
FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference

Yaman Umuroglu*�, Nicholas J. Fraser*�, Giulio Gambardella*, Michaela Blott*,
Philip Leong�, Magnus Jahre� and Kees Vissers*

*Xilinx Research Labs; �Norwegian University of Science and Technology; �University of Sydney
yamanu@idi.ntnu.no

ABSTRACT
Research has shown that convolutional neural networks con-
tain significant redundancy, and high classification accuracy
can be obtained even when weights and activations are re-
duced from floating point to binary values. In this paper,
we present Finn, a framework for building fast and flexible
FPGA accelerators using a flexible heterogeneous stream-
ing architecture. By utilizing a novel set of optimizations
that enable efficient mapping of binarized neural networks
to hardware, we implement fully connected, convolutional
and pooling layers, with per-layer compute resources being
tailored to user-provided throughput requirements. On a
ZC706 embedded FPGA platform drawing less than 25 W
total system power, we demonstrate up to 12.3 million image
classifications per second with 0.31 µs latency on the MNIST
dataset with 95.8% accuracy, and 21906 image classifications
per second with 283 µs latency on the CIFAR-10 and SVHN
datasets with respectively 80.1% and 94.9% accuracy. To
the best of our knowledge, ours are the fastest classification
rates reported to date on these benchmarks.

1. INTRODUCTION
Convolutional Neural Networks (CNNs) have dramatically

improved in recent years, their performance now exceeding
that of other visual recognition algorithms [14], and even sur-
passing human accuracy on certain problems [24, 29]. They
are likely to play an important role in enabling ubiquitous
machine vision and intelligence on all kinds of devices, but a
significant computational challenge remains. Modern CNNs
may contain millions of floating-point parameters and require
billions of floating-point operations to recognize a single im-
age. Furthermore, these requirements tend to increase as re-
searchers explore deeper networks. For instance, AlexNet [14]
(the winning entry for ImageNet Large Scale Visual Recog-
nition Competition (ILSVRC) [23] in 2012) required 244
MB of parameters and 1.4 billion floating point operations
(GFLOP) per image, while VGG-16 [25] from ILSVRC 2014
required 552 MB of parameters and 30.8 GFLOP per image.

To appear in the 25th International Symposium on Field-
Programmable Gate Arrays, February 2017.

While the vast majority of CNNs implementations use
floating point parameters, a growing body of research demon-
strates this approach incorporates significant redundancy.
Recently, it has been shown [5, 27, 22, 12, 32] that neu-
ral networks can classify accurately using one- or two-bit
quantization for weights and activations. Such a combina-
tion of low-precision arithmetic and small memory footprint
presents a unique opportunity for fast and energy-efficient
image classification using Field Programmable Gate Arrays
(FPGAs). FPGAs have much higher theoretical peak per-
formance for binary operations compared to floating point,
while the small memory footprint removes the off-chip mem-
ory bottleneck by keeping parameters on-chip, even for large
networks. Binarized Neural Networks (BNNs), proposed by
Courbariaux et al. [5], are particularly appealing since they
can be implemented almost entirely with binary operations,
with the potential to attain performance in the teraoperations
per second (TOPS) range on FPGAs.

In this work, we propose Finn, a framework for build-
ing scalable and fast BNN inference accelerators on FPGAs.
Finn-generated accelerators can perform millions of classi-
fications per second with sub-microsecond latency, thereby
making them ideal for supporting real-time embedded appli-
cations such as augmented reality, autonomous driving and
robotics. Compute resources can be scaled to meet a given
classification rate requirement. We demonstrate Finn’s capa-
bilities with a series of prototypes for classifying the MNIST,
SVHN and CIFAR-10 benchmark datasets. Our classification
rate results surpass the best previously published results by
over 48× for MNIST, 2.2× for CIFAR-10 and 8× for SVHN.
To the best of our knowledge, this is the fastest reported
neural network inference implementation on these datasets.
The novel contributions are:

• Quantification of peak performance for BNNs on
FPGAs using a roofline model.

• A set of novel optimizations for mapping BNNs onto
FPGA more efficiently.

• A BNN architecture and accelerator construction tool,
permitting customization of throughput.

• A range of prototypes that demonstrate the potential
of BNNs on off-the-shelf FPGA platforms.

The rest of this paper is organized as follows: Section 2
provides background on CNNs, BNNs, and their hardware
implementations. Section 3 discusses BNNs accuracy and
peak performance on FPGAs. Section 4 describes Finn’s
architecture and optimizations. Section 5 presents the exper-
imental evaluation, and Section 6 concludes the paper.



2. BACKGROUND
This work is focused on supervised learning, in which

the goal is to find a function, g(xi), which approximates a
mapping xi → yi ∀ i, where {xi, yi} is an input/output pair
known as a training example. Furthermore, only the inference
problem is studied, the parameters, w, being assumed to
have been learned offline.

2.1 Convolutional Neural Networks
A multilayer perceptron is a type of Artificial Neural Net-

work (ANN) which has its neurons arranged in multiple
layers, with neurons taking the output of all neurons of the
previous layer as inputs. Mathematically, the output, al,n,
for the nth neuron in the lth layer of a fully connected network
is calculated as follows:

al,n = fact(

Sl∑
s=0

wl,n,sal−1,s + bl,n) , (1)

where wl,n,s is weight of the sth synapse connected to the
input of the nth neuron in the lth layer, bl,n is a bias term,
fact is the activation function, and Sl is the number of
synapses connected to each neuron in the lth layer. Popular
activation functions include: the hyperbolic tangent function,
fact(a) = tanh(a); and the rectified linear unit (ReLU),
fact(a) = max(0, a).

CNNs [15] are a variant of multilayer perceptrons, in which
a layer only receives inputs from a small receptive field of the
previous layer. This approach greatly reduces the number
of parameters involved and allows local features (e.g., edges,
corners) to be found [15]. A basic 2D convolutional layer
in a neural network is similar to a fully connected layer
except that: a) each neuron receives an image as inputs and
produces an image as its output (instead of a scalar); b) each
synapse learns a small array of weights which is the size of
the convolutional window; and c) each pixel in the output
image is created by the sum of the convolutions between all
synapse weights and the corresponding images. The output
of the lth convolutional layer, which takes as input Sl images
of dimension Rl × Cl, the pixel, pl,n,r,c, at location (r, c) of
the nth output image is calculated as follows:

pl,n,r,c = fact(

Sl∑
s=0

Jl∑
j=0

Kl∑
k=0

wl,n,s,j,kpl−1,n,r+j,c+k) , (2)

where Jl ×Kl are the dimensions of the convolution window.
As discussed in Section 4, a 2D convolutional layer can be
reduced to a matrix multiply followed by an elementwise
activation function. CNN topologies are composed from a
few common primitives: convolutional layers, pooling layers
and fully connected layers.

Pooling layers can be considered as simple downsamplers
of 2D images. A basic max pooling layer divides an image
into small sub-tiles of a given window size and then replaces
each sub-tile with its largest element. An average pooling
layer is similar but uses the average function instead of max.

2.2 Binary Neural Networks
Although floating point numbers are a natural choice for

handling the small updates that occur during neural network
training, the resulting parameters can contain a lot of re-
dundant information [8]. One of several possible dimensions
possessing redundancy is precision [27]. An extreme case

are BNNs in which some or all the arithmetic involved in
computing the outputs are constrained to single-bit values.
We consider three aspects of binarization for neural network
layers: binary input activations, binary synapse weights and
binary output activations. If all three components are binary,
we refer to this as full binarization, and the cases with one
or two components as partial binarization.

Kim and Smaragdis [12] consider full binarization with a
predetermined portion of the synapses having zero weight,
and all other synapses with a weight of one. They report
98.7% accuracy with fully-connected networks on the MNIST
dataset, and observe that only XNOR and bitcount opera-
tions are necessary for computing with such neural networks.
XNOR-Net by Rastegari et al. [22] applies convolutional
BNNs on the ImageNet dataset with topologies inspired by
AlexNet, ResNet and GoogLeNet, reporting top-1 accuracies
of up to 51.2% for full binarization and 65.5% for partial bi-
narization. DoReFa-Net by Zhou et al. [32] explores reduced
precision during the forward pass as well as the backward
pass, and note that this opens interesting possibilities for
training neural networks on FPGAs. Their results includes
configurations with partial and full binarization on the SVHN
and ImageNet datasets, including best-case ImageNet top-1
accuracies of 43% for full and 53% for partial binarization.

Finally, the work by Courbariaux et al. [5] describes how
to train fully-connected and convolutional networks with
full binarization and batch normalization layers, reporting
competitive accuracy on the MNIST, SVHN and CIFAR-10
datasets. Training for this work was performed using their
open source implementation. We use the acronym CNN to
refer to conventional or non-binarized neural networks for
brevity throughout the rest of this paper.

2.3 Neural Networks in Hardware
A great deal of prior work on mapping neural networks to

hardware exist both for FPGAs and as ASICs. We refer the
reader to the work by Misra and Saha [16] for a comprehen-
sive survey. We cover a recent and representative set of works
here, roughly dividing them into four categories based on
their basic architecture: 1) a single processing engine [20, 31,
4, 2], usually in the form of a systolic array, which processes
each layer sequentially; 2) a streaming architecture [28, 1],
consisting of one processing engine per network layer; 3) a
vector processor [7] with instructions specific to accelerating
the primitives operations of convolutions; and 4) a neurosy-
naptic processor [6], which implements many digital neurons
and their interconnecting weights.

Systolic arrays: Zhang et al. [31] describes a single pro-
cessing engine style architecture, using theoretical roofline
models tool to design accelerators optimized for the exe-
cution of each layer. Ovtcharov et al. [20] implement a
similar style architecture, but achieved a 3× speedup over
Zhang et al. [31]. Eyeriss by Chen et al. [4] use 16-bit fixed
point rather than floating point, and combine several differ-
ent data reuse strategies. Each 2D convolution is mapped to
1D convolutions across multiple processing engines, allowing
for completely regular access patterns for each processing
element. The authors report that their data reuse provides
2.5× better energy efficiency over other methods. YodaNN
by Andri et al. [2] have a similar design as Zhang et al. [31]
but explore binary weights for fixed sized windows.

Streaming architectures: Venieris and Bouganis [28] pro-
posed a synchronous dataflow (SDF) model for mapping



0.125 1 8 64 512 4096 16384

101

103

105

8
-b

it
a
ll

o
ff
-c

h
ip

1
-b

it
a
ll

o
n
-c

h
ip

Ops:Byte

G
O

P
S

16-bit ops

8-bit ops

1-bit ops

Figure 1: Roofline model for a ZU19EG.

CNNs to FPGAs, which is a similar approach to ours. The
main difference is that our design is optimized for BNNs
while their design targets conventional CNNs. Their de-
signs achieve up to 1.62× the performance density of hand
tuned designs. Alemdar et al. [1] implement fully-connected
ternary-weight neural networks with streaming and report
up to 255K frames per second on the MNIST dataset, but
concentrate on the training aspect for those networks.

Vector processors: Farabet et al. [7] describe a programmable
ConvNet Processor (CNP), which is a RISC vector proces-
sor with specific macro-instructions for CNNs including 2D
convolutions, 2D spatial pooling, dot product and an element-
wise non-linear mapping function. The authors also created
a tool to compile a high level network description into host
code which is used to call the CNP.

Neurosynaptic processors: TrueNorth [6] is a low power,
parallel ASIC with 4096 neurosynaptic cores, each imple-
menting 256 binary inputs, 256 neurons and a 256 × 256
array of synapses. An internal spiking router can connect any
input on any core to any neuron on any core, allowing many
network topologies to be implemented on fixed hardware.

The authors are not aware of any publication that demon-
strates end-to-end mapping of BNNs onto FPGAs. In com-
parison to prior art, the binary network inference engine
can significantly increase classification rates, while reducing
power consumption and minimizing latency. This currently
comes at the cost of a small drop in accuracy for larger
networks, however we believe a) there are use cases that do
not require the highest level of accuracy, or can be solved
with smaller networks (such as classification of playing cards
or handwritten digits [15]) and b) that accuracy can be im-
proved by increasing network sizes [27], an ongoing topic in
machine learning research.

3. BNN PERFORMANCE AND ACCURACY

3.1 Estimating Performance Using Rooflines
To estimate and compare BNN performance with fixed-

point CNN, we use a roofline model [30] which considers
memory bandwidth, peak computational performance and
arithmetic intensity (the number of mathematical operations
performed for each byte of off-chip memory read or written).
The intersection of the roofline curve with a vertical line
for a particular arithmetic intensity, gives the theoretical
peak performance point, which is either compute-bound or
memory-bound. In particular, we consider the binarized [32,
22] and 8-bit fixed-point [26] implementations of the popular
AlexNet [14], both of which require 1.4 billion operations
(GOPS) to classify one image.

Using the methodology described in [17], we develop a

roofline model for a Xilinx Zynq UltraScale+ ZU19EG FPGA1.
The resulting roofline model is depicted in Figure 1. We
first observe that the FPGA’s compute-bound performance
is 66 TOPS for binary operations, which is about 16× higher
compared to 8-bit and 53× higher compared to 16-bit fixed
point operations. However, reaching the compute-bound
peak is only possible if the application is not memory-bound.
The compact model size of BNNs provides another key ben-
efit. Since the binarized AlexNet requires only 7.4 MB of
parameters (compared with 50 MB for 8-bits), the entire
neural network model can be kept in on-chip memory. The
arithmetic intensities for the binarized and 8-bit fixed point
AlexNet variants are shown with vertical lines. Thus, the
BNN is almost able to reach the computational peak, while
the peak performance of the fixed-point CNN is bound by the
memory bandwidth. Based on these observations, with a de-
sign that reaches 75% of the peak, we estimate a throughput
of 0.75 · 66 TOPS

1.4 GOPS
≈ 35000 images per second.

Using the same model, it should be possible to extend the
comparison to CPUs and GPUs, but little data is available
on peak binary synaptic operation performance since BNNs
are relatively new. For instance, [5] mentions 6 cycles per 32
synapses (64 binary operations) on recent NVIDIA GPUs,
which would yield a computational peak of about 26 TOPS
on a Tesla K40 with 2880 cores running at 875 MHz, and
16666 images per second for binarized AlexNet.

3.2 Accuracy–Computation Tradeoffs
A tradeoff between network size, precision and accuracy

exists [27] so if one would like to achieve a certain classifi-
cation accuracy for a particular problem, which approach
leads to the most efficient solution? 1) A regular ANN with
floating point precision? 2) A larger network, but a BNN?
To gain more insight into this issue, we conducted a set of
experiments on the MNIST dataset that compare accuracy
of floating point and binary precision for the same topol-
ogy. The binary networks are obtained via replacing regular
layers by their binary equivalents, as described by Cour-
bariaux et al. [5]. We also binarize the input images for the
BNN as our experiments show that input binarization works
well for MNIST. Since the space of possible network topolo-
gies that can be trained is infinite, we adopted the approach
in [27] to simplify the problem. We fix the network topology
to a 3 hidden layer, fully connected network while scaling
the number of neurons in each layer, and plot the resulting
accuracy in Table 1 along with the number of parameters
and operations per frame. A few trends are apparent for this
problem and network configuration space: 1) similar to what
was found in by Sung et al. [27], as the network size increases,
the difference in accuracy between low precision networks
and floating point networks decreases; and 2) in order to
achieve the same level of accuracy as floating point networks,
BNNs require 2–11× more parameters and operations. Note
that we show the accuracy for networks trained using 32-bit
floating point numbers, but it is likely that this could be
reduced to 8-bit fixed point without a significant change in
accuracy [10]. Our BNN performance estimates from Section
3.1 suggest a 16× speedup for BNN over 8-bit fixed point,
which is greater than the 2–11× increase in parameter and
operation size. Thus, we expect that BNNs with compara-

1We assume 4.8 GB/s off-chip memory bandwidth, 350 MHz
clock and the following operation cost function: 2.5 LUTs
for 1-bit, 40 LUTs for 8-bit, 8 LUTs and 0.5 DSPs for 16-bit.



Table 1: Accuracy results - BNN vs floating point NN.

Binary Float
Neurons/layer Err. (%) Err. (%) # Params Ops/frame

128 6.58 2.70 134,794 268,800
256 4.17 1.78 335,114 668,672
512 2.31 1.25 932,362 1,861,632
1024 1.60 1.13 2,913,290 5,820,416
2048 1.32 0.97 10,020,874 20,029,440
4096 1.17 0.91 36,818,954 73,613,312

main memory

layer 1
compute array

layer 2
compute 

array

layer 3
compute 

array

o
ff

-c
h

ip
o

n
-c

h
ip

read
compute 1

write

compute 2
compute 3

latency

read
compute 1

write

compute 2
compute 3

initiation interval

heterogeneously sized; tailored to compute requirements

parameters

parameters

parameters

images classifications

Figure 2: Heterogeneous streaming architecture and schedule.

ble accuracy will be faster than fixed-point networks, even
though they may require more parameters and operations.

4. BNNs ON RECONFIGURABLE LOGIC

4.1 Architecture
We adopted a heterogeneous streaming architecture as

shown in Figure 2 for this work. We build a custom architec-
ture for a given topology rather than scheduling a operations
on top of a fixed architecture. Separate compute engines
are dedicated to each layer, which communicate via on-chip
data streams. Each engine starts to compute as soon as
the previous engine starts to produce output. Additionally,
owing to the compact model size of BNNs, all neural network
parameters are kept in on-chip memory. This avoids most
accesses to off-chip memory, minimizes the latency (the time
to finish classifying one image) by overlapping computation
and communication, and minimizes the initiation interval :
a new image can enter the accelerator as soon as the first
compute array is finished with the previous image. The
separate mapping of layers to compute arrays also enables
heterogeneity. By tailoring compute arrays separately for
each layer’s requirements, we can avoid the “one-size-fits-all”
inefficiencies and reap more of the benefits of reconfigurable
computing. This requires a different bitfile when the neu-
ral network topology is changed but we consider this an
acceptable cost for the performance gains obtained.

A BNN accelerator may have various constraints imposed
upon it depending on the use case. User-imposed constraints
include the choice of FPGA and platform, desired classifi-
cation throughput in frames per second (FPS) and clock
frequency. Simultaneously, the BNN topology constrains
how the compute resources must be allocated to obtain an
efficient heterogeneous streaming architecture. Finn offers
parameterizable building blocks and a way of controlling
the classification throughput, as described in Sections 4.3

and 4.4. To achieve portability, we chose a commercial high
level synthesis tool, Vivado High-Level Synthesis (HLS), for
the implementation. The tool enables faster development
cycles via high-level abstractions, and provides automated
pipelining to meet the clock frequency target.

4.2 BNN-specific Operator Optimizations
BNNs have several properties that enable a more efficient

mapping to FPGAs without affecting the network accuracy,
which we describe in the following subsections. We assume
that the methodology described in [5] is used for training all
BNNs in this paper, where all BNN layers have the following
properties (unless otherwise stated):

• Using 1-bit values for all input activations, weights and
output activations (full binarization), where an unset
bit represents -1 and a set bit represents +1.

• Batch normalization prior to the activation function.

• Using the following activation function:
Sign(x) = {+1 if x ≥ 0,−1 if x < 0}

4.2.1 Popcount for Accumulation
The regular and value-constrained nature of BNN com-

putations enable computing binary dot products with fewer
hardware resources. Let Y be the number of input synapses
(or fan-in) for a given neuron, with the number of +1-valued
synapse inputs denoted as Y1 and -1-valued synapses as Y0.
As there are only two possible values (-1 and +1) for any
synapse input, Y = Y0 + Y1. Therefore, by counting the
number of synapses for only one value, it is possible to infer
the summed response for the entire neuron.

The practical consequence for hardware is that the sum-
mation of a binary dot product can be implemented by
a popcount operation that counts the number of set bits
instead of accumulation with signed arithmetic. Our experi-
ments with Vivado HLS indicate that popcount-accumulate
requires approximately half the number of LUT and FF re-
sources to implement compared to signed-accumulate. For
instance, with a target Fclk = 200 MHz, a 128-bit popcount-
accumulate requires 376 LUTs and 29 FFs, while a 128-bit
bipolar-accumulate requires 759 LUTs and 84 FFs.

4.2.2 Batchnorm-activation as Threshold
All BNN layers use batch normalization [11] on convolu-

tional or fully connected layer outputs, then apply the sign
function to determine the output activation. We show how
the same output can be computed via thresholding.

Let ak be the dot product (pre-activation) output of neu-
ron k, and Θk = (γk, µk, ik, Bk) be the batch normalization
parameters learned during training for this neuron. The out-
put abk is computed as abk = Sign(BatchNorm(ak,Θk)), with
BatchNorm(ak,Θk) = γk · (ak−µk) · ik +Bk. Figure 3 shows
the dot product input vs output activation for three example
neurons. Depending on parameter values, the plot may be
shifted towards the left or right, or be flipped horizontally,
but a threshold τk for a change in the output activation
is always present. Solving BatchNorm(τk,Θk) = 0 we can
deduce that τk = µk − (Bk/(γk · ik)).

To make the thresholds compatible with the positive-only
operations in Section 4.2.1), the computed threshold is av-
eraged with the neuron fan-in S to obtain τ+k = (τk + S)/2.
Observing how neuron C activates with an opposite sign
threshold to neurons A and B in Figure 3, all neurons can be



−100 −50 0 50 100
−1

0

1

2

Dot product (ak)

A
ct

iv
a
ti

o
n

(a
b k
) neuron A neuron B neuron C

Figure 3: Three examples of binary neuron activations with batch
normalization. A slight vertical offset is added for clarity.

BNN topology 
& parameters

synthesizable C++ 
network description

Theano + BinaryNet

FINN synthesizerFPS target

bitfile

Vivado HLx
FINN 

hardware 
library

platform with FPGA

Figure 4: Generating an FPGA accelerator from a trained BNN.

made to activate using a greater-than threshold by flipping
the signs of a neuron’s weights if γk · ik < 0.

Using these techniques, we can compute the output acti-
vation using an unsigned comparison and avoid computing
the batch normalized value altogether during inference. τ+k
itself is fixed for a trained network and can be computed
from the batchnorm parameters at compile time. Synthe-
sis reports from Vivado HLS for 16-bit dot product output
values indicate that regular batchnorm-and-sign activation
requires 2 DSPs, 55 FFs and 40 LUTs, whereas the threshold
activation we describe here only requires 6 LUTs.

4.2.3 Boolean OR for Max-pooling
The networks described in [5] perform pooling prior to acti-

vations, i.e. pooling is performed on non-binarized numbers,
which are then batch normalized and fed into the activation
function. We show that the same layer outputs can be de-
rived by max pooling after the activations without having
to re-train the network. Let a1, a2, . . . aY be the positive dot
product outputs that will be processed by max-pooling. In
accordance with Section 4.2.2, the output would be computed
as ab = (Max(a1, a2, . . . aY ) > τ+). Due to the distributivity
of Max, the output will be true if any of a1, a2, . . . aS are
greater than τ+. Therefore, the same result can be com-
puted as ab = (a1 > τ+)∨ (a2 > τ+) . . .∨ (aY > τ+). As the
threshold comparisons are already computed for the activa-
tions, max-pooling can be effectively implemented with the
Boolean OR-operator. We note that similar principles apply
for min-pooling (as Boolean AND) and average-pooling (as
Boolean majority function) as well.

4.3 FINN Design Flow and Hardware Library
Figure 4 illustrates the design flow for converting a trained

BNN into an FPGA accelerator. The user supplies a FPS
target alongside a Theano-trained BNN to the Finn synthe-
sizer. The synthesizer first determines the folding parameters
(Section 4.4) to meet the FPS target and applies the opti-
mizations from Section 4.2, then produces a synthesizable
C++ description of a heterogeneous streaming architecture.
The architecture is composed of building blocks from the
Finn hardware library described in the following subsections.

processing
element #2

processing
element #P

...in
pu

t v
ec

to
r

bu
ffe

r

ou
tp

ut
 v

ec
to

r 
bu

ffe
r

input 
image
stream

output 
image
stream

processing
element #1

SIMD lanes (S)

Figure 5: Overview of the MVTU.

1

weight 
memory

XNOR

popcount

accum
ulator

+

threshold 
m

em
ory

>=

in
pu

t v
ec

to
r

in
de

x

ou
tp

ut
 v

ec
to

r

TT

TS

S

S
T

Figure 6: MVTU PE datapath. Bold indicates bitwidth.

4.3.1 The Matrix–Vector–Threshold Unit
The Matrix–Vector–Threshold Unit (MVTU) forms the

computational core for our accelerator designs. The vast
majority of compute operations in a BNN can be expressed
as matrix–vector operations followed by thresholding. For
instance, the pre-activation output aN of the fully connected
neural network layer at index N is given by matrix-vector
product aN = A·ab

N−1 where A is the synaptic weight matrix

and ab
N−1 are the activations from the previous layer. The

post-activation output can then be computed by ab
N = aN >

τ+N, where the thresholds τ+N are determined as described
in Section 4.2.2. Convolutions can also be implemented as
matrix–vector products, as will be described in Section 4.3.2.
As such, the MVTU implements fully-connected layers as
a standalone component, and is also used as part of the
convolutional layers.

The overall organization of the MVTU is shown in Figure
5. Internally, the MVTU consists of an input and output
buffer, and an array of Processing Elements (PEs) each with
a number of SIMD lanes. The number of PEs (P ) and
SIMD lanes (S) are configurable to control the throughput
as discussed in Section 4.4.1. The synapse weight matrix
to be used is kept in On-Chip Memory (OCM) distributed
between PEs, and the input images stream through the
MVTU as each one is multiplied with the matrix. Each PE
receives exactly the same control signals and input vector
data, but multiply-accumulates the input with a different
part of the matrix. In terms of the taxonomy described in
[4], this architecture is both weight stationary (since each
weight remains local to the PE) and output stationary (since
each popcount computation remains local to the PE).

Figure 6 shows the datapath of an MVTU PE. It computes
the dot product between the input vector and a row of
the synaptic weight matrix and compares the result to a
threshold, producing a single-bit output. The dot product
computation itself consists of an XNOR of the vectors, after
which the number of set bits in the result is counted (see
Section 4.2.1) and added to the accumulator register. Once
the entire dot product is accumulated, it is thresholded. The
accumulator, adder and threshold memory bitwidth can be
scaled down to T = 1 + log2(Y ) for additional resource
savings.



A B CE F G D H

A B

C D

E F

G H

P Q

R S

T U

V W

filters

P Q RT U V S W

filter matrix
(interleaved)

images0 1

3 4

2

5

0 1

3 4

2

5

0

1

4

3

0

1

4

3

1

2

5

4

1

2

5

4

im
ag

e 
m

at
rix

(in
te

rle
av

ed
)

ifm 0

A B

C D

E F

G H

P Q

R S

T U

V W

ifm 1 ifm 0 ifm 1
ofm 0 ofm 1

interleave

0 1

3 4

2

5

0 1

3 4

2

5

interleave

0 1

3 4

0 1

3 4

1

4

2

5

1

4

2

5

sliding window

ifm 0 ifm 1

(a) Lowering with interleaved channels.
data written into memory 
in sequential order

addresses:
0, 1, 3, 4, 

1, 2, ..

0

1

3

4

2

5

0

1

3

4

2

5

01342 1 01342 1

read data stream
= 

image matrix

single, wide
IFM memory

address 
generator

previous 
layer

MVTU

column 0 of image matrix

next
layer

(b) SWU operation.
Figure 7: Convolution using interleaved channels.

Finally, it is worth pointing out that the MVTU archi-
tectural template can also support partial binarization for
non-binarized outputs and inputs. Removing the thresolding
stage provides non-binarized outputs, while using regular
multiply-add instead of XNOR-popcount can handle non-
binarized inputs These features are used in the first and last
layers of networks that process non-binary input images or
do not output a one-hot classification vector.

4.3.2 Convolution: The Sliding Window Unit
Convolutions can be lowered to matrix-matrix multiplica-

tions [3], which is the approach followed in this work. The
weights from the convolution filters are packed into a filter
matrix, while a sliding window is moved across input images
to form an image matrix. These matrices are then multiplied
to generate the output images.

The convolutional layer consists of a Sliding Window Unit
(SWU), which generates the image matrix from incoming
feature maps, and a MVTU that actually computes the
matrix–matrix product using a different column vector from
the image matrix each time. In order to better cater for
the SIMD parallelism of the MVTU and minimize buffering
requirements, we interleave the feature maps such that each
pixel contains all the Input Feature Map (IFM) channel data
for that position, as illustrated in Figure 7a. Since the dot
product to compute a Output Feature Map (OFM) pixel
includes all IFMs pixels at a certain sliding window location,
those IFM pixels can be processed in any order owing to the
commutative property of addition. Note that interleaving
the filter matrix has no additional cost since it is done offline,
and interleaving the input image can be done on-the-fly in
the FPGA. Storing the pixels in this fashion allows us to
implement the SWU with a single wide OCM instead of
multiple narrow OCMs, and also enables the output of the
MVTU to be directly fed to the next layer without any

transposition. As illustrated in Figure 7b, the incoming IFM
data is simply stored at sequential addresses in a buffer, then
the memory locations corresponding to each sliding window
are read out to produce the image matrix.

Although not required by any of the networks described
in this work, the SWU also pads the images if necessary.
One interesting observation is that with the bipolar number
representation used in this work, there is no number cor-
responding to zero. Therefore, in order to maintain a true
binary datapath for activations, images must be padded with
our representation or either a 1 or a -1. Future work will
look into what impact this has on the accuracy of trained
networks, but early experiments suggest that there is very
little difference in accuracy, with respect to [5].

4.3.3 The Pooling Unit
The Pooling Unit (PU) implements max-pooling as de-

scribed in Section 4.2.3. To implement k × k max-pooling
on a DH × DW binary image of C channels, the PU con-
tains C · k line buffers of DW bits each. As with the rest
of our component library, the PU operates in a streaming
fashion. The input image is gradually streamed into the line
buffers. When at least k rows of the image have arrived, each
k consecutive bits of the line buffer are OR’ed together to
produce horizontal subsampling for each channel. These are
then OR’ed together with the other line buffers to produce
vertical subsampling, the results are streamed out, and the
oldest line buffers are refilled with the next row of pixels.

4.4 Folding
In terms of the MVTU description given in Section 4.3.1,

each PE corresponds to a hardware neuron, while each SIMD
lane acts as a hardware synapse. If we were to dimension
each MVTU in a network with a number of hardware neurons
and synapses equal to the number of neurons and synapses
in a BNN layer, this would result in a fully parallel neural
network that could classify images at the clock rate. However,
the amount of hardware resources on an FPGA is limited,
and it is necessary to time-multiplex (or fold) the BNN onto
fewer hardware synapses and neurons. We now describe how
the folding is performed subject to user constraints.

The work by Venieris et al. [28] describes a method for
folding neural networks expressed as streaming dataflow
graphs, with focus on formalizing the folding and design
space exploration. In this work, we consider a simpler variant
that only controls the folding of matrix–vector products to
achieve a given FPS requirement set by the user, and focus
on how the folding is implemented in terms of the workload
mapping. As almost all computations in BNNs are expressed
as matrix–vector multiplications, implementing folding for
matrix–vector multiplication already enables a great degree of
control over the system throughput. Folding directly affects
the resource and power consumption of the final system as
well, which we explore in Section 5.

4.4.1 Folding Matrix–Vector Products
Folding matrix–vector products is achieved by controlling

two parameters of the MVTU: P the number of PEs, and S
the number of SIMD lanes per PE. These determine how the
matrix is partitioned between the PEs. A P -high, S-wide
tile of the matrix is processed at a time, with each row in the
tile mapped to a different PE, and each column to a different
SIMD lane. For a X × Y matrix, we refer to Fn = X/P



A B C

E F G

D

H

J K L

N O P

M

Q

R S T

V W X

U

Y

N O

P Q

A B

C D

F

H

S

E

G

R

T U

J K

L M

V W

X Y

T0

T1

T2

T3

T4

T5T0 T3 T1 T4 T2 T5

PE0 PE1 PE2w
ei
gh
ts

th
re
sh
ol
ds

Figure 8: Neuron and synapse folding for MVTU.

as the neuron fold and F s = Y/S as the synapse fold. The
total fold F is then obtained as F = Fn · F s, which is also
the number of cycles required to complete one matrix–vector
multiply. Note that Fn and F s should be integers to avoid
padding the weight matrix. As an example, Figure 8 shows
how a 6× 4 weight matrix is partitioned between three PEs
with two SIMD lanes each. Here, each matrix-vector multiply
will take Fn · F s = (6/3) · (4/2) = 4 cycles.

The same principle applies for convolutional layers, but
these always have an inherent amount of folding due to our
current matrix–matrix product as multiple matrix–vector
products implementation. For convolutional layers, the total
fold is F = Fm · Fn · F s, where Fm is a network-dependent
constant due to multiple matrix-vector products, and is equal
to the number of output pixels from the convolution.

4.4.2 Determining Fn and F s

Avoiding the “one-size-fits-all” inefficiencies requires tailor-
ing each MVTU’s compute resources to layer requirements.
The guiding principle here is rate-balancing the heteroge-
neous streaming architecture: the slowest layer (with IImax)
will determine the overall throughput, so each layer should
use a roughly equal number of cycles to process one image.
As this is a streaming system, the classification throughput
FPS will be approximately Fclk

IImax
, where Fclk is the clock

frequency. For a fully-connected layer, the total fold F is
equal to the initiation interval (II). Therefore, balancing a
fully-connected BNN can be achieved by using Fn and F s

such that Fn · F s = Fclk
FPS

for each layer. Depending on the
BNN and the FPS requirements, the number of memory
channels or sliding window generation may constitute bottle-
necks. For such cases, we match the throughput of all other
layers to the bottleneck in order not to waste resources.

5. EVALUATION

5.1 Experimental Setup
To evaluate Finn, we created a number of prototypes

that accelerate BNNs inference on the MNIST [15] (28× 28
handwritten digits), CIFAR-10 [13] (32 × 32 color images
in 10 categories) and cropped SVHN [18] (32 × 32 images
of Street View House Numbers) datasets. Each prototype
combines a BNN topology with a different use case scenario.
We consider three different BNN topologies for classifying
the datasets as follows:

• SFC and LFC are three-layer fully connected network
topologies for classifying the MNIST dataset, with
different numbers of neurons to demonstrate accuracy-
computation tradeoffs (Section 3.2). SFC contains 256
neurons per layer and achieves 95.83% accuracy, while
LFC has 1024 neurons per layer and achieves 98.4%

accuracy. These networks accept 28x28 binary images
and output a 10-bit one-hot vector indicating the digit.

• CNV is a convolutional network topology inspired by
BinaryNet [5] and VGG-16 [25]. It contains a succession
of (3x3 convolution, 3x3 convolution, 2x2 maxpool)
layers repeated three times with 64-128-256 channels,
followed by two fully connected layers of 512 neurons
each. We use this topology for classifying both the
CIFAR-10 (with 80.1% accuracy) and SVHN (with
94.9% accuracy) datasets, with different weights and
thresholds. Note that the inputs to the first layer and
the outputs from the last layer are not binarized; CNV
accepts 32x32 images with 24 bits/pixel, and returns a
10-element vector of 16-bit values as the result.

To further demonstrate the flexibility of the framework,
we consider two usage scenarios for each BNN topology to
guide the choice of parametrization:

• max is the maximum performance scenario where it
is desirable to reach the peak FPS permitted by the
platform, topology and Finn’s architecture.

• fix represents a scenario with a fixed FPS requirement,
which is often determined by an I/O device for real
life applications. For instance, consider a 640 × 480
video stream at 30 FPS, which is to be chopped up into
32 × 32 tiles for neural network inference. Handling
this task with real-time performance would require a
BNN inference rate of 9000 FPS, which we set as the
requirement for this usage scenario.

We use shortened names to refer to the prototypes, e.g.
CNV-fix refers to the prototype that implements the CNV
topology for the fix usage scenario. For each prototype,
the folding factors (Section 4.4) were determined to meet
the requirements of its usage scenario, and the Finn design
flow (Section 4.3) was followed to generate the hardware
accelerator. Vivado HLS and Vivado version 2016.3 were
used for the bitfile synthesis. A target clock frequency of
200 MHz was used for both Vivado HLS and Vivado, and to
run the resulting accelerator unless otherwise stated. The
salient properties of the topologies and folding factors for
the prototypes are summarized in Table 2.

All prototypes have been implemented on the Xilinx Zynq-
7000 All Programmable SoC ZC706 Evaluation Kit running
Ubuntu 15.04. The board contains a Zynq Z7045 SoC with
dual ARM Cortex-A9 cores and FPGA fabric with 218600
LUTs and 545 BRAMs. The host code runs on the Cortex-
A9 cores of the Zynq. It initializes 10000 images with test
data in the Zynq’s shared DRAM, launches and times the
accelerator execution to measure classification throughput,
then measures accuracy by comparing against the correct
classifications. Two power measurements Pchip and Pwall

are provided for each experiment; Pchip using the PMBus
interface to monitor the FPGA power supply rails, and Pwall

using a wall power meter for the total board power consump-
tion. The measurements are averaged over a period of 10
seconds while the accelerator is running.

5.2 Results
Table 3 provides an overview of the experimental results,

in terms of classification throughput, latency to classify one
image, FPGA resource usage and power. The max scenario



Table 2: Summary of workloads.

Topology Params Ops Off-chip I/O Op.Int.
(Mbits) (M) (B) (Ops/B)

SFC 0.3 0.6 112 5970
LFC 2.9 5.8 112 51968
CNV 1.5 112.5 3092 36400

Prototype Per-Layer Total Fold (F )

SFC-max 13, 16, 16, 16
SFC-fix 12544, 16384, 16384, 2560
LFC-max 104, 128, 128, 128
LFC-fix 13312, 16384, 16384, 10240
CNV-max 8100, 7056, 5184, 7200, 5184, 4608, 8192, 8192, 1280
CNV-fix 16200, 14112, 10368, 14400, 10368, 9216, 16384, 16384, 1280

Table 3: Summary of results from Finn 200 MHz prototypes.

Name Thr.put Latency LUT BRAM Pchip Pwall

(FPS) (µs) (W) (W)

SFC-max 12361 k 0.31 91131 4.5 7.3 21.2
LFC-max 1561 k 2.44 82988 396 8.8 22.6
CNV-max 21.9 k 283 46253 186 3.6 11.7
SFC-fix 12.2 k 240 5155 16 0.4 8.1
LFC-fix 12.2 k 282 5636 114.5 0.8 7.9
CNV-fix 11.6 k 550 29274 152.5 2.3 10

results are perhaps the best summary of the potential of
BNNs on FPGAs, with SFC-max achieving 12.3 million
classifications per second at 0.31 µs latency while drawing
less than 22 W total power. All fix results meet and exceed
the 9000 FPS requirement by 30% due to folding factors
being integers, though lower throughput and power could
have been achieved by using a slower clock. We focus on
particular aspects of the results in the following subsections.

5.2.1 Maximum Throughput and Bottlenecks
To assess the quality of results for the max scenarios, we

compare the achieved performance (XNOR–popcount op-
erations per second) with the peak throughput in TOPS
indicated by the roofline model. Figure 9 presents a roofline
model (Section 3.1) for the ZC706, assuming 90% LUT uti-
lization, 200 MHz clock frequency and 1.6 GB/s of DRAM
bandwidth. The vertical lines show the arithmetic intensities
for the topologies, and the actual operations per second val-
ues from corresponding prototypes with max usage scenarios
are indicated as points on those lines. All max prototypes
achieve performance in the TOPS range, but are bottlenecked
due to different factors. CNV-max achieves 2.5 TOPS and is
architecture-bound. The current SWU design does not scale
as well as the MVTU and constitutes a bottleneck, which will
be addressed in future work. Despite its higher complexity,
observe that CNV-max actually requires ∼2× fewer LUTs

0.125 2 32 512 8192 128K
100

102

104

Ops:Byte

G
O

P
S

FP32 precision
16-bit precision
8-bit precision
1-bit precision

SFC
MFC
LFC
CNV

Figure 9: ZC706 roofline with topologies and max-datapoints.

SFC-max
LFC-max

CNV-max
SFC-fix

SFC-smax
LFC-fix

CNV-fix
103

104

105

106

F
P

S
/
W

wall chip

Figure 10: Prototype energy efficiency.

than SFC-max since the folding parameters for CNV-max
are chosen in accordance with the maximum performance
dictated by the bottleneck. SFC-max achieves 8.2 TOPS and
is memory-bound. Observe that the SFC arithmetic inten-
sity line intersects the memory-bound (sloped) part of the
roofline, thus the performance cannot be scaled up without
adding more DRAM memory bandwidth. LFC-max achieves
9.1 TOPS, which is 46% of the roofline, and is resource-
bound. As folding factors are integers, the smallest increment
is 2× which roughly doubles the resource cost. The FPGA
has enough LUTs but not enough BRAMs to accommodate
doubled resource cost, thus leaving ∼30% of BRAMs unused.
A 3x512-neuron fully connected topology, labeled MFC in
Figure 9, was able to achieve 11.6 TOPS and 6238 kFPS
with 95% of the device BRAMs.

5.2.2 Energy Efficiency
It is desirable to minimize the energy spent per image clas-

sification, which corresponds to maximizing FPS per Watt
when many images are to be classified. To help evaluate the
energy efficiency, Figure 10 plots the achieved FPS per Watt
for the prototypes for both the wall power and FPGA power
readings. In general, we see that the higher FPS prototypes
have better energy efficiency, with SFC-max offering 583066
FPS per W of total power and outperforming all other pro-
totypes by at least an order of magnitude. It is also worth
noting that the board’s idle power consumption is about 7 W,
which forms a lower bound on all wall power measurements,
and could be improved by e.g. using LPDDR memory.

To maximize energy efficiency with a fixed target FPS, is it
better to use a highly parallel design at low clock frequency,
or a less parallel design at high clock frequency? We ran
an additional experiment to investigate this question by
slowing down the SFC-max prototype to meet the fix FPS
requirement of 9000 FPS. By clocking it at 250 kHz, we
obtained a classification throughput of 15731 FPS with 0.2 W
of FPGA power. The result is labeled SFC-smax in Figure
10, and is over 2× more energy efficient than SFC-fix. This
suggests that a high degree of parallelism benefits energy
efficiency as long as the FPGA resources are available.

5.2.3 Resource Efficiency
We consider two aspects of resource efficiency for Finn:

how efficiently the compute units are used during runtime
(runtime efficiency), and how efficiently FPGA resources are
turned into compute units (mapping efficiency).

To assess runtime efficiency, we divide the FPS-based
(actual) operations per cycle (FPS·Ops

Fclk
) by the (peak) number

of synaptic operations per cycle from the design (
∑

2 · P · S).
The prototypes exhibit good runtime efficiency, with ∼70%
for CNV, ∼80% for SFC and ∼90% for LFC. The efficiency
can be increased further by fine-tuning the folding factors
between different layers.

Evaluating the mapping efficiency directly on the proto-



0 50 100 150 200 250

2
4
6
8

PE count

L
U

T
/
O

p
s/

cy
cl

e

LUT efficiency

0
20
40
60

B
R

A
M

sLUT efficiency

BRAM usage

Figure 11: Mapping resource efficiency.

types loses some insight, since CNV uses LUTs on SWU
and PU, while fully-connected topologies do not. Instead,
for a single 256 × 256 fully-connected layer, we fix S = 64
and vary P , and plot the LUTs per synaptic operation in
Figure 11, which should be minimized to maximize efficiency.
The LUTs per operation decreases with higher P since the
fixed-size control logic is amortized between more PEs and
reaches a minimum of 1.83 for P = 64, but increases again
for P > 64. To understand why, we also plot the number of
BRAMs used in the same figure. Although all designs have
the same number of BNN parameters, the number of BRAMs
increases with P since each PE needs its own weight and
threshold memories. This also means a significant part of
the BRAM storage capacity is unused for 1 < P ≤ 64, since
the same amount of network parameters is divided between a
greater number of memories. This is also visible for SFC-fix
and SFC-max, which use the same network parameters, but
have almost 10× difference in the number of BRAMs used
(15.5 vs 130.5) since SFC-max has more compute elements
working in parallel. Here, with P > 64, so little of each
BRAM is used that Vivado HLS implements the weight and
threshold memories using LUTs, which causes the LUTs
per operation to increase. Thus, the depth and number of
BRAMs, and the LUT-to-BRAM ratio of the FPGA plays a
key role in determining how well the resources will be utilized
by a BNN. For instance, on another FPGA with the same
amount of LUTs but twice the number of half-depth BRAMs,
LFC-max could achieve 2× throughput.

5.3 Comparison to prior work
From an application perspective, we suggest that the cur-

rent best way to compare different platforms is to simply
compare their accuracy, FPS and power consumption when
working on the same benchmark datasets (MNIST, CIFAR-
10 and SVHN). This comparison is provided in Table 4,
and is divided into three sections: our results, prior work
on low-precision (< 4 bits) networks, and prior work with
higher-precision (> 4 bits) networks.

When it comes to pure image throughput, our designs
outperform all others. For the MNIST dataset, we achieve an
FPS which is over 48/6× over the nearest highest throughput
design [1] for our SFC-max/LFC-max designs respectively.
While our SFC-max design has lower accuracy than the
networks implemented by Alemdar et al. [1] our LFC-max
design outperforms their nearest accuracy design by over
6/1.9× for throughput and FPS/W respectively. For other
datasets, our CNV-max design outperforms TrueNorth [6]
for FPS by over 17/8× for CIFAR-10 / SVHN datasets
respectively, while achieving 9.44× higher throughput than
the design by Ovtcharov et al. [20], and 2.2× over the fastest
results reported by Hegde et al. [9]. Our prototypes have
classification accuracy within 3% of the other low-precision

works, and could have been improved by using larger BNNs.
A recent work by Nurvitadhi et al. [19] compares binary

matrix-vector operation performance and efficiency on FPGA,
ASIC, GPU and CPU. Their results indicate that CPU
and GPUs are severely underutilized for binary synaptic
operations, and that FPGAs are only ∼8× less energy efficient
than ASICs in this case. As they do not provide results on
end-to-end network implementations, we do not include them
in Table 4. Our 11.6 TOPS MFC prototype (Section 5.2.1)
is 20% faster than the 9.6 TOPS reported in their work.

6. CONCLUSION
This work demonstrates the performance and energy effi-

ciency potential of recently proposed BNNs for image clas-
sification. They are particularly well-suited for FPGA im-
plementations as parameters can be fit entirely in OCM and
arithmetic is simplified, enabling high computational perfor-
mance. The novel parameterizable dataflow architecture and
optimizations presented enable unprecedented classification
rates, minimal power consumption and latency, while offer-
ing the flexibility of C++ design entry and the scalability
required for accelerating larger and more complex networks.
We hence believe that this technology is eminently suitable
for embedded applications requiring real-time response, in-
cluding surveillance, robotics and augmented reality. Future
work will focus on providing support for non-binary low pre-
cision, implementing larger networks like AlexNet, higher
performance convolutions, and a more thorough design space
exploration. Finally, Finn assumes that all BNN parameters
can fit into the available OCM of a single FPGA. Supporting
external memory, multi-FPGAs implementations and recon-
figuration [28] could improve the utility of our approach.

Acknowledgments
The authors would like to thank the NTNU HPC lab and col-
leagues at Xilinx Research Labs for their support. This work
was supported under the Australian Research Councils Link-
age Projects funding scheme (project number LP130101034).

7. REFERENCES
[1] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle,

and F. Pétrot. Ternary Neural Networks for
Resource-Efficient AI Applications. CoRR,
abs/1609.00222, 2016.

[2] R. Andri, L. Cavigelli, D. Rossi, and L. Benini.
YodaNN: An ultra-low power convolutional neural
network accelerator based on binary weights. CoRR,
abs/1606.05487, 2016.

[3] K. Chellapilla, S. Puri, and P. Simard. High
performance convolutional neural networks for
document processing. In Proc. ICFHR. Suvisoft, 2006.

[4] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial
architecture for energy-efficient dataflow for
convolutional neural networks. In Proc. ACM/IEEE
ISCA. IEEE, 2016.

[5] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized Neural Networks: Training
Deep Neural Networks with Weights and Activations
Constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[6] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy,
R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L.



Table 4: Comparison to prior work. Metrics not reported by prior work are indicated by dashes (-), and our estimates by ∼ .

Name Dataset Platform Precision Err. (%) kFPS Pchip (W) Pwall (W) kFPS/Pchip kFPS/Pwall GOPS

SFC-max MNIST ZC706 1 4.17 12,361 7.3 21.2 1693.29 583.07 8,265.45
LFC-max MNIST ZC706 1 1.60 1,561 8.8 22.6 177.39 69.07 9,085.67
MFC-max MNIST ZC706 1 2.31 6,238 11.3 28.5 552 218.8 11,612.86
CNV-max CIFAR-10 ZC706 1 19.90 21.9 3.6 11.7 6.08 1.87 2,465.5
CNV-max SVHN ZC706 1 5.10 21.9 3.6 11.7 6.08 1.87 2,465.5

Alemdar et al. [1] MNIST Kintex-7 160T 2 2.24 255.10 0.32 - 806.45 - ∼96.68
Alemdar et al. [1] MNIST Kintex-7 160T 2 1.71 255.10 1.84 - 138.50 - ∼448.47
Alemdar et al. [1] MNIST Kintex-7 160T 2 1.67 255.10 2.76 - 92.59 - ∼864.03
Park and Sung [21] MNIST ZC706 3 - 70 4.98 - 14.06 - ∼210
TrueNorth [6] CIFAR-10 TrueNorth 1 16.59 1.249 0.2044 - 6.11 - -
TrueNorth [6] SVHN TrueNorth 1 3.34 2.526 0.2565 - 9.85 - -

CaffePresso [9] MNIST Keystone-II 16 - 5 - 14 - 0.357 44.82
CaffePresso [9] CIFAR-10 Keystone-II 16 - 10 - 14 - 0.714 146.14
CaffePresso [9] MNIST Parallella 32 - 0.64 - 5 - 0.129 5.78
CaffePresso [9] CIFAR-10 Parallella 32 - 0.1 - 5 - 0.019 1.40
Ovtcharov et al. [20] CIFAR-10 Stratix V D5 32 ∼11-26 2.32 - 25 - 0.093 -

McKinstry, T. Melano, D. R. Barch, et al.
Convolutional Networks for Fast, Energy-Efficient
Neuromorphic Computing. CoRR, abs/1603.08270,
2016.

[7] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. CNP:
An FPGA-based processor for convolutional networks.
In Proc. IEEE FPL, pages 32–37. IEEE, 2009.

[8] S. Han, H. Mao, and W. J. Dally. Deep Compression:
Compressing Deep Neural Network with Pruning,
Trained Quantization and Huffman coding. CoRR,
abs/1510.00149, 2015.

[9] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre.
CaffePresso: An Optimized Library for Deep Learning
on Embedded Accelerator-based platforms. In Proc.
CASES, 2016.

[10] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W. J. Dally, and K. Keutzer. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters
and< 1MB model size. CoRR, abs/1602.07630, 2016.

[11] S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proc. ICML, pages 448–456, 2015.

[12] M. Kim and P. Smaragdis. Bitwise neural networks.
CoRR, abs/1601.06071, 2016.

[13] A. Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. Technical Report, 2009.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Proc. NIPS, pages 1097–1105, 2012.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11):2278–2324, 1998.

[16] J. Misra and I. Saha. Artificial neural networks in
hardware: A survey of two decades of progress.
Neurocomputing, 74(1–3):239–255, 2010.

[17] S. Muralidharan, K. O’Brien, and C. Lalanne. A
Semi-Automated Tool Flow for Roofline Anaylsis of
OpenCL Kernels on Accelerators. Proc. Workshop on
H2RC, 2015.

[18] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[19] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra,
G. Venkatesh, and D. Marr. Accelerating Binarized
Neural Networks: Comparison of FPGA, CPU, GPU,
and ASIC. In Proc. ICFPT, 2016.

[20] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers,

K. Strauss, and E. Chung. Accelerating deep
convolutional neural networks using specialized
hardware, February 2015.

[21] J. Park and W. Sung. FPGA based implementation of
deep neural networks using on-chip memory only. In
Proc. IEEE ICASSP, pages 1011–1015. IEEE, 2016.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In ECCV, 2016.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV,
115(3):211–252, 2015.

[24] J. Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015.

[25] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[26] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma,
S. B. K. Vrudhula, J. Seo, and Y. Cao.
Throughput-Optimized OpenCL-based FPGA
Accelerator for Large-Scale Convolutional Neural
Networks. In Proc. ACM/SIGDA ISFPGA, pages
16–25, 2016.

[27] W. Sung, S. Shin, and K. Hwang. Resiliency of deep
neural networks under quantization. CoRR,
abs/1511.06488, 2015.

[28] S. I. Venieris and C.-S. Bouganis. fpgaConvNet: A
Framework for Mapping Convolutional Neural
Networks on FPGAs. In Proc. IEEE FCCM, pages
40–47. IEEE, 2016.

[29] T. Weyand, I. Kostrikov, and J. Philbin. Planet - photo
geolocation with convolutional neural networks. CoRR,
abs/1602.05314, 2016.

[30] S. Williams, A. Waterman, and D. A. Patterson.
Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM, 52(4):65–76,
2009.

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and
J. Cong. Optimizing FPGA-based accelerator design for
deep convolutional neural networks. In Proc.
ACM/SIGDA ISFPGA, pages 161–170. ACM, 2015.

[32] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou.
DoReFa-Net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.


