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Abstract

This thesis work concentrates on the modelling of dispersed bubbly flow encountered
widely in the chemical, oil & gas and nuclear industries. The computational fluid dynam-
ics (CFD) that provides detailed information of gas-liquid flow has many advantages over
the traditional modelling, which results in an enormously increased use of the CFD in the
last decades.

It has been found out that in order to describe the complex inhomogeneous behavior of
the gas-liquid flow caused by the size differences of bubbles, the necessary set of model
equations to be solved must consist of the multi-fluid model for the flow, and a population
balance equation (PBE) describing the bubble size distributions.

Such a complex model leads to a very expensive computational load and thus requires
an advanced, accurate and efficient method to enable an appropriate numerical solution.
The least-squares spectral element method (LSSEM) which possesses many extraordinary
numerical properties may be a very attractive method to deal with such a model.

When solving the multi-fluid model the LSSEM has the potential of being much more
accurate than the finite volume method (FVM) due to its higher order approximation.
The pressure-velocity iterative algorithms like the semi-implicit pressure linked equation
(SIMPLE) and the interphase slip algorithm (IPSA), are not required by the LSSEM. Fur-
thermore, the properties of this method excludes the necessity of upwinded discretization
of the convective terms.

Being a PBE solver, the Gauss-Legendre-Lobatto (GLL) quadrature points used in the
LSSEM ensures a more efficient discretization of the internal coordinate than the method
of classes (CM). Unlike the Method Of Moments (MOM), the LSSEM provides a direct
estimation of the number density function. The moments of any order can be retrieved
by post-calculation, and the number of desired moments does not affect the number of
transport equations to be solved. The least-squares formulation leads to a better condi-
tioned system than the Quadrature Method Of Moments (QMOM), and it does not pose
any stability problem.

A new iterative algorithm is presented when using the LSSEM to couple the multi-fluid
model and the PBE. It is based on the overall residue minimization so that the flow and
the PBE are solved within same framework. The LSSEM also fully exploits the idea of
single or multi-velocity group previously proposed in the homogeneous/inhomogeneous
MUltiple-SIze-Group (MUSIG) models. The h/p-refinement divides the internal coordi-
nate with high flexibility regarding to the size and velocity segregations.

For many commonly used breakup kernels in physical problems, the conservation of vol-
ume/mass is not always fulfilled, once they are employed in the CFD models. This un-
physical feature is highly undesirable. In this work, the author propose a least-squares
spectral element method which allows for incorporating the disperse phase mass-conservation
(in the form of a continuity equation for the disperse phase) by means of the Lagrange
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multipliers method. The PBE is solved under this additional constraint by finding the
saddle point of the coupled system. The results obtained by the constrained LSM show
that the mass is conserved everywhere in the domain with high accuracy. The constrained
LSM has significantly improved the performance of the nonconservative breakup kernels.

A generic LSSEM toolbox lssem-suite has been designed and developed by the author.
The lssem-suite toolbox is very flexible so that users can easily define the problem op-
erator and other informations needed.

The first bubble column model consisting of both flow equations and the PBE has been
successfully solved by the LSSEM with the use of the lssem-suite. Interphase forces
and breakage/coalescence kernels have been taken from the literature. The algorithm,
coupling scheme as well as implementation are illustrated in the thesis. The resulting
solution has been validated against experimental data obtained for two-phase flow in a
bubble column. The predicted bubble size distribution and other flow quantities are in
good agreement with the experimental data.
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Chapter 1

Introduction

1.1 Background

1.1.1 The bubble column reactors

Bubble columns are widely used for carrying out gas-liquid and gas-liquid-solid reac-
tions in a variety of industrial applications in chemical, metallurgical, pharmaceutical and
biochemical processes [17]. The primary advantages of bubble columns are simple con-

z

VbVb,mean

f

VbVb,mean

f

VbVb,mean

f

Liquid IN Gas IN

Liquid OUT Gas OUT

Figure 1.1: A bubble column: Bubbles flow upwards with different bubble size distribu-
tion at different axial positions. Mean bubble volumes are indicated by dashed lines.

struction due to no moving parts, high gas-liquid interfacial area, good mass/heat transfer
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rates between the gas and liquid phases, and large liquid hold-up which is favorable for
slow liquid phase reactions [83].

In bubble columns, four types of flow patterns have been observed, viz., homogeneous
(bubbly), heterogeneous (churn-turbulent), slug, and annular flow. In these different flow
regimes, the interaction of the dispersed gas phase with the continuous liquid phase varies
considerably. Figure 1.2 shows the various flow regimes in bubble columns. The bubbly
and churn-turbulent flow regimes are most frequently encountered. Depending upon the
operating conditions, these two regimes can be separated by a transition regime.

Bubbly
Flow

Churn
Flow

Slug
Flow

Annular
Flow

(a) (b) (c) (d)

Figure 1.2: The flow regimes in bubble columns.

The homogeneous flow regime generally occurs at low to moderate superficial gas veloc-
ities. It is characterized by uniformly sized small bubbles traveling vertically with minor
transverse and axial oscillations. There is practically no coalescence and break-up, hence
there is a narrow bubble size distribution. The gas holdup distribution is radially uniform;
therefore bulk liquid circulation is insignificant. The size of the bubbles depends mainly
on the nature of the gas distributor and the physical properties of the liquid.

Heterogeneous flow occurs at high gas superficial velocities. Due to intense coalescence
and break-up, small as well large bubbles appear in this regime, leading to wide bubble
size distribution. The large bubbles churn through the liquid, and thus, it is called as
churn-turbulent flow. The non-uniform gas holdup distribution across the radial direction
causes bulk liquid circulation in this flow regime.

As one can see, homogeneous and heterogeneous flow regimes have entirely different
hydrodynamic characteristics. Such different hydrodynamic characteristics result in dif-
ferent mixing as well as heat and mass transfer rates in these flow regimes. Therefore,
the demarcation of flow regimes becomes an important task in the design and scale up of
such reactors and has led to considerable research efforts which have resulted into various
experimental methods and empirical, semi-empirical, and mechanistic models to identify
flow regime transition.
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Various methods have been implemented for the simulation of bubble columns. Flows
encountered in bubble columns are inherently unsteady [85] and display a wide range
of time and length scales and as a direct consequence thereof we adopt a multi-scale
modeling approach consisting of served levels (see Figure 1.3) each developed to study
the phenomena at a certain length and time scale.

Fully ResolvedModel Behavior of asingle bubble
Dis
rete Parti
leModel Bubble-bubblebubble-wallintera
tions

Continuum Model Large-s
aleindustrial 
olumns

Time/Length S
ale0
Figure 1.3: Multi-scale approach for modeling of dispersed gas-liquid two-phase flow.
For each level of modeling the typical application is indicated.

At the lowest level (i.e. the smallest time and length scale) the front tracking (FT) method
developed by Tryggvason and co-workers [90] can be used to study the behavior of a
single bubble or a few (interacting) bubbles. The calculation generate insight in the be-
havior of a single bubble and provide closures for the bubble-liquid interaction. Due to the
extensive computational requirements, FT can only be used for relatively small systems
involving only a relatively small number of bubbles.

For systems, at larger time and length scales we use the Eulerian-Lagrangian (EL) or
discrete bubble approach [9, 18, 19], which is particularly suited to study the effect
of bubble-bubble and/or bubble-wall encounters. The Eulerian-Lagrangian formulation
treats the liquid phase as continuum while tracks the motion of dispersed phase particles.
Due to the large computational cost, the Eulerian-Lagrangian formulation is limited by
the number of bubbles and size of the reactors [85]. Contrary to the FT approach, the flow
field at the scale of an individual bubble is not resolved, closure laws for bubble-liquid
interaction (drag, lift and added mass forces) have to be provided.

At the largest time and length scales the Eulerian-Eulerian (EE) or the continuum ap-
proach [26, 45, 72, 85] is used, which is particularly suited to model bubbly flows in
industrial scale bubble columns. The Eulerian-Eulerian model describes the motion of
the two-phase mixture in a macroscopic sense. It is also called the multi-fluid model. The
multi-fluid model consists of a set of averaged transport equations for each phase. The
gas holdup and interfacial transfer terms make these two phases coupled. In the Eulerian-

3



Eulerian approach, the computational cost is tractable and does not increase with the
number of the bubbles. Similar to the EL approach closures for bubble-liquid and bubble-
bubble interactions have to be provided.

1.1.2 The population balance model

In bubble columns, bubbles can break and coalescence due to bubble-bubble and bubble-
fluid interactions. In particular, if breakage and coalescence events may produce very
different bubble size distributions in the columns.

Additionally, bubbles can adopt different shapes such as spherical, distorted, cap or slug
bubbles [14]. These differences in the bubble size and shape cause substantial differences
in the disperse phase transport phenomena due to the differences in the drag force and
interaction mechanisms. For example the vertical velocity of an air bubble rising in water
is a function of bubble size (see Figure 1.4).

Figure 1.4: Terminal rise velocity of air bubbles in water as a function of bubble size and
degree of contamination [14].

The flow field in bubble columns (Figure 1.5) shows that the lateral migration of bubbles
driven by the lift force affects the larger bubbles moving towards the center of the col-
umn while smaller bubbles moving close to the column wall. The direction of the net
bubble migration is determined by the different sizes and shapes of the bubbles and has a
significant impact on the fluid dynamics.

Thus a balance equation is required to describe the changes in the particle population,

4



Axial position

Radial position
Liquid velo
itypro�le
Void fra
tionpro�le

Figure 1.5: Flow field in the bubble column.

in addition to momentum, mass, and energy balances. This balance equation is gener-
ally referred to as the population balance equation (PBE) [79]. The PBE is a statistical
Boltzmann-type equation. To make use of this modeling concept, a number density func-
tion is introduced to account for the particle population. With the aid of particle properties
(e.g., particle size, porosity, composition, etc.), different particles in the population can be
distinguished and their behavior can be described. Reliable closures are required for the
unknown terms in the PBE. For a PBE describing breakage and coalescence of bubbles,
the closures include the breakage kernel, daughter particle size distribution function and
coalescence kernel, which are based on either empirical, or semi-empirical correlations.

It is noted that the population balance equation, as a stand alone model, has been suc-
cessfully applied for different engineering problems [15, 38, 40, 78, 80]. For gas-liquid
systems Reyes Jr. [81] and Lafi & Reyes [56] presented a detailed derivation of the mass,
momentum and energy conservation equations for polydispersed system following an ap-
proach analogous to the Boltzmann’s transport equation.

Kocamustafaogullari & Ishii [49] derived an interfacial area transport equation (IATE)
which is a weighted integral over the bubble size of the particle transport equation. In
this manner, an expression for the evolution of the average interfacial area concentration
is obtained. Significant efforts were made by Millies et al. [57], Wu et al. [96], Morel et
al. [71] and Hibiki & Ishii [36] to model bubble interactions and improve the IATE. The
following approaches have extended the one-group IATE to two-group (Hibiki & Ishii
[35], Ishii et al. [42], Kim et al. [48] and Sun et al.[87]) or even N -group (Carrica et
al. [11]) by considering the size- and shape categories of bubbles. The multigroup model
provides a more detailed description of the dispersed phase. In particular, due to the fact
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that a velocity is computed for each group segregation by size can be modeled. However,
this model is computationally expensive.

Several numerical methods are proposed to solve the PBE. The methods of classes (CM)
[39, 53, 91] is based on discretization of the PBE into a finite number of size intervals.
The quadrature method of moments (QMOM) [66, 67, 68] is an efficient alternative to the
discrete population balance approach. In this approach, the population balance equation
is transformed into a set of transport equations for moments of the distribution. The
QMOM replaces the exact closure needed by the standard method of moments with an
approximate closure. Marchisio et al.[65] have also proposed a variation of the QMOM,
called the direct quadrature method of moments (DQMOM).

1.2 Modelling of the multi-fluid and the PBE

1.2.1 Numerical challenges

Inferred from the above discussions, a fixed bubble size model might not be suitable for
predicting the correct fluid dynamics of a gas/liquid system. A model containing the
bubble population balance must be used to handle breakage and coalescence phenomena
in bubble columns. The final multi-fluid model complemented with a population bal-
ance model in which the hydrodynamics may be resolved with high resolution of the two
phase flow in the external coordinates, while the PBE accounts for the bubble breakup
and coalescence and predict the size distribution of the dispersed phase, is computational
demanding. In particular, increasing the number of fields required for describing the gas
velocity increases the computational cost considerably. The population balance equa-
tion is also computationally demanding since at least one extra dimension is introduced
for characterizing the fluid particle. Besides, the internal coordinate of the population
balance equation presents a global behavior, i.e. the changes in a point depend on the
integral effects over the domain. Thus, for a three-dimensional physical domain such as
a bubble column reactor, three dimensions are required in space, at least one internal di-
mension is required to represent the fluid particle and one dimension for the time. This
gives a five-dimensional problem which has to be solved as efficiently as possible in order
to enable the use of such a modeling approach for practical applications.

1.2.2 Current approaches

Several methods have been proposed for combining the PBE computations with commer-
cial CFD codes. Lo [62] implemented the population balance equation in the commercial
CFD code CFX via the multiple-size-group (MUSIG) model. A complete coupling is
achieved by dividing the bubble size distribution into a finite number of discrete size
classes. The basic assumption in this coupling is that bubbles of all sizes share a common
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velocity field through coupling of the Sauter mean diameter to the drag term. Sanyal et
al. [82] implemented both a CM and a method of moments (MOM) in the CFD code Flu-
ent in conjunction with the Eulerian multiphase model. When adapting one of the above
methods to solve the PBE together with a commercial CFD code, the particle size distri-
bution is represented by an averaged particle size like the Sauter mean diameter for the
fluid dynamics. One exception is the recently developed inhomogeneous MUSIG model
[51, 52], which allows to consider size dependent momentum equations. According to
the authors, 2-3 velocity groups should be sufficient. Bhole [3] also implemented size-
specific bubble velocities by solving the momentum equations for each bubble classes in
the CM. The drawbacks of these approaches are high cost of CPU time and additional
equations for conservation of momentum have to be solved for each velocity group.

The QMOM [55] provides an attractive alternative solving the PBE associated with the
multiphase flow model, especially when aggregation quantities, rather than an exact PSD,
are desired. Its advantages are fewer variables (typically only six or eight moments) and a
dynamic calculation of the size bins. The disadvantages are that the number of abscissas
may not be adequate to describe the PSD and that solving the Product-Difference (PD)
algorithm may be time consuming and the PD algorithm itself is ill-conditioned [23]. The
applicability of QMOM is limited to no more than 12 moments[69], and the QMOM is
also difficult to handle systems where there is a strong dependence of the dispersed-phase
velocity on internal coordinates [65].

1.2.3 An advanced numerical method - the least-squares method

The least-squares method (LSM) is a member of the finite element method (FEM), and is
formulated in a least-squares sense. If the high-order polynomials approximation instead
of lower-order linear approximation is used, it called the least-squares spectral element
method (LSSEM). The LSM is based on the minimization of a norm-equivalent func-
tional. This method consists in finding the minimizer of the residual in a certain norm.
Compared with other numerical methods, the LSM has the following advantages

• The LSM is highly accurate. It is a higher order spectral element method and
therefore possesses all favorable properties of spectral element methods. The use
of spectral methods leads to higher order convergence with h-refinement and even
exponential convergence with p-enrichment if the underlying exact solution is suf-
ficiently smooth. In general, for a given accuracy the high order spectral element
method requires only a few collocation points whereas the low order finite volume
method (FVM) requires a large number of grid cells.

• The weak formulation of the least-squares method is universal to all types of partial
differential equations. Unlike other numerical methods which use central schemes
to handle elliptic problems and upwinding schemes to handle hyperbolic equations,
the least-squares method solves these both problems within one mathematical/com-
putational framework.
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• The least-squares formulation has a so-called posterior error indicator in form of
the residue. This reliable indicator can be applied to check convergence or used for
adaptive mesh refinement. No other numerical method can provide such informa-
tion without additional calculation.

• In many practical problems we encounter the Poisson problem which both the po-
tential and the gradient of the potential are of interest. The least-squares method is
capable of converging optimally for these variables. This cannot be achieved with
the Galerkin or finite difference/finite volume methods [46].

• In CFD, a common limitation with the FVM is the lack of possibilities to construct
pressure correction and void schemes which enforce that all mass balances are ful-
filled separately [43, 44]. The LSSEM may be restricted by similar limitations but
does not require any pressure correction equation.

• When the LSM is applied to solve the PBE, it uses a much smaller number of
discrete points than the CM. Since it solves the distribution function itself, it is not
limited by the number of desired moments as in the QMOM. The discretized system
is also much better conditioned.

The capacities of the LSM make this method particularly attractive to handle the multi-
fluid model coupled with the PBE. Up till now, among the works on the LSM, the perfor-
mance of the LSM to solve the hyperbolic equation [63], the Navier-Stokes equation and
incompressible flow problems [46] have been investigated. Recently, Dorao and Jakob-
sen [21] discussed the applicability of the LSSEM to solve the PBE. Subsequent works
[24, 25, 101] have been conducted to apply the LSM to solve the more complicated PBE
with different terms.

Despite that efforts have been made to explore the capability and numerical properties of
the LSM with the help of constructed analytical solution [24, 25, 31, 46, 63, 101], only
a few contributions has been reported applying this method to real physical problems.
In particular, the usage of the least-squares method in multiphase flow calculations com-
bined with the PBE has not yet been investigated in spite of its proven capability. The
complexity of this method is a main issue that hinders its broad applications. In addition,
the LSM takes longer time to evaluate each iteration than the low-order methods. How-
ever, this drawback is made up by fewer discretization points and much higher accuracy,
which might lead to less expensive overall computations eventually.

1.3 Objectives

The particular numerical issues mentioned in the previous section constitute a central
motivation for this thesis work, that is, investigation of the applicability of using the least-
squares method to solve the multi-fluid model coupled with the PBE. In particular, effi-
ciency, accuracy and reliability are relevant aspects which are taken into consideration.
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1.4 Scope of the work

1.4.1 Applying the LSM

In order to introduce the LSM to the field of multiphase flow modeling, a three-step
approach is proposed.

1. First, the author will explore the capability of LSM to deal with multiphase flow
problems. A LSM formulation for the solution of a one-dimensional, two-fluid
model for the gas-liquid flow is developed. A least-squares operator which results
in a stable numerical scheme is proposed.

2. Secondly, a LSM solver will be implemented aiming for the solution of the time-
space-property PBE based on the previous work of Dorao et al. [25] and Zhu et
al. [101]. The author also investigates an interesting alternative method - the least-
squares direct minimization method (DM), which contributes to produce equally
accurate results with a better conditioned formulation.

3. The last step consists in combining the work from the previous two steps. Rather
than solving a stand-alone PBE or multifluid model, the formulation used consists
of a two-fluid model that accounts for the characteristics of gas-liquid flow, and the
population balance equation that predicts the bubble size distribution. The formu-
lation of the least-squares operators for the two-fluid model and the PBE, as well as
a new coupling algorithm are investigated.

1.4.2 Proposing a mass conservative formulation of the PBE

The author also addresses a fundamental problem in the modelling of multiphase flows
(in particular two phase gas-liquid and liquid-liquid flows), namely the enforcement of
mass-conservation when computing the evolution of disperse-phase properties within the
PBE.

As a matter of fact, even the most advanced and in other respects physically-grounded
models of shear-induced drop/bubble breakup (breakup kernels) do not ensure, once they
are implemented in the PBE, that the volume fraction of the disperse phase will be pre-
served. The fact that the dispersed phase is not preserved during the breakage event results
from the redistribution function which is not well behaved - the mass of the daughter par-
ticles is not equal to the mass of the parent particle (see Section 4.3.5). This unphysical
feature is highly undesirable in applications where the composition of the system in terms
of dispersed phase fraction is a key process variable. The author proposes to tackle this
hitherto unsolved problem by introducing the constrained least-squares method and for-
mulating a mass conservative PBE.
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1.4.3 Developing a generic least-squares method solver - lssem-suite

In addition to the major contributions, a generic purpose least-squares spectral element
method toolbox lssem-suite is designed and developed in this work. The intention is
to separate complex codes of the numerical algorithm from that of physical equations,
leading to less recoding effort and a better debugging efficiency. This toolbox allows
the user to solve any partial differential equation (PDE) by just providing the problem
operator, grid information and boundary conditions. Hence it is very suitable for solving
large-scale physical problems, and is flexible for handling of multiple implementations
involved in our step-wise research approach.

1.5 Papers

Paper I: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. A least–squares method with di-
rect minimization for the solution of the breakage-coalescence population balance equa-
tion. Mathematics and Computers in Simulation, Volume 79, Issue 3, 1 December 2008,
Pages 716-727.

A least–squares method with a direct minimization algorithm is introduced to solve the
nonlinear population balance equation that consists of both breakage and coalescence
terms. The least–squares solver, the direct minimization solver together with a finite
difference solver are implemented for comparisons. It is shown that the coalescence term
introduces a strong non–linear behavior which can affect the robustness of the numerical
solvers. In the comparison with the least–squares method, the direct minimization method
is proved to be capable of producing equally accurate results, while its formulation is
better conditioned. In the case of a nonlinear population balance equation system, the
direct minimization method converges faster than the standard least–squares method.

Paper II: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Solution of bubble number den-
sity with breakage and coalescence in a bubble column by least-squares method. Progress
in Computational Fluid Dynamics (PCFD), Volume 9, Nos 6/7, Pages 436-446 .

A steady-state model has been built for an air-water bubble column. The bubble number
density constitutive equation has been formulated through integrating the bubble transport
equation. Proper kernels for the bubble breakage and coalescence rates have been taken
from the literature. The momentum balance of the gas phase is included in the model
which leads to a set of non-linear differential equations. The model has been successfully
solved by using the least-squares method with high accuracy and fast convergence. The
successive iteration has been applied to the linearized equation set. The model shows
excellent agreements with experimental data.
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Paper III: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. On the fully coupled solution of
a two-fluid model combined population balance equation using the least-squares spectral
element method. Industrial & Engineering Chemistry Research, Volume 48(17), July 2,
2009, Pages 7994-8006.

In this work, a cross-sectional averaged two-fluid model combined with a population
balance model is applied to simulate the flow field and the bubble size distributions in a
two-phase bubble column. The Martinez-Bazan breakage kernel and a modified Prince
and Blanch coalescence kernel have been chosen to describe bubble breakage and bubble
coalescence, respectively.

In the present study, we discuss the use of a higher order spectral element method - the
least-squares method, to compute the system of equations in a coupled manner. The least-
squares method is highly accurate and has a number of advantages over the conventional
numerical methods like the finite difference- and finite volume methods. In contrast to
the finite volume method, when designing an overall solution algorithm this least squares
method ensures that all the continuity equations are satisfied individually and it deals
with both the convective and diffusive terms stably and accurately. The novel iterative
algorithm solves the flow model and the population balance equation in a coupled manner.

The model has been validated against experimental data obtained for two-phase flow in
a bubble column. The predicted bubble size distribution and other flow quantities are in
good agreement with the experimental data.

Paper IV: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Mass conservative formulation
of population balance equation using the least-squares spectral element method, Submit-
ted to Industrial & Engineering Chemistry Research (Accepted).

In the standard least-squares formulation of the population balance equation significant
loss of mass is observed for the dispersed phase. This mass loss is actually caused by
the inexact conservation property reflected by many breakage kernels, hence incorrect
physical interpretations of the model simulations may be drawn.

In this work a constrained least-squares spectral element method is developed enforcing
mass conservation. This numerical property is accomplished by adding an extra restric-
tion to the method in terms of the dispersed phase continuity equation through the La-
grange multipliers strategy. The discretized system resulting from applying the method to
a two-phase population balance equation problem is symmetric and pseudopositive defi-
nite. Numerical experiments are carried out simulating the motion of a two-phase mixture
passing through a 2D domain. The results obtained by the modified least-squares spectral
element method show that the mass is conserved everywhere in the domain with high
accuracy.
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Paper V: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Modelling a bubble column with
a bubble number density equation using the least-squares method. 6th International Con-
ference on CFD in Oil and Gas, Metallurgical and Process Industries, SINTEF/NTNU,
Trondheim, Norway, 10-12 June 2008 (Selected as lead paper by reviewers).

A steady-state model has been built for an air-water bubble column. The bubble number
density constitutive equation has been formulated through integrating the bubble transport
equation. Proper kernels for bubble breakage and coalescence rate have been taken from
the literature. The momentum balance of the gas phase is included in the model which
leads to a set of non-linear differential equations. The model has been successfully solved
by using the least-squares method with high accuracy and fast convergence. The succes-
sive iteration has been applied to the linearized equation set. The model shows excellent
agreements with experimental data.

Paper VI: Zhengjie Zhu, L.E.Patruno, C.A.Dorao and H.A.Jakobsen. Simulation of the
bubble coalescence in bubble column using the least-squares method. 11th International
Conference on Multiphase Flow in Industrial Plant, Palermo, Italy, 7-10 September 2008
(MFIP’08).

The population balance equation (PBE) has been combined with a steady-state gas phase
momentum equation to model the operation of an air-water bubble column. Instead of
solving a bubble number density constitutive equation, a population balance equation
with coalescence term has been solved. The system of equations has been linearized by
successive iteration and solved by the least-squares method with high accuracy and fast
convergence. The bubble size distribution along the column axis has been investigated
and compared to the corresponding experimental data, showing good agreement.

1.6 Thesis Structure

The outline of this thesis is as following.

Chapter 2 introduces the basic idea and concepts of the least-squares spectral element
method including the least-squares formulation, the spectral discretization and the assem-
bly/scattering procedures in the spectral element approach. A constraint least-squares
formulation is derived as a theoretical foundation of the formulation of the mass conser-
vative PBE.

Chapter 3 illustrates the basis of the multiphase systems with particular emphasis on
Eulerian-Eulerian models. Closure models and correlations on phase self-interaction,
phase interactions and turbulence are presented as well. The computational techniques
for solving the Eulerian-Eulerian multi-fluid model are discussed.
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Chapter 4 presents the theory of the population balance equation, as well as mathematical
interpretations and derivations of breakage and aggregation. Several numerical methods
for solving the population balance equation are also included. In particular, a mass con-
servative PBE formulation based on the constraint LSM is proposed.

Chapter 5 is related to numerical strategies of solving the coupling between the multi-fluid
models and the PBE. Among other methods, the LSSEM approach with its new iterative
algorithm is explained in details.

Furthermore, conclusions and suggestions for future work are given in Chapter 6.
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Chapter 2

The Least-Squares Method

The computational fluid dynamics (CFD) is a very valuable numerical simulation tool
for investigation of complicated flow problems existing in various engineering fields. The
most common numerical methods used in computational fluid dynamics (CFD) are: Finite
Difference Methods (FDM), Finite Volume Methods (FVM) and Finite/Spectral Element
Methods (FEM/SEM). The increased requirements of the CFDs on accuracy, error esti-
mate, stability, geometry treatment, and so on, as well as increasing complexities of the
problems constantly urge the development of new mathematical frameworks.

During the last decade, methods based on the least squares formulation ([6, 46]) emerged
as an important alternative to the broad family of numerical methods. In particular, the
least squares spectral element method (LSSEM) developed by [75, 76], which combine
the least squares formulation as given by [6] and [46] with the spectral element approxi-
mation, is an attractive alternative for the solution of CFD problems. The LSSEM com-
bines the generality of finite element methods, the accuracy of the spectral methods and
the theoretical and computational advantages of the algorithmic design into a general
mathematical framework.

In this chapter, a general presentation of the least squares formulation is provided followed
by the spectral discretization. Practical issues related to the implementation of the least
squares method are discussed, which serves as a theoretical foundation of the generic
LSSEM toolbox - lssem-suite introduced in Appendix B.

2.1 The least-squares formulation

2.1.1 The general formulation

The least-squares method (LSM) is a well established numerical method for solving a
wide range of mathematical problems (e.g. [6, 46, 75, 76]). The basic idea of the LSM is
to minimize the integral of the square of the residual over the computational domain.
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Consider the linear boundary-value problem:

L f = g, in Ω ∈ Rnd (2.1)
Bf = h, on Γ (2.2)

with L is a first-order partial differential operator:

L f =

nd∑
i=1

Li
∂f

∂xi

+ L0f (2.3)

in which Ω ∈ Rnd is a bounded domain with a piecewise smooth boundary Γ, nd repre-
sents the number of space dimensions, fT = (f1, f2, · · · , fm) is a vector of m unknown
functions of x = (x1, · · · , xnd

), Li and L0 are Neq ×m matrices which continuously de-
pend on x, g is a given vector-valued function, B is a boundary algebraic operator, and h
is a given vector-valued function on the boundary. Without loss of generality we assume
that the vector h is null.

If the system is well-posed and the operator L is a continuous mapping from an under-
lying function space X(Ω) onto the space Y(Ω). The two norms ‖ • ‖X and ‖ • ‖Y are
equivalent. Therefore,

C1‖f‖X ≤ ‖L f‖Y ≤ C2‖f‖X, for C1, C2 ≥ 0 (2.4)

holds. The first inequality states that the inverse of L is continuous and this inequality is
called coercivity. The constant C1 is called the coercivity constant. The second inequal-
ity states that the operator L is bounded and continuous in the function space X. The
constant C2 is called the continuity constant [46].

The statement (2.4) implies that minimization of the error in the X-norm is equivalent to
minimization of the residual in the Y-norm.

C1‖f ex − f‖X ≤ ‖L (f ex − f)‖Y = ‖L f − g‖Y ≤ C2‖f ex − f‖X (2.5)

in which, f ex is the exact solution, the quantity L f−g = R is the residual of the equation.
Eq.(2.5) ensures that when a sequence of residuals converges to zero in the Y-norm, the
sequence converges to the exact solution in the X-norm. This connection between the
residuals and the errors can be visualized in Figure 2.1.

The least-squares formulation is based on the minimization of a norm-equivalent func-
tional. The norm-equivalent functional for Eq.(2.1) is given by

J (f) =
1

2
‖L f − g‖2

Y(Ω) (2.6)

with the norm defined like

‖ • ‖2
Y(Ω) =< •, • >Y(Ω)=

∫
Ω

• • dΩ (2.7)
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Figure 2.1: The norm-equivalence ensures that minimization of the error in the X-norm
is equivalent to the minimization of the residual in the Y-norm.

The minimization statement is equivalent to: find f ∈ X(Ω) such that

lim
ε→0

dJ (f + εv)

dε
= 2

∫
Ω

(L v)T(L f − g)dΩ = 0, ∀v ∈ X(Ω) (2.8)

where X(Ω) is the space of the admissible functions. v is an arbitrary trial function and ε
is a small perturbation. Consequently, the necessary condition can be written as:

Find f ∈ X(Ω) such that

A(f ,v) = F (v) ∀v ∈ X(Ω) (2.9)

with

A(f ,v) = 〈L f ,L v〉Y (Ω) (2.10)
F (v) = 〈g,L v〉Y (Ω) (2.11)

where A : X × X → R is a symmetric, continuous bilinear form, and F : X → R a
continuous linear form.

2.1.2 The discretized form

If the inner products in (2.9) are discretized, we have the linear algebraic equations

AU = F (2.12)

where U is the global vector of unknown coefficients. The global matrix A is

A =

∫
Ω

(L Φ0,L Φ1, . . . ,L ΦN)T (L Φ0,L Φ1, . . . ,L ΦN) dΩ (2.13)

and the vector F is defined as:

F =

∫
Ω

(L Φ0,L Φ1, . . . ,L ΦN)T dΩ (2.14)
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in Eq. (2.13) and Eq. (2.14)

L Φj =

nd∑
i=1

∂Φj

∂xi

Li + ΦjL0 (2.15)

in which Φj(x) is the basis function. The final system of equations is symmetric and
positive definite, hence the solution can be obtained in an efficient way using standard
matrix solvers.

2.2 Spectral discretization

In the LSM implemented in this work, the high-order spectral discretization based on the
Lagrangian polynomials through the Gauss-Legendre-Lobatto points is used as orthogo-
nal basis functions in order to approximate the problem operator in the partial differential
equations [16, 75].

2.2.1 Nodal expansion

The discretization statement consists in searching the solution in a reduced subspace
XN(Ω̂), i.e.

fN(x̂) ∈ XN(Ω̂) =
[
X ∩ PN(Ω̂)

]
⊂ X(Ω̂) (2.16)

in which Ω̂ ∈ [−1 1] is the one-dimensional local reference coordinate. PN(Ω̂) is the
space of all functions which are polynomials of degree N or less over Ω̂, while XN is a
finite dimensional subspace of X of dimension N . The subspace XN(Ω̂) is constructed
as

XN(Ω̂) = span {φ1(x̂), φ2(x̂), . . . , φN(x̂)} (2.17)

Note that φj(x̂) are basis functions defined in local reference coordinate, −1 ≤ x̂ ≤ 1
with x̂ = F−1(x) as the reference point mapped from function coordinate Ω (see Figure
2.2).

xmin xmax

x

Ω

−1 0 1

x̂

Ω̂F−1

F

Figure 2.2: The affine mapping F is a one-to-one mapping between Ω̂ and Ω.
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F is a affine mapping operator. We denote a point in the physical domain as x, while the
corresponding point in the reference domain is denoted as x̂. Hence,

x = F(x̂) (2.18)
x̂ = F−1(x) (2.19)

Given a set of (N + 1) nodal points, denoted by x̂i(1 ≤ i ≤ N + 1), the Lagrange
polynomial φj(x̂i) is the unique polynomial of order N which has a unit value at x̂i and
is zero at x̂j(i 6= j) (see Figure 2.3). This definition can be written as

φj(x̂i) = δij (2.20)

TheN+1 basis functions consist of Lagrangian polynomials through the Gauss-Legendre-
Lobatto (GLL) collocation points

φj(x̂) =
(x̂2 − 1)dLN(x̂)/dx̂

N(N + 1)LN(x̂)(x̂− x̂j)
(2.21)

The N + 1 GLL-points, are the roots of the first derivative of the Legendre polynomial of
degree N , extended with the boundary points.
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Figure 2.3: GLL-roots and nodal expansion modes for a polynomial order of N = 5.

Therefore, fN can be expressed in terms of linear combinations of basis functions:

fN(x̂) =
N+1∑
j=1

fjφj(x̂) (2.22)
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where fj is the basis coefficient associated with the basis function φj(x̂) (Lagrangian
polynomials), it follows that the basis coefficient fj is equal to the value of the discrete
solution fN(x) at the GLL points (or node) x̂j , i.e. fj = fN(x̂j). Due to this property, we
also say that we are using a nodal basis.

2.2.2 Numerical integration - Gaussian quadrature

It is possible to use the numerical integration to evaluate integrals of the form∫ 1

−1

f(x̂) dx̂ (2.23)

The fundamental concept is the approximation of the integral by the Gaussian quadrature
based on the GLL roots ∫ 1

−1

f(x̂) dx̂ ≈
P+1∑
p=1

wpf(x̂p) (2.24)

where wp are specified constants or weights and x̂p represents P + 1 distinct quadrature
points in the interval [−1 1].

In this technique the integrand f(x̂) of Eq.(2.23) is approximated by a Lagrange polyno-
mial of order N ,

f(x̂) ≈
N+1∑
j=1

fjφ(x̂) (2.25)

in which, N = P . If we substitute Eq.(2.25) into Eq.(2.24) we obtain a representation of
the integral (2.23) as a finite summation:∫ 1

−1

f(x̂) dx̂ ≈
P+1∑
p=1

wp

N+1∑
j=1

fj φj(xp)︸ ︷︷ ︸
δpj

=
P+1∑
p=1

wpfp (2.26)

with weighting factors wp

wp =

∫ 1

−1

φp(x̂) dx̂ (2.27)

By substituting the Lagrange polynomial φp(x̂) of Eq.(2.27), which is the Lagrangian
polynomial based on the GLL-roots, into the above expression for the weighting factors
we obtain an expression for the (P +1) Gauss-Legendre-Lobatto weights (GLL-weights)
[46, 47]:

wp =
2

P (P + 1)[LP (x̂p)]2
(2.28)
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with x̂p the p–th GLL–root, 1 ≤ p ≤ P + 1.

Notice that expression (2.26) is exact if the integrand f(x̂) is a polynomial of degree
2P − 3 or less.

2.2.3 Numerical differentiation

If the number of the nodes is equal to the order of the basis functions, the derivative of the
Lagrangian basis function Eq. (2.21) evaluated at the GLL-points are given by

dφj

dx̂


x̂i

=


LN (x̂i)
LN (x̂j)

1
(x̂i−x̂j)

for i 6= j, 1 ≤ i, j ≤ N + 1,
0 for 1 < i = j < N + 1,
−1

4
N(N + 1) for i = j = 1,

1
4
N(N + 1) for i = j = N + 1.

(2.29)

2.2.4 Error estimation

The LSM is a h/p-version of the finite element method (h/p-FEM) which is a general-
isation of the classical (h-version) FEM and the p-version FEM/spectral method in that
convergence is achieved by simultaneously refining the mesh and increasing the approxi-
mation order.

Now, assume that the given function has a certain regularity. In particular, let

f ∈ Hσ(Ω), (2.30)

where Hσ represents a function space that consists of all functions that their σ-th deriva-
tives are square integrable, i.e.

Hσ(Ω) =

{
v |
∫ 1

−1

σ∑
j=0

(
djv

dx̂j

)2

dx̂ <∞

}
(2.31)

It can then be shown that [10]

‖f ex − fN‖L2(Ω) ≤ cN−σ‖f ex‖Hσ(Ω) (2.32)

If σ → ∞, fN will converge towards f ex faster than any algebraic power of 1/N . In
fact, it can be shown that the approximation error will go to zero exponentially fast as N
increases. We can express this as

‖f ex − fN‖L2(Ω) ∼ e−µN (2.33)

for some µ ∈ R+.
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2.2.5 Spectral discretization in Rn

We can define the two-dimensional high-order polynomial space PN(Ω̂) by using the
one-dimensional nodal basis based on a tensor product Gauss-Legendre (Lobatto) grid,
see Figure 2.4. Note that

dim
(
PN(Ω̂)

)
= (Nx + 1)× (Ny + 1) in R2 (2.34)
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Figure 2.4: Four of the forty nine two-dimensional basis functions Φr,s(x̂, ŷ) of order
Nx = Ny = 6, (a) Φ1,1(x̂, ŷ), (b) Φ3,3(x̂, ŷ), (c) Φ5,5(x̂, ŷ), (d) Φ7,7(x̂, ŷ).

Therefore, fN(x̂, ŷ) can be expressed in terms of linear combinations of the one-dimensional
basis functions in each dimension:

fN(x̂, ŷ) =
Nx+1∑
r=1

Ny+1∑
s=1

frsφr(x̂)φs(ŷ) (2.35)

where frs is the basis coefficient associated with the basis function φr(x̂)φs(ŷ), it follows
that the basis coefficient frs is equal to the value of the discrete solution fN(x̂, ŷ) at the
GLL points (x̂p, ŷq), i.e. f(x̂p, ŷq) = fN(x̂p, ŷq) = fpq.

The integration of the function is evaluated by the Gaussian quadrature rule:∫ 1

−1

∫ 1

−1

f(x̂, ŷ)dx̂dŷ ≈
K+1∑
k=1

L+1∑
l=1

wkwlfkl (2.36)

where wk, wl and x̂k, ŷl are the weights and points of quadrature.

The derivatives of the two-dimensional basis function with respect to each reference vari-
ables evaluated at the GLL-points are given by

∂(φr(x̂)φs(ŷ))

∂x̂

∣∣
xp,yq

= φ′r(x̂p)φs(ŷq) = [dx̂]pr[bŷ]qs (2.37)

∂(φr(x̂)φs(ŷ))

∂ŷ

∣∣
xp,yq

= φr(x̂p)φ
′
s(ŷq) = [bx̂]pr[dŷ]qs (2.38)
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in which [bx̂] and [bŷ] are the discrete one-dimensional zero-order operator in x̂ and ŷ,
respectively. The matrix b is also sometimes referred to as the mass matrix [16]. [dx̂] and
[dŷ] are the one-dimensional derivatives matrices in x̂ and ŷ.

The spectral discretization used in two-dimensional domain (R2) can be extended higher
dimensional cases.

2.3 Spectral element approximation

The problem domain Ω can be divided into Ne subdomains (Ω1,Ω2, . . . ,ΩNe) in order to
achieve better numerical efficiency. Therefore, we have

Ω =
Ne⋃
e=1

Ωe. (2.39)

It is possible to express the global modes φJ(x) in terms of the local expansion modes
φe

j(x). Therefore, we can express local expansion of unknowns fN in terms of φe
j(x), that

is,

fN(x) =
N∑

J=1

fJφJ(x) =
Ne∑
e=1

Ne
m+1∑
j=1

f e
j φj(x), (2.40)

This relation can also be visualized in Figure A.1.

In practical, a general procedure for global assembling is to construct a mapping array
GM called the local-global mapping matrix. GM is a Ne × (N e

x + 1) matrix where the
e–th row contains in a fixed order the indices of the global expansion coefficients of the
e–th subdomain. N e

m is called the elemental degree of freedom.

The local-global mapping matrices GM can also be expressed by the sparse gathering
matrix Ge which has nonzero entries. The global assembly of the Ne local systems can
readily be obtained with:

Afg = g ⇐⇒

[
Ne∑
e=1

GT
e AeGe

]
fg =

Ne∑
e=1

GT
e g (2.41)

For detailed information on the assembling procedure please refer to Appendix. A.

2.4 The least-squares direct minimization formulation

Recently, an alternative formulation, which avoids variational analysis, has been imple-
mented in the conventional LSM to minimize the residual directly [37]. The novel mini-
mization function can be written as:
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Find all fN ∈ X(Ω) which minimize the function

J (fN) = ‖L f − g‖2
Y (Ω) (2.42)

The solution space is restricted to a finite dimensional subspace XN(Ω) ⊂ X(Ω), so
fN ⊂ XN(Ω). The integrals which constitute the L2-norm can numerically be written as:

Find all fN ∈ X(Ω) which minimize the function

J (fN) =

Q∑
q=0

(L f − g)2
∣∣
xq
wq (2.43)

In matrix notation, this can be written as:

Find all fN ∈ X(Ω) which minimize the function:

(Lf − g)T Λ (Lf − g) = ‖
√

Λ (Lf − g) ‖2 (2.44)

The solution which minimizes the residual norm of Eq.(2.44) is given by:
√

ΛLf =
√

Λg (2.45)

It can be proven that solving this equation is equivalent to solving Eq.(2.9)[54], but this
system is much better conditioned and avoids matrix-matrix multiplication. However, the
system matrix

√
ΛL is not always symmetric, positive definite. The LSM still has the ad-

vantage of handling the first-order differential equation and an overdetermined algebraic
system still has to be solved in the least-squares sense.

Using matrices Q and R from QR-decomposition of the matrix
√

ΛL, one can solve f
by:

f = R−1(QT
√

Λg) (2.46)

In the paper entitled “A least-squares method with direct minimization for the solution of
the breakage-coalescence population balance equation” (Appendix E.1), the authors pre-
sented the applicability of using the direct minimization to solve the PBE, and compared
the method with the classic LSM.

2.5 The constrained least-squares formulation

The constrained least-squares solution [4, 5, 7, 12, 77] is based on the minimization of
the least-squares functional (2.6) subjected to a linear constraint equation.

Lcf = gc (2.47)
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The constrained problem is essentially a minimization problem that can be expressed in
the form:

min
f∈Y

J (f) subject to (2.47). (2.48)

where the constraint equation (2.47) holds in function space S.

This problem is solved using methods based on applying the Lagrange multiplier method.
The constrained least-squares solution results from the equilibrium point of the following
extended Lagrangian functional

I(f, λ) = J (f) + Lcf (2.49)

where J (f) represents the least-squares functional defined in Eq.(2.6).

A system of equations is obtained by substituting f = f + εv and λ = λ+ εcvc and taking
the partial derivatives of I with respect to ε and εc:

lim
ε,εc→0

∂

∂ε
I(f + εv, λ+ εcvc) = 0, ∀v ∈ X(Ω) ∀vc ∈M(Ω) (2.50)

lim
ε,εc→0

∂

∂εc
I(f + εv, λ+ εcvc) = 0, ∀v ∈ X(Ω) ∀vc ∈M(Ω) (2.51)

This result yields the following mixed formulations:

Find (f, λ) ∈ X(Ω)×M(Ω) such that:{
A(f, v) +B(v, λ) = F (v) ∀v ∈ X(Ω),
B(f, vc) = 0 ∀vc ∈M(Ω)

(2.52)

where the space X(Ω) consists of the function f and the space M(Ω) consists of the
function λ. Note that in general X and M can be different function spaces. The bilinear
formA and its corresponding right-hand side linear form F have been defined in Eq.(2.10)
and Eq.(2.11). The bilinear form B(v, λ) is given by:

B(v, λ) = 〈λ,Lcv − gc〉 (2.53)

Let us assume that the system (2.49) has a unique solution (f, λ) ∈ X ×M . Moreover,

‖f‖X + ‖λ‖M ≤ C (‖f‖Y + ‖λ‖S) , (2.54)

in which, C is a positive constant f ∈ X is the unique solution of the constrained mini-
mization problem (2.49).

Let us denote the total degree of freedom of f by N t and total degree of freedom of λ
by M t. Using the spectral approximation introduced in Section 2.3, together with the
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weak formulation (2.52), the following linear algebraic matrix system is obtained for the
constrained least-squares formulation.[

A BT

B 0

] [
f
λ

]
=

[
F
G

]
(2.55)

or

Acfc = Fc (2.56)

where,

Ac =

[
A BT

B 0

]
, fc =

[
f
λ

]
and Fc =

[
F
G

]
in which A, F are defined in (2.13) and (2.14), respectively. The matrix B ∈ R(Mt×Nt),

[B]ij = B(Φj,Ψi) = 〈Ψi,LcΦj − gc,j〉 (2.57)

for 1 ≤ i ≤ N t and 1 ≤ j ≤M t.

The vectors λ, G ∈ R(Mt×1), the matrix Ac ∈ R(Nt+Mt)×(Nt+Mt), and the vectors
fc, Fc ∈ R(Nt+Mt)×1.

The solution to Eq.(2.55) corresponds to a saddle point [7, 12, 77]. In this saddle point
problem, the Ladyzhenskaja-Babuška-Brezzi (LBB) condition commonly referred to as
the (discrete) inf-sup condition owing to the equivalent form yields

inf
λN∈MN ,λN 6=0

sup
fN∈XN ,fN 6=0

B(fN , λN)

‖fN‖X‖λN‖M

≥ Kb (2.58)

in which Kb is a positive constant, must be satisfied.

The discrete space for the Lagrange multiplier, λ, needs to be particularly chosen to render
a stable discretization. In addition, in order to satisfy the discrete inf-sup condition, the
equal-order interpolation of the variable f should not be used [77].

The constrained least-squares method is applied in chapter 4 to formulate a mass conser-
vative population balance equation. The author proposes a least-squares spectral element
method which allows for incorporating the disperse phase mass-conservation (in the form
of a continuity equation for the disperse phase) by means of the Lagrange multipliers
method. Then, the population balance equation is solved under this additional constraint
by finding the saddle point of the coupled system.
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Chapter 3

The Multi-Fluid Model

Bubble columns are contactors in which a dispersed gas phase in the form of bubbles
moves relatively to the continuous liquid phase. The need to establish a rational basis
for the interpretation of the interaction of fluid dynamic variables requires sophisticated
multiphase flow models. Various approaches have been suggested for solving the same
fundamental flow problem and modeling may be attempted at various levels such as the
fully resolved bubble model [90]; the Eulerian-Lagrangian discrete bubble model [9, 18,
19] and the Eulerian-Eulerian continuum models [26, 45, 72, 85].

In the present chapter, we put our emphasis on the basis of the multiphase transport theo-
rem and derivation of the Eulerian-Eulerian multi-fluid model, as well as its solution ap-
proaches by different numerical methods. In particular, a one-dimensional cross-sectional
averaged two-fluid model solved by the LSSEM is presented.

3.1 Transport theorem with a dividing surface

Let’s look at a material control volume (CV) Ω that contains two different phases sepa-
rated by an interface Σ that is illustrated in Figure 3.1. We represent the phase interface as
a dividing surface, a surface at which one or more quantities such as density and velocity
are discontinuous. In general, a dividing surface is not material; it is common for mass to
be transferred across it. We assume that this dividing surface may be in motion through
the material with an arbitrary speed of displacement [84]. If vI denotes the velocity of a
point on the surface, vI · n+

I is the speed of displacement of the surface measured in the
direction n+

I as illustrated in Figure 3.1, and vI · n−I is the speed of displacement of the
surface measured in the direction n−I .

The quantities Ψ and v are assumed to be continuously differentiable in the regions Ω+

and Ω−. Since in general the dividing surface Σ is not material, the regions Ω+ and Ω−
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Figure 3.1: Region containing a dividing surface Σ.

are not material. We may write

d

dt

∫
Ω(m)

Ψ dV =
d

dt

∫
Ω+

Ψ dV +
d

dt

∫
Ω−

Ψ dV (3.1)

By (m) we mean that the control volume and its boundary are material. To each term on
the right of (3.1), we may apply the general transport theorem in the form of (3.2)

d

dt

∫
Ω(m)

Ψ dV =

∫
Ω(m)

∂Ψ

∂t
dV +

∫
Γ(m)

Ψv · n dA, (3.2)

to obtain

d

dt

∫
Ω+

Ψ dV =

∫
Ω+

∂Ψ

∂t
dV +

∫
Γ+

Ψv · n dA−
∫

Σ

Ψ+vI · ξ+ dA (3.3)

and

d

dt

∫
Ω−

Ψ dV =

∫
Ω−

∂Ψ

∂t
dV +

∫
Γ−

Ψv · n dA−
∫

Σ

Ψ−vI · ξ− dA (3.4)

Ψ+ and Ψ− mean the limits of the function Ψ obtained as any point z approaches a point
z0 on Σ while remaining within R+ and R−, respectively.

Substituting these expressions into (3.1), we conclude that

d

dt

∫
Ω(m)

Ψ dV =

∫
Ω(m)

∂Ψ

∂t
dV +

∫
Γ(m)

Ψv · n dA−
∫

Σ

Ψ+vI · n+
I + Ψ−vI · n−I dA

=

∫
Ω(m)

∂Ψ

∂t
dV +

∫
Γ(m)

Ψv · n dA−
∫

Σ

[ΨvI · nI ] dA (3.5)

where the box brackets denote the jump of the quantity enclosed across the interface:

[AnI ] ≡ A+n+
I + A−n−I (3.6)
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The Ψ+ and Ψ− represent the limits of the function Ψ obtained as any point r approaches
a point r0 on Σ while remaining within Ω+ and Ω−, respectively.

We then use the Green’s theorem to transfer the surface integral term on the r.h.s. of
Eq.(3.5) 1 into a volume integral, which gives,∫

Γ(m)

Ψv · ndA =

∫
Ω(m)

∇ · (Ψv) dV +

∫
Σ

[Ψv · nI ]dA. (3.11)

Finally, we can use (3.11) to rewrite (3.5) as

d

dt

∫
Ω(m)

ΨdV =

∫
Ω(m)

[
∂Ψ

∂t
+∇ · (Ψv)

]
dV +

∫
Σ

[Ψ(v − vI) · nI ] dA (3.12)

or
d

dt

∫
Ω(m)

ΨdV =

∫
Ω(m)

[
d(m)Ψ

dt
+ Ψ∇ · v

]
dV +

∫
Σ

[Ψ(v − vI) · nI ] dA (3.13)

An alternative form of the transform theorem for regions containing a dividing surface can
be obtained by replacing Ψ with ρψ in Eq.(3.13). Hence the generalized balance equation
can be formulated like

d

dt

∫
Ω(m)

ρψdV =

∫
Ω(m)

ρ
d(m)ψ

dt
dV +

∫
Σ

[ρψ(v − vI) · nI ] dA. (3.14)

1 The Green’s theorem: ∫
Ω

∇ ·Ψ dV =
∫

Γ

Ψn dA (3.7)

Applying (3.7) for Ω+ and Ω−, respectively.∫
Ω+
∇ · (Ψv) dV =

∫
Γ+

Ψv · ndA−
∫

Σ

Ψ+v · ξ+ dA (3.8)

and ∫
Ω−
∇ · (Ψv) dV =

∫
Γ−

Ψv · ndA−
∫

Σ

Ψ−v · ξ− dA. (3.9)

The sum of these two expressions gives∫
Ω(m)

∇ · (Ψv) dV =
∫

Γ(m)

Ψv · ndA−
∫

Σ

(
Ψ+v · ξ+ + Ψ−v · ξ−

)
dA

=
∫

Γ(m)

Ψv · ndA−
∫

Σ

[Ψv · ξ]dA. (3.10)
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3.2 Governing equations and jump conditions

The transport theorem (3.14) is important for deriving the mass and momentum balance
equations of a CV with a dividing surface. The differential mass balance expresses the
requirements that mass is conserved, and the momentum balance expresses that the time
of change rate of the momentum is equal to the sum of the forces acting on the body at
every point within a continuous material. The implication of the mass and momentum
balances at the interface are known as the jump conditions, which must be obeyed at each
point on each phase interface. The mathematical expressions of the jump conditions are
derived from the second term of the r.h.s of Eq.(3.14).

It is possible to write a general form of the equations of motion for the exact motions of
the materials involved in the CV

∂ρψ

∂t
+∇ · (ρψv)−∇ · J = ρf (3.15)

with jump conditions

[ρψ(v − vI)− J] · nI = m (3.16)

The usual values for ψ, J, f and m are given in Table 3.1.

Conservation ψ J f m
Mass 1 0 0 0
Momentum v T f mσ

Table 3.1: Variables in the generic conservation equation and the jump condition.

in which, T is a second-order stress tensor, f is the body force and mσ is the jump mo-
mentum balance that is related to the imbalance of long-range intermolecular forces at a
deformed interface.

The detailed derivations of the transport theorem in the form of Eq.(3.15) are referred to
[26, 27].

3.3 Ensemble averaged governing equations

3.3.1 Introduction of the ensemble averaging

In this section we examine the ensemble averaging method in the framework of the
generic single averaging procedure proposed by [27].

As distinct from the time and volume averaging procedures, the application of the ensem-
ble averaging operator is not restricted by any space- and time scales.

30



Generally, an ensemble averaging is defined in terms of an infinite number of realizations
of the flow, consisting of variations of position, configuration, and velocities of the dis-
crete units and the fluid between them. This means that we imagine that one can measure
a local instantaneous quantity for each of an infinity of experiments which are alike except
for presumably unimportant details of their behavior, and obtain the averaged values by
averaging the quantity over the ensemble. In practical, the ensemble averaging is com-
puted over a sufficiently large but finite number of realizations to ensure that the average
measures become stable and do not fluctuate significantly.

The ensemble average of ψ is defined by

ψ(r, t) =

∫
ε

ψ(r, t;µ) dm(µ) (3.17)

where p(µ)dµ = dm(µ) is the probability density for observing a realization µ in the
interval dµ on the set of all possible events ε. From the definition of a probability density
function we note: ∫

ε

p(µ) dµ = 1 (3.18)

It is often desirable to isolate each phase theoretically, even in the micro scale descrip-
tion. To do this, we introduce the phase indicator function, or characteristic function,
Xk(r, t;µ), in any realization µ. The characteristic function is defined by

Xk(r, t;µ) =

{
1 if r ∈ phase k in realization µ
0 otherwise. (3.19)

in which, k is the phase index.

The particular forms of the Leibniz’s and Gauss’ rules used for ensemble averaging are
given by

Xk∇ψ = ∇Xkψ − ψ∇Xk (3.20)

Xk
∂ψ

∂t
=
∂Xkψ

∂t
− ψ

∂Xk

∂t
(3.21)

This is the topological equation

∂Xk

∂t
+ vI · ∇Xk = 0 (3.22)

Note that it is the material derivative of Xk following the interface. If we look at a point
that is not on the interface, then either Xk = 1 or Xk = 0. In either case, the partial
derivatives both vanish, and hence the left side of the topological equation equals zero.
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3.3.2 The fundamental balance equations

Averages of balance equations are obtained by taking the product of the balance equation
(3.15) with Xk, then performing the averaging process. After rearranging, the generic
ensemble averaging balance equation is obtained

∂Xkρψ

∂t
+∇ ·Xkρψv −∇ ·XkJ−Xkρf = ρψ

(
∂Xk

∂t
+ v · ∇Xk

)
− J · ∇Xk

(3.23)

Subtracting the average of ρψ with the result in (3.22) reduces the right-hand side of
(3.23) to

(ρψ(v − vI)− J) · ∇Xk (3.24)

This is the interfacial source of ψ. It is due to phase change, (v− vI) · nI 6= 0, and to the
flux J.

3.3.3 Averaged balance equations

Averaged balance equations

All the variables are defined in terms of weighted averages. The main, or “component”
variables are either component weighted variables, that is, weighted with the component
function Xk or mass-weighted (or Favré) averaged, that is, weighted by Xkρ.

∂(αkρ
xρ
k )

∂t
+∇ · (αkρ

x
kv

xρ
k ) =Γk (3.25)

∂(αkρ
x
kv

xρ
k )

∂t
+∇ · (αkρ

x
kv

xρ
k vxρ

k ) =∇ ·
(
αk(T

x

k + TRe
k )
)

+ αkρ
x
kf

xρ

k

+ Mk + vm
kIΓk (3.26)

where the average of Xk is the average fraction of the occurrences of component k at
certain point at time t, which is customary to be called the volume fraction.

αk = Xk (3.27)

and,

ρx
k =

Xkρ

αk

, vxρ
k =

Xkρv

αkρ
x
k

, T
x

k =
XkT

αk

, f
xρ

k =
Xkρf

αkρ
x
k

, (3.28)

Interfacial momentum source are defined by

Mk = −T · ∇Xk, (3.29)
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Terms caused by fluctuating field:

Xkρvv = Xkρ(v
xρ
k + v′k)(v

xρ
k + v′k) = Xkρv

xρ
k vxρ

k +Xkρv′kv
′
k

= αkρ
x
kv

xρ
k vxρ

k − αkT
Re
k (3.30)

where TRe
k is the Reynolds stress: TRe

k = −Xkρv′kv′k
αk

.

Several terms appear representing the actions of the convective and molecular fluxes at
the interface. These terms are interfacial mass source, momentum source:

Γk = ρ(v − vI) · ∇Xk

vm
kIΓk = ρv(v − vI) · ∇Xk

Manipulations

We now give a few miscellaneous relations for the interfacial transfer terms. Generally,
we wish to write the stress as a pressure plus a shear stress,

T = −P I + τ (3.31)

Then the average stress can be written as

T
x

k = −P x

kI + τ x
k (3.32)

The average interfacial pressure PkI and shear stress τ kI are introduced to separate mean
field effects from local effects in the interfacial forces.

Pk = PkI + P ′kI (3.33)
τ k = τ kI + τ ′kI (3.34)

The interfacial force density can be written as

Mk = −T · ∇Xk = PkI∇Xk − τ kI · ∇Xk + MkI (3.35)

where we define the generalized interfacial momentum

MkI = Mk − PkI∇αk + τ kI · ∇αk (3.36)

and introduce

T′
kI = −P ′kII + τ ′kI = −(Pk − PkI)I + (τ k − τ kI) (3.37)
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The Reynolds stress tensor of the k phase, TRe
k , in Eq.(3.26) is modeled using a general-

ized Boussinesq approximation

TRe
k = −ρx

kv
′
kv

′
k = −2

3
ρx

kkkI + τRe
k

= −2

3
ρx

kkkI + µtur,k

(
∇vxρ

k + (∇vxρ
k )T − 2

3
I(∇ · vxρ

k )

)
(3.38)

The dynamic turbulent viscosity of the phase k, µtur,k, is defined by µtur,k = 2ρx
kkkτ

t
k/3,

and the time scale of the large eddies, τ t
k, by τ t

k = 2
3
Cµkk/εk. The turbulent kinetic

energy per unit mass of phase k, kk, is defined by

kk =
1

2
v′kv

′
k (3.39)

Note that the first term of the right-hand side of the generalized Boussinesq approximation
Eq.(3.38) is normally neglected. Therefore by using (3.36) and (3.38), we rewrite the
right-hand side of (3.26) as:

∇ ·
(
αk(T

x

k + TRe
k )
)

+ αkρ
x
kf

xρ

k + Mk + vm
kIΓk

=− αk∇P
x

k +∇ ·
(
αk(τ

x
k + τRe

k )
)

+ αkρ
x
kf

xρ

k + MkI + vm
kIΓk

− (P
x

k − PkI)∇αk − τ kI · ∇αk (3.40)

where the last two terms are referred to as the interfacial pressure difference effect and the
combined interfacial shear and void gradient effect, respectively. The interfacial pressure
difference effect is believed to be insignificant for the two-fluid model and the combined
interfacial shear and void gradient effect is generally ignored for dispersed flows, i.e. for
type of flow considered here. The term vm

kIΓk representing the abrupt interfacial momen-
tum transport which is used in nuclear engineering, and not very often encountered in
chemical engineering. It is set to zero in this work. Thus the right-hand side of (3.26) can
be simpled as

−αk∇P
x

k +∇ ·
(
αk(τ

x
k + τRe

k )
)

+ αkρ
x
kf

xρ

k + MkI (3.41)

Therefore we rewrite the averaged momentum balance equation Eq.(3.26) as

∂(αkρ
x
kv

xρ
k )

∂t
+∇ · (αkρ

x
kv

xρ
k vxρ

k ) =− αk∇P
x

k +∇ ·
(
αk(τ

x
k + τRe

k )
)

+ αkρ
x
kf

xρ

k + MkI (3.42)

For convenience, in the following part of the thesis, we shall drop the averaging sign from
each averaged variable.
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3.4 Closures

The multifluid model represents a direct extension of the well-known two-fluid model
and is described in detailed in [11, 60, 74, 88]. The governing set of equations consists of
the continuity and momentum equations for N + 1 phases; one phase corresponds to the
liquid phase and the remaining N phases are gas bubble phases.

The fundamental form of the multifluid continuity equation and momentum equations for
phase k reads

∂

∂t
(αkρk) +∇ · (αkρkvk) =

N∑
l=1

Γk,l (3.43)

∂

∂t
(αkρkvk) +∇ · (αkρkvkvk) =− αk∇Pk +∇ ·

(
αk(τ k + τRe

k )
)

+ αkρkfk + Mk,l (3.44)

The right-hand side of Eq.(3.43) describes the net mass-transfer flux to phase k from all
other phases l, while the last term on the right-hand side of Eq.(3.44) accounts for all
momentum-transfer fluxes between phase k and the other N phases.

The phases volume fractions also satisfy the compatibility condition

N+1∑
k=1

αk = 1 (3.45)

When sufficiently dilute dispersions are considered, only particle-fluid interactions are
significant, and the two-fluid closures can be adopted. For the gas bubble phases (k = d),
the interaction with the continuous liquid phase (k = c) and the wall (k = w) through the
last term on the right-hand side of Eq.(3.44) is expressed as

Md,l ≈ Md,c + Md,w = Fd

= MD
d + MV

d + ML
d + MTD

d + MW
d (3.46)

i.e., the sum of steady-drag, added-mass, lift, turbulent diffusion, and wall forces, respec-
tively.

The net interfacial momentum-transfer term for the liquid phase (i.e., excluding the wall
forces) can be written as

Mc,d = −Md,c (3.47)

The drag force is given by

MD
d = −FD,d(vd − vc) =

3

4ξ32,d

αdρcCD,d|vd − vc|(vd − vc) (3.48)
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The drag coefficient can be estimated using the relation suggested by [88]

CD,d = max

{
min

[
AD

ReB,d

(
1 + 0.15Re0.687

B,d

)
,

3AD

ReB,d

]
,

3Eod

8(Eod + 4)

}
(3.49)

For pure systems, the parameter AD = 16, whereas for contaminated systems AD = 24.
The Eötvös number number, Eod is given as

Eod =
gz|ρc − ρd|ξ2

32,d

σl

(3.50)

and ReB,d is the particle Reynolds number

ReB,d =
ρcξ32,d|vd − vc|

µc

(3.51)

The acceleration of the liquid in the wake of the bubble can be taken into account through
the added-mass force given by Ishii and Mishima [41]

MV
d = −αdρcCV,d

(
dvd

dt
− dvc

dt

)
(3.52)

where CV,d = 0.5 is derived for potential flow.

The lift force on the dispersions phase due to shear in the liquid phase is expressed as

ML
d = αdρcCL,d(vd − vc)× (∇× vc) (3.53)

where CL,d = 0.5 is derived for potential flow.

The dispersion of bubbles in turbulent liquid flow can be modeled as suggested by [11]

MTD
d =

νc,t

αdSct,d
FD,d∇αd (3.54)

where the Schmidt number is defined as Sct,d = νc,t/νd,t.

An additional lift force that pushes the dispersed phase away from the wall was suggested
by [2] to be given by

MW
d = max

(
0, Cw1 + Cw2

ξ32,d

y

)
αdρc

|vd − vc|2

ξ32,d

nw (3.55)

where Cw1 = −0.1 and Cw1 = 0.35. This force, Eq.(3.55), represents an extension of the
original model of Antal et al [1]. A defect in the original model, namely, that a bubble
located far from the wall is attracted to the wall, has been removed.
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3.5 A cross-sectional averaged two-fluid model

The cross-sectional averaged two-fluid model is developed by applying the cross-sectional
area averaging operator on the two-phase transport equations([43], Chapter 3). Both liq-
uid and gas flows are considered as steady-state, laminar flow. Therefore, the lift force
ML

d and the virtual mass force ML
d in Eq.(3.46) vanish. The viscosity is assumed as

constant. By neglecting the interfacial mass transfer, the mass balance equation for each
phase can be expressed as:

∂

∂z
(αdρd) +

∂

∂z
(αdvd) = 0 (3.56)

∂

∂z
(αcρc) +

∂

∂z
(αcvc) = 0 (3.57)

The momentum equation for each phase are:

∂(αdρdvd)

∂t
+

∂

∂z
(αdρdvdvd) + αd

∂pd

∂z
=− µd

∂

∂z

(
αd
∂vd

∂z

)
+ αdρdg

+Kd(vd − vc) (3.58)
∂(αcρcvc)

∂t
+

∂

∂z
(αcρcvcvc) + αc

∂pc

∂z
=− µc

∂

∂z

(
αc
∂vc

∂z

)
+ αcρcg

−Kd(vd − vc) (3.59)

where ρ is density, µ is viscosity, p is pressure and g is the gravity acceleration. Kd is the
pre-multiplier in the drag force term

Kd =
3

4

CD

dd

αdρc|vd − vc| (3.60)

The summation of the phase volumes must recover the whole domain, so that the fractions
of the phases are coupled by the following relation:

αd + αc = 1 (3.61)

It is assumed that the pressure in the gas phase is equal to that in the liquid phase:

pd = pc = p (3.62)

The boundary conditions of the problem is as follows:

αd|z=0 = αg,0 (3.63)
vd|z=0 = vg,0 (3.64)
ud|z=L = 0 (3.65)
vc|z=0 = vl,0 (3.66)
uc|z=L = 0 (3.67)
p|z=0 = p0 (3.68)
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3.6 Numerical methods for solving multi-fluid model

3.6.1 Finite volume method

By virtue of Eq.(3.15), the generalized balance equation in terms of extensive quantity
Ψ = ρψ can be written as

∂Ψ(r, t)

∂t
= −∇ · (Ψ(r, t)v(r, t))−∇ · J + S (3.69)

where, v is a given velocity field, J is the diffusive flux, and S = ρf is the source term.

(a) (b) (c)

domain control

volume

b

cell

vertex

face

Figure 3.2: In the FVM, physical domain (a) can be divided into a set of arbitrary control
volumes (b) and polyhedral control volumes (c).

The general balance equation (3.69) is to be solved in a given spatial domain that can be
sub-divided into finite volumes or cells (Figure 3.2). For a particular cell, i, we take the
volume integral of Eq.(3.69) over the total volume of the cell, VP , and apply the Gauss’s
theorem, which gives,

∂

∂t

∫
VP

Ψ(r, t) dV =−
∫

AP

Ψ(r, t)v(r, t) · n dA−
∫

AP

J · n dA

+

∫
VP

S(Ψ, r, t) dV (3.70)

where AP represents the total surface area of the cell and n is a unit vector normal to the
surface and pointing outward. Using the mean value integral and splitting the integral of
the total fluxes through the neighbor shared surfaces, Eq.(3.70) can be written as

∂Ψ̄P

∂t
∆VP = −

∑
nbP

Ψ̄nbP
vnbP

· n∆AnbP
−
∑
nbP

JP · n∆AnbP
+ S̄P ∆VP (3.71)

Here, the bar represents the mean value. For the fluxes, the mean value is to be intended as
mean value at the surface whereas for the other terms, derived from the volume integral, as
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mean value at the CV. The subscript nbP denotes the neighbor CVs of the control volume
P .

The discretized multi-fluid model equations can be written in implicit form as Mass con-
servation

AP,αk
αn+1

P,k =
∑
nbP

AnbP ,αk
αn+1

nbP ,k + Sn+1
P,αk

(3.72)

with

N∑
k=1

αn+1
k = 1 (3.73)

Phase momentum balance equations

AP,uk
Un+1

P,k =
∑
nbP

AnbP ,uk
Un+1

nbP ,k + dx(δxp)
n+1 + Sn+1

P,uk

+
N∑

i=1

Cik

(
Un+1

P,i − Un+1
P,k

)
(3.74)

AP,vk
V n+1

P,k =
∑
nbP

AnbP ,vk
V n+1

nbP ,k + dx(δyp)
n+1 + Sn+1

P,vk

+
N∑

i=1

Cik

(
V n+1

P,i − V n+1
P,k

)
(3.75)

AP,wk
W n+1

P,k =
∑
nbP

AnbP ,wk
W n+1

nbP ,k + dx(δzp)
n+1 + Sn+1

P,wk

+
N∑

i=1

Cik

(
W n+1

P,i −W n+1
P,k

)
(3.76)

Here, U , V and W are the component of the velocity along the x, y and z axis, δx, δy and
δz represent finite difference in the x, y and z directions and Cik is the drag coefficient
between phase i and phase k. The other interfacial forces (lift, virtual mass, etc.) are
accounted for in the source term S.

In fully implicit discretization, the coefficientsA, d, C and the source term S are functions
of the unknowns (pn+1

k , αn+1
k , vn+1

k ).

When the FVM deals with the p−v−α links, a segregated Picard like iteration is normally
applied so that the α is set to a fixed preliminarily field when iterating on the p−v fields,
and then in the following iteration on α another Picard iteration is used thus p − v are
preliminarily set to fixed fields when interating on α. Some modern CFD codes like CFX
abandoned this segregated procedure. CFX uses a coupled solution strategy solving most
of the equations simultaneously, however some linearization is still required [43, 44].
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Numerical issues

The finite volume method solution of the multiphase flow equations as well as for single
phase are complicated by the lack of an independent equation for the pressure, whose
gradient contributes to each of the momentum equations.

By analogy with single phase flows, where the pressure field is constructed in such a way
to satisfy continuity [13, 29, 92], in multiphase flows the pressure is determined so that
the total continuity or the continuity of one of the phases is conserved.

Two iterative methods based on the pressure correction approach are (i) the semi-implicit
pressure linked equation (SIMPLE) method [73] and (ii) the inter-phase slip algorithm
(IPSA), which is an extension of SIMPLE to multi-fluid model equations [86].

The SIMPLE is an iterative algorithm widely used in CFD commercial codes to solve
pressure-velocity coupling problems. It defines corrections of pressure and each of the
velocity components, which are the discrepancies between the correct values and guessed
values. A linearized system of equations in the unknowns of pressure correction is derived
by inserting the defined correction terms into the discrete mixture continuity.

The computation starts with a guessed pressure field, which is used to compute the ve-
locity. The velocity obtained does not satisfy, in general, total mass conservation in each
CV. The pressure is then corrected from the pressure correction equation in such a way
that the derived velocity field restores total mass conservation. The under-relaxation is
used in the pressure correction equations or even in the velocity components to grantee
convergence.

The IPSA is an extension of SIMPLE in which a momentum equation for each phase
needs to be solved and the pressure-velocity link depends on the interfacial forces too.
The pressure correction is still derived from the conservation of the total mass, which is
equivalent to the mixture continuity equations. However, the pressure correction is related
to the velocity correction of each phase instead of the mixture velocity.

When solving the phase mass conservation equations in both mixture and multi-fluid
models, it may happen that the constraint on the volume fraction given by Eq.(3.73) is
not satisfied. It is due to the approximated values of the velocity and density (or guessed
values) used to compute the coefficients and the source term of the equations. To avoid
this problem, the volume fractions are usually normalized after the computation [97] in
an either implicit or explicit manner.

The normalized volume fractions may satisfy the momentum balance and the total mass
conservation even though mass conservation for each phase is not. It’s usually not possible
to ensure both total mass conservation and separate phase mass conservation. In the case
of the implicit discretization, this problem can be treated solving the mass conservation
equations iteratively until the computed and the normalized volume fractions are close
enough under a given tolerance.

The strong phase coupling due to the large drag coefficients exists in the momentum
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balance equations needs special attention. A method to improve the convergence rate
of the momentum balance equation solution is the partial elimination algorithm (PEA)
[64, 70, 86]. It aims to weaken the strong coupling between the phases by algebraic cross
substitution of the velocities in the drag term or by partial elimination of the velocities.
The resulting system shows a faster convergence than the original homologous coupled
system.

It worthwhile to mention that the numerical discretization of the convective terms in both
the volume fraction equations and the momentum equations introduces error propagation.
The commonly used first-order upwinding scheme is responsible for the numerical diffu-
sion. Additionally, in a spectral analysis of the signals, the upwinding scheme used in the
momentum transport equations tends to remove the higher frequency of the signal [8].

3.6.2 The least-squares spectral element method

We now make a steady-state assumption on the cross-sectional bubble column presented
in section 3.5 and use the LSSEM to solve it. In order to obtain a least-squares formu-
lation, the cross-sectional averaged two-fluid model is first transformed into a system of
first order partial differential equations by introducing two new variables defined equal to
the derivatives of velocity of each phase

ud =
dvd

dz
(3.77)

uc =
dvc

dz
(3.78)

and by using the volume fraction constraint (3.61), the governing equations subsequently
read

αd
dp

dz
+Kdvd −Kdvc =− ρdαdvd

dvd

dz
+ µdαd

dud

dz

+ µdud
dαd

dz
− αdρdg (3.79)

(1− αd)
dp

dz
+Kdvc −Kdvd =− ρc(1− αd)vc

dvc

dz
+ µc(1− αd)

duc

dz

− µcuc
dαd

dz
− (1− αd)ρcg (3.80)

αd
dvd

dz
+ vd

dαd

dz
=0 (3.81)

(1− αd)
dvc

dz
− vc

dαd

dz
=0 (3.82)

dvd

dz
− ud =0 (3.83)

dvc

dz
− uc =0 (3.84)
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where, in the particular case of the 1D problem, fT = (vd, p, αd, vc, ud, uc) represents the
vector of unknowns. In order to alleviate the negative impacts of the strong interfacial
force terms and acquire good convergence, Eqs.(3.79) and (3.80) have been scaled by
Kd on both sides of the equations. The one dimensional system (3.79)-(3.84), consists
of six equations and six unknowns. The linear cross-sectional averaged two-fluid model
operator and its right-hand-side read:

L f = g

⇐⇒



1
α∗d
K∗

d

d
dz

0 −1 0 0

−1
1−α∗d
K∗

d

d
dz

0 1 0 0

α∗d
d
dz

0 v∗d
d
dz

0 0 0
0 0 −v∗c d

dz
(1− α∗d)

d
dz

0 0
d
dz

0 0 0 −1 0
0 0 0 d

dz
0 −1




vd

p
αd

vc

ud

uc

 =


g∗1
g∗2
0
0
0
0

 in Ω

(3.85)

in which,

g∗1 =
1

K∗
d

[
−α∗dρdg − ρdα

∗
dv
∗
d

dv∗d
dz

+ µdu
∗
d

dα∗d
dz

+ µdα
∗
d

du∗d
dz

]
(3.86)

g∗2 =
1

K∗
d

[
−(1− α∗d)ρcg − µcu

∗
c

dα∗d
dz

+ ρc(1− α∗d)v
∗
c

dv∗c
dz

+ µc(1− α∗d)
du∗c
dz

]
(3.87)

where variables with a superscript asterisk denote values from previous iteration. The
system of equations can be written in a standard form according to 2.3

L f = Lz
∂f

∂z
+ L0 = g (3.88)

in which, Lz, L0 and g are coefficient matrices.

Lz =



0
α∗d
K∗

d
0 0 0 0

0
1−α∗d
K∗

d
0 0 0 0

α∗d 0 v∗d 0 0 0
0 0 −v∗c (1− α∗d) 0 0
1 0 0 0 0 0
0 0 0 1 0 0


(3.89)

L0 =


1 0 0 −1 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 (3.90)
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g =



1
K∗

d

[
−α∗dρdg − ρdα

∗
dv
∗
d

dv∗d
dz

+ µdu
∗
d

dα∗d
dz

+ µdα
∗
d

du∗d
dz

]
1

K∗
d

[
−(1− α∗d)ρcg − µcu

∗
c

dα∗d
dz

+ ρc(1− α∗d)v
∗
c

dv∗c
dz

+ µc(1− α∗d)
du∗c
dz

]
0
0
0
0


(3.91)

The domain has been discretized with a mesh of non-overlapping spectral elements. Each
spectral element Ωe is mapped on the reference spectral element [−1, 1] by using an
iso-parametric mapping with local coordinate z. In the spectral element all variables
located at the Gauss-Legendre-Lobatto collocation points, can be approximated by the
same Lagrangian interpolant. For the 1D cross-sectional averaged two-fluid problem, the
discrete spectral element approximation yields

fe =
N+1∑
r=1

φr(z)


vd

p
αd

vc

ud

uc


r

(3.92)

where φr(z) with 1 ≤ r ≤ N+1 represents the Lagrangian interpolants in the z-direction
through the GLL points. The vector [vd, p, αd, vc, ud, uc]

T is the vector of unknown coef-
ficients, evaluated at the GLL-collocation point. The local element matrices

Ae =

∫
Ωe

[L φ1, · · · ,L φN+1]
T[L φ1, · · · ,L φN+1] dΩe (3.93)

and the element right-hand-side

Fe =

∫
Ωe

[L φ1, · · · ,L φN+1]
Tg dΩe (3.94)

yield the global assembled system of linear algebraic equations

AU = F (3.95)

where U represents the global vector of unknowns nodal values. The two-fluid problem
operator L and its right-hand-side g are given in (3.85)-(3.87). Note that, since the
matrix A is symmetric positive definite, robust conjugate gradient iterative methods can
be employed.

The LSSEM provides a powerful technique for numerical solution to the multi-fluid
model. Compared to the finite volume method, the use of least-squares spectral element
method leads to higher order convergence with h-refinement and even exponential con-
vergence with p-enrichment if the underlying exact solution is sufficiently smooth.
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Rather than using iterative schemes such as SIMPLE or IPSA to deal with the velocity-
pressure coupling, Eq.(3.80) in the two-fluid model equations is directly being used for
solving the pressure, and no extra equation for the pressure correction is needed.

In the FVM, the hyperbolic equations generally require a different treatment such as up-
winding or artificial diffusion, the least-squares approach has a unified formulation for the
numerical solution of all types of partial differential equations. Jiang [46, page 29] has
compared analytically the error and stability estimates of the classic Galerkin method, the
Streamline Upwinding Petrov-Galerkin method (SUPG) and the LSM for solving the ad-
vective (hyperbolic) equation. He concluded that both the classic Galerkin and the SUPG
has different controls on variable and its derivative, leading to different convergences.
However, the LSM has same order of controls on both the variable and its derivative, and
their convergences are equally optimal.

In the LSM, special treatments, such as upwinding, artificial dissipation, staggered grid
or non-equal-order elements, operator-splitting, etc. are unnecessary [46].

When the LSM is used to handle non-linear multiphase problem, the convergence criteria
can be set in such way that difference of solution from last two iterative steps is smaller
than a pre-specified value,

|f∗∗ − f∗| ≤ ε. (3.96)

Alternatively, the LSM can use residue instead to formulate the convergence criteria,

‖L f∗ − g‖L2 ≤ ε. (3.97)

According to the norm-equivalent theory, minimizing the residue in the mapped function
space leads to the minimization of the error in the original defined space.
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Chapter 4

The Population Balance Equation

In bubble columns the flow regime turns into heterogeneous as the gas superficial velocity
increases, and bubble-bubble, bubble-liquid interactions invoke complex bubble breakage
and coalescence phenomena. These breakage and aggregation processes can produce
bubbles (particles) with wide size distributions which might influence the hydrodynamic
properties in very different ways, leading to variations in the interfacial mass and heat
transfer fluxes. The population balance is a powerful tool to model such processes taking
place in bubble columns.

4.1 The framework of the population balance

4.1.1 The number density function

Considering that general systems consists of particles dispersed in an environmental phase,
which we shall refer to as the continuous phase. The particles may interact between them-
selves as well as with the continuous phase [79].

The particle population may be regarded as being randomly distributed in the particle
state space, which includes both the physical space of external coordinates and the space
of internal coordinates. The external coordinates r = (r1, r2, r3) are used to denote the
position vector of the particle, and the internal coordinates x = (x1, x2, · · · , xd) represent
d different properties associated with the particle. We let the symbol Ωx represent the
domain of internal coordinates, and Ωr be the domain of external coordinates. These
domains may be bounded or may have infinite boundaries. We can define the averaged
number density function f(x, r, t) such that f(x, r, t)dVxdVr is the average number of
particles in the infinitesimal volume dVxdVr around the particle state (x, r).

The number density function f(x, r, t) is assumed to have sufficiently high regularity to
allow differentiation with respect to any of its arguments as many times as necessary.
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4.1.2 The Reynolds transport theorem

The rate of change of particle state may be described by the variations of the particle
state vector in time over the particle state space of both internal and external coordinates.
While the change of external coordinates refers to the motion through physical space, that
of internal coordinates refers to the motion through an abstract property space.

A particle space continuum can be defined such that it contains both internal and external
coordinates and it is deforming with the time in both coordinates. For a particle, the final
state (x, r) will be reached after the particle goes through a time dependent pass from its
original state (x0, r0).

A Reynolds transport theorem can be derived for the particle space continuum. We assume
that the particles are embedded on this continuum at every point such that the distribution
of particles is described by the continuous density function f(x, r, t). Let Ψ(x, r) be
an extensive property 1 associated with a single particle located at (x, r). The Reynolds
transport theorem in a domain of Ω(t) = Ωx(t)× Ωr(t) in general vector spaces is given
by:

d

dt

∫
Ωx(t)

∫
Ωr(t)

Ψf dVx dVr

=

∫
Ωx(t)

∫
Ωr(t)

[
∂

∂t
Ψf +∇x · (vdΨf) +∇r · (wdΨf)

]
dVx dVr (4.1)

where vd and wd are defined as “velocities” for internal coordinates and for external co-
ordinates, respectively. ∇r · represents the regular spatial divergence (for fixed internal
coordinates) in any convenient spatial coordinate system, and ∇x · represents the diver-
gence in the internal coordinate while holding the external coordinates fixed.

If we assume the only way in which the number of particles in Ω(t) can change is by birth
and death process, the general population balance equation for a system can be written as:

∂

∂t
f +∇x · vdf +∇r ·wdf = h, (4.2)

in which h(x, r, t) is the net birth rate per unit volume of particle state space. It is de-
pendent on the models of breakage and aggregation. The equation must be supplemented
with initial and boundary conditions.

4.1.3 The breakage

The breakage process is assumed to be local and instantaneous, which implies a time
scale small compared with that in which the particles state varies or with the time scale
used for observing the population.

1Contrary to the intensive property, which does not depend on the amount of the substance in a system,
the extensive property depends on amount of particles in the system. For instance, mass and energy are the
extensive properties.
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The breakup of particles is assumed to occur independently of each other. Let b(x, r,Y, t)
be the specific “breakage rate” of particles of state (x, r) at time t in an environment
described by Y. Y can be hydrodynamic parameters, dissipation rate, temperature, etc.
The breakage rate represents the fraction of particles of state (x, r) breaking per unit time.
Then we have

B−(x, r,Y, t) = b(x, r,Y, t)f(x, r, t) (4.3)

the average number of particles of state (x, r) “lost” by breakage per unit time.

The breakage functions include the breakage rate b(x, r,Y, t), the multiplicity factor
ν(x′, r′,Y, t) and the probability density function P (x, r|x′, r′,Y, t).

The function b(x, r,Y, t) has the dimensions of reciprocal time and is often called the
breakage frequency.

The breakage rate can be modeled based on several interpretations, for instance

b(x, r, t) ∝ v̄Σb (4.4)

with v̄ the average velocity of the particles and Σb the macroscopic breakage cross section.
This macroscopic cross section is the inverse of the mean free path related to the breakage.
Thus, the macroscopic cross section is a measure of the distance traveled by the particle
before it breaks. The macroscopic cross section can be expressed as Σ = Nσ with σ
the microscopic cross section and N the number of breakage points in the system. The
microscopic cross section can be defined as the cross sectional area of the particle. A
breakage point can be considered as a singularity in the system for which the breakage
originates, for instance turbulent fluctuations. This type of formulation was widely used
for modeling the breakage rate.

A different alternative is to consider that

b(x, r, t) ∝ 1

τ
(4.5)

where τ is the characteristic life time of a particle in the system before breaking.

The multiplicity factor ν(x′, r′,Y, t) is the average number of particles formed from the
breakup of a single particle of state (x′, r′) in an environment of state Y at time t. It has
a minimum value of 2 but, being an average number, is not restricted to being an integer.

The probability density function P (x, r|x′, r′,Y, t) represents the probability of appear-
ance for particles from the breakup of a particle of state (x′, r′) in an environment of state
Y at time t that have state (x, r). This is a continuously distributed fraction over particle
state space. It satisfies the normalization condition∫

Ωx

P (x, r|x′, r′,Y, t) dVx = 1 (4.6)
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If there’s no loss of mass during the breakage, then

m(x′) = ν(x′, r′,Y, t)

∫
Ωx

m(x)P (x, r|x′, r′,Y, t)f(x′, r′, t) dVx (4.7)

in which m(x) is the mass of the particle of state x.

Assuming that the breakage is binary we have ν = 2. The volume-based probability
density function P̃ (V, r|V ′, r′,Y, t) with V ′ the volume of the particle that breaks, and
V the volume of one particle that was produced, can be related to the so-called breakage
redistribution function h̃(V, r|V ′, r′,Y, t) that gives the relation between the number of
the particles of a state (V, r) that appear due to the breakup of a particle of state (V ′, r′) in
an environment of state Y at time t. The redistribution function can be written as

h̃(V, r|V ′, r′,Y, t) = νP̃ (V, r|V ′, r′,Y, t) (4.8)

The P̃ (V, r|V ′, r′,Y, t) must satisfy the symmetry condition

P̃ (V ′ − V, r|V ′, r′,Y, t) = P̃ (V, r|V ′, r′,Y, t) (4.9)

because a fragment of volume V formed from a parent of volume V ′ (undergoing binary
breakage) automatically implies that the other has volume V ′−V so that their probabilities
must be the same.

Then, the birth rate of the particles due to the breakage is

B+(x, r,Y, t) =∫
Ωr

∫
Ωx

ν(x′, r′,Y, t)b(x′, r′,Y, t)P (x, r|x′, r′,Y, t)f(x′, r′, t) dVx dVr (4.10)

which reflects the production of particles of state (x, r) by breakage of particles of all
particle states, internal and external.

The net birth rate of particles of state is given by B(x, r,Y, t) ≡ B+(x, r,Y, t) −
B−(x, r,Y, t). The right-hand side of which is given by Eqs.(4.3) and (4.10).

4.1.4 The aggregation

Aggregation occurs between at least two particles. The binary aggregation is a special
significance although in crowded systems, it is conceivable that several adjacent particles
could simultaneously aggregate. Aggregation can be referred as coalescence, in which
two particles completely merge along with their interiors, or to coagulation, which fea-
tures a “flow” of particles loosely held by surface forces without involving physical con-
tact. The aggregation frequency is defined as the probability that a particle of state (x, r)
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and another particle of state (x′, r′), both present at time t in a continuous phase with state
locally at Y, will aggregate in the time interval t to t+ dt, as given by:

a(x, r;x′, r′,Y, t)dt (4.11)

It represents the fraction of particle pairs of specified states aggregating per unit time. The
aggregating frequency satisfies the symmetry property

a(x, r;x′, r′,Y, t)dt = a(x′, r′;x, r,Y, t)dt (4.12)

The explicit time dependence in the aggregation frequency is generally not a desirable
feature in models and is eliminated in the remaining treatment.

We define f2(x, r,x
′, r′, t) to represent the average number of distinct pairs of particles at

time t per unit volumes in state space located about (x, r) and (x′, r′), respectively.

In gas-liquid bubbly flows, the aggregation is often referred as coalescence. The coa-
lescence rate determines the fraction of particles that coalesce per unit time. A simple
modeling approach consists in considering the coalescence process as a two stage pro-
cess. This consists in determining the collision rate, Crate, between the particles of states
(x, r) and (x′, r′), and the coalescence efficiency, Ceff , which reflects the ratio of the
number of particles that coalesce and the number of particle collisions.

a(x, r,x′, r′,Y) = Crate(x, r,x
′, r′,Y)Ceff (x, r,x

′, r′,Y) (4.13)

The coalescence efficiency gives a measure of the efficiency of the coalescence process.
Normally, the coalescence efficiency is related to the drainage time of the liquid between
particles and the time of the collision. Nevertheless, this approach ends up in rather
empirical expressions due to the complexity of the process.

A common approximation of the pair density function f2 is made by

f2(x
′, r′;x, r, t) = f(x′, r′, t)f(x, r, t) (4.14)

this implies that there is no statistical correction between particles of state (x′, r′) and
(x, r) at any instant t.

Eq.(4.14) is a good approximation under the hypothesis of dilute systems and particle
chaos. Typical multiphase flow regimes violate the required hypotheses and so expression
(4.14) should be considered incorrect. The hypothesis of dilute systems requires that the
fraction of volume occupied by the particles is small. This requirement for example is
justified considering aerosol dispersions. However, industrial applications can demand
void fractions up to 50%, which is far from satisfying the condition of a dilute system.

The second hypothesis of particle chaos requires that the particles at different positions are
uncorrelated. This hypothesis can be violated in multiphase flows due to the effects caused
by the motion of a particle into the neighboring ones. A possible way of considering the
deviation from the hypothesis of dilution is to assume

f2(x
′, r′;x, r, t) = Y f(x′, r′, t)f(x, r, t) (4.15)
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with Y the pair correlation function which considers, for example, the fact that particles
actually occupy a finite volume and particle screening which reduce the possible particle
interaction. A simple model for the pair correlation function consists in assuming that the
effective volume where the particle can move is given by α, with α the void fraction, then
the pair correlation function can be defined as

Y =
1

1− α
. (4.16)

implying that the interactions are increased due to the reduction of the available volume.
This correction factor was used by [30] for simulating bubbly flows adopting the Enskog
dense gas model.

The source term for the rate of production of particles in volume (x, r) of state (x, r) may
be written as

A+(x, r,Y, t) =

∫
Ωx

∫
Ωr

1

δ
a(x̃, r̃;x′, r′,Y)f2(x̃, r̃;x

′, r′, t)
∂(x̃, r̃)

∂(x, r)
dVx′ dVr′ (4.17)

in which the density with respect to coordinates (x′, r′) has been transformed into one in
terms of (x, r) by using the appropriate Jacobian. (x′, r′) is held constant in the definition
of the Jacobian. δ represents the number of times identical pairs have been considered
in the interval of integration in the right-hand side of (4.17) so that 1/δ corrects for the
redundancy. The sink term A−(x, r,Y, t) is found to be

A−(x, r,Y, t) =

∫
Ωx

∫
Ωr

a(x′, r′;x, r,Y)f2(x
′, r′;x, r, t) dVx′ dVr′ (4.18)

The net birth rate of particles of state is given by A(x, r,Y, t) ≡ A+(x, r,Y, t) −
A−(x, r,Y, t). The right-hand side of which is given by Eqs.(4.18) and (4.17).

4.2 The population balance equation (PBE)

Since the birth and death functions are now identified the complete population balance
equation, a breakage/aggregation population is given by substituting the right-hand side of
(4.2) with expressions of breakage and aggregation terms as calculated from (4.3), (4.10),
(4.17) and (4.18). Since particles distributed according to their volume are frequently
encountered in applications, assuming that particle coalesce or breakup does not have
impact on the coalescence or breakage of particles somewhere else, which implies that
the breakage frequency, the probability density function and the aggregation frequency
are independent of the external coordinates r. In addition, the integrals over the external
coordinates in the breakage birth term (4.10), the aggregation birth term (4.17) and the
aggregation death term (4.18) disappear. We can consider the breakage and aggregation
processes for a population of particle distributed according to their volume denoted by V .
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A volume-based PBE that includes breakup, aggregation and source terms can be written
as follows:

∂f̃(V, r, t)

∂t
+∇r · (vdf̃(V, r, t)) = B̃+(V, r, t)− B̃−(V, r, t) + Ã+(V, r, t)− Ã−(V, r, t)

(4.19)

in which,

B̃+(V, r, t) =

∫ Vmax

V

νP̃ (V, V ′)b̃(V ′)f̃(V ′, r, t)dV ′ (4.20)

B̃−(V, r, t) = b̃(V )f̃(V, r, t) (4.21)

Ã+(V, r, t) =
1

2

∫ V

Vmin

ã(V − V ′, V ′)f̃(V ′, r, t)f̃(V − V ′, r, t)dV ′ (4.22)

Ã−(V, r, t) = f̃(V, r, t)

∫ Vmax−V

Vmin

ã(V, V ′)f̃(V ′, r, t)dV ′ (4.23)

B̃−, B̃+, Ã− and Ã+ have the following meaning:

1. rate of death of particles of mass V due to breakup,

2. rate of birth of particles of mass V due to breakup of larger particles,

3. rate of death of particles of mass V due to aggregation with other particles,

4. rate of birth of particles of mass V due to aggregation of smaller particles.

in which, b̃(V ) is the breakup frequency, P̃ (V, V ′) is the breakup kernel that represents
the probability that a particle of mass V ′ splits up creating two particles of mass V and
V ′−V . The aggregation kernel ã(V, V ′) represents the probability of aggregation per unit
time that two particles with mass V −V ′ and V ′ to aggregate resulting in a particle with the
mass V . Vmin and Vmax are the lower and upper limits of the particle size, respectively. In
addition, the upper limit of the integral in the aggregation birth term (4.22) is (Vmax− V )
(see [42, page 1324]).

The Eq.(4.19) can also be expressed in terms of the number density function using particle
length as internal coordinate by assuming V ∝ ξ3 and observing the relation f̃(V, r, t) dV =
f(ξ, r, t) dξ, in which ξ is the equivalent particle length.

∂f(ξ, r, t)

∂t
+∇r · (vdf(ξ, r, t)) = B+(ξ, r, t)− B−(ξ, r, t) +A+(ξ, r, t)−A−(ξ, r, t)

(4.24)
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in which,

B+(ξ, r, t) =

∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, r, t)dζ (4.25)

B−(ξ, r, t) = b(ξ)f(ξ, r, t) (4.26)

A+(ξ, r, t) =
ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f(ζ, r, t)f((ξ3 − ζ3)1/3, r, t)dζ (4.27)

A−(ξ, r, t) = f(ξ, r, t)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f(ζ, r, t)dζ (4.28)

where ξ and ζ represent the particle diameter. The detail transformation from the mass-
based PBE to the length-based PBE is explained in App. C.

The moments of the distribution function of different orders can be defined as:

m(k)(r, t) =

∫
ξkf(ξ, r, t)dξ (4.29)

In this work, the moments which have physical significance are:

(i) the number density (number of particles per unit mass)

N(r, t) =

∫
f(ξ, r, t)dξ (4.30)

(ii) the gas void fraction (mass of particles per unit mass)

α(r, t) =

∫
(
π

6
ξ3)f(ξ, r, t)dξ (4.31)

and (iii) the Sauter diameter

ξ32(r, t) =

∫
ξ3f(ξ, r, t)dξ∫
ξ2f(ξ, r, t)dξ

(4.32)

The mean particle volume can be computed by

V̂b,mean(r, t) =
α(r, t)

N(r, t)
=

∫
(π

6
ξ3)f(ξ, r, t)dξ∫
f(ξ, r, t)dξ

(4.33)

The integrals in Eqs.(4.30), (4.31) and (4.32) should be evaluated over all possible particle
lengths.
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4.3 Numerical methods for solving the PBE

4.3.1 Method of classes (CM)

When methods of classes [39, 53, 91] based on M fixed size intervals in a partition PM ≡
{0 = V1, V2, · · · , VM , VM+1 = ∞} are used, the discretized form of Eq.(4.19) yields

∂Ni

∂t
+∇ ·

(
vd(V̂i)Ni

)
=

1

2

i−1∑
j=1

Nj

∑
(V̂j+V̂k)∈Ii

Nkã(V̂j, V̂k)

−Ni

M∑
j=1

Nj ã(V̂i, V̂j) +
M∑

j=1

ν(V̂j)Nj b̃(V̂j)

∫ Vi+1

Vi

P̃ (V/V̂j) dV − b̃(V̂i)Ni

i = 1, · · · ,M. (4.34)

in which, V̂i ∈ [Vi, Vj) represents a pivot size. Here, the dependency of the variable on the
spatial position and time has been omitted for simplicity of notation. By this method, the
transport of the population balance equation corresponds to the transport of M scalars,
i.e. the number density of the classes, Ni.

In the CM, good accuracy can be achieved if a large number of size groups are used, but
at the expense of high CPU cost due to increased number of scalars to be solved. The
number of classes is a potential problem in CFD applications, especially when a multi-
fluid flow model needs to be used; hence the CM method is not a feasible approach in
practice.

4.3.2 Quadrature method of moments (QMOM)

In the method of moments (MOM), the particle size distribution (PSD) is not tracked
directly but through its moments integrated over the internal coordinates. This approach
has many advantages such as low CPU time and relatively high accuracy. The standard
method of moment (SMM) needs to be closed, which limits its practical application.

In the QMOM [66, 67, 68], the Gaussian quadrature approximation for PSD is introduced
to close the SMM. By the QMOM, the solution of Eq.(4.19) reduces to transport the lower
order moments of the particle size distribution function, mk, as follows

∂m(k)

∂t
+∇ ·

(
v

(k)
d m(k)

)
= H(k)(V̂i, Ni)

k = 0, · · · , 2M − 1; i = 1, · · · ,M. (4.35)

Here, M is the number of classes used for the quadrature approximation. The terms of the
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quadrature, V̂i, and Ni, are derived by the inversion of the following non-linear system

m(k) =
M∑
i=1

NiV̂
k
i k = 0, · · · , 2M − 1. (4.36)

The kth moment velocity, v(k)
d , is defined as

v
(k)
d =

∑M
i=1 vd(V̂i)NiV̂

k
i∑M

i=1NiV̂ k
i

k = 0, · · · , 2M − 1 (4.37)

QMOM has been widely used for PBE in recent years [28, 55, 66, 67, 82, 93, 94, 100],
and has been extended to bivariate PBE applications [95, 98, 99]

The QMOM uses the product-difference (PD) introduced by Gordon [34] to evaluating the
Gaussian quadrature. However, the PD algorithm is a numerical ill-conditioned method
for computing the Gauss quadrature rule (e.g. [58]). In general the computation of the
quadrature rule based on the power moments of the density function is quite sensitive to
small errors as the number of moments used becomes large (e.g. [32, 33]). The applica-
bility of QMOM is limited to no more than 12 moments, although in certain applications
it is stated that few moments are enough for obtaining reliable results [69].

It has also been reported that with the QMOM it is difficult to handle systems where
there is a strong dependence of the dispersed-phase velocity on internal coordinates (e.g.
fluidized bed and bubble column), and can become quite complex in the case of bivariate
PBE [65].

4.3.3 Direct quadrature method of moments (DQMOM)

By the DQMOM [28, 65], after mathematical manipulation, Eq.(4.19) yields

∂Ni

∂t
+∇ ·

(
vd(V̂i)Ni

)
= ai i = 1, · · · ,M (4.38)

and

∂ζi
∂t

+∇ ·
(
vd(V̂i)ζi

)
= bi i = 1, · · · ,M. (4.39)

Here, the source terms are derived by the solution of the following linear system in the
unknown ai and bi

M∑
i=1

[(
V̂ k

i − kV̂ k
i

)
ai + kV̂ k−1

i bi

]
= H(k) k = 0, · · · , 2M − 1. (4.40)

The DQMOM defines a set of transport equations for the evolution of the quadrature rule.
The DQMOM remains ill conditioned so it is necessary to keep the number of moments
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small [23]. In particular, the DQMOM requires some ad hoc techniques for restarting
the problem when singularities occurs. Basically, in the DQMOM the condition number
of the system is monitored. When the condition number is too high, i.e. the problem
become singular, small perturbations are added to the quadrature rule which can reduce
the condition number and thus remove the singularity.

Previous studies have shown that the accuracy and time consumption of QMOM and
DQMOM depend largely on the relative magnitude of the moments. The matrix becomes
extremely difficult to solve if the moments vary over a large range. In such cases, the
solution of the differential equations and the PD algorithms in QMOM, or the matrix
inversion in DQMOM, would require excessive computational resources.

4.3.4 The least-squares method

In this section we are describing how to use the LSSEM to solve a space-time-property
PBE with particle breakage and aggregation. The linear population balance operator and
its right-hand-side read:

L f =
∂f(ξ, r, t)

∂t︸ ︷︷ ︸
transient term

+
∂

∂r
(vdf(ξ, r, t))︸ ︷︷ ︸
convection

+ b(ξ)f(ξ, r, t)︸ ︷︷ ︸
breakage death

−
∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, r, t)dζ︸ ︷︷ ︸
breakage birth

+ f(ξ, r, t)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f ∗(ζ, r, t)dζ︸ ︷︷ ︸
aggregation death

− ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f ∗(ζ, r, t)f((ξ3 − ζ3)1/3, r, t)dζ︸ ︷︷ ︸

aggregation birth

(4.41)

and

g = 0 (4.42)

where, in the particular case of the 1D problem, f(ξ, r, t) represents the unknown number
density functions. A superscript asterisk denote values from previous iteration.

The domain has been discretized with a mesh of non-overlapping spectral elements. Each
spectral element Ωe is mapped on the reference spectral element [−1, 1] by using an
iso-parametric mapping with local coordinate z. In the spectral element all variables lo-
cated at the GL-GLL-GLL collocation points, can be approximated by the Lagrangian
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interpolant. By GL-GLL-GLL we mean that we use the Gauss-Legendre points for the
internal coordinate ξ, and use the Gauss-Legendre-Lobatto points for both external coor-
dinate z and time t. For the transient 1D population balance equation, the discrete spectral
element approximation yields

fe =

Nξ+1∑
jξ=1

Nr+1∑
jr=1

Nt+1∑
jt=1

fjξ,jr,jt φjξ
(ξ)φjr(r)φjt(t) =

Nt∑
j=1

fj Φj(x) (4.43)

where φjξ
(ξ) with 1 ≤ jξ ≤ Nξ + 1, φjr(r) with 1 ≤ jr ≤ Nr + 1 and φjt(t) with

1 ≤ jt ≤ Nt + 1 represent the Lagrangian interpolants in the ξ, r and t-direction through
the GLL points, respectively. The global basis function

Φj(x) = φjξ
(ξ)φjr(r)φjt(t) (4.44)

is the function of vector of independent variables x = [ξ, r, t] and the total degrees of
freedom is defined as N t = (Nξ + 1)(Nr + 1)(Nt + 1). The local element matrices

Ae =

∫
Ωe

[L Φ1, · · · ,L ΦNt ]T[L Φ1, · · · ,L ΦNt ] dΩe

=


〈L Φ1,L Φ1〉Ωe 〈L Φ1,L Φ2〉Ωe · · · 〈L Φ1,L ΦNt〉Ωe

〈L Φ2,L Φ1〉Ωe 〈L Φ2,L Φ2〉Ωe · · · 〈L Φ2,L ΦNt〉Ωe

...
... . . . ...

〈L ΦNt ,L Φ1〉Ωe 〈L ΦNt ,L Φ2〉Ωe · · · 〈L ΦNt ,L ΦNt〉Ωe

 (4.45)

and the element right-hand-side

Fe =

∫
Ωe

[L Φ1, · · · ,L ΦNt ]Tg dΩe =


〈L Φ1, g〉Ωe

〈L Φ2, g〉Ωe

...
〈L ΦNt , g〉Ωe

 (4.46)

The evaluations of the inner products in (4.45) and (4.46) can be numerical integrated by
using the Gauss quadrature of order N t or higher than N t as being discussed in Chapter

56



2. At each Gauss quadrature point xi = (ξiξ , rir , tit), 1 ≤ i ≤ N t, we have

L Φj(xi) =

Nξ+1∑
jξ=1

Nr+1∑
jr=1

Nt+1∑
jt=1

φjξ
(ξiξ)φjr(rir)φ

′
jt
(tit)︸ ︷︷ ︸

transient term

+v∗
∣∣
xi
φjξ

(ξiξ)φ
′
jr

(rir)φjt(tit) +
dv∗

dr

∣∣∣
xi

φjξ
(ξiξ)φjr(rir)φjt(tit)︸ ︷︷ ︸

convection
+b(ξiξ)φjξ

(ξiξ)φjr(rir)φjt(tit)︸ ︷︷ ︸
breakage death

−
K+1∑
k=1

wk(iξ)h(ξiξ , ζk(iξ))b(ζk(iξ))φjξ
(ζk(iξ))φjr(rir)φjt(tit)︸ ︷︷ ︸

breakage birth

+φjξ
(ξiξ)φjr(rir)φjt(tit)

K+1∑
k=1

 wk(iξ)a(ξiξ , ζk(iξ))( ∑Nξ+1

j̃ξ=1

∑Nr+1

j̃r=1

∑Nt+1

j̃t=1

φj̃ξ
(ζk(iξ))φj̃r

(rir)φj̃t
(tit)f

∗
j̃ξ,j̃r,j̃t

) 
︸ ︷︷ ︸

aggregation death

−
ξ2
iξ

2

K+1∑
k=1


wk(iξ)a((ξ

3
iξ
− ζ3

k(iξ))
1/3, ζk(iξ))/(ξ

3
iξ
− ζ3

k(iξ))
2/3( ∑Nξ+1

j̃ξ=1

∑Nr+1

j̃r=1

∑Nt+1

j̃t=1

φj̃ξ
(ζk(iξ))φj̃r

(rir)φj̃t
(tit)f

∗
j̃ξ,j̃r,j̃t

)
φjξ

(ξiξ − ζk(iξ))φjr(rir)φjt(tit)


︸ ︷︷ ︸

aggregation birth

(4.47)

The local linear systems are obtained by substituting Eq.(4.47) into (4.45) and (4.46) at
each subelement, and the global assembled system of linear algebraic equations yields

AU = F (4.48)

where U represents the global vector of unknowns nodal values. The population balance
equation problem operator L and its right-hand-side g are given in (4.41) and (4.42).
Note that, since the matrix A is symmetric positive definite, robust conjugate gradient
iterative methods can be employed.

Dorao et al. [22] compared error convergence rate and computation time of QMOM and
LSQ for solving the PBE. LSM shows to be computational efficient and accurate for the
tested problem. There is no limitation of the number of the required moments in the
LSM. Besides, the LSM provides also information about the reliability of the solution in
the residual, which can be used for controlling the time stepping in an efficient way.
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4.3.5 The mass conservative least-squares method

Mass nonconservative breakage kernels

For the breakup processes, numerous source term closures have been formulated. Com-
monly used breakup closures in physical problems include the models proposed by Co-
laloglou and Tavlarides [15], Diemer and Olson [20], Martinez-Bazan [59], Konno [50]
etc. A shortcoming of the breakup kernels employed in many CFD models is that the
conservation of volume/mass is not always fulfilled.

Models that do not conserve volume/mass generally lead to an evolution of the predicted
volume fraction which is unstable and not meaningful from a physical point of view [100].
Inexact conservation of mass/volume has also been observed using the model presented
in this work. The numerical verifications performed show that the system tends to lose
mass when breakup takes place. We shall explain the mass conservation problem in the
following.

If the dispersed phase density is assumed to be a constant, and there is no loss of mass
during the breakage, then

vol(ζ) = ν

∫ ζ

ξmin

vol(ξ)P (ξ, ζ) dξ (4.49)

in which, vol(ξ) = (π/6)ξ3 is the volume of a spherical particle. For a binary breakage
the multiplicity factor ν = 2. Eq.(4.49) implies that the volumes of all the particles with
the size interval [ξmin, ζ) that are generated from breakage event of a parent particle of
size ζ , should equal to the volume of this parent particle.

Figure 4.1 shows the performance of the Martinez-Bazan breakage kernel. A loss of
volume/mass is observed and there’s a significant reduction in the volume compared with
that of the original parent particle as the dissipation rate increases. We can see that the
loss of mass during the breakage event is due to the fact that the breakage kernel (daughter
particle distribution function) does not fulfill the mass conservation constraint.

Using the theory of the constraint least-squares formulation introduced in section 2.5, we
propose a mass conservative solution to the PBE. The mass conservative least-squares
solution is based on the minimization of the least-squares functional

J (f) =
1

2
‖L f − g‖2

Y (Ω) (4.50)

in which the operator L and source g are defined in Eq.(4.41) and (4.42), subjected to
the constraint that mass is conserved

∇ · (αvd) = 0 (4.51)

in which, vd is the dispersed phase velocity. Eq.(4.51) is obtained by integrating Eq.(4.50)
over the entire internal coordinate domain, and using the definition of the void fraction
(α) Eq.(4.31). Eq.(4.51) is also known as the continuity equation of the dispersed phase.
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Figure 4.1: The loss of mass of a parent particle of size ζ = 0.02 m during the breakage
event when the Martinez-Bazan [59] breakage kernel is used (tested for the air-water flow
with the dissipation rate ε varies from 5× 10−5 to 100 m2·s−3).

The mass conservative formulation

Therefore the constrained minimization problem can be expressed in the form:

min
f∈Y

J (f) subject to (4.51). (4.52)

where the constraint equation (4.51) holds in function space S.

To enforce mass conservation, the Lagrange multiplier method is used. The constrained
least-squares solution results from the equilibrium point of the following extended La-
grangian functional

I(f, λ) = J (f) +

∫
Ω

λ

[
∇ ·
(∫ ξmax

ξmin

f(ξ, z)vol(ξ) dξ vd

)]
dΩ (4.53)

where J (f) represents the least-squares functional defined in Eq.(4.50).

A system of equations is obtained by substituting f = f+ εΦ and λ = λ+ εcΨ and taking
the partial derivatives of I with respect to ε and εc:

lim
ε,εc→0

∂

∂ε
I(f + εΦ, λ+ εcΨ) = 0, ∀Φ ∈ X(Ω) ∀Ψ ∈M(Ω) (4.54)

lim
ε,εc→0

∂

∂εc
I(f + εΦ, λ+ εcΨ) = 0, ∀Φ ∈ X(Ω) ∀Ψ ∈M(Ω) (4.55)
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This result yields the following mixed formulations:

Find (f, λ) ∈ X(Ω)×M(Ω) such that:{
A(f,Φ) +B(Φ, λ) = F (Φ) ∀Φ ∈ X(Ω),
B(f,Ψ) = 0 ∀Ψ ∈M(Ω)

(4.56)

where the space X(Ω) consists of the function f and the space M(Ω) consists of the
function λ. Note that in general X and M can be different function spaces. The bilinear
form A and its corresponding right-hand side linear form F are defined as

A(f,Φ) = 〈L f,L Φ〉Y (Ω) (4.57)
F (Φ) = 〈g,L Φ〉Y (Ω) (4.58)

where A : X × X → R is a symmetric, continuous bilinear form, and F : X → R a
continuous linear form.

The bilinear form B(Φ, λ) is given by:

B(Φ, λ) = 〈λ,∇ ·
[(∫

Ωr

Φ vol(ξ) dξ
)

vd

]
〉S(Ω) (4.59)

Then, the constrained minimization problem (4.52) is equivalent to the unconstrained
optimization problem of finding saddle points (f, λ) ∈ Y ×S of the Lagrangian functional
Eq.(4.59).

The equation system of the mass conservative PBE problem is formulated by introducing
a similar polynomial expansion for the variable λ.

λ(ξ, r, t) =

Mξ+1∑
k=1

Mr+1∑
l=1

Mt+1∑
m=1

λklmψk(ξ)ψl(r)ψm(t) (4.60)

on PM(Ω) and

dim (PM(Ω)) = (Mξ + 1)× (Mr + 1)× (Mt + 1) = M t in R3

in which M t is the total number of degree of freedom.

Using the approximation (4.60), together with (4.43) in the weak formulation (4.56), the
following linear algebraic matrix system is obtained for the mass conservative PBE prob-
lem. [

Ae BT

B 0

] [
fe
λ

]
=

[
Fe

G

]
(4.61)

or

Acfc = Fc (4.62)
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where,

Ac =

[
Ae BT

B 0

]
, fc =

[
fe
λ

]
and Fc =

[
Fe

G

]
in which Ae, Fe are defined in (4.45) and (4.46), respectively. The matrix B ∈ R(Mt×Nt),

[B]ij = B(Φj,Ψi) = 〈Ψi,

[(∫
Ωr

Φjvol(ξ) dξ
)

vd

]
〉Y (Ωe) (4.63)

for 1 ≤ i ≤ N t and 1 ≤ j ≤M t.

The vectors λ, G ∈ R(Mt×1), the matrix Ac ∈ R(Nt+Mt)×(Nt+Mt), and the vectors
fc, Fc ∈ R(Nt+Mt)×1.

The obtained system (4.61) corresponds to a saddle-point problem (see proof in Appendix.
D), and proper function spaces need to be chosen to satisfy the Ladyzhenskaja-Babuška-
Brezzi (LBB) condition.

Due to the similarity with the mixed formulation of the Stokes problem [77], the discrete
space for the Lagrange multiplier, λ, needs to be particularly chosen to render a stable
discretization. If variable f is approximated by polynomials of degree N t, then the dis-
crete inf-sup condition can be satisfied by approximating the variable λ by a polynomials
of order M t = N t − 2.

Numerical test and results

In the paper entitled “Mass conservative solution of the population balance equation using
the least-squares spectral element method” (Appendix E.4), the author studies the evolu-
tion of the bubble size distribution of an air-water two-phase mixture moving through a 2D
rectangular channel to assess the overall mass conservative properties of the standard and
constrained least-squares formulations of a breakage-only PBE in which the Martinez-
Bazan [59] breakage kernel is applied. Using the Gauss’ theorem and the definition of

zx

zy

Γz

Ωzv

(0, 0) (L, 0)

(0, H)

Figure 4.2: The external domain of the test case problem. The gas-liquid mixture is fed
from the inlet at constant velocity. Bubble breakup is taking place within the domain.
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the void fraction Eq.(4.31), a space boundary integral of the dispersed phase continuity
equation (4.51) can be cast into∫

Ωr

∇ · (αvd) dΩr =

∫
Γr

(αvd) · n dΓr (4.64)

where Γr represents the boundary of the channel and where n represents the outward unit
vector. vd denotes the velocity field.
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Figure 4.3: The boundary integral values predicted by the standard (i.e., mass nonconser-
vative) LSM and the constrained (i.e., mass conservative) LSM.

For comparison the absolute value of the boundary integrals of the standard LSM and the
constrained LSM has been plotted as a function of the breakage kernel parameter (Kg) in
Figure 4.3. The breakage parameter (Kg) has been varied from 3.0× 10−3 to 2.0× 10−2.
The higher the Kg value, the stronger the breakage rate. From the figure it can be seen
that the value of boundary integral of the mass nonconservative LSM grows with the
breakage rate, hence the conservation properties are increasingly affected as the breakage
rate grows. In contrast, the result from the constrained LSM shows the divergence of the
velocity times the void fraction is close to zero at any breakage rate, indicating the mass
conservation has been strictly satisfied to machine accuracy.

Figure 4.4 shows plots of the different evolutions of the density function f along zx at
the centerline of the channel as predicted by the standard LSM and constrained LSM are
given. Outtakes reveals that notable deviations of the number densities exist for larger
bubbles as the profile of f of the larger bubble part has been zoomed in.
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Figure 4.4: Comparisons of axial evolution of the bubble size distribution at (a) zx = 0.00
m, (b) zx = 0.25 m, (c) zx = 0.50 m and (d) zx = 1.00 m at centerline (zy = 0.1m) with
Kg = 6.0× 10−3.
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The number of large bubbles predicted by the mass conservative method is higher than
that of the nonconservative method, whereas the number of the smaller bubbles remains
almost unchanged. A comparison of these number density profiles indicates that the im-
proved mass conservation of the LSM is obtained at the expense of emergence of large
bubbles. This behavior can be understood if one realize that the LSM tries to find a so-
lution of f by minimizing the residuals of both the PBE (Eqs.(4.41) and (4.42)) and the
dispersed phase continuity equation (Eq.(4.51)) which are discretized on the domain of
interest, simultaneously. Considering that in many engineering problems the moments
of the density function usually get more attention than the density function itself, the
constrained LSM can be an attractive fix to these mass nonconservative breakage kernels.

However, the use of the Lagrange multipliers undermines one of the main advantages of
the LSM. One sacrifices one of the appealing properties of the least-squares formulation -
the positive definiteness, which may led to indefinite problems similar to those arising in
the standard Galerkin formulations of the Stokes equations [77]. Secondly, in addition to
the variables needed to obtain the first order least-squares formulations, one needs an ad-
ditional Lagrange multiplier, λ. And finally, an additional compatibility requirement (e.g.,
the LBB condition), not present in the standard least-squares implementations, enters the
formulation to guarantee a unique solution.

For more detailed discussions on the issue of the mass conservative formulation of the
PBE, we refer to the paper in Appendix E.4.
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Chapter 5

Numerical Solution of the Bubble
Column Model

5.1 Introduction

In the present chapter, we will formulate the system of equations denoting the bubble
column model, and discuss the coupling between the multi-fluid and the PBE model.
In particular, an example of using the least-squares spectral element method for solv-
ing the entire one-dimensional bubble column model with a novel iteration algorithm is
presented.

5.2 The combined multi-fluid and PBE model

The multiphase system, consisting of bubbles and fluid, might be described by a two-fluid
model, in which the fluid surrounding the bubbles is modeled as the primary phase and the
entire gas phase is modeled as an unique secondary phase (see Figure 5.1). The dynamics
of the bubbles and the surrounding fluid dynamics can also be described by the multi-fluid
model, in which the fluid surrounding the particles is modeled as the primary phase and
the population of particles is modeled by N secondary phases, each one has its own size
group and velocity field (see Figure 5.2).

The system of equations of the multi-fluid model is

Mass conservation of the primary phase

∂

∂t
(αcρc) +∇ · (αcρcvc) = Γc (5.1)
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Figure 5.1: The two-fluid model.
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Figure 5.2: The multi-fluid model.

Mass conservation of the secondary phases

∂

∂t
(αdρd) +∇ · (αdρdv̂d) = Γd d = 1, · · · , N. (5.2)

Volume fraction constraint

αc +
N∑

d=1

αd = 1 (5.3)

Momentum balance of the primary phase

∂

∂t
(αcρcvc) +∇ · (αcρcvcvc) =− αc∇Pc +∇ ·

(
αc

(
Tc + TRe

c

))
+ αcρcg + Mτ

c . (5.4)

Momentum balance of the secondary phase

∂

∂t
(αdρdv̂d) +∇ · (αdρdv̂dv̂d) =− αd∇Pd +∇ ·

(
αd

(
T̂d + T̂Re

d

))
+ αdρdg + Mτ

d. d = 1, · · · , N. (5.5)

Here, v̂d is the velocity of the dth phase or the representative velocity of the dth velocity
class [ξd, ξd+1). The average particle size of the dth velocity class is

ξ̂d =
αd

Nd

=

∫ ξd+1

ξd
vol(ξ)f(ξ, r, t) dξ∫ ξd+1

ξd
f(ξ, r, t) dξ

(5.6)
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in which, vol(ξ) = π
6
ξ3 is the volume of a spherical particle of diameter ξ.

The dispersed phase size distribution is described by the population balance equation

∂f(ξ, r, t)

∂t
+∇ · (f(ξ, r, t)v(ξ, r, t)) = h(f, ξ, r, t,Y) (5.7)

in which, the velocity v(ξ, r, t) is a function of both internal and external coordinates,
which can be expressed by the velocities of each velocity class

v(ξ, r, t) =



v̂1(r, t), ξ ∈ [ξ1, ξ2)
v̂2(r, t), ξ ∈ [ξ2, ξ3)
· · · · · ·
v̂d(r, t), ξ ∈ [ξd, ξd+1)
· · · · · ·
v̂N(r, t), ξ ∈ [ξN , ξN+1)

(5.8)

The volume fractions of the secondary phases particles within the size interval [ξd, ξd+1)
can be recovered directly from the density function, f , as follows

αd(r, t) =

∫ ξd+1

ξd

vol(ξ)f(ξ, r, t) dξ. (5.9)

The mass conservation equations (5.2) can be excluded from the system. The new deter-
mined system will include the mass conservation equation for the primary phase, Eq.(5.1),
the momentum equations for all phases, Eqs.(5.4) and (5.5), and the population balance
equation, Eq.(5.7).

5.3 Coupled solver

Normally the coupling of the multi-fluid model and the PBE model requires that each part
being solved by an independent numerical method. Therefore, methods like the FVM
(see Chapter 3) are applied for the stand-alone multi-fluid model, whereas methods like
the CM, QMOM and DQMOM (see Chapter 4) are used to solve the PBE. Some coupling
of these models are required. In this Chapter, the applicability of using the LSM as both
the multi-fluid solver and the PBE solver is discussed.

For all the methods mentioned, information must be passed between the flow solver and
the PBE solver (see Figure 5.3). Values of the dispersed phase velocity field and hydro-
dynamics parameters which are evaluated by the multi-fluid solver and required by the
breakage and aggregation kernels are delivered to the PBE solver. On the other hand, the
moments of the density functions, in particular the information on particle size distribu-
tion can be computed by the PBE solver and passed back to the multi-fluid solver.
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Figure 5.3: The information exchange between a multi-fluid solver and a population bal-
ance equation solver.

The conventional approach to solve the two-fluid model coupled with the PBE uses only
one common momentum equation for all bubble sizes (e.g., the homogeneous MUSIG
model, see [61]). The dispersed phase is divided into M size fractions. The population
balance equation is applied to describe the size fractions taking into account the inter-
fraction mass transfer resulting due to bubble coalescence and breakup (Figure 5.4). With
a sufficient number of size fractions being used, the volume fraction of the dispersed
phase αg and the Sauter diameter ξ32 can be obtained by Eq.(4.32), which are required by
the two-fluid model.

Mathematically, these approaches are based on the population balance equation and the
two-fluid model. The assumption that all bubbles move at the same velocity restricts its
applicability to homogeneous dispersed flows, where the slip velocities of the particles are
almost independent of particle size and the particle relaxation time is sufficiently small
with respect to inertial time scales. The model is also unable to predict the radial migration
of small and large bubbles in vertical pipes where the lift forces plays an essential role on
the bubble motion.

ξ1 ξm ξM

v̂d

ξ̂d

bubble
breakup

bubble
coalescence

size groups

m = 1, · · · , M

velocity groups

Figure 5.4: The population balance equation solved by the method of classes with one
velocity group.
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A more sophisticated approach (e.g., like that inhomogeneous MUSIG, [51]) that takes
into account the different dispersed phases, must rigorously solve the complete set of bal-
ance equations for each phase. In practice, the gaseous disperse phase is divided into a
number N of so-called velocity groups (or phases), where each of the velocity groups is
characterized by its own velocity field. Furthermore, the overall bubble size distribution
is represented by dividing the bubble diameter range within each of the velocity groups d
into a number of sub-size fractions Md, d = 1, · · · , N . The population balance model
considering bubble coalescence and bubble breakup is applied to the sub-size groups (see
Figure 5.5). Unlike the one velocity group approach, the mass exchange due to the coa-
lescence and breakage can exceed the size ranges assigned to the velocity groups.

ξ1 ξM1
ξm ξM2

ξMN

v̂1 v̂2 v̂N

ξ̂1 ξ̂2 ξ̂N

· · ·

bubble
breakup

bubble
coalescence

size groups

m = 1, · · · ,

∑
MN

velocity groups

d = 1, .., N

Figure 5.5: The population balance equation solved by the method of classes with multi-
ple velocity groups (inhomogeneous MUSIG [51]).

With the QMOM approach, the PBE Eq.(5.7) is integrated over its internal coordinate and
the low-order moments can be directly computed from Eq.(4.35). The QMOM [55] pro-
vides an attractive alternative solving the PBE associated with the multiphase flow model,
especially when aggregation quantities, rather than an exact PSD, are desired. Its advan-
tages are fewer variables (typically only six or eight moments) and a dynamic calculation
of the size bins. The disadvantages are that the number of abscissas may not be adequate
to describe the PSD, the Product-Difference (PD) algorithm may be time consuming, and
the PD algorithm itself is ill-conditioned [23]. The applicability of QMOM is limited to
no more than 12 moments[69], and the QMOM also has problem handling systems where
there is a strong dependence of the dispersed-phase velocity on the internal coordinates
[65].

When the least-squares method is applied to the system that consists of both flow and PBE
models, the bubble number density function f(ξ, r, t) is approximated by the Lagrangian
polynomials. The h/p-refinement can be easily used to solve both the single dispersed
phase approach (one velocity group) and the multiple dispersed phase approach (multi-
velocity group).

In the case of a single velocity group, the least-squares problem domain is defined such
that it includes both the internal and external coordinates. In the internal coordinates, a
Lagrangian polynomials of order Q can be chosen to approximate the solution results in
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Figure 5.6: The population balance equation solved by the least-squares method with one
velocity group.

Q+1 nodal points (see Figure 5.6). Unlike the MUSIG size group, these nodal points are
now located at the GL quadrature points rather than being equally distributed.

The moments of any order can be calculated by

m(k)(r, t) =

∫ ξmax

ξmin

f(ξ, r, t)ξk dξ ≈
Q+1∑
q=1

wqξ
k
q f(ξq, r, t) (5.10)

in which, ξq ∈ (ξmin, ξmax) and wq are the quadrature points and weights in internal
coordinate.

In the multiple velocity approach, the h-refinement can divide the internal coordinate into
N subelements and the Lagrangian polynomials of order Qd that corresponds to Qd + 1
nodal quadrature points, are assigned within each subelement (see Figure 5.7).

b b b b b b b b b b b b b b b

ξ1 ξQ1+1 ξq ξQ2+1 ξQN +1

v̂1 v̂2 v̂N

· · ·

ξ̂1 ξ̂2 ξ̂N

bubble
breakup

bubble
coalescence

size quadrature
points

q = 1, · · · ,

∑
(QN + 1)

velocity groups

d = 1, .., N

Figure 5.7: The population balance equation solved by the least-squares method with
multiple velocity groups.

A number ofN velocity groups can be assigned over the subelements. One velocity group
can range over one or more subelements and the moments of each velocity group is the
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summation of all contributions of each subelement.

m(k)(r, t) =
N∑

d=1

m
(k)
d =

N∑
d=1

∫ ξd,max

ξd,min

f(ξ, r, t)ξk dξ

≈
N∑

d=1

Q+1∑
q=1

wqξ
k
q f(ξq, r, t) d = 1, · · · , N. (5.11)

The lower and upper boundaries of bubble size intervals (ξd,min and ξd,max) for the velocity
groups can be controlled by either an equal bubble size distribution, an equal bubble mass
distribution or can be based on a user defined bubble size range for each distinct bubble
size.

The division of the velocity groups should be based on the physics of bubble motion
for bubbles of different sizes (e.g., different behavior of differently sized bubbles with
respect to lift force or turbulent dispersion). Therefore, it can be suggested that in most
cases N = 2 or 3 velocity groups are sufficient in order to capture the main phenomena
in bubbly or slug flows.

5.4 A cross-section averaged bubble column model solved
by the LSM

5.4.1 A column-section averaged bubble column model

As discussed in Chapter 3, the length-based steady-state PBE considering the breakage
and coalescence can be written as

∂ (vf(ξ, z))

∂z
= B+(ξ, z)− B−(ξ, z) +A+(ξ, z)−A−(ξ, z) (5.12)

in which,

B+(ξ, z) =

∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, z)dζ (5.13)

B−(ξ, z) = b(ξ)f(ξ, z) (5.14)

A+(ξ, z) =
ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f(ζ, z)f((ξ3 − ζ3)1/3, z)dζ (5.15)

A−(ξ, z) = f(ξ, z)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f(ζ, z)dζ (5.16)

where ξ and ζ represent the bubble diameter.
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and the cross-section averaged two-fluid model was derived in Section (3.5)

αd
dP

dz
+Kdv̂d −Kdvc =− ρdαdv̂d

dv̂d

dz
+ µdαd

dud

dz

+ µdud
dαd

dz
− αdρdg (5.17)

(1− αd)
dP

dz
+Kdvc −Kdv̂d =− ρc(1− αd)vc

dvc

dz
+ µc(1− αd)

duc

dz

− µcuc
dαd

dz
− (1− αd)ρcg (5.18)

(1− αd)
dvc

dz
− vc

dαd

dz
=0 (5.19)

dv̂d

dz
− ud =0 (5.20)

dvc

dz
− uc =0 (5.21)

Note that the gas phase mass transfer equation has been excluded as the void fraction can
be obtained from the PBE (5.12).

5.4.2 The least-squares formulation

We can write the system of linearized bubble column model equations for the PBE:

LPBfPB = gPB, in ΩPB ∈ R2 (5.22)
BPBfPB = hPB, on ΓPB (5.23)

and the cross-sectional averaged two-fluid model equations:

LMFfMF = gMF, in ΩMF ∈ R1 (5.24)
BMFfMF = hMF, on ΓMF (5.25)

in which LPB and LMF are first-order partial differential operators. ΩPB ∈ R2 and
ΩMF ∈ R1 are bounded domains with piecewise smooth boundary ΓPB and ΓMF, re-
spectively. The number of the space dimensions of the PBE problem is 2 as it includes
both internal and external coordinates, while that of the two-fluid model is 1 as it only
has external coordinate. fPB is the unknown density function n of xPB = (ξ, z), and
fT

MF = (v̂d, p, vc, ud, uc) is a vector of 5 unknown functions of xMF = z. gPB and gMF

are given vector-valued functions. BPB and BMF are algebraic boundary operators, and
hPB, hMF are given vector-valued functions on the boundary ΓPB and ΓMF, respectively.
The definitions of the problem operators LPB, LMF, the boundary operators BPB, BMF,
and the source terms gPB, gMF, hPB and hMF are outlined as follows. The linearized PBE
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operator LPB can be expressed as the summation of several sub-operators:

LPB{fPB} = LPB{f(ξ, z)}

=
∂

∂z
(vf(ξ, z))︸ ︷︷ ︸

convection

+ b(ξ)f(ξ, z)︸ ︷︷ ︸
breakage death

−
∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, z)dζ︸ ︷︷ ︸
breakage birth

+ f(ξ, z)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f ∗(ζ, z)dζ︸ ︷︷ ︸
aggregation death

− ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f ∗(ζ, z)f((ξ3 − ζ3)1/3, z)dζ︸ ︷︷ ︸

aggregation birth

(5.26)

with the source term gPB:

gPB(ξ, z) = 0 (5.27)

After rearrangement of the Eq.(5.17), (5.18), (5.19), (5.20) and (5.21), the linearized
cross-sectional averaged two-fluid model operator can be defined as:

LMF{fMF(z)} =


0

α∗d
K∗

d
0 0 0

0
1−α∗d
K∗

d
0 0 0

0 0 (1− α∗d) 0 0
1 0 0 0 0
0 0 1 0 0


dfMF(z)

dz

+


K∗

d

K∗
d

0 −K∗
d

K∗
d

0 0

−K∗
d

K∗
d

0
K∗

d

K∗
d

0 0

0 0 −dα∗d
dz

0 0
0 0 0 −1 0
0 0 0 0 −1

 fMF(z) (5.28)

with the source term:

gMF(z) =



1
K∗

d

[
−α∗dρdg − ρdα

∗
dv̂
∗
d

dv̂∗d
dz

+ µ∗du
∗
d

dα
dz

+ µ∗dα
∗
d

du∗d
dz

+Mwall
d

]
1

K∗
d

[
−(1− α∗d)ρcg − µ∗cu

∗
c

dα∗d
dz

+ρc(1− α∗d)v
∗
c

dv∗c
dz

+ µ∗c(1− α∗d)
du∗c
dz

+Mwall
c

]
0
0
0


(5.29)
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in which, ud and uc are introduced as 1st-order derivatives of gas and liquid velocity
in order to reduce the differential order of the two-fluid model to the standard first-order
system. Note the terms with an asterisk (*) indicates it’s known from the previous iteration
step.

It is assumed that the system is well-posed. The least–squares formulation minimizes the
residual of a norm-equivalent functional. The norm–equivalent functional for the system
is given by

J (fPB, fMF) = JPB(fPB) + JMF(fMF) (5.30)

in which,{
JPB(fPB) = 1

2
‖LPBfPB − gPB‖2

YPB(ΩPB) + 1
2
‖BPBfPB − hPB‖2

YPB(ΓPB)

JMF(fMF) = 1
2
‖LMFfMF − gMF‖2

YMF(ΩMF)
+ 1

2
‖BMFfMF − hMF‖2

YMF(ΓMF)

(5.31)

with the norm defined like

‖ • ‖2
Y (Ω) =< •, • >Y (Ω)=

∫
Ω

• • dΩ (5.32)

‖ • ‖2
Y (Γ) =< •, • >Y (Γ)=

∫
Γ

• • dΓ (5.33)

A system of equations is obtained by substituting fPB = fPB + εPBvPB and fMF = fMF +
εMFvMF and take the partial derivative of J with respect to εPB and εMF.

The minimization statement is equivalent to: find fPB ∈ XPB(ΩPB) and fMF ∈ XMF(ΩMF)
such that{

limε1,2→0
∂

∂εPB
J (fPB + εPBvPB, fMF + εMFvMF) = 0, ∀vPB ∈ XPB(ΩPB)

limε1,2→0
∂

∂εMF
J (fPB + εPBvPB, fMF + εMFvMF) = 0, ∀vMF ∈ XMF(ΩMF)

(5.34)

where XPB(ΩPB) and XMF(ΩMF) are the space of the admissible functions. vPB and vMF

are arbitrary trial functions and εPB and εMF are small perturbations. Consequently, the
necessary condition can be written as:

Find fPB ∈ XPB(ΩPB) and fMF ∈ XMF(ΩMF) such that{
APB(fPB,vPB) = FPB(vPB) ∀vPB ∈ XPB(ΩPB)
AMF(fMF,vMF) = FMF(vMF) ∀vMF ∈ XMF(ΩMF)

(5.35)

with
APB(fPB,vPB) = 〈LPBfPB,LPBvPB〉YPB(ΩPB) + 〈BPBfPB,BPBvPB〉YPB(ΓPB)

FPB(vPB) = 〈gPB,LPBvPB〉YPB(ΩPB) + 〈hPB,BPBvPB〉YPB(ΓPB)

AMF(fMF,vMF) = 〈LMFfMF,LMFvMF〉YMF(ΩMF) + 〈BMFfMF,BMFvMF〉YMF(ΓMF)

FMF(vMF) = 〈gMF,LMFvMF〉YMF(ΩMF) + 〈hMF,BMFvMF〉YMF(ΓMF)

(5.36)
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where APB : XPB × XPB → R and AMF : XMF × XMF → R are symmetric, continuous
bilinear forms, and FPB : XPB → R and FMF : XMF → R are continuous linear forms.
Using the these approximations in Eq.(5.36), the following matrix systems are obtained
for the PBE problem and the flow problem, respectively.

APBfPB = FPB (5.37)
AMFfMF = FMF (5.38)

We use the superscript t to denote the total number of degree of freedom over all subele-
ments. The matrix APB ∈ R(Nt

ξ×Nt
z)×(Nt

ξ×Nt
z), vectors fPB, FPB ∈ R(Nt

ξ×Nt
z) and matrix

AMF ∈ R(Nt
z×5)×(Nt

z×5), vectors fMF, FMF ∈ R(Nt
z×5) are defined like

[APB]ij = APB(Φj,Φi)

= 〈LPBΦj,LPBΦi〉Y (ΩPB) + 〈BPBΦj,BPBΦi〉Y (ΩPB) (5.39)
[FPB]i = F (Φi) = 〈[gPB]i,LPBΦi〉Y (ΓPB) + 〈[hPB]i,BPBΦi〉Y (ΓPB) (5.40)
[fPB]i = f([xPB]i), for 1 ≤ i, j ≤ (N t

ξ ×N t
z) (5.41)

and

[AMF]ij = AMF(Φj,Φi)

= 〈LMFΦj,LMFΦi〉Y (ΩMF) + 〈BMFΦj,BMFΦi〉Y (ΩMF) (5.42)
[FMF]i = F (Φi) = 〈[gMF]i,LMFΦi〉Y (ΓMF) + 〈[hMF]i,BMFΦi〉Y (ΓMF) (5.43)
[fMF]i = fMF([xMF]i), for 1 ≤ i, j ≤ N t

z. (5.44)

5.4.3 Iteration algorithm

For the iteration algorithm, splitting strategies are usually necessary for the FVM coupled
with the CFD. The PBE and flow calculations are conducted sequentially in two separate
sections. Information exchange is required between these sections within each iteration.

The operator splitting of the PBE is normally applied such that its convective part is
solved together with the continuity and momentum equations, while the breakage/coales-
cence parts are solved after the flow iteration loop is converged (see Figure 5.8). Such
algorithm usually needs multiple iterative loops - one loop for calculation of flow equa-
tions combined with the convective term of the PBE (LOOP 2), which contains a nested
loop for the convergence of the pressure correction equation (LOOP 1); another loop for
calculation of the nonlinear PBE with the breakage and coalescence terms (LOOP 3).

Figure 5.9 illustrates the algorithm of solving the PBE with the multi-fluid model that is
used in the bubble column problem of this work. It starts with two separated guessed
values of unknowns f∗PB(f ∗) and f∗MF(v

∗
c , v̂

∗
d, P

∗).

Since the information of the density function is known, moments of any order as well as
the void fraction (α∗) and the Sauter diameter (ξ32) can be calculated. Together with the
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Figure 5.8: Conventional iteration algorithm for solving the PBE coupled with the two-
fluid model.

guessed values being given, the PBE and multi-fluid linearized operators LPB, LMF with
their corresponding sources terms gPB and gMF are calculated.

The computation of the matrices A∗
PB and F∗PB, as well as A∗

MF and F∗MF may be carried out
by a least-squares method matrix constructor based on each individual problem operators.
The next step is the assembly procedure. The overall stiffness matrix A∗ and source vector
F∗ have the following structures:

A∗ =

[
A∗

PB 0
0 A∗

MF

]
F∗ =

[
F∗PB
F∗MF

]
(5.45)

in which A∗ is the matrix constructed by diagonalizing the stiffness matrices of the PBE
problem A∗

PB and the multi-fluid problem A∗
MF.

Note that the prerequest of the above assembly is that both the unknowns f∗PB and f∗MF, can
be mapped to the LPB(ΩPB) and LMF(ΩMF) function spaces via the problem operators LPB

and LMF, respectively.

The new values of the unknowns, f∗∗ = [f∗∗PB f∗∗MF]
T, can be obtained by inversion of the
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matrix equation A∗f∗∗ = F∗. Then, the old values, f∗PB and f∗MF, will be substituted by f∗∗PB
and f∗∗MF for the next iteration until the L2-normed residue

‖ R ‖L2 = ‖RPB‖L2 + ‖RMF‖L2

∼ max (‖ RPB ‖L2 , ‖ RMF ‖L2)

= max (‖ LPBfPB − gPB ‖L2 , ‖ LMFfMF − gMF ‖L2) (5.46)

is smaller than a specified value (10−6 for example) that ensures the convergence.

In comparison to the convectional approach of coupling the PBE and the flow equations,
we found that solving the coupled multi-fluid model and the PBE by using the least-
squares method is simpler and more systematic. Rather than conducting a decoupled
iterative process, the least-squares method solves the flow equations and the population
balance equation within the same framework. The least-squares approach does not split
the PBE operator into convective part, and the breakage and coalescence parts are not
solved in a second sequential step. Therefore, no multiple iterative loops are required. In
addition, instead of solving the moments, the least-squares method solves the bubble size
distribution function directly. Moments of any order can be retrieved in post-calculations
by Eq.(4.29). The number of the moments does not influence the size of the system,
as in QMOM. The way that the least-squares method is trying to minimize both sets of
equations at the same time and searches for the optimal solution to the overall system
corresponds to its intrinsic formulation Eq.(5.30).

We can see from Eq.(5.45) that the system is still not coupled in a mathematical sense,
which implies that the LSM is also able to solve the PBE and the multiphase flow models
separately like the case in the FVM. A fully coupled system will imply to create a common
L operator for both parts, and then the final matrix A will result in a coupled system.
This requires the dispersed velocity field v being solved in the multi-fluid model to be a
function of both internal and external coordinates as in the PBE. The multi-fluid model
thus has the same dimensionality as that of the PBE.

The cross-section averaged bubble column model has been implemented successfully us-
ing the LSM. The detailed simulated results and comparisons with experimental data
obtained from the TOPFLOW at Forschungszentrum Dresden-Rossendorf (FZD), can be
found in the self contained papers in the second part of this thesis.
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Chapter 6

Conclusions and Future Work

The main contributions of this Ph.D work is the development, analysis and testing the
applicability of using the least-squares method to solve the combined multifluid and PBE
model that is based on the physical processes occurring in the bubble column. Different
issues regarding the application of the least squares method were discussed in separate
chapters in this thesis. In this chapter we shall present a brief overview of these analysis
and the main conclusions. Besides, some possible lines of further research are suggested.

6.1 Conclusions

In this Ph.D work, a cross-sectional averaged two-fluid model combined with a population
balance model is applied to simulate the flow field and the bubble size distributions in a
two-phase bubble column. The Martinez-Bazan breakage kernel and a modified Prince
and Blanch coalescence kernel have been chosen to describe bubble breakage and bubble
coalescence, respectively. The solution of the combined multi-fluid model and the PBE
has been found numerically by the LSM. In addition to the prediction of the gas void
fraction, mean bubble diameter and moments of any order, the model has been shown to
predict the evolution of the bubble size distributions, directly. With the support of the
spectral elements, the LSM can find the solution in an more efficient way. The model has
been validated against experimental data obtained for two-phase flow in a bubble column.
The predicted bubble size distribution and other flow quantities are in good agreement
with the experimental data.

The author discussed the advantages of the LSM as a solver of the stand-alone multi-
fluid model, the stand-alone PBE and as a solver of multi-fluid model combined with
the PBE. For the coupling of the multi-fluid model and the PBE, the LSM combines
both high accuracy and efficiency. Similar to the (inhomogeneous) MUSIG, the LSM is
capable of using both one-velocity and multi-velocity groups. The multi-velocity group
in the LSM can be implemented by introducing subelements in the internal coordinate.
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Furthermore, all interfacial mass transfer, i.e. the mass exchange of bubbles between
different velocity groups, is completely handled by the PBE. The h/p-refinements within
the Gauss quadrature integration in the internal coordinate provide far more effective
approximation than the MUSIG. Opposite to the QMOM, moments of any order can be
retrieved in post-calculations in the LSM, and the number of the desired moments does
not influence the size of the system. In particular, the LSM is capable of solving the flow
equations and the PBE within the same framework without introducing operator splitting
and multiple iterative loops, hence an efficient and coupled scheme is obtained.

Significant loss of mass is observed when many breakage models are applied to compute
the evolution of dispersed phase properties within the PBE. The mass loss problem of
the dispersed phase is due to the fact that the breakup kernel does not precisely fulfill the
mass conservation property. The problem is merely physical, not numerical, and does
not disappear through increasing the numerical accuracy, leading to incorrect physical
interpretations of the model simulations.

The author proposed a mass conservative PBE by using a LSSEM which allows for incor-
porating the disperse phase mass-conservation (in the form of a continuity equation for
the disperse phase) by means of the Lagrange multipliers method. Then, the author solve
the PBE under this additional constraint by finding the saddle point of the coupled sys-
tem. Numerical experiments are carried out simulating the motion of a two-fluid model
coupled with the PBE in a 2D domain. The Martinez-Bazan kernel is applied to describe
the evolution of the dispersed phase. The results obtained by the constrained least-squares
spectral element method show that the mass is conserved everywhere in the domain with
high accuracy. The constrained LSM has significantly improved the performance of the
nonconservative breakup kernels.

The results of the constrained LSM is highly desirable as the mass is conserved. More-
over, the shapes of the density functions clearly reveal that the flow is determined by
the phenomena of bubble breakage. Although the enforcement of the mass conservation
property is achieved at the expense of the emergence of a few large bubbles, the over-
all quality of the density function is quite satisfactory for the PBE. Considering that in
many engineering problems the moments of the density function usually get more atten-
tion than the density function itself, the constrained LSM can be an attractive fix to these
mass nonconservative breakage kernels.

However, by introducing the Lagrange multiplier one loses positive-definiteness - one of
the appealing features of the LSM. A mixed problem for which one needs to establish
an inf-sup inequality is obtained. Equal order interpolation (another nice property of the
LSM) is not possible anymore. Nevertheless, this mass conservative formulation of the
PBE offers an attractive solution to a hitherto unsolved problem and may turn useful in
engineering applications.

In this work a least-squares solver with an inherent direct minimization method (DM) is
used for examining the convergence rate and the number of iterations required solving
the population balance equation with different coalescence rates. The coalescence term
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in the equation introduces a non-linearity that increases the complexity of the population
balance equation.

It is shown that like the LSM, the DM generates the solution with high accuracy in both
the breakage and coalescence dominant cases. The system with high non-linearity, large
scale tends to be ill-conditioned. In comparison with the LSM, the DM has a condition
number corresponding to the square root of the condition number of the system matrix of
the LSM. This causes the fact that at a very high condition number, the LSM will become
unstable or even fail to converge, while the DM can still get accurate results. Therefore, to
solve a large scale non-linear PBE, the direct minimization method would be beneficial.
Nevertheless, as mentioned in Section 2.4, the DM does not always lead to a symmetric,
positive definite system. The LSM still has the advantages of handling the first-order
differential equations and overdetermined systems. These are the issues need to be taken
into account when deciding which method should be used in practical problems.

In addition to the major contributions mentioned above, a general purpose least-squares
spectral element method toolbox lssem-suite has been designed and implemented by
the author. The lssem-suite provides a highly flexible interface so that the user-defined
problem operators can be easily implemented. It encapsulates the complexity of the least-
squares method and makes the developing process of complex systems such as the large-
scale multiphase models much faster and less error-prone.

Complex theory and implementation are the main disadvantages of the least-squares
method that hinder its popularity in the CFD community. It is a relatively novel method
and needs more time to be made available to engineers. At present it is regarded as a re-
search tool. Compared to other conventional methods, for the LSM it is more difficult to
define the stiffness matrix and sources. For equivalent number of the degrees of freedom,
the stiffness matrix of the LSM usually has a higher condition number than other low
order methods and the classic Galerkin method. For non-linear problems, computational
cost is more expensive for each iterative step in the LSM, but the much fewer degrees of
freedom required is a merit and reduces the overall computation. Another drawback of
the LSM is stability as the linearization procedure has to be explored for every novel case
(the same limitation is associated with the FVM approach, but 30-40 years experience has
provided some rules of thumb).

6.2 Future work

This work presents the most complex multiphase flow model test of the LSSEM to date
in our group. Nevertheless, the advantages observed so far are that the convergence rate
is normally higher and better accuracy is obtained compared to the FVM solution. The
present work was limited to steady, one-dimensional flow. A logical extension of the cur-
rent research work could be the development of least-squares spectral element methods for
the two- and three-dimensional unsteady multiphase flow equations. The efforts should
be made to address more interfacial forces like lift force and virtual mass force. Emphasis
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should also be laid on selecting a proper turbulence model based on the mechanisms of
turbulence production and dissipation due to the interaction between the phases.

A more sophisticated case is when a non-isothermal species flow is considered, in order
to gain insights of temperature profile, chemistry, conversion rate, reactive transport and
so on, the heat balance equation and the chemical species balance equation are expected
to be included in the model.

The assumption of incompressible gas flow fails to account for the vertical variation of
bubble size due to the hydrostatic pressure change, leading to the underestimation of the
void fraction in the upper part of the column. This assumption should be removed in
future work by introducing an equation of state for the gas phase. Moreover, advanced
thermodynamic models should be considered in certain processes to characterize the re-
action equilibrium, phase equilibrium, non-polar/polar/ionic mixtures.

At present, the multi-fluid model incorporated with the PBE uses merely one velocity
group. This assumption is necessary to reduce the gas phase momentum equations to
a single equation with a velocity field, but this simplification makes the model unable to
take into account the inhomogeneous properties of bubbly flow. Tomiyama et al. [89] also
pointed out that the radial migrations of bubbles are different for bubbles of different sizes.
Incorporation of this effect would significantly alter the gas void fraction predicted by the
model. Therefore, future work should also be designed to use the multiple velocity group
models, or even treat the velocity as a function of both internal and external coordinates,
which is essential in real, physical multiphase flows. That is, making the gas velocity a
function of particle size, space and time v(ξ, z, t) provides a close to continuous solution
of the momentum equation in all the 5 coordinates. This procedure will provide a more
accurate representation than the present inhomogeneous multi-fluid model utilizing only
a few velocity classes [51].

Many experimental observations show the bubble hydrodynamics (e.g., the bubble termi-
nal velocity) are also affected by the shape of the bubbles. Hence an extra internal coordi-
nate can be constructed so that the bubble shapes like sphere, ellipsoid and spherical-cap
can be quantitatively characterized, which results in a bi-variant distribution function.
Different extra internal coordinates can also be chosen for characterizing chains lengths,
lumps of the polymers in polymer chemistry; different solid particle types such as catalyst,
adsorbents, etc. in the fluidized bed reactor. With the model of this level of complexity, it
would be extremely useful to evaluate the simulation of the dynamic 3D multifluid-PBE
model of multiphase flows, and to see if the LSSEM is more efficient than the FVM for
this purpose.

Further theoretical work is needed deriving consistent and more accurate population bal-
ance models, and this subject is in itself a source of large uncertainties. It is still in an ini-
tial stage of development and significant research is required developing models based on
a physical understanding of the phenomena. An important and fundamental requirement
of these models is that the mass conservation property should be strictly satisfied. Prelim-
inary tests have shown that the state of the art breakage kernel needed for the PBE does
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not fulfill this requirement. Experimental work and mathematical techniques like neural
networks, inverse problem, parameter fitting, etc., can be utilized in order to determine
the main characteristics of these functions and obtain models for practical applications.

Alternatively, the constrained LSM proposed by the author can be an attractive method
to fix the nonconservative property of many existing population balance models. This
method can be served as an effective remedy in applications where the composition of
the system in terms of dispersed phase fraction is a key process variable. It is worthwhile
to mention that the Lagrange multipliers method used to formulate the mass conservative
PBE is an universal method. Further extensions might be oriented toward the implemen-
tations of the constrained PBE with different numerical methods such as CM, QMOM
and DQMOM.

The multiphase reactive flow model encompass a very broad range of applications. Be-
sides the bubble column discussed in this work, it also includes, stirred tanks with im-
pellers, crystallization tanks, fluidized bed reactors, and perhaps even three-phase slurry
bubble columns. Despite the obvious physical differences among these units, there is a
similarity in the forms of the descriptive equations. Thus the consideration and procedures
for constructing numerical models of these systems are also similar.

Another direction for future work could be the improvements of the present lssem-suite
such as to include an iterative matrix solver and the development of mesh generation for
complex geometries. Incorporation of adaptive mesh refinement based on the posteriori
error indicator is also expected.
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Appendix A

Spectral Element Approximation in Rn

A.1 Spectral element in one-dimension

The problem domain Ω can be divided into Ne subdomains (Ω1,Ω2, . . . ,ΩNe) in order to
achieve better numerical efficiency. Therefore, we have

Ω =
Ne⋃
e=1

Ωe. (A.1)

It is possible to express the global modes φJ(x) in terms of the local expansion modes
φe

j(x). Therefore, we can express local expansion of unknowns fN in terms of φe
j(x), that

is,

fN(x) =
N∑

J=1

fJφJ(x) =
Ne∑
e=1

Ne
m+1∑
j=1

f e
j φ

e
j(x), (A.2)

Suppose a one-dimensional domain Ω is divided into three linear elements, called Ω1,
Ω2 and Ω3, numbered from left to right as shown in Figure A.1. The nodes have the
coordinates x1, x2, x3 and x4 and the constraint is that the global modes are continuous
everywhere, which implies

f 1
2 = f 2

1 (A.3)
f 2

2 = f 3
1 (A.4)

The relationship between the local and global expansion coefficient is

f 1
1 = f1

f 1
2 = f 2

1 = f2

f 2
2 = f 3

1 = f3

f 3
2 = f4
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Figure A.1: One-dimensional domain divided into three subdomains with linear polyno-
mial expansion.

For this example it can be seen that the local representation of the function has totally six
elemental degrees of freedom (Ndof = Ne(N

e
m + 1) = 6) but only four global degrees

of freedom (N = 4). The two constraints shown in (A.3) and (A.4) ensures that fN(x)
is C0 continuous. As a result, there are more local expansion coefficients f e

j than global
expansion coefficients fJ

A general procedure for global assembling is to construct a mapping array GM called the
local-global mapping matrix. GM is a Ne× (N e

x +1) matrix where the e–th row contains
in a fixed order the indices of the global expansion coefficients of the e–th subdomain.
N e

m is called the elemental degree of freedom.

GM =

 1 2
2 3
3 4

 (A.5)

The scatter operation can then be evaluated as

for e = 1 → Ne

for j = 1 → N e
x

f e
j = [fg]GMej

end
end

(A.6)

Alternatively, the global assembly may be written as

for e = 1 → Ne

for j = 1 → N e
x

[fg]GMej
= f e

j

end
end

(A.7)

Each spectral element is first mapped on the reference element and then the local systems

Aef
e = ge, with e = 1, · · · , Ne (A.8)
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are calculated. The matrix Ae represents the least-squares spectral element discretization
of the governing equations of spectral element e, and the vectors f e and ge represent the
corresponding local variables and the right-hand function, respectively.

The local-global mapping matrices GM can also be expressed by the sparse gathering
matrix Ge which has nonzero entries. The global assembly of the Ne local systems (A.8)
can now readily be obtained with:

Afg = g ⇐⇒

[
Ne∑
e=1

GT
e AeGe

]
fg =

Ne∑
e=1

GT
e g (A.9)

in which,

G1 =

[
1 0 0 0
0 1 0 0

]
G2 =

[
0 1 0 0
0 0 1 0

]
G3 =

[
0 0 1 0
0 0 0 1

]
. (A.10)

The row number of the gathering matrix equals to the local degree of freedom in a subele-
ment, and its column number equals to the global degree of freedom. The gathering ma-
trix contains information of a single subdomain with each of its local node is marked by
a unit value. The row number of this unit value is the local index and the column number
is the global index.
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Figure A.2: The structures of local and global systems in the spectral element approaches
of the LSM.

The structures of the local systems and assembled global system can be viewed in Figure
A.2. It can be seen that the local expansion coefficients of overlapping boundary points
exist within two adjacent local systems. Values at corresponding positions of the global
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stiffness matrix A and load vector g are evaluated as the summations of values from the
two adjacent local systems. It is worthwhile to mention that N e

x can be greater than 1 and
it is not necessary that N e

x in each subdomain must be equal. In such case, the global GM
is a more complex data type other than the matrix in (A.5).

A.2 Spectral element in multi-dimension

Suppose a two-dimensional domain Ω is divided into four spectral elements, called Ω1,
Ω2, Ω3 and Ω4, numbered from left to right and bottom to top as shown in Figure A.3.

x

y

N
t
x = 5

N
t y
=

5

N
1
x + 1 = 3

N
1 y

+
1

=
3

Ω1 Ω2

Ω3 Ω4

P, R

Q
,
S

I, J

p, r

q
,
s

1

1

Figure A.3: The index system on a two-dimensional spectral element domain that is di-
vided into four subdomains.

For the two-dimensional spectral element problem, we introduce two sets of numbering
system, local numbering and global numbering.

The local numbering system is with respect to the individual subelement. Each node in
the subelement can be identified by two integer numbers called local subscripts. These
local subscripts are number from left to right in the x-direction and from bottom to top in
the y-direction.

As being written in subelement Ω1 in Figure A.3, the local subscripts p and q to denote
the location of the GLL points for x and y, while another set of local subscripts r and s
represent the degree of freedom for x and y in each subelement.

Alternatively, locations of local GLL point can also be identified by a single number called
local index. The local subscripts (p, q, r and s) can be equivalently substituted by local
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indices i and j through the following transformation.

i = (q − 1)× (N e
y + 1) + p, 1 ≤ p ≤ (N e

x + 1) and 1 ≤ q ≤ (N e
y + 1) (A.11)

j = (s− 1)× (N e
y + 1) + r, 1 ≤ r ≤ (N e

x + 1) and 1 ≤ s ≤ (N e
y + 1) (A.12)

in which N e
x and N e

y are the 1D polynomial degree of the basis functions in x and y-
direction, respectively.

The inverse transformations that convert from local indices to local subscripts are

q = floor

(
i

N e
y + 1

)
+ 1, p = i− (p− 1)× (N e

y + 1); (A.13)

s = floor

(
j

N e
y + 1

)
+ 1, r = j − (r − 1)× (N e

y + 1). (A.14)

Here floor is a function that rounds towards negative infinity.

Similarly in the global domain, a global numbering system is used to uniquely denote the
location of each GLL point. In our notion we use the capital letters to represent the global
numbering in order to differentiate from the local numbering.

We can write transformation between the global subscripts (P , Q, R and S) and global
indices (I and J) by resembling of the local transformations

I = (Q− 1)×N t
y + P, 1 ≤ P ≤ N t

x and 1 ≤ Q ≤ N t
y (A.15)

J = (S − 1)×N t
y +R, 1 ≤ R ≤ N t

x and 1 ≤ S ≤ N t
y. (A.16)

and the inverse transformations

Q = floor
(
I/N t

y

)
+ 1, P = I − (P − 1)×N t

y; (A.17)

S = floor
(
J/N t

y

)
+ 1, R = J − (R− 1)×N t

y. (A.18)

in which, N t
y and N t

x are the global degree of freedom in y and x, respectively.

The nodes in the 2D domain have their local indices shown in Figure A.4 (a) and the
global indices shown in Figure A.4 (b), respectively. Indices (including the local indices
and global indices) are necessary to construct the local and global stiffness matrices Ae

and A, respectively. The reason that we introduce the concept of subscript is that it
stores the information of GLL positions in each dimension, which makes values of the
Lagrangian polynomials readily to construct the least-squares problem operator L .

Now we can use the global indices to approximate the fN(x, y) in terms of local indices,
that is

fN(x, y) =

Nt
y×Nt

x∑
J=1

fJΦJ(x, y) =
Ne∑
e=1

(Ne
y+1)×(Ne

x+1)∑
j=1

f e
j Φe

j(x, y) (A.19)
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Figure A.4: The local indices (a) and global indices (b) of GLL points on a two-
dimensional physical domain that is divided into four subdomains.

in which

Φe
j(x, y) = φe

r(x)φ
e
s(y)

As it can be seen there are more local expansion coefficients f e
j than global expansion co-

efficients fJ , some extra constraints are required. The constraint is that the approximation
is continuous everywhere, which implies for example

f 1
3 = f 2

1 (A.20)
f 1

7 = f 3
1 (A.21)

f 1
9 = f 4

1 (A.22)

The relationship between the local and global expansion coefficient on subdomain Ω1 is

f 1
1 = f1

f 1
3 = f 2

1 = f3

f 1
7 = f 3

1 = f11

f 1
9 = f 2

7 = f 3
3 = f 4

1 = f13

For this example it can be seen that the local representation of the function has totally 36
elemental degrees of freedom (Ndof = Ne

∑Ne

e=1[(N
e
x + 1)× (N e

y + 1)] = 36, see Figure
A.4(a)) but only 25 global degrees of freedom (N t

dof = N t
x×N t

y = 25, see Figure A.4(b)).
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The constraints such as (A.20), (A.21) and (A.22) ensure that fN(x, y) is C0 continuous
1 across the subelement boundaries.

As in the one-dimensional spectral element approach, a general procedure for global as-
sembling is to construct two local-global mapping matrices GMx and GMy.

GMx is a Nex × (N e
x +1) matrix where the ex–th row contains in a fixed order the global

subscripts of the global expansion coefficients of the ex-th subdomain in x-direction. Nex

is number of subdomains in x-direction. GMy is aNey×(N e
y +1) matrix where the ey–th

row contains in a fixed order the global subscripts of the global expansion coefficients of
the ey-th subdomain in y-direction. Ney is number of subdomains in y-direction. The
elemental index e can be represented by elemental subscripts ey and ex by following
expression

e = (ey − 1)×Nex + ex (A.23)

For our example the GMy and GMx are

GMy =

[
1 2 3
3 4 5

]
GMx =

[
1 2 3
3 4 5

]
(A.24)

Therefore, the global subscripts can be expressed by the local subscripts,

P = [GMx]ex,p (A.25)
Q = [GMy]ey ,q (A.26)
R = [GMx]ex,r (A.27)
S = [GMy]ey ,s. (A.28)

By using Eqs. (A.13), (A.14), (A.15), (A.16), (A.25), (A.26), (A.27) and (A.28), the
scattering operation that convert the local expansion coefficients to the global expansion
coefficients can thus be evaluated as

for e = 1 to Ne

for j = 1 to (N e
y + 1)× (N e

x + 1)

j
(A.14)−−−−→ r, s

r, s
(A.27) and (A.28)−−−−−−−−−−−−−→ R, S

R, S
(A.16)−−−−→ J

f e
j = [fg]J

end
end

Alternatively, the global assembly may be written as

1C0 continuity means the approximated curve points vary smoothly. That is, the curve is a set of
connected points. C1 continuity means the curve’s first derivatives vary smoothly (plus C0 continuity).
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for e = 1 to Ne

for j = 1 to (N e
y + 1)× (N e

x + 1)

j
(A.14)−−−−→ r, s

r, s
(A.27) and (A.28)−−−−−−−−−−−−−→ R, S

R, S
(A.16)−−−−→ J

[fg]J = [fg]J + f e
j

end
end

in which, fg and f e are arrays of the global and local expansion coefficients, respectively.
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Appendix B

A Generic LSSEM Toolbox -
lssem-suite

B.1 Introduction

During the present work, the author has developed a generic least-squares spectral element
method toolbox, lssem-suite. The lssem-suite is a computer program written in Matlab
to solve PDEs using the least-squares spectral element method.

The lssem-suite takes the advantages of the high-level scripting language, and uses ad-
vanced data structures which allow an easy and efficient implementation of the problem
dependent parts and mesh generation algorithms. A specific problem can be implemented
and solved by providing just some problem dependent routines for evaluation of the (lin-
earized) differential operator and source terms.

The lssem-suite consists of four general purpose solvers; linearlssemoneproblem.m,
nonlinearlssemoneproblem.m, linearlssemmulti-problem.m and nonlinearlssemmulti-
problem.m. There functions provide the capabilities of resolving both linear and nonlin-
ear systems, as well as both single PDE problem and multiple PDE problem. The features
of the lssem-suite are summarized as follows:

• Technique for solving the PDE: The least-squares method.

• Number of space dimensions: Indefinite (only limited by the capacity of computer
memory). The data structures used in the codes, which dynamically allocate/deal-
locate the memory as the computation proceeds, allows easy extensions to higher
dimensions. The space specifications can be formulated in such a way that the
dimension is entered as a parameter (e.g. like size of local coordinate vectors)

• Number of variables: Indefinite (only limited by the capacity of computer memory).
The lssem-suite is suitable for problems with infinite number of variables defined
in the prescribed domain.
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• Number of PDE problems: Indefinite (only limited by the capacity of computer
memory). Based on the intrinsic property of the least-squares method, the lssem-
suite allows problems defined in different spaces to be solved within the same
framework.

• The h/p-refinements: The h/p spectral element method, in which both grid size h
and local polynomial order p are altered, is a very effective discretization scheme
for the numerical solution of large scale partial differential equations. The lssem-
suite is equipped with the grid specification with both local h-refinement and p-
enrichment, while different local function spaces can be used on all subgrid ele-
ments.

• Higher-order integration: In order for the least-squares spectral element method
to make sense, the number of the Gaussian quadrature points must be equal to
or greater than the number of the Lagrangian polynomials order. In particular, it
is reported that higher order integration is used in the hyperbolic type differential
equations [16]. The lssem-suite allows both equal order and higher-order integra-
tion.

• Iteration method: Picard iteration, by which the general nonlinear discrete systems
be solved.

• The codes are written in MatLab (Version 7.2.0.294) and can be run under both
Windows and Linux platforms.

B.2 Code design and organization

The writing of the lssem-suite codes is initiated by a complete design and organization.
The starting point for the design is the concept of the least-squares formulation and the
spectral element discretization. The features of the design include the following:

• The problem operator definition part is made flexible and isolated from the numer-
ical modules. The design of the lssem-suite data structure allows a dimension
independent implementation of the problem dependent parts.

• The problem operator is defined locally in a subelement. Element-stiffness matrices
are computed and stored locally.

• Special modules have been developed to handle the subelement indices setting, as
well as assembly/scattering between the local and global problem operators.

• The Dirichlet-node boundary information is implemented with a weak boundary
approach such that the Dirichlet-node coordinate setting is numbered by global
numbering on the global stiffness matrix.

• Dynamic data structure. The storage management within lssem-suite is fully dy-
namic so that modifications of routines are not necessary when changing the prob-
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lem and dimension size.

To ensure the maximum reuse of the codes, the solver of the nonlinear and multi-problem
systems which may require extra modules, are built upon the linear single problem solver.
Figure B.1 (a) shows the structure of the lssem-suite comprising four different LSSEM

The lssem-suite
Linearone-PDEsolver Non-linearone-PDEsolver Linearmulti-PDEsolver Non-linearmulti-PDEsolverLinearone-PDEsolver

Boundary valuemodule Operator 
onstru
tmodule Grid generationmodule Parameter inputmodule Linear solvermodule
Assembly/de-assemblymanipulations GLL library Ve
tor/matrixmanipulations

(a)

(b)

Figure B.1: The structure of the lssem-suite components.

solvers that are applied in four different circumstances. The fundamental one - the linear
one-problem solver, with its structure being presented in Figure B.1 (b), provide solutions
of the discrete linear problems on a fixed mesh. The structure of this solver has been
made as an independent unit. It consists of five modules, in which the first four in gray
boxes in Figure B.1(b) take the user-defined problem specification, boundary conditions,
grid informations and parameters as input. These modules have direct interactions with
the users.

At the bottom level is the assembly/scattering manipulation modules, providing the key
operations constructing the global operators by looping over the local contributions de-
fined in each subelement. The GLL module computes the values of the basis functions,
the Gaussian quadrature weights and positions, and the derivative of the basis functions
at the locations of the quadrature points with respect to each independent variable, etc. A
vector/matrix manipulation module defining several elementary matrix operations is also
included.
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Based on the elementary linear one-PDE least-squares method solver, several variations
which are suitable for different types of problems can be developed with the help of two
additional modules, the Picard iterative module and the multiple PDE problem module.
Figure B.2 shows the relationship of these modules from which new advanced solvers are
evolved. The linear one-problem solver is wrapped into the codes of the existing solvers
and serves as the inner core.

Picard
iterative
module

Multiple
problem
module

Linear
one-problem
solverNon-linear

one-problem
solver

Linear
multi-problem
solver

Non-linear
multi-problem
solver

Figure B.2: The relationship of the solvers in lssem-suite.

Using these solvers, the toolbox lssem-suite provides the whole abstract framework of
the least-squares spectral element method, easy and flexible problem posing and cus-
tomizing, and meshes routines for grid generation, with the complete administration of
the spectral element space and the corresponding degrees of freedom during the mesh
modifications.

B.3 An example of usage of the lssem-suite

In this section, an example on how to solve a partial differential equation using the lssem-
suite solvers is outlined. The test problem is a linear two-dimensional Poisson’s equation
with boundary conditions. This example shows the basic usage of the lssem-suite, which
includes the following steps:

• Grid generation;

• Boundary condition specification;

• Problem operator and source term specification;

• Solving the linear system of equations.
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B.3.1 Problem description

Consider a two-dimensional Poisson’s equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
= 6xy(1− y)− 2x3 in Ω = (0, 1)2 ∈ R2 (B.1)

with its boundary conditions:

• in x-direction {
x = 0 : ψ(0, y) = 0
x = 1 : ψ(1, y) = y(1− y)

(B.2)

• in y-direction

ψ(x, 0) = ψ(x, 1) = 0 (B.3)

The problem has a analytical solution:

ψ(x, y) = y(1− y)x3 (B.4)

We solve the equation by introducing two new variables u and v

u =
∂ψ

∂x
(B.5)

v =
∂ψ

∂y
(B.6)

which represent the first derivatives of ψ with respect to x and y, respectively. Therefore
the new set of equations can be written as

∂u

∂x
+
∂v

∂y
= g(x, y) (B.7)

∂ψ

∂x
− u = 0 (B.8)

∂ψ

∂y
− v = 0 (B.9)

or in matrix form

L f = Lx
∂f

∂x
+ Ly

∂f

∂y
+ L0f = g (B.10)

in which, the unknown vector and source terms are defined as

f =

 u
v
ψ

 , g =

 6xy(1− y)− 2x3

0
0

 (B.11)

and the parameter matrices are defined as

Lx =

 1 0 0
0 0 1
0 0 0

 , Ly =

 0 1 0
0 0 0
0 0 1

 L0 =

 0 0 0
−1 0 0
0 −1 0

 . (B.12)
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B.3.2 Specify grid information

A function file (poisson.m) aimed at resolving the Poisson’s problem is created under
the Matlab search path starting with the specification of the grid. It should have the form
of Listing B.1.

1 % x-direction
2 xStartArray = [0.0,0.3,0.7];
3 xEndArray = [0.3,0.7,1.0];
4 nxDofArray = [3,4,3];
5 nxGllArray = [3,4,3];
6 xPtsType = ’GLL’;
7 xDomainData = lssemdomain(xStartArray,xEndArray,nxDofArray, ...
8 nxGllArray,xPtsType);
9

10 % y-direction
11 yStartArray = [0.0,0.3,0.7];
12 yEndArray = [0.3,0.7,1.0];
13 nyDofArray = [4,5,4];
14 nyGllArray = [4,5,4];
15 yPtsType = ’GLL’;
16 yDomainData = lssemdomain(yStartArray,yEndArray,nyDofArray, ...
17 nyGllArray,yPtsType);
18

19 % domainDataVec is an array of structs.
20 domainDataVec = [xDomainData yDomainData];
21

22 [xt yt] = deal(domainDataVec(:).DOFPtsArray);
23 [Nxt Nyt] = deal(domainDataVec(:).nDOF);

Listing B.1: Specification of problem domain and grid information

Here we divid both the x-direction and y-direction into three partitions so that the global
domain comprises 3× 3 subdomains.

Lines 2-3 in Listing (B.1) define the lower and upper boundaries of each subelement for
dimension x. Then, lines 4-5 assign the number of degree of freedom and the order of the
quadrature the integration by enumerating numbers in vectors. As mentioned in section
B.1, the order of integration must always be equal or greater than number of the DOFs.
The user is not precluded from choosing a subelement that has different integration order
than degrees of freedom per element.

The options for the type of polynomials are either Gauss-Legendre-Lobatto (GLL) or
Gauss-Legendre (GL). Lines 11-15 repeat the same procedure for the y-direction. The
function lssemdomain takes the above information as arguments, and computes the
grid-related variables and encapsulates them into the struct variables xDomainData and
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yDomainData for each dimension. The xDomainData and yDomainData structs
are later wrapped into an array of structs named domainDataVec, by which the infor-
mation of the global discrete points and total number of these points can be retrieved from
line 22 and line 23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure B.3: A 2D Poisson’s problem’s domain that consists of 9 subdomains (ex = 3,
ey = 3 and e = exey = 9).

The results of the grid structure is shown in Figure B.3, where the initial grid which is the
square of [−1, 1] × [−1, 1] consists of only one cell, has been refined. The final grid has
3× 3 = 9 cells, and a total of 8× 8 = 64 degrees of freedom.

B.3.3 The boundary condition specification

The Dirichlet boundary condition of the Poisson problem requires specifications in the
discrete domain. The solver needs to know at which points, what value has been assigned
to which variables.

A matrix called boundary matrix can be constructed to hold these information. In this
two-dimensional example, we define the boundary matrix psiBc (see Figure B.4). with
its first two column corresponding to the global subscripts indicating the boundary nodes
position in each dimension. The third column is the variable index (3 corresponds to ψ)
and the last column stores a float condition for the boundary condition of the variable at
the specified boundary points.

The number of rows of the psiBc equals to the number of DOFs on the whole or on parts
of the boundary. In this test case, according to the given boundary conditions (B.2) and
(B.3), all the exterior points of the domain have been specified and the number of rows
of psiBc is 2×(Nxt+Nyt). The code for specifying the boundary condition is shown in
Listing B.2.
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phiB
 =
Ix Iy 3 Value

2×

(Nxt+Nyt)

Γ4

Γ3

Γ2

Γ1

BoundaryPosition VariableNumber BoundaryValue
The problem domain

ΩΓ1

Γ2

Γ3

Γ4

Figure B.4: The boundary value matrix, psiBc.
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1 % Number of the dimensions
2 nDims = length(domainDataVec);
3

4 % Boundary matrix
5 psiBc = zeros(2*Nxt+2*Nyt,nDims+2);
6

7 % Boundary condition counter
8 iBc = 0;
9

10 % Gamma 1
11 Ix = 1;
12 for Iy = 1:Nyt
13 iBc = iBc+1;
14 psiBc(iBc,:) = [Ix,Iy,3,0];
15 end
16

17 % Gamma 3
18 Ix = length(xt);
19 for Iy = 1:Nyt
20 iBc = iBc+1;
21 psiBc(iBc,:) = [Ix,Iy,3,yt(Iy)*(1-yt(Iy))];
22 end
23

24 % Gamma 2
25 Iy = 1;
26 for Ix = 1:Nxt
27 iBc = iBc+1;
28 psiBc(iBc,:) = [Ix,Iy,3,0];
29 end
30

31 % Gamma 4
32 Iy = length(yt);
33 for Ix = 1:Nxt
34 iBc = iBc+1;
35 psiBc(iBc,:) = [Ix,Iy,3,0];
36 end
37

38 fBc = psiBc;

Listing B.2: Specification boundary conditions
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B.3.4 The problem operator specification

In Listing B.3 the problem operator and the source term have been defined. The func-
tion opt provides the problem operator lv and source vector gv for each node of the
subelement for the 2D Poisson problem.

The function name opt can be defined freely by the user, whereas the function pattern
is built and fixed. It takes arguments of subdomainDataVec which encapsulates all
grid information regarding to the present subelement, and iVec, jVec store the local
subscripts comprising the integration order and the DOFs, respectively.

In general, we need the values of the basis functions at the quadrature points, their gra-
dients and sometimes the weights in each subelement. Lines 3-5 in Listing B.3 are the
assignments of these values extracted from the subdomainDataVec. The capital B is
used to indicate the 1D local discrete mass matrix and capital D for the 1D local derivative
matrix. The next 2 lines of codes acquire the local subscripts of the quadrature integration
order (ix and iy) from iVec and the local subscripts of the Lagrangian polynomials (jx
and jy) from jVec.

The matrices lx, ly and l0 are the differential operator with respect to x, differential
operator with respect to y and the zeroth order operator. They have exactly the same
structures as have been defined in Eq.(B.12). We can get the partial derivatives of the 2D
shape function with respect to x/y at the quadrature points by using the product of the
1D Lagrangian polynomials values and the values of the derivatives of the 1D Lagrangian
polynomials with respect to x/y at these particular quadrature points. That is

∂

∂x

(
φjx(x)φjy(y)

) ∣∣∣
x=xix ,y=yiy

= φ′jx
(xix)φjy(yiy) = [dx]ix,jx [by]iy ,jy (B.13)

∂

∂y

(
φjx(x)φjy(y)

) ∣∣∣
x=xix ,y=yiy

= φjx(xix)φ
′
jy

(yiy) = [bx]ix,jx [dy]iy ,jy (B.14)

in which, the 1D mass matrix bx, by and the 1D derivative matrix dx, dy correspond to
the array variables Bx, By and Dx, Dy.

Based on Eq.(B.10) the overall problem operator lv is obtained (line 20-22 in Listing
B.3). We then do the same thing for the right hand side source term. The function
source is an user-defined routine providing the source vector gv.

Note that the values of the local operator and source vector are evaluated each time the
subdomainDataVec, index vectors iVec and jVec vary, whereas the subdomainDataVec
that contains the quadrature information, derivative matrix, etc, regardless whether they
are needed or not, are only recomputed and updated when switching to a new subelement.

1 function [lv gv]=opt(subdomainDataVec,iVec,jVec,pars)
2

3 [xh yh] = deal(subdomainDataVec(:).gllPts);
4 [Bx By] = deal(subdomainDataVec(:).B);
5 [Dx Dy] = deal(subdomainDataVec(:).D);
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6

7 % local indices
8 [ix iy] = dealvector(iVec);
9 [jx jy] = dealvector(jVec);

10

11 % Differential operator with respect to x
12 lx = [1 0 0;0 0 1;0 0 0];
13

14 % Differential operator with respect to y
15 ly = [0 1 0;0 0 0;0 0 1];
16

17 % Zeroth order operator
18 l0 = [0 0 0;-1 0 0;0 -1 0];
19

20 lv = lx*Dx(ix,jx)*By(iy,jy)+...
21 ly*Bx(ix,jx)*Dy(iy,jy)+...
22 l0*Bx(ix,jx)*By(iy,jy);
23

24 gv = source(xh(ix),yh(iy));
25 end
26

27 function gv=source(x,y)
28 gv = zeros(3,1);
29 gv(1) = 6*x*y*(1-y)-2*x^3;
30 gv(2) = 0;
31 gv(3) = 0;
32 end

Listing B.3: Specification of the problem operator and source vector

All the matrices of lv and the vector gv computed on the subelement will be sent to the
assembly module to build up a global operator and a global source vector, and to formulate
a large-scale linear problem, from which all the unknowns will be computed. We could
write the results directly into the global matrix, but this is not very efficient since access
to the elements of a large matrix is slow. Rather, we first compute the contribution of each
subelement in a small matrix with the degrees of freedom on the present subelement,
and transfer them to the global matrix only when the computations are finished for this
subelement. We do the same for the right hand side vector.

B.3.5 Call the lssem-suite solver

Now everything is set up for the solution of the discrete system. Since this two-dimensional
Poisson problem is linear and no other problems defined in different function spaces are
specified, we chose the linear one-problem LSSEM routine, linearlssemoneproblem
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to solve the problem. As presented in Listing B.4, the routine linearlssemoneproblem
takes the arguments of the grid information struct domainDataVec, the user-defined
operator function opt, the boundary value matrix fBc, the options and parameters. The
empty brackets assigned to the options and the pars indicate that we simply take the
default setting for the solver and no parameter needs to be passed.

The outputs of the solver is the solution f, the global least-squares operator A, the global
source vector F and the condition number of the global operator condA.

The last index of the multiple dimension the array f indicates the variable index. The
order of the variables in array f corresponds to the operators (lx, ly and l0) defined
in the Listing B.3. All the three unknowns u, v and ψ can be extracted from f by some
post-processing as given in lines 8-10 in Listing B.4.

1 options = [];
2 pars = [];
3

4 [f,A,F,condA] = linearlssemoneproblem(domainDataVec, ...
5 @opt,fBc,options,pars);
6

7 u = f(:,:,1);
8 v = f(:,:,2);
9 phi = f(:,:,3);

Listing B.4: Solve the Poisson problem by linearlssemoneproblem solver

Figure B.5 shows the numerical solution of potential variable ψ with comparison with the
analytical solution.
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Figure B.5: The numerical result of a 2D Poisson’s problem with ‖ψ − ψexact‖L2(Ω) =
1.0326× 10−7 with the convergence criteria set as |ψnew − ψold| ≤ 1× 10−6.
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B.3.6 The plain script

The following is the full script of the Matlab code for solving the two-dimensional Pois-
son’s problem, poisson.m.

1 %%%%%%%%%%%%%%
2 %% Grid information
3 %%%%%%%%%%%%%%
4

5 % x-direction
6 xStartArray = [0.0,0.3,0.7];
7 xEndArray = [0.3,0.7,1.0];
8 nxDofArray = [3,4,3];
9 nxGllArray = [3,4,3];

10 xPtsType = ’GLL’;
11 xDomainData = lssemdomain(xStartArray,xEndArray,nxDofArray, ...
12 nxGllArray,xPtsType);
13

14 % y-direction
15 yStartArray = [0.0,0.3,0.7];
16 yEndArray = [0.3,0.7,1.0];
17 nyDofArray = [4,5,4];
18 nyGllArray = [4,5,4];
19 yPtsType = ’GLL’;
20 yDomainData = lssemdomain(yStartArray,yEndArray,nyDofArray, ...
21 nyGllArray,yPtsType);
22

23 % domainDataVec is an array of structs.
24 domainDataVec = [xDomainData yDomainData];
25

26 [xt yt] = deal(domainDataVec(:).DOFPtsArray);
27 [Nxt Nyt] = deal(domainDataVec(:).nDOF);
28

29

30 %%%%%%%%%%%%%%
31 %% Boundary conditions
32 %%%%%%%%%%%%%%
33

34 % Number of the dimensions
35 nDims = length(domainDataVec);
36

37 % Boundary matrix
38 psiBc = zeros(2*Nxt+2*Nyt,nDims+2);
39
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40 % Boundary condition counter
41 iBc = 0;
42

43 % Gamma 1
44 Ix = 1;
45 for Iy = 1:Nyt
46 iBc = iBc+1;
47 psiBc(iBc,:) = [Ix,Iy,3,0];
48 end
49

50 % Gamma 3
51 Ix = length(xt);
52 for Iy = 1:Nyt
53 iBc = iBc+1;
54 psiBc(iBc,:) = [Ix,Iy,3,yt(Iy)*(1-yt(Iy))];
55 end
56

57 % Gamma 2
58 Iy = 1;
59 for Ix = 1:Nxt
60 iBc = iBc+1;
61 psiBc(iBc,:) = [Ix,Iy,3,0];
62 end
63

64 % Gamma 4
65 Iy = length(yt);
66 for Ix = 1:Nxt
67 iBc = iBc+1;
68 psiBc(iBc,:) = [Ix,Iy,3,0];
69 end
70

71 fBc = psiBc;
72

73 %%%%%%%%%%%%%%
74 %% Problem operator, source vector
75 %%%%%%%%%%%%%%
76

77 function [lv gv]=opt(subdomainDataVec,iVec,jVec,pars)
78

79 [xh yh] = deal(subdomainDataVec(:).gllPts);
80 [Bx By] = deal(subdomainDataVec(:).B);
81 [Dx Dy] = deal(subdomainDataVec(:).D);
82

83 % local indices
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84 [ix iy] = dealvector(iVec);
85 [jx jy] = dealvector(jVec);
86

87 % Differential operator with respect to x
88 lx = [1 0 0;0 0 1;0 0 0];
89

90 % Differential operator with respect to y
91 ly = [0 1 0;0 0 0;0 0 1];
92

93 % Zeroth order operator
94 l0 = [0 0 0;-1 0 0;0 -1 0];
95

96 lv = lx*Dx(ix,jx)*By(iy,jy)+...
97 ly*Bx(ix,jx)*Dy(iy,jy)+...
98 l0*Bx(ix,jx)*By(iy,jy);
99

100 gv = source(xh(ix),yh(iy));
101 end
102

103 function gv=source(x,y)
104 gv = zeros(3,1);
105 gv(1) = 6*x*y*(1-y)-2*x^3;
106 gv(2) = 0;
107 gv(3) = 0;
108 end
109

110 %%%%%%%%%%%%%%
111 %% Least-squares solution
112 %%%%%%%%%%%%%%
113

114 options = [];
115 pars = [];
116

117 [f,A,F,condA] = linearlssemoneproblem(domainDataVec, ...
118 @opt,fBc,options,pars);
119

120 u = f(:,:,1);
121 v = f(:,:,2);
122 phi = f(:,:,3);

Listing B.5: poisson.m
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Appendix C

Formulation of the Length-Based PBE

The derivation of the length-based PBE from the volume-based PBE is based on work of
Marchisio et al.[67].

The volume-based PBE is

∂f̃(V, r, t)

∂t
+∇r · (vdf̃(V, r, t)) = B̃+(V, r, t)− B̃−(V, r, t) + Ã+(V, r, t)− Ã−(V, r, t)

(C.1)

in which,

B̃+(V, r, t) =

∫ Vmax

V

νP̃ (V, V ′)b̃(V ′)f̃(V ′, r, t)dV ′ (C.2)

B̃−(V, r, t) = b̃(V )f̃(V, r, t) (C.3)

Ã+(V, r, t) =
1

2

∫ V

Vmin

ã(V − V ′, V ′)f̃(V ′, r, t)f̃(V − V ′, r, t)dV ′ (C.4)

Ã−(V, r, t) = f̃(V, r, t)

∫ Vmax−V

Vmin

ã(V, V ′)f̃(V ′, r, t)dV ′ (C.5)

We can define the following relations between the volume-based quantities (denoted by
symbols with a tilde “˜”) and the length-based quantities (denoted by symbols without a
tilde “˜”).

f̃(V, r, t) =
1

3ξ2
f(ξ, r, t) (C.6)

b̃(V ) = b̃(ξ3) = b(ξ) (C.7)

P̃ (V, V ′) = P̃ (ξ3, ζ3) =
1

3ξ2
P (ξ, ζ) (C.8)

ã(V, V ′) = ã(ξ3, ζ3) = a(ξ, ζ) (C.9)
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Thus, we multiply 3ξ2 on both sides of the Eq.(C.1). By applying the relations (C.6)-
(C.9), the birth and death terms of the length-based PBE can be derived.

B+(ξ, r, t) = 3ξ2B̃+(V, r, t)

= 3ξ2

[∫ Vmax

V

νP̃ (V, V ′)b̃(V ′)f̃(V ′, r, t)dV ′
]

= 3ξ2

[∫ ξmax

ξ

ν

(
1

3ξ2

)
P (ξ, ζ)b(ζ)

(
1

3ζ2

)
f(ζ, r, t)(3ζ2) dζ

]
=

∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, r, t)dζ (C.10)

B−(ξ, r, t) = 3ξ2B̃−(V, r, t) = 3ξ2
[
b̃(V )f̃(V, r, t)

]
= 3ξ2

[
b(ξ)

(
1

3ζ2

)
f(ξ, r, t)

]
= b(ξ)f(ξ, r, t) (C.11)

A+(ξ, r, t) = 3ξ2Ã+(V, r, t)

= 3ξ2

[
1

2

∫ V

Vmin

ã(V − V ′, V ′)f̃(V ′, r, t)f̃(V − V ′, r, t)dV ′
]

= 3ξ2

[
1

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)
f(ζ, r, t)

3ζ2

f((ξ3 − ζ3)1/3, r, t)

3(ξ3 − ζ3)2/3
(3ζ2) dζ

]
=
ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f(ζ, r, t)f((ξ3 − ζ3)1/3, r, t)dζ (C.12)

A−(ξ, r, t) = 3ξ2

[
f̃(V, r, t)

∫ Vmax−V

Vmin

ã(V, V ′)f̃(V ′, r, t)dV ′
]

= 3ξ2

[
f(ξ, r, t)

(3ξ2)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)
f(ζ, r, t)

3ζ2
(3ζ2) dζ

]

= f(ξ, r, t)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f(ζ, r, t)dζ (C.13)

Summarizing (C.10)-(C.13), yields the length-based PBE:

∂f(ξ, r, t)

∂t
+∇r · (vdf(ξ, r, t)) = B+(ξ, r, t)− B−(ξ, r, t) +A+(ξ, r, t)−A−(ξ, r, t)

(C.14)
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in which,

B+(ξ, r, t) =

∫ ξmax

ξ

νP (ξ, ζ)b(ζ)f(ζ, r, t)dζ (C.15)

B−(ξ, r, t) = b(ξ)f(ξ, r, t) (C.16)

A+(ξ, r, t) =
ξ2

2

∫ ξ

ξmin

a((ξ3 − ζ3)1/3, ζ)

(ξ3 − ζ3)2/3
f(ζ, r, t)f((ξ3 − ζ3)1/3, r, t)dζ (C.17)

A−(ξ, r, t) = f(ξ, r, t)

∫ (ξ3
max−ξ3)1/3

ξmin

a(ξ, ζ)f(ζ, r, t)dζ (C.18)

where ξ and ζ represent the particle diameter.
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Appendix D

Proof of the Saddle Point Problem

Consider the following linear algebraic matrix system is obtained for the mass conserva-
tive PBE problem (see section 4.3.5).[

Ae BT

B 0

] [
fe
λ

]
=

[
Fe

G

]
(D.1)

or

Acfc = Fc (D.2)

where,

Ac =

[
Ae BT

B 0

]
, fc =

[
fe
λ

]
and Fc =

[
Fe

G

]
in which Ae, Fe are defined in (4.45) and (4.46), respectively. The matrix B ∈ R(Mt×Nt),

[B]ij = B(Φj,Ψi) = 〈Ψi,

[(∫
Ωr

Φjvol(ξ) dξ
)

vd

]
〉Y (Ωe) (D.3)

for 1 ≤ i ≤ N t and 1 ≤ j ≤M t.

The vectors λ, G ∈ R(Mt×1), the matrix Ac ∈ R(Nt+Mt)×(Nt+Mt), and the vectors
fc, Fc ∈ R(Nt+Mt)×1.

The constrained LSSEM then has M t more unknowns than the standard LSSEM for the
same discretization. The extended matrix Ac resulting from the modified system is sym-
metric and pseudopositive definite, which we explain in the following.

Since Ae is a standard LSM operator, we have

Ac = AT
c (D.4)

therefore Ac is symmetric and Ac has real eigenvalues.
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Then consider an arbitrary nontrivial vector

fc =

[
p
0

]
6= 0

yields,

fT
c Acfc = pTAep > 0 (D.5)

Next consider

fc =

[
A−1

e BTq
−q

]
6= 0

and

fT
c Acfc = −qTBA−1

e BTq = −pTA−1
e p < 0 (D.6)

In conclusion, Ac is semi-positive definite and therefore must have both positive and
negative eigenvalue. The algebraic problem does not correspond to either a minimization
problem or a maximization problem, but a saddle point problem.

The discrete form of the Lagrangian, I(w,η) is defined by

I : RNt × RMt → R
I(w,η) = J (w) + λT (Bw −G) (D.7)

The non-constraint quadratic functional for the J (w),

J (w) =
1

2
wTAew −wTFe (D.8)

which can be written as a constrained functional

I(w,η) =
1

2
wTAew −wTFe + λT (Bw −G) (D.9)

The stationary point, (w,η), of the Lagrangian, I(w,η), corresponds to a saddle point of
I, hence

I(f ,λ) = min
w∈RNt

max
λ∈RMt

I(w,λ) = max
λ∈RMt

min
w∈RNt

I(w,λ) (D.10)

In this saddle point problem, the Ladyzhenskaja-Babuška-Brezzi (LBB) condition com-
monly referred to as the (discrete) inf-sup condition owing to the equivalent form yields

inf
λN∈MN ,λN 6=0

sup
fN∈XN ,fN 6=0

B(fN , λN)

‖fN‖X‖λN‖M

≥ Kb (D.11)

in which Kb is a positive constant, must be satisfied.
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Appendix E

Selected Papers

E.1 Paper I

Paper I: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. A least–squares method with di-
rect minimization for the solution of the breakage-coalescence population balance equa-
tion. Mathematics and Computers in Simulation, Volume 79, Issue 3, 1 December 2008,
Pages 716-727.

A least–squares method with a direct minimization algorithm is introduced to solve the
nonlinear population balance equation that consists of both breakage and coalescence
terms. The least–squares solver, the direct minimization solver together with a finite
difference solver are implemented for comparisons. It is shown that the coalescence term
introduces a strong non–linear behavior which can affect the robustness of the numerical
solvers. In the comparison with the least–squares method, the direct minimization method
is proved to be capable of producing equally accurate results, while its formulation is
better conditioned. In the case of a nonlinear population balance equation system, the
direct minimization method converges faster than the standard least–squares method.
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E.2 Paper II

Paper II: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Solution of bubble number den-
sity with breakage and coalescence in a bubble column by least-squares method. Progress
in Computational Fluid Dynamics (PCFD), Volume 9, Nos 6/7, Pages 436-446 .

A steady-state model has been built for an air-water bubble column. The bubble number
density constitutive equation has been formulated through integrating the bubble transport
equation. Proper kernels for the bubble breakage and coalescence rates have been taken
from the literature. The momentum balance of the gas phase is included in the model
which leads to a set of non-linear differential equations. The model has been successfully
solved by using the least-squares method with high accuracy and fast convergence. The
successive iteration has been applied to the linearized equation set. The model shows
excellent agreements with experimental data.
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E.3 Paper III

Paper III: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. On the fully coupled solution of
a two-fluid model combined population balance equation using the least-squares spectral
element method. Industrial & Engineering Chemistry Research, Volume 48(17), July 2,
2009, Pages 7994-8006.

In this work, a cross-sectional averaged two-fluid model combined with a population
balance model is applied to simulate the flow field and the bubble size distributions in a
two-phase bubble column. The Martinez-Bazan breakage kernel and a modified Prince
and Blanch coalescence kernel have been chosen to describe bubble breakage and bubble
coalescence, respectively.

In the present study, we discuss the use of a higher order spectral element method - the
least-squares method, to compute the system of equations in a coupled manner. The least-
squares method is highly accurate and has a number of advantages over the conventional
numerical methods like the finite difference- and finite volume methods. In contrast to
the finite volume method, when designing an overall solution algorithm this least squares
method ensures that all the continuity equations are satisfied individually and it deals
with both the convective and diffusive terms stably and accurately. The novel iterative
algorithm solves the flow and the population balance equation in a coupled manner.

The model has been validated against experimental data obtained for two-phase flow in
a bubble column. The predicted bubble size distribution and other flow quantities are in
good agreement with the experimental data.
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E.4 Paper IV

Paper IV: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Mass conservative formulation
of population balance equation using the least-squares spectral element method, Submit-
ted to Industrial & Engineering Chemistry Research (Accepted).

In the standard least-squares formulation of the population balance equation significant
loss of mass is observed for the dispersed phase. This mass loss is actually caused by
the inexact conservation property reflected by many breakage kernels, hence incorrect
physical interpretations of the model simulations may be drawn.

In this work a constrained least-squares spectral element method is developed enforcing
mass conservation. This numerical property is accomplished by adding an extra restric-
tion to the method in terms of the dispersed phase continuity equation through the La-
grange multipliers strategy. The discretized system resulting from applying the method to
a two-phase population balance equation problem is symmetric and pseudopositive defi-
nite. Numerical experiments are carried out simulating the motion of a two-phase mixture
passing through a 2D domain. The results obtained by the modified least-squares spectral
element method show that the mass is conserved everywhere in the domain with high
accuracy.

163



 
Is not included due to copyright 



196



Appendix F

Secondary Papers

F.1 Paper V

Paper V: Zhengjie Zhu, C.A.Dorao and H.A.Jakobsen. Modelling a bubble column with
a bubble number density equation using the least-squares method. 6th International Con-
ference on CFD in Oil and Gas, Metallurgical and Process Industries, SINTEF/NTNU,
Trondheim, Norway, 10-12 June 2008 (Selected as lead paper by reviewers).

A steady-state model has been built for an air-water bubble column. The bubble number
density constitutive equation has been formulated through integrating the bubble transport
equation. Proper kernels for bubble breakage and coalescence rate have been taken from
the literature. The momentum balance of the gas phase is included in the model which
leads to a set of non-linear differential equations. The model has been successfully solved
by using the least-squares method with high accuracy and fast convergence. The succes-
sive iteration has been applied to the linearized equation set. The model shows excellent
agreements with experimental data.

F.2 Paper VI

Paper VI: Zhengjie Zhu, L.E.Patruno, C.A.Dorao and H.A.Jakobsen. Simulation of the
bubble coalescence in bubble column using the least-squares method. 11th International
Conference on Multiphase Flow in Industrial Plant, Palermo, Italy, 7-10 September 2008
(MFIP’08).

The population balance equation (PBE) has been combined with a steady-state gas phase
momentum equation to model the operation of an air-water bubble column. Instead of
solving a bubble number density constitutive equation, a population balance equation
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with coalescence term has been solved. The system of equations has been linearized by
successive iteration and solved by the least-squares method with high accuracy and fast
convergence. The bubble size distribution along the column axis has been investigated
and compared to the corresponding experimental data, showing good agreement.
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