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Abstract

Optimal operation and control of chemical processes depends on external
conditions or disturbances. In order to achieve optimal or near-optimal con-
trol, one wants to control the active constraints, and the active constraints
will frequently change with disturbances.

Any remaining degrees of freedom can be used to control variables whose
optimal values are relatively insensitive to disturbances, these are called
self-optimizing variables. However, when disturbances cause the active con-
straints to change, the best choice of self-optimizing variables will change
as well. Thus it is important to have knowledge of how the set of active
constraints changes with disturbances. This is particularly important when
designing the control structure for a process.

The first chapter of the thesis deals with identifying active constraint
regions, and describes a simple method for doing this in the case of two
disturbances. This method is then later in the thesis applied on distillation
case studies, and on a natural gas liquefaction process.

The second half of the thesis focuses on optimization and optimal op-
eration of natural gas liquefaction plants. Liquefied natural gas (LNG) has
been an important product in the gas industry since the 1960s, but optimal
operation of liquefaction plants has not gained much attention in the open
literature until the last decade. The thesis aims to give an overview over
earlier work in this area. It is found that most attempts at optimization of
such processes involves use of gradient-free optimization methods. A chap-
ter of the thesis is dedicated to studying challenges in optimization, and
serves to partly explain why this is the case. In particular, this chapter
discusses the effect of model formulation on optimization performance.

Finally, the findings of the previous chapters are used to identify active
constraint regions for the PRICO liquefaction process, which is much used
in earlier academic case studies because of its simplicity. In this chapter, a
control structure for the PRICO process is also suggested.
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Chapter 1

Introduction

1.1 Motivation

Optimal operation of process plants is a wide field, and within our research
group the later years have seen contributions both related to general the-
ory and to specific applications. This thesis aims to contribute in both
categories.

The project which has led to this thesis, started from the thesis by
Jørgen Jensen (Jensen, 2008), which dealt with optimal operation of cooling
cycles (in particular natural gas liquefaction plants). It soon became clear
that optimal operation of such plants was a field where not much has been
done in the open literature. Therefore, one part of the thesis focuses on
optimization and optimal operation of natural gas liquefaction processes.

An important focus within our group is the idea of self-optimizing control
(Skogestad, 2000). When seeking to find a self-optimizing control structure,
one must first take care of the active constraints. However, not much effort
has been put into actually identifying how the set of active constraints vary
when the process is exposed to disturbances. The disturbance space can
be divided into regions where different constraints are active. This thesis
addresses how to identify these regions in a two-dimensional disturbance
space. Since this issue has hardly been addressed in the open literature,
this thesis should provide a good starting point for discussion.

1.2 Overview of the thesis

• Chapter 2 introduces a simple method for finding active constraint
regions in a two-dimensional disturbance space. The method is then
applied on a toy example, namely a reactor-separator-recycle process

1



2 Introduction

where unreacted reactant is separated from the product and recycled
to the reactor. This chapter also briefly discusses the applicability of
the method.

• In Chapter 3, the method introduced in Chapter 2 is applied to more
realistic case studies on distillation columns. In addition, the so-called
”avoid product giveaway rule” is discussed in relation to the active
constraint regions.

• Chapter 4 provides a literature review of the work that has been done
on simulation and optimization of natural gas liquefaction processes.

• Chapter 5 addresses challenges in optimization of natural gas lique-
faction processes. This chapter includes a comparison of the solution
reliability of various formulations of the steady state-model of the
propane precooled mixed-refrigerant (C3-MR) process (Newton et al.,
1986).

• Chapter 6 applies the method from Chapters 2-3, to work out ac-
tive constraint regions for a simple liquefaction process (the PRICO
process, Price and Mortko (1996)).

• Chapter 7 summarizes the main conclusions of the thesis, and suggests
future work based on what is presented here.

1.3 Main contributions of the thesis

The aim of the thesis is to contribute to two separate problems within the
broader scope of optimal operation and control:

• The first main contribution is the method for finding active constraint
regions in the disturbance space. This is a little researched problem,
and in the opinion of the author, Chapter 2 opens up for wider dis-
cussion of the problem.

• The main contribution of Chapter 3 is to provide new insight into
optimal operation of distillation columns.

• Few have looked into the challenges that exist in optimization of liq-
uefaction processes. Instead, most have found a solution to fit their
problem. Chapter 5 contributes to the understanding of which chal-
lenges actually exist, and should be of interest for all those who try
to use different software for simulation and optimization.
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• To the knowledge of the author, no earlier work exists that addresses
active constraint regions for liquefaction processes. Thus, Chapter 6
should be a worthwhile contribution to the LNG field.

1.4 Publications

1.4.1 Included in the thesis

Several chapters in the thesis are based on papers that have been submitted
to scientific journals:

• Chapter 2: Submitted to Industrial & Engineering Chemistry Re-
search as: Magnus G. Jacobsen and Sigurd Skogestad: ”Ac-
tive constraint regions for optimal operation of chemical pro-
cesses”. This paper has been accepted and is currently in press.

• Chapter 3: Submitted to Industrial & Engineering Chemistry Re-
search as: Magnus G. Jacobsen and Sigurd Skogestad: ”Ac-
tive constraint regions for optimal operation of distillation
columns”.

• Chapter 5: This chapter is based on the following publication: Mag-
nus G. Jacobsen and Sigurd Skogestad: ”Optimization of
LNG plants - Challenges and strategies”, proceedings of the
21st European Symposium on Computer-Aided Process En-
gineering (ESCAPE-21), Porto Carras, Chalkidiki, Greece,
May 29-31, 2011. pp. 1854-1858.

• Chapter 5 has also been submitted for a special issue of Computers &
Chemical Engineering, which is to be published in 2012.

• Chapter 6: Submitted to Journal of Natural Gas Science and Engi-
neering as: Magnus G. Jacobsen and Sigurd Skogestad: ”Ac-
tive constraint regions for a natural gas liquefaction process”.
An abstract has also been submitted to the 2nd Trondheim Gas Tech-
nology Conference, to be held on 2-3 November, 2011 in Trondheim,
Norway.

1.4.2 Other

During my PhD studies I have given the following conference presentations,
that have not been included in the thesis:
2010
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• Magnus G. Jacobsen: ”Challenges in optimization of LNG plants”,
16th Nordic Process Control Workshop 2010, Lund, Sweden, August
25-27.

• Magnus G. Jacobsen: ”Optimal selection of controlled variables for
the C3-MR process for liquefaction of natural gas”, 1st Trondheim
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• Magnus G. Jacobsen, Sigurd Skogestad: ”Control of maldistribution
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Chapter 2

Active constraint regions for
optimal operation of
chemical processes

Accepted by Industrial & Engineering Chemistry Research - in press

When designing the control structure of a chemical plant, with
optimal operation and control in mind, it is important to know
how the active set of constraints changes with disturbances.The
generation of optimal active constraints regions using optimiza-
tion is generally very time consuming, and this paper discusses
how to use process knowledge to minimize the need for numer-
ical calculations that is, minimize the number of optimization
problems that need to be solved. We consider the case of two
disturbances, as this can be nicely represented graphically.

In this chapter, we study economically optimal operation of a
reactor-separator-recycle process, and show how the set of ac-
tive constraints changes with feed flow rate and energy cost as
disturbances. We also identify the economical and physical bot-
tleneck of the process. For this case study process, we find five
distinct regions with different active sets. This illustrates that,
even for simple cases, the map of active constraint regions can
be quite complex.
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6 Active constraints for chemical processes

2.1 Introduction

2.1.1 Motivation

In optimization and control of chemical processes, active constraints play
an important role. The set of active constraints influence both on plant
economy and plant control. If one does not control the active constraints,
one will have to accept economical loss (Aske, 2009). Also, knowing which
variables are optimally at their constraint value is crucial for control struc-
ture design. If a manipulated variable which is optimally at a constraint,
is used to control another variable, we can not keep it at its optimal value
at all times. Thus it is necessary to know how the active constraints vary
with disturbances. It is also useful to know which active constraints are
important for plant economy and which are not. Say, for example, that a
variable is optimally unconstrained in a particular region, and we decide to
use this variable for control. Now if this variable is constrained in a neigh-
boring region, we may have to replace it in our control scheme. However, if
backing off from the constraint gives a small loss, it might be acceptable to
keep the same control structure.

Reactor-separator-recycle systems have been researched actively over
the years and is a widely used example in control literature (Gilliland et al.,
1964; Wua et al., 2001; Wu and Yu, 1996; Luyben and Fluodas, 1994; Luy-
ben, 1993). These articles mainly focus on basic regulatory control. Kiss
et al. (2004) study state multiplicity, which may complicate optimization of
such plants severely. Little work has gone into identifying economically op-
timal operating conditions for such systems, though. Larsson et al. (2003)
focuses on choosing self-optimizing variables (Skogestad, 2000) among the
unconstrained variables. Maarleveld and Rijnsdorp (1970) offer a study of
constraint control on distillation columns, and discusses how constraints
change with different process variables. Except for Maarleveld and Rijns-
dorp (1970) and the recent work by Jagtap et al. (2010), there is little
emphasis on active constraints in the literature.

2.1.2 Contribution and organization of this chapter

When one seeks to find the (approximate) regions in which each constraint
is active, one will usually have to carry out at least a few optimizations.
In multi-parametric programming one will typically carry out many opti-
mizations, and if the optimization problem itself is difficult, this may be
a time-consuming process. In this chapter, we address how one can use
knowledge about the optimization problem and process model to simplify
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this work, and obtain approximate active constraint regions using few op-
timizations. Part of the purpose is to explain what we can find out just
using process knowledge, and what we must solve for numerically. We sug-
gest a step-by-step method for sketching the active constraint regions for
a two-dimensional disturbance space, and use this method on a reactor-
separator-recycle process. The chapter is structured as follows:

• In Section 2.2 we briefly discuss optimal operation in general and
discuss the link between the input space and the disturbance space.

• In Section 2.3 some general points about optimization are included
to provide background for the rest of the chapter (and subsequent
chapters).

• In Section 2.4, a method for finding approximate active constraint
regions is outlined.

• In Section 2.5 we describe the process we have used for the case study

• In Section 2.6 we define optimal operation of the process and give a
degree-of-freedom analysis

• In Section 2.7, the results are shown

• In Section 2.8 the results and the efficiency of the method are dis-
cussed, and we compare our results to those from Jagtap et al. (2010).

• Finally the conclusions are summarized.

2.2 Optimal operation and constraint regions

When optimizing operation of chemical processes, we start with formulating
a cost function J which is to be minimized, and identifying the degrees of
freedom u that can be adjusted to minimize J . Since we consider steady-
state optimization, causality is not an issue - thus it does not matter which
variables we select as our degrees of freedom, as long as the remaining vari-
ables of the model form an independent set. For example, when optimizing
a distillation column, the degrees of freedom could be flows (e.g. reflux L
and vapor boilup V , so u = [L V ]) or compositions (u = [xB xD]). Finally,
we need to identify the constraints c on operation (for example L, V > 0,
V ≤ Vmax), and the most important disturbances d.
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The optimal solution will often be at the intersection of constraints. In
Figure 2.1, we illustrate how constraints and objectives may change when
disturbances change, for a simple example with the constraints

c1 ≥ c1,min

c1 ≤ c1,max

c2 ≥ c2,min

c2 ≤ c1,max

(2.1)

and two degrees of freedom u1 and u2. The constraints define a two-
dimensional region in the input space, and the optimal solution may lay in
the interior of this region (Figure 2.1(a)), on one of its edges (Figure 2.1(b))
or at one of its corners (Figure 2.1(c)). Operation outside this region is
infeasible. In this example the feasible set of u is shown as being unchanged
as d changes. This will typically be the case if the disturbance which changes
is a price. If it is a process disturbance, the constraint lines are likely to
change as well.

In this chapter, we focus on how the set of active constraints depends
on the disturbances. The different points indicated in Figures 2.1(a) - 2.1(c)
would belong in different constraint regions in the disturbance space. In
the case of one disturbance, each region corresponds to a line segment, as
shown in Figure 2.2. It is worth noticing that ”region III” in Figures 2.1(a)
- 2.1(c) refers to just one point, whereas in the disturbance space, ”Region
III” includes all d which makes that particular point optimal.

In the case of two disturbances, each region is a subset of the now two-
dimensional disturbance space. Later in this chapter (Section 2.4), we use
a two-dimensional example to illustrate the suggested method for identify-
ing the active constraint regions. Figure 2.4(a) is thus a two-dimensional
equivalent to Figure 2.2.

2.3 Optimization theory

2.3.1 General form of the optimization problem

Optimization of chemical processes is typically a nonlinear problem on the
form

min
u

J(x, u, d)

subject to f(x, u, d) = 0
c(x, u, d) ≤ 0

(2.2)



2.3. Optimization theory 9

u1

u 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal point

c2 = c2,max

c1 = c1,min

c1 = c1,max
(Region II)

Region I (no active constraints)

Region III

c2 = c2,min

(a) Optimum in unconstrained region

u1

u 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c1 = c1,min

Region I (no active constraints)

c2 = c2,min

Optimal point

c1 = c1,max
(Region II) Region III c2 = c2,max

(b) Optimum at c1 = c1,max (region II)

u1

u 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal point

c2 = c2,max

c1 = c1,min

Region I (no active constraints)

Region III

c1 = c1,max
(Region II)

c2 = c2,min

(c) Optimum at c1 = c1,max, c2 = c2,max

(region III)

Figure 2.1: Constraint lines and objective function as functions of degrees
of freedom u

Figure 2.2: Constraint regions in one-dimensional disturbance space (one
disturbance)



10 Active constraints for chemical processes

where J is the economical objective, f(x, u, d) the process model equa-
tions and c(x, u, d) the process constraints. The process model equations
may be included in the optimization problem, or solved separately. The
latter gives rise to different (and more complex) shapes of J and c, but
eliminates x from the equations. Which approach to use depends on which
is more robust - i.e. which approach is most certain to return a result. Es-
pecially in cases where recycles are involved, it may be beneficial (or even
necessary) to let the optimization solver solve the flowsheet model as well
(for a discussion, see Biegler (2010)).

A solution of such a nonlinear optimization problem is characterized by
the Karusch-Kuhn-Tucker conditions (Nocedal and Wright, 1999)). These
are as follows (with X including both x and u, but not the disturbance d):

∇XL(X�, λ�) = 0
ci(X�) = 0 for i ∈ E
ci(X�) ≤ 0 for i ∈ I
λ�

i ≥ 0 for i ∈ I
λ�

i ci(X�) = 0 for i ∈ E ∪ I

(2.3)

The optimal solution (X�, λ�) is parametrized by the disturbance d.
We seek to find the disturbance value for which a constraint switches from
active to inactive - let us call this value dactive. Here, we take advantage of
the fact that for any constraint ci, either the constraint value itself or its
corresponding Lagrange multiplier λi (or both) is zero, and that the sum
of the two must be monotonous at least in a small area around dactive. At
dactive, we have that ci+λi = 0. Thus, finding dactive is equivalent to solving
the equation

si(d) = ci(d) + λi(d) = 0 (2.4)

for d. Since the optimal solution X�(d) is the result of an iterative
process, one can not use an analytic method to solve for si = 0, thus an
interpolation method is the simplest option. When using MATLAB, this
will typically be the fzero.m solver. When using this solver, one needs
to give two initial points between which the solver should search for the
solution. The sign of ci + λi must be different at the two initial points in
order for the solver to work.
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2.3.2 Significance of Lagrange multipliers

Knowing the active constraint regions allows us to design a control structure
based on the expected disturbances. However, even though we may find an
optimal control structure for each region, we may be interested in simplifying
it, for example by using the same control structure in several regions even
if it is not optimal. If using a control structure different from the optimal
one, we may end up having to back off from a constraint which is optimally
active. We may also have to back off from active constraints due to dynamic
reasons (for example, controller overshoot); see Figure 2.3. This gives rise
to a loss, and in a small region the magnitude of the loss (|ΔJ |) relates to
the Lagrange multiplier as follows (Nocedal and Wright, 1999):

|ΔJ | = λi|Δci| (2.5)

where |Δci| is the distance from the active constraint ci (corresponding
to ”back-off” in Figure 2.3) and λi is the corresponding Lagrange multiplier.
What this means, is that if we back off from the active constraint by a
small margin Δci, we will have a loss which is locally proportional to the
corresponding Lagrange multiplier. Thus, the Lagrange multiplier tells us
how hard we get punished by backing off from a constraint. Obviously, we
get punished harder if we back off from a constraint when we are far from a
region where it is inactive, than if we back off from the same constraint at a
point where it becomes active. In economics, |ΔJ | is called a shadow price
(Kanbur, 2008), in optimal control theory we have the related concept of
costate equations (Naidu, 2003).

Figure 2.3: Back off from constraint due to imperfect control (illustration
taken from Aske (2009))
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2.4 Method for finding active constraint regions
as function of disturbances

In this section, we consider the two-dimensional case (with two disturbances)
unless otherwise stated. We start this section by defining the terms con-
straint curve and region:

Definition 1. Constraint curve: The constraint curve corresponding to a
constraint c, is the line separating the regions where c is optimally active
from the regions where c is optimally inactive. 1

Definition 2. Region: In this chapter, a region refers to a part of the
disturbance space, bounded by constraint curves, and described by which
constraints are active within that region.

With the definitions in mind, we can make some general points about
how the constraint curves and regions will behave:

• constraint curves may cross each other, so one constraint curve may
span the border between more than two regions. Where two constraint
curves cross each other, four regions will meet in a point.

• When one constraint curve crosses another, it will generally change
slope. This is because the nature of the optimization problem will
change when the set of active constraints changes.

• When there are N constraints, which all may be either active or in-
active, there may be as many as 2N active constraint sets. In simple
cases, where constraint curves do not cross each other more than once,
this means we also have a maximum of 2N regions (as illustrated by
Figure 2.4(a), where we have two constraints and four regions). In
more complex cases, where two constraint curves may cross each other
more than once, we may have more than 2N regions. In that case, some
regions will share the same active set. However, the number of regions
is usually smaller than 2N , since some constraint combinations may
not occur, for example because they are physically impossible. For
example, we often have both maximum and minimum constraints on
the same variable - these will obviously never be active at the same
time.

1In some cases, a constraint curve will be straight, and can be referred to as a constraint
line. In an N-dimensional disturbance space, we will instead have (N-1)-dimensional
constraint surfaces.
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• In the one-dimensional case (i.e. one disturbance), each region cor-
responds to a line segment on the disturbance axis (x-axis). This is
illustrated in Figure 2.4(b). Here, the y-axis is used to plot the optimal
value of the constraint functions as functions of a single disturbance.

We now want to outline a method for identifying active constraint re-
gions without having to optimize at a large number of points across the
whole disturbance space. As an illustrative example, let us consider a hy-
pothetical problem with two constraints:

[c1 c2] < [c1,max c2,max] (2.6)

We have two disturbances, d1 and d2. Both c1 and c2 are continuous
functions of the disturbances, and we have four regions:

1. Both constraints are inactive

2. (only c1 is active)

3. (only c2 is active)

4. (both constraints are active)

The regions are shown in Figure 2.4(a): Constraint c1 is active (c1 =
c1,max) above the blue constraint line, and c2 is active (c2 = c2,max) to the
right of the red constraint line. We also show the one-dimensional case
where d1 = 0.5 and d2 is on the x axis (Figure 2.4(b)). Using this example
as an illustration, we now outline a method for finding active constraint
regions. First it is reasonable to make the following assumptions:

1. In a two-dimensional plot with (d1, d2) along the axes, two neighbor-
ing regions will only differ by one active constraint, except when two
constraint curves cross each other (in Figure 2.4(a) this happens in the
point (0.6, 0.5)). For the opposite to be true, two constraint curves
would have to follow each other exactly (at least along a segment).

2. We assume that the same set of active constraints does not appear
in two separate regions of the disturbance space (thus, two constraint
curves will not cross each other twice).

3. We assume that there will always be a maximum feed rate (”bottle-
neck”) above which we can not satisfy all constraints.
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in the one-dimensional case
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The generality of the assumptions is discussed later in the chapter.
Based on the above definitions, considerations and assumptions, we sug-

gest using the following procedure to find active constraint regions:

1. Using knowledge about the process model and the optimization prob-
lem, find out if any constraints will be active (or inactive) for all values
of the disturbances, thus reducing the number of possible regions by
a factor of 2 for each constraint which is always active.

2. Also use the same insight to predict whether some region borders (part
of constraint curves) will be independent of one of the disturbances.
In a 2D graph, these borders will correspond to vertical or horizontal
lines. In the example (Figure 2.4(a)), the constraint curve separating
regions I and III from regions II and IV is horizontal (independent
of d1). The line segment that separates regions II and IV is vertical
(notice that this segment is only a part of a constraint curve!)

3. Locate the region borders that are found to be vertical or horizon-
tal, by solving for the disturbance value at which the corresponding
constraint changes between inactive and active. In Figure 2.4(a), this
corresponds to finding the value of d2 for which c1 becomes active.

4. Likewise, find the value of d1 for which we go from region II to re-
gion IV (that is, for which c2 becomes active, with d2 lower than the
value we found in the previous step), thus locating vertical part of the
constraint curve for c2.

5. Find at least one more point along the line separating regions I and
III. This means we need to do find a value of (d1, d2) which makes
constraint c2 switch from active to inactive. By fixing d2 at a higher
value than the one we found in step 3, and solving for the value of d1

which makes s1 = 0, we find a point on this line.

6. In the same manner, find at least one more point along the line sepa-
rating regions III and IV (with d1 fixed at a value higher than found
in step 4).

7. If we are confident the two last region borders are straight lines, or
satisfied with it as an approximation, we do not need more points.
However, the true borders will often be curved (as the border between
regions I and III in Figure 2.4(a)), and if we want to describe them
more accurately, we need to find more pairs (d1, d2).
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When choosing starting points for each interpolation search, one may be
taken at a spot where the active constraints are already known (for example
the nominal optimum). The other may be taken close to the feasibility
limits, which can be found by carrying out a few sample optimizations.

The interpolation itself has been carried out using the fzero solver
in MATLAB, which uses a combination of bisection, secant, and inverse
quadratic interpolation. We have used this approach successfully in a case
study which we will go through in the following sections.

2.5 Description of the example process

In this chapter, we consider the simple reactor-separator-recycle process
shown in Figure 2.5:

Figure 2.5: Flow sheet of the reactor-separator-recycle system

Fresh feed of A (F ) is mixed with recycled distillate from the column.
The mixture (Fr) goes to the reactor, which is a continuously stirred tank
reactor (CSTR) with two reactions (Equation 2.7. The first yields B, which
is the desired product, and the second yields C which is an undesired by-
product. A real-life example of such a process could for example be a
hydrocarbon isomerization process, where cracking occurs as a side reaction
(this is quite common in hydrocarbon refining processes).

A → B

A → 2C
(2.7)

In general, the steady state mass balance of a CSTR with one feed
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Table 2.1: Reaction kinetics parameters

Reaction A ([s−1]) Ea (J/mol)
1 1 · 105 6 · 104

2 5 · 106 8 · 104

stream and one product stream can be written as follows:

0 =
dnr

dt
= Fr · xF,r + Mr · ν · r − Er · xr [mol/s] (2.8)

where nr [mol] is the reactor holdup vector, Fr [mol/s] is the flow rate
entering the reactor, xFR the reactor feed composition, Er [mol/s] is the
reactor exit flow rate, ν is a matrix of stoichiometric coefficients, r =
[r1 r2]T [s−1] is a vector of reaction rates and xr is the composition in-
side the reactor, expressed in mole fractions (in a CSTR, the exit stream is
assumed to have the same composition as the reactor contents). Mr [mol]
is the total reactor holdup.

We will, for later use, define the reactant conversion X for the reactant
and the product yield Yi for each product i.

X =
ṅreactant,in − ṅreactant,out

ṅreactant,in
· 100% (2.9)

Yi =
ṅi,out − ṅi,in

ṅreactant,in
· 100% (2.10)

where ṅ indicates molar flowrate of a given component.
The reaction model uses first-order kinetics; the reaction rate of reaction

i is given by
ri = kixA (2.11)

where xa is the mole fraction of A in the reactor and

ki = Aie
−Ea,i

RT (2.12)

where Ea,i is the activation energy of reaction i (in J/mol), T is the
temperature in K and R is the gas constant (8.3145 J

mol·K ). Kinetic data
are shown in Table 2.1. In this example, reaction 1 has a lower rate constant
(A1 < A2), but also a lower activation energy, thus it is the favored reaction
at lower temperatures.

The reactor product Er is separated in a column. The distillate D is
rich in byproduct (C) and unreacted A, whereas the bottom product B is
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Table 2.2: Distillation column parameters

αAC 0.70
αBC 0.60
Number of stages 30
Feed stage location 15
Feed liquid fraction 1
Vmax 30 mol/s

rich in the desired product B. For the distillation column, we have used a
simple column model using the following assumptions: Constant relative
volatilities, constant molar overflow, constant pressure over the entire col-
umn, equilibrium at every stage and negligible vapor holdups. Francis’ weir
equation is used to calculate liquid flow rates. The column data are shown in
Table 2.2. The column model is based on the ”Column A” model described
in Skogestad and Morari (1988).

A fraction of the distillate is recycled (R), the remaining distillate leaves
the system as a purge stream (P ).

2.6 Defining optimal operation of the reactor-separator-
recycle process

2.6.1 Steady-state operational economy objective

The objective J should cover all economical aspects that are influenced by
the steady state operation. In general, these include cost of raw materials,
energy and utilities (like cooling water), and the value of products. The cost
of a product stream may be positive (if the product is sold, or processed to
valuable products later on) or negative (if it is waste which must be disposed
of). We may generalize to write

J =
∑

pF,iFF,i +
∑

pU,jFU,j +
∑

pP,kFP,k (2.13)

where FF,i, FU,j and FP,k are the flow rates of feeds, utility streams and
product streams, respectively - all in mol/s, except for energy usage which
is in [$/kJ ]. pF,i, pU,j and pP,k are the prices of the respective streams). In
this example, we use the following objective function:

J = pF F + pV V − pBB − pP P (2.14)
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Table 2.3: Prices used in optimization (pV is the nominal value)

Feed pF 1 $/mol
Product pB 2 $/mol
Purge pP 0.5 $/mol
Energy pV variable

where F , V , B and P refer to Figure 2.5, and the prices are given in
Table 2.3. (The value given for pV is listed as variable, it is used as a
disturbance later on)

2.6.2 Degrees of freedom

For example by using the method outlined by de Araújo et al. (2007), we
find that the process shown in Figure 2.5 has got six steady-state degrees
of freedom. We may also find this number by examining the model, finding
that it has 104 variables and 98 independent equations. When using the
method from de Araújo et al. (2007), we relate the six degrees of freedom
to:

1. Feed flow rate F

2. Recycle/purge split P/D

3. Reactor holdup Mr

4. Reactor temperature Tr (since the CSTR has a cooling jacket as shown
in Figure 2.5, we may adjust this)

5. Column reboiler duty QR

6. Column condenser duty QC

However, in simulation, we may specify any six variables as long as
the resulting 98-by-98 system is not structurally or numerically singular
(as mentioned in Section 2.2). When initializing the process model, the
following set of specifications was used:

• Reactor temperature Tr

• Feed flow rate F

• Mole fraction of component B in product stream B, xB,B
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Table 2.4: Constraint values used in optimization

xB,B,min 0.90
Tr,max 390 K
Mr,max 11000 mol
Vmax 30 mol/s
Pmax 5 mol/s

Rmin 0 mol/s
Pmin 0 mol/s
Bmin 0 mol/s

• Reactor holdup Mr

• Column reflux L

• Purge/distillate ratio P/D

2.6.3 Constraints

When optimizing a chemical process plant, we will encounter the following
types of constraints:

• There are always capacity constraints; maximum levels in tanks and
liquid-phase reactors, maximum available amount of utilities, and
maximum feed and product rates.

• There will usually be requirements on product quality, often in terms
of maximum content of impurities.

• In addition, there are typically constraints on pressures (due to limits
in piping strength) and temperatures (for example to limit catalyst
degradation).

In this work, we have included maximum limits on reactor temperature
Tr, reactor holdup Mr and column boilup V as well as a minimum limit on
the fraction of component B in stream B. In addition we require that all
flow rates are ≥ 0, and that the purge flowrate is smaller than 5mol/s. See
Table 2.4.
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2.6.4 Disturbances

In a chemical process, there are many possible disturbances. The most
important ones are usually related to feed conditions (flow rate, composi-
tion and pressure), as these often depend on the operation of an upstream
process. In addition, the prices of feeds, products and utilities are often
changing on a daily basis.

We may also have changes in process parameters. For example, in a
catalytic process the catalyst activity may degrade, so that the value of
A in the expression for the reaction rate constant k decreases. Deposits
inside piping may increase pressure drop, and decrease heat transfer. Fi-
nally, downstream processes may demand changes in product flow rates and
compositions.

In this work, we consider two disturbances:

• Feed flow rate F (nominal value: 1.1mol/s). This is the flow rate
which is most likely to be given by another process unit.

• Energy cost pV in the column (nominal value: 0.01$/mol) (either of
the four price parameters could be used - what is really important is
the energy price in relation to the difference in value between feed and
products).

Since the feed flow rate is used as a disturbance, we have only got five
degrees of freedom in the optimization problem, compared to six degrees of
freedom for initialization.

2.6.5 Feed rate as disturbance or as a degree of freedom

Above we have stated that the feed flow rate is a disturbance in operation.
This is typically the case when we consider a part of a bigger plant, and
we just have to process the feed that we get. If the considered unit is a
stand-alone unit, however, the feed rate will rather be a degree of freedom.
An exception to this is if we are bound, by a contract, to process a given
amount of feed anyway.

When the feed rate is a disturbance, the goal is to process this feed at a
minimum cost, while satisfying the process constraints c. At some point, the
feed cannot be increased anymore without breaking the given constraints -
this is when the process reaches its true bottleneck.

When the feed rate is a degree of freedom, however, we may have an
economic bottleneck as well. At a given feed rate, we may not be able to
produce any more of the valuable product, and thus it will not be optimal
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to increase the feed rate. Below this economical bottleneck, the active
constraint regions will be the same. When the feed rate is considered a
degree of freedom, one can see the maximum available feed rate Fmax as a
disturbance. Later in this chapter, we address this economic bottleneck.

2.7 Results

2.7.1 Initialization

In order to have a feasible starting point for subsequent optimization, we
specified six variables as described above, and used fmincon to solve the
model equations. To do this, the model equations and specifications were
included as equality constraints in the optimization problem (corresponding
to f(x, u, d) in Equation 2.2), and a dummy objective function with a con-
stant value was used. This approach is used with success in Lid (2007). An
alternative approach could be to use an equation-solving method minimiz-
ing the sum-of-squares of the residuals of the equalities. Table 2.5 shows the
values used for initialization, plus the resulting values of other chosen vari-
ables (reactor holdups nr,i, conversion XA and yield Yi as well as product
and distillate flow rates and compositions). Notice that the specification on
xB,B was set slightly above the minimum value, this was to give an initial
solution with a little margin to the most important constraint - on the other
hand, the reactor holdup was initialized at its maximum value. 2

2.7.2 Active constraint regions

According to the method outlined in Section 2.4, we start by checking if any
constraints will be active for all (F, pV ). Indeed there are two, namely the
constraints on product purity xB,B and reactor holdup Mr. The first one
follows from the ”Avoid Product Giveaway rule”, which states that when the
product prices are constant, the minimum purity constraint in the valuable
product stream is always active. The latter is also easy to explain: Reducing
the holdup leads to a lower single-pass conversion, yielding more A in the
column feed, without improving selectivity in favour of the desired product.
Thus the column feed will contain more A and less B, leading to a higher
boilup rate. Thus, keeping the holdup at maximum saves energy.

2The reason for having Tr = 355 K despite the maximum is shown as Tr,max = 390 K
in Table 2.4 is that we increased the maximum value in order to make the region where
the constraint on Tr was inactive, more visible. Originally Tr,max was 355 K, but this
made the region very small.
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Table 2.5: Initial data for the reactor-separator-recycle system, used as
starting point in optimization.

Variable Value
F 1.1 mol/s

xB,B 0.901
Tr 355 K
Mr 11000 mol
L 25 mol/s

P/D 0.2
R 1.512 mol/s

nr,A 5064 mol
nr,B 4159 mol
nr,C 1777 mol
XA 67.33 %
Y1 61.82 %
Y1 5.51 %
B 0.7649 mol/s

xA,B 0.099
xB,B 0.901
xC,B 0.000
D 1.8901 mol/s

xA,D 0.607
xB,D 0.167
xC,D 0.227

We can also assume that one constraint will never be active - namely,
P ≥ 0. This is because as long as C is produced, we need to provide a way
out of the system for it. Since C is the most volatile component, we will
always have some of it in the distillate, thus we must purge some of the
distillate to avoid accumulation of C within the system.

This means we have to find when the following variables are at their
constraint values: Tr, R, V , D and B. Using fmincon.m for optimization
and fzero.m for interpolation, we come up with the regions shown in Figure
2.6. Each region is referred to by a number, Table 2.6 lists which variables
are at their constraint value in each respective region. The constraint curves
that define the regions are as follows:

• Red constraint curve: Tr,max becomes active.
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Figure 2.6: Active constraint regions for the reactor-separator-recycle sys-
tem, for F up to 6mol/s and pV up to 0.10 $/mol

• Orange constraint curve: Rmin becomes active. (It is active below this
curve).

• Green constraint curve: Vmax becomes active.

• The dashed blue line could be seen as a ”quasi”-constraint curve - it
indicates where it is not economically optimal to increase F any more,
so it shows the economic bottleneck of the process.

In Section 2.8.1, we explain further the shape of the regions. In Table
2.7, we show the optimal value of selected model variables at four points
in the disturbance space. Variables that are at a constraint are shown in
bold.
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Table 2.6: Constrained variables in each region in Figure 2.6

Region number Constrained variables
I xB,B, Mr, R
II xB,B, Mr, R, Tr, (F )
IIb xB,B, Mr, R, Tr

III xB,B, Mr, Tr, (F )
IIIb xB,B, Mr, Tr

IV xB,B, Mr, Tr, V , (F )
IVb xB,B, Mr, Tr, V
V xB,B, Mr, Tr, V , R

Table 2.7: Optimal values of selected variables for different values of F and
pV . Numbers in bold indicate active constraints

Region(s) I II IV IIIb
F [mol/s] 0.1 1.0 3.0 3.0
pV [$/mol] 0.02 0.02 0.01 0.07
Fr [mol/s] 0.1000 1.0006 5.4219 3.3829
Er [mol/s] 0.1024 1.0871 5.6584 3.6079

Tr [K] 328.8 390.0 390.0 390.0
xA,r 0.2356 0.0815 0.2229 0.2121
xB,r 0.7168 0.7589 0.4604 0.6225
xC,r 0.0476 0.1596 0.3167 0.1654

Y1 [%] 73.43 82.50 61.11 68.44
Y2 [%] 2.44 8.64 6.30 7.17

B [mol/s] 0.0781 0.9108 2.3696 2.0511
xA,B 0.1000 0.0900 0.0996 0.0996
xB,B 0.9000 0.9000 0.9000 0.9000
xC,B 0.0000 0.0100 0.0004 0.0004

D [mol/s] 0.0243 0.1762 3.2888 1.5569
xA,D 0.6707 0.0375 0.3117 0.3603
xB,D 0.1290 0.0300 0.1436 0.2569
xC,D 0.2003 0.9325 0.5447 0.3828

L [mol/s] 1.6231 2.1365 26.7112 14.0009
V [mol/s] 1.6475 2.3128 30.0000 15.5578

P/D 1.0000 1.0000 0.2636 0.7541
R [mol/s] 0.0000 0.0000 2.4219 0.3829
J [$/s]) -0.035 -0.863 -1.873 -1.378
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2.8 Discussion

2.8.1 Shape of active constraint regions

In the following, we will explain the presence of each active constraint region,
at least for those that are not obvious.

• The dashed blue line in 2.6 indicates where it is no longer optimal to
increase the feed rate. That is, if F was a degree of freedom and Fmax

was specified instead, the blue line shows where the constraint F <
Fmax would no longer be active. We illustrate this further with Figure
2.7(a), where the value of the objective function J at the optimal
solution is given as a function of F at three different energy prices.

• We notice that the right part of the orange constraint curve in Figure
2.6, separating regions IVb and V, is vertical. This is easily explained;
Vmax is active here, and once the optimal value of V reaches Vmax, the
next region boundary must be independent of pV , thus it is vertical.
The same applies to the other constraint curves in the right part of
Figure 2.6.

• We also see that for very low F , where no capacity constraints are
active, we have a region (region 1 in Figure 2.6) where the maximum
reactor temperature (Tr,max) is not an active constraint. This is be-
cause when the overall conversion is very high (as it is at low flow
rates), we benefit from increasing the reaction selectivity in favor of
the desired reaction (by lowering the temperature). This compensates
for the lower overall conversion which also results from lower tempera-
ture. (As mentioned in the process description, reaction 1 has a lower
activation energy, and thus will be favored by low temperatures.)

• Rmin is active (R = 0) at low F : If F is sufficiently low, the reactor
exit stream contains very little unreacted A. Thus there is no benefit
from recycling, as we would only be recycling by-product C. If the
value of the purge stream was zero, however, we would recycle as long
as there is any A in the distillate at all.

• Rmin is active at high F : As F increases, the reactor conversion goes
down (Figure 2.8(a)) and the product stream will contain more unre-
acted A. This must be compensated by increasing V or decreasing L in
the column. If V = Vmax, we cannot increase it further and our only
option is to reduce L, meaning the distillate flow rate increases and
the bottoms flow rate decreases (see Figure 2.8(b). In this situation,
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we have nothing to earn from recycling more, so the entire increase in
distillate flow rate goes into the purge stream P , leading to a higher
purge ratio P/D. For higher pV , we may find the same even when
V < Vmax, because an increase in V costs more than it gives. We
discuss this further below.

The physical bottleneck indicated in black in Figure 2.6 is reached when
the optimal value of the purge flow rate P reaches its maximum value. The
full set of active constraints at the physical quasi-bottleneck is:

xB,B = xB,B,min

Mr = Mr,max

Tr = Tr,max

V = Vmax

P = Pmax

R = 0

At this point, the plant cannot process any more feed without breaking
the purity constraint on the product.

2.8.2 More on the effect of recycling

As mentioned above, we found that for low and high F it was optimal to
purge all the distillate from the column, rather than recycling some of it. In
Figure 2.9(a), we show how the optimal value of R (the recycle flow rate)
varies with F , and Figure 2.9(b) shows the same for vapor boilup in the
column. As we can see, at the lowest pV the maximum recycle flow rate is
reached just as V reaches Vmax. However, for the two higher pV values, the
maximum recycle flow rate is reached before V reaches Vmax. To understand
this, consider the following: Let the fresh feed F be given, and start at a
pV value where Vmax is inactive. Now consider that we reduce the purge
fraction, thereby recycling more. This means production of B goes up, but
column boilup V must increase accordingly. When the energy price becomes
sufficiently high, the increased column boilup costs more than we earn from
the increased bottoms product flow rate. In other words, we lose money by
recycling more. If pV is sufficiently high, it will be optimal to have R = 0
for all F - in Figure 2.6 we see that this happens at pV ≈ 0.1 $/mol.

It could be argued that when we operate in the region where the purge
stream is rich in the reactant (A), it would be more economic to simply
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Figure 2.7: Optimal objective function value J and column bottom product
flowrate B as function of feed flow rate F at three values of pV

bypass the plant, since we are not processing additional A to products any-
way.
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Figure 2.8: Reactor conversion X and bottoms flow rate B as functions of
F when Mr, xB,B, Tr, V and P/D are fixed.
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Figure 2.9: Selected variables as function of feed flowrate F for three differ-
ent values of pV

2.8.3 Efficiency and applicability of method

All optimizations were carried out without using analytical Jacobians, so
the optimization solver would typically need 50-100 iterations to converge
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to a solution. However, each iteration was quick since calculation of the
objective and constraint function values was easy (as they involve no further
equation solving). An interpolation search would typically require about 10
function evaluations (optimizations). If one should find the active constraint
regions by just mapping the active constraints at a number of points evenly
distributed over the disturbance space, it would be necessary to carry out
many more optimizations - even if one kept the assumption that every region
boundary was straight.

The assumptions stated earlier in the chapter are only to a certain extent
necessary for the method. They help simplify the thinking involved, though.
We can treat one constraint curve at a time, the regions will be found this
way. This is simpler than starting with completely defining one region, and
then trying to explore each neighboring region (if this is at all possible for
highly nonlinear cases). If any single constraint function behaves highly
nonlinear in parts of the disturbance space, it may be difficult to apply the
method at all.

As stated in the introduction, part of the purpose of the chapter is to
explore just how much can be done using process insight and how much
must be found out by calculations. Our experience from this work is that
when one has less a priori knowledge of the effect of disturbances on the
process, the amount of time spent on calculations increases, but not neces-
sarily drastically. For example, if one does not know whether a constraint
line segment will be vertical/horizontal or not, one must find just one more
point more than if one knows this. (That is, as long as one is satisfied with
a straight line as an approximation for the true constraint curve).

The fact that the minimum constraint on R is active for both high and
low F , but not for intermediate, gave rise to an additional challenge. For
fzero.m to work, it requires two end points where the function for which
we seek a zero, has different signs. Since the constraint was active both
at high and low F , choosing values near 0 and Fmax would yield two end
points where the function value was positive. Thus we had to carry out a
few extra optimizations at intermediate F to find a point where the optimal
R 	= 0. In general, however, finding initial points for interpolation was easy.
Generally it worked well to use the nominal point, combined with a point
near the borders of the feasible region.

2.8.4 Comparison with Jagtap et.al.

Jagtap et al. (2010) study a process where two reactants A and B react
according to the following reaction scheme:
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A + B → C

B + C → D (2.15)

with C being the desired product and D being an unwanted byproduct.
Instead of a purge stream, they use two distillation columns, and the de-
sired product C is taken out in the distillate stream of the second column
(however, the bottoms stream of that column may be seen as a replacement
for a purge stream as this stream takes care of most of the by-product D).
They use the ”avoid product giveaway” rule to fix three specifications, all
are directly related to exit stream compositions in the distillation columns.
However, they use more indirect specifications, namely the ratio of B to C
in the bottom stream from the first column, and the loss of C and D in
the bottom and distillate streams, respectively, in column 2. These seem to
be chosen more for the sake of easy steady-state convergence of the process
model.

Like in this work, they find that when fresh feed is a degree of freedom,
there is a feed rate at which the plant profit reaches a maximum, and any
further increase in feed rate leads to a decrease in profit. This is because
the increased feed rate does not lead to a sufficiently large increase in the
amount of valuable product. An increased feed flow rate means a lower
conversion percentage, so one gets more of the impurities in the reactor
product. Then more needs to be recycled, and the increase in production
rate is not high enough to ”pay” for the increase in feed consumption rate.

A notable difference is that the region where the reactor temperature
constraint is inactive, is much larger, and another constraint becomes active
before it (Vmax in the first column). This is probably because the reaction
parameters are such that the temperature has a much stronger influence on
reaction selectivity.

2.9 Conclusions

In this chapter, we have outlined a method for finding active constraint
regions for a chemical process. We have applied the method to a simple
reactor-distillation-recycle process, with feed flow rate and energy cost as
disturbances.

For the example process, we find 5 distinct active constraint regions.
There is a maximum feed flow rate, the physical bottleneck, above which
we cannot operate without breaking constraints. If the feed flow rate is a
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degree of freedom, rather than a disturbance, then the active constraints
regions are identical, but in addition we find an economic bottleneck that
occurs at lower feed flow rates. Above this economic bottleneck, increasing
the feed rate leads to an economic loss.

References

Aske, E., 2009. Design of plantwide control systems with focus on maximiz-
ing throughput. Ph.D. thesis, NTNU.

Biegler, L. T., 2010. Nonlinear Programming: Concepts, Algorithms and
Applications to Chemical Processes. SIAM.
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Chapter 3

Active constraint regions for
optimal operation of
distillation columns

Submitted to Industrial & Engineering Chemistry Research

When designing the control structure of distillation columns,
with optimal operation in mind, it is important to know how
the active set of constraints changes with disturbances. This
issue has received little attention in the literature. This chapter
applies a procedure presented in the previous chapter, to find
how the active constraints for distillation columns change with
variations in energy cost and feed flow rate.

The production of the most valuable product is maximized by
keeping its purity on the minimum allowed, that is, by keeping
the valuable product on spec. This is the ”avoid product give-
away” rule. In this chapter, we discuss the assumptions under
which this rule is valid for the overall optimization of the plant.
We find that it generally holds when product prices are constant,
i.e. independent of purity.

This chapter includes three case studies; a single distillation col-
umn with constant product prices, a single column where the
price of the most valuable product is dependent on purity, and
two distillation columns in series. In all three case studies there
is a bottleneck, corresponding to a feed flow rate above which
the column(s) can not operate without breaking constraints.

35
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3.1 Introduction

The literature on control of distillation processes is vast, some examples
include Luyben (1979) (general), Waller et al. (1988) (sensitivity to distur-
bances), Skogestad and Morari (1987) (selection of control structure) and
Nagy et al. (2007) (advanced control). The surveys by McAvoy and Wang
(1986) and Skogestad (1993), covering the 1980s, illustrate just how widely
the area has been researched. However, few papers deal with optimal oper-
ation. Maarleveld and Rijnsdorp (1970) and Gordon (1986) discuss active
constraints, but apart from these two papers, this issue has received little
attention. This is strange considering that optimal control of any process
plant is completely dependent on which process constraints are active at the
operating point.

Also when designing ordinary feedback control schemes, knowing the
active constraint regions is important. For example, when seeking a self-
optimizing control structure (Skogestad, 2000), one needs to know which
variables are constrained and which are not. The active constraints are
always selected as controlled variables to be used for feedback, in the case
of output constraints, or simply set to be constant, in the case of input
constraints. Also, a control structure which works fine for one set of active
constraints may be infeasible for another. In some cases, it may be necessary
to switch to another control structure, whereas in other cases one control
structure may be optimal in one region and near-optimal in neighboring
regions.

It is easy to understand how active constraints can influence on the
choice of control structure; if a variable is optimally at its constraint value, it
cannot be used to control another variable without accepting economic loss.
This is because when we want to use the constrained variable for control, we
can not keep it at its optimal value at all times. How the optimal states of
the model vary with disturbances, is often formulated as a so-called multi-
parametric programming problem (Pistikopoulos et al. (2007), Tøndel et al.
(2003), Kvasnica et al. (2004)). One seeks to find a solution which itself is
parameterized by the disturbances. The problem can be linear, quadratic or
some other nonlinear type of problem - in chemical engineering applications
like distillation, the latter is almost always the case.

In Chapter 2, we outlined a procedure for sketching the active constraint
regions for chemical processes using few optimizations, and applied it on a
”toy example”. In this chapter we seek to use this method on distillation
columns. The chapter is structured as follows:

First we discuss optimal operation of distillation columns. Next, the
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case studies are described and the main results are given. We then give
a short summary of the method from Chapter 2 , discuss the efficiency of
the method, and go more in detail about optimal operation of distillation
columns. We finally discuss the avoid product giveaway rule, including a
simple counterexample to one of the assumptions it rests on. The following
case studies are included:

• Case study Ia: A single distillation column, constant product prices.

• Case study Ib: A single distillation column where the distillate price
is proportional to purity xD.

• Case study II: Two distillation columns in sequence, again with con-
stant product prices.

In all three case studies we use of a simple distillation model with 40
equilibrium stages with the feed entering at the middle stage. The model
uses the following assumptions: Constant relative volatilities, constant mo-
lar overflow, constant pressure over the entire column, equilibrium at every
stage and negligible vapour holdups. This is the ”Column A” model used
in Skogestad and Morari (1988)), but the product purity specifications are
more lax (95% for one product versus 99% for both products for column A).
The relative volatility is 1.5 for cases Ia and Ib with a single column (as for
”column A”), but for case II with two columns it is 1.33 for the A/B split
in the first column, and 1.5 for the B/C split in the second column.

In the discussion, we give some more insight into the behaviour of ob-
jective and constraint functions for the optimization problem in case study
Ia.

3.2 Optimal operation of distillation columns

3.2.1 Form of the optimization problem

The optimization problem we are dealing with, is a nonlinear problem on
the form

min
u

J(x, u, d)

subject to f(x, u, d) = 0
c(x, u, d) ≤ 0

(3.1)

where J is the economical objective, f(x, u, d) the process model equa-
tions and c(x, u, d) the process constraints. x are the internal variables
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(states) in the process model, u are the variables we may manipulate (in-
puts) and d are the disturbances. In Chapter 2 we have elaborated more on
various formulations, how the optimality conditions can be related to the
suggested method for finding active constraint regions, and the significance
of the Lagrange multipliers at the optimal solution. In short, the latter
can be summarized as follows: At the optimal solution, the magnitude of
the Lagrange multiplier λ tells us how much we lose by backing off from an
active constraint.

To define the problem, we need to formulate a cost function which cap-
tures the plant economy we are interested in. This cost function is to be
minimized with respect to the available degrees of freedom u (while sat-
isfying given constraints c) for the expected range of process disturbances
d.

3.2.2 Plant economics and objective function

In distillation, the cost is related to the feed streams, as well as heating
and cooling (and possibly other utilities, like pumping). The profit comes
from selling the products. To optimize operation on a short time scale, say
within a few hours, there is no need to include fixed costs such as capital
cost, manpower and maintenance. The operational objective (cost) to be
minimized can be written as

J =
nf∑
i=1

pf,iFf,i +
nU∑
j=1

pU,jFU,j +
nP∑
k=1

pP,kFP,k (3.2)

Here, nf , nU and nP are the number of feed streams, utility streams
and product streams, respectively. Correspondingly, p stands for the price
of each stream in ($/mol) and F the feed flowrate (in mol/s).

For a single distillation column with one feed stream and two products,
no side streams and no heat integration, we may simplify the cost function
to the following:

J1 = pF F + pLL + pV V − pDD − pBB (3.3)

where F , L, V , B and D are the flow rates of feed, reflux, boilup,
bottoms and distillate, respectively; see Figure 3.1. The objective function
can in most cases be simplified further. For a given feed, an energy balance
for the column gives that the reboiler heat duty and condenser heat duty,
and also the internal liquid and vapor flows inside the column, are nearly
proportional.
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Proof: The energy balance is:

QB + QC + F · hF = D · hD + B · hB (3.4)

where QC is negative. For a given feed (FhF ), and approximately con-
stant product composition (DhD and BhB approximately constant), we
have dQD = −dQB, so the change in reboiler duty and condenser duty are
the same. It is therefore reasonable to combine the terms to give a new and
simpler objective function

J2 = pF F + pV V − pDD − pBB (3.5)

where pV in Equation 3.5 is approximately equal to pL +pV in Equation
3.3. This is the form of objective function we will use in the case studies
included in this chapter. Provided that we satisfy the product specifications,
the prices are usually constant (independent of process states). However,
in some cases they may depend on product quality, for example, if we pay
or get paid only for the valuable component in a stream, in which case the
price can be written

p′ = px (3.6)

where x is the mole fraction of the component we get paid for, and p
is the price for the pure component. In this chapter, we include one case
study where we only get paid for the light component in the distillate, i.e.
p′D = pDxD where xD is the mole fraction of light component.

3.2.3 Degrees of freedom

As explained in Skogestad et al. (1990), when we assume a given feed and
given pressure, a distillation column has got two steady-state degrees of
freedom. Dynamically, there are four remaining manipulated variables, but
there are two levels that need to be controlled dynamically, but which have
no steady-state effect. The two degrees of freedom can, for example, be
selected as two flow rates,

u = [L V ], (3.7)

but any pair of two independent specifications can be used. For example,
we may control (i.e. specify) the concentration of the key impurity in each
product stream, or two tray temperatures. For optimization, we should
choose as degrees of freedom the variables that make the problem easiest to
solve numerically.
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Figure 3.1: Conventional distillation column with one feed and two products

3.2.4 Constraints

The constraints (c(x, u, d) ≤ 0) will typically consist of product purity re-
quirements and restrictions on operating conditions. Typically, there will
be maximum and minimum limits on internal flows (in a column, defined
by the weeping and flooding points Kister (1990)). In addition, there may
be restrictions on column pressure, since column pressure has a big influ-
ence on condensation and evaporation temperatures. The product purity
constraints are usually expressed in terms of the mole fraction of the main
component in each stream:

• Distillate specification: xD ≥ xD,min where xD is the mole fraction of
light key component in D.

• Bottoms specification: xB ≥ xB,min where xB is the mole fraction of
heavy key component in B.

For a two-component mixture, this is unproblematic, but for a multicom-
ponent mixture this constraint formulation may cause problems, as there
may be more than one composition that satisfies the constraint (except for
the lightest and heaviest components). Thus, one may get a more robust
problem specification by instead giving the following specifications (Luyben,
1992):

• Distillate specification: xD ≤ xD,max where xD is the mole fraction of
heavy key impurity in D.
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• Bottoms specification: xB ≤ xB,max where xB is the mole fraction of
light key impurity in B.

Regarding the capacity constraints, there may be many just in one col-
umn: Maximum available reboiler heating or condenser cooling, flooding
and weeping points, and possibly maximum flows of product streams due to
a potential downstream bottleneck. In this paper, we simplify and assume
that it is sufficient to specify a maximum vapour boilup V;

V ≤ Vmax (3.8)

In the case study with two columns, we use different values of Vmax for
the two columns.

3.2.5 Disturbances

The disturbances (d) are the variables that influence on either the process or
the economical objective, but which we cannot influence. For a distillation
column, or a chemical process unit in general, the feed conditions (flow
rate, temperature, pressure and composition) are important disturbances.
The constraint values (including purity specifications and flow limits) are
also generally important disturbances. Finally, prices of feeds, products and
energy will be subject to change, and should also be considered disturbances.
In the case studies included here, we consider only the feed flow rate (F )
and energy cost (pV ) as disturbances.

The main reason for not including other disturbances, for example, in
feed composition, feed enthalpy or product purity specifications, is that it
is difficult to show the constraints regions graphically when there are more
than two disturbances. We believe that the two selected disturbances in
feed rate and relative energy price are very relevant in most applications.
In practice, one should focus on the disturbances that are expected to be
important for future operation, as a complete map of all disturbances will
be very time consuming.

3.3 Case studies

3.3.1 Case Study Ia: One distillation column, constant prod-
uct price

For the first case study, we consider a single distillation column with 41
stages and feed entering at stage 21, separating a feed mixture of equal
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Table 3.1: Data used for case studies Ia and Ib

Variable Value
αAB 1.5
zF 0.5
F variable (1-1.6 mol/s)
pF 1 $/mol
pB 1 $/mol
pD 2 $/mol
pV variable (0.01-0.02 $/mol)

xB,min 0.990
xD,min 0.950
Vmax 4.008 mol/s

fractions of A and B, with relative volatility αAB = 1.5. The optimization
problem may be formulated as follows:

min
u

J(u, d) =pF F + pV V − pBB − pDD

subject to: xB ≥xB,min

xD ≥xD,min

V ≤Vmax

(3.9)

where u = [L V ] and d = [F pV ]. The model equations (component mass
balances for each stage and equilibrium calculations) are solved explicitly
and are thus not shown in Equation 3.9. The constraints on xB and xD refer
to the mole fractions of the main component in each stream (component B
in the bottoms stream (B) and component A in the distillate stream (D),
respectively). The p values refer to the prices of each respective stream.
The prices and other data used in this case study are shown in Table 3.1.

The case study uses the feed rate F and the energy price pV as distur-
bances, and our goal is to establish the regions where the constraints on
xB, xD and V are active, while using as few optimizations as possible. The
feed rate F varies from 1.1 to 1.6 mol/s. The prices for the feed (F ) and
bottoms product (B) are both set at a reference price of 1 $/mol, whereas
the valuable distillate product (D) is 2 $/mol.

In our case study, the relative energy price pV /pF varies between 0.01
and 0.02, and as we argue in the following, this is a reasonable relative
price range. For hydrocarbon feed mixtures, the energy can be generated
by burning some of the feed, and since the heat of combustion is about 100
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times larger than the heat of vaporization for hydrocarbons, we expect for
hydrocarbons that pV /pF should be about 0.01 (or less, if cheaper energy
sources are available). However, in general, for other feed mixtures, the
relative energy price can vary greatly, from 0 and up to a value similar to the
feed and products (about 1). Also note that energy prices can vary greatly
from one day to the next, depending on external conditions and prices.
For cryogenic applications, where cooling rather than heating is costly, the
relative energy price pV /pF may exceed 0.02 or more, even for hydrocarbon
mixtures. The reason is that cryogenic cooling requires electricity as the
energy source.

Let us now generate the active constraint regions as a function of the
two selected disturbances (F, pV ). To start, we use our knowledge about
the nature of the process model and the optimization problem to state the
following:

1. With NC = 3 inequality constraints, there may be at most 2NC = 8
sets of active constraints, possibly including infeasible regions where
there are more active constraints than degrees of freedom. Here we
have two degrees of freedom (u), so the region with three active con-
straints will be infeasible. As we will conclude later, there are only
three regions in this case.

2. The constraint on xD will be active for all values of (F, pV ). This is
because separating this stream to a higher purity will require that we
reduce the flowrate D, or increase the internal streams L and V . Since
we do not get paid for the increased purity, this is not profitable. In
other words, we should seek to avoid product giveaway (Gordon (1986),
Skogestad (2007)). This rule is discussed in more detail later.

3. At low energy cost pV , the constraint on xB will be inactive, meaning
that we should overpurify the bottom product. This is because we
get a better price for the distillate, and by overpurifying the bottom
product we move component A from bottoms to distillate. This is
profitable when energy is cheap.

4. As pV increases, the optimal value of xB decreases, and at pV =
pV,1 it reaches xB,min. Since the column stage efficiency is assumed
constant at 100% (rather than dependent of flow), the value of pV,1 is
independent of F .

5. Bottleneck: There exists a maximum feed rate Fmax, above which
we cannot achieve feasible operation, i.e. satisfy all three constraints.
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This can be seen from a simple degree of freedom consideration: As-
sume we keep both purities at their constraint values by adjusting L
and V . As we increase F , all other flows, including L and V will in-
crease proportionally. Eventually, we reach V = Vmax, where a further
increase in F will force us to break one of the purity constraints.

6. From the above, we can conclude that we will have three feasible
regions: (I): xD active, (II): xD and Vmax active, and (III): xD and
xB active. Regions I and III will be separated by a straight line (as
explained above). The same goes for the border between the infeasible
region (IV) and the others. See Figure 3.2.

7. The border between regions I and II intersects with the border between
regions I and III exactly at Fmax. The border between regions I and
II is the only one for which we cannot say a priori whether it will be
straight or not.

Using the method described in Chapter 2, we obtain the following nu-
merical values, which are sufficient for sketching the active constraint regions
(shown in Figure 3.2):

• The maximum feed rate is Fmax = 1.435 mol/s.

• For all F < Fmax, xB = xB,min is active when pV > 0.0144$/mol.

• At pV = 0.01, V = Vmax is active for F > 1.233 mol/s.

Notice that the line between regions I and II is shown as being straight.
This is because it is based on only two data points - in reality it is slightly
curved. The constraint lines in Figure 3.2 are as follows:

• Red: Vmax becomes active.

• Blue: xB becomes active.

The vertical parts of these two constraint lines indicate F = Fmax. Table
3.2 lists optimal data at selected points in the disturbance space.

In Figure 3.3 we show how the Lagrange multipliers λ for the active
constraints behave at pV = 0.01. As expected, the λ corresponding to
xD is always positive. The λ corresponding to Vmax becomes nonzero at
F = 1.233 mol/s. Notice that it increases very slowly up to F = 1.37 - this
means that up to F = 1.37, this constraint does not influence strongly on
the plant objective.
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Figure 3.2: Active constraint regions for single column with fixed prices
(case Ia)

Table 3.2: Single column (case Ia): Values of key variables at selected dis-
turbances (F, pV ) (numbers in bold indicate active constraints)

Region(s) I II III
F [mol/s] 1.2 1.4 1.3
pV [$/mol] 0.01 0.01 0.015
L [mol/s] 2.827 3.276 2.949
V [mol/s] 3.454 4.008 3.627
D [mol/s] 0.627 0.731 0.678
B [mol/s] 0.573 0.669 0.622
xD 0.950 0.950 0.950
xB 0.992 0.992 0.990
J [$/s] -0.536 -0.625 -0.566
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Figure 3.3: Single column (case Ia): Lagrange multipliers for active con-
straints at pV = 0.01

3.3.2 Case Study Ib: One distillation column, variable prod-
uct price

In the second study, the constraints are the same, but the objective function
is altered to make the price of the distillate stream proportional to its purity,
that is, one gets paid for the valuable component only:

J(u, d) = pF F + pV V − pBB − p′DD (3.10)

where

p′D = pDxD (3.11)

pD and the other prices are the same as in case study Ia (Table 3.1).
The consequence of the varying price p′D is that we now may have additional
regions where the constraint on xD is inactive. The reason for this is: When
energy is cheap enough, we may overpurify the distillate D without giving
away anything (as we get paid for the extra component A in the distillate
D). Since component B in the distillate is now worthless, it is profitable to
send it to the bottom instead. As the energy cost pV increases, the purity
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constraints become active. Just as for the first case, we can deduce some
things about the active constraint regions a priori, before carrying out any
optimizations:

1. As above, theoretically there may be at most 7 regions (since the
region with three active constraints is infeasible). As we will show,
only five of these regions are present.

2. The lines separating the different regions where only purity constraints
are active, will be horizontal. In the following, the pV values corre-
sponding to these lines will be referred to as pV,1 and pV,2.

3. We will have a region where no constraints are active and one where
V < Vmax is the only active constraint.

4. We will have a region where one purity constraint is active and V =
Vmax. The border between this region and the previous one will be
vertical. This can be explained as follows: When V is fixed at Vmax,
pV has no influence on the optimal solution - the F value for which
the next constraint becomes active is independent of pV and thus the
line is vertical. This F value will be referred to as F1.

5. As for the previous case, we have a value of F for which all constraints
are active, and for any higher F value we cannot satisfy all constraints.
This value will be referred to as Fmax.

6. The two regions with two active constraints will meet in a point on
the line F = Fmax, just like regions II and III in Figure 3.2.

7. As pV → 0, the value of F at which Voptimal = Vmax will also approach
0. This is because when the energy utility is free, and there is a benefit
from extra purity, we want to maximize both purity and flow rate of
the distillate stream. This means we can use the point F = 0, pV = 0
when constructing the diagram.

This means if we take the assumption that the regions with V = Vmax

are also separated by straight lines from the regions where V < Vmax, we
are left with the task of finding just a few values for F (F1 and Fmax)
and pV (pV,1 and pV,2). The actual values are shown in Table 3.3, and the
resulting active constraint regions are shown in Figure 3.4. Table 3.4 gives
optimal data at selected points in the disturbance space (one point inside
each region). In Figure 3.4, we have three constraint lines:
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Table 3.3: Single column (case Ib): Values for F and pV needed to draw
Figure 3.4

Variable Value
F1 1.23

Fmax 1.44
pV,1 0.014
pV,2 0.106

Table 3.4: Single column (case Ib): Values of key variables at selected
(F, pV ) (numbers in bold indicate active constraints)

Region(s) I II III IV V
F [mol/s] 0.7 1.2 1.3 1.0 1.0
pV [$/mol] 0.013 0.010 0.010 0.05 0.12
L [mol/s] 2.048 3.408 3.355 2.443 2.268
V [mol/s] 2.423 4.008 4.008 2.951 2.790
D [mol/s] 0.375 0.600 0.653 0.508 0.521
B [mol/s] 0.375 0.600 0.647 0.492 0.479
xD 0.9905 0.9918 0.9853 0.9755 0.9500
xB 0.9901 0.9914 0.9900 0.9900 0.9900
J [$/s] -0.3411 -0.5558 -0.6004 -0.3605 -0.1969

• The red constraint line indicates where xB becomes active.

• The blue constraint line indicates where Vmax becomes active.

• The green constraint line indicates where xD becomes active.

• At F = Fmax, the blue and green constraint lines are vertical, and
they intersect in the point (Fmax, pV,2).

It is also worth noticing that the value of pV for which xD becomes
active (pV2) is quite high. This is because the number of stages in the
column (column A (Skogestad and Morari, 1988)) was designed to obtain
99 % purity in both ends. This makes overpurifying cheap in terms of
energy.
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Figure 3.4: Single column (case Ib): Active constraint regions with purity-
dependent distillate price (p′D = pDxD)

Figure 3.5: Two distillation columns in sequence
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3.3.3 Case study II: Two distillation columns in sequence

In the third and final case study, we consider two distillation columns in
series, both with the same number of stages (41) and feed entering at stage
21. The feed now contains three components, A, B and C, where A is the
most volatile and C the least volatile, and B is the most valuable product.
The two columns with stream names are shown in Figure 3.5. The relevant
parameters are summarized in Table 3.5. For simplicity we will refer to
xA,D1 , xB,D2 and xC,B2 simply as xA, xB and xC , respectively.

The objective function is again formulated as a function of (u, d),

J(u, d) = pF F + pV (V1 + V2) − pAD1 − pBD2 − pCB2 (3.12)

with u = [L1 V1 L2 V2] 1 and d = [F pV ].
The constraints are defined as follows;

xA ≥ xA,min

xB ≥ xB,min

xC ≥ xC,min

V1 ≤ V1,max

V2 ≤ V2,max

(3.13)

Just as for the case of one column, we can deduce some things about
the active constraints regions before carrying out optimization:

• There can be at most 25 = 32 regions, of which 31 will be feasible (we
have four independent inputs, so we cannot satisfy all five constraints).
We will show that the actual number of regions in this case study is
8.

• There exists a value Fmax above which we cannot satisfy all con-
straints.

• D2 is the most valuable product stream, so the constraint on xB will
remain active for all disturbances d. This reduces the maximum num-
ber of regions to 16 (of which 15 are feasible).

• As for both one-column cases, the lines separating the regions with
only purity constraints active will be horizontal. The pV values cor-
responding to these lines will be referred to as pV,1 (the lower value)
and pV,2.

1This choice of u is not unique, and in the optimization we actually use the four
product compositions as degrees of freedom
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Table 3.5: Data for two columns (case II)

Variable Value
αAB 1.333
αBC 1.5
zF [0.4 0.2 0.4]

V1,max 4.008 mol/s
V2,max 2.405 mol/s
xA,min 0.9500
xB,min 0.9500
xC,min 0.9500

pF 1 $/mol
pA 1 $/mol
pB 2 $/mol
pC 1 $/mol
pV variable

• Above pV,2, there will be a region where all three purity constraints are
active while both capacity constraints are inactive. The F value for
which the first capacity constraint becomes active will be independent
of pV , meaning the region in question will be bordered to the right by
a vertical line at an F we shall refer to as F1.

• For low pV , we will have a region where the constraint on xB will
be active along with the constraints on V1 and V2. At some value of
F , one of the remaining purity constraints will become active. This
F value is independent of pV , because the term pV (V1 + V2) in the
objective function is constant in this region, meaning this region will
also be bordered by a vertical line to the right. This F value is referred
to as F2.

• At pV,1, one of the capacity constraints (V1 or V2) will become active
at some F < Fmax. We refer to this value as F3.

To sketch the active constraint regions, we need to find pV,1, pV,2, F1, F2

and Fmax. These are summarized in Table 3.6. For all the region borders
that are neither vertical nor horizontal, we also need an additional data
point in addition to their intersection with one of the already established
lines. By applying the same method as above, we come up with the regions
shown in Figure 3.6. The constraint lines are given different colors:
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Table 3.6: Two columns (case II): Values for F and pV needed to draw
Figure 3.4

F1 1.442 mol/s
F2 1.469 mol/s
F3 1.458 mol/s
Fmax 1.489 mol/s
pV,1 0.0382 $/mol
pV,2 0.1441 $/mol

Table 3.7: Two columns (case II): Active constraints in each region

Region number Constrained variable(s)
I xB

II xA, xB

III xB, V1

IV xA, xB, xC

V xA, xB, V1

VI xB, V1, V2

VII xA, xB, xC , V1

VIII xA, xB, V1, V2

IX xA, xB, xC , V1, V2

• Along the red line, xA becomes active.

• Along the orange line, V1 becomes active.

• Along the blue line, V2 becomes active.

• Along the green line, xC becomes active.

• The black line indicates Fmax, which is reached when xC once again
becomes active.

In the following discussion, we will refer to the various regions in Fig-
ure 3.6 as indicated in Table 3.7. Note that region IX, with five active
constraints, corresponds to the vertical black line in Figure 3.6.

When we examine Figure 3.6, we notice two things that may at first
seem surprising.

• The line separating regions II and V (part of the orange constraint
line) has a negative slope. Thus we have that the optimal value of V1
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Figure 3.6: Two columns (case II): Active constraint regions

increases with increasing pV , which seems counter-intuitive. However,
this is compensated by a decrease in V2 - the sum V1 + V2 is actually
decreasing, which is what we would expect.

• The next interesting feature about Figure 3.6 is that the border be-
tween regions V and VII (part of the green constraint line) is not
horizontal. Across this border, the constraint on xC switches between
active and inactive. The reason for this one not being horizontal, is the
following: When starting with only the three purity constraints active,
an increase in F leads to a proportional increase in all streams, until
the first capacity constraint becomes active (in this case, this means
V1). Now, since V1 is not allowed to increase further, any extra A fed
to the system must either go to stream D1, meaning the constraint on
xA is no longer active, or more A goes through to the second column
where it enters the distillate stream D2. Thus we need to put more
C into stream B2, thus making the constraint on xC , inactive. Thus,
one of two purity constraints must become inactive at this point. Of
course, it will become active again once we reach Fmax.
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• The black line indicating Fmax could be seen as part of the constraint
line for xC . However, the two are not connected - this is why we
choose to show them in different colors.

• The line separating regions II and V (part of the orange constraint
line) has a negative slope. Thus we have that the optimal value of V1

increases with increasing pV , which seems counter-intuitive. However,
this is compensated by a decrease in V2 - the sum V1 + V2 is actually
decreasing, which is what we would expect.

• The next interesting feature about Figure 3.6 is that the border be-
tween regions V and VII (part of the green constraint line) is not
horizontal. Across this border, the constraint on xC switches between
active and inactive. The reason for this one not being horizontal, is the
following: When starting with only the three purity constraints active,
an increase in F leads to a proportional increase in all streams, until
the first capacity constraint becomes active (in this case, this means
V1). Now, since V1 is not allowed to increase further, any extra A fed
to the system must either go to stream D1, meaning the constraint on
xA is no longer active, or more A goes through to the second column
where it enters the distillate stream D2. Thus we need to put more
C into stream B2, thus making the constraint on xC , inactive. Thus,
one of two purity constraints must become inactive at this point. Of
course, it will become active again once we reach Fmax.

• The black line indicating Fmax could be seen as part of the constraint
line for xC . However, the two are not connected - this is why we
choose to show them in different colors.

It is also worth noting that the objective function J becomes positive
above a fairly low value for pV (approximately pV = 0.05) for all F ∈
〈0, Fmax〉. This means operation in this region is not economically profitable
- thus we would only operate in this region if we have to. Finally, Table 3.8
shows flow rates and compositions at the optimal solution at selected points
in the disturbance space (one point in each of the eight regions).

3.4 Discussion

3.4.1 Method for finding active constraint regions

In Chapter 2, we outlined a method for finding active constraint regions
(illustrated with a two-dimensional example). It is based on that when a
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constraint ci changes from active to inactive, the sum of this constraint value
and its corresponding Lagrange multiplier λi is zero. If we define this sum
as si we have that, when constraint i changes between active and inactive,

si(d) = ci,opt(d) + λi,opt(d) = 0 (3.14)

where ci,opt(d) is the optimal value of ci given the disturbance d, and
λi,opt(d) is the corresponding Lagrange multiplier. For the case of two dis-
turbances, with d1 on the horizontal axis and d2 on the vertical axis, the
method can be summarized as follows:

1. Use process and problem knowledge to predict if we have any con-
straints that are either always active or always inactive, thus reducing
the number of potential regions.

2. If possible, deduce which constraint will become active first when
changing a disturbance value.

3. Predict whether some constraint region boundaries will be indepen-
dent of one of the disturbances. This corresponds to a horizontal
boundary (if it is independent of d1) or a vertical boundary (if it is
independent of d2).

4. Locate the vertical or horizontal region boundaries, by finding the
disturbance value for which si = 0 for constraint i. When locating a
vertical boundary, we hold d2 constant and find the value of d1 which
gives si = 0. For a horizontal boundary, we hold d1 constant instead.

5. For the remaining region boundaries, on which there are no assump-
tions about being vertical or horizontal, find as many points as desired
along each boundary. If a linear approximation is deemed sufficient,
one needs just one or two new points for each new boundary (one, if
one knows from the previous step where this region boundary inter-
sects with another boundary).

We have used MATLAB’s fmincon solver for optimization and fzero
for interpolation to find the points where si(d) = 0, but in principle, any
NLP solver could be used for optimization.

3.4.2 Numerical issues in optimization and region finding

Despite the three case studies sharing many of the same features, we found
that a different optimization approach was better suited for case study II
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than the one used for case studies Ia and Ib. In case studies Ia and Ib we
used an algebraic equation solver to solve for dx

dt (x, u.d) = 0, whereas in
case study II we used dynamic simulation to find the steady states needed
to calculate J(u, d) and c(u, d). In addition, in case study II we did not
specify L and V directly, but used these for control of compositions. This
made the dynamic simulation more robust. A reason for this might be
that the optimization solver would suggest negative values for V1 and V2 as
this would obviously reduce the objective function - but this would make
problems for the dynamic simulation2.

One point which we did not address above, is that we may search directly
for the points where two constraint lines intersect. An example is the point
(F1, pV,1) in Figure 3.4. Since two constraints change at the same time in
these intersection points, we could try to solve the equation set

c1(d1, d2) + λ1(d1, d2) = 0
c2(d1, d2) + λ2(d1, d2) = 0

(3.15)

for (d1, d2). However, this demands a more sophisticated equation solver,
and if this solver is not more computationally efficient, using this approach
would defeat the purpose of the method, which is a reduced need of repeated
optimizations.

3.4.3 More on optimal operation of a single column

In Case Study Ia, we found active constraint regions for a single distillation
column where the product prices pD and pB were constant. To give a better
understanding of how the active constraints change for differing prices, we
will here show how the cost function J depends on bottom purity xB, for
three different energy prices pV , when distillate purity xD is fixed at xD,min.
When xD is fixed, there is one degree of freedom left, so the remaining
variables can be plotted against xB. In Figure 3.7, we show how reflux
L and boilup V vary with increasing amount of light component in the
bottom stream. The maximum boilup rate (Vmax) is also included, the thin
black line indicates the highest purity we can achieve without breaking the
constraint V ≤ Vmax (it is located at xB ≈ 0.9917). All calculations are
done at a feed flow rate of F = 1.4 mol/s

2The final solution would obviously not have negative flows, but the active-set method
used by fmincon.f allows breaching of bound constraints at intermediate iterates. An
alternative could be using the interior-point algorithm, but this algorithm was much slower
for this problem.
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Figure 3.8 shows how the objective function J varies with xB for three
different values of pV . In each figure 3.8(a)-3.8(c), the feasible region which
lies between the constraints on V and xB is shown in green, whereas red
indicates an infeasible region where a constraint would have to be broken
(Vmax to the right, xB,min to the left). In Figure 3.8(a) (low energy price), we
see that the objective is decreasing throughout the feasible region, meaning
the optimum is at the right end of this region - i.e. at the point where
V = Vmax. The opposite is true for Figure 3.8(c) (high energy price), where
the minimum lies at the left end of the green part of the curve. Here, the
constraint on xB is active. In Figure 3.8(b) (intermediate energy price), we
see that the minimum lies within the green region, meaning neither V nor
xB are at their constraint values. Thus Figures 3.8(a), 3.8(b) and 3.8(c)
correspond to regions II, I and III in Figure 3.2.
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Figure 3.7: Single column (case Ia): L and V as function of xB

3.4.4 More on the ”Avoid Product Giveaway” rule

In Case Studies Ia and II, we used what we called the ”Avoid Product
Giveaway” rule (Gordon (1986), later used in Skogestad (2007)). The rule
can be stated as follows: The purity constraint for the most valuable product
is always active.

However, this rule relies on at least two assumptions:

• A1: The valuable product price is constant, meaning we get paid for
the impurity as well, as long as the purity specification is satisfied



3.4. Discussion 59

0.989 0.9895 0.99 0.9905 0.991 0.9915 0.992 0.9925 0.993
-0.6983

-0.6982

-0.6982

-0.6981

-0.6981

-0.698

-0.698

-0.6979

-0.6979

-0.6978

-0.6978

xB

J 
($

/s
)

Optimal point

Infeasible regions

(a) pV = 0.010 $/mol (region II, V = Vmax)

0.989 0.9895 0.99 0.9905 0.991 0.9915 0.992 0.9925 0.993
-0.6869

-0.6869

-0.6868

-0.6868

-0.6867

-0.6867

-0.6866

-0.6866

-0.6865

-0.6865

xB

Fl
ow

s 
($

/s
)

Optimal point

Infeasible regions

(b) pV = 0.0135 $/mol (region I)

0.989 0.9895 0.99 0.9905 0.991 0.9915 0.992 0.9925 0.993

-0.6726

-0.6724

-0.6722

-0.672

-0.6718

-0.6716

-0.6714

-0.6712

xB

J 
($

/s
)

Optimal point

Infeasible regions

(c) pV = 0.018 $/mol (region III, xB =
xB,min = 0.99)

Figure 3.8: Single column (case Ia): Cost function J as function of amount
of heavy component in column bottoms for three values of pV
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(this is the case in case studies Ia and II, but not Ib). If we do not
get paid for the impurity, the value of the product (in $/mol or $/kg)
increases when we overpurify.

• A2: Overpurification costs extra energy. In most cases this holds.
However, in distillation, there is a rare exception when the difference
in volatility between the key components is very large, so that the
desired separation can be achieved in a single flash. In this case, it
will take extra energy to evaporate more of the heavy component, to
bring the top product on spec. Nevertheless, if energy is sufficiently
cheap, it will still be optimal to keep xD = xD,min. Obviously, if
the separation is sufficiently easy, one will not invest in a distillation
column at all, so this is a hypothetical situation, although it serves
as a good illustration that even a rule which intuitively may seem
obvious, has exceptions.

3.4.5 Simple counterexample to the assumption ”overpurifi-
cation costs extra energy”

The ”Avoid Product Giveaway Rule” assumes that increasing the purity
of the distillate demands that we use more energy. Here we will show an
example where this assumption is, in fact, incorrect.

Consider a very simple column, with two stages, as shown in Figure 3.9
assume a feed consisting of equal amounts of two components. We express
the volatility of the more volatile component in terms of the K value:

yB = KB · xB (3.16)
yD = KD · xD (3.17)

where index D refers to the condenser (or top stage) and B to the re-
boiler, y is the mole fraction of the more volatile component in the vapour
phase and x in the liquid phase. If we now let xB be fixed and known, we
can use the mass balance and equilibrium equations to express the boilup
V as a function of yD:

D =F · xF − xB

yD − xB

V =D · yD · 1 − 1/KD

KB · xB − yD/KD

(3.18)

For KD = KB = 20, F = 1 and xB = 0.1 we then plot V as a function
of yD (Figure 3.10):
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Figure 3.9: Very simple column with two equilibrium stages (including re-
boiler)

This shows that if the separation is sufficiently easy, increasing purity of
the distillate costs less energy, not more. This is because if the difference in
relative volatility is sufficiently high, a single flash will yield product streams
at a higher purity than required. If, for example, a simple flash gives 95 %
purity in the distillate and we only want 90 %, we need to boil up more of
the heavy component in order to achieve this.

3.4.6 Selection of control structure

A detailed analysis of selection of controlled variables is outside the scope
of this work. However, we will discuss it briefly here. Within the self-
optimizing control framework, we should:

1. Control the active constraints.

2. Use the remaining unconstrained degrees of freedom to control vari-
ables whose optimal values are relatively insensitive to disturbances.

For the single column case studies, there are two degrees of freedom, so
we need to find two variables to control. In case Ia, with fixed prices, regions
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Figure 3.10: Counterexample to the assumption that ”overpurification costs
extra energy”: V decreases with increasing yD for hypothetical distillation
case

II and III both have two active constraints, so in these regions, selection of
controlled variables is straight-forward (control the active constraints). In
Region I, there is one active constraint (XD) which should be controlled.
The unconstrained degree of freedom can be used to control xB; as we see
from Table 3.2, this variable is relatively constant around 0.9900.

For the two-column case study, we have a lot of room for selecting con-
trolled variables. There are nine regions, and thus we may have to select
as much as nine sets of controlled variables. However, one variable need
to be controlled everywhere (the purity of the most valuable product) and
some are active over large parts of the disturbance space (like the purity of
stream D1, the top product of the first column).

When the active constraints are controlled, we need to select controlled
variables to be associated with the unconstrained degrees of freedom. There
are four degrees of freedom. From Table 3.7 we see that that we need to
find three variables in Region I, two variables in Regions II and III and one
variable in Regions IV, V and VI. In Regions VII and VIII, all degrees of
freedom are used to control active constraints.

The cases where only one unconstrained degree of freedom remains, is
of particular interest. In this case, one could possibly want to control the
amount of impurity A which is carried through to the second column (xA,B1)
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as variations in this concentration are likely to cause trouble for the second
column. As seen from Table 3.8, the optimal value of this concentration
does not vary much, which means it could be a good controlled variable in
all regions where we have unconstrained degrees of freedom.

However, to identify the best choice of controlled variables, a more de-
tailed analysis is needed, based on evaluation of the cost for different alter-
natives (Skogestad, 2000).

3.5 Conclusions

The method described in Chapter 2 has been applied to three distillation
case studies. The method allowed us to find these regions using relatively
few optimizations. For the cases with constant prices, we found that the
purity constraint on the more valuable product was always active, as ex-
pected. For a single distillation column, we found three distinct regions
(with constant prices) and five regions (with a purity-dependent distillate
price). For two columns in sequence we found eight distinct regions. In
all three cases, we have found the highest feed rate for which the columns
can run without violating purity constraints - i.e. the physical bottleneck.
We have also described the assumptions under which the ”Avoid Product
Giveaway Rule” is correct.
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Chapter 4

Literature review: Design,
simulation and optimization
of natural gas liquefaction
processes

4.1 Introduction

Commercial production of liquefied natural gas (LNG) commenced in the
1960s, the first regular exporting facility being opened in Algeria in 1964
(Geist, 1983). Since then, LNG has played an important role in the energy
market. Currently, the size of plants is diversifying. On one hand, bigger
plants than ever are being built (Pillarella et al., 2005). On the other hand,
some effort is currently being put into development of floating production,
storage and offloading (FPSO) units (see for example Unum (2010)), which
are needed if one wants to exploit smaller gas fields located far off the coast.
For such fields, building pipelines to an on-shore liquefaction or processing
plant may be economically infeasible.

The majority of research papers published about LNG plants has come
from the industry itself; only in the last 10-15 years has this type of plants
received noticeable attention in academic circles. In this chapter we want
to summarize the work that has been done on simulation and optimization,
starting with the 1st LNG Exhibition and Conference held in Chicago in
1968.

65
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We have chosen to divide the review into three sections, covering simu-
lation, design and operation, respectively. The part covering simulation will
also include references to some more general papers that are relevant. How-
ever, we want to keep within the process systems engineering scope, so pro-
duction increases through installation of new equipment, or by experience-
based process adjustments, are not taken into account (although this has
also been the subject of several published papers).

4.1.1 Liquefaction processes

Liquefaction processes differ from each other in several ways:

• The number of cooling cycles. The simplest processes use only one
refrigerant cycle, but processes using two and three refrigerant cycles
are common.

• The use of single-component or mixed refrigerants. A mixed refriger-
ant gives better match between the heating and cooling curves, but
also requires larger and more complex heat exchangers.

• The number of pressure levels. When using a single-component re-
frigerant, it is common to flash the refrigerant in several stages, to
provide a better match between heating and cooling curves.

Combinations of the above are also used. For example, the Air Prod-
ucts propane-precooled mixed refrigerant (C3-MR) (Newton et al., 1986)
process uses pure propane for precooling, and a hydrocarbon mixture for
liquefaction. In this process, the precooling section usually has three or four
pressure levels. The C3-MR process is by far the most widely used process
in the LNG industry. However, other processes are also studied frequently,
either because they are simpler (and thus may be more suited for case stud-
ies), or because they have been studied in cooperation with an industrial
company using another process. A popular process used for academic case
studies is the PRICO process (Price and Mortko, 1996), which has a single
loop and uses a mixed refrigerant. Other processes mentioned in works cov-
ered by this review include the TEALARC process (TECHNIP, 1974) and
the Statoil-Linde Multi-Fluid Cascade (MFC) process (Bach, 2002). Some
have studied generic processes that are not used by the industry. For an
overview of LNG technologies, see Barclay and Denton (2005).
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4.2 Simulation of LNG processes

4.2.1 Some general remarks about simulation

Most unit operations in use in LNG processes are well-known operations
which in principle are simple to simulate. However, the complex multi-
stream heat exchangers that are used in liquefaction processes are not so
widely studied - especially not rating. Design of such exchangers is more
widely studied. Pacio and Dorao (2011) offer a review of various heat ex-
changer modelling approaches in cryogenic applications.

When developing a simulation model of a process plant, one should take
into account what the model is going to be used for. It is of particular
importance to choose the correct variables to specify. This selection de-
pends on whether one is interested in design, optimization or control. For
control, a causal model will be needed, meaning one must be able to calcu-
late the measured variables when one knows the manipulated variables and
the disturbances. A steady-state simulation problem can be given as, for
example,

0 = f(x, u, d, p)
y = g(x, u, d, p)

(4.1)

where f represents mass, energy and momentum balances and constitu-
tive equations, and g is the dependence of the measurements y on process
states (x), process inputs (u), process disturbances (d) and equipment pa-
rameters (p). If f and x are of the same dimension, the system has a number
of degrees of freedom equal to the number of elements in u. Now, we may
specify any subset of x, u, y and p as long as the overall system can be
solved. If we want a causal model, we must be able to solve it when u are
specified and y is not. When doing design, one wants to calculate values for
equipment parameters p. When doing rating, the values of p are fixed.

A dynamic simulation model is often written as a differential-algebraic
(DAE) model:

dx

dt
= f(x, u, d, p)

0 = g(x, u, d, p)
y = h(x, u, d, p)

(4.2)

Here, g(x, u, d, p) represents the algebraic equations. Flow relations,
thermodynamic relations and control equations are usually part of g.
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In the reviewed literature, commercial simulation programs have been
frequently used. The most used commercial simulation program has been
Aspen HYSYS R©(AspenTech, 2011a), which has been succeeded by Honey-
well’s Unisim R©Design (Honeywell, 2011). Aspen Plus R©(AspenTech, 2011b)
has also seen some use. All of these are flowsheet-based simulators. Some
studies have also used equation-oriented modelling programs like for exam-
ple gPROMS (Process Systems Enterprise, 2011). Others have hand-coded
their models in FORTRAN, MATLAB or C++. Several companies use
proprietary software, e.g. Statoil’s SEPTIC (Strand and Sagli, 2003) and
Linde’s OPTISIM (Burr, 1991).

4.2.2 Literature covering simulation

In the 1980s, people in the LNG industry started to look into the use of
computer models to improve operation of plants. Chatterjee et al. (1989)
discuss the emerging role of computers in the industry. They point out that
the lack of accurate models, especially of the main cryogenic heat exchanger
(MCHE), was an issue that needed to be resolved. Owren et al. (1992) de-
veloped the simulation program CryoPro, which has seen some later use,
but is little cited in the literature. Melaaen (1994) makes an effort to model
coil-wound heat exchangers for dynamic simulation, including regulatory
control, using first principles and a generic differential-algebraic solver writ-
ten in FORTRAN. Melaaen also compares his simulation results with results
made with CryoPro. Mandler (2000) discusses modelling of LNG processes
for the purpose of control, and cites Melaaen’s work as well as his own earlier
work on the topic (Mandler and Brochu, 1991). Hammer (2004) describes
development of a model of the MFC process, implemented in SEPTIC. A
more recent modeling effort, focusing on the MCHE, was carried out by
Hasan et al. (2007). They use a MINLP method (GAMS/BARON, Sahini-
dis and Tawarmalani (2005)) for optimizing the fit between their model and
an actual MCHE.

Michelsen et al. (2010a) describes a dynamic model of the TEALARC
process, using Simulink/MATLAB for implementation, the model is verified
against a steady-state model made in HYSYS by Wahl (2007). Singh and
Hovd (2007) wrote a dynamic model in gPROMS for a pilot scale LNG plant
built by SINTEF (Brendeng and Neeraas, 2001). Mandler et al. (1998)
discuss new control strategies for the Air Products process, using rogorous
dynamic simulation to improve their understanding of process behavior.

Due to the low temperatures encountered in liquefaction, precise ther-
modynamic calculations are critical. Melaaen and Owren (1996) discuss how
errors in thermodynamic calculations affect the optimum found using Cry-
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oPro. They introduce uncertainty in the equilibrium K-values and examine
how much this uncertainty influences on the optimal result.

4.3 Design and optimization

4.3.1 Types of design problems

The majority of papers related to optimization of LNG processes deal with
design. Design of process plants can roughly be divided into:

• Flowsheet design, where the flowsheet configuration itself is not de-
cided. Thus, binary (logical) decision variables are present in the
problem, related to the number of process units and how they are
connected. This yields a mixed-integer nonlinear optimization prob-
lem (MINLP).

• Sizing, where one has decided on a flowsheet structure and seeks to
optimize process parameters p (referring to Equations 4.1 and 4.2).
Here one does no longer have binary decision variables, and the prob-
lem can be formulated as a nonlinear constrained problem (NLP).

4.3.2 Optimization of design

Almost every paper we have reviewed takes a different approach to the
optimization itself. Lee et al. (2002) optimize the PRICO process in the
following way:

1. An initial guess is made on refrigerant composition, flow rate and
pressures.

2. The refrigerant composition is optimized, seeking to minimize com-
pressor work.

3. If the solution violates the constraints, flow rate and pressures are
adjusted until constraints are satisfied.

4. The process is repeated until one can no longer retain feasibility by
adjusting flow rate and pressures, and the last feasible solution is taken
as the optimum.

Nogal et al. (2008) apply a Genetic Algorithm (Charbonneau, 2002)
to the same process, and compare their results to Lee et al. (2002). As-
pelund et al. (2010) also optimize the PRICO process, using a Tabu Search
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method (Chelouah and Siarry, 2005) for optimization. Whereas Nogal et al.
(2008) implement the model equations in FORTRAN, Aspelund et al. (2010)
rely on HYSYS for solving the model equations, and add a penalty to the
objective function whenever the HYSYS model does not converge. They
use MATLAB (MathWorks, 2011) for optimization. Jensen and Skogestad
(2009) use a sequential quadratic programming solver to optimize the same
process. Both simulation and optimization are done in gPROMS. The ob-
jective functions used by the above mentioned studies on the PRICO process
vary:

• Lee et al. (2002) and Nogal et al. (2008) both aim at minimizing power
consumption for a given production rate. Their way of balancing
energy cost against required heat exchanger size, is the traditional
way - they specify a minimum temperature difference ΔTmin. As
pointed out by Jensen and Skogestad (2008), the optimal solution of
this problem may not be identical to the optimal solution for operation.

• Aspelund et al. (2010) carry out three different case studies, of which
two can be seen as design studies (in that heat exchanger area is not
fixed). In the first, they fix ΔTmin in the cryogenic heat exchanger.
A higher value ΔTmin is added to the objective function as a penalty.
In the second case study, they add together the power consumption
and a cost for heat exchanger area.

• Jensen and Skogestad (2009) also use as their objective function a
weighted sum of power consumption and heat exchanger area. They
also study how the relative weighting between power consumption
and heat exchanger area changes the optimal solution, particularly
the calculated ΔTmin.

Other processes than PRICO have also been studied. Vaidyaraman and
Maranas (2002) take a heuristic approach to synthesis of a generic mixed
refrigerant cycle, seeking to minimize the average temperature difference be-
tween hot and cold composite curves for the process. Shah et al. (2007) use
a genetic algorithm to carry out multi-objective optimization on a gas phase
liquefaction process. They use power consumption and heat exchanger area
as the two objectives. and find a Pareto-optimal front. One can see this as
an alternative to the approach of Jensen and Skogestad (2009): Any given
value for the weighting between power consumption and heat exchanger
area should lead to an optimal solution which is a point on the Pareto-
optimal front. In another paper (Shah et al., 2009), refrigerant holdup in
the system is included as one of the objectives. The refrigerant holdup is
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interpreted as a measure of how safe the process is (a large hydrocarbon
holdup is obviously more hazardous in the case of a fire).

4.4 Optimization of operation of LNG plants

The use of computers to optimize operation of LNG plants was discussed
by Chatterjee et al. (1983), and in the industry it probably got attention
even earlier. However, few actual contributions have followed in the open
literature. Up to the PhD thesis by Jensen (Jensen, 2008), hardly any
material regarding steady-state operation of existing plants had surfaced in
open literature (however, Zaim (2002) discusses dynamic optimization of an
LNG plant). More recently, some papers have been published.

Optimization of operation is most important for control (Skogestad,
2000). Before a plant is running, it is necessary to know the optimal oper-
ating conditions and how they vary with disturbances (Jacobsen and Sko-
gestad (2011a), Chapter 2 in this thesis), in order to design the control
structure. Once the plant is running, optimization may be needed for real-
time-optimization (RTO) control.

Selection of controlled variables for the TEALARC process was studied
by Michelsen et al. (2010b), using the model described in Michelsen et al.
(2010a). For selecting controlled variables, they use the self-optimizing con-
trol approach (Skogestad, 2000), more precisely the method proposed by
Alstad et al. (2009). Others have also studied selection of controlled vari-
ables for LNG processes; Singh et al. (2008) on a pilot scale process built
by SINTEF, and Jensen and Skogestad (2006) on the PRICO process. Tak
et al. (2011) do a similar study, using several simplifications that Jensen
and Skogestad (2006) did not use (e.g. constant compressor efficiencies in-
stead of compressor curves). One of the case studies included in Aspelund
et al. (2010) could also be seen as optimizing operation: They specify the
heat exchanger area (UA) value for the main cryogenic heat exchanger, and
extend the cost function J in the following way:

J = Ws + log |UAactual − UAspecified| (4.3)

The specified UA value is the total UA value for the cryogenic heat
exchanger. In a pure rating calculation, one would expect that one more
UA value was specified (for example the UA value corresponding to the area
between the natural gas stream and the cold refrigerant stream). However,
they specify the outlet temperature of natural gas instead. This is justified
because this temperature will always be an active constraint.
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Hasan et al. (2009) seek to optimize the C3-MR process, but use a very
simplistic approach with only two decision variables, namely the lowest pres-
sure of precooling refrigerant (propane) and liquefaction refrigerant (MR).
They assume the high MR pressure to be given, despite the fact that it
can be seen as a degree of freedom. Alabdulkarem et al. (2011) apply a
genetic algorithm to minimize power consumption in the C3-MR process.
They split the process into a precooling section and a liquefaction section
and optimize them separately.

Jacobsen and Skogestad (2011b) discuss optimization challenges for liq-
uefaction processes, including testing of the reliability of heat exchanger
models in Honeywell’s Unisim simulation software.

The industry have published some papers related to optimization as well:
Paradowski et al. (2004) seek to optimize operation of the C3-MR process
using parametric studies on key process variables whereas Pillarella et al.
(2005) use a proprietary optimization routine on the AP-X process, which
is a modification of the C3-MR process.

4.5 Summary

Work on optimization of LNG plants has begun to gain attention in aca-
demic research, but the majority of papers still focus on design. Most papers
regarding optimal operation either study very simple processes, or use very
simplified models of more complex plants. In Jensen (2008) it is argued
that this is due to people assuming that optimal design and optimal oper-
ation are equivalent. The thesis also points out that this is not generally
true. As pointed out in Jacobsen and Skogestad (2011b), the lack of reliable
steady-state models also contributes to this lack of studies on more complex
processes. The most important plant vendors like Air Products and Linde
rely on in-house methods for design and optimization.
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Chapter 5

Optimization of LNG plants
- challenges and strategies

Submitted to Computers & Chemical Engineering

Efficient and accurate optimization of natural gas liquefaction
plants depends on reliable process models. In this chapter,
we model the propane precooled mixed refrigerant (C3-MR)
liquefaction process, and study the solution reliability of the
critical parts of the model. We study the effect of shifting
the equation solving between the flowsheet simulation program
(Unisim R©Design) and an external solver (MATLAB R©). We
also compare how various MATLAB solvers perform on simula-
tion and optimization of the process model. We include a discus-
sion on solving of heat exchanger rating problems. For the case
studied here, we have found that specifying temperatures in the
flowsheet simulator, and instead including the heat exchanger
area specifications as equality constraints in the optimization
problem, makes convergence more likely.

5.1 Introduction

Plants for production of liquefied natural gas (LNG) have been in com-
mercial operation since the 1960s, with the first regular exporting facility
opening in Algeria in 1964 (Geist, 1983). Several papers addressing opti-
mal design of LNG plants have been published, but few that address the
operation and control of existing plants. Furthermore, in the cases where
operation is sought to be optimized, the approach is often debottlenecking

79



80 Optimization of LNG plants - challenges and strategies

through installation of new equipment. Little attention has been given to
optimizing process operating conditions for an existing plant, which is the
focus in this work.

In this chapter we model a common liquefaction process (the Air Prod-
ucts C3-MR process), in a frequently used commercial modelling program
(Honeywell Unisim R©Design). We use this model to illustrate concerns that
are present when building the model - mainly related to heat exchanger
modelling and optimization. Then we formulate the optimization problem
and describe the challenges that arise when optimizing the model. We use
MATLAB R©for optimization. The program versions used are Unisim R380
Build 14027, and MATLAB R2009a.

The chapter is structured as follows:

• In Section 5.2, we discuss optimal operation of natural gas liquefaction
plants.

• Challenges in optimization are discussed in Section 5.3.

• Section 5.4 describes the propane precooled mixed refrigerant (C3-
MR) process, which we have used as an example.

• Section 5.5 describes modeling of the C3-MR process, and discusses
different ways of formulating heat exchanger models.

• In Section 5.6 we define the optimization problems (degrees of free-
dom, objectives and constraints).

• Section 5.7 summarizes the results of the reliability studies. These
results are elaborated upon in Section 5.8.

Since the terms ”reliability” and ”accuracy” will be used frequently
throughout this chapter, we shall define them here.

Definition 3. Reliability: In the context of this work, this is taken to mean
the likelihood of getting a converged process flowsheet back from the process
simulation software, subject to the required solver tolerances. Reliability is
referring to the solution of the process model equations only.

Definition 4. Accuracy: How low we can set the solver tolerances before
we fail to get a solution. This refers to both solving of model equations
(simulation) and to optimization.
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5.2 Optimal design and operation of LNG plants

5.2.1 Design versus operation

Optimization of a process plant can usually be formulated as a nonlinear
optimization problem on the form

min
u

J(x, u, d) (5.1a)

s.t. f(x, u, d) = 0 (5.1b)
c(x, u, d) ≤ 0 (5.1c)

where x are the internal variables/states of the process model, u are
the degrees of freedom (inputs, process variables that we may manipulate)
and d are disturbances (variables that we can not affect, including feed and
product prices). J is the objective, f(x, u, d) represents the process model
equations and c(x, u, d) are the process constraints - typically including
upper and lower bounds on the inputs u as well.

Optimization of LNG plants can refer to one of two cases (in this work,
we are focusing on the second one):

1. Plant design, which deals with choosing the optimal process config-
uration, equipment size and other process parameters for the given
circumstances. Plant debottlenecking may also be seen as a variant
of plant design, where some of the equipment is given. The optimal
design depends on expected feed gas conditions, economic expecta-
tions, climate at the plant location, and environmental and safety
regulations. For LNG and other cryogenic processes, the climate at
the plant site is of particular importance, because the temperature
of the available cooling utilities influences directly on plant efficiency.
This can easily be illustrated by taking a household refrigerator as
an example: When the house is warm, the compressor is using more
power, and when the house is cold it uses less. The same applies to
any refrigeration plant, including natural gas liquefaction plants.

2. Plant operation, which deals with manipulating the operational de-
grees of freedom u such that the profit is maximized. Compared to
the design case, this corresponds to For an LNG plant, maximizing
profit often corresponds to minimizing energy and utility consumption
(for a given production rate) or maximizing the production rate. This
is discussed further in Section 5.6.1.
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In general, the operation problem has a smaller dimension (i.e. fewer u’s)
than the design problem; process configuration and equipment size are free
to vary in design, but are fixed during operation. Also, some constraints that
are used during design are no longer relevant when we switch to operation.
For example, it is very common to use the minimum ΔT in heat exchangers
as a constraint during design (Jensen and Skogestad, 2008), but this should
not be specified during operation.

5.2.2 Optimization using process simulators

Consider the optimization problem given above (Equation 5.1). It can be
solved in different ways:

1. The optimization solver may solve the entire problem, including equal-
ity constraints. This means that the process model may be uncon-
verged at every step - this can be seen as infeasible-path optimization
(Biegler and Hughes, 1982).

2. The process simulator may solve f(x, u, d) = 0 to find x for given u
and d, and return values for J and c to the optimizer. In this case,
the optimizer solves a purely inequality-constrained problem.

3. The process simulator may solve some of the equations included in f
and the rest can be included in the optimization problem as equality
constraints.

In the first case, it is not necessary to distinguish between x and u, and
the problem can instead be written as

min
u

J(z, d) (5.2a)

s.t. f(z, d) = 0 (5.2b)
c(z, d) ≤ 0 (5.2c)

where z = [x u]. However, in the second and third cases, the distinction
between u and x becomes important. Proper selection of which variables
to include in u and which to include in x can be critical in solving the
optimization problem. In the third case, we also have to decide which
equations f should be solved by the flowsheet simulator and which equations
should be solved by the optimizer.

In the third case, which is illustrated in Figure 5.1, the optimization
problem takes the form
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min
u′ J ′(u′, d) (5.3a)

subject to f ′(u′, d) = 0 (5.3b)
c′(u′, d) ≤ 0 (5.3c)

The equations f ′(u′, d) is a subset of f , and contains the model equations
that are left for the optimizer to solve. u′ is defined as

u′ = [u uextra] (5.4)

where uextra is a subset of x. The selection of uextra follows naturally
from the equations that are included in f ′.

Flowsheet 
simulator
(UNISIM)

Optimizer
(MATLAB)

J’(u’,d),
 f’(u’,d),
c’(u’,d)

u’

d

Figure 5.1: The flowsheet simulator receives u′ from the optimizer and
calculates J ′, f ′ and c′.

5.2.3 Earlier work on LNG optimization

The technical LNG conferences held since 1968 (GTI, 2011) have been the
main arena for exchange of knowledge about LNG technology. Most papers
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from these conferences focus on experiences with new process units, or on
increasing plant capacity through debottlenecking. Only in the last decade
has mathematical optimization of liquefaction plants received attention in
the published literature. The first systematic tool in use for improving lique-
faction efficiency was exergy analysis, which started to gain attention during
the 1970s (Durr et al., 1998), and has since remained in use as a means of as-
sessing efficiency losses in refrigeration processes; see also Liu et al. (1998).
Pillarella et al. (2005) use an in-house sequential-quadratic programming
(SQP) algorithm (Nocedal and Wright, 1999) to optimize the design of a
propane precooled mixed refrigerant process, whereas Jensen and Skogestad
(2006) use an SQP method and the simulation software gProms (Process
Systems Enterprise, 2011) to optimize both design and operation of the
simpler PRICO process (Price and Mortko, 1996). However, derivative-free
methods have seen wider use than continuous methods. Shah et al. (2007)
use a genetic algorithm to optimize design for gas-phase refrigeration, As-
pelund et al. (2010) use a Tabu search method (Cvijovic and Klinowski,
1995) on the PRICO process. Both these works use Aspen HYSYS (As-
penTech, 2011) for simulation and MATLAB for optimization. Another
approach to optimization is parametric studies - simulate the model for a
range of values for the key parameters to identify the optimal solution. In
Paradowski et al. (2004), the C3-MR process is studied by varying refrig-
erant composition and compressor speed. They use an in-house process
simulator. There are no studies which use a standard commercial process
simulator to optimize a pure operation problem with a method that uses
gradient information. In this chapter we discuss some of the challenges that
may explain why.

5.3 Challenges in optimization

The most obvious challenge in optimization arises if the process simulator
used for calculation of objectives and constraints is not guaranteed to con-
verge to a solution every time it is called by the optimization routine. In
these cases the model must be reformulated in such a way that it is easy
to converge. In particular, this means the use of iteration loops within the
process simulator should be limited if possible - unless they are guaranteed
to converge, that is. When considering which equations to solve outside the
process simulator, as discussed above, this is an important issue.

In sequential-modular simulators, of which Unisim is a typical example,
each process unit is solved individually and information passed on to the
connected units. This often requires tearing of the flowsheet calculation
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(see e.g. Motard and Westerberg (1981)), adding equations and variables to
the model. This is not an issue when using a simultaneous solver (like for
example gProms).

It may often be beneficial (or even necessary) to let the convergence of
these recycles be part of the optimization, rather than letting the process
simulator take care of them. Thus, the process model will not be completely
converged at every iteration of the optimization. This is called infeasible-
path optimization (Biegler and Hughes (1982), Biegler (2010)). Whether to
use this approach or not, depends on how robust the recycle solver of the
process simulator is. If convergence is guaranteed every time the process
model is called, there is no explicit need to use an infeasible-path method,
but it may still be better in terms of computation efficiency.

If convergence cannot be guaranteed, a gradient-based method is not
feasible. When using a gradient-free method, a convergence failure can for
example be handled by assigning a large penalty to the objective function.
Aspelund et al. (2010) use this approach.

Another challenge, especially when using a gradient-based method like
SQP, is that constraints may have discontinuous gradients. A particularly
difficult example is when there is a constraint on the temperature of a single-
component stream which undergoes a phase change. For example, we may
have a constraint T −Tdew(P ) ≥ 5 K, i.e. the stream must be 5 K above its
dew point temperature. Now, if a process variable is changed so that the
stream goes into the two-phase region, we will have T = Tdew(P ), and in a
small region the gradient of this constraint is zero in all directions. Thus it
is impossible for the solver to know in which direction it should search for
a feasible point1.

5.4 Example process: C3-MR

The Air Products C3-MR process (Figure 5.2) has been the most widely
utilized process for natural gas liquefaction, since its invention in the 1970s
(Chiu, 2008). The name stems from the fact it uses a propane (C3) pre-
cooling cycle and a mixed refrigerant (MR) liquefaction cycle. The plant
includes units for removal of water, sulfur and CO2 and a fractionation col-
umn - for simplicity, these units are omitted in this work. Newton et al.
(1986) provides an interesting discussion on different design issues related
to the process. The process works as follows (referring to Figure 5.2):

1For a multi-component stream, in which the boiling temperature varies through the
two-phase region, this is not an issue. The gradient is still discontinuous at the ends of
the two-phase region, but it does not become zero.
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Figure 5.2: Schematic flowsheet of the C3-MR process with three precool-
ing pressure levels. Propane (C3) flows are shown in blue, mixed refrigerant
(MR) flows in green and natural gas (NG) flows in red. The dashed verti-
cal line separates the precooling section (left) from the liquefaction section
(right)

• Dry natural gas (NG FEED) and high pressure mixed refrigerant (MR-
2) enter the precooling section (left end of Figure 5.2).

• They are cooled to approximately −40◦C by heat exchange with boil-
ing propane (C3) in three successively colder stages.

• The precooled natural gas (NG-2) enters the main cryogenic heat ex-
changer (MCHE) directly, the refrigerant stream (MR-3) is first sep-
arated into a liquid stream and a vapor stream, which both enter the
bottom of the MCHE. The MCHE is on the right side in Figure 5.2.

• NG and MR are both liquefied and subcooled in the MCHE. The
liquid MR stream exits the exchanger in the middle, is expanded and
injected back into the MCHE where it is used for cooling. The vapor
MR stream, now liquefied, exits on the top, it is also expanded and
sent back to the top of the MCHE.

• The subcooled NG exits at the top of the MCHE where it is expanded
to storage pressure and pumped to a storage tank.
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• The vaporized MR exits the MCHE at the bottom, and is recom-
pressed to high pressure.

• The C3 in the precooling loop is first condensed with seawater, then
expanded and evaporated in three stages, before it is re-compressed.
The condensed C3 is split in two streams (C3-1 and C3-2). Each
stream is expanded to a lower pressure and fed to the high-pressure
precooling heat exchangers. Part of the C3 is evaporated and sent to
the high-pressure inlet of the propane compressor, the remaining C3
(which is still liquid) is expanded further and sent to the medium-
pressure precooling heat exchangers. The vapor goes to the medium-
pressure inlet of the compressor, the remaining liquid is evaporated in
the low-pressure precooling heat exchangers before being sent to the
low-pressure inlet of the compressor.

The precooling part uses six kettle-type heat exchangers, the MCHE
is a single, large spiral-wound heat exchanger. In Figure 5.2, the MCHE
is represented by two multi-stream heat exchangers - the first with four
streams and the second with three.

5.5 Modelling

5.5.1 Model description

The model has been made in Unisim - Figures 5.3 and 5.4 show the pre-
cooling section and liquefaction section of the Unisim model, respectively.
Just like in Figure 5.2, red streams are natural gas (NG), green streams
are mixed refrigerant (MR) and blue streams are propane (C3). The most
important model features are described below. UA denotes the product of
the area of a heat exchanger (A) and the heat transfer coefficient (U). The
heat transfer coefficient is assumed to be constant throughout each heat
exchanger.

• Each stage of the propane compressor is modelled as a separate com-
pressor (in the actual process, it is one compressor with several inlets).

• We use simplified compressor models with constant efficiency η =
80 %. This basically means we keep the ”design” specifications on the
compressors. For optimization of an actual plant, this is not realistic.
However, since compressor data are very case-specific, the simplifi-
cation is acceptable for a more generic study like the one undergone
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here. After all, the concern of this chapter is modelling and optimiza-
tion reliability.

• The water/air coolers used for condensation of propane and cooling
of mixed refrigerant are modelled as simple coolers, meaning the exit
temperature of the fluid to be cooled is specified directly. This is
justified by the assumption that we always use the maximum cooling
available, since air/cooling water is cheap compared to compressor
work.

• The six heat exchangers in the precooling section are modelled as
ideal counter-current shell and tube heat exchangers, each followed by
a flash tank. This is to simulate a kettle-type heat exchanger, with
both a liquid outlet and a vapor outlet. For each heat exchanger, the
value of UA is specified.

• The Main Cryogenic Heat Exchanger (MCHE) is modelled as two
multi-stream heat exchangers - one with three hot streams and one
with two hot streams. Both have one cold stream. For the multi-
stream heat exchangers, specifications are made on UA between every
hot stream and the cold streams. This gives a total of five UA speci-
fications for the MCHE model.

• The mixed refrigerant (MR) consists of methane, ethane, propane and
nitrogen. We assume that we can manipulate the composition.

• The MR compressor is modelled as a single-stage compressor whereas
in the actual process, it is a three-stage compressor with internal cool-
ing. This does not influence on the number of degrees of freedom -
there is only one manipulated variable for the compressor in either
case.

• The Peng-Robinson equation of state (Peng and Robinson, 1976) is
used to compute the thermodynamic properties.

In the remainder of this work, we have chosen to divide the model into a
pre-cooling part and a liquefaction (MCHE) part. This division is indicated
in Figure 5.2.

5.5.2 Heat exchanger modeling: Design and rating

Consider the simple heat exchanger shown in Figure 5.5. It has seven vari-
ables, and it is characterized by two equations. One is the energy balance:
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Figure 5.3: Flowsheet of the Unisim model, precooling section. NG streams
are shown in red, C3 streams in blue and MR streams in green.

Figure 5.4: Flowsheet of the Unisim model, liquefaction section. NG
streams are shown in red and MR streams in green. The blocks labeled
”R” are recycle blocks, equivalent to torn streams.
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Figure 5.5: Simple counter-current heat exchanger with two streams

m1 · (hout,1 − hin,1) = −m2 · (hout,2 − hin,2) (5.5)

The second is the expression for heat transfer, which is (if we assume
constant heat transfer coefficient U):

m1 · (hout,1 − hin,1) = Q = U ·
∫

ΔT (A)dA (5.6)

Since we have two equations and seven variables, we need to specify five
variables. How difficult the heat exchanger is to calculate, depends on which
variables we specify. The two following cases are common:

• Design: We specify the flow rates m1 and m2, inlet temperatures T1,in

and T2,in, plus one outlet temperature (or, equivalently, the minimum
temperature difference (ΔTmin)). From this, we calculate UA and the
unknown outlet temperature.

• Rating (operation): We know m1, m2, T1,in, T2,in and UA, and want
to calculate both outlet temperatures. In this work, we are exclusively
dealing with rating problems.

If we do not know either outlet temperature, we have to solve the two
equations simultaneously, or express the UA value as a function of one of
the unknown temperatures and solve

UA(T ) − UAspecified = 0 (5.7)

iteratively for T .
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The Unisim heat exchanger model solves the rating problem in the fol-
lowing way:

1. The unknown temperatures are guessed.

2. From the temperatures that are known or guessed, enthalpies at the
end points are calculated.

3. For each stream, a curve of temperature as function of enthalpy is
calculated, and divided into a user-defined number of intervals.

4. Using the logarithmic mean temperature difference, a UA value is
calculated for each interval, and the UA values are added together to
yield the total UA for the heat exchanger.

5. The calculated UA value is compared to the specified one and the
error is calculated.

6. Steps 1-5 are repeated until the difference between the calculated UA
the specified UA is sufficiently small.

5.5.3 Different model formulations for heat exchangers in
liquefaction model

One of the main issues we address in this work, is the reliability of the
multi-stream heat exchanger modules used for simulating the MCHE, which
is modelled as one heat exchanger with one cold and three hot streams, and
one exchanger with one cold and two hot streams. Here, we will show that
the model of the MCHE can be done in three different ways, which we will
refer to as Model Formulation I, II and III :

1. Formulation I : UA values are calculated by Unisim, by specifying tem-
peratures. The UA specifications are added to the optimization prob-
lem as equality constraints, so Equation 5.7 is solved by MATLAB.
In this formulation, there are no tear equations in the liquefaction
sub-model.

2. Formulation II : The heat exchanger rating problem (Equation 5.7) is
solved by Unisim , the tear equations (Equation 5.10) are solved by
the MATLAB optimizer.

3. Formulation III : This is the same as Formulation II, except for that
Unisim now also solves the tear equations (Equation 5.10).
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Model Formulation I: As mentioned above, the MCHE model has
five UA specifications, thus there are five temperatures that must be found
iteratively. These are the temperatures of the streams labeled NG5, MR12,
MR15, MR16 and LNG in Figure 5.4. The internal heat exchanger model
uses a Newton method for the iterative solution procedure.

When doing optimization in MATLAB, this iterative solution can be
included in the optimization problem by adding Equation 5.7 as equality
constraints. This means that f ′(u′, d) in Equation 5.3 will be:

f ′ = UAi(Ti) − UAi,specified = 0 (5.8)

for i = 1 : 5. The five corresponding temperatures are now included in
the extended input vector u′:

u′ = [u TNG5 TMR15 TMR12 TMR16 TLNG] (5.9)

Model Formulations II and III When we specify the five UA values
in the multi-stream heat exchangers directly and let Unisim solve for the
unknown temperatures, we face an additional issue. In Figure 5.4, we see
that the streams labeled MR17 and MR19a are inlet streams to the MCHE
(warm part) and MCHE (cold part), respectively. At the same time, the
conditions of these streams depend on the conditions of the outlet streams
labeled MR12 and MR16. Thus we have to tear those streams (indicated
by the recycle blocks labeled ”R” in Figure 5.4). When doing this, we have
to guess the temperature of streams MR16a and MR19a, and the flowsheet
is solved in the following way:

1. The inlet conditions of precooled natural gas (NG10) and mixed re-
frigerant are known. Together with the guessed conditions of stream
MR19a, the four-stream heat exchanger is solved.

2. This gives us the conditions of streams MR1, NG5, MR12 and MR15.

3. The guessed conditions of stream MR16a allows us to calculate the
conditions of stream MR17, where the pressure is specified.

4. Based on the calculated conditions of streams NG5, MR15 and MR17,
the three-stream heat exchanger is solved. This gives the conditions
for streams ”LNG”, MR16 and MR18.

5. The conditions of stream MR19 are now calculated.

6. The calculated temperatures of streams MR16 and MR19 replace the
guessed temperatures in streams MR16a and MR19a, respectively.
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7. The above is repeated until the residuals TMR16−TMR16a and TMR19−
TMR19a are both smaller than the specified tolerance.

We may choose to let the Unisim recycle solver take care of the last step,
or include it in the MATLAB optimization problem. In the latter case, we
include the guessed values for TMR16a and TMR19a in u′, and include Equation
5.10 below in f ′.

f ′ =
[

TMR16 − TMR16a

TMR19 − TMR19a

]
(5.10)

In this case, the input vector u′ will be

u′ = [u TMR16a TMR19a] (5.11)

This is Model Formulation II.
Finally, we may choose to let Unisim solve the recycles as well. In this

case, there will be no equality constraints f ′ in the optimization problem,
and u′ = u, thus the optimizer is left to solve an inequality constrained
problem. This is Model Formulation III.

5.5.4 Superheating: Temperature vs. enthalpy

In the optimization problem, constraints on superheating of compressor inlet
streams are included. Here we will explain how the form of the superheating
constraints may influence on solver reliability. It may seem obvious just to
express the superheating constraints (constraints 2-4 in Section 5.6.3) as

ΔTsup = T − Tdew(p) (5.12)

where Tdew(p) is the dew point temperature at the current pressure.
However, as the C3 streams in question are small compared to the NG
and MR streams, a little change in process conditions is enough to take
them from the superheated region into the two-phase region. In the entire
two-phase region, ΔTsup will be equal to zero, since a single-component
stream evaporates at constant temperature. When the optimizer finds a
zero gradient for a constraint function, it may fail to return to the feasible
region. If we instead write the constraint function in terms of molar enthalpy
h(T, p), we avoid this problem as the enthalpy is changing monotonously
throughout the two-phase region (and the gradient is never zero). Thus, we
write

Δhsup = h − hdew(p) (5.13)
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To illustrate the difference between using Equation 5.12 and Equation
5.13, consider Figures 5.6(a) and 5.6(b). Here, we show how the superheat-
ing of C3 out of heat exchanger V102 (referring to Figure 5.3) as function
of FC3−2. When using Equation 5.12, we see that the superheating becomes
zero and stays zero in the two-phase region. Equation 5.13, on the other
hand, returns a negative value when we are in the two-phase region, and
thus we avoid the problem with a zero gradient.

Later in this chapter, we will compare how these two formulations influ-
ence on optimization performance.

5.5.5 Solving - Unisim-MATLAB interaction

In this work, we use Unisim for simulation of the C3-MR process, and
MATLAB for optimization. MATLAB optimization algorithms and equa-
tion solvers all require a function which accepts the decision variables as
inputs, and returns the value of the objective function and constraint func-
tions (or, in the case of equation solving, the equation residuals). In this
work, we do the following:

1. The MATLAB optimization function passes a set of values for the
decision variables u to the MATLAB functions which calculate J (or
J ′) c and f ′.

2. These MATLAB functions pass the values to the Unisim flowsheet
and calls the solver.

3. If the Unisim simulation is successful (i.e. it calculates the values MAT-
LAB asks for), these values are passed to MATLAB.

4. If the simulation is not successful, the MATLAB objective/constraint
functions return a high value for J and c to the optimization solver
(where ”high” means a value several orders of magnitude larger than
the expected value).

5.6 Description of the optimization problem

5.6.1 Optimization objectives for entire plant and for sub-
models

When optimizing operation of a natural gas liquefaction plant, the objective
is simple: We have a single product, which is to be delivered in a given
state, so the goal is to produce as much as possible, using as little energy
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(a) Superheating expressed in enthalpy (Δhsup)

(b) Superheating expressed in temperature (ΔTsup)

Figure 5.6: Superheating of propane out of V102 as function of FC3−2
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as possible. If we ignore utilities and pumping work (which is negligible
compared to refrigerant compression), we can write the objective function
to be minimized as

J = ΣW · pW − FLNG · pLNG (5.14)

where W is energy consumption (from compression), FLNG is the pro-
duction rate and p are prices. Jensen and Skogestad (2006) describes two
distinct objectives called Mode I and Mode II:

• Mode I: Throughput FLNG is fixed, so the cost function reduces to
J = ΣW , i.e. minimize compressor work.

• Mode II When pW is relatively low compared to pLNG, we seek to
maximize throughput, subject to operational constraints (maximum
constraints on compressor throughput, pressures and cooling). Then
the cost function can be reduced to J = −FLNG

In this work we shall focus on Mode I (J = ΣW ) This means we seek to
minimize the sum of work done by all compressors, when the feed flow rate
is given (thus, the feed flow rate is to be considered a disturbance). Since we
are dividing the C3-MR process into a precooling section and a liquefaction
section, we need to state an optimization objective for each section as well:

• For the precooling section, we seek to minimize the propane compres-
sion work, so J = WK100 + WK101 + WK102.

• For the liquefaction part, we seek to minimize the mixed refrigerant
compression work, so J = WK103.

It needs to be emphasized that these two objective functions refer to
optimal operation of each sub-model on its own. The optimal solutions
found for each sub-model do not necessarily yield the optimal solution for
the overall process.

5.6.2 Degrees of freedom for optimization

When the feed flowrate is considered a disturbance, rather than a degree
of freedom, there are eight degrees of freedom u in the precooling section
(eight variables that must be specified in the Unisim model). These must be
selected so that the Unisim model can be solved (most important, we need
to avoid overspecification of one unit and underspecification of another).
The variables we have selected for the precooling part are:
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1,2 Flow rate of the two propane streams C3-2 and C3-14.

3,4 Amount of cooling in the C3 condenser and the MR cooler, or equiv-
alently the temperatures of streams C3-1 and MR7.

5-8 Four pressures in the propane loop (specified in the streams C3-3,
C3-7, C3-11 and C3-33).

Alternative specifications could for example be temperatures rather than
pressures in the propane loop. Flow rate specifications could also be ex-
pressed via a total flow rate and a split ratio, or replaced by temperature
specifications.

In the liquefaction part, there are six degrees of freedom. We have
selected to specify the following six variables:

1: Flow rate of stream MR10.

2-3: Pressure of streams MR10 and MR17 (high and low MR pressure).

4-6: Composition of MR (we specify molar fractions of C2H6, C3H8 and
N2).

The same considerations apply as in the precooling case, except the
composition must be specified. The pressure specifications could again be
replaced by temperature specifications. In summary, the degrees of freedom
for the respective sub-plants are:

upre = [FC3−2 FC3−14 TC3−1 TMR7 PC3−3 PC3−7 PC3−11 PC3−33] (5.15)
uliq = [FMR10 PMR10 PMR17 xC2,MR xC3,MR xN2,MR] (5.16)

5.6.3 Constraints

Precooling sub-model

When dividing the process in two parts, conditions of a stream exiting one
part of the plant may be a disturbance for the other part. In addition,
we may need to add constraints on certain conditions of streams leaving
the section we are currently optimizing. For the precooling sub-model, the
constraints are as follows:

1-2: NG and MR out of the precooling section (streams NG4 and MR10)
must be colder than −39◦C. These two constraints will be active at
all times, as more cooling means more work.
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3-4: C3 leaving the low-pressure evaporation stage must be at least 2.5◦C
superheated. These may also be assumed to be active.

5: C3 leaving the condenser must be liquid only: TC3−33 ≤ Tbubble(PC3−33).

Remark 1. The lower bound on the temperature in streams NG4 and MR10
can be used as a degree of freedom for optimization of the overall plant.
Changing this constraint value will shift the load between the two compressor
trains.

Remark 2. About constraint 5: It is common to have a condenser design
which makes the propane leave the condenser at the saturation point, i.e.
subcooling is not possible and the constraint is always active. At steady
state, the pressure of stream C3-33 will thus have to follow the temperature
in the condenser. If we allow subcooling, the pressure may be higher. In this
work, we make no assumptions on the condenser design, thus we allow for
subcooling and constraint 5 may be inactive.

In addition, we require that all flows must be positive and that all in-
ternal ΔT values in heat exchangers (defined as temperature on hot side
minus temperature on cold side) must be positive. This is to make sure we
do not find a physically infeasible solution with temperature crossovers.2

Liquefaction sub-model

In the liquefaction section of the plant, we have the following constraints
(c):

1. TLNG ≤ −157◦C (always active).

2. ΔTsup,MR ≥ 2.5◦C (stream MR1 to compressor K103 must be super-
heated).

3. All internal ΔT > 0.

Depending on choice of model formulation, u will be extended as shown
in Section 5.5.3, and we will thus have either 5, 2 or 0 equality constraints
in addition to our inequality constraints.

2This is always obeyed if inlet temperatures and heat transfer area are given, but may
be violated if more temperatures are specified. Notice that this is only a modelling issue.
In a real heat exchanger a negative ΔT is physically impossible at steady state.
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5.6.4 Disturbances

The division of the model into a precooling section and a liquefaction section
means that the conditions of the streams crossing the boundary, are either
degrees of freedom or disturbances for the part they are entering. In the
precooling section, we have the following disturbances:

• Pressure, composition and flow rate of stream MR1a (these are degrees
of freedom in the MCHE submodel).

• Conditions of the NG feed (pressure, composition and flow rate).

• Temperature of the external cooling medium, Tamb.

In the rest of this work, we will assume that maximum cooling is used in
the propane condenser, the feed water cooler and the MR water cooler. This
means we may specify the temperature of the streams ”NG Feed”, ”C3-1”
and ”MR7” to the lowest possible - we will use the ambient temperature
plus 5◦C. This means the temperature of these streams can be seen as
a disturbance itself, just like the temperature of the feed. If we look at
remaining degrees of freedom when these assumptions are made, we find
that we have only two degrees of freedom left. We will address this further
in the discussion (Section 5.8.1).

The conditions of the streams leaving the precooling section are consid-
ered as disturbances (d) for the liquefaction section. These are

• Flow rate, temperature and pressure of stream NG4

• Temperature of stream MR10 (flow rate and pressure of this stream
are considered degrees of freedom).

5.7 Results

5.7.1 Reliability of Unisim model of MCHE section with dif-
ferent formulations

In order to be able to run optimization, we need to be able to converge the
process model, to obtain values for the functions J , c and f ′ in Equation 5.3.
Therefore, we have tested how reliable the Unisim model of the liquefaction
sub-plant is with each of the different formulations described in Section
5.5.3.

The six degrees of freedom (u) given in Section 5.6.2 were varied from
their minimum to their maximum values, which are shown in Table 5.1.
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The results are shown in Table 5.2. The relative tolerance for solving the
heat exchanger model was set to 10−10 in the case where temperatures
were specified (Formulation I) and 10−5 when UA values were specified
(Formulations II and III). For Formulation III, the tolerance on temperature
in tear streams was set to 0.1◦C.

Table 5.1: Optimization variables u in MCHE submodel: Minimum and
maximum values used in robustness study

Variable Nominal value Minimum Maximum
Ph,MR [kPa] 4340 4240 4440
Pl,MR [kPa] 521 500 537
FMR [kmol/h] 102.0 101.0 103.0
xC2,MR [%] 42.5 40.0 45.0
xC3,MR [%] 2.0 0.0 4.0
xN2,MR [%] 8.0 6.0 10.0

Table 5.2: Reliability study: Number of failed flowsheet calculations with
different formulations

Model formulation Runs Failures
I: T specified 300 0
II: UA specified, recycles inactive 300 11
III: UA specified, recycles active 300 177

As seen from the results in Table 5.2, the only formulation in which the
Unisim flowsheet converged for the whole range of flows and pressures was
formulation I. In formulation II, the three-stream heat exchanger calculation
failed on a number of occasions, and when using formulation III the recy-
cle calculations failed frequently (or the heat exchanger calculations failed
because of bad guesses from the recycles). Considering that a much stricter
tolerance was used in Formulation I, the difference is even more apparent.
It is safe to conclude that the recycle solver used by Unisim works poorly
for problems with small temperature differences.

5.7.2 MATLAB solution accuracy for Model Formulations I
and II

When leaving some of the model equations for the MATLAB solver of choice
to solve, it is important to know whether this solver can converge the equa-
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tions accurately.

1. Solution of heat exchanger model : As shown in the previous section,
Formulation I always lets us solve the flowsheet model. However, we
are left with the task of solving Equation 5.7 for the temperatures. The
question is, can the MATLAB solver of choice converge this equation
more accurately, or more robustly than the internal heat exchanger
solver in Unisim? To check this, we have tried to solve Equation 5.7
with MATLAB to the same tolerance that was used in the Unisim
heat exchanger model in the previous section. See Table 5.4.

2. Convergence of recycles: When testing Model Formulation III, we
found that the Unisim recycle solver failed to converge in more than
50 % of the cases. To compare how different MATLAB solvers could
cope in comparison, we attempted to solve Equation 5.10 using these
MATLAB solvers. If the quality of the solution routines themselves
is significantly different, the accuracy we can achieve will also be dif-
ferent. The Unisim recycle unit operation uses direct substitution
for the first steps, before applying the Wegstein acceleration method
(Wegstein, 1958) or the accelerated eigenvalue method (Orbach and
Crowe, 1971) until convergence is reached. When using an external
solver, e.g. a MATLAB solver, one can use a least-squares method, or
a Newton method.

Since this is part of an optimization problem, we need to see whether
an optimization solver (in MATLAB, the fmincon solver is used for this
type of problems) can solve the necessary equations. However, it is also
of interest to see whether other equation solvers can solve Equations 5.7
and 5.10 more reliably than Unisim can. Thus we have tested the following
solvers:

• fsolve: The standard solver for algebraic equations in MATLAB. It
seeks to find a solution where the sum of squares of the equation
residuals is sufficiently close to zero.

• fmincon, active-set algorithm: fmincon is the standard solver for
nonlinear optimization in MATLAB. The active-set method is the
default method for problems with nonlinear constraints.

• fmincon, interior-point algorithm: This method makes use of slack
variables. More importantly, it is programmed to always honor bound
constraints, unlike the active-set method which can break bound con-
straints at intermediate points.
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Since the fsolve solver attempts to minimize the sum-of-squares of equa-
tion residuals, we need to set the function tolerance equal to the square of
the maximum error we allow for. When using the fmincon solver for equa-
tion solving with a constant J , the equations are supplied to the solver as
equality constraints. Thus it is the constraint tolerance which is of impor-
tance. This solver uses an absolute tolerance on the maximum constraint
violation, so here we set the tolerance equal to the maximum error we al-
low for. In Table 5.3 we summarize the tolerances we have used in the
subsequent tests.

Table 5.3: Tolerances used for different MATLAB solvers for solving heat
exchangers and recycles

Solver Tolerance type Max iterations Eq. 5.7 Eq. 5.10
fsolve TolFun 50 10−8 10−2

fmincon TolCon 50 10−4 10−1

Table 5.4: Testing different MATLAB solvers on Equation 5.7

Solver Runs Failures
fsolve 150 103
fmincon, active-set 150 128
fmincon, interior-point 150 86

Table 5.5: Testing different MATLAB solvers on Equation 5.10

Solver Runs Failures
fsolve 150 29
fmincon, active-set 150 138
fmincon, interior-point 150 132

The results are shown in Tables 5.4 and 5.5. In all cases there is a
significant number of failures, meaning we probably need to further loosen
the tolerances (either on UA calculation or recycle convergence), which in
turn means we will have less accurate optimization results. The number of
failures when trying to solve Equation 5.10 using fmincon with a constant
J was even higher than when we tried to use Unisim to solve the recycles.
Of the approaches taken in this section, the most successful is to use model
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formulation II together with the fsolve solver. However, even this approach
failed frequently, as shown by Table 5.5 (one out of five times).

Remark 3. :When using an optimization solver with a ”dummy” objective
(J = 1) for simulation, as done by Lid (2007), solving for the equality con-
straints is basically equation solving with a Newton method: The gradient
of the objective function is zero for all u, and there are no inequality con-
straints, so we are actually left with a set of algebraic equations to solve -
and the SQP algorithm is basically the Newton method applied to the KKT
conditions (Nocedal and Wright, 1999).

5.7.3 Optimization efficiency of MCHE sub-model

To test the performance of each model formulation when optimizing the
MCHE sub-plant, we let each of the disturbances listed in Section 5.6.2
vary from 95 % to 105 % of their nominal values in 50 equidistant steps. We
have varied the constraint and objective tolerances and recorded how this
influences on how likely the optimizer was to converge to a solution. Table
5.6 shows how many optimizations succeeded for each disturbance, using
Model Formulation I and varying the function and constraint tolerances for
the optimization solver. We used the fmincon solver (active-set algorithm),
using default limits on the number of iterations and function evaluations.

Table 5.6: Optimization for varying disturbances and for different toler-
ances: Number of successful optimizations (out of 11)

Disturbance Tol = 10−3 Tol = 10−4 Tol = 10−5

TNG 10 7 8
FNG 7 6 5
PNG 10 9 8

We notice that more optimizations fail when the tolerances are loos-
ened. This is somewhat surprising, as it should be easier to converge to
a more loosely defined optimum. However, when the constraint tolerance
is increased as well, we may end up further outside of the feasible region,
and this may cause more frequent flowsheet convergence failures, making it
more likely that the optimization fails to converge as well.

5.7.4 Optimization efficiency, precooling sub-model

To test robustness of each of the two ways of expressing the superheat-
ing constraints, we tested how often the optimizer would converge to a
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function tolerance of 10−3 and a constraint tolerance of 10−1 (the latter
corresponding to 0.1◦C violation of temperature constraints, like also used
for the recycles in Section 5.7.2), when starting from random initial points
inside the bounds given in Table 5.7. F1,C3 and F2,C3 are the flow rates
of propane to the first NG precooler (V100) and the first MR precooler
(V103), respectively. Table 5.8 shows the number of failed optimizations
with the two different constraint formulations. Regardless of algorithm and
constraint formulation, the optimizations that started from feasible starting
points were more likely to converge.

Remark 4. The reason why so few optimizations were attempted using
the active-set method, is that it does not honor upper and lower bounds at
intermediate points, so it may try to give two pressures that give a pressure
increase across a valve, or another physically infeasible set of specifications.

Table 5.7: Optimization variables u in precooling submodel: Minimum and
maximum values

Variable Nominal value Minimum Maximum
F1,C3 [kmol/h] 12.22 12.0 12.6
F2,C3 [kmol/h] 62.1 60.5 64.0
P1,C3 [kPa] 1100 1100 1500
P2,C3 [kPa] 455 420 480
P3,C3 [kPa] 225 210 250
P4,C3 [kPa] 109.3 105 125

Table 5.8: Optimization robustness for different constraint formulations -
testing for different starting points

Formulation Algorithm Attempts Failures
Δhsup Interior-point 50 16
ΔTsup Interior-point 50 44
Δhsup Active-set 4 4
ΔTsup Active-set 5 4

We also want to test how robust the different formulations are to changes
in disturbances. Here, we consider changes of ±5% in the following variables:

• Cooling utility temperature (Tamb)(we assume that we maximize cool-
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ing in condensers/coolers, so this is equivalent to changing the tem-
peratures out of each condenser/cooler.

• NG flow rate (FNG).

• MR pressure from K103 (Ph,MR).

The results are shown in Table 5.9. We only used the interior-point
method in this part of the study. We also used somewhat wider bounds
than the ones given for flows in Table 5.7, because when changing the feed
flow rate, we need to change the C3 flow rates accordingly.

Table 5.9: Optimization robustness for different constraint formulations -
testing for different disturbances

Disturbance Formulation Attempts Failures
Tamb Δhsup 11 10
Tamb ΔTsup 11 10
FNG Δhsup 11 7
FNG ΔTsup 11 10

Ph,MR Δhsup 11 9
Ph,MR ΔTsup 11 11

5.8 Discussion

5.8.1 Degrees of freedom in precooling section

Here we continue the discussion from Section 5.6.3. We mentioned that the
temperature and superheating constraints consume four degrees of freedom,
as they are assumed active at all times. From an initial number of eight
degrees of freedom, we are then left with two. Furthermore, this requires
that we are able to adjust the intermediate pressures (streams C3-3 and
C3-7). Since in the actual process, there is only one propane compressor, it
may not be possible to vary them independently. This means we would be
left with zero degrees of freedom for optimization. However, if the goal is to
optimize the C3-MR process as a whole, the constraints on temperatures in
streams NG4 and MR10 may also be changed. They may be lowered until
the lowest propane pressure reaches its minimum allowed value.



106 Optimization of LNG plants - challenges and strategies

5.8.2 Reliability and accuracy

As seen from Table 5.2, the only formulation within Unisim which gave a
result for the whole range of flows and pressures was formulation I, even
though the internal tolerance of the heat exchanger was set as low as 10−10.
In formulation II, the three-stream heat exchanger failed frequently despite
the tolerance here being much looser (10−5). This large difference in relia-
bility is caused by the fact that when temperatures are given, the internal
solver of the heat exchanger operation only needs to solve the energy balance
equation for the last (unknown) temperature, thus the only factor limiting
solution accuracy is the underlying thermodynamic property calculations.
On the other hand, when other variables are specified, the heat exchanger
solver iterates on the unknown temperatures and/or flows until it meets the
specifications. Basically, it does the same job as the MATLAB solver does
when UA specifications are included in the optimization problem.

It is worth noticing that regardless of solver, any values for pressures,
flows and composition (our decision variables for optimization) close to the
upper and lower bounds were likely to cause convergence failure - especially
when changing only one variable at a time. This means that when carrying
out optimization, we have very limited freedom to change u, and there are
strong correlations between the process variables. This indicates that there
is a need to find more suitable decision variables u, so we can explore more
of the state space when optimizing - this will increase the chance of finding
the global optimum. Ideally we should find some variables that can be kept
more or less constant, and others that may be varied more freely.

5.8.3 Optimization efficiency

Frequent flowsheet convergence failures made model formulation III un-
suited for use with a gradient-dependent optimization method. A failed
flowsheet calculation means that we do not get reliable gradients and Hes-
sians, if any at all. In this work, we let the optimizer get a fixed, high
value for both objective and constraint functions whenever the flowsheet
calculation fails. This has assured that we always could calculate gradients.
However, because of frequent flowsheet convergence failures, these gradi-
ents would be poor, and thus lead to the optimizer taking poor steps. It is
obvious that this has a huge effect on optimization performance.

With formulations I and II, the flowsheet calculation rarely would fail,
but progress towards a feasible solution of the optimization problem still
failed frequently. In many cases, the solution found was very near to the
initial point. This is surprising, since the nominal point is calculated using
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a given minimum ΔT . As shown by Jensen and Skogestad (2008), this
formulation will be sub-optimal when going from design to operation, thus
one would expect that the solution would differ more from the initial point.
Whether this is due to unreliable gradient calculations (and thus inaccurate
optimization), a weakness in the optimization algorithm itself, or simply
due to a very flat optimum, has not been investigated in this work.

We also found that optimization convergence was strongly dependent
on the initial guesses u0, especially when optimizing the precooling sub-
model. When several constraints were not satisfied at u0, the optimizer
would frequently fail to find a feasible solution. If only one constraint was
violated, the optimizer would normally converge.

5.8.4 Simpler and more robust optimization

As the above have shown, if we want to be able to optimize this and similar
processes for varying disturbances, we need to overcome several issues. First
of all, we must be able to converge the process model almost every time it
is called by the optimization algorithm. In our case, this means we have
to use temperature specifications in the liquefaction (MCHE) part of the
model, and let the optimizer find the correct temperatures.

Second, it seems that the natural choices of specified variables are inter-
acting strongly, thus it is necessary to recast the optimization problem in
new decision variables. We should seek to find new variables y = g(u) such
that the optimal value of y is less sensitive to disturbances. Then we will be
able to use the same initial values of y when optimizing over a wider range
of disturbances.

Further, if it is reasonable to assume that some constraints are always
active, it is possible to include them as equality constraints. This reduces
the number of possible active constraint sets for the optimizer. Also, if a
certain constraint function can be assumed to depend mainly on one decision
variable, we may fix that variable - especially if the constraint in question
is not a critical one. However, neither of these approaches are more than
quick-fixes to problems that may have more fundamental causes.

Using process knowledge, we can easily identify some variables that will
never change much:

• The ratio of natural gas flow rate to MR flow rate. Since the two
streams are both precooled to approximately the same temperature,
the ratio between them is what determines the final outlet temperature
- which we want to keep constant anyway.
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• The lowest pressure in the precooling loop.

• Cold end ΔT in the four-stream and three-stream sections of the
MCHE, if temperature specifications are used.

An interesting parallel may be drawn between this strategy and the
control strategy of self-optimizing control (Skogestad, 2000) which means
”select variables to control at constant set points such that near-optimal
operation is maintained when disturbances occur”. The link here is that we
seek to have decision variables whose optimal values do not change much.
A major difference is that in self-optimizing control, one depends on being
able to carry out steady-state optimization off-line, rather than seeking to
simplify the optimization problem itself. We will therefore have to rely on
process insight to identify the variables, or variable combinations, that are
best suited to give an easier optimization problem. This will be the focus
of future work.

5.9 Conclusions

We have summarized the approaches that have been taken to optimization
of natural gas liquefaction plants, the methods used and some of the most
common challenges. More specifically, we have examined the challenges that
arise when trying to optimize a model of the C3-MR process using a com-
mercial process simulation program (Unisim) for simulation and MATLAB
for optimization. We have found the following:

• In simulation of the MCHE section of the process, the method most
likely to produce a converged result is using temperature specifications
in the Unisim model, and let a MATLAB equation solver find the
correct temperatures for specified UA values (Model Formulation I).
This removes the need for recycle operations in the Unisim model and
makes flowsheet convergence robust.

• When optimizing using MATLAB’s fmincon solver, including tem-
peratures as optimization variables, we would generally be able to
converge to a solution, but in many cases this showed to be a local
minimum very near the starting point.

• When optimizing the precooling part of the process, it was necessary
to write the constraints on superheating in terms of enthalpy rather
than temperature, in order to avoid a zero gradient for the constraint
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function. When doing this, the optimization proved to be more robust
to changes in starting point. When it came to changes in disturbances,
neither approach was particularly robust.

This chapter illustrates well why derivative-free methods have seen wider
use in optimization of liquefaction processes.
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Chapter 6

Active constraint regions for
a simple LNG process

Submitted to Journal of Natural Gas Science and Engineering

Optimal operation of liquefaction processes is little studied in the
open literature. In particular, the issue of how optimal opera-
tion changes with disturbances has received very little attention.
This chapter addresses optimal operation of a simple natural gas
liquefaction process - the PRICO process. The focus is on how
the active process constraints change with disturbances. It is
shown that the feasible part of the disturbance space can be di-
vided into five regions with different sets of active constraints.
We also suggest control structures for the process, and find that
as little as two control structures may be needed despite of the
fact that there are five regions. It is suggested to use compressor
speed to control the margin to surge at minimum, and to keep
the turbine outlet stream at saturation at all times.

6.1 Introduction

Liquefaction of natural gas is an energy-intensive process, and efficient op-
eration typically means great savings. One of the most important aspects
in optimal operation is to control the active constraints. However, little
literature exists on optimal operation, active constraints and selection of
controlled variables. Papers addressing optimal operation of LNG processes
include Lee et al. (2002), Pillarella et al. (2005), Jensen and Skogestad
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(2006), and Nogal et al. (2008). Selection of controlled variables was ad-
dressed by Singh et al. (2008) and Michelsen et al. (2010).

In Chapters 2-3, we studied how active constraints for optimal operation
varied with disturbances, for different processes. Knowledge of this is very
useful when designing the control structure of a plant, because one has to
control the active constraints to have optimal operation. Here, we apply
the experiences from those two papers to map active constraint regions for
a natural gas liquefaction process.

We have chosen to study the PRICO process (Price and Mortko, 1996),
which is the one used by Jensen and Skogestad (2006). The PRICO process
is chosen because it is simple, while still capturing the fundamental issues
one will also find in more complex liquefaction processes.

6.2 Optimal operation of a PRICO liquefaction
plant

6.2.1 Plant description

The PRICO process (Price and Mortko, 1996) ( Figure 6.1) is a very simple
liquefaction process. The natural gas feed stream (NG IN) enters from the
left, and is liquefied and subcooled to −157◦C in the heat exchanger. It
is then expanded (not shown here) and pumped to a storage tank. The
mixed refrigerant (MR) is condensed with sea water or air (MR-1), before
it is liquefied in the heat exchanger (MR-2). It is then expanded to a lower
pressure, giving a lower temperature (MR-3), before it is used for cooling in
the heat exchanger. It leaves the heat exchanger in a superheated state (MR-
4) and is compressed back to high pressure (MR-5). The heat exchanger is
typically a plate-and-fin type heat exchanger.

6.2.2 Model and simulation tools

We have used Honeywell Unisim for modelling the process. For optimiza-
tion, we have used MATLAB. The two are linked through the COM inter-
face. We have used stream data from the nominal optimum reported in
Jensen and Skogestad (2006), the compressor curves are also copied from
that paper. The combination of Unisim for modelling and MATLAB for
optimization was also used by Aspelund et al. (2010), but they used a Tabu
search algorithm (Chelouah and Siarry, 2005) whereas we use MATLAB’s
built-in fmincon solver. The stream variables we have copied are summa-
rized in Table 6.1. Due to a slightly different heat exchanger model, and to
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Figure 6.1: Simplified flowsheet of the PRICO process as modelled by Jensen
and Skogestad (2006), not including expansion of cold natural gas

the fact that gPROMS and Unisim use different sources for the parameters
used in the SRK equation of state, there are small differences in some other
key variables. These are summarized in Table 6.2.

As described in Jacobsen and Skogestad (2011), the three-stream heat
exchanger model has been solved by adding two temperatures to the spec-
ification vector, and adding the heat exchanger UA specifications to the
optimization problem as equality constraints. In addition, we needed to
tear the compressor inlet stream, because the use of compressor curves de-
mands that the inlet conditions of the compressor are fully specified. The
temperature of the torn stream is added to the decision variables, and con-
vergence of the torn stream is included as a third equality constraint. Thus
the optimization problem includes three equality constraints:

UA1 = UA1,specified

UA2 = UA2,specified

TMR−1,calculated = TMR−1,guessed

(6.1)

6.2.3 Optimization objective

In the PRICO process, there is one product stream and two utilities that
are used (power for compression, and for pumping of cooling water). It is
reasonable to ignore the cost of pumping cooling water, since this is very
small compared to the power consumed by the compressor 1. When the

1For the case study process, when assuming a 1◦C temperature increase for the cooling
water, a minimum ΔT of 4◦C in the condenser, and a pressure drop of 1 bar for cooling
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Table 6.1: Values of stream variables and pressure drops copied from Jensen
and Skogestad (2006)

Variable Value
Feed flow rate [kmol/h] 1.517 · 104

Feed pressure [bar] 40.0
Feed temperature [◦C] 30.0
Feed mole fraction CH4 0.897
Feed mole fraction C2H6 0.055
Feed mole fraction C3H8 0.018
Feed mole fraction C4H10 0.001

Feed mole fraction N2 0.029
MR flow rate [kmol/h] 6.93 · 104

Compressor speed ω [rpm] 1000
MR Condensation temperature [◦C] 30.0

Compressor inlet pressure [bar] 4.445
Hot MR temperature at HX outlet [◦C] -157.0

NG temperature at HX outlet [◦C] -157.0
Turbine outlet pressure [bar] 10.29

MR mole fraction CH4 0.327
MR mole fraction C2H6 0.343
MR mole fraction C3H8 0.000
MR mole fraction C4H10 0.233

MR mole fraction N2 0.097
Condenser ΔP [bar] 0.10
NG ΔP in HX [bar] 5

Hot MR ΔP in HX [bar] 4
Cold MR ΔP in HX [bar] 1

Compressor suction ΔP [bar] 0.3 (nominal)
Turbine suction ΔP [bar] 0.3
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Table 6.2: Differences in key variables between this work and Jensen and
Skogestad (2006)

Variable This work Jensen’s work
Ws [MW] 119 120

Compressor outlet pressure [bar] 30.2 30.0
Compressor efficiency η 81.8 82.8

ΔTsup [◦C] 5.1 11.3
ΔTmin,HX [◦C] 1.57
UANG [kW/◦C] 9.20 · 103 8.45 · 103

UAMR [kW/◦C] 4.62 · 104 5.32 · 104

cost of cooling water is ignored, the objective function to be minimized
(with units $/s) can be expressed as follows:

J = pwork · Ws − pLNG · FLNG (6.2)

where pwork is the price of energy (in $/kJ) Ws is compressor work (in
kW ), pLNG is the difference between feed and product value (in $/mol)
and FLNG is the production rate (in mol/s). Jensen and Skogestad (2006)
describe two ”modes” of operation, with different optimization objectives.

• Mode I: When energy is expensive, it is optimal to produce just the
amount one is bound to (i.e. by contracts with customers). In this
mode, the throughput of natural gas (FLNG) is given, and we want to
minimize Ws.

• Mode II: When energy is cheap, it is profitable to produce as much
as possible. Then FLNG is a degree of freedom, which we seek to
maximize.

Jensen and Skogestad (2006) studied Mode II, whereas we will be focus-
ing on Mode I, and consider FLNG a disturbance.

6.2.4 Degrees of freedom and disturbances

The process has got a total of ten manipulated variables. These are:

1 Natural gas feed flow rate

water, we found a pumping power of 15 kW compared to the 120 MW consumed by the
compressor.
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2 Mixed refrigerant flow rate

3-5 Mixed refrigerant pressures (high, intermediate and low)

6 Cooling water flow in MR condenser

7-10 Four molar fractions in MR (since we have five components)

As stated above, we will here consider the case where the natural gas
feed flow rate is a disturbance, i.e. it is set upstream. Like Jensen and
Skogestad (2006), we will also assume that the MR composition can not be
changed during operation. Thus, we have five degrees of freedom left before
active constraints are taken into account.

The other disturbance we will consider, besides feed flow rate, is the
ambient temperature (i.e. the temperature of the external coolant). The
ambient temperature influences directly on the refrigerant pressure. The
lower the temperature of the coolant is, the lower we may set the conden-
sation pressure (i.e. the pressure at the compressor outlet). Like Jensen
and Skogestad (2006), we finally assume that maximum cooling is used in
the condenser. This means the ambient temperature sets the condensation
temperature of the refrigerant directly. This assumption consumes a degree
of freedom, bringing us down to four degrees of freedom for optimization.

6.2.5 Constraints

The constraints in a liquefaction process are related to the state of the prod-
uct stream (temperature being the most important, usually there is also a
constraint on the content of nitrogen) and to cooling and compression ca-
pacity. For a given outlet/inlet pressure ratio, a compressor will have a
minimum flow rate it can handle (known as the surge flow rate) and a max-
imum flow rate (known as the stonewall flow rate). Jensen and Skogestad
(2006) consider the surge limit, but not the stonewall limit.Instead, they
consider a maximum available compressor work.

Here, we will consider the following constraints:

1. Exit temperature of natural gas leaving the heat exchanger (TNG,out ≤
−157◦C). This constraint is always active.

2. Superheating of refrigerant leaving the heat exchanger (ΔTsup ≥ 5◦C).

3. Like Jensen and Skogestad (2006), we consider compressor surge as a
constraint (ΔMsurge ≥ 0).
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4. Maximum compressor work is 132 MW. We set it 10% higher than in
Jensen and Skogestad (2006) to be able to study the effect of higher
feed rates than the nominal one. Since the results from Jensen and
Skogestad (2006) give the maximum processing rate, using the exactly
same data would not allow us to study higher feed rates.

5. The stream leaving the turbine must be liquid only (ΔPsat ≥ 0). In
Jensen and Skogestad (2006), this constraint is handled by adding a
choke valve and a liquid receiver directly after the turbine (and before
the main choke valve). The first choke valve has a fixed pressure drop,
and the turbine outlet pressure is indirectly given by the temperature
of the refrigerant stream leaving the heat exchanger. Here, we let the
turbine outlet pressure be a degree of freedom, and add this constraint.

6. Compressor speed, ω, is limited upwards to 1200 rpm (again, it is set
higher than in Jensen and Skogestad (2006) to see how other con-
straints behave at higher than nominal feed rates).

It is clear that the first constraint will always be active, because it is
never optimal to cool the natural gas more than we need to. In this work,
this constraint has been implemented by simply specifying this temperature
in the Unisim model (in a real process, it would have to be controlled). We
are therefore left with four degrees of freedom for optimization.

6.2.6 Nominal optimum of the process

Since there were some discrepancies between the Unisim model used here
and the gProms model used by Jensen and Skogestad (2006), a reoptimiza-
tion was carried out. Compressor work (Ws) was minimized, subject to the
following constraints listed in Section 6.2.5 (repeated here for convenience):

1. TNG,out = −157◦C

2. ΔTsup ≥ 5◦C

3. ΔMsurge ≥ 0 kmol/s

4. Ws ≤ 132 MW

5. ΔPsat ≥ 0 (no vapour at turbine outlet)

6. ω ≤ 1200 rpm
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Table 6.3: Optimum at nominal disturbances. Variables listed in bold are
added to the variable set to meet equality constraints

Variable This work Jensen’s work
MR flow rate [kmol/s] 16.94 18.70
Compressor speed ω [rpm] 1143 1000
Compressor inlet pressure [kPa] 383.2 414.0
Turbine outlet pressure [kPa] 552.5 1029
Compressor inlet T [◦C] 15.8 N/A
TMR at HX outlet [◦C] -163.9 -157.0
TNG at HX outlet [◦C] -157.0 -157.0

Table 6.4: Other key variables at nominal optimum

Variable This work Jensen’s work
Compressor work Ws [MW] 116.4 120.0
ΔTsup [◦C] 19.4 11.3
ΔTmin,HX [◦C] 0.7 N/A
Compressor efficiency η 82.1 82.8
ΔMsurge [%] 0 0
ΔPsat [kPa] 1.1 20

The fmincon interior-point algorithm was used. 10 initial points within
the bounds were generated, and optimization carried out from each. The
optimal values of the optimization variables are shown in Table 6.3.2

Table 6.4 summarizes the most important variables not included as de-
cision variables.

The following points are worth discussing:

1. ΔPsat is much smaller than in Jensen and Skogestad (2006). This
shows that it is optimal to do as much of the expansion as possible in
the turbine. This allows for a lower temperature in the cold refrigerant
stream, thus giving a larger ΔT at the cold end of the exchanger, and
allows us to circulate less refrigerant.

2. ΔMsurge is zero (i.e. we operate on the surge limit). This is the same
as was found by Jensen and Skogestad (2006). In our case this is to

2This particular solution was found in 5 of the 10 optimization runs. The other 5 runs
did not converge to a feasible solution
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be expected, simply because the surge limit coincides with the flow
that, at any given speed, corresponds with maximum efficiency.

6.3 Results

First, one should use process insight to predict which regions must be
present, and which constraints will always (or never) be active. The fol-
lowing can be stated even with limited a priori knowledge of the process:

1. The temperature of natural gas leaving the heat exchanger will always
be at its maximum, as stated above.

2. For a given value of Tamb, a maximum throughput (feed flow rate)
must exist. This maximum throughput will be low for high values of
Tamb as the maximum work constraint becomes active.

3. As we lower Ph to exploit the lower Tamb, we must reduce compressor
speed. This leads to a lower surge limit, which means that the surge
margin constraint may become inactive at lower values of Tamb.

4. Theoretically, there may be as many as 26 feasible regions: Since
each of the five constraints may be either active or inactive, there are
52 = 32 possible combinations. However, only the combinations with
three or fewer active constraints are feasible. This means we must
subtract the five possible combinations of four active constraints, and
the one with five active constraints.

5. Since we have only three degrees of freedom, we can only satisfy three
constraints at any time. The maximum possible throughput will co-
incide with a point where four constraints are active.

First, the feasible region was worked out by starting at the nominal op-
timum, and optimizing for increasing values of Tamb and F until no feasible
solution could be found 3. The constraint curves corresponding to each in-
dividual constraint were then found using the interpolation method used in
Chapter 2. The resulting regions are shown in Figure 6.2. Notice that the
feed rate is given as F/Fnominal.

When examining Figure 6.2, we find that there are five active constraint
regions. The active constraints inside each region are summarized in Table
6.5.

3This could also have been done by including F as a degree of freedom, and then
maximize it at a sufficient number of values for Tamb
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Figure 6.2: Active constraint regions for the PRICO process, as function of
feed flowrate F and ambient temperature Tamb

Each curve in Figure 6.2 shows where a constraint switches from active
to inactive:

1. The blue line, indicating the maximum feasible ambient temperature
for a given flow rate, gives the upper boundary of the feasible region.
Along this line, the maximum constraint on Ws is active.

2. The green line indicates the minimum feasible ambient temperature.

3. The purple dashed line indicates where the superheating constraint
(ΔTsup) becomes active.

4. The orange dashed line indicates where the turbine outlet saturation
constraint (ΔPsat) becomes active.

5. The red line shows where the maximum speed constraint becomes
active (and the surge constraint becomes inactive).

Table 6.6 gives optimal values for key data at a point in each of the five
regions (for region I, the nominal point from Section 6.2.6 is given). The
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Table 6.5: Active constraints in each region for the PRICO process

Region number Active constraint(s)
I ΔMsurge

II ΔMsurge, ΔTsup

III ωmax, ΔPsat, ΔTsup

IV ωmax, ΔTsup

V ωmax

numbers shown in bold correspond to constraints that were found to be
active to within the specified tolerance.

6.4 Discussion

6.4.1 Active constraint regions

Compared to the maximum possible number of regions (26), we find that
we have a relatively small number of regions (5). What is of particular
interest, is that the constraint curves for ΔMsurge and ωmax are identical
- these two constraints switch along the curve shown in red in Figure 6.2.
There is no region where both ωmax and ΔMsurge are active at the same
time. This is probably because the surge limit is set to coincide with the
flow giving the highest adiabatic efficiency. Consider a given temperature in
Region I, where the surge constraint is active. Now assume that the feed F
is increased gradually. As long as the active constraints do not change, we
may change the refrigerant flow rate proportionally, and at the same time
adjust the compressor speed so that we remain at the speed yielding the
maximum efficiency. At some point we reach ω = ωmax. A further increase
in F must still be followed by an increase in refrigerant flow rate, but the
flow rate corresponding to compressor surge is no longer increasing. Thus,
ΔMsurge can not remain equal to zero. Figure 6.3 shows how these two
constraints switch when we go from Region I to Region V.

This also means that two neighbouring regions have the same number
of constraints. This is not very common (as pointed out in Chapter 2),
and usually happens when the two constraints are related to the same unit
operation.

The green ”minimum” curve shown in Figure 6.2 may not be a true
minimum. In Region III, there are three active constraints. Along a fea-
sibility limit there should be four; since we have three degrees of freedom,
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Table 6.6: Values for key variables for various values of (F, Tamb). Active
constraints are shown in bold.

Region I II III IV V
Tamb [◦C] 30.0 18.0 19.3 25.7 30.0
F/Fnominal 1.00 0.85 0.95 1.05 1.08
MR flow rate [kmol/s] 16.94 14.19 14.91 17.55 18.75
Comp. speed ω [rpm] 1143 1017 1200 1200 1200
Comp. inlet P [kPa] 383.2 323.6 322.4 380.1 408.6
Turb. outlet P [kPa] 552.5 463.5 447.7 538.2 592.7
Comp. inlet T [◦C] 15.8 -2.7 -2.8 1.3 6.9
TMR at HX outlet [◦C] -163.9 -167.4 -168.0 -164.4 -162.4
Comp. work Ws [MW] 116.4 86.6 98.8 116.9 127.2
Comp. efficiency η [%] 82.1 82.2 81.9 82.1 82.1
ΔTsup [◦C] 19.4 5.0 5.0 5.0 8.8
ΔTmin,HX [◦C] 0.70 0.43 0.25 0.58 0.79
ΔMsurge [%] 0.00 0.00 0.90 0.01 0.01
ΔPsat [kPa] 1.1 1.9 0.4 1.2 0.9
TNG,out [◦C] -157.0 -157.0 -157.0 -157.0 -157.0
Unconstrained DOF 2 1 0 1 2
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Figure 6.3: Plots of optimal compressor speed (ω) and distance to surge
(ΔMsurge) as function of F/Fnominal when going from Region I to Region V

we are able to meet three active constraints. However, when approach-
ing the ”minimum” curve, the minimum temperature approach in the heat
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exchanger becomes so small that it falls within the constraint tolerance,
making convergence difficult. What is observed, though, is that within this
region compressor work will increase with decreasing ambient temperature.
This happens because maximum compressor speed is reached, causing a
drop in compressor efficiency. Figure 6.4 shows how η changes as Tamb is
gradually reduced from its nominal value of 30◦C to the minimum feasible
temperature, at nominal flow rate.
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Figure 6.4: Compressor efficiency at the optimal solution, as function of
ambient temperature Tamb for F = Fnominal

6.4.2 Issues in optimization

When finding the feasibility limits, quite many optimizations were needed,
especially for the lower limit. This might have been avoided if a slightly
different form of the optimzation problem had been used for this particular
task. If feed rate had been included as a degree of freedom, leaving Tamb as
the only disturbance, the feasibility limit could have been found by maxi-
mizing the feed rate, subject to the same constraints as before. The reason
why this approach was not used, was that it would have required making
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alternative versions of nearly all the MATLAB files used.
The fmincon solver used in this work, can use two different algorithms:

An active-set method, and an interior-point method (Byrd et al., 2000).
The former does not require that bound constraints are satisfied at every
intermediate point, whereas the latter does. Because values outside of the
specified bounds were likely to cause the flowsheet solver to fail to con-
verge, the interior-point algorithm has been used for all optimizations in
this chapter. A drawback with this algorithm is that due to its use of slack
variables, it may give a solution where a constraint function c is negative
and its corresponding Lagrange multiplier λ is positive at the same time.
This may introduce some extra incertainty to the solution of the equation

s = c + λ (6.3)

which is used to determine the constraint curves.

6.4.3 Control

For optimal operation, the active constraints should obviously be controlled
at all times. In the case studied here, there are five active constraint regions,
so theoretically, five different control structures are needed. However, if
one control structure is optimal in one region and near-optimal in another,
it may be better to use the same control structure, thus simplifying the
necessary switching logic. In our case, we see that Regions III and IV are
very small, and it could be argued that it is not necessary to include control
structures for these, but instead use the same structure as for regions II and
V, respectively.

1. In all regions, TNG,out must be controlled.

2. In Regions I and II, ΔMsurge should be controlled, and in the other
regions, ω should be at its maximum. Thus it makes sense to use ω
to control ΔMsurge (possibly via a cascade loop).

3. ΔPsat should be controlled in Region III. However, its optimal value is
close to zero in the other regions as well, and it makes sense to control
it in all regions.

4. ΔTsup must be controlled in Regions II, III and IV. However, in regions
I and V it seems like a bad choice, as its optimal value is far from the
constraint value. An alternative variable to keep constant could be
the active charge, as discussed below.
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Figure 6.5: Suggested control structure for the PRICO process. TC =
Temperature controller, LC = level (active charge) controller, DTC = ΔT
controller and DPC = ΔP controller

.

One of the degrees of freedom in the process is related to the active
charge of the plant (Jensen, 2008). In order to be able to use this degree
of freedom, we must be able to change the active charge. This may be
done if we introduce an extra valve and a liquid receiver after the turbine,
like in Jensen and Skogestad (2006). If this is included, the active charge
can be adjusted by changing the set point for the level in this receiver.
Alternatively, the active charge itself may be used as a controlled variable.

By introducing this, we suggest the following control structure, illus-
trated in Figure 6.5.

1. The natural gas outlet temperature from the main heat exchanger is
controlled at −157◦C, using the choke valve between the turbine and
the main heat exchanger.

2. Compressor speed ω is used to keep ΔMsurge = 0.

3. Turbine speed is used to control ΔPsat = 0.

4. In Regions II, III and IV, the active charge is used to control ΔTsup =
5◦C. In Regions I and V this controller is switched off, and the ac-
tive charge controller can instead operate with a constant, default set
point.
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6.4.4 Applicability to other liquefaction processes

The PRICO process is a very simple process compared to many that are
in use in the industry today. However, several points made in this chapter
are valid for all kinds of refrigeration processes. Most notably, the fact that
compressor performance sets both maximum and minimum limits to the
ambient conditions the process can handle. If the assumed location of the
surge limit (i.e. near the peak efficiency) is reasonable, the results found
here are probably applicable to most liquefaction processes.

6.5 Conclusions

This chapter discusses active constraints for the PRICO process for lique-
faction of natural gas. We find five regions with different sets of active
constraints inside the feasible area. Based on these results, we propose
to control the compressor surge margin and turbine saturation margin at
zero in all regions. In Regions I and V we have one additional uncon-
strained degree of freedom, which should be used to control an additional
self-optimizing variable.
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Chapter 7

Conclusions

7.1 Conclusions

The points of focus of the material presented in this thesis are finding active
constraint regions for optimal process operation, and optimal operation of
natural gas liquefaction processes.

In Chapter 2 a simple method is introduced, and applied to a generic
reactor-separator-recycle system. The main outcome of this chapter is that
for a coarse sketch of the active constraint regions, the method is efficient
and accurate, provided the optimization can be carried out with sufficient
accuracy. Chapter 3 applies the method to more realistic distillation case
studies.

Chapters 4-6 focus on natural gas liquefaction processes. The main con-
clusion of the literature review (Chapter 4) is that little work has been done
on optimal operation of liquefaction processes, and that most papers with
this focus have taken a rather simplistic approach. The main conclusions of
Chapter 5 are:

• One should try to formulate the model such that one avoids objective
and constraint function gradients that are zero over a range of values.
A concrete example is the superheating constraint in the cold end of
the precooling loop, which should be expressed in terms of enthalpy
rather than temperature.

• Tear stream convergence is better included in the optimization prob-
lem, as additional equality constraints, than solved by the process
model simulator. This can probably be generalized to say the follow-
ing: Only calculations that are very unlikely to fail, should be inside
the ”black box”. In other words, when the optimization algorithm

131
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calls the process simulator, the latter should always be able to con-
verge to a solution, and return values for objective and constraint
functions.

These conclusions will be useful for future work on optimization of LNG
processes, and in the author’s opinion they are an important contribution
from the thesis.

In Chapter 6, the experiences from the previous chapters are used to find
active constraint regions for the PRICO liquefaction process, with ambient
temperature and feed rate as disturbances. The process is found to have five
constraint regions, but it may still be sufficient to use two control structures.

7.2 Suggestions for future work

With the work presented in this thesis, the author hopes to have opened
several doors for others who want to study optimal operation of chemical
processes. Since the thesis itself is quite diverse, the suggested directions
for future work will have to be the same.

Chapter 2, dealing with finding active constraints for generic processes,
should serve as a starting point for further discussion on active constraints
for optimal operation and control. The author recognizes the need to make
the approach more mathematically stringent. If methods earlier applied
in multi-parametric programming could be expanded to general nonlinear
cases, the issue could be dealt with in a more stringent way. In special
cases, it could also be possible to predict the shape of constraint curves
from analytic expressions this could be an interesting topic which would
also be good for gaining insight into the processes that are studied.

As stated in the introductions to Chapter 2, the main reason why one
needs to know the active constraint regions is to control the processes op-
timally. Thus, selection of control structures based on knowledge of active
constraint regions is an obvious direction for future work. As shown in
Chapter 6, one may find that a control structure which is optimal in one
region is near-optimal in neighbouring regions. This can be exploited to
reduce the amount of switching logic which is needed. Knowledge of the ac-
tive constraint regions can be combined with methods from self-optimizing
control (for example the maximum scaled gain rule). Since Chapter 3 does
not go in detail about control structures for optimal operation of distillation
columns, this should also be investigated further.

Chapters 4, 5 and 6, each in its own way addressing optimization of
natural gas liquefaction processes, should fill a few gaps in the field, and
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open some doors for subsequent work. Several pitfalls in optimization have
been pointed out. With this in place, it should be possible to undertake the
task of studying self-optimizing control for natural gas liquefaction plants,
and subsequently to design plantwide control structures.

Chapter 5 shows that in order to optimize operation of LNG plants,
one will probably need to formulate the problem in more suitable variables
one should seek to find variables that are not expected to change much
when disturbances hit the process. A thorough approach to this would be
a considerable step forward in optimization of LNG plants.

Finally none of the case studies included in the thesis deal with dis-
turbances in feed composition. As this disturbance is very common in the
process industry, it is natural to include it in future studies.
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