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Dear Editors/Reviews

On behalf of my co-authors, we appreciate editor and reviewers very much for
their positive and constructive comments and suggestions on our manuscript.
After carefully studying the comments, we have revised the typos and made
corresponding changes which are listed in the following with label ‘AW’ (after
each reviewer’s comment starting with ‘CM’).

1. Flawed definitions: Definition 1 (Signature), Definition 2 (PRF).
AW: Thanks again for pointing out those flaws in our definitions. We
have carefully modified these two definitions according to the reviewer’s
comments. Specifically, we have done the following modifications:

(a) In Definition 1:
CM: ”(m*, sigma*) is not among the previously submitted to the
signing oracle”:
AW: Meanwhile, we may use a list Slist to record each signing oracle
query in a form (mi, σi), i.e., the input and output of the i-th signing
oracle query. For defining SEUF-CMA security, we require that:
(m∗, σ∗) is not any tuple recorded in Slist.

(b) In Definition 2:
CM: In the PRF experiment, the value x* is undefined during exe-
cution of B1. B1 has access to an oracle FN, and FN uses x*. So
this is not well-defined. Please correct the security definition.
AW: The oracle FN does not check x* now. Instead we add a re-
striction after B1 outputs the challenge message x*.

2. 2. Games in the Proof:
AW: Thanks again for pointing out those flaws in our proofs. We have
carefully modified the proofs according to the reviewer’s comments. Specif-
ically, we have done the following modifications:

(a) Game 1:
CM: Here it is claimed that the forger F breaks the security of the
signature scheme, ”if sigma′idj

was not returned by any singing oracle
query”. This is true, but it is not the case that you have to consider
here.
AW: We changed the arguments following the reviewers suggestion,
i.e.: - When the test oracle πs∗

idi
receives a tuple (epk′idj

, σ′
IDj

) such

that σ′
idj

is a valid signature for epk′idj
with respect to vksigidj

but

(epk′idj , σ
′
idj

) is not any tuple recorded in SList.

(b) Game 2:
CM: Instead, I’d propose to argue completely differently. There is a
straightforward attack on a NIKE scheme for which it is likely that
the same epk is generated twice: In the NIKE security experiment,
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proceed as follows:
- The adversary asks for n keys
- If there exist *any* two indices i,j such that the NIKE challenger
generates keys epki, epkj with epki = epkj , then ”corrupt” epki and
use the secret key to break the security w.r.t. epkj

AW: We would like to thank the reviewer for such good suggestion.
We modify the proof in this game accordingly. Briefly speaking, we
change Game 2 by asking the challenger to: (i) generate all (ℓ +
dℓ) NIKE key pairs (which will be later used as either long-term or
ephemeral key) at the beginning of the game, (ii) and abort if: there
are two public keys are equivalent. The first change could enable
us to check the abort rule (in the second change). If the challenger
aborts with non-negligible probability, then we could break the NIKE
security as suggested.

(c) Game 5:
CM: In particular, I was not able to follow the reduction to the PRF
security, because everything is extremely sketchy and the considered
PRF security model seems inconsistent with the security definition
given in Section 2.2. For instance, in Section 2.2 there are adversaries
B1, B2, which are not reflected in the proof, but it is just claimed
that ”B could ask queries....”, without clarifying in which stage.
AW: We enriched the proof in Game 5. We now show how adver-
saries B1, B2 are run to simulate the AKE security game. Roughly
speaking, the adversary B1 would generate the protocol messages
recorded in the session identifier of the test oracle. Those protocol
messages will be used as the PRF challenge message submitted to the
PRF challenger. Then the adversary B2 would continue to simulate
the AKE game. We also wrote a few sentences (in conjunction of
our proof) to illustrate why our new scheme can resist with our PFS
attack against the BJS scheme.

If there is still any place that we need to improve, please dont hesitate to contact
us. We would like to express our great appreciation again to editor and reviewers
for comments on our paper.

Best Regards Zheng Yang

Best Regards
Zheng Yang

2

Page 2 of 20

IET Review Copy Only

IET Information Security



Cryptanalysis of a Generic One-round Key Exchange Protocol with
Strong Security

Zheng Yang1,2,*, Junyu Lai3, Guoyuan Li4

1Department of Computer Science, University of Helsinki, 00014, Finland
2School of Computer Science and Engineering, Chongqing University of Technology, Chongqing
400054, China
3School of Aeronautics and Astronautics, University of Electronic Science and Technology of
China,Chengdu 611731, China
4Department of Ocean Operations and Civil Engineering, Norwegian University of Science and
Technology, Aalesund, Norway
*zheng.yang@helsinki.fi

Abstract: In PKC 2015, Bergsma et al. introduced an interesting one-round key exchange proto-
col (which will be referred to as BJS scheme) with strong security in particular for perfect forward
secrecy (PFS). In this paper, we unveil a PFS attack against the BJS scheme. This would simply
invalidate its security proof. An improvement is proposed to fix the problem of the BJS scheme
with minimum changes.

1. Introduction

Perfect forward secrecy (PFS) has been one of the most important security properties for authen-
ticated key exchange (AKE). This property has a long research history that can date back to the
work [1] by Diffie et al. in 1992. Nowadays (perfect) forward secrecy is often considered as a de-
sired fundamental security property for protecting the confidentiality and implicit authentication of
session key, which has been incorporated into various formal AKE security models [2, 3, 4, 5, 6].
Roughly speaking, protocols with PFS should guarantee that the compromise of long-term key
would not affect the confidentiality of previously established session keys.

However, it is often the case that protocols satisfying PFS are much harder to build than those
which dispense with it. This fact is particularly prominent in the construction of an one-round key
exchange (ORKE) protocol. Before the work by Boyd and Nieto [7] in 2011, achieving PFS for
two-message key exchange was once thought to be an impossible mission (e.g. in [5]). Therefore,
an alternative notion called weak perfect forward secrecy (wPFS) is defined in [5]. In the later, a
very strong security model called as eCK [6] was proposed to cover various leakage combinations
of long-term and ephemeral secret keys. However, only wPFS is formulated in the eCK model.
The problem of modeling PFS for two-message key exchange in an eCK like model was overcome
by Cremers and Feltz [4] who proposed a so-called eCK-PFS model. In PKC 2015, Bergsma et
al. [2] particularly aimed to construct an one-round key exchange protocol (which is a special
class of two-message key exchange) in the eCK-PFS model. A generic protocol (which will be
referred to as BJS scheme) is proposed based on non-interactive key exchange (NIKE) [8], digital
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signature (SIG) and pseudo-random function (PRF). As claimed by Bergsma et al. that achieving
the PFS security attribute is one of the primary motivations of the BJS scheme. In this paper,
we are interested in the validity of the security proof of the BJS scheme in the eCK-PFS model.
Note that a security proof is useful if and only if it has no attack under the security model wherein
it is analyzed. The problem of verifying the correctness of computational complexity proof for
a protocol itself is non-trivial, especially under a strong security model. Many works (e.g. [9,
10, 11]) have shown that any active attack overlooked during the security analysis may trivially
invalidate the corresponding security proofs.

OUR RESULTS. We revisit the security result of the BJS scheme. We discover that the BJS scheme
is actually not secure in the eCK-PFS model under which it was proved. The main problem here
is that the session key material which is expected to provide PFS is not specifically bound to
each session. In this case, the adversary can result in two sessions without matching sessions
(non-partnered), e.g., denoted by πsid1 and πtid2 , having the same intermediate keying secret k

epkid1
epkid2

which is computed based on the ephemeral public keys epkid1 and epkid2 . Unfortunately, we figure
out that, after compromising the long-term keys of session participants, the secret k

epkid1
epkid2

can be
extracted from the session key of πtid2 . This would enable the adversary to break the PFS property
of the BJS scheme. We will describe the concrete attack in Section 4. An improved scheme
is proposed to circumvent our PFS attack. In the improvement, we change the key derivation
function (KDF) of k

epkid1
epkid2

(and other important keying materials) by putting all protocol messages

and identities of communication partners into it. Namely, the intermediate key k
epkid1
epkid2

is generated
based on the ephemeral secrets together with the protocol messages and identities. We stress that
binding identities to k

epkid1
epkid2

is important as well. Since it could resist with the unknown key share
attacks [14]. We hope that our security analysis would be helpful for avoiding such mistakes in the
future similar works.

2. Preliminaries

General Notations. We let λ ∈ N be the security parameter and 1λ be a string that consists of λ
ones. We write [n] = {1, . . . , n} ⊂ N to denote the set of integers between 1 and n. The notation
a

$← S denotes the operation which samples a uniformly random element from a set S. Assume
IDS be an identity space. Let KAKE be the key space of session key. Those spaces are associated
with security parameter λ.

2.1. Digital Signature Schemes

We consider a digital signature scheme SIG that consists of three probabilistic polynomial time
(PPT) algorithms SIG = (SIG.Gen, SIG.Sign, SIG.Vfy) which associate with public and secret key
spaces {PKSIG,SKSIG}, message space MSIG, a secret randomness space RSSIG and signature
space SSIG in the security parameter λ. These algorithms are defined as follows:

• (sk, vk) ← SIG.Gen(1λ, rs): This algorithm takes as input the security parameter λ and a
randomness rs ∈ RSSIG, and outputs a (public) verification key vk ∈ PKSIG and a secret
signing key sk ∈ SKSIG;

• σ $← SIG.Sign(sk,m): This is the signing algorithm that generates a signature σ ∈ SSIG for a

2
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message m ∈MSIG with signing key sk;

• {0, 1} ← SIG.Vfy(vk,m, σ): This is the verification algorithm that on input a verification key
vk, a message m and the corresponding signature σ, and outputs 1 if σ is a valid signature for
m under key vk, and 0 otherwise.

Let SIG(sk, ·) be a signing oracle which takes as input a message m and returns a signature
σ ← SIG.Sign(sk,m). Meanwhile, we may use a list Slist to record each signing oracle query in a
form (mi, σi), i.e., the input and output of the i-th signing oracle query.

Definition 1. We say that SIG is (qs, t, εSIG)-secure against strong existential forgeries under adap-
tive chosen-message attacks, if Pr[EXPseuf -cma

SIG,A (λ) = 1] ≤ εSIG for all adversaries A running in
time at most t in the following experiment:

EXPseuf -cma
SIG,A (λ)

rs ∈ RSSIG; (sk, pk)← SIG.Gen(1λ, rs);
(m∗, σ∗)← ASIG(sk,·), which can make up to qs queries to the signing oracle SIG(sk, ·) with
arbitrary messages m;
return 1, if the following conditions are held:

1. SIG.Vfy(pk,m∗, σ∗) = 1, and
2. (m∗, σ∗) is not any tuple recorded in Slist;

output 0, otherwise;

where εSIG is a negligible function in λ.

2.2. Pseudo-Random Functions

A pseudo-random function family is denoted by PRF : KPRF ×DPRF → RPRF, where KPRF is the
key space, DPRF is the domain and RPRF is the range of PRF for security parameter λ. Let PList
be a list to store the messages queried in the following PRF oracle FN .

Definition 2. The pseudo-random function family PRF is said to be a (qf , t, εPRF)-secure, if the
probability |Pr[EXPind-cma

PRF,B (λ) = 1]−1/2| ≤ εPRF holds for all adversaries B = (B1,B2) that make
a polynomial number qf of oracle queries while running within time t in the following experiment
without failure:

EXPind-cma
PRF,B (qf , λ) : FN (k, x) :

b
$← {0, 1}, k $← KPRF; append x→ PList;

(x∗, st)← BFN (k,·)
1 ; return PRF(k, x);

if x∗ ∈ PList then return a failure ⊥;

V ∗1 := PRF(k, x∗), V ∗0
$← RPRF;

b′ ← BFN (k,·)
2 (st, V ∗b );

If b = b′ then return 1;
Otherwise, return 0;

where εPRF = εPRF(λ) is a negligible function in the security parameter λ, and the number of
allowed queries qf is bound by t.

3
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2.3. Non-Interactive Key Exchange Protocols

We first review the simplified notion of NIKE presented in [12, Appendix G]. Let IDSNIKE de-
note an identity space and KNIKE denote a shared key space in association with security param-
eter. A PKI-based Non-Interactive Key Exchange (NIKE) scheme consists of three algorithms:
NIKE.Setup, NIKE.Gen and ShKey, in which those algorithms are defined as follows:

• pmsnike ← NIKE.Setup(1λ): This algorithm takes as input a security parameter λ, and out-
puts system parameters pmsnike. The parameters pmsnike might be implicitly used by other
algorithms for simplicity.

• (sk, pk) ← NIKE.Gen(er): This algorithm takes as input a randomness er $← RNIKE chosen
from a spaceRNIKE, and outputs a pair of long-term secret and public key (sk, pk).

• K ← ShKey(ski, pkj): This algorithm takes as input a secret key ski and a public key pkj ,
and outputs a shared key Ki,j ∈ KNIKE. For a tuple of key pairs (ski, pki) and (skj, pkj), the
algorithm ShKey must hold the following correctness condition:

– ShKey(ski, pkj) = ShKey(skj, pki)

Security Notion of NIKE. We here recall the CKS-light formal security model [8] for two party
PKI-based non-interactive key-exchange (NIKE). We first describe the security experiment in the
following.
EXPcks-light

NIKE,A (λ): On input security parameter λ, the security experiment is executed between a
challenger C and an adversaryA based on a non-interactive key exchange protocol NIKE. Let HID
and DID be two lists recording information (e.g. secret and public key pair) of honest users and
dishonest users respectively. In the security experiment, the following steps are proceeded:

1. The challenger C first generates the system parameters pmsnike according to the protocol
specification and gives pmsnike to the adversary A.

2. The adversary A may ask C with the following queries:

• RegH(i): If i ∈ {HID,DID} a failure symbol ⊥ is returned; Otherwise, C generates a
long-term key pair (ski, pki) ∈ (PK,SK) by running NIKE.Gen(er) and adds the tuple
(i, ski, pki) into the list HID. C gives pki to A.
• RegCnike(j, pkj): If j /∈ HID, C allows the adversary to register an dishonest long-term

public key pkj , and records the tuple (j, pkj) into the list DID. If the adversary makes
multiple queries for a particular index j, in which case C only keeps the most recent
record.
• EXT(i): If i ∈ HID, then C returns the secret key ski.
• RevealKeynike(i, j): If both i and j are recorded in the list DID, C returns a failure symbol
⊥; Otherwise, C runs ShKey using one of the honest secret keys in (ski, skj) and the
public key of the other party, and returns the generated key to A.
• Testnike(i∗, j∗): C returns a failure symbol ⊥ if either i∗ = j∗ or i∗ /∈ HID or j∗ /∈ HID;

Otherwise, C samples a random bit b $← {0, 1} and answers this query according to the
bit b. Specifically, C obtains the real shared key K1 := ShKey(ski∗ , pkj∗) and chooses a
random key K0

$← KNIKE. Then C returns Kb to the adversary. This query can be queried
at most one time.

4
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3. Meantime, A is not allowed to ask either EXT(i∗) or EXT(j∗) where (i∗, j∗) are chosen by
A in the Testnike query; and A is also not allowed to ask any RevealKeynike query with input
(i∗, j∗) in either order.

4. Finally, the experiment returns 1 if A has issued a Testnike(i∗, j∗) query without failure, and
b = b′; Otherwise, 0 is returned.

Definition 3. A two party non-interactive key exchange protocol NIKE is called (t, εNIKE)-adaptively-
secure if for all adversaries A running within time t in the above security experiment, it holds that
|Pr[EXPcks-light

NIKE,A (λ) = 1]− 1/2| ≤ εNIKE, where εNIKE = εNIKE(λ) is some negligible probability in
the security parameter λ.

3. Security Model

In this section, we describe the eCK-PFS model as [4, 2] for two-message authenticated key-
exchange (AKE). In order to emulate the protocol executions in the real world, we provide active
adversaries with an ‘execution environment’ as in [2, 15]. Specifically, the protocol executions
of a set of honest users (that an adversary may attack) are represented by a collection of oracles
{πsidi : i ∈ [`], s ∈ [d]} for d ∈ N, where each oracle πsidi behaves as the party idi carrying out a
process to execute the s-th protocol instance (session) and all oracles can be run sequentially and
concurrently. We assume that all identities and corresponding public keys are stored in a public di-
rectoryPD that can be accessed by all oracles. In the real world, such public directory could be like
certificate authority. In order to keep track of the execution status, we assume each oracle πsidi has
a list of internal state variables: (i) pidsidi – storing the identity and public key of its intended com-
munication partner, e.g. (idj, pkidj); (ii) Φs

idi
– denoting the decision Φs

idi
∈ {accept, reject};

(iii) Ks
idi

– recording the session key Ks
idi
∈ KAKE; (iv) sT sidi – recording the transcript of messages

sent by the oracle πsidi; (v) rT sidi – recording the transcript of messages received by the oracle πsidi .

In literature [2], the authors particularly use the public key as identity. However, in the real
life, the adversary may simply register a party who has the same public key with that of another
honest party. In this case, a party may not be uniquely identified. Therefore, in our model, we only
require that the identity id is some unique string (e.g., some sequential index). The identity of an
honest party should not be manipulated by an adversary. In order to describe the problem of the
BJS scheme, we try to keep our model to be consistent with the model of [2] as much as possible.

An active adversary A in the model is formulated as a PPT Turing Machine taking as input the
security parameter 1λ and public information (e.g. generic description of the above environment
and all public keys of honest parties). The capabilities of active adversaries are formulated by
allowing them to issue the following queries:

• Send(idi, s,m): The adversary can use this query to send any message m of his own choice
to the oracle πsidi . The oracle πsidi will respond with the next message m∗ (if any) to be
sent according to the protocol specification and its internal states. The oracle πsidi would be
initiated via sending it the first message m = (>, ĩdj) consisting of a special initialization
symbol> and a value ĩdj . The ĩdj is either the identity idj of the intended partner or an empty
string ∅. After answering a Send query, the variables (pidsidi ,Φ

s
idi
, Ks

idi
, sT sidi , rT

s
idi

) will be
updated depending on the specific protocol.
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• RevealKey(idi, s): The oracle πsidi responds with the contents of the variable Ks
idi

if and only
if the oracle πsidi has reached an internal state Φs

idi
= accept.

• RevealEphKey(idi, s): The oracle πsidi responds with the per-session randomness used to gen-
erate ephemeral public key.

• Corrupt(idi, pk
∗): If i ∈ [`] this query responds with the honest long-term secret key skidi

(corresponding to the original skidi) of the party idi, and the current public key pkidi stored
in the public directory PD is replaced with the new pk∗ of adversary’s choice; otherwise
a failure symbol ⊥ is returned. After this query, the party idi is called corrupted and all
unstopped oracles of idi can answer other queries using its old public/secret key pair. But no
more oracle of idi can be initiated since then.

• Test(idi, s): If the oracle πsidi has state Φs
idi
6= accept or Ks

idi
= ∅, then this query returns

some failure symbol ⊥. Otherwise, it flips a fair coin b ∈ {0, 1}, samples a random key
K0

$← KAKE, and sets K1 := Ks
idi

. Finally, the key Kb is returned. The oracle πsidi selected by
the adversary in this query is called as test oracle.

Secure AKE Protocols: We here first review the notion regarding partnership of two sessions,
i.e. matching sessions and origin session [2].

We first recall the notion of origin session [2] which is useful to formulate the relationship
between the message generator and its receiver.

Definition 4 (Origin Session). We say that an oracle πsidi has an origin session to an oracle πtidj , if
πsidi has sent all protocol messages and sT sidi = rT tidj . The oracle πsidi is said to be the origin-oracle
of πtidj .

Note that if an oracle πsidi received a protocol message which does not include any information
about its generator, then such message may not come from its intended partner. We now recall the
matching sessions defined in [2].

Definition 5 (Matching Sessions). We say that an oracle πsidi has a matching session to an oracle
πtidj , if πsidi has sent all protocol messages and all the following conditions are held:

• πsidi is an origin-oracle of πtidj ;

• πtidj is an origin-oracle of πsidi .

CORRECTNESS. We say an AKE protocol Π is correct, if two oracles πsidi and πtidj accept with
matching sessions, then both oracles hold the same session key.

In order to define security, we review the notion of oracle freshness (which is called eCK-PFS
rules in [2]) that describes the active attacks allowed in the eCK-PFS model.

Definition 6 (Oracle Freshness). Let πsidi be an accepted oracle with the intended partner idj such
that j ∈ [`]. And let πtidj be an oracle (if it exists) with the intended partner idi, such that πsidi has a
matching session to πtidj . Let πzidv be an oracle (if it exists), such that πzidv has an origin session to
πsidi . Then the oracle πsidi is said to be fresh if none of the following conditions is held:

1. A queried RevealKey(idi, s).

6
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2. If πtidj exists, A queried RevealKey(idj, t).

3. A queried both Corrupt(idi, pkidi) and RevealEphKey(idi, s).

4. If πzidv exists, A queried both Corrupt(idj, pkidj) and RevealEphKey(idv, l).

5. If πzidv does not exist, A queried Corrupt(idj, pkidj) prior to the acceptance of πsidi .

Remark 1. The oracle freshness definition always plays a very important and fundamental role in
the security model, which is used to not only formulate the queries that are allowed in the following
security experiment but also exclude some trivial attacks. However, some trivial attacks might be
obscure and easy to be ignored. Overlooking any of them may lead the underlying security model
to be obsolete. Unfortunately we notice that the eCK-PFS rules defined in [2] is such a negative
example. And no protocol can be secure under their definition. We here recall one of the eCK-PFS
rules that: If πsidi has an origin session πtidj , then it does not hold that both Corruptedj ≤ τ and A
asked RevealEphKey(idj, t), where τ ∈ N is a variable recording the τ -query when πsidi is accepted,
and Corruptedj ∈ N is a similar variable recording the Corruptedj-th query when idj is corrupted.
This rule implies that the adversary is allowed to ask both Corrupt(idj) and RevealEphKey(idj, t)
after the τ -th query. The RevealEphKey query is performed exactly the same as RevealRand defined
in [2]. However, after querying both Corrupt(idj) and RevealEphKey(idj, t) the adversary can
obtain all necessary secrets for generating the final session key of the test oracle. Actually, if
πsidi has an origin session πtidj , the adversary should be forbidden to ask both Corrupt(idj) and
RevealEphKey(idj, t) throughout the security experiment (nor just before some point).
Remark 2. Furthermore, the eCK-PFS model defined in [2] is not totally consistent with the orig-
inal one introduced in [4], in particularly for the use of identity. Unlike [4], the identity is not
considered in the definition of matching sessions. This difference may hinder us to examine the
important attacks that are relevant to identity (such as the unknown key share attacks [14]) under
such a variant of eCK-PFS model [2].

SECURITY EXPERIMENT EXPAKE
Π,A (λ): On input security parameter 1λ, the security experiment

is proceeded as a game between a challenger C and an adversary A based on a AKE protocol Π,
where the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsidi :
i ∈ [`], s ∈ [d]}, and generates ` long-term key pairs (pkidi , skidi) for all honest parties idi for
i ∈ [`] where the identity idi ∈ IDS of each party is chosen uniquely. C gives the adversary
A all identities and public keys {(id1, pkid1), . . . , (id`, pkid`)} as input.

2. A may issue a polynomial number of queries regarding Send, RevealEphKey, Corruptand
RevealKey.

3. At some point, A may issue a Test(idi, s) query during the game at most once.

4. At the end of the game, A may terminate and output a bit b′ as its guess for b of Test(idi, s)
query. Then the experiment would return a failure symbol⊥ if one of the following conditions
is satisfied: (i)A has not issued a Test(idi, s) query; (ii) the Test(idi, s) query returns a failure
symbol ⊥; (iii) the test oracle is not fresh.

5. Finally, the experiment returns 1 if b = b′; Otherwise, 0 is returned.

7
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Definition 7 (eCK-PFS Security). We say that an adversary A (t, ε)-breaks the eCK-PFS security
of a correct AKE protocol Π, if for any A who runs the AKE security experiment EXPAKE

Π,A (λ)

within time t and without failure, it holds that |Pr[EXPAKE
Π,A (λ) = 1] − 1/2| > ε. We say that a

correct AKE protocol Π is (t, ε)-session-key-secure, if there exists no adversary that (t, ε)-breaks
the eCK-PFS security of Π.

4. The Insecurity and Improvement of the BJS scheme

In this section, we describe the insecurity of the BJS scheme [2]. We first review the BJS scheme in
Figure 1. In the presentation slides [16] of the BJS scheme in PKC 2015, the exchanged signatures
are included within the transcript T . However, this change would not change the insecurity of the
BJS scheme. Furthermore, [2, equation (4)] (i.e., k

epkid1
epkid2

:= ShKey(eskid1 , epkid2)) is not consistent

with its counterpart (i.e., k
epkid1
epkid2

:= PRF(ShKey(eskid1 , epkid2))) in [2, Fig.2.]. However, neither of
them is secure. We here just recall [2, Fig.2.] for simplicity.

Fig. 1: The BJS Scheme

8
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4.1. The PFS attack against BJS Scheme

In the following, we present an attack against the perfect forward secrecy of the BJS scheme. We
just exploit the Corrupt(idi, pk

∗
idi

) query which returns the original secret key of idi. However, we
stress that we do not need to change the public key of an honest party via the Corrupt query in the
following PFS attack. The attack idea is to result in two oracles πsid1 and πtid2 generating the same
keying material (i.e., the one computed by only ephemeral secrets) without breaking the eCK-PFS
freshness.

Lemma 1. There exists some adversary A which (t, 1)-breaks the eCK-PFS security the BJS
protocol.

The concrete PFS attack steps are presented as below:

1. The adversaryA chooses two arbitrary target oracles πsid1 and πtid2 . A first asks πsid1 to execute
the protocol instance, and intercepts (epksid1 , σ

s
id1

).

2. A queries Corrupt(id3, pk
∗
id3

) to get the long-term secret key skid3 = (sknikeid3
, sksigid3

), where
pk∗id3 could be identical to its original one.

3. A asks πtid2 to execute the protocol instance, and intercepts (epktidj , σ
t
j).

4. A generates the signature σ∗id3 := SIG.Sign(sksigid3
, epksid1).

5. A sends (epksid1 , σ
∗
id3

) to πtid2 , and forwards (epktid2 , σ
t
id2

) to πsid1 .

6. Note that, at this moment, the oracle πsid1 has an origin oracle πtid2 . But the oracle πsid1 is not the
origin-oracle of πtid2 . Now, the adversary can ask Corrupt(idi, pk

∗
id1

) and Corrupt(id2, pk
∗
id2

) to
obtain skid1 = (sknikeid1

, sksigid1
) and skid2 = (sknikeid2

, sksigid2
), where pk∗id1 and pk∗id2 could be the

same as the original public keys.

7. Then A obtains the session key Kt
id2,id3

by querying RevealKey(id2, t), where Kt
id2,id3

=

k
pkid2
pkid3
⊕ kpkid2epkid1

⊕ kepkid2pkid3
⊕ kepkid1epkid2

. Now the goal of the adversary is to get the keying material

k
epkid1
epkid2

fromKt
id2,id3

. This is possible. SinceA is able to compute k
pkid2
pkid3
⊕kpkid2epkid1

⊕kepkid2pkid3
using

the secret keys sknikeid2
and sknikeid3

. Then we have k
epkid1
epkid2

= Kt
id2,id3

⊕ kpkid2pkid3
⊕ kpkid2epkid1

⊕ kepkid2pkid3
.

8. After obtaining k
epkid1
epkid2

,A is able to compute the real session keyKs
id1,id2

of πsid1 , i.e.,Ks
id1,id2

:=

k
pkid1
pkid2
⊕kpkid1epkid2

⊕kepkid1pkid2
⊕kepkid1epkid2

, where the key value k
pkid1
pkid2
⊕kpkid1epkid2

⊕kepkid1pkid2
can be computed

using the secret keys sknikeid1
and sknikeid2

received from Corrupt queries before.

9. Then A can ask K∗b ← Test(idi, s) and wins the game by comparing K∗b with Ks
id1,id2

.

The above attack is valid in the eCK-PFS model [2], since the test oracle πsid1 is executed un-
der the eCK-PFS rules. Note thatA neither asked RevealEphKey(id1, s) nor RevealEphKey(id2, t).
But the oracle πtid2 , which holds the same keying material of the test oracle πsid1 , has no matching
session to πsid1 . Therefore, the RevealKey query to πtid2 does not break the eCK-PFS freshness.
Note also that the above attack against the BJS scheme holds in any AKE model wherein the PFS
attacks and known session key attacks are formulated (e.g., [3]). As in our PFS attack, we do not
make use of RevealEphKey query at all.
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4.2. An Improvement Solution of the BJS Scheme

The main problem of the BJS scheme is that the protocol message transcript is not bound to the
keying material generated involving only ephemeral public keys. Our remedy is straightforward
that we put all exchanged messages and identities of session participants into the key derivation
function, i.e. PRF, to generate all keying materials including k

epkid1
epkid2

. Furthermore, each message
flow also consists of the identity of the message owner. This could first enable the protocol to
be able to run under the post-specified peer setting [13] (i.e., without knowing the identity or
public key of the communication partner). On the second, including the identities in the session
key computation could resist with the unknown key share attacks [14]. Consider the case that
the adversary replaces the public key pkid3 with pkid1 , i.e., pkid3 = pkid1 . Then the adversary
masquerades as id3 to execute a session interacting with the session πtid2 but using all messages
from πsid1; and forwards all messages from πtid2 to πsid1 . As a result, the party id2 would mistakenly
believe the session key is shared with id3. But the party id1 ends up believing that she shares
a session key with id2. In particular, the oracles πtid2 and πsid1 share the same session key, i.e.,
Ks

id1
= Kt

id2
but pidtid2 6= (id1, pkid1). Readers can check this problem themselves.

Fig. 2: An Improved Scheme

More specifically, our improved scheme is shown in Figure 2.
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Theorem 1. Suppose that the pseudo-random function family PRF is (d, t, εPRF)-secure, the non-
interactive key exchange scheme NIKE is (t, εNIKE)-secure, and the deterministic signature scheme
SIG is (d, t, εSIG)-secure, as defined in Section2. Then the proposed protocol is (t′, εAKE)-session-
key-secure such that t′ ≈ t and εAKE ≤ εNIKE + ` · εSIG + 4(d`)2 · (εNIKE + εPRF).

Proof. Generally speaking, we are going to gradually reduce the security of our proposed scheme
to that of the underlying building blocks. The proof is shown by a series of games. Let Sξ be the
event that the adversary wins the security experiment in Game ξ, and ADVξ := Pr[Sξ]−1/2 denote
the advantage of A in Game ξ.

Game 0. The first game is the real security experiment. Thus we have that

Pr[S0] = 1/2 + ε = 1/2 + ADV0.

All queries in this game are simulated honestly in terms of the protocol specification. Specif-
ically, each Corrupt(idi, pk

∗) query returns the long-term key skidi = (sknikeidi
, sksigidi

); and each
RevealEphKey(idi, s) query returns the ephemeral secret key esksidi generated by the oracle πsidi .
The protocol message returned by each Send(idi, s, ·) comprises of (idi, epk

s
idi
, σsidi).

Game 1. This game proceeds exactly as the previous game, but the challenger aborts if: the test
oracle oracle πs∗idi received a protocol message m′ = (idj, epk

′
idj
, σ′idj) such that SIG.Vfy(vksigidj

, σ′idj ,
epk′idj) = 1, but the tuple (epk′idj , σ

′
idj

) is not sent by any oracle of idj . Note that the test oracle πs∗idi
must be fresh. This implies that the party idj must be uncorrupted when the messagem′ is received
by πs∗idi . The challenger could check the abort rule when the Test query is asked.

If the challenger aborts with overwhelming probability, then we could construct an efficient
signature forger F to break the security of SIG by running the adversary A as a subroutine. To do
this, F simulates as the AKE challenger for A as in Game 1 but with a few modifications. F first
guesses the partner idj of the test oracle at the beginning of the game. If F fails in this guess, it
aborts the game. The probability of such correct guess is at least 1/`. In the following, we assume
that the guess ofF is right. Note thatF is given a challenge signature verification key vksig∗ by the
signature challenger. The signature verification key of idj is assigned as vksigidj

:= vksig
∗ . All other

long-term key pairs in this game are generated by F honestly following the protocol specification.
This implies that F knows all honest parties’ long-term secret keys except for sksigidj

. Meanwhile,
F can compute all protocol messages which are non-related to sksigidj

. As for each signature of idj ,
F queries the signing oracle SIG(sksig

∗
, ·) with an input epktidj (which is generated by F). So far,

the simulation of F is perfect.
When the test oracle πs∗idi receives a tuple (epk′idj , σ

′
idj

) such that σ′idj is a valid signature for
epk′idj with respect to vksigidj

but (epk′idj , σ
′
idj

) is not any tuple recorded in SList. Then, F could win
in the signature security experiment by outputting (epk′idj , σ

′
idj

). By applying the security of the
signature scheme, we have that

ADV0 ≤ ADV1 + ` · εSIG.
As a result, the test oracle πs∗idi in this game always has an origin-oracle πz∗idj before the party idj

is corrupted.

Game 2. The challenger proceeds as the previous game but it does the following two modifica-
tions:
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• Generate all `+`dNIKE key pairs {pki, ski}i∈[`+`d] (which may used later as either long-term
or ephemeral key) at the beginning of the security experiment;

• Abort if: there are two distinct indexes (i, j) ∈ [`+ `d] such that pki = pkj .

The first change is possible for an ORKE protocol. Since each oracle’s protocol message (includ-
ing ephemeral key) is independently generated. The second change could ensure that there is no
collision among all NIKE key pairs during the subsequent AKE security experiment.

It is straightforward to see that if the above abort event occurs with non-negligible probability.
Then we can construct an efficient algorithm E to break the NIKE scheme as follows. Instead of
generating all NIKE keys on its own, E generates each NIKE public key pkτ via asking a RegH(τ)
query. When there are two NIKE public keys, e.g., pki and pkj , such that i 6= j but pki = pkj , E
can break the NIKE security as follows:

• Ask a Testnike(i, z) query with indexes such that i 6= z 6= j, to get a challenge NIKE shared
key Knike∗;

• Ask a EXT(j) query to get the secret key skj which is identical to ski;

• If ShKey(skj, pkz) = Knike∗ then return 1, otherwise return 0.

Note that all NIKE public keys generated in the above way have the same distribution as in the
previous game. Due to the security of the NIKE scheme, the abort event would not occur with
overwhelming probability. So that we have that

ADV1 ≤ ADV2 + εNIKE.

In this game, all NIKE key pairs are uniquely generated. This also implies that the test oracle
always has a unique origin-oracle, thanks to the uniqueness of each ephemeral NIKE key.

Game 3. Note that the adversary is not allowed to ask RevealKey query to the test oracle or its
partner oracle (if it exists). But the RevealEphKey and Corrupt queries have various combinations
in terms of the oracle freshness definition. Namely, we have the following disjointed freshness
cases:

• C1: A does not query both RevealEphKey(idi, s
∗) and RevealEphKey(idj, z

∗).

• C2 : A does not query both Corrupt(idi, pk
∗) and RevealEphKey(idj, z

∗).

• C3 : A does not query both Corrupt(idi, pk
∗) and Corrupt(idj, pk

∗).

• C4 : A does not query both RevealEphKey(idi, s
∗) and Corrupt(idj, pk

∗).

Note that only one of the above cases will occur in each simulation of the security experiment.
Each freshness case is associated with at least two (either long-term or ephemeral) NIKE secret
keys which are uncompromised by the adversary.

We change this game from the previous game by adding an another abort rule. Namely, the
challenger aborts if it fails to guess (at the beginning of the game): (i) the test oracle and its origin-
oracle, and (ii) one of the above freshness cases. Since there are 4 fresh cases and ` parties at all,
and at most d oracles for each party, then the probability of a correct guess is at least 1/4(d`)2.
Thus we have that

ADV2 ≤ 4(d`)2 · ADV3.
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Game 4. Note that each freshness case involves two unexposed NIKE secret keys. In this game,
we replace the NIKE shared key which is computed based on those unexposed NIKE secret keys
with a random key K̃nike. If there exists an adversaryA distinguishing this game from the previous
game, then we can make use of A to build an efficient algorithm D to break the security of NIKE.
Again D will simulate the security experiment for A. D first asks RegH(1) and RegH(2) queries
to obtain two challenged NIKE public keys (pk∗1, pk

∗
2) (from the NIKE challenger). The test NIKE

shared key Knike∗ is obtained by asking query Knike∗ := Testnike(1, 2). The goal of D is to
distinguish whether or not Knike∗ is the real shared key with respect to (pk∗1, pk

∗
2). Due to the

correct guess as in the previous game, D knows in advance which freshness case will occur during
the game. So that D is able to embed these challenged NIKE public keys as follows:

• C1 : D generates the ephemeral public keys epks∗idi := pk∗1 and epkz∗idj := pk∗2 . D substi-
tutes Knike∗ for the value ShKey(esks

∗

idi
, epkz

∗

idj
) (c.f. ShKey(eskz∗idj , epk

s∗

idi
)). As for the value

ShKey(eskz
∗

idj
, pk′) where pk′ is an arbitrary (either long-term or ephemeral) public key cho-

sen by A, it is computed as below:

– D chooses an index τ /∈ HID and asks RegCnike(τ, pk′).
– D can compute ShKey(eskz

∗

idj
, pk′) by asking RevealKeynike(2, τ).

• C2 : D generates the long-term key pknikeidi
:= pk∗1 and the ephemeral public key epkz∗idj :=

pk∗2 . D substitutes Knike∗ for the value ShKey(sknikeidi
, epkz

∗

idj
). With respect to the values

ShKey(eskz
∗

idj
, pk′) and ShKey(sknikeidi

, pk′) where pk′ is chosen byA, they are computed anal-
ogously as in the case C1 (i.e., exploiting the RegCnike and RevealKeynike queries).

• C3 : D generates the long-term public keys pknikeidi
:= pk∗1 and pknikeidj

:= pk∗2 . D substi-
tutes Knike∗ for the value ShKey(sknikeidi

, pknikeidj
). As for the values ShKey(sknikeidi

, pk′) and
ShKey(sknikeidj

, pk′) where pk′ is chosen by A, they are computed analogously as in the case
C1.

• C4 : D generates the ephemeral public key epks
∗

idi
:= pk∗1 and the long-term public key

pknikeidj
:= pk∗2 . D substitutes Knike∗ for the value ShKey(esks

∗

idi
, pknikeidj

). With respect to the
value ShKey(sknikeidj

, pk′) where pk′ is chosen by A, it is computed analogously as in the case
C1.

Due to the above changes, D can compute all NIKE shared keys involving the challenge NIKE
public keys. All other (ephemeral or long-term or NIKE shared key) keys are simulated by D
with secrets of her own choice. Meanwhile, D could answer the oracle queries as in the previous
game but with the above modified values. If Knike∗ is a random key then the simulation of D is
equivalent to this game. Otherwise, it is identical to the previous game. Applying the security of
NIKE, we therefore obtain that

ADV3 ≤ ADV4 + εNIKE.

Game 5. In this game, we change the function PRF(K̃nike, T s
∗

idi
) of the test oracle (as well as

its partner oracle) to be a truly random function RF(T s
∗

idi
). Recall that the seed K̃nike is the NIKE

shared key which is random and computed based on unexposed NIKE secret keys. Then any PPT
adversary A distinguishing this game from the previous game can be used to build an efficient
algorithm B = (B1,B2) to break the security of PRF.
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The sub-algorithm B1 could first generate all values in T s∗idi = sort(idi, pkidi , epk
s∗

idi
, σs∗idi , idj ,

pkidj , epk
z∗

idj
, σz∗idj) using the random long-term and ephemeral secret keys (i.e., sks∗idi , sk

z∗

idj
, esks∗idi

and eskz∗idj ) of her own choice. Note that all values in T s∗idi can be pre-generated before running
the security experiment. Because each oracle’s protocol message can be generated independently.
Then B1 sets x∗ = T s

∗

idi
and st = (sks

∗

idi
, skz∗idj , esk

s∗

idi
, eskz∗idj , T

s∗

idi
). Upon receiving the challenge

message x∗, the PRF challenger returns the challenge value V ∗. The job of B is to distinguish
whether or not V ∗ = PRF(k∗, T s

∗

idi
). One could consider that k∗ = K̃nike.

Next, the sub-algorithm B2 takes as input (st, V ∗) and simulates the AKE game for A. Basi-
cally, B2 simulates the game as before, except for the following modifications:

• The long-term public keys of idi and idj and the ephemeral public keys of πs∗idi and πz∗idj are
assigned according to the corresponding values in st.

• The value PRF(K̃nike, T s
∗

idi
) which is supposed to be computed by the test oracle and its part-

ner oracle is replaced with V ∗.

• For the computation PRF(K̃nike, Tι) of any oracle such that Tι 6= T s
∗

idi
, B2 computes its value

by querying FN (Tι).

The other long-term keys and protocol messages will be generated using the secrets chosen
by B2. Meanwhile, we have fact that only two partnered oracles would share the same protocol
message transcript T . This is guaranteed by the uniqueness of identity and ephemeral public key.
We consider the following situations concerning the protocol message of the test oracle. When the
adversary replays the test oracle’s message ms∗

idi
= (idi, epk

s∗

idi
, σs

∗

idi
) to another oracle πtidu which

outputs a message mt
idu

. If πtidu is not the origin-oracle of πs∗idi , then mt
idu

must be distinct to mz∗

idj
(i.e., the origin-oracle’s message) – due to the uniqueness of the ephemeral key. In addition, any
modification of ms∗

idi
(e.g., replacing idi with another identity idv) will result in a protocol transcript

T ′ which is distinct to T s∗idi . Similarly, the adversary cannot manipulatems∗

idi
to lead to non-partnered

oracles having the same protocol transcript. This also implies that the value V ∗ would be only
used by the test oracle and its partner oracle. For example, if both secrets esks∗idi and eskz∗idj are not
exposed. The value PRF(ShKey(esks

∗

idi
, epkz

∗

idj
), T s

∗

idi
) would be replace with V ∗. If the origin-oracle

πz
∗

idj
has no matching session to the test oracle, but should compute ShKey(esks

∗

idi
, epkz

∗

idj
). Then B2

would replace the value PRF(ShKey(esks
∗

idi
, epkz

∗

idj
), T z

∗

idj
) with the value returned by FN (T z

∗

idj
).

Due to T s∗idj 6= T z
∗

idj
, we must have that FN (T z

∗

idj
) 6= V ∗. This is enough to thwart our PFS attack

against the BJS scheme.
If V ∗ = PRF(k∗, T s

∗

idi
) then the simulation of B2 is identical to the previous game. Otherwise,

it is identical to this game. The output bit b′ of A is taken as the output of B2. By applying the
security of PRF, we therefore have that

ADV4 ≤ ADV5 + εPRF.

Note that the session key returned by the Test query in this game is totally a truly random value
which is independent of the bit b chosen by the Test query and any messages. Thus, the advantage
that the adversary wins in this game is ADV5 = 0.

Sum up the probabilities from Game 0 to Game 5, we obtained the overall result of this theorem.
The running time of B, D, E and F is equal to the running time of A plus the cost on simulating
the security experiment for A.
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5. Conclusion

We conclude that the BJS scheme is not secure in the eCK-PFS model. A PFS attack has been
shown, which enables us to falsify the security proof of the BJS scheme. An improved scheme
has been proposed with a slight modification. We hope our results would help researchers to avoid
similar problems while considering the security for one-round key exchange protocol.
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