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Abstract

One of the main limitations of today’s navigation systems for spine
surgery is that they often are not available until after the bone sur-
face has been exposed. Also, they lack the capability of soft tissue
imaging, both preoperatively and intraoperatively. The use of ultra-
sound has been proposed to overcome these limitations. By registering
preoperative magnetic resonance (MR) images to intraoperative percu-
taneous ultrasound images, navigation can start even before incision.
We therefore present a method for registration of MR images to ultra-
sound images of the spine. The method is feature-based and consists of
two steps: segmentation of the bone surfaces from both the ultrasound
images and the MR images, followed by rigid registration using a mod-
ified version of the Iterative Closest Point algorithm. The method was
tested on data from a healthy volunteer, and the data set was success-
fully segmented and registered with an accuracy of 3.67± 0.38 mm.

1 Introduction

In spinal surgery today, many procedures are performed with no or only
minimal image guidance. Preoperative computed tomography (CT) or mag-
netic resonance (MR) images are used for diagnosis and planning, but during
surgery, two-dimensional C-arm fluoroscopy is widely used both for initial
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detection of the correct spinal level and for intra-operative imaging. Nav-
igation systems exist, but mainly for placement of pedicle screws. These
usually first come to use when the bone surface has been exposed. Using a
simple landmark or surface registration method the preoperative CT image
is then aligned with the patient and can be used for planning and guidance
of the screws. A number of groups have evaluated the use of navigation
for this purpose, and a review of the topic was presented by Tjardes et al.
[12]. They conclude that the benefits of image-guidance in terms of accu-
rate placement of the screws and reduced exposure to ionizing radiation
have been proven, in particular for the cervical and lumbar procedures. In
other areas of spine surgery, navigation and image guidance are still on the
experimental stage.

One of the main limitations of today’s navigation systems for spine
surgery is that they often are not available until after the bone surface has
been exposed. The use of ultrasound has been proposed to overcome this
limitation. By registering preoperative images to intraoperative percuta-
neous ultrasound images, navigation can start before incision and therefore
be used for both level detection and planning at an early stage of the pro-
cedure. Thus, the use of X-ray fluoroscopy can possibly be reduced.

In order to make a navigation system based on intraoperative ultrasound
clinically useful, the greatest challenge is to achieve accurate and robust reg-
istration between the preoperative images and the ultrasound images with
minimal user interaction. Registration of CT images of the spine to corre-
sponding ultrasound images has been investigated by several groups, and
two main approaches have been explored: feature-based registration and
intensity-based registration. In the first case, corresponding features are
extracted from the two datasets to be registered prior to registration. In
the case of spine surgery, the feature of choice is the bone surface as this
is the only feature that can be reliably detected in the ultrasound images.
Segmentation of the bone surface from ultrasound images of the spine is still
a challenging topic due to noise, artifacts and difficulties in imaging surfaces
parallel to the ultrasound beam. A few methods have been described in the
literature, ranging from simple ray tracing techniques [15] to more advanced
methods based on probability measures [7, 4, 9] or phase symmetry [13].
Following surface extraction, the segmented bone surfaces are registered us-
ing the Iterative Closest Point (ICP) algorithm [2] or the unscented Kalman
filter [9].

In intensity-based registration, a similarity metric based on the image
intensities is optimized to find the spatial transformation that best maps
one image onto the other [14, 8, 6, 15]. As MR/CT and ultrasound images
present very different intensity and noise characteristics, a common approach
is to create simulated ultrasound images from the pre-operative data and
register the simulated image to the real ultrasound image. In these sim-
ulations, the direction of sound wave propagation, transmission, reflection
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and noise can be modelled in order to obtain images that can be reliably
registered to real ultrasound images based on image intensities.

While these studies show a lot of promise, they focus almost exclusively
on the registration of preoperative CT images. However, many spinal pro-
cedures, such as the treatment of disc herniations and intraspinal tumours,
rely on the soft-tissue imaging capabilities of MR. Thus, by combining ul-
trasound imaging with preoperative MR, navigation could be extended to a
variety of spinal procedures that do not benefit from image guidance today.
In these procedures, the ultrasound could also be used for intraoperative
imaging, reducing the use of fluoroscopy even further. As a first step to-
wards this end, we present a method for registration of preoperative MR
images to percutaneous ultrasound images of the spine, including a prelim-
inary assessment of its performance.

2 Methods and Experiments

Our registration method is feature-based and consists of two steps: First,
the bone surfaces are segmented from both the ultrasound images and the
MR images, and then the two surfaces are registered using a modified version
of the ICP algorithm.

2.1 Ultrasound Acquisition and Segmentation

The ultrasound images were acquired using a Vivid E9 scanner with an
11 MHz linear probe (GE Healthcare, Little Chalfont, UK). Some groups
have used lower frequencies, which enable good imaging of deeper structures
such as the transverse processes of the spine [15, 9, 13, 14, 6]. However, this
makes imaging of superficial structures, such as the spinous processes and
the sacrum, challenging. As these structures represent important features
for the registration algorithm, we found that a relatively high frequency gave
a better compromise between depth penetration and resolution. The ultra-
sound probe was tracked with the Polaris optical tracking system (NDI, Wa-
terloo, ON, Canada), and both images and corresponding tracking data were
recorded using the navigation system CustusX [1] with a digital interface to
both the ultrasound scanner and the tracking system. The two-dimensional
ultrasound images were also reconstructed to a three-dimensional volume
using the Pixel Nearest Neighbor (PNN) reconstruction algorithm [11].

While the reconstructed, three-dimensional ultrasound volume is use-
ful for navigation, the reconstruction process tends to introduce a certain
blurring. The volume usually also has a lower resolution than the original,
two-dimensional ultrasound images. We therefore used the latter as input to
our segmentation method. In order to extract the bone surfaces from these
images, we used a combination of the bone probability maps introduced by
Jain et al. [7] and Foroughi et al. [4], and the backward scan line tracing
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presented by Yan et al. [15]. In ultrasound images, reflections from bone
surfaces are seen as bright ridges perpendicular to the ultrasound beam. To
calculate the probability of each pixel ai,j of the image A being part of such
a ridge, the image was smoothed with a Gaussian filter, before calculating
the Laplacian of Gaussian (LoG), i.e.

AG = {ai,jG } = A ∗G and ALoG = {ai,jLoG} = AG ∗ L , (1)

where G and L are the convolution kernels of the Gaussian filter and the
LoG filter respectively. This is a common operation in blob detection and
usually produces a strong positive response for dark blobs and a strong
negative response for bright blobs. To enhance the bright reflections, the
positive values were therefore set to zero before taking the absolute value of
the rest. The result was then added to the smoothed version of the original
image to produce an initial bone probability map P1 = {pi,j1 }, i.e.

pi,j1 = ai,jG + |max{ai,jLoG, 0}| . (2)

The other feature to be considered was the intensity profile in the prop-
agation direction of the ultrasound. For a bone surface, this is typically
characterized by a sudden, sharp peak followed by a dark shadow. To cal-
culate the probability of a given pixel representing the maximum of such a
profile, each scan line was considered separately. Assuming pm1 is the mth
pixel of the initial bone probability map P1 along a given scan line, the
secondary bone probability of this pixel was found as

pm2 = pm1 −
pm−δ
1 + pm+δ

1

2
− ω

λ

λ∑
n=1

pm+δ+n
1 , (3)

where 2δ is the width of a typical intensity peak and λ is the length of a
typical bone shadow, both given in pixels. In our case, these were set to
δ = 24 and λ = 322, which corresponds to 1.5 mm and 20 mm respectively.
ω is a weight that can be adjusted according to the overall noise level of the
bone shadows in the image, and in our case this was set to 10.

The first term in (3) is simply the intensity of the mth pixel. At a
bone reflection, this will be high and lead to a high bone probability. The
second term combines the intensities at the distance δ behind and in front
of the mth pixel. At a sharp peak of width 2δ, both of these will be low
and have little impact on the bone probability. On the other hand, if there
is no such peak, at least one of these will be high and lead to a reduced
bone probability. The last term is the average intensity of the pixels in the
shadow region behind the peak. If there is a lot of signal in this area, this
term will be high and thus reducing the bone probability

Finally, we applied a variant of the backward scan line tracing to the
resulting probability map: For each scan line, starting at the bottom of the
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Figure 1: An ultrasound image of a vertebra with the segmentation overlaid
in red (left), the initial bone probability map (centre) and the final bone
probability map after applying the threshold (right).

image, the first local maximum above a certain threshold was deemed part
of a bone surface. This was repeated for all the recorded images, and based
on the corresponding tracking data, all points were transformed into the
three-dimensional reference space of the tracking system. A typical example
of both the probability maps and the final segmentation of an image is shown
in Fig. 1. The method was implemented in MATLAB (MathWorks, Natick,
MA, USA).

2.2 MR Acquisition and Segmentation

The MR images were acquired using an Achieva 3.0 T scanner (Philips
Healthcare, Amsterdam, Netherlands). In order to facilitate both the seg-
mentation of the spine and the subsequent navigation, we customized a
full, three-dimensional MR protocol which enhanced the contrast between
the bone and the surrounding soft tissue. This had a field of view of
80 × 560 × 560 voxels and a voxel size of 1 × 0.48 × 0.48 mm3. The lumbar
vertebrae were segmented using a semiautomatic method based on active
contours implemented in the segmentation software ITK-SNAP [16]. How-
ever, in the area of the sacrum, the contrast between the bone and the
surrounding soft tissue was lower, and here active contours driven by ro-
bust statistics resulted in more accurate segmentations. For this part, we
therefore employed the Robust Statistics Segmentation (RSS) module [5] in-
cluded in the medical imaging analysis and visualization software 3D Slicer
[3].

The use of active contours for segmentation may lead to oversegmenta-
tion of certain anatomical structures, known as leaks. In MR images, such
leaks are especially prominent in areas with motion artifacts caused by the
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Figure 2: The segmented ultrasound (blue) and MR (red) surfaces (left) and
the same surfaces after reducing the MR surface with ray tracing (right).

patient not lying completely still during the image acquisition. This is often
a problem, especially for patients in need of spine surgery. To compen-
sate for this, minor corrections of the segmentation results were performed
manually for both the lumbar area and the sacrum.

The surface segmented from the MR volume represented the entire lum-
bar spine, and consisted therefore of a large number of points. However,
only the surfaces facing the ultrasound probe were visible in the ultrasound
images. Thus, a significant portion of the surface points in the segmented
MR were irrelevant to the registration, as there were no corresponding points
in the ultrasound images. To reduce the amount of data, and thus the work
load of the registration algorithm, we therefore used a simple ray tracing
method (posterior to anterior) to extract those points that were facing the
ultrasound probe. An example of the resulting reduced surface can be seen
in Fig. 2.

2.3 Registration

Following segmentation, the segmented surfaces from ultrasound and MR
were imported into the navigation system for registration. Like all auto-
matic registration methods, the ICP algorithm requires an initialization or
a reasonable starting point in order to converge to the correct solution. This
was provided by assuming that the two volumes covered approximately the
same volume, that the first recorded ultrasound image was positioned at
the sacrum and that the probe trajectory was from the sacrum upwards.
The two image volumes were then aligned by first rotating the MR volume
in order to align the x, y and z axes in the two volumes, and then trans-
lating the MR volume in order to align the points corresponding to the
voxels (nx/2, 0, 0) in both volumes, where nx is the number of voxels in the
x-direction (patient left-to-right).

After this initial alignment, we used the ICP algorithm to rigidly regis-
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Figure 3: The ultrasound (blue) and MR (red) surfaces after the initial
alignment (left) and after the final registration (right).

ter the reduced MR surface to the ultrasound surface. In order to reduce
the influence of possible outliers on the registration result, the algorithm
was modified by incorporating the Least Trimmed Squares (LTS) robust
estimator as described by Reinertsen et al. [10].

2.4 Experiments

In order to evaluate our method, we acquired both ultrasound and MR im-
ages of the spine of a healthy volunteer. The only structures that were
clearly discernible in both of these images were the top points of the spinous
processes of three lowest vertebrae (L3, L4 and L5). These were therefore
selected as control points and manually identified in both the original ul-
trasound volume and the MR volume. The surfaces were then registered
to each other using the method described above, and the distances between
the landmarks both after initial alignment and after final registration were
computed.

3 Results

Through careful optimization of the acquisition protocols, both MR and ul-
trasound images of high quality were achieved. The data sets were success-
fully segmented and registered using the methods described above. Figure 3
shows the extracted surfaces both after the initial alignment and after rigid
registration. The match can also be seen in Fig. 4, which shows transverse
and sagittal views of corresponding ultrasound and MR volumes after reg-
istration. Finally, the distances between the control points before and after
registration are given in Table 1.
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Figure 4: A transverse slice (left) and a sagittal slice (right) from the ultra-
sound volume overlaid on top of the corresponding slices from the registered
MR volume. The ultrasound data is shown in red and yellow and the MR
data is shown in grey tones.

Table 1: Distance between the control points in mm.

L3 L4 L5 Mean±STD

After initial alignment 23.29 21.27 22.40 22.32±1.01
After final registration 3.86 3.93 3.23 3.67±0.38
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4 Discussion

We have demonstrated that registration between MR and ultrasound images
is feasible. The accuracy of 3.67 ± 0.38 mm is clinically relevant as it is
sufficient to ensure that we are on the correct level. It is also comparable
to that of many of the studies mentioned in the introduction. Still, this is a
work in progress, and the results shown here are only preliminary.

It has been pointed out that intensity-based registration has an advan-
tage over feature-based methods in that it makes use of all the information
in the image, rather than just that of the bone surfaces [6]. In the case
of spine imaging, however, other structures that are visible in the ultra-
sound images, such as muscle fibres and fat layers, are not imaged very well
by neither CT nor MR. Their contribution to the registration procedure is
therefore questionable.

The ultrasound images that we have acquired vary considerably in ap-
pearance from subject to subject. At the moment, this means that the pa-
rameters of the segmentation method, such as the width δ of the reflections,
the length λ of the shadows and the weight ω must be manually adjusted
to the particular data set. In the future, these adjustment should be done
automatically, e.g. based on overall image statistics.

The MR segmentation methods that we presented here are only semi-
automatic and quite time consuming. However, the result of this was a
complete segmentation of the lumbar spine, and as we have already pointed
out, only a small part of this information was actually relevant to the regis-
tration. We are therefore investigating methods to segment only the part of
the anatomy that is most critical to the registration, i.e. the sacrum and the
spinous and transverse processes. The results are promising, and it should
be possible to perform this segmentation both quickly and with minimal
user interaction.

The last component of the method is the registration. Here, we have
shown that a reasonable rigid registration can be achieved using the ICP
algorithm. However, the spine is flexible, and the change in curvature from
the MR scanner, where the patient is lying in a supine position, to the
operating room, where the patient is placed in a prone position, can be
large. A group-wise rigid registration method, like the one proposed e.g.
by Gill et al. [6] where only the space between the vertebrae is deformed,
would be more appropriate.

Finally, our method needs more extensive testing, both with respect
to robustness to anatomical variations and with respect to accuracy. The
distance measure that we have used here, based on manual identification
of landmarks, gives a good indication of the registration accuracy, but we
should include a measure of inter- and intra-observer variability. Such mea-
sures could therefore be complimented with other assessment methods, such
as phantom studies where the exact geometry is known and a reliable ground
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truth thus can be established. All of the above are currently addressed in
our research.

5 Conclusion

The presented method is capable of registering MR images to percutaneous
ultrasound images of the spine. The registration accuracy is clinically rele-
vant, and with minor improvements the user interaction can be reduced to
a minimum. This method is thus an important step towards the realisation
of a system for MR- and ultrasound-guided spine surgery.
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