049 
4: Sl165 lrre!!Ular 1.65 0.17 0.6 0.0064 0.022 
5: 118 Irregular 1.8 0.21 1.3 0.0066 0.041 
6: 124 Irregular 2.4 0.25 1.3 0.0044 0.023 
7: 12124 Two- 2.1 & 2.4 0.18 1.3 0.0036 0.026 

component (average) (average) 
8: R15B Regular 1.5 0.26 1.3 0.0118 0.059 
9: SR15 Regular 1.5 0.23 0.6 0.0104 0.027 

With reference to Section 6.1.2 below, Table 6-2 shows the characteristics of the original 
timeseries recorded by Skjelbreia et al. (1991). 

Table 6-2 Characteristics of the ori inal timeseries in Sk"elbreia et al. (1991) 
OJNyquist 

127.5 rad/s 

We may of course choose to analyze only excerpts of the measured timeseries. N, N/2 and TN 
must then be based on the excerpt, while &,Jsampie,!Nyquist and OJ Nyquist remain as in Table 6-2. 

6.1.2 Obtaining component wave parameters by Fourier analysis of measured 
timeseries 

The measured timeseries are analyzed in MATLAB using the FFT-function on the sampled 
timeseries. If the number of sample points is a power of 2, this function performs a fast 
Fourier-transform. If the number of sample points is not a power of 2, the function performs a 
discrete Fourier-transform. Further details on the MATLAB-functions may be found e.g. by 
typing 'help FFT' in the MATLAB Command Window. 

The Fourier-transform of the timeseries x(m) of length N is found by the FFT function as 

N 
FAn)= I,x(m) e[-;2,.(11-1)(m-1)/N] 1-e:;n-e:;N (6.1) 

m=l 

The inverse Fourier transform is found in MATLAB by the function IFFT as 

N 
x(m )= _!._ L,Fx (n) e[;2,.(11-1)(m-1)/N] 

N n=I 
(62) 

The timeseries is characterized by a number of sample points N, a total duration TN, a 
temporal spacing between each sample At and a sampling frequency !sample, viz. 
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1 T 
11t = -- == -1:L 

fsample N 
(6.3) 

One objective here is to find (an estimate of) the amplitude spectrum of the process x(m) as a 
function of the circular frequency, based on the Fourier-transform of the measured timeseries. 
Following Newland (1993), this spectrum S( li.ln) may be obtained as 

where the arguments li.ln are given by 

2tr(n -1) 2tr(n-1) 2Jif (n -1) 
mn = 

TN Nl1t N 

N 
lsn:s;-+1 

2 

N 
lsns-+1 

2 

(6.4) 

(6.5) 

The factor 2 in Eq. (6.4) appears because the spectrum is the one-sided spectrum, i.e. with 
positive arguments li.ln only. The maximum number of components is then N/2 + 1, hence the 
limits of n in Eqs. (6.4) and (6.5). 

The Nyquist frequency is the maximum frequency that can be detected from a timeseries 
sampled at the rate/sample, and is found as 

f 
_ fsample 

Nyquist - --
2

-

The circular Nyquist frequency is found as 

(6.6) 

(6.7) 

confirming the limits of n in the preceding equations This is in-espective of whether N and TN 
represents the whole timeseries or only excerpts of it, as long as flt is fixed. 

The component amplitudes may now be found as 

where llm is given by 

and is equal for all components. 

N 
lsns-+1 

2 
(6.8) 

(6.1)) 

Common Eulerian analysis normally make use of transfer-functions and inverse Fourier­
transforms, meaning that it is not necessary to find the relative phases between the different 
components explicitly. However, the Lagrangian analysis require explicit knowledge of the 
relative phases £,,. Whereas phase-information cannot be found from the spectrum alone, the 
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relative phases may still be found based on the form of a Fourier-series and knowledge of the 
Fourier-transforms. The Fourier-series representing the surface elevation, i.e. equivalent to 
Eq. (6.2) with 17(m) instead of x(m), is 

N/2 [21l'(n-1) t] [21l'(n-1) t] 
17(m )= a, + L, An cos + B11 sin ----

11=2 TN TN 
lsmsN (6.10) 

where a1, A 11 and B11 are related to the Fourier-transform in Eq. (6.1) as 

Re[F
17 

(n )] Irn[F
17 

(n )] 
A" = 2 N , B" = -2 N (6.11) 

Eq. (6.10) may also be written 

N/
2 

• [21C(n-1) t ] 
17(m)= a1 + ~a 11 sm TN +e11 

lsmsN (6.12) 

where an are the component amplitudes of Eq. (6.8) and a1 is the mean value of the timeseries. 

The relative phases are now found as 

e11 = tan-
1 

{ ~:[;: ~: m- sign{Im[Fx (n )]}, (1- sign{Re[Fx (n )]}) · 1l' + ~ N 2sns-+1 (6.13) 
2 

where sign returns the sign of the term in the brackets, i.e. + 1 or -1. The last term lr/2 on the 
right-hand side of Eq. (6.13) is due to the use of sin in Eq. (6.12), since the real part is given 
by cos. The sin-form is chosen because this is how the phase of vertical displacement, and 
thus the leading order term of the surface elevation, is defined in this thesis. 

The wave numbers k11 are found from the dispersion relation, given by Eq. ( 4.17) for Gerstner 
components and Eq. (4.66) for Miehe components, viz. 

Gerstner: 

Miehe: 

2 

k = 0)11 
n g 

0)2 

k =-11 tanhk h 
n g II 

N 
lsns-+1 

2 

The wavelengths and wave periods of the components may also be found as usual, viz. 

21l' 
A"=-, 

kn 

(6.14) 

(6.15) 

Note that Eqs. (6.14) and (6.15) are not physically co1Tect for the very highest frequencies, i.e. 
OJn > 60 rad/s, since the surface tension is then also of significance (capillary waves). The use 
of the dispersion relation is also questionable for the very lowest frequencies, since these 
waves cannot be assumed to be free gravity waves, at least not in a closed basin such as a 
wave flume. Skjelbreia (1991) found that the dispersion relation holds for the energetic parts 
of the spectra in the experiments in Skjelbreia et al. (1991). 
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6.1.3 Calculations for comparison of theory with measurements 
The required component parameters a,,, OJ n, kn and en are now known from the analysis 
described in the previous section, determined by Eqs. (6.8), (6.5), (6.14) and (6.13), 
respectively. The appropriate discrete time instants t111 to apply are 

t =(m-l)tit= (m-l) l~m~N 
m f (6.16) 

By the method in Section 5.4 we may then determine which Lagrangian point constitutes the 
surface at a given Eulerian x-position at a given instant in time, as well as the actual value of 
the surface elevation, and thus reproduce a timeseries of the surface elevation. 

By the iteration method in Section 5.3 we may further determine which Lagrangian point 
occupies a specific Eulerian position at a specific instant in time. The value of any quantity in 
this Eulerian position at this instant in time may then be found by inserting these Lagrangian 
coordinates into e.g. Eq. (5.3) for Gerstner waves, or into the corresponding equations for 
Miehe waves. In this way it is possible to construct timeseries of the velocity, acceleration 
and pressure in any fixed Eulerian position, even in the splash zone, from the Lagrangian 
expressions, and compare with the measured timeseries. Similarly it is possible to determine 
e.g. instantaneous velocity profiles beneath crests and troughs. Quantities such as the mean 
horizontal velocity in a vertical cross-section may be found by producing timeseries and 
averaging over a chosen timeseries-interval. However, this would require a lot of 
computation. The mean horizontal velocity is therefore assumed to be adequately described 
by the approximations in Sections 4.1.5, 4.1.6, 4.2.2 and 4.2.3. 

In the implementation of the iteration methods in Sections 6.2 and 6.3, the tolerance e0 is set 
to 104 m. The procedures are terminated after 100 iterations if convergence has not been 
achieved. 

It is believed that the conditions in a wave flume change continuously, from an initial state 
where waves are being generated to a situation where bound waves, reflections etc. are 
present. When studying instantaneous values, it therefore seems more informative to 
investigate individual incidents and how these develop in time, rather than to collect results 
from several incidents over longer timeseries-intervals. Also, mean values of quantities 
should be studied in a short-term sense as well as in a long-term sense. Cieslikiewicz and 
Gudmestad (1993, 1994a, 1994b, 1995, 1996) have performed extensive statistical analysis of 
the data from the experiments by Skjelbreia et al. (1991). 

The comparisons in this thesis focus on the mean horizontal velocity, since this is of special 
importance with respect to the underlying theory, and on the instantaneous horizontal velocity 
beneath crests and troughs, since this may be of particular interest with respect to applied 
kinematics models such as Wheeler's method, cf. Section 5.2. These quantities are also those 
least subject to the differences between Eulerian measurements and calculations according to 
Lagrangian expressions, cf. Section 5.4, and therefore best suited for such comparisons. 

Any other type of comparison is of course also possible, only limited by the computational 
effort in iterations and calculations. 

6.2 Results for Regular Waves 

This section presents the results for regular waves. The results are discussed in Section 7.3. 
The results pertain to the two regular wave cases in Table 6-1; Cases 8 and 9. In Case 8, the 
wave steepness ka is 0.24, the wavelength ;i, is 3.45 m and the depth-to-wavelength ratio h/A 
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is 0.3. In Case 9, the wave steepness ka is also 0.24, the wavelength ,1, is 3.00 m and the 
depth-to-wavelength ratio h/,1, is 0.20. Both cases pertain to intermediate water, and 
calculations are therefore performed according to Miche's theory. These values of ka and h/,1, 
also allow use of the so-called simplified form of Miche's solution, cf. Eq. (4.69) and related 
comments and the introduction to Section 5.3.4. 

Some quantities for the regular waves may be useful to have at hand: 

The values of the vertical shifts are, cf. Eq. (4.61), 

Case 8: & Miche,su,face = 0.0157 m 

Case 9: & Miche,su,face = 0.0163 m 

the regular wave celerities are 

Case 8: c = w = 2.3 m/s 
k 

Case 9: c = w = 2.0 m/s 
k 

and the values of the assumed Stokes drift are, cf. Eq. ( 4.83), 

cosh2k(z0 +h) 
Case8: Ustokesdrift=0.131 . [m/s] 

smh2kh 

cosh2k(z0 +h) 
Case 9: Ustokes drift = 0.137 . [m/s] 

smh2kh 

(6.17) 

(6.18) 

(6.19) 

When comparing theory with wave flume measurements of kinematics, describing and 
interpreting the mean horizontal velocity in the flume correctly is of the utmost importance. 
The development of this mean velocity in regular waves is therefore given special attention in 
Section 6.2.1. 

Instantaneous vertical profiles of the horizontal velocity beneath crests and troughs are 
presented in Section 6.2.2. 

Finally, some measured and computed timeseries for fixed Eulerian points are compared in 
Section 6.2.3. 

The measurements considered are all made at the longitudinal position of wave gage 1, cf. 
Figure 6.1, approximately 19.5 m from the wavemaker and 12 m from the end of the flume. 

6.2.1 Mean horizontal velocity in a vertical cross-section 
The purpose of this section is to show how the mean Eulerian horizontal velocity in the flume 
develops and changes nature as the experiments evolve. 

The mean horizontal velocity in Miehe waves is calculated according to Eqs. (4.77) and 
(4.78). It is also interesting to compare with the mean velocity predicted by Stokes waves, 
including Stokes drift, as given by Eqs. (4.77) and (4.86). This is done for Case 8 in Figure 
6.2 and for Case 9 in Figure 6.3. Only calculations according to Miehe are included in the 
comparisons with measurements, but the relation to Stokes waves is always as given by 
Figure 6.2 and Figure 6.3. 
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Figure 6.2 Mean Eulerian horizontal velocity in Case 8 according to Miehe (-) and 2nd order 
Stokes waves including Stokes drift(· - -). 
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:Figure 6.3 Mean Eulerian horizontal velocity in Case 9 according to Miehe (-) and 2"d order 
Stokes waves including Stokes drift(· - -). 
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The averaging of velocity measurements is done over one wave period for the early parts of 
the records, and over ten wave periods later on. This makes it possible to identify the distinct 
changes in the early parts, and it gives a relatively detailed picture of the development later on 
while still smoothing out the most local variations. Presenting these results requires numerous 
plots, and these are therefore given in Appendix B. Case 8 (R15B) is there covered by Figure 
B.1 - Figure B.23, and Case 9 (SR15) is covered by Figure B.24 - Figure B.43. Only a few 
plots are included in this section, the actual timeseries-interval being given in each figure, and 
the reader is refen-ed to Appendix B for a more detailed picture of the temporal development. 

The typical initial part (first 60 seconds) of the surface elevation measurements in Case 8 is 
shown in Figure 6.4. It can be seen that the first disturbances an-ive at gage 1, cf. Figure 6.1, 
after approximately 5-6 seconds, the wave front an-ives after approximately 17-18 seconds, 
and a quite regular wave situation is apparently established after approximately 30 seconds. 
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Figure 6.4 Typical first 60 seconds of the surface elevation measurements at wave gage 1 in 
Case 8 (figure based on run R15B_2). 

The mean velocity is initially zero everywhere. No change is detected until the first 
disturbances in the surface elevation arrive, i.e. after approximately 5-6 seconds, cf. Figure 
6.5. A distinct vertically uniform and positive (forward) mean velocity is then seen to appear. 
This positive mean velocity generally persists until the wave front passes, i.e. until after 
approximately 17-18 seconds. A distinct transition then takes place below the splash zone, cf. 
Figure 6.6. The mean velocity is now negative, but still practically vertically uniform, in this 
region. In the splash zone, the mean velocity profile is seen to take on a form similar to that 
predicted by Stokes waves, cf. Figure 6.2. The type of transition shown in Figure 6.6 is also 
reported by Johnsen (1987) and Gudmestad et al. (1988) for other regular wave experiments, 
and will from here on be refen-ed to as "the first u·ansition". The rather high negative value 
just above z = 0 in Figure 6.6 is invalid, and stems from spurious individual spilces that occur 
from time to time in the LDV-measurements in the splash zone, cf. Section 6.1.1. 
Investigation of the timeseries-interval yielding this specific mean value shows that this part 
of the measured signal is clearly invalid. 
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Figure 6.6 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 8 
(Rl5B), 17 < t < 18.5 s. 
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When investigating the rest of the typical surface elevation measurements for Case 8, it is 
found that the waves generally appear to be quite regular, cf. Figure 6.7 and Figure 6.8. Some 
of the runs do however exhibit less regularity, while others are even more regular. 
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Figure 6. 7 Typical surface elevation measurement at wave gage 1 for 60 < t < 180 s in Case 8 
(figure based on run R15B_2). 
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Figure 6.8 The whole surface elevation timeseries at wave gage 1, Case 8, run Rl5B_2. 
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Figure 6.9 Measured(*) and calculated(-) mean horizontal velocity at wave gage l, Case 8 
(R15B), 105 < t < 120 s. 
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Figure 6.10 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 8 
(R15B), 585 <: t < 600 s. 
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As reported by Skjelbreia (1991), another quite distinct transition in the mean horizontal 
velocity takes place when roughly 50 waves have passed wave gage 1, yielding a mean 
velocity profile as in Figure 6.9. This will from here on be referred to as "the second 
transition". This transition actually takes place over some period of time, starting near the 
surface at t - 75 - 90 s and developing throughout depth until t - 120 - 135 s, cf. Appendix B. 
The mean horizontal velocity then appears to reach a steady state, except for near the bottom. 
A forward 'creeping flow' will eventually develop at the bottom due to viscosity, cf. Mei 
(1989, his Section 9.6), which may explain the change towards a positive mean velocity for 
the lower measurements points in Figure 6.10. It takes some time before such a creeping flow 
can be detected by the recordings, since the lowest measurement points are 19.5 cm above the 
bottom. However, the creeping flow is present at the bottom also prior to the timeseries­
interval in Figure 6.10. Reproduction and video-filming of an experimental run as in Case 8, 
in the same flume and under the same conditions as the original experiments, reveals that the 
creeping flow "starts" at the bottom after approximately 105 seconds. The situation remains 
more or less as in Figure 6.10 for the rest of the records. 

The typical initial part of the surface elevation measurements in Case 9 is shown in Figure 
6.11. 
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Figure 6.11 Typical first 60 seconds of the surface elevation measurements at wave gage 1 in 
Case 9 (SR15). 

In Figure 6.11, the first disturbance arrives after 7-8 seconds, i.e. later than in Case 8, and a 
distinct wave front arrives after approximately 15 seconds, i.e. earlier than in Case 8. The 
surface elevation is clearly "non-regular" for this first minute of the record. 

The evolution of the mean velocity now generally follows the pattern in Case 8. No mean 
horizontal velocity is registered until after approximately 7-8 seconds, i.e. as the first 
disturbances in the surface elevation arrive, but the magnitude of this first positive mean 
velocity is significantly higher than in Case 8, cf. Figure 6.12. In Figure 6.13 it is seen that the 
first transition takes place earlier in Case 9 than in Case 8, even if the wave celerity is now 
lower, suggesting that it is indeed associated with the wave front. The second transition also 
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takes place earlier in Case 9 than in Case 8, cf. Figure 6.14. The situation appears to remain as 
in Figure 6.14 for the rest of the records. 
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Figure 6.12 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 9 
(SR15), 8.5 < t < 10 s. 
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Figure 6.13 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 9 
(SR15), 13 < t < 14.5 s. 
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Figure 6.14 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 9 
(SR15), 90 < t < 105 s. 
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Figure 6.15 Typical surface elevation at wave gage 1 for 60 < t < 180 sin Case 9 (SR15). 

Figure 6.15 shows the typical surface elevation for 60 < t < 180 s in Case 9. The "non­
regularity" is still quite pronounced, and it remains so for the rest of the timeseries. 
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6.2.2 Instantaneous horizontal velocity in a vertical cross-section beneath 
individual crests and troughs 

Large errors are introduced if the instantaneous horizontal velocity is calculated according to 
the approximate Eulerian f01m of Miehe waves found by Taylor-expansion in Section 4.2.2, 
since the wave steepnesses in the present wave cases are not infinitesimal. These errors are 
significant also below the still water level. Figure 6.16 - Figure 6.19 show the difference 
between performing calculations according to the iteration method for regular Miehe waves 
described in Section 5.3.4, and using the approximate Eulerian expressions for u in Eq. (4.75) 
to 1 '' and 2nd order, respectively. The surface profiles in the figures are not plotted in the 
correct longitudinal spatial scale, and are only meant to show the amplitudes of the crests and 
troughs. These figures emphasize the importance of applying the iteration method when 
investigating higher order quantities. For the horizontal velocity just below the crests in very 
steep waves, the 1 '' order approximation will yield positive values several times higher than 
that found by iteration, while the 2nd order approximation will yield negative values of 
magnitude comparable to the 1 '' order approximation. 

The calculations used for the comparisons with measurements in this section are therefore 
made according to the iteration method for regular Miehe waves described in Section 5.3.4. 
Comparisons are made for a crest and a trough at t "' 45 s and t "' 150 s for both regular 
wave cases. This covers the two most important situations identified in the previous section, 
namely after the first transition, associated with the passing of the initial wave front, and after 
the second transition after roughly 75-135 seconds. 

It is also interesting to compare the iteration method for regular Miehe waves with Wheeler's 
method applied to regular waves, the latter given by Eq. (5.9) (finite depth). This is done for 
Case 8 in Figure 6.20 and Figure 6.21. 
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Figure 6.16 Calculations of the horizontal velocity beneath the crests in regular Miehe waves 
corresponding to Case 8 (H = 0.26 m, T = 1.5 s, h = 1.3 m). 
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Figure 6.17 Calculations of the horizontal velocity beneath the troughs in regular Miehe 
waves corresponding to Case 8 (H = 0.26 m, T = 1.5 s, h = 1.3 m). 
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Figure 6.18 Calculations of the horizontal velocity beneath the crests in regular Miehe waves 
c011'esponding to Case 9 (H == 0.23 m, T = 1.5 s, h = 0.6 m). 
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Figure 6.19 Calculations of the horizontal velocity beneath the troughs in regular Miehe 
waves corresponding to Case 9 (H = 0.23 m, T = 1.5 s, h = 0.6 m). 
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Figure 6.20 Comparison of Miche's theory (by iteration) and Wheeler's method for the 
horizontal velocity beneath a crest in regular waves corresponding to Case 8 (H == 0.26 m, T = 
1.5 s, h = l.3 m). 
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Figure 6.21 Comparison of Miche's theory (by iteration) and Wheeler's method for the 
horizontal velocity beneath a trough in regular waves corresponding to Case 8 (H = 0.26 m, T 
= 1.5 s, h = 1.3 m). 

Figure 6.20 and Figure 6.21 show that Wheeler's method and Miche's solution yield identical 
values at the surface and at the bottom, as they should for regular waves, and the differences 
in the region in-between are qualitatively as expected due to the stretching of coordinates in 
Wheeler's method, cf. Sections 5.2 and 7.3.2 also. 

When calculating regular wave kinematics, the regular wave amplitude is required as input in 
addition to the wave period. While the wave period in the experiments turn out to be 
practically constant, there are significant variations in the measured amplitudes, and these 
may also differ from the assumed regular wave amplitudes listed in Table 6-1. The "non­
regularities" found in the surface elevation for Case 9 in Section 6.2.1 is one effect that makes 
it difficult to determine a representative regular wave amplitude. In addition to calculations 
based on the assumed amplitudes in Table 6-1, calculations are therefore also performed with 
amplitudes determined by the crest/trough associated with the velocity measurements at each 
vertical level. However, using the measured value of the surface elevation at the crests and 
troughs as amplitudes is not satisfactory, due to the asymmetry about the horizontal axis. A 
better estimate may be found solving for a in Eq. (6.20), viz. 

Crest: 
1 2 coshkh 

a+ -ka -.--= 11measured crest 
2 smhkh ' 

T h -a+ _!_ka 2 coshkh = 
roug : 2 sinhkh 11measured,trough 

(6.20) 

i.e. accounting for the vertical shift in Eq. (4.61). Alternatively, the "real" amplitude may be 
defined as half the measured vertical distance between neighbouring crests and troughs (i.e. 
the local wave height), viz. 
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H 
a=-

2 
H = 1Jmeasured,crest -1Jmeas1'red,trough (6.21) 

Eq. (6.21) is more reliable than Eq. (6.20), since the former may be more influenced by bound 
long waves. 

There may be small time lags between the experimental runs required to construct a vertical 
profile, cf. Section 6.1.1. The chosen value of the velocity at each vertical level is therefore 
that measured simultaneously with the maximum/minimum value of the surface elevation in 
an timeseries-interval enclosing only the crest/trough under consideration. The experiments 
tum out to be quite well reproduced, the time lag between the runs being typically less than 
T/20. Therefore, this approach does find and compare the crest or trough for e.g. "wave 
number 100" of all experimental runs of each case. 

The measured profiles of the crests or troughs under consideration are included in the plots, in 
order to show the differences in the measured surface profiles of the different runs. The crests 
and troughs are focused at the vertical line u(z) = 0, although small offsets may occur due to 
the actual plotting procedure (note that the longitudinal scale of the wave profiles is not 
correct with respect to the vertical scale). The velocity measurements in the plots are anyhow 
those associated with the peak values of the surface elevation, as stated above. The thicker 
horizontal lines show the level of the trough and crest as predicted by Miche's theory, cf. Eq. 
(6.17). The thinner horizontal line represents the still water level. The value of the horizontal 
velocity is set equal to zero if the Eulerian point in question is found to be out of water, as can 
be seen from the figures pertaining to troughs. 
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Figure 6.22 Crest at t "' 45 s, Case 8 (R15B). (*): measurements, solid line: iteration using a 
= 0.13 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. (6.20). 

As in Figure 6.6, the clearly deviating value at z = 0.05 should be discarded. 



6.2. Results for Regular Waves 

-0.4 
z[m] 

-0.6 

-0.8 

-1 

-1.2 

-0.5 

109 

0 0.5 
u(z) [m/s] 

Figure 6.23 Trough at t "' 45 s, Case 8 (R15B). (*): measurements, solid line: iteration using 
a = 0.13 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 
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Figure 6.24 Crest at t "' 150 s, Case 8 (R15B). (*): measurements, solid line: iteration using 
a = 0.13 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 



110 

0 

-0.2 · 

-0.4 · 

z[m] 

-0.6 

-0.8 

-1 

-0.6 

Chapter 6. Comparisons of Theory with Measurements 

-0.4 -0.2 0 0.2 0.4 0.6 
u(z) [m/s] 

Figure 6.25 Trough at t "' 150 s, Case 8 (R15B). (*): measurements, solid line: iteration 
using a= 0.13 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 

0.2 

0.1 

z[m] 
-0.2 

-0.3 · 

-0.4 · 

-0.5 

-i 

* )0 

-0.5 0 0.5 
u(z) [m/s] 

Figure 6.26 Crest at t "' 45 s, Case 9 (SR15). (*): measurements, solid line: iteration using a 
= 0.115 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 
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Figure 6.27 Trough at t "' 45 s, Case 9 (SR15). (*): measurements, solid line: iteration using 
a = 0.115 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 
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Figure 6.28 Crest at t "' 150 s, Case 9 (SR15). (*): measurements, solid line: iteration using a 
= 0.115 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from Eq. 
(6.20). 
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Figure 6.29 Trough at t "' 150 s, Case 9 (SR15). (*): measurements, solid line: iteration 
using a= 0.115 m, circles: iteration using a from Eq. (6.21), squares: iteration using a from 
Eq. (6.20). 

Miche's theory is seen to yield too low values beneath crests and too high values beneath 
troughs at t "' 45 s, while it compares very well with the measurements at t "' 150 s. This is 
in accordance with the findings for the mean velocity in the previous section. It can also be 
seen that the level of the crests and troughs predicted by Miche's theory is in good agreement 
with the measured surface elevations, except for in Figure 6.26 and Figure 6.27. These are 
also the figures where the difference between applying a from Table 6-1, Eq. (6.20) or (6.21), 
respectively, is most significant. Hence, there is a clear discrepancy between theory and 
measurements in the period after the first transition, and an overall agreement, also in the 
splash zone, after the second transition. These results have been confirmed for other time 
instants also. 

6.2.3 Timeseries of the surface elevation and velocities in fixed spatial points 
As in the previous section, the velocities in this section are calculated according to the 
iteration method for regular Miehe waves described in Section 5.3.4. The surface elevation is 
calculated according to the method described in Section 5.4. Only Case 8 is considered here, 
for the two timeseries-intervals 43 < t < 47 s and 148 < t < 152 s. These intervals include the 
waves considered in the previous section (at t "' 45 and t "' 150), as well as the preceding 
and following waves. The amplitude used in the calculations is as given by Table 6-1, i.e. a= 
0.13 m. Comparisons are made for the surface elevation as well as the horizontal and vertical 
velocity at two vertical levels; one near the crest and one below the trough. As the 
measurement point comes out of water, the LDV "freezes" at the last recorded value. Recall 
that invalid spikes are likely to occur just as the point comes into or goes out of water, cf. 
Figure 6.31. Calculated velocities are included only for the intervals when the Eulerian point 
in question is found to be in water theoretically. The phase is defined by the crest of the 
measured waves. The measured wave crests are slightly asymmetrical about a vertical axis, 
meaning that the calculations and measurements may be slightly out of phase in other parts of 
the wave (e.g. at troughs and zero crossings). 
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Figure 6.30 Timeseries of the surface elevation and velocities at z = 0.10 (horizontal line in 
plot of 17), 43 < t 47 s, Case 8 (run R15B_8). The measured timeseries are given by solid 
lines, while calculations according to Miehe are given by dotted lines. 
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Figure 6.31 Timeseries of the surface elevation and velocities at z = 0.10 (horizontal line in 
plot of 17), 148 < t < 152 s, Case 8 (run R15B_8). The measured timeseries are given by solid 
lines, while calculations according to Miehe are given by dotted lines. 
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Figure 6.32 Timeseries of the surface elevation and velocities at z = - 0.20, 43 < t < 47 s, 
Case 8 (run R15B_ 4). The measured timeseries are given by solid lines, while calculations 
according to Miehe are given by dotted lines. 
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Figure 6.33 Timeseries of the surface elevation and velocities at z = - 0.20, 148 < t < 152 s, 
Case 8 (run R15B_ 4). The measured timeseries are given by solid lines, while calculations 
according to Miehe are given by dotted lines. 
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As in the previous sections, clear discrepancies between the calculated aud measured 
horizontal velocities are found for t - 45 s, while they compare better for t - 150 s. The 
discrepancies in the vertical velocity in Figure 6.33 are found to stem from quite local 
variations, cf. Section 7.3.4. 

6.3 Results for Irregular Waves 

This section presents the results for irregular waves. The results are discussed in Section 7.4. 
The same types of comparisons are made for irregular waves as for regular waves. In order to 
reduce the influence of finite depth, aud reduce the number of figures, most comparisons are 
made for Case 2 (Il4) cf. Table 6-1. The peak period of this wave case corresponds to a 
depth-to-wavelength ratio h/2 = 0.43. The peak period of Case 5 (Il8) corresponds to h/2 = 
0.27, aud the peak period of Case 6 (I24) corresponds to h/2 = 0.18. 

The component parameters are found by Fourier analysis of the entire record of the measured 
surface elevation, i.e. N = 32.768 and TN = 819.2 s, cf. Sections 6.1.2 aud 6.1.3. The 
component steepnesses are found to lie in the rauge 0.002 < knan < 0.013, aud the component 
amplitudes are found to lie in the range O < an < 6 mm, cf. Figure 6.34. These values are 
typical values for all runs in all cases in the irregular wave experiments. The typical form of 
the amplitude spectrum for Case 2 is shown in Figure 6.48. 
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Figure 6.34 Typical plot of component steepnesses and amplitudes. This plot is based on run 
I14_1, aud includes components in the frequency range O < m < 3m20. 

6.3.1 Mean horizontal velocity in a vertical cross-section 
The mean Euleriau horizontal velocity in irregular waves is calculated according to Eqs. 
(4.77) and (4.80). 

Figure 6.35 shows the measured aud calculated meau horizontal velocity for Case 2, the 
measured values being averaged over the entire timeseries. In Eq. (4.80), the mean velocity is 
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based on the mean zero crossing frequency m 20 (- 5.15 rad/s). However, Figure 6.35 also 
include calculations using the spectral peak frequency m P (- 4.49 rad/s) and the spectral mean 
frequency m 10 (- 4.90 rad/s), respectively, as the representative narrow band frequency in Eq. 
(4.80). It can be seen that the calculations are quite insensitive to which frequency is 
considered representative, except for in the lower part of the splash zone, and the calculations 
are in good agreement with the measurements. Figure 6.35 also include calculations based on 
Eq. (4.82). It would here seem reasonable to consider a JONSWAP spectrum, and use Eq. 
( 4.81) instead of Eq. ( 4.82), since the control signal to the wavemaker was constructed from a 
JONSWAP spectrum. However, from timeseries analysis, the ratio between m 20 and mp is 
found to be 1.15 for Case 2, which differs somewhat from Eq. (4.56). Therefore, Eq. (4.82) 
with Cw= 1.15 is used in Figure 6.35. It can be seen that below the splash zone this yields the 
same result as Eq. (4.80) using m 20, as expected. The rest of the figures in this section are 
based on m20 as the representative narrow band frequency. 
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Figure 6.35 Measured (*) and calculated mean horizontal velocity at wave gage 1, Case 2 
(114), 0 < t < 819.2 s. The solid line pertains to m 20, the dotted line to m 10, and the thicker 
dashed line to mP. The thinner dashed line also pertains to m 20, and is based on Eq. (4.82) 
with Cw= 1.15. The upper horizontal line represents the significant wave height. 

In irregular waves, the mean horizontal velocity must be expected to vary somewhat from 
wave to wave. In order to investigate the development of the mean velocity in the irregular 
case, we should therefore consider relatively long timeseries-intervals. Design sea states often 
have a peak period of approximately 15 s and ocean measurements typically have a duration 
of 20 minutes or more, corresponding to roughly 80 peak periods or more. An interval 
corresponding to 80-100 peak periods is therefore found appropriate for these comparisons. 

For Case 2, it is found that during the first - 2-3 minutes there is a positive mean velocity in 
the splash zone and a nearly vertically uniform negative mean velocity below the splash zone, 
cf. Figure 6.36. A transition similar to that found for regular waves then appears to take place, 
yielding a mean velocity profile as shown in Figure 6.37. The profile is there seen to be quite 
similar to that predicted by the narrow band assumption, although there is a marked 
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underprediction at the typical vertical level of the troughs. Similar results are found for Case 5 
(118) and Case 6 (124) also, cf. Figure 6.38 and Figure 6.39. The transition takes place earlier 
in these cases than in Case 2, typically within ~ 2 minutes. 
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Figure 6.36 Measured (*) and calculated (-) mean horizontal velocity at wave gage 1, Case 2 
(114), 0 < t < 112 s (80 Tp), 
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Figure 6.37 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 2 
(114), 224 < t < 336 s (80 Tµ), 
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Figure 6.38 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 5 
(118), 180 < t < 360 s (100 Tp). 
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Figure 6.39 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 6 
(124), 120 < t < 360 s (100 Tp), 
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It is also of interest to investigate short-term variations in the mean horizontal velocity, e.g. 
the variation from wave to wave. Three successive individual waves in Case 2 have been 
chosen for this purpose, including one of the highest waves of Case 2, namely those with 
crests at t "' 554.5, 556 and 557.5 s, respectively, in Figure 6.40. 
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Figure 6.40 Excerpt of surface elevation at wave gage 1, 552 < t < 561 s. All available runs 
of Case 2 are included. 

Recall that the LDV measurements at each vertical level required one designated 
experimental run, cf. Section 6.1.1. The irregular waves were generated by the same input 
signal to the wavemaker, and from a theoretical point of view this should result in the exact 
same surface elevation records. Such perfect reproduction of experimental runs is of course 
not possible, but Figure 6.40 shows that the runs of Case 2 were still very well reproduced. 
There is however one run that clearly deviates from the others. Timeseries analysis of this run 
(114_15), which is associated with the velocity measurements at z = 0.10, yields a peak period 
of 2.5 s. This means that this specific run is not comparable to the others of Case 2 at all. The 
measured velocities at this vertical level should therefore be discarded, and are left out of the 
rest of the comparisons. 

Figure 6.41 - Figure 6.43 show the horizontal velocity averaged over 1.5 s for the three 
individual waves under consideration. An interval of 1.5 s is chosen because this appears to 
be an appropriate mean period for all the waves included in Figure 6.40. The calculated 
"narrow band profile" is the same in all three figures below. This profile cannot be expected 
to compare well with short-term values, and is only included as a reference curve. A marked 
increase in the mean velocity below as well as above the still water level can be seen for the 
highest wave in Figure 6.42, as compared to the preceding and following smaller waves in 
Figure 6.41 and Figure 6.43, respectively. 

The same type of comparison is made for three waves in Case 5 (118) also, cf. Figure 6.45 -
Figure 6.47. The waves considered there are those with crests at t "' 165.8, 167.7 and 169.3 s, 
respectively, in Figure 6.44. The different runs are seen to be nearly perfectly reproduced in 
Case 5 also. The measured velocities are now averaged over a period of 1.8 s. A short-term 
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variation similar to that in Figure 6.41 - Figure 6.43 is seen in Figure 6.45 - Figure 6.47 as 
well, although less pronounced. 
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Figure 6.41 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 2 
(114), 553.75 < t < 555.25 s. 
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Figure 6.42 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 2 
(114), 555.25 < t < 556.75 s. 
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Figure 6.43 Measured (*) and calculated (-) mean horizontal velocity at wave gage 1, Case 2 
(114), 556.75 < t < 558.25 s. 
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Figure 6.44 Excerpt of surface elevation at wave gage 1, 164 < t < 172 s. All available runs 
of Case 5 are included. 
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Figure 6.45 Measured (*) and calculated (-) mean horizontal velocity at wave gage 1, Case 5 
(I18), 164.9 < t < 166.7 s. 
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Figure 6.46 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 5 
(Il8), 166.8 < t < 168.6 s. 
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Figure 6.47 Measured(*) and calculated(-) mean horizontal velocity at wave gage 1, Case 5 
(118), 168.4 < t < 170.2 s. 

The results in Figure 6.41 - Figure 6.43 and Figure 6.44 - Figure 6.47 may be of particular 
interest and importance, since they suggest that the mean velocity is indeed a result of closed 
orbital "particle"-paths. A higher individual wave is clearly associated with higher positive 
and negative values in the mean velocity profile, as predicted by Gerstner and Miehe. A 
return-current, i.e. a real backward mass flow independent of the instantaneous wave, should 
not exhibit short-term variations of this nature or magnitude, cf. Section 7.4.1 also. 

Reproduction and video-filming of an experimental run as in Case 5, in the same flume and 
under the same conditions as the original experiments, shows that a weak creeping flow 
appears be set up after 5-6 minutes. No creeping flow is observed for Case 2, while it may be 
more significant in Case 6. 

6.3.2 Instantaneous horizontal velocity in a vertical cross-section beneath 
individual crests and troughs 

The results for the horizontal velocity in this section include calculations according the 
iteration method for irregular Miehe waves described in Sections 5.3.4, and calculations 
according to Wheeler's method for finite depth, cf. Section 5.2. The surface elevation is 
calculated according to the iteration method described in Section 5.4. 

In Figure 6.48 is shown the measured (raw) spectrum of the surface elevation of run Il4_1. 
This spectrum is representative for all runs of Case 2, except of course run 114_15, cf. Figure 
6.40. Most of the energy is seen to be included in the frequency range 1hm20 < m < 2m20, and 
practically all energy is included within O < m < 3m20 (co20 "'5.15 rad/s). 

In Figure 6.49 - Figure 6.64 is shown the instantaneous horizontal velocity beneath some 
chosen individual crests and associated troughs in Case 2. These are the crest at t "' 100 s, 
which is the highest individual wave in Case 2, the crest at t "' 556 s, which is the highest 
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individual wave in the interval 120 < t < 780 s, and a moderate crest at t "" 373 s. Note that 
calculations according to Miehe may conclude that the Eulerian point in question is out of 
water even if it actually was in water in the experiments, and set the velocity at this level to 
zero. This is not the case for the calculations according to Wheeler's method, since these are 
based on the measured surface elevation. 

S [m2s/rad] 

-3 
x10 

3 

2.5 

2 

--~-----~------------, 

10 15 20 25 

OJ [rad/s] 

Figure 6.48 Surface elevation amplitude spectrum measured at wave gage 1, Case 2, run 
I14_1. 

The highest crest at t "" 100.3 s is considered in Figure 6.49 - Figure 6.55. Figure 6.49 -
Figure 6.52 show the effect of including/excluding frequency components higher than 20J 20 

in the calculations. The high frequency contributions are seen to be quite significant for 
Wheeler's method near the free surface for this highest crest. The significance of the highest 
frequency components seems to be less in the calculations according to Miehe. Even if the 
actual comparisons appear to be better when including the higher frequencies, this does not 
mean that it is physically correct to include them. Nor is it physically correct to include the 
lowest frequency components in this way. However, all frequency components are significant 
for the surface elevation and thus for the iteration methods in Sections 5.3 and 5.4. Therefore, 
since we do not know what the most appropriate frequency range is, different frequency 
ranges are applied in the comparisons. The horizontal velocity beneath the other crests and 
troughs in Figure 6.51 is shown in Figure 6.53 - Figure 6.55. 

The measured and calculated surface elevation near the moderate wave at t "" 373 is shown in 
Figure 6.56, and the horizontal velocity beneath the neighbouring crest and troughs is shown 
in Figure 6.57 - Figure 6.59. The measured and calculated surface elevation near the high 
wave at t "" 556 is shown in Figure 6.60, and the horizontal velocity beneath the 
neighbouring crests and troughs is shown in Figure 6.60 - Figure 6.64. There is an odd 'kink' 
at the top of the velocity profile calculated according to Miehe in Figure 6.61, which is found 
to stem from the very lowest frequency components, i.e. 0 < OJ << Oho, cf. Figure 6.62. The 
reason for this is that the iteration method for irregular Miehe waves is sensitive to low 
frequency contributions. This is described in more detail in Section 7.2.2. 
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Figure 6.49 Excerpt of measured (-) and calculated ( ... ) surface elevation at wave gage 1, 
Case 2 (run Il4_1), 99 < t < 102.5. Spectral frequency range: Yzm20 < m < 2m20 • 
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Figure 6.50 Horizontal velocity beneath crest at t "' 100.3 s in Figure 6.49; (*) measured 
values,(-) calculations according to Miehe, (-·-)calculations according to Wheeler. Spectral 
frequency range: Y2 m20 < m < 2mzo. 
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Figure 6.51 Excerpt of measured (-) and calculated ( ••• ) surface elevation at wave gage 1, 
Case 2 (run 114_1), 99 < t < 102.5. Spectral frequency range: 0 <OJ< 30J20 • 
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Figure 6.52 Horizontal velocity beneath crest at t "' 100.3 s in Figure 6.51; (*) measured 
values,(-) calculations according to Miehe,(· - -) calculations according to Wheeler. Spectral 
frequency range: 0 < OJ < 3 OJ 20, 
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Figure 6.53 Horizontal velocity beneath trough at t "" 99.7 s in Figure 6.51; (*) measured 
values,(-) calculations according to Miehe, (· - -) calculations according to Wheeler. Spectral 
frequency range: 0 < OJ< 30J20, 
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Figure 6.54 Horizontal velocity beneath trough at t "" 101 s in Figure 6.51; (*) measured 
values,(-) calculations according to Miehe, (- - -) calculations according to Wheeler. Spectral 
frequency range: 0 < OJ< 30J20, 
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Figure 6.55 Horizontal velocity beneath crest at t "' 101.7 s in Figure 6.51; (*) measured 
values,(-) calculations according to Miehe,(· - -) calculations according to Wheeler. Spectral 
frequency range: 0 < OJ< 30J20-
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Figure 6.56 Excerpt of measured (-) and calculated ( ••• ) surface elevation at wave gage 1, 
Case 2 (run 114_1), 372 < t < 374.5. Spectral frequency range: 0 < OJ< 30J20. 
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Figure 6.57 Horizontal velocity beneath trough at t "' 372.5 s in Figure 6.56; (*) measured 
values,(-) calculations according to Miehe, (- - -) calculations according to Wheeler. Spectral 
frequency range: 0 < (J) < 3(1) 20• 
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Figure 6.58 Horizontal velocity beneath crest at t "' 373 s in Figure 6.56; (*) measured 
values,(-) calculations according to Miehe,(··-) calculations according to Wheeler. Spectral 
frequency range: 0 < (J) < 3(1) 20• 
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Figure 6.59 Horizontal velocity beneath trough at t "' 373.7 s in Figure 6.56; (*) measured 
values,(-) calculations according to Miehe, (- - -) calculations according to Wheeler. Spectral 
frequency range: 0 < OJ< 30J20, 
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Figure 6.60 Excerpt of measured (-) and calculated ( •.• ) surface elevation at wave gage 1, 
Case 2 (run 114_1), 554.5 < t < 558. Spectral frequency range: 0 < OJ< 3m20 • 
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Figure 6.61 Horizontal velocity beneath trough at t "' 555.5 s in Figure 6.60; (*) measured 
values,(-) calculations according to Miehe, (-·-)calculations according to Wheeler. Spectral 
frequency range: 0 < (J) < 3()) 20• 
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Figure 6.62 Horizontal velocity beneath trough at t "' 555.5 s in Figure 6.60; (*) measured 
values,(-) calculations according to Miehe, (- - -) calculations according to Wheeler. Spectral 
frequency range: 0.1 {J}zo < (J) < 3())20. 
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Figure 6.63 Horizontal velocity beneath crest at t "' 556 s in Figure 6.60; (*) measured 
values,(-) calculations according to Miehe,(··-) calculations according to Wheeler. Spectral 
frequency range: 0 < w < 3w20. 
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Figure 6.64 Horizontal velocity beneath trough at t "' 556.7 s in Figure 6.60; (*) measured 
values,(-) calculations according to Miehe, (- - -) calculations according to Wheeler. Spectral 
frequency range: 0 < w < 30J20. 
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Some results are included for the highest crest in Case 5 as well, cf. Figure 6.65 - Figure 6.69. 
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Figure 6.65 Excerpt of measured (-) and calculated ( ... ) surface elevation at wave gage 1, 
Case 5 (run I18_23), 551.5 < t < 556. Spectral frequency range: Yuu20 < w < 3w20• 
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Figure 6.66 Horizontal velocity beneath trough at t "' 552.8 s in Figure 6.65; (*) measured 
values,(-) calculations according to Miehe,(··-) calculations according to Wheeler. Spectral 
frequency range: 1h W20 < w < 3W20, 
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Figure 6.67 Horizontal velocity beneath crest at t "" 553.5 s in Figure 6.65; (*) measured 
values,(-) calculations according to Miehe,(···) calculations according to Wheeler. Spectral 
frequency range: 1/2m 20 < m < 3m 20 • 
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Figure 6.68 Horizontal velocity beneath trough at t "' 554.5 s in Figure 6.65; (*) measured 
values,(-) calculations according to Miehe,(··-) calculations according to Wheeler. Spectral 
frequency range: Y2m20 < m < 3mzo. 
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Figure 6.69 Horizontal velocity beneath crest at t "' 555.5 s in Figure 6.65; (*) measured 
values,(-) calculations according to Miehe,(· - -) calculations according to Wheeler. Spectral 
frequency range: l/2m20 < m < 3m 20• 

Calculations according to Miehe fail to reproduce the surface elevation perfectly, as expected 
due to the difference between Lagrangian and Eulerian spectra, but still appears to predict the 
horizontal velocity profile beneath crests and troughs better than Wheeler's method does. The 
velocities are stiII clearly overpredicted in some cases and clearly underpredicted in others, 
and calculations compare better with measurements beneath crests than troughs. 

6.3.3 Timeseries of the surface elevation, effective steepness and velocities 
in fixed spatial points 

The calculations in this section are performed according to the iteration method for irregular 
Miehe waves described in Sections 5.3.4 and 5.4. Wheeler's method is not included below, 
since the relation between it and calculations according to Miehe is assumed to be adequately 
covered in Section 6.3.2. Do however note that timeseries according to Wheeler's method are 
generally more "in phase" with timeseries measured in fixed Eulerian positions, since they are 
not subject to the difference between an Eulerian and a Lagrangian spectrum. The figures 
below are based on a spectral frequency range O < m < 3m20• 

In Sections 5.4 and 6.3.2 it is shown that there will be differences between measured and 
calculated timeseries. Therefore, only a few examples are included her. As in Section 6.2.3, 
the vertical level under consideration is shown by a horizontal line in the surface elevation 
plot. The measured values are "frozen" at the last recorded value as the point comes out of 
water. Calculated values are included only for the intervals when the point in question is 
found to be in water theoretically. In addition to the surface elevation and horizontal and 
vertical velocities, plots of the effective steepness given by Eq. (5.6) are also included. For the 
surface, this is found in the same way as the surface elevation, i.e. according to Section 5.4. 
For a fixed z-position, it is found in the same way as the velocities, i.e. according to Section 
5.3.4. 
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Figure 6. 70 Excerpt of timeseries of the surface elevation and horizontal and vertical velocity 
at z = - 0.10, 554.5 < t < 558 s, Case 2 (run 114_1). The measured timeseries are given by 
solid lines, while calculations according to Miehe are given by dotted lines. 
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Figure 6.71 Effective steepness for the waves in Figure 6.70, calculated according to Eq. 
(5.6). The solid line represents the value at the surface, while the dashed line represents the 
value at z = - 0.10, both at x == 0. 
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Figure 6. 72 Excerpt of timeseries of the surface elevation and horizontal and vertical velocity 
at z = 0.10, 551 < t < 556 s, Case 5 (run 118_15). The measured timeseries are given by solid 
lines, while calculations according to Miehe are given by dotted lines. 
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Figure 6.73 Effective steepness for the waves in Figure 6.72, calculated according to Eq. 
(5.6). The solid line represents the value at the surface, while the dashed line represents the 
value at z = - 0.10, both at x = 0. 
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It is seen that the differences between the measured and calculated velocities conespond to 
the differences in surface elevation. A difference in the slope of the vertical velocity similar to 
that found for regular waves in Section 6.2.3 is seen in Figure 6.72 also. The measured values 
of w at t "' 553.5 s in Figure 6.72 are clearly enoneous, and invalid spikes can also be 
observed for u in the same figure. 

The effective steepness can be seen to reach values close to 0.7. The steepnesses are found to 
be practically unaffected by applying Eq. (5.5) and Eq. (4.17) instead of Eqs. (5.6) and (4.66). 

Even if this has not been studied in detail, the horizontal velocity at all depths seems to be in 
phase with the surface elevation, cf. Figure 6.70. This seems to be the case in regular as well 
as irregular waves, in the early part of the timeseries as well as later on. 



CHA=R 7 
DISCUSSION 

7.1 The Basic Equations of Motion and Vortex Motion 

7.1.1 The continuum model, the Jacobian and the Lagrangian frame of 
reference 

In a continuum, the relations in Eqs. (2.1) and (2.2) must exist and be single-valued, cf. e.g. 
Truesdell and Toupin (1960). These relations may be found as solutions of the equations of 
motion. Also, a Lagrangian form of an Eulerian solution, and vice versa, may be found for 
any instant, e.g. by Taylor-expansions or iteration. A Jacobian may therefore always be 
determined, from an Eulerian as well as a Lagrangian solution. 

The Jacobian and the Lagrangian frame of reference are closely related to the concept of 
continuity as well as to each other. For simplicity, only the 2D case will be discussed here, 
and the density is assumed to be uniform and constant. Conservation of mass is then ensured 
by conservation of area, as illustrated in Figure 2.1. Considering an infinitesimal area, which 
in still water was defined by oA = dxdz, Eq. (2.16) yields the following condition for the 
Jacobian and the Lagrangian frame of reference 

Jdx0dz0 = const. (7.1) 

Continuity must apply to an element of finite size as well, yielding an integral relation as in 
Eq. (2.23), viz. 

(7.2) 

As stated in Section 2.2, the conservation laws apply to specific portions of matter, not to 
regions of space, and are therefore Lagrangian by nature. Although the material and the 
spatial descriptions are both due to Euler, it was Lagrange who introduced the Lagrangian 
coordinates as we know them, cf. Lamb (1932), Tokaty (1994) and Levi (1995). Hence the 
term ' Lagrangian' for the material description. 

According to Lagrange, the material (i.e. Lagrangian) coordinates defining a specific material 
element at any time can be set equal to the Eulerian coordinates defining the element in a state 
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of rest. With reference to Eq. (7.1), this means that dx0 = dx and dz0 = dz at all times. The 
continuity requirement according to Lagrange must therefore be J = 1. 

However, the solution of the equations of motion may result in a Jacobian different from 1. 
This is the case for Gerstner waves, cf. Eq. (4.8), viz. 

(7.3) 

Recall that Gerstner's solution is an exact analytical solution of the nonlinear equations of 
motion and boundary conditions. Perturbation solutions based on ka << 1 and J = 1 are 
physically equivalent to Gerstner's exact solution, cf. Eqs. (4.14) and (4.15) and related 
comments, only less accurate. 

Lamb (1932, Art. 16) states that the Lagrangian coordinates need not be restricted to mean the 
initial (still water) Eulerian coordinates of a particle, they may be any quantities which serve 
to identify a particle, and may vary continuously from one particle to another. According to 
Lamb, the condition J = const. therefore suffices to ensure continuity, as found in Section 
2.3.1, and Eq. (7.3) thus satisfies continuity. 

Hence, Lagrange and Lamb both start by assuming that the "meaning" of the Lagrangian 
coordinates remain the same at all times, i.e. that a Lagrangian point always represents the 
same material "particle". It thenfollows that the Jacobian must be constant, viz. 

(7.4) 

However, Eq. (7.3) leaves a physical problem with respect to Eq. (7.4). Even if the Jacobian 
in Eq. (7.3) is not explicitly a function time, it is a function of the wave amplitude and 
wavelength. A wave must somehow be generated over a fmite period of time, and the wave 
amplitude and wavelength changes during generation. The Jacobian in Eq. (7.3) is therefore 
only constant as long as the wave amplitude and wavelength is constant, or in other words, as 
long as the state of deformation is constant. If the wave amplitude or wavelength changes, the 
Jacobian changes, and the Lagrangian frame of reference must be redefined according to Eqs. 
(2.23) and (7 .2). Note that even if an element in a regular Gerstner wave deforms 
continuously during a wave period, its state of deformation is still uniquely determined by the 
wave amplitude and wavelength. The redefinition of the Lagrangian frame of reference is 
explained for the exact form of Gerstner waves in Section 4.1.1, in particular in the text 
between Eq. (4.9) and Eq. (4.14). The interval dz0 defming a material element in existing 
waves is there found to be different from the interval dz defining it in still water, since z runs 
from Oto - hand z0 runs from Oto (- h-1hka2), where his the water depth in still water. The 
intervals dx0 and dx are equal. In the approximate form of Gerstner's solution, i.e. Eqs. (4.14) 
and ( 4.15), the intervals dz0 and dx0 are both equal to dz and dx, respectively, by assumption. 

One may therefore say that in a perturbation approach, the inconvenience of redefining the 
Lagrangian frame of reference is avoided at the cost of reduced accuracy, while an exact 
solution may be found at the cost of a less convenient Lagrangian frame of reference. The 
former is of course a perfectly reasonable way of obtaining an approximate solution. 
However, Eqs. (7.3) and (7.4) are not only of importance with respect to waves and Gerstner's 
solution, they also have fundamental theoretical implications. They show that a Lagrangian 
frame of reference exists which is superior to that associated with J = 1. Therefore, it is 
argued here that it is incorrect to impose general conditions on the solution based on J = I, 
e.g. as done in Eq. (3.22). 
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It is then appropriate to ask why Lagrange and Lamb, and others, claim that the "meaning" of 
the Lagrangian points have to be constant; what is the argument for putting a 'tag' on a 
specific fluid "particle"? Why must J, x0 and dz0 be constant individually, when it should be 
sufficient that the product (or integral of) Jdxodzo is constant? In order to address these 
questions it is necessary to consider the assumptions made with respect to physics as well as 
mathematics. 

Continuity in a mathematical sense means that for surface (volume) integrals, the area 
(volume) of integration is reducible to a single point, cf. e.g. Batchelor (1967, his section 2.6). 
Conditions on the integral itself then also applies to the integrand, meaning that the 
dimensions dxdz and dxodzo of the infinitesimal continuum element in Eqs. (7.1) and (7.2) are 
neglected. 

Note then that e.g. Kinsman (1965, cf. his Eq. 2.2:9 and related comments) is not categorical 
about reducibility; he states that reducibility applies in his example because no restrictions 
were made with respect to the area (volume) of integration. In general, an entire infinitesimal 
area Jdxodzo must be considered in order to speak of a portion of matter. For reducibility to 
apply to the integral of Jdxodz0, it is therefore necessary to invoke the restriction that the 
Lagrangian region dxodzo defining a specific portion of matter is constant in time. However, 
neither the continuum model nor mathematics requires that the Lagrangian frame of reference 
itself must be defined in a constant manner in time, yielding identifiable "point-particles". The 
latter would in fact be in conflict with the continuum model; a continuum-particle is a 
contradiction in terms. The typical dimension of a water element must be of the order 10·9 m 
or greater for the continuum hypothesis to make sense (Lin and Segel, 1988). There is still 
room for infinitely many points within such a small element, and even within the size of an 
atom for· that matter, and there is no argument for requiring the physical "meaning" of the 
individual Lagrangian points to be constant. 

Hence, reducibility from e.g. a curve to a point is not unambiguous; the mass (matter) 
associated with a point depends on the value of the Jacobian in this point. A single 
Lagrangian point can then only be considered a specific material "particle" in time if the 
Jacobian and the "meaning" of the Lagrangian points are constant separately, but these need 
not be constant separately; it is sufficient that they together satisfy Eqs. (7.1) and (7.2) 
(assuming constant and uniform density). It must then be concluded that requiring reducibility 
to "point-particles" identifiable in time is not generally correct, and that a curve cannot be said 
to represent the same portion of matter at all times by means of reducibility alone. 

With respect to the continuum hypothesis and continuous motion, it is then sufficient that the 
relations in Eqs. (2.1) and (2.2) exist and are single-valued at any instant, and that any change 
in the Jacobian in time is continuous and physically reasonable. The Lagrangian frame of 
reference should be considered the instantaneously appropriate change of variables between a 
material and spatial description of a material element of some size, rather than a set of 
identifiable "point-particles". Hence, the Jacobian and the Lagrangian frame of reference 
follow from the motion rather than determine and restrain it. Interchanging of the terms 
'material' and 'Lagrangian' must be done with care. 

7.1.2 The material derivative and the basic equations of motion 
As stated in the beginning of Section 2.2, the Eulerian equations of motion may be derived for 
an infinitesimal fixed control area (volume). The basic Eulerian equations are not influenced 
by the definition of the Lagrangian frame of reference, and therefore yield correct descriptions 
of Eulerian quantities. 

If the Jacobian is not constant in time, the "meaning" of a Lagrangian point is not constant in 
time either. The Lagrangian points would then have to be functions of time in order to 
represent the same material "particles" at all times. A derivation similar to that leading to Eq. 
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(2.15) would then yield a material derivative different from that actually given in Eq. (2.15). 
However, that would be unphysical. Eq. (2.15) is still the proper form of the material 
derivative, but it must generally be associated with at least an infinitesimal area dxdz = 
Jdxr,dz0 to pertain to a specific material element (in the 2D case). Care must therefore be taken 
when deriving secondary conditions and equations based on a material intepretation of the 
basic Eulerian equations, cf. Section 7.1.3. 

The Lagrangian equations for linear momentum, i.e. Eqs. (2.27) and (2.29), are also 
unaffected, since the chain rule may be applied for any instant. However, these equations on 
differential form must be interpreted as applying to some portion of matter at a given instant 
in time, but we may not be able to identify which portion of matter unless we consider a 
Lagrangian region J dxr,dyr,dz0• 

Further, based on Section 7.1.1, the Lagrangian equations of continuity in Section 2.3.1 must 
in general include the differential dimensions, i.e. as in Eq. (2.16) and in the derivation prior 
to Eq. (2.17). Eq. (2.17) itself must be considered applicable only for the special case when it 
can be assumed that dxr,dz0 = const. for a specific portion of matter. For the 2D 
incompressible case, the Lagrangian equation of continuity is then Jdxr,dz0 = const. For the 
general case, the equation of continuity is 

m = f Jf p(x0 , Y0 ,z0 ,t )· J(x0 ,y0 ,z0 ,t )· dx0dy0dz0 = const. 
Vo(t) 

(7.5) 

(7.6) 

where m represents mass and V0(t) is the Lagrangian region defining this portion of matter. Vo 
varies in time according to the Jacobian, so that m is constant. Note that the Lagrangian frame 
of reference should be redefined according to the integral relations in Eqs. (2.23), (7.2) and 
(7.6) rather than according to the differential expressions in Eqs. (2.16), (7.1) and (7.5), since 
the Jacobian is a function of the Lagrangian variables. Hence, the Jacobian should be 
determined first, as a solution of the equations of motion and given boundary conditions, and 
the Lagrangian frame of reference should then be (re )defined to yield conservation of mass. 

This could possibly offer an alternative method for finding higher order solutions of flow 
problems, e.g. as suggested for Miehe waves in Section 7.2.1 and more generally in Section 
7.2.3. However, any change in the Jacobian and redefinition of the Lagrangian frame of 
reference must be reasonable with respect to the problem under consideration, and the general 
applicability and practical value of such an approach has not been studied further. 

7 .1.3 Rotation and Lag range's theorem 
In Section 3.4 is shown that there is a difference between the rotation of a deformable 
infinitesimal element and rigid body rotation. This is exemplified in Section 4.1.3, where it is 
shown that elements in Gerstner waves do not have a net physical rotation about themselves, 
and that the circulation is not a net transport of mass along element boundaries. Gerstner 
waves may therefore be said to be without (physical) rotation, but, as stated at the end of 
Section 3.4, this is a matter of definition of the term 'rotation' (cf. Glossary also). Anyhow, 
vorticity is still present in Gerstner's solution, meaning that it violates Lagrange's theorem 
(which requires potential flow for this particular problem). 

However, according to Sections 3.3 and 4.3, requiring an Eulerian velocity potential to exist 
precludes the deformation necessary to form waves, if the Jacobian is everywhere and always 
1. Note that is is not uncommon to neglect deformation of small elements. In Morrin and 
Yaglom (1971), it is stated that the infinitesimal fluid elements under consideration are 
" ... considered moving "as a whole", that is, without noticeable deformation. In other words, a 
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"fluid particle" is an identifiable ''point" of the volume of fluid which is moving within this 
volume according to the equations of fluid mechanics ... ". Batchelor (1967, his section 2.1) 
and Lighthill (1989) are somewhat less explicit with respect to neglecting deformation, and 
state instead that the dimensions of the infinitesimal element are " ... not involved ... " or 
" ... negligible ... ". However, the dimensions must be involved, because the continuum 
hypothesis itself requires that we consider at least small 'lumps' of fluid. Also, the 
deformation of a larger element is the integrated effect of the deformations of the differential 
elements. If a larger element deforms, the boundary of this element deforms, hence the 
material elements constituting the boundary must deform. This can only happen if they have a 
size. 

To be proofs of Lagrange's theorem, the derivations in Sections 3.2.2 - 3.2.6 must pertain to 
the same portions of matter at all times. This is presumably ensured by following specific 
Lagrangian points (Xo, z0) or specific Lagrangian curve segments dx0 and dz0, assuming that a 
Lagrangian point always have the same physical "meaning" and that the Jacobian is constant. 
It must then also be generally correct to set the Jacobian equal to 1, which is also customary 
to do. However, according to the above and Sections 7.1.1 and 7.1.2, it is necessary to 
consider an area Jdxodzo in order to follow a specific portion of matter, and the Jacobian and 
the Lagrangian region defining a material element may vary individually, as long as the 
product Jdxodzo is constant in time. 

To be more specific, the closed boundary curve in Kelvin's theorem does not necessarily 
represent the same portion of matter as the bounded element deforms. The material boundary 
of an element of finite size is shown in grey in Figure 7.1, where the circulation is indicated 
by the arrows. In order to be material, this boundary must have a thickness. At any instant in 
time, we may consider the limit as the thickness of this grey area approaches zero, yielding a 
curve (the outer line), and we may associate this curve with a specific portion of matter. 
However, this limit must generally be taken at every instant. Assuming that the bounded area 
in Figure 7.1 is deforming, the limit (the boundary curve) taken at two different instants in 
time cannot generally be associated with the same portion of matter, cf. Section 4.1.3 also. 

A I 
Figure 7.1 The material boundary (in grey) of an element of finite size (A). The outer line 
represents the limit as the thickness of the grey ring approaches zero. The arrows indicate the 
circulation along this limit curve. 

Note that even if the closed curve in Kelvin's theorem encloses a finite area, cf. Section 3.2.6, 
this area is not in any way included in Kelvin's theorem itself; Kelvin's theorem only 
considers a line integral along a curve and thus only the curve itself. A line integral may also 
exist for a curve that is not closed, and it is then obvious that the curve cannot be associated 
with a specific area. However, since the curve considered in Kelvin's theorem is closed, the 
enclosed area may be included by invoking Stokes' theorem, cf. Section 3.2.7. However, by 
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invoking Stokes' theorem we no longer have a line integral under consideration, but a surface 
integral of the curl. Helmholtz' theorem applies to the curl (i.e. vorticity), but only as a point 
value. It can therefore only verify Kelvin's theorem as a proof of Lagrange's theorem if the 
area is negligible, which leaves us where we started. 

Therefore, assuming that J need not be constant as the state of deformation changes, Weber's 
transformation, Caucy's equations and the theorems of Kelvin and Helmholtz cannot be said 
to consider the same portion of matter at all times, and it will not be physically relevant to 
impose conditions on them as if they did. Hence, they cannot be considered proofs of 
Lagrange's theorem as given in Section 3.2.1. 

Also, according to the initial conditions in Weber's transformation and Cauchy's equations, 
given by Eq. (3.22), the existence of an initial velocity potential requires that J = 1. This 
means that J = const. is not sufficient to ensure continuity in potential flow; the constant value 
must be 1. There is then a conflict between accepting that Eq. (7.3) satisfies continuity and 
requiring zero vorticity. If the former is accepted it is not relevant to require zero vorticity. 
Conversely, if zero vorticity is required, Eq. (7.3) cannot be said to satisfy continuity. 
However, while it is generally accepted that Gerstner's theory and Eq. (7.3) does satisfy 
continuity, the theory is still normally discarded since it is has vorticity. This is clearly 
inconsistent, if the initial conditions in Weber's u·ansformation are necessary for an initial 
velocity potential to exist. However, it is not reasonable to compromize with regard to the 
continuity requirement, which is the most fundamental of the basic requirements in the 
continuum model, in order to satisfy such secondary conditions on vorticity. The initial 
condition given by Eq. (3.22) then satisfies continuity only approximately, and cannot be used 
as an argument to require potential flow to higher orders. This is in accordance with the 
findings in Sections 3.3 and 4.3. 

The equations governing vortex motion is then Eqs. (3.32) and (3.35), where the former is 
only to be interpreted in Eulerian sense. Eq. (3.33) is only interpretable in a Lagrangian sense 
while the Jacobian is constant, meaning that vorticity and circulation can only be required to 
be constant as long as the state of deformation, e.g. given by the wave amplitude and 
wavelength when waves are concerned, does not change. Further, also in light of the initial 
condition Eq. (3.22) in Weber's transformation, vorticity and circulation must be allowed and 
expected to be of the same order of magnitude as the Jacobian's deviation from 1. The 
concepts of vortex lines and vortex tubes should therefore be reconsidered, since curves 
cannot generally be assumed to always consist of the same matter. 

Requiring potential flow is then only correct to the same order as the Jacobian equals 1, 
which, according to the statements so far in Sections 7.1.1, 7.1.2 and the present section, is 
true to any order in special cases only, e.g. in uniform flow. The assumed existence of an 
Eulerian velocity potential in inviscid flow, and thus the use of potential theory and conformal 
mapping, should therefore also be reconsidered. This may also be of interest with respect to 
D'Alembert's paradox, which yields zero net force on a body in steady potential flow. When 
flowing around a body, fluid elements must deform near the body, which according to the 
above renders potential flow invalid in this region. D'Alembert's paradox, yielding zero net 
force, is however a reasonable approximation if the velocities, and thus the deformations, are 
very small, i.e. when the Jacobian is indeed close to 1. 

Finally, it is not unusual that higher order perturbation solutions are found applicable even for 
cases where the perturbation parameter is not as small as originally assumed. This is the case 
for 2"d order Stokes waves. These waves are originally based on a perturbation assuming ka 
<< 1, while at the end of the analysis it is found that ka < 0.45, approximately, is sufficient for 
convergence (cf. Eq. (4.87)). However, Section 4.3 shows that the latter limit is only valid 
quite instantaneously, and that Stokes waves of finite height violate the basic equations after 
less than a wave period. In the same section is shown that Stokes' wave theory, which is a 
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potential solution, may only be applied for a significant period of time if the wave amplitude 
is very small. Again, this is reasonable, since the Jacobian is then again very close to 1. 

7 .1.4 Some remarks on vorticity with respect to the physics of fluid motion 
It is often stated that vorticity (in 2D incompressible flow) needs to be generated by velocity 
gradients at the boundaries, and that it is then somehow diffused, by conduction or 
convection, throughout the fluid. However, it has been shown that vorticity does not 
unambiguously express how a fluid element turns about itself, cf. Sections 3.4 and 4.1.3, i.e. it 
is not equivalent to a physical 'spin' of material fluid elements. Also, the material derivative 
must be associated with a region of some size, which appears to be of particular importance 
for a tensor such as the curl. It is therefore hard to see what is traditionally meant by 
generation and diffusion of vorticity. 

Vorticity is "generated" when a deformation is generated, e.g. when non-uniform mass 
transport is generated, or when elements are deformed without mass transport, e.g. as in 
Gerstner waves, cf. Figure 4.1. The extension of a region of deformation may then itself be 
considered a "diffusion of vorticity". As a parallel, recall that the mean Eulerian velocity in 
Gerstner waves is not a "generated" current (in the sense of mass transport) in any way, it is 
merely the Eulerian result of the orbital Lagrangian motion, and it only exists where the 
waves themselves exist. 

It is also of interest to note that the term 'vorticity' was apparently introduced by Lamb in his 
Hydrodynamics in an attempt to resolve a " ... heated public controversy between Helmholtz 
and Bertrand ... " over the interpretation of the term 'rotation' (Levi, 1995, p. 297). Bertrand, a 
French mathematician, insisted that Helmholtz results were incorrect, while Helmholtz 
accused Bertrand for distorting his concepts. Bertrand considered an example (simplified to 
2D here) where u = z and w = 0, which in Bertrand's opinion represents motion in a straight 
line without any physical rotation or 'spin'. Nevertheless, this motion yields curl V = 1 and 
thus a 'rotation' according to Helmholtz. Levi (1995) still concludes that " ... The truth is that 
the existence of the velocity curl in a flow field only implies that the particles spin about 
themselves; an effect caused by viscosity, for instance, in the flow region near a wall ... ". 
Kinsman (1965, his section 2.5) also includes a discussion on vorticity, but is less explicit and 
more cautious about how to interpret and identify it. 

7.2 Wave Theory and Modelling 

7.2.1 The wave theories of Gerstner and Miehe 
In Section 7 .1, the common assumption that motion generated by potential forces has to result 
in a potential flow is questioned. It is there argued that the Jacobian must be allowed to 
deviate from 1, and a vorticity of the same order of magnitude as the Jacobian's deviation 
from 1 must be allowed and expected. 

Gerstner's theory is then a physically correct solution for regular waves on infinite depth, in 
the limit of negligible viscosity. The fact that Gerstner's solution is an exact analytical 
solution is primarily due to the regularity and the assumption of infinite depth. This makes a 
constant Jacobian and a constant definition of the Lagrangian frame of reference possible. 

In intermediate water Miche's solution applies. The fact that Miche's 1 '' order solution does 
not yield a constant Jacobian to second order, need perhaps not be interpreted just as a 
violation of continuity at second order. It can also be an indication that such waves may not 
be regular to second order on finite depth. In Figure 6.11 and Figure 6.15 is seen that a "non­
regularity", apparently of second order when comparing to the magnitude of the vertical shift 
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given by Eq. ( 6.17), is present from the very first waves and for the rest of the records. This is 
not the case in Figure 6.4 and Figure 6.7, at least not very pronounced, which pertain to 
deeper water. The physical relevancy of seeking a regular solution to second order for such 
waves on finite depth, as in the 2"d order part of Miche's solution, may therefore be 
questioned. With reference to Section 7.1.2, the 2nd order solution for such waves on finite 
depth could possibly be found by determining a time-varying Lagrangian frame of reference 
compensating for the time-varying Jacobian resulting from the 1 '1 order solution, i.e. Eq. 
(4.67), so that Eq. (7.2) is always satisfied. This may e.g. result in a time-varying vertical 
shift, cf. Eqs. (4.60) and (4.61), and effects such as bound waves etc. may be inherent in the 
solution. It is also unclear if and how e.g. radiation stress should be included in a Lagrangian 
analysis. However, these issues could not be verified or investigated any further within the 
limited time frame of this thesis work. 

In Section 4.3 it is shown that Stokes waves violate the assumed continuity requirement J = 
const. at second order within less than a wave period. Since it has been suggested that a non­
constant Jacobian may be accounted for by a corresponding redefinition of the Lagrangian 
frame of reference, it seems that this could apply to Stokes waves as well. However, the 
growth of the Jacobian in Stokes waves is fundamentally different from the 2"d order periodic 
variation of the Jacobian in e.g. Miehe waves, cf. Eqs. ( 4.67) and ( 4.68). In Stokes waves, the 
Jacobian grows very rapidly in time and is eventually of the leading order, cf. Table 4-1 -
Table 4-3. This growth cannot be compensated for by a corresponding redefinition of the 
Lagrangian frame of reference in a physically reasonable manner, cf. Section 7 .1.2. 

Some may argue that Stokes drift is not to be interpreted as "literally" as in Section 4.3, but 
that a "redistribution" of mass must be allowed. That may be physically correct. However, 
requiring the vorticity in an existing wave to be zero also requires that the Jacobian and the 
vorticity are interpretable "literally" for at least the period of time required to generate the 
wave. If not, one cannot compare an existing wave situation with a still water situation in this 
respect. Also, any type of redistribution of mass necessary due to Stokes drift would be 
nothing but a violation of continuity and the principle of impenetrability of matter (which is 
inherent in the continuity requirement), in which case we cannot speak of identifiable material 
particles in Stokes waves. However, Stokes waves is a result of the assumption of irrotational 
motion, which is based on the assumption of identifiable material particles. Therefore, it is 
hard to see how Gerstner's theory can be discarded if Stokes waves are not discarded, i.e. if 
Eqs. (4.88) - (4.92) and Table 4-1 are ignored. This supports Gerstner's theory as an 
applicable basic solution for regular waves. 

Finally, if it is claimed that potential forces can only generate irrotational flow, one might ask 
how waves, with their surface curvature (cf. Sections 3.3 and 4.3), can be generated by 
potential forces alone. Since there is good reason to assume that surface gravity waves are 
mainly generated by potential forces, it is again reasonable to question the assumption that 
potential forces can only generate irrotational flow. 

7.2.2 Superposition of linear Lagrangian components and transformation 
from the Lagrangian to the Eulerian frame of reference 

Straightforward superposition of different wave components is mathematically correct only if 
the individual components are linear. A straightforward superposition model of irregular 
waves can therefore not include nonlinearities, and, since the governing equations are 
nonlinear, it will not be a physically complete model of irregular waves. Even if nonlinearities 
and nonlinear interactions are somehow accounted for, it is still not given that a superposition 
model represents real random seas satisfactorily. That depends on how close real random seas 
actually are to a sum of regular waves. Nonlinearities and interactions between spectral 
components can therefore not be expected to explain or account for all types of discrepancies 
between measurements and spectral models of irregular waves. 
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It is known that a 1" order (linear) Lagrangian solution corresponds to a 3rd order Eulerian 
solution with respect to the surface profile, cf. Eq. (4.41) and related comments. The reason 
for this is that the boundary conditions are satisfied in a more correct manner in the 
Lagrangian approach. Hence, even if it is still only a solution of the linearized problem, a 
linear Lagrangian model is superior to a linear Eulerian model. In Section 5.1 is shown that 
superposing linear wave components in the Lagrangian frame of reference is different from 
superposing linear wave components in the Eulerian frame of reference. Performing the 
superposition in the Lagrangian frame of reference is seen to automatically include 
interactions that appear as nonlinear from a purely Eulerian point of view, cf. Figure 5.1 -
Figure 5.4. Such interactions may to some extent be included in Eulerian models also, e.g. as 
in the hybrid wave theory of Zhang et al. (1996). However, while these Eulerian approaches 
require quite complex additional models for the interaction between components, the 
analytical simplicity of the Lagrangian approach is striking. 

The iteration methods in Sections 5.3 and 5.4 yield theoretically consistent values 
everywhere, also above the still water level, and as many frequency components as desired 
may be included. Their main advantage is that they eliminate the need for extrapolation of 
solutions and stretching of coordinates, and thus uncertainties due to violation of the 
governing equations and overprediction of high frequency contributions near and above the 
still water level. The iteration methods described in Section 5.3.4 were found to be sensitive 
to very low frequency contributions in irregular Miehe waves. The reason for this is that the 
hyperbolic fraction in the expressions for x0, and x, in Eqs. (5.47) and (5.49) grow rapidly 
when kn approaches zero, and the associated wave amplitudes may not be small enough to 
compensate for this, cf. Figure 6.34. These very lowest frequency components therefore cause 
an error in the output of the iteration, i.e. x01 and z01, and thus an error in the calculated 
velocities. This is also the case for x0 in Eq. (5.55), which will cause an error in 17 in Eq. 
(5.56). Since it is anyhow not physically correct to include the lowest frequency components 
in this way, cf. Eqs. (6.14) and (6.15) and related comments, a lower cut-off frequency should 
therefore be employed when performing iterations according to the hyperbolic expressions for 
finite depth. 

The main problem with the Lagrangian approach presented here is comparing it with Eulerian 
measurements. In Skjelbreia et al. (1991), the Lagrangian orbital amplitude spectrum was not 
measured directly in the experiments, but it is found that the spectrum of the surface elevation 
measured at fixed Eulerian x-position is a reasonable approximation to the Lagrangian orbital 
amplitude spectrum, cf. Sections 5.4. This is discussed in more detail in Section 7.4. 

However, comparisons with measurements in e.g. wave flumes are not the ultimate objective. 
Ocean waves are often measured by buoys, yielding wave spectra that may be considered 
more Lagrangian than Eulerian, and design spectra are anyhow subject to uncertainties, cf. 
Section 5.4 also. 

Hence, even if perfect agreement between Eulerian measurements and calculations based on 
Lagrangian expressions may be difficult to obtain, the Lagrangian approach presented here 
should be of great practical and theoretical value, very well suited for simulations and design 
purposes. It applies to regular as well as broad-banded irregular waves, yielding equally 
consistent results everywhere, also in the splash zone. Simulations based on synthetic wave 
spectra may contribute to an improved understanding of certain physical phenomena, such as 
breaking of waves and 'ringing' of offshore structures. The potential for further theoretical 
development seems considerable, as is discussed in the following section. 

7.2.3 Modelling nonlinear irregular waves by the Lagrangian approach 
In Eqs. (4.8) and (7.3) it is seen that the Jacobian in Gerstner's exact analytical solution is a 
function of the wave amplitude and wave number. Therefore, regular Gerstner components of 
different amplitude and wavelength generally yield different Jacobians. From Eqs. (7.2) and 
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(7.3) we see that the Lagrangian frame of reference is determined by the Jacobian, and vice 
versa. A Lagrangian element defined by fixed values of Axo and & 0 will therefore not 
represent the same material element for two different Gerstner components. The difference 
will depend on the differences in amplitudes and wavelengths. Therefore, different regular 
Gerstner components are associated with different Lagrangian frames of reference, which is 
also apparent from the vertical shift in Eq. (4.13). Hence, different individual Gerstner 
components cannot be directly compared or superposed. This is in fact a physical explanation 
why straightfo1ward superposition cannot include nonlinearities. 

If we realize this, however, we may also account for it. Nonlinear Lagrangian components 
may then possibly be superposed in a theoretically consistent manner. This may also be 
accounted for in the iteration methods described in Sections 5.3 and 5.4, yielding Eulerian 
quantities correct to higher orders. Jn other words, it appears that the Lagrangian approach 
makes irregularity and nonlinearity theoretically compatible. Note then that the most basic 
form of the equations of motion is linear, cf. Eqs. (2.11) - (2.14). The equations do not 
become nonlinear until the material derivative is invoked to have them on Eulerian form, or 
the chain rule is applied to have them on Lagrangian form. Hence, nonlinearity may be said to 
stem from differences between the frames of reference involved, and analytical problems 
caused by nonlinearity may be avoided or reduced by proper definition and interpretation of 
these frames of reference. However, cf. Section 7 .2.1, such issues on nonlinear Lagrangian 
terms could not be pursued any further within the limited time frame of this thesis work. 

For Miehe waves, i.e. accounting for fmite depth, the same inclusion of nonlinearities in the 
superposition and calculations should be possible. However, cf. Section 7.2.1, it is unclear 
how to best include nonlinearity on finite and varying depth. 

Jn Section 5.1 it was shown that superposition of regular wave components may produce 
extreme waves and waves of extreme crest front steepness, if the values of the effective 
steepness in Eqs. (5.5) and (5.6) approach the limit value 1. Hence, the Lagrangian approach 
describes the kinematics in some types of extreme waves. If the limit value is reached or 
exceeded, continuity is violated and the wave will somehow break. 

However, it does not seem that all types of extreme and breaking waves (in deep/intermediate 
water) can be modelled by superposition of spectral components alone, even if nonlinearities 
and interactions are somehow accounted for. It seems that any Lagrangian currents, i.e. real 
mass transport, must also be identified and included in the analysis. Jn Section 4.3 it was 
shown that interaction between regular waves and vertically non-uniform currents will 
eventually violate continuity in the Lagrangian sense, which must result in some sort of 
breaking and modulation of the waves. The currents may be local wind- or wave generated 
currents or underlying ocean currents. The kinematics in such extreme and breaking waves 
may be reasonably well modelled by superposing waves and current in a Lagrangian fashion, 
but only for a very short period of time, e.g. one wave period. Such interaction between waves 
and current should be further investigated in a Lagrangian frame of reference. 

7.3 Results for Regular Waves 

The regular wave cases considered pertain to intermediate water depth. Therefore, although 
the theoretical considerations in Sections 7.1 and 7.2 mainly consider Gerstner's theory, the 
calculations are performed according to Miche's theory. 

7.3.1 Mean horizontal velocity in a vertical cross-section 
This section pertains to the results presented in Section 6.2.1. Note that the mean horizontal 
velocity in Miehe waves is calculated according to the approximate expression in Eqs. (4.77) 
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and (4.78), and that they therefore should not be expected to exhibit perfect agreement with 
the measurements. 

The recordings of regular waves and wave kinematics show that two distinct transitions in the 
horizontal velocity take place during the experiments, yielding two distinctly different flow­
field conditions. Such transitions are not observed for the surface elevation or vertical 
velocity, and these are also found to be practically unaffected by the transitions in the 
horizontal velocity. 

The first transition, shown in Figure 6.5 and Figure 6.6, is associated with the wave front of 
the regular wave train. It takes place at t"" 14 sin Case 9 and at t"" 17 sin Case 8. This type 
of transition is also reported by Johnsen (1987) and Gudmestad et al. (1988) for other regular 
wave experiments, as will be discussed more closely in Section 7.3.5. 

Skjelbreia (1991) observed a second type of transition in the experiments considered in 
Chapter 6, taking place when roughly 50 waves have passed wave gage 1, i.e. at t - 100 s. 
Closer investigations in Section 6.2.1 show that this transition takes place over some period of 
time, starting near the surface at t - 75 - 90 s and developing throughout the depth until t -
120 - 135 s, eventually yielding a mean velocity profile as in Figure 6.9. This is still in 
agreement with the findings of Skjelbreia, who apparently only considered one case and one 
vertical level in this respect (Case 8, z = 0.10). The length of time until this transition takes 
place and develops throughout the depth appears to depend on the wave amplitude (i.e. the 
penetration of a wave into the fluid) and the water depth, rather than on the wave celerity and 
assumed Stokes drift velocity. These quantities are given in the introduction to Section 6.2. 
This suggests that it is not (mainly) a return current developing, but that it takes some time 
before regular waves as we expect them are fully developed throughout the depth. 

The first disturbances in the surface elevation arrive at wave gage 1 a bit later in Case 9 than 
in Case 8, cf. Figure 6.4 and Figure 6.11, as might be expected due to the difference in the 
wave celerities in Eq. (6.18). However, the positive mean horizontal velocity associated with 
these very first disturbances is significantly higher in Case 9 than in Case 8, indicating that 
this effect is strongly influenced by depth. The difference in the negative mean velocity set up 
as the actual wave front passes is less, but still marked, cf. Figure B.1 - Figure B.13 and 
Figure B.24 - Figure B.32 in Appendix B. 

In Figure 6.4 (Case 8), a distinct wave front can be identified as "wave number 6", and in 
Figure 6.11 (Case 9) a distinct wave front can be identified as "wave number 4". The first 
transition is associated with the wave front, and takes place a bit earlier in Case 9 than in Case 
8 in spite of the lower wave celerity. The wave front in Figure 6.11 is not as pronounced as 
the wave front in Figure 6.4, but has more or less the same wave height as the subsequent 
waves. This difference in the nature of the wave front is found to be quite typical for these 
two cases, although some variations between the individual runs of each case occur. 

The measured mean Eulerian horizontal velocity set up after the first transition, cf. Figure B.8 
- Figure B.13 and Figure B.29 - Figure B.33 in Appendix B, resembles that often expected 
from Stokes drift and the associated vertically uniform return current, cf. Figure 6.2 and 
Figure 6.3. As the second transition takes place, the mean velocity profile takes on a form 
very similar to that predicted by Miche's theory, and remains more or less like this for the rest 
of the records, cf. Figure B.14 - Figure B.28 and Figure B.34 - Figure B.43 in Appendix B. 

7.3.2 Instantaneous horizontal velocity in a vertical cross-section beneath 
individual crests and troughs 

This section pertains to the results presented in Section 6.2.2. Figure 6.16 - Figure 6.19 show 
that large errors may be introduced if calculating the instantaneous Eulerian horizontal 
velocity according to the approximate Eulerian expressions in Sections 4.1.5 and 4.2.2. The 
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magnitudes of these errors depend on the wave steepness ka and the vertical coordinate z. The 
horizontal velocity in regular Miehe waves is therefore calculated according to the iteration 
methods described in Sections 5.3 and 5.4. Wheeler's method is described in Section 5.2. 

Figure 6.20 and Figure 6.21 show that Wheeler's method and Miche's solution yield identical 
values at the surface and at the bottom, as they should for regular waves, and the differences 
in the region in-between are qualitatively as expected due to the su·etching of coordinates in 
Wheeler's method. These differences between Miehe and Wheeler also show that the 
Lagrangian approach qualitatively accounts for the typically observed deficiency of Wheeler's 
method for the velocity beneath crests in irregular waves, cf. Section 5.2. 

When compared with measurements, Miche's solution deviates from measurements made 
shortly after the first transition, as seen in Figure 6.22, Figure 6.23, Figure 6.26, Figure 6.27, 
Figure 6.30 and Figure 6.32. However, again, Miche's solution is found to compare very well 
with measurements made after the second transition, cf. Figure 6.24, Figure 6.25, Figure 6.28, 
Figure 6.29, Figure 6.31 and Figure 6.33. 

7.3.3 Timeseries of the surface elevation and velocities in fixed spatial points 
This section pertains to the results presented in Section 6.2.3. As for the instantaneous 
horizontal velocity, the tirneseries in fixed Eulerian points were calculated according to the 
iteration methods described in Sections 5.3 and 5.4. 

When considering the form of the surface elevation, the waves appear to be quite symmetric 
at t - 45 s, cf. Figure 6.30 and Figure 6.32, while a slight asymmetry about a vertical axis can 
be seen fort - 150 s in Figure 6.31 and Figure 6.33. This asymmetry is quite small and thus 
neglected with respect to the kinematics. However, the cause and effect of the asymmetry 
should be studied further. While the surface elevation in Case 8 generally exhibits a quite 
regular profile, the surface elevation records of Case 9 are clearly "non-regular", cf. Figure 
6.4, Figure 6.7, Figure 6.8, Figure 6.11 and Figure 6.15. This "non-regularity" resembles a 
bound long wave, and is present from the very first waves and for the rest of the records. 

The surface elevation is modelled quite well, but not perfectly, by Miche's solution. However, 
the level of the crests and troughs predicted by Miche's theory, accounting for the vertical 
shift, is in good agreement with the measured surface elevations, cf. Figure 6.22 - Figure 6.29, 
Figure 6.30, Figure 6.31, Figure 6.32 and Figure 6.33. Exceptions are Figure 6.26 and Figure 
6.27. These happen to correspond to a crest of the apparent bound long wave, as seen fort"' 
45 sin Figure 6.11, which explains these discrepancies. These are also the figures where the 
difference between applying the regular wave amplitude a from Table 6-1, Eq. (6.20) or 
(6.21), respectively, are seen to be most significant. These figures suggest, as expected, that 
Eq. (6.21) is a better choice than Eq. (6.20) as an appropriate local regular wave amplitude for 
calculations. 

7.3.4 General findings for regular waves 
The vertical velocity has not been studied very closely, since it is assumed that the results for 
the horizontal velocity are most descriptive with respect to the performance of the theory. The 
results in Section 6.2.3 show that the differences between measured and calculated velocities 
generally correspond to the differences in measured and calculated surface elevation. This is 
of special importance with respect to the vertical velocity, since this is out of phase with the 
surface elevation. A clear difference can be seen in the slope of w beneath crests and troughs, 
cf. Figure 6.30 and Figure 6.31. No transitions similar to those for the horizontal velocity are 
observed for the vertical velocity. There may seem to be a transition in the negative peak 
values of w from Figure 6.32 to Figure 6.33, but this is found to stem from quite local 
variations. 
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The creeping flow may have a marked influence on the entire mean velocity profile after a 
while, meaning that a real return current is set up due to the creeping flow. However, the 
creeping flow cannot be the cause of the second transition described above, since it does not 
"start" until after the second transition is more or less fully developed. This can be stated after 
reproduction and video-filming of a regular wave case identical to the one in Case 8, cf. 
Section 6.2.1. A run with regular waves of shorter wavelength was also filmed. The latter 
corresponds to deep water conditions, viz. T = 1.2 s, ,1, = 2.25 m, ka = 0.25 and h = 1.3 m. The 
second transition was observed visually for this case as well, taking place after a period of 
time comparable to that found for Case 8, while a creeping flow was not observed at all. The 
creeping flow is likely to be stronger and set up earlier in Case 9 than in Case 8, due to the 
different depth-to-wavelength ratios yielding higher velocities near the bottom in Case 9. 

The comparisons in Section 6.2 focus on measurements made near t - 45 s and t - 150 s, 
since these are found to be representative for the two distinct situations identified. The results 
are verified for other time instants as well. Later on in the experiments, the measurements 
must be assumed to be more influenced by reflections, creeping flow and other undesired 
effects. 

Hence, in the period after the first transition and prior to the second transition, the conditions 
are not unlike what would be expected from 2nd order Stokes waves including Stokes drift, 
while Miche's theory compares very well with measurements after the second transition and 
for the rest of the record. Note however that only the mean horizontal velocity has been 
considered for Stokes waves, that the measured maximum values are somewhat lower than 
predicted by Stokes drift in Figure 6.2 and Figure 6.3. Nor is there any reason to expect the 
positive mean velocity in the splash zone to be reduced if Stokes drift is real and a return 
current actually develops. Also, as apparent from Eq. (6.19), Stokes "particle"-drift would be 
quite strong and should be easily observable. Visual observations during reproduction and 
video-filming of some of the experiments in Skjelbreia et al. (1991) indicate that material 
elements are transported forward before the second transition, while they move in closed 
orbits after the second transition. 

7.3.5 On the cause of the transitions in horizontal velocity in regular waves, 
and implications for the carrying out and interpretation of regular wave 
experiments 

Johnsen (1987) suggests that the positive mean velocity associated with the very first 
disturbances stem from a positive pressure gradient caused by an apparent set-up of the mean 
water level ahead of the wave front of the regular wave train. Similarly, Johnsen (1987) and 
Gudmestad et al. (1988) suggest that the negative mean velocity associated with the actual 
wave front stem from a negative pressure gradient caused by a set-down that appears to 
follow the wave front itself. Calculations in Gudmestad et al. (1988) support this hypothesis. 
Gudmestad et al. (1988) also conclude that Wheeler's method is not suited for modelling 
regular wave kinematics, which is generally correct. However, Wheeler's method and Miche's 
solution give identical values at the very crest for regular waves. Also, the failure of 
Wheeler's method below the crest is predictable for regular waves, cf. Figure 6.20 and Figure 
6.21, and Wheeler's method and Miche's theory may be considered comparable with respect 
to the other methods that are included in the comparisons of Gudmestad et al. (1988). 

The results in Gudmestad et al. (1988) are based on results in Skjelbreia (1988) as well as 
Johnsen (1987). Johnsen (1987) analyzed data from experiments undertaken at Delft (Delft 
Hydraulics Laboratory, 1982), and Skjelbreia (1988) analyzed data from experiments 
undertaken at Caltech (Skjelbreia, 1987). The wave flumes in these experiments were of a 
type and dimensions comparable to that in Figure 6.1, and the wavemakers were of a 
horizontally acting flap/piston-type. The regular wave cases considered were also comparable 
to those in Table 6-1. The measurements chosen for comparisons were typically made as the 
first ten waves had passed the measurement point in Skjelbreia (1988), and near the beginning 
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of the uniform portion of the wave train before any reflected waves came back to the wave 
gage in Johnsen (1987). 

The results and conclusions in Johnsen (1987) and Gudmestad et al. (1988) are all reasonable, 
although it is unclear if a pressure gradient due to a set-up or set-down explains the very clear 
vertical uniformity of the mean horizontal velocity after the first transition. However, it 
cannot be ignored that their considerations are based solely on measurements made before 
any second transition would have taken place. It is not obvious that the earliest part of a 
regular wave train represent regular waves satisfactorily, or that this early part is appropriate 
for comparisons with regular wave theory. 

The question is therefore what causes these transitions and when the waves in a regular wave 
experiment are closest what we should expect them to be; before or after the second 
transition. It seems that the most crucial point is to determine whether Stokes drift is "true" or 
not, both in a theoretical as well as physical sense. It has been found that a Stokes-like drift 
exists early on in the experiments, but that small material elements eventually move in closed 
orbits as predicted by Gerstner's and Miche's wave theories. The analytical work in this thesis 
suggest that requiring irrotational flow may be incorrect, cf. Sections 7.1 and 7 .2.1. Since 
Stokes drift itself violates continuity in the Lagrangian sense and is a direct consequence of 
requiring irrotational flow to second order, cf. Section 4.3, this suggests that the situation after 
the second transition is most appropriate for comparisons with regular wave theory. The 
initial Stokes-like drift is then not really Stokes drift, but "something else". 

The initial effect of a horizontally acting wavemaker may be significant in this respect. The 
waves are generated by pressure acting horizontally on a vertical column of fluid, and not, as 
assumed for wind waves, mainly by pressure acting normally on the free surface. It must be 
assumed to take some time before the initially still water is adapted to the action of the 
wavemaker. A flap-type wavemaker may thus cause an initial transient forward mass 
transport in the upper region due to the "pushing" of the water, requiring an upwelling at the 
wavemaker and consequently a negative mass transport in the lower region. As the water 
eventually moves back and forth in a more periodic manner, i.e. has become more adapted to 
the action of the wavemaker, this initial circulation should vanish. 

If, on the other hand, Stokes drift is found theoretically acceptable in spite of Sections 4.3, 7.1 
and 7.2.1, Stokes drift must somehow be stopped or reduced because of the end-walls in the 
flume. However, since the creeping bottom flow is not stopped or prevented from being 
generated, there is no obvious reason why Stokes drift should be stopped or reduced. Recall 
that the second transition, i.e. when the apparent Stokes drift has stopped, takes place before a 
return flow caused by the creeping bottom flow could have influenced any Stokes drift. 

However, these issues can hardly be resolved by further analysis of experiments in "short" 
wave flumes where waves are generated by horizontally acting flap-type wavemakers. The 
fundamental theoretical issues regarding vorticity and "particle"-drift should be resolved first, 
accompanied by regular wave experiments primarily carried out for deep-water conditions. A 
creeping bottom flow is thus avoided, or at least postponed, and the unfortunate bound long 
waves seen in Figure 6.11 and Figure 6.15 are minimized. The waves should preferably be 
generated by pressure acting normally on the free surface, in flumes long enough to avoid 
reflections for "long" periods of time. When the regular deep-water case is resolved, 
interactions with underlying and/or wave-generated currents may be included, as well as finite 
and varying depth. Irregular and three-dimensional wave conditions should be based on a 
proper understanding of regular two-dimensional waves and currents, cf. Section 7 .2.3 also. 
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7.4 Results for Irregular Waves 

Recall that irregular waves are modelled as a sum of linear (1 '' order) components. To first 
order, Stokes (Airy) waves may be replaced by Gerstner or Miehe waves. The higher order 
(nonlinear) differences between the Lagrangian and Eulerian wave theories, such as the 
vorticity and vertical shifts in Gerstner and Miehe waves and the 2nd order Stokes drift in 
Stokes waves, are therefore not of relevance here. 

7.4.1 Mean horizontal velocity in a vertical cross-section 
This section pertains to the results presented in Section 6.3.1. The mean horizontal velocity in 
irregular Miehe waves is calculated according to the approximate expression in Eqs. (4.77) 
and (4.80). 

For the long-term mean horizontal velocity in irregular waves, the narrow band assumption is 
found to compare very well with measurements above and below the typical level of the 
troughs. However, there is a clear underprediction at the typical trough-level itself, cf. Figure 
6.37 - Figure 6.39. This should not be interpreted as an error in the underlying theory, but as 
an effect of the narrow band assumption as compared to broad-banded waves. This is 
apparent from Figure 6.35. Variations in the representative narrow band frequency is there 
seen to yield a marked increase/decrease in the calculated mean velocity at the typical trough­
level, while the values above and below are practically unaffected. The simple expressions for 
the region always submerged, i.e. Eqs. (4.57), (4.58), (4.81) and (4.82), may be quite useful in 
order to estimate the magnitude of the mean Eulerian velocity ( due to the waves) in irregular 
waves. 

The development of the long-term mean horizontal velocity in irregular waves resembles the 
development in regular waves. In the early part of the records, there is a positive mean 
velocity in the splash zone and (quite roughly) a vertically uniform and negative mean 
velocity below the splash zone, cf. Figure 6.36. A marked transition then takes place within -
2-3 minutes, cf. Figure 6.37 - Figure 6.39. These figures are based on averaging timeseries­
intervals of lengths corresponding to 80-100 peak periods, but the same results were found 
when considering somewhat shorter timeseries-intervals as well. This transition is believed to 
correspond to what is called the second transition in regular waves. The values of Tp and Hs in 
the irregular wave cases are quite similar to the wave parameters in the regular wave cases, cf. 
Table 6-1, and the transition takes place within a comparable time frame. Skjelbreia (1991) 
did not observe such a transition for irregular waves. However, it seems that he only 
considered relatively short excerpts of the tirneseries in this respect, and that the irregularity 
itself would therefore have made it hard to identify distinct transitions. For the same reason, a 
transition equivalent to what is called the first transition in regular waves has not been studied 
for irregular waves, but similar effects are believed to be present here. 

Studying short-term variations in the mean horizontal velocity is still useful in order to 
interpret the nature of the mean velocity. The quite strong variations seen in Figure 6.41 -
Figure 6.43 suggest that the mean velocity is indeed a result of more or less closed orbital 
"particle"-paths of varying amplitudes. The waves in Figure 6.40 are here considered 
individual regular waves, and some uncertainty exist due to the choice of the averaging period 
of 1.5 s. Still, a higher individual wave is clearly associated with higher positive and negative 
values in the mean velocity profile, as predicted by Gerstner and Miehe. A return-current, i.e. 
a real backward mass flow independent of the instantaneous wave, should not exhibit short­
term variations of this nature or magnitude. Similar short-term variations are seen in Figure 
6.44 - Figure 6.47. 

No further efforts have been made to investigate the development and transitions of the mean 
horizontal velocity in hrngular waves, since this issue should be resolved for the regular case 
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first. Creeping bottom flow is assumed to be negligible for the irregular wave cases 
considered in Section 6.3. 

7.4.2 Instantaneous horizontal velocity in a vertical cross-section beneath 
individual crests and troughs 

This section pertains to the results presented in Section 6.3.2. The horizontal velocity in 
in-egular Miehe waves is calculated according the iteration method described in Section 5.3.4, 
and the surface elevation is calculated according to Section 5.4. Wheeler's method is 
described in Section 5.2. 

Calculations according to Miehe are generally found to predict the horizontal velocity beneath 
crests quite well, and better than Wheeler's method does. The calculations generally compare 
better with measurements beneath crests than troughs, and the difference between Miehe and 
Wheeler is less beneath troughs than crests, cf. Figure 6.50, Figure 6.52 - Figure 6.55, Figure 
6.57 - Figure 6.59, Figure 6.61 - Figure 6.64 and Figure 6.66 - Figure 6.69. 

The difference between Wheeler's method and calculations according to Miehe is 
qualitatively the same as found for regular waves, cf. Figure 6.20 and Figure 6.21, and 
generally in accordance with the typical observed deficiency of Wheeler's method for the 
velocity beneath crests in irregular waves, cf. Section 5.2. In the previous section it was found 
that the mean horizontal velocity hardly can be interpreted as an underlying return cun-ent. 
The modification to Wheeler's method suggested by Gudmestad and Haver (1993) in Eq. 
(5.10) may therefore be questionable, since it is based on the assumption that such a return 
cun-ent exists. A modification of the same form but of lesser magnitude may be more 
appropriate, accounting for the stretching only and not for any return cun-ent. However, the 
Lagrangian approach yields theoretically consistent values everywhere, also in the splash 
zone, and eliminates the need for stretching methods and modifications. 

The iteration methods in Sections 5.3.4 and 5.4 were found to introduce additional uncertainty 
when including the very lowest frequency components, i.e. m << m20, cf. Section 7.2.2. This 
uncertainty is associated with the lowest values of k, and is estimated to 0.01 rn/s for the 
figures pertaining to the frequency range O < OJ < 30J 20 in Section 6.3.2. Note that this 
uncertainty only applies to calculations according to Miche's theory. 

7.4.3 Timeseries of the surface elevation, effective steepness and velocities 
in fixed spatial points 

This section pertains to the results presented in Section 6.3.3. The calculations are performed 
according the iteration methods described in Sections 5.3.4 and 5.4. As above, this introduces 
an additional uncertainty in the figures based on the frequency range O <OJ< 30J20, which is 
found to be of the order 0.01 m/s for the velocities and 0.01 m for the surface elevation. 

Calculations according to Miehe fail to reproduce the surface elevation perfectly, mainly 
because of the difference between an Eulerian surface elevation spectrum (i.e. measured at a 
fixed Eulerian x-position) and a Lagrangian orbital amplitude spectrum, cf. Section 5.4. The 
peak values of the surface elevation can still be expected to be reproduced quite well, while a 
difference in the form of the timeseries must be expected elsewhere. The calculated crests and 
troughs may also be slightly out of phase with the measured ones. 

The peaks of the crests and troughs are generally very well reproduced, except for in the very 
highest waves of the records, cf. Figure 5.13, Figure 5.14, Figure 6.49, Figure 6.51, Figure 
6.56, Figure 6.60, Figure 6.65, Figure 6.70 and Figure 6.72. The expected differences in the 
shapes of the timeseries intervals between the crests and troughs are also apparent in these 
figures. 
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Differences in calculated and measured timeseries of the velocities are generally found to 
con-espond to the differences in the measured and calculated surface elevation when the shape 
of the timeseries is considered, cf. Section 6.3.3. However, differences in the actual level of 
the timeseries may be much smaller. This is apparent e.g. from Figure 6.65 and Figure 6.69, 
where the calculated peak value at of the surface elevation is in good agreement with the 
measured peak value, while the calculated horizontal velocity clearly exceeds the measured 
velocity. Also, Figure 6.67 shows a remarkable agreement between measurements and 
Miche's theory, while Wheeler's method overpredicts the velocity severely. However, 
studying the con-esponding timeseries for u at z = 0.10 in Figure 6.72, we see that the peak of 
the measured values appear to be "cut off" and that a slightly higher peak value may be more 
con-ect, cf. Section 6.1.1 also. 

In Figure 6.71 and Figure 6.73, the effective steepness can be seen to reach values close to 0.7 
at the free surface. The steepness is found to be practically unaffected by applying Eq. (5.5) 
and Eq. (4.17) instead of Eqs. (5.6) and (4.66), meaning that it is not the difference between a 
hyperbolic and exponential expression causing these high values. The peak values of the 
steepness are also found to be the same when calculating them in accordance with Eq. (5.4), 
i.e. on Eulerian form. The experiments in Skjelbreia et al. (1991) hardly include the steepest 
waves ever, and the effective steepness in in-egular waves may therefore be assumed to 
actually approach 1. Although this effective steepness may not be directly comparable to the 
steepness of regular waves, these results do question the common assumption that ka must be 
less than approximately 0.45 in regular waves. Recall that the limit steepness in regular 
Gerstner waves is given by ka < 1, and there are no obvious theoretical reasons why it should 
be less. 

7.4.4 General findings for irregular waves 
As for regular waves, the calculated and measured values of the vertical velocity in in-egular 
waves will generally not compare well, since the vertical velocity is out of phase with the 
surface elevation and thus more subject to the differences between Eulerian measurements 
and calculations according to Lagrangian expressions, cf. Figure 6.72 and Sections 5.4 and 
6.1.3. However, again, it is assumed that the results for the horizontal velocity are most 
descriptive with respect to the performance of the theory 

The horizontal velocity at all depths seems to be in phase with the surface elevation. This 
seems to be the case in regular as well as in-egular waves, in the early part of the timeseries as 
well as later on. However, this has not been studied closely, meaning that small phase lags 
may exist between different vertical levels. 

All in all, superposition of regular Miehe wave components compares quite well with the 
measurements of irregular waves in many cases, and better than Wheeler's method when the 
horizontal velocity beneath crests and troughs is concerned. The development of the mean 
horizontal velocity resembles that in regular waves, and, as stated for regular waves in Section 
7.3.5, it is not obvious which parts of the experiments are best suited for comparisons with 
theory. 

However, discrepancies clearly different from those to be expected are also observed, cf. e.g. 
Figure 6.62, Figure 6.64, Figure 6.66 and Figure 6.69. No attempts have been made to 
identify the exact cause of these discrepancies, or to determine the ideal timeseries-interval 
for the Fourier analysis or the ideal bandwidth for calculations. However, some possible 
reasons for the discrepancies are suggested in Section 7.4.5. 

7.4.5 Uncertainties in the results for irregular waves 
As stated in the previous sections, differences in the measured and calculated timeseries are to 
be expected when an Eulerian spectrnm is used as input spectrum to the Lagrangian 
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expressions, and small additional errors may be introduced by including the very lowest 
frequency components in the iterations for Miehe waves. 

However, other and seemingly more fundamental discrepancies are also found to occur. Some 
possible explanations of these "unexpected" discrepancies are suggested in the following: 

• Irregular waves in a wave flume do not consist of a sum of regular wave trains, as 
assumed in the superposition model. Instead, they consist of waves generated sequentially 
by one wavemaker, which do not result in series of persisting regular wave trains. Also, 
nonlinearities and bound waves are present. A Fourier analysis can therefore only to a 
limited extent identify the real surface elevation constituents. 

• Which part of the timeseries the Fourier analysis is based on, and the bandwidth included 
in the analysis, is also of importance. 

• Nonlinear terms are not included in the calculations. 
• Effects similar to those associated with the initial wave front in the regular wave 

experiments are likely to exist for "wave fronts" in irregular waves also. This may include 
an "extra" positive mean velocity prior to the higher waves, as in Figure 6.5, followed by 
an "extra" negative mean velocity during and after the higher waves, as in Figure 6.6. 
However, interactions between such effects for different waves seem quite unpredictable, 
and it may therefore not be possible to recognize or identify such effects. 

• Erroneous measurements. 
• Other effects due to the flume, the wavemaker and the wave absorber. 

Hence, so-called wave flume effects will be present, and a Fourier analysis will anyhow 
misinterpret the surface elevation to some extent. Also, it is likely that calculations will 
compare better with measurements if more effort is put into determining an ideal timeseries­
interval for the Fourier analysis and an ideal bandwidth for calculations. The effect of 
neglecting nonlinear terms is unknown. However, any such uncertainties apply to e.g. 
Wheeler's method as well as to calculations according to Miehe (or Gerstner). 

Anyhow, these problems are mainly related to comparisons of theory with Eulerian 
measurements. As indicated in Sections 5.4, 7.2.2 and 7.2.3, the Lagrangian approach 
presented in this thesis should still be very well suited for simulations and practical design 
purposes. 



CONCLUSIONS AND 
RECOMMENDATIONS 

The main subject of this thesis has been modelling of waves and wave kinematics based on 
the Lagrangian equations of motion. The Lagrangian approach is found to be very well suited 
for these purposes, offering certain fundamental advantages over the Eulerian approach. Also, 
it is found reason to question the common Lagrangian continuity requirement, namely that the 
Jacobian must be constant and equal 1, and to which extent we can speak of identifiable 
material particles in a continuum. The theorems of Helmholtz, Kelvin and others on the 
persistence of vorticity and circulation may therefore not be generally applicable, since these, 
when considered in a Lagrangian frame of reference, require that the Jacobian always equal 1. 

8. 1 Conclusions 

8.1.1 The basic equations and vortex motion 
• The basic equations of motion have been presented on Lagrangian as well as Eulerian 

form. The equations for conservation of linear momentum pertain to incompressible 
viscous flow, and include the general Lagrangian form of the Laplacian. 

The conservation laws apply to specific portions of matter, and are therefore Lagrangian 
by nature. A Jacobian may therefore always be determined, from an Eulerian as well as a 
Lagrangian solution, and the governing equations may be discussed from a Lagrangian 
point of view. 

With reference to Section 7 .1, it is claimed herein that the common Lagrangian continuity 
requirement, i.e. J = constant (in time), is too restraining and neither necessary nor 
generally c01Tect. For a continuum, continuity in a Lagrangian sense must involve the 
dimensions of a material element, allowing a change in the Jacobian accompanied by a 
c01Tesponding change in the Lagrangian region defining the element, in particular if the 
state of deformation of the element changes. 

Correspondingly, the Eulerian material derivative can generally only be associated with 
an identifiable portion of matter if it is also associated with a region of some size. This 
does not have any consequences for the form of the basic equations of motion, only for 

157 



158 Chapter 8. Conclusions and Recommendations 

their interpretation with respect to material quantities. A specific Lagrangian point can 
only be interpreted as the same material particle in time if the Jacobian is constant. 

The concept of "point-particles" is therefore unphysical and may be misleading. The 
Lagrangian frame of reference should be considered an instantaneously appropriate 
mathematical change of variables for a material region rather than a set of identifiable 
"point-particles". 

,. The relations governing vortex motion have also been presented. These include Cauchy's 
vorticity equations, Weber's transformation, Helmholtz' theorem on the rate of change of 
vorticity and Kelvin's theorem on the rate of change of circulation. Kelvin's theorem has 
been presented on Lagrangian f01m. In addition, a Lagrangian form of Helmholtz' 
theorem has been derived for the two-dimensional inviscid case in Section 3.2.5. 

These relations are traditionally assumed to be proofs of Lagrange's theorem, requiring 
irrotational motion in a flow that has only been subject to potential forces (assuming that 
the density is a function of the pressure only), e.g. as in incompressible inviscid flow. 
However, for any of the above relations to constitute a proof of Lagrange's theorem, it is 
absolutely necessary that the Jacobian initially and always equal 1, or in other words, that 
a Lagrangian point always represents the same identifiable material "point-particle", i.e. 
the same mass. 

However, according to the above, it is not generally correct to require that J = constant = 
1. Also, requiring J = I is anyhow different from and more restraining than requiring J = 
constant, and it is not reasonable to compromize with regard to the continuity 
requirement, which is the most fundamental of the basic requirements in the continuum 
model, in order to satisfy secondary conditions on vortex motion. Note then that 
according to Cauchy's vorticity equations and Weber's transformation, J = I is necessary 
for the initial existence of an Eulerian velocity potential. Also, it has been shown that 
requiring J = I and incompressible potential flow simultaneously allows very simple 
forms of deformation only, if any at all. 

Lagrange's theorem is then generally applicable as an approximation assuming negligible 
deformations only. Recall that this is actually a common assumption to make for an 
infinitesimal material element, and that the deformation of a larger element is the 
integrated effect of the deformations of infinitesimal elements, cf. Section 7.1.3. Motion 
generated by potential forces only can then not generally be assumed or required to be 
irrotational to any order. The use of potential theory and conformal mapping in flow 
problems should therefore be reconsidered. This is reasonable with respect to e.g. 
D'Alembert's paradox. 

The derivations of Helmholtz and Kelvin still describe the Eulerian rate of change of 
vorticity and circulation. However, they can only be imposed physical conditions on and 
interpreted in a Lagrangian sense while the Jacobian is constant, meaning that vorticity 
and circulation in inviscid flow will only be constant as far as the Jacobian is constant. 
Vorticity will be of the same order as the Jacobian's deviation from 1, constant or not. The 
Jacobian will generally deviate from 1 in deforming motion, and the value of the Jacobian 
generally changes if the state of deformation of an element changes. The concepts of 
vortex lines and vortex tubes should therefore also be reconsidered. 

Still, there is one prevailing condition to be satisfied by the solution of inviscid 
incompressible flow problems, namely that the curl of the acceleration must be zero. This 
follows directly from the assumption of only potential forces acting. 
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Finally, it has been shown that rotation defined as half the vorticity does not describe how 
a fluid element actually rotates, in the sense of turning about itself. Expressions that do 
describe such motion more adequately have been presented. This also indicates that 
"point-particles" are unphysical and that a physical foundation for requiring irrotational 
flow may be lacking, since vorticity is often and incorrectly interpreted as an angular 
velocity (spin) of an element. 

8.1.2 Basic wave theory 
• The Lagrangian wave theories of Gerstner and Miehe have been presented. Gerstner's 

theory is an exact analytical solution (of the nonlinear equations of motion and relevant 
boundary conditions) for waves of finite amplitude on infinite depth, and Miche's 2nd 

order perturbation solution applies to finite and uniform depth. 

By the use of Taylor-expansion, these regular wave theories have also been presented on 
Eulerian form, correct to second order, including expressions for mean Eulerian values of 
the velocities, accelerations and pressure. These also give mean values in the splash zone, 
accounting for the fact that points in the splash zone are not always submerged in water. 
Due to the closed orbital motion in Gerstner and Miehe waves, the mean Eulerian 
horizontal velocity is negative beneath the splash zone and turns positive as we move 
upwards in the splash zone, positive being in the direction of wave propagation. 

In addition, expressions for the mean Eulerian horizontal velocity in narrow-banded 
irregular Gerstner and Miehe waves have been presented. For Eulerian positions below 
the splash zone these appear as simple formulas, and are given as functions of the 
significant wave height, the peak period and the ratio between the representative narrow 
band frequency and the peak frequency. As in the regular wave case, a negative Eulerian 
current is present beneath the splash zone in irregular waves also. The magnitude of this 
current will be typically 0.1 - 0.2 m/s in real sea states, depending on the sea state 
parameters and the vertical position under consideration. Note again that this Eulerian 
current is not a mass transport. 

The derivations of the Eulerian expressions are to a large extent based on the work by 
Moe and Arntsen (1996). 

• In spite of the constant negative vorticity in regular Gerstner and Miehe waves, material 
elements in such waves do not have a net physical rotation about themselves. They appear 
to 'wiggle' back and forth, but the mean angular velocity of an element is zero. This 
behaviour is in accordance with the expressions referred to in Section 8.1.1 found to 
describe such motion. 

" The difference between Stokes waves, which represents potential flow, and Gerstner and 
Miehe waves, is Stokes drift. However, when studied from a Lagrangian point of view, 
Stokes waves are found to violate continuity and cause a vorticity at second order within 
less than one wave period, even for waves of small amplitudes. Recall that Stokes 
solution is a direct consequence of requiring zero vorticity. Stokes waves and Stokes drift 
am therefore theoretically inconsistent in the Lagrangian frame of reference. This 
questions the foundation for speaking of identifiable material particles in a continuum, 
and for how long and under which circumstances it may be relevant to do so. These 
results support those in Section 8.1.1, and question the correctness of requiring zero 
vorticity as well as Stokes waves as a basic solution for regular waves. 

Gerstner's wave theory is concluded to be an applicable basic solution for regular waves, 
in the limit of infinite depth and negligible viscosity. In intermediate water, Miche's 
solution applies. However, the physical relevancy of seeking a regulal' solution to second 
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order for such waves on finite depth may be questioned. The 2nd order solution on finite 
depth may instead be found by proper interpretation of the Jacobian and the Lagrangian 
frame of reference, and effects such as bound waves etc. may be inherent in such a 
solution. However, the validity or practical value of such an approach has not been 
verified or studied further. 

8.1.3 Modelling of irregular waves and transformation from the Lagrangian to 
the Eulerian frame of reference 

'" The linear Lagrangian solution is superior to the linear Eulerian solution, since the 
boundary conditions are satisfied in a more correct manner in the Lagrangian solution. 
For the surface elevation, the linear Lagrangian solution (Gerstner waves) is equivalent to 
the 3rd order Eulerian solution (3'd order Stokes waves). 

Superposition of linear components in the Lagrangian frame of reference is seen to 
exhibit so-called nonlinear interactions when transferred to an Eulerian frame of 
reference. One example of this is how a short wave that rides on a longer wave becomes 
elongated and flattened in the trough of the longer wave, and correspondingly shortened 
and steepened in the crest of the longer wave. Also, when superposition is performed in 
the Lagrangian frame of reference, all frequency components are included in an equally 
consistent manner everywhere, also in the splash zone. 

The irregular model presented here is still only a solution of the linearized Lagrangian 
problem; it is not a model for nonlinear irregular waves in a mathematical sense. 
However, it seems that the Lagrangian approach may also open for theoretically 
consistent superposition of nonlinear irregular wave components, cf. Section 8.2. 

• A Lagrangian solution alone may be of limited practical value. Therefore, iteration 
methods for transformation of the Lagrangian solutions to an Eulerian frame of reference 
have been developed, i.e. methods for determining which Lagrangian point occupies a 
specific Eulerian position at a specific instant in time. In the splash zone, the methods also 
determine whether the Eulerian position in question is submerged in water or not at this 
instant. These methods apply to 2D broad-banded irregular waves as well as regular 
waves, and the iterations converge quite fast. Assuming that the Lagrangian orbital 
amplitude spectrum of the free Lagrangian components is known, theoretically consistent 
values of any Eulerian as well as Lagrangian quantity anywhere in the fluid, also in the 
splash zone, may be calculated in a practical manner. As many frequency components as 
desired can be included. The need for extrapolation of solutions and stretching of 
coordinates, and therefore the common additional errors due to violation of the governing 
equations and overprediction of high frequency contributions near and above the still 
water level, are thus eliminated. 

The Eulerian quantities found by these iteration methods are correct to the same order as 
the original Lagrangian solution, assuming that the iteration itself is practically exact. 
Since Gerstner's solution for regular waves is exact, this means that also exact Eulerian 
quantities can be found for such waves. The very lowest frequency components should be 
excluded when employing the iteration methods for Miehe waves, since the ratio [cosh 
kh/sinh kh] may then approach infinity (k being the wave number and h the water depth). 

" The main problem with the Lagrangian approach presented here is direct comparisons 
with measurements of irregular waves made at fixed Eulerian positions. An amplitude 
spectlum of the surface elevation measured at a fixed Eulerian position will not be 
identical to the Lagrangian orbital amplitude spectrum of the process. The Eulerian 
spectrum is still a reasonable approximation of the Lagrangian spectrum, but certain types 
of discrepancies between calculated and measured values must be expected when using 
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component parameters based on an Eulerian spectrum as input to the Lagrangian 
expression. 

However, comparisons with measurements in wave flumes are not the ultimate objective. 
Ocean waves are often measured by buoys, yielding wave spectra that may be considered 
more Lagrangian than Eulerian, and design spectra are anyhow subject to uncertainties. 

Hence, even if perfect agreement between Eulerian measurements and calculations based 
on Lagrangian expressions may be difficult to obtain, the Lagrangian approach presented 
herein should be of great practical and theoretical value, very well suited for simulations 
and design purposes. The potential for further theoretical development seems 
considerable, cf. Section 8.2. 

8.1.4 Comparisons of theory with measurements 
• The Lagrangian approach has been compared with experimental measurements and, in a 

few cases, Stokes' 2nd order wave theory and Wheeler's method. The measurements are 
from the extensive experiments carried out by Skjelbreia et al. (1991). They include 
measurements of the surface elevation and LDV-measurements of horizontal and vertical 
water particle velocities, also in the splash zone. The experiments pertain to waves in 
intermediate water, and the measurements have therefore been compared with Miehe 
waves. However, the differences between applying Gerstner's and Miche's expressions are 
of a minor quantitative nature, and the results for Miche's theory are therefore 
representative also for Gerstner's theory. Irregular as well as regular wave cases have 
been considered. 

• For the regular wave cases, the development of the mean Eulerian horizontal velocity in a 
vertical cross-section was given particular attention. Two distinct transitions were found 
to take place. 

First, there is a transition associated with the arrival of the wave front. For a short period 
of time after this first transition, the mean velocity resembles what might be expected due 
to Stokes waves and associated Stokes drift and return current. 

After this short period of time a second transition takes place, resulting in a more steady 
state situation where the mean Eulerian horizontal velocity is very well predicted by 
Miche's theory. Comparisons were also made for the instantaneous Eulerian horizontal 
velocity in a vertical cross-section beneath individual crests and troughs. Again, Miche's 
theory compare very well with the measurements after the second transition. The 
agreement between calculations and measurements is equally good over the entire column 
of fluid, also in the splash zone. 

The results suggest that material elements eventually move in closed orbits, and that 
neither Stokes drift nor any significant return current is present. This is also supported by 
the results for irregular waves as well as by visual observations. It is not unlikely that the 
early Stokes-like drift is caused by the initial action of the wavemaker rather than the 
waves actually being Stokes waves. More specifically, it takes some time before the 
initially still water is adapted to the horizontal action of the flap-type wavemaker, which 
may cause a positive circulation in the early parts of such experiments. 

These results do to some extent support the suggested conclusions in Section 8.1.2. 
However, definite conclusions can hardly be drawn as long as the effects of the action of 
the wavemaker and the presence of the end-walls in a closed flume cannot be separated 
from the "pure" wave motion. Also, these results pertain to one set of experimental 
measurements only, although the first transition has been reported for other experiments 
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as well. However, the typical negative mean velocity below the splash zone in wave 
flume experiments is well known from literature. 

• For the irregular wave cases, the same type of development of the mean Eulerian 
horizontal velocity was found as for the regular wave cases. In particular, when studying 
three consecutive individual waves of nearly identical period but markedly different 
amplitude, it was found that the mean Eulerian horizontal velocity varies in a way that 
can hardly be compatible with a return current, but indicates that material elements indeed 
move in (practically) closed orbits. The long-term mean Eulerian horizontal velocity 
predicted by the narrow-band approximation for Miehe waves was found to compare well 
with the measurements. 

The results for irregular waves are more subject to uncertainties than the results for 
regular waves, and "unexpected" discrepancies between calculations and measurements 
were found to occur. It is likely that calculations would generally have compared better 
with measurements if more effort had been put into determining an ideal timeseries­
interval for the Fourier analysis and an ideal bandwidth for the calculations, and if better 
estimates of the "true" Lagrangian orbital amplitude spectrum had been found. However, 
the effects of the action of the wavemaker and the presence of the end-walls is even more 
unpredictable for irregular waves than for regular waves, and a Fourier analysis will 
anyhow misinterpret the surface elevation to some extent. Also, nonlinear Lagrangian 
terms are left out of the calculations. Such experiments may therefore be of limited value 
with respect to verification of irregular wave models, even if the methods of analysis and 
calculations are optimized. 

However, the horizontal velocity beneath individual crests and troughs calculated 
according to the iteration method for irregular Miehe waves was still found to compare 
quite well with the measurements, and better than Wheeler's method does. The difference 
between the iteration method and Wheeler's method accounts for the typical observed 
deficiency of Wheeler's method. Recall that due to the strecthing of coordinates, 
Wheeler's method does not satisfy the basic equations of motion, while the Lagrangian 
approach presented in this thesis yields theoretically consistent values everywhere, also in 
the splash zone, and eliminates the need for stretching and/or other modifications. 

Hence, in spite of uncertainties and discrepancies, the results for irregular waves still 
support the conclusions at the end of Section 8.1.3, namely that the Lagrangian approach 
is very well suited for simulations and practical design purposes. These results also 
support the findings for regular waves, namely that material elements indeed move in 
closed orbits rather than being transported by a Stokes-like current and a return current. It 
must still be noted that as for regular waves, these results also pertain to just one set of 
experimental measurements. 

8.2 Recommendations for Further Work 

" The fundamental theoretical issues on continuity and vorticity, and thus the concepts of 
point-particles and potential flow, should be further discussed and verified. For waves, it 
is of the utmost importance to determine whether a mass transport such as Stokes drift 
should be present or not, and to fully understand the actual generation of the waves. 

" The Lagrangian approach may also offer an alternative method for finding higher order 
solutions in some cases. It could be that the 1 '' order solution applies to all orders, and 
that the higher order effects can be included by redefining the Lagrangian frame of 
reference according to the Jacobian resulting from the 1 '' order solution, satisfying 
conservation of a larger and well-defined material region. This is certainly the case for 
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Gerstner waves, and the same approach should be attempted with respect to the higher 
order terms for waves on finite depth. It is suggested that the general validity and 
practical value of such an approach be investigated further. 

• Interactions between waves and currents, as well as between different wave components, 
should be investigated more closely from a Lagrangian point of view. 

" A model for nonlinear irregular waves should be sought by realizing that each wave 
component has a unique Jacobian and Lagrangian frame of reference, and accounting for 
this in the superposition. Any interactions with currents should be included, since such 
interactions may lead to breaking or modulation of waves. 

" The Lagrangian approach presented herein should be extended to the 3D case. 

" The iteration methods for transforming the Lagrangian solution to an Eulerian frame of 
· reference could possibly be refined, e.g. with respect to convergence and computation 
time. In accordance with the above, they should also be extended to account for 
nonlinearities and currents, and an extension to the 3D case should be attempted. 

" With respect to comparisons of theory with measurements, ways of obtaining better 
estimates of the "true" Lagrangian orbital amplitude spectrum from Eulerian 
measurements should be sought. The approach in Zhang et al. (1996) and Zhang et al. 
( 1998) may be relevant in this respect. 

• Wave experiments should be carried out under conditions where the unfortunate effects of 
the wavemaker and tank walls are reduced or eliminated. Also, ways of measuring the 
long-term motion of a specific fluid "particle" could be considered. These issues may not 
be practically, technically or economically feasible to a satisfactory degree at present, but 
should be kept in mind for future work. 

• Finally, the Lagrangian approach may be well suited for other and more complex wave 
problems also, such as waves on shallow water and varying depth, and may prove fruitful 
for other types of flow problems as well. One may e.g. study turbulence from a 
Lagrangian point of view, as well as the effect of viscosity, compressibility and non­
uniform density in certain problems. Note that Lagrangian solutions exist for many 
problems, e.g. for waves on a sloping beach. 
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APPENDIX A 
INVERSE PARTIAL 

DERIVATIVES 

Inverse Partial Derivatives, 20 (x, z)-plane: 

(A.1) yields: 

(A.2) yields: 

(A.3) yields: 

(A.4) yields: 

dx =~ dx0 +~ dz0 =l 
dx dx0 dx dz0 dx 

dx =~ dx0 +~ dz0 =O 
dz dx0 dz dz0 dz 

dz =~ dx0 +l.:._ dz0 =O 
dx dx0 dx dz0 dx 

dz =~ dx0 +~ dz0 =l 
dz dx0 dz dz0 dz 

1-~ dzo 
dx0 _ dz0 dx 
a;- dx 

dx0 

-~dz0 

dx0 = dz0 dz 
dz dx 

dx0 

_ l.:._ dx0 

dz0 _ dx0 dx 
dx dz 

dz0 

1-l.:._ dxo 
dz0 dx0 dz 
dz dz 
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(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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(A.5) and (A.7) then yields 

r 
dX dZ l 

ox0 ~- clz0 ox0 = 1 
dX dXo ~ 

dZo 

.lJ. 

dX dZ dX dZ 

dZ0 

Similarly 

dZ 
dZ0 dX0 1 az 
dX dX az dX dZ ] dX0 -----

ox0 oz0 clz0 ox0 

dX 

dZ0 = dXo I dX 
dZ dX az dX dZ ] dX0 -----

ox0 oz0 clz0 ox0 

dX 

dX0 =- dz0 I dX 
dZ dX az dX dZ J dZ0 -----

ox0 oz0 clz0 ox0 

1 az 
] dZ0 

where] is the two-dimensional Jacobian defined in Chapter 2, Eq. (2.19). 
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(A.9) 

(A.10) 

(A.11) 

(A.12) 



Inverse Partial Derivatives 

Inverse Partial Derivatives, 30 (x, y, z)-space, cf. Eq. (2.28): 

dXo _ 1 d(y,z) 
ih- J a(yo,zo) 

dXo _ 1 d(z,x) _ 1 d(x,z) 
a_;- ld(Yo,zo)- ld(Yo,zo) 

dXo _ 1 d(X, y) 
a;- J a(yo, zo) 

dy0 1 a(y,z) 1 a(y,z) 
ih= ]d(zo,Xo(-Jd(Xo,Zo) 

dy0 1 a(z,x) 1 a(x,z) 
a_;= J d(zo,Xo) = J d(Xo,zo) 

dy0 1 a(x,y) 
a;= J d(zo,Xo) 

1 a(x, y) 
J a(xo,zo) 

dZo 1 d(y,z) 
ih = J a(xo, Yo) 

dZo 1 d(z,x) 
a_;= J a(xo,Yo) 

1 a(x,z) 
J a(xo,Yo) 

dZo _ 1 d(x, y) 
az-J a(xo,Yo) 

where J is the three-dimensional Jacobian defined in Chapter 2, Eq. (2.24). 
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(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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APPENDIX B 
DEVELOPMENT OF THE MEAN 

EULERIAN HORIZONTAL 
VELOCITY IN THE REGULAR 

WAVE EXPERIMENTS 

The figures in this appendix show the measured (*) and calculated (-) mean 
horizontal velocity in a vertical cross-section at the longitudinal position of wave gage 
1 for the regular wave cases 8 (R158) and 9 (SR15), cf. Sections 6.1.1 and 6.2.1. 

Figure 8.1 - Figure 8.23 show the development of the mean horizontal velocity in 
Case 8 (R158), while Figure 8.24 - Figure 8.43 show the development in Case 9 
(SR15). 

The measured values are averaged over one wave period in the initial part of the 
experiments, and over ten wave periods later in the experiments. The specific 
timeseries-interval is given in each of the figures. 

The calculations are performed according to Miche's solution as given by Eqs. (4.77) 
and (4.78) in Section 4.2.2, and the calculated profile is identical in all figures 
pertaining to the same wave case. 

The Eulerian frame of reference is defined by z = O at the initial still water level. 

Recall that the total duration of the records is 819.2 seconds, and that the regular 
wave periods are 1.5 seconds. 
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Figure B.3 Case 8 (R15B), 8 < t < 9.5 [s]. 
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Figure B.7 Case 8 (R15B), 14 < t < 15.5 [s]. 
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Figure B.10 Case 8 (R15B), 30 < t < 45 [s]. 
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Figure B.15 Case 8 (R15B), 105 < t < 120 [s]. 
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Figure B.17 Case 8 (R15B), 135 < t < 150 [s]. 
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Figure B.18 Case 8 (R15B), 150 < t < 165 [s]. 
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Figure B.19 Case 8 (R15B), 165 < t < 180 [s]. 
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Figure B.20 Case 8 (R15B), 225 < t < 240 [s]. 
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Figure B.21 Case 8 (R15B), 285 < t < 300 [s]. 
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Figure B.22 Case 8 (R15B), 585 < t < 600 [s]. 
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Figure B.24 Case 9 (SR15), 7 < t < 8.5 [s]. 
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Figure B.26 Case 9 (SR15), 10 < t < 11.5 [s]. 
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Figure B.27 Case 9 (SR15), 11.5 < t < 13 [s]. 
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Figure B.28 Case 9 (SR15), 13 < t < 14.5 [s]. 
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Figure B.29 Case 9 (SR15), 14.5 < t < 16.5 [s]. 
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Figure B.30 Case 9 (SR15), 30 < t < 45 [s]. 
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Figure B.33 Case 9 (SR15), 75 < t < 90 [s]. 
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Figure B.34 Case 9 (SR15), 90 < t < 105 [s]. 
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Figure H.35 Case 9 (SR15), 105 < t < 120 [s]. 
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Figure B.36 Case 9 (SR15), 120 < t < 135 [s]. 
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Figure B.37 Case 9 (SR15), 135 < t < 150 [s]. 
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Figure B.38 Case 9 (SR15), 150 < t < 165 [s]. 
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Figure B.39 Case 9 (SR15), 165 < t < 180 [s]. 
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Figure B.40 Case 9 (SR15), 225 < t < 240 [s]. 
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Figure B.41 Case 9 (SR15), 285 < t < 300 [s]. 
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Figure B.42 Case 9 (SR15), 585 < t < 600 (s]. 
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Figure B.43 Case 9 (SR15), 785 < t < 800 [s]. 
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