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Abstract: The efficient and safe operation of subsea gas and oil production systems sets strict
requirements to equipment reliability to avoid unplanned breakdowns and costly maintenance
interventions. Because of this, condition monitoring is employed to assess the status of the
system in real-time. However, the condition of the system is usually not considered explicitly
when finding the optimal operation strategy. Instead, operational constraints on flow rates,
pressures etc., based on worst-case scenarios, are imposed. This can lead to unnecessarily
restrained operation and significant economic losses. To avoid sub-optimal operation, we propose
to integrate diagnostics and prognostics with the optimal decision making process for operation
to obtain an operational strategy which is optimal subject to the expected system degradation.
This allows us to proactively steer the system degradation, rather than simply reacting to it. We
use the operation of a subsea gas compressor subject to bearing degradation as a case example.
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1. INTRODUCTION

Subsea processing is an enabling technology for fields
that were previously deemed too remote, too deep or
far away from existing infrastructure. However, several
industrial challenges arise when moving topside equipment
to the seabed. One of the potentially most prohibitive
challenges is the inaccessibility of the plant for large parts
of the year, and the need for specialized intervention
ships. Consequently, unplanned shut-downs can be very
costly and must be avoided as far as possible. In order
to achieve this, strict reliability constraints are imposed
on design and operation of the plant. While these safety
margins provide a method to ensure reliable operation,
they might be overly restrictive. One reason for this
is because the information from the health monitoring
system is often not utilized directly in the decision making
process. Instead, a ”worst-case” approach is often used to
determine production set-points.

In this paper we propose a method for integrating health
monitoring, prognostics and control to obtain an oper-
ational strategy that ensures maximum economic profit
without jeopardizing the plant reliability. In particular,
we include a health degradation model in our optimization
routine, resulting in a model-predictive control (MPC)-like
framework where we impose constraints on the remaining
useful life (RUL) of the equipment.

MPC has gained increasing popularity in industry in
recent years due to its ability to deal with constrained,
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multivariate, and nonlinear control problems, is based
on the repeated optimization of the objective function,
subject to constraints (Morari and Lee, 1999). The first
input of the optimized input trajectory is implemented
in the plant, before new measurements are taken and the
model is re-optimized.

The concept of health-aware control has been investigated
by a few authors in recent years. The term ”health-
aware control” itself was first used by Escobet et al.
(2012) to describe a control structure which through the
combination of prognostics and health monitoring (PHM)
and feedback control simultaneously can fulfill the control
objectives and extend the component RUL. The method
was applied to a conveyor belt system, and later to wind
turbines (Sanchez et al., 2015). Similar ideas of combining
PHM and MPC were previously discussed by Pereira
et al. (2010) and Salazar et al. (2016), with application to
control effort distribution, and pumps in drinking water
networks, respectively.

1.1 General description of framework

In this paper we propose an integrated framework for
combining diagnostics, prognostics, and optimal operation
using MPC. Our framework contains the following steps:

Step 1 (Data acquisition): Collect measurements
from the plant, including measurements of equip-
ment health indicators

Step 2 (Diagnostics): Estimate states and system
health

Step 3 (Prognostics): Estimate prediction model
parameters
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Fig. 1. Subsea gas compression station

Step 4 (Optimal operation strategy): Use
current health estimates and prediction model in
addition to system model to find operation that
maximizes the profit without violating safety
constraints

Step 5: Implement first control input
Step 6: Repeat: go to step 1

In the following sections, we will show how these steps can
be applied to the case of a subsea compression station.
Following a description of the process in Section 2, we
cover step 1 and 2 in Section 3.1, step 3 in Section 3.2,
and step 4 and 5 in Section 4. The results from the case
study are presented in Section 5.

2. PROCESS DESCRIPTION

Our case study is a subsea gas compression station, similar
to installations on the Åsgard field and the Ormen Lange
pilot. The purpose of the gas compression station is to
boost the pressure of the stream so that it is sufficiently
high to overcome the pressure drop in the transportation
pipeline and arrive at the receiving facility topside with
the desired outlet pressure. A multiphase boosting pump
could be used for this purpose, but since the maturity level
of the technology is limited, it is chosen to split the well
stream into its gas and liquid parts before increasing the
pressure of each individual stream. An illustration of the
process is shown in Figure 1.

The system consists of a well choke with which the flow
of the hydrocarbons from the reservoir can be controlled.
From the reservoir, the stream enters a gas-liquid sepa-
rator, whose purpose it is to separate the gas from the
oil and water. Due to imperfect separation, liquid droplets
can be carried over to the gas outlet of the separator. The
separator efficiency is modeled as a function of the gas
velocity and the average fluid density (Austrheim, 2006).
The pressure of the liquid outlet is boosted by a pump
before being recombined with the gas. Meanwhile, the
pressure of the gas outlet is increased in a compressor. The
compressor is modeled as a wet-gas compressor which can
handle moderate amounts of liquid carry-over (Aguilera,
2013). Suction gas-volume-fractions of 0.95 to 1.0 can be
tolerated at the compressor inlet.

3. DIAGNOSTIC AND PROGNOSTIC MODELING

Diagnostics and prognostics form the backbone of any
PHM system (Heng et al., 2009). In order to make mean-

ingful decisions about future production, it is not only
necessary to know what the health state of the equipment
is at the current time, but one must also be able to predict
how the condition of the equipment will develop in the
future. Diagnostics is about the detection and monitoring
of faults, whereas prognostics is about the prediction of
health evolution and estimation of equipment RUL.

Prognostics and diagnostics of a large system such as
a gas compression station is a challenging task, due to
the high complexity and large number of components.
Condition monitoring systems should be able to detect
a wide range of faults, including everything from signal
failure to external impact of foreign objects. A variety of
methods are used to monitor subsea production systems in
industry. For example, sand erosion and corrosion rates are
monitored in vulnerable parts of the pipeline, such as in
bends. Erosion and corrosion rates are estimated through
measurements of electrical resistance or by periodic inspec-
tion of coupons. Detection of leaks is also an important
topic. Leaks are usually monitored through a combination
of visual surveillance, electrical resistance measurements
of the seawater, and temperature/pressure measurements
of seals.

In order to limit the scope of the remainder of the paper,
we make the simplifying assumption that only the most
crucial faults of the system need to be considered. It is
known that rotating machinery such as compressors and
pumps are prone to faults due to their many moving parts
and mechanical complexity (Heng et al., 2009). This means
that for the studied process, the compressor, the pump and
the well choke need to be monitored closely due to the
relatively high likelihood of critical faults occurring here.

Furthermore, in this paper, we exclude failures which
cannot be influenced directly by manipulation of the
inputs. This excludes a large number of important fault
modes. Since the purpose of this paper is to combine
condition monitoring and control, we chose to neglect
faults which are independent of operational decisions for
now. These kinds of faults will have to be addressed in
future work.

3.1 Diagnostics

Vibration monitoring of rotating machinery is commonly
used to assess their health. Imbalance caused by the onset
of a fault will result in a periodic force with a characteristic
periodicity and magnitude, which can be detected as
vibrations. This technique can be used to detect defects
on the shaft, bearings and impeller blades. Current subsea
gas compression stations use magnetic bearings to stabilize
the impeller, but since this technology is relatively new,
not many degradation models are available in the open
literature. Ball bearings, on the other hand, are widely
used for a multitude of applications, including on-shore
gas compressors. We will therefore use the case of a subsea
compressor with ball bearings in this paper to demonstrate
our framework.

Ball bearings, which are commonly found in pumps and
compressors, are subject to large stresses due to their
constant load and high rotational speed. At the same time,
their survival is crucial for the operation of the machine.
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Fig. 3. Signal path from excitation force x to measured
vibrations y, via impulse response model g.

Therefore, condition monitoring of bearings is important
to ensure high availability of the pump or compressor. The
inner workings of a ball bearing are shown in Figure 2.

For a full overview of bearing fault diagnostics, see e.g.
Wang and Kootsookos (1998). To make this paper self-
contained, we give a short summary below. A surface
defect on a bearing results in a periodic excitation force
with characteristic frequency ffault. The excitation force
can be described as an impulse train, and the severity of
the fault can be estimated by looking at the magnitudes of
the impulses. In addition to the periodic impulses, random
vibrations (noise) act on the bearing. The sum of these
periodic impulses and the random noise is shown on the
left in Figure 3. The resulting force is modulated by the
impulse response function of the equipment to create the
measured vibrations. This impulse response can be seen
as the modulation of the original signal from the fault
location to the vibration sensor, due to e.g. the resonance
vibrations of the bearing housing. The impulse response
model g is a damped harmonic oscillator, as illustrated
in the middle plot in Figure 3. Finally, the measured
vibrations, i.e. the modulated signal, are shown on the
right in Figure 3.

The fault frequency ffault is dependent on the location of
the fault and the specific geometry of the bearing, but is
ultimately a function of the shaft frequency fs. Let us first
define the fundamental train frequency fft as

fft =
fs
2

[
1−

(
Dp

Db

)−1

cos(φ)

]
. (1)

In the above expression, Dp is the pitch diameter, Db is
the ball diameter, and φ is the contact angle. φ is the angle
between the raceway and the ball, which is larger than 0
for bearings with axial loads. See Wang and Kootsookos
(1998) for details.

For an inner race (IR) fault, the fault frequency is then

fIR fault = nb · (fs − fft) . (2)

Similarly, for outer race (OR) and rolling element (RE)
failures, the fault frequencies are

fOR fault = nb · fft (3)

and

fRE fault =
fs
2

(
Dp

Db

)[
1−

(
Dp

Db

)−2

cos(φ)

]
, (4)

respectively, where nb is the number of balls.

Furthermore, the amplitude of the excitation force is
modulated by a sine wave with characteristic periodic-
ity depending on the transmission path and the loading
conditions of the bearing. For instance, under stationary
loading an OR fault will be without periodicity, while the
amplitudes of the impulse train in an IR fault will have
periodicity fs due to the varying distance to the vibration
sensor. See e.g. Wang and Kootsookos (1998) for a full
overview of the periodic characteristics of the faults.

Knowing how the vibration signal is created, we can now
take the reverse path to recover the original fault-induced
impulse train x from the vibration measurements y by
demodulating the signal. Assuming an estimate of g can
be found experimentally, the demodulation is performed
by solving

x̄ = G−1y, (5)

where G is the Toeplitz convolution matrix of g.

From the estimated excitation force x̄, the original fault-
induced impulse train can be recovered by removing the
additive noise. A Wiener filter can be used for this purpose
if the signal-to-noise ratio is known from experiments.
Alternatively, the properties of the Wiener filter can be
identified blindly by maximizing the spectral kurtosis
(fourth moment) of the output of the filter (Antoni and
Randall, 2006). In this work, we use a standard Wiener
filter the signal-to-noise ratio assumed to be known.

3.2 Prognostics

A widely applied prognostic model for surface defects is
Paris’ crack propagation model (Paris and Erdogan, 1963),
which states that the crack length a will develop according
to

da

dncycles
= D · (∆K)

n
, (6)

where ncycles is the number of cycles, D is a material
constant, ∆K is the range of strain and n is an exponent.
In the case of bearing faults, Paris’ law can be reformulated
as

da

dt
= cParis ·

(
T 2 · fs

)
= cParis ·

(
P 2

fs

)
, (7)

by assuming that the motor torque can be used as a health
indicator for gross strain (Bechhoefer et al., 2008). In the
above equation, cParis is a lumped parameter, T is the
motor torque and P is the motor power.

The true value of cParis is not known exactly, so cParis must
be estimated from past measurements. A moving horizon
estimator is used for this purpose. The ”measurements”
utilized in this case are the estimated crack lengths based
on the past vibrational data.
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on ”measurements” of the crack length (which them-
selves are estimated from vibrational data)

Confidence limits for the parameters are obtained from
the covariance matrix of the parameter estimation (Lopez-
Negrete and Biegler, 2012), which in turn can be used to
predict the RUL distribution with Monte Carlo sampling.
An illustration can be seen in Figure 4.

4. OPTIMIZING ECONOMIC PERFORMANCE
SUBJECT TO HEALTH CONSTRAINTS

The estimated system health and the health degradation
model can now be integrated in the decision making pro-
cess by imposing constraints relating to the maximum al-
lowable degradation. The optimal control problem (OCP)
can then be solved with state-of-the art nonlinear pro-
gramming (NLP) solvers such as IPOPT (Wächter and
Biegler, 2006). Since information about the probability
distribution of the parameter estimates is available, this
should be embedded in the optimization problem to obtain
a better solution. This gives rise to a stochastic NLP due to
uncertainty in the parameter values, which can be written
as

min
xk,uk

N∑
k=1

φ (xk,uk, π) (8a)

s.t. f(xk,uk, π) ≤ 0 ∀k = 1...N (8b)

g(xk,uk, π) = 0 ∀k = 1...N (8c)

where x are the states, u are the inputs, π are the
stochastic parameters, N is the horizon length, φ is the
objective function, f and g are the inequality- and equal-
ity constraints, respectively. Since π is continuously dis-
tributed, finding the analytic solution of the resulting
infinite-dimensional optimization problem maybe impos-
sible. Listed below are three methods to deal with this.

(1) The most naive approach for solving the stochastic
problem is to substitute all uncertain parameters by
their expected values. The solution obtained through
this approach is likely to be sub-optimal, or even
infeasible in the case where some constraints are
active.

(2) Another approach is to substitute the uncertain pa-
rameters by their worst-case realizations. The ra-
tionale is that if the solution holds for the worst-
case scenario, it should hold for any scenario. This
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approach is also known as the min-max approach in
literature. While it works for many practical applica-
tions, the min-max approach usually results in a very
conservative, possibly even infeasible, solution.

(3) A third approach is to employ a scenario-based
method to explicitly deal with the parametric un-
certainty. The idea stems from multistage stochastic
programming, in which the uncertainty is discretized
into a finite number of possible realizations, subject
to which the optimization must be performed. Since
the possibility of future recourse is taken explicitly
into consideration, this approach is usually less con-
servative than the min-max approach. Due to the re-
peated measurement updates and input adjustments,
stochastic optimal control problems are well suited to
be solved with a scenario-based approach.

In this paper, we will use the scenario-based approach to
solve the stochastic problem. The scenario-based deter-
ministic equivalent of the stochastic OCP reads as

min
xi,k,ui,k

S∑
i=1

pi

N∑
k=1

φ (xi,k,ui,k) (9a)

s.t. f(xi,k,ui,k) ≤ 0 ∀i = 1...S , k = 1...N (9b)

g(xi,k,ui,k) = 0 ∀i = 1...S , k = 1...N (9c)

S∑
i=1

Ai,kui,k = 0 ∀k = 1...N (9d)

where S is the number of scenarios pi is the probability
associated with scenario i and A are the non-anticipativity
constraints. Figure 5 shows a scenario tree corresponding
to N = n and S = 4.

In order to reduce the number of scenarios, and thus the
size of the OCP, it is common to define a robust-horizon
Nrobust < N (Lucia et al., 2013a). The robust horizon is
defined as the stage up until which branching occurs in the
scenario tree. Since branching represents the availability
of new information in the future, shortening the robust
horizon means disregarding future state information. The
justification for doing so is that additional branching at



later stages results in a much larger dimensionality of the
NLP, with little improvement in the objective function.

Creating a scenario tree which captures the true nature
of the uncertainty is a difficult task in and of itself,
but is out of the scope of this paper. On one hand,
the scenario tree should as detailed as possible to be a
good approximation of the probability distribution. On
the other hand, the scenario tree should be as small as
possible due to the curse of dimensionality. We refer the
interested reader to Dupačová et al. (2000). In the current
work, we do as proposed by Lucia et al. (2013b), which
is to generate the scenario tree by using combinations
of the maximum, minimum, and the nominal uncertain
parameters, as identified in the parameter estimation step.

5. RESULTS

The proposed framework for integrating diagnostics, prog-
nostics and control was applied to the subsea compression
system. The goal is to optimize production while making
sure that the wet-gas compressor remains operational until
the time scheduled for maintenance. In our case study,
a maintenance stop is planned after 5 years after initial
startup. An outer race bearing fault was simulated under
stationary compressor loading. The fault was initiated at
time t = 0, with an initial crack length of 0.01 mm.
The degradation threshold is defined as the time when
the crack length exceeds 1mm. The ball bearing consists

of 10 rolling elements, and has a
Dp

Db
-ratio of 5.45. The

compressor runs at a nominal speed of 60 Hz, with an
operating window from 45-63 Hz. The operational objec-
tive is to maximize the net present value (NPV) of the
gas production. Additionally, excessive control movement
is penalized to avoid oscillatory or jumping solutions. The
health-aware control problem reads

min
xi,k,ui,k

S=3∑
i=1

pi

N=20∑
k=1

(
−
ṁgasi,k

(1 + r)tk
+ w∆u2

i,k

)
(10a)

where the discount factor r = 0.015, and the control
movement penalty w ≥ 0. We chose w = 100, resulting in
approximately twice as much weight on the gas production
term as on the control penalty term. The constraints are

f(xi,k,ui,k) ≤ 0 ∀i = 1...3 , k = 1...20 (10b)

g(xi,k,ui,k) = 0 ∀i = 1...3 , k = 1...20 (10c)

ui=1,k=1 = ui=2,k=1 = ui=3,k=1 (10d)

The constraints f contain upper and lower bounds on the
inputs u (choke opening 0 < uchoke < 1 and compressor
speed 45 < ucompressor < 63 Hz), as well as constraints
relating to the allowable operating region, i.e. to prevent
compressor surge and compressor choke. A minimum dis-
charge pressure of Pdischarge = 150 bar is imposed after
the compressor to ensure flow through the long pipeline to
the topside, as well.

The uncertainty in the parameter cParis in the crack
propagation model, Equation 7, is included in the problem
formulation through the three scenarios. Each scenario
represents a discrete realization of cParis, namely the 5%
percentile, the 95% percentile and the expected value. A
robust horizon of length Nrobust = 1 is used, making the

problem effectively a two-stage problem from a stochastic
programming perspective.

The OCP described in Equation 10 is solved repeatedly
in a shrinking horizon fashion. That is, the OCP is solved
with the initial values for the states being the latest state
estimates from the plant. After a solution is obtained,
only the inputs corresponding to the current time step are
implemented. This is also illustrated in the flow diagram
in Section 1.1.

Between each optimization step, the vibration measure-
ments are added by generating an impulse train for the
excitation force and adding white noise. The force is
modulated through the impulse response model of the
compressor. We assume that g from Section 3.1 can be
written as a damped sinusoid

g = exp(−λt) · cos(ωt) (11)

with decay factor λ = 600 s−1 and frequency ω = 4
kHz, resulting in the impulse response model shown in
the middle graph in Fig. 3. The magnitude of the original
impulse is found by the method described in Section
3.1. Unfortunately, no real vibration data was available,
so we used the same model for both generating the
measurements and estimating the states. However, due to
the added noise, the estimates were not perfect and the
method can still be used to showcase the approach.

The closed-loop solution of the health-aware controller
with a fixed maintenance horizon of 5 years is shown in
Figure 6. The figure shows the evolution of the past inputs
and the states and the optimal trajectories for the three
scenarios at three different points in time, at t = 0, t = 2
and t = 2.8 years.

6. DISCUSSION

The success of our proposed approach hinges on the
quality of the degradation model and condition monitoring
capabilities. Our approach relies on the equipment vendors
to provide models and data for performing the diagnostics
and prognostics. Since the objective of this paper is to
demonstrate our framework, we have chosen to use a
relative simple degradation and diagnostics model, that
we adapted to our purposes.

From Figure 6, it can be seen that the predicted tra-
jectories differ from the real trajectories. This is due to
the NPV-term in the cost function and the presence of
uncertainty. The closed-loop solution has two different
operating regions, the first from t = 0 to t = 2.5 years
where the compressor runs with maximum speed, and the
second from t = 2.5 to t = 5 years where production has
to be choked back in order to meet the required bearing
health constraint. The abrupt change between operating
regions occurs because of the NPV term. Since future
production is valued less than present production, the
optimizer will attempt to keep production at maximum
as long as possible. In the second operating region, gas
production is lower in order to meet the outlet pressure
constraint and the minimum health requirement.

Overall, the results are as expected. It seems reasonable
to require that the subsea installation is as profitable
as possible while operating, i.e. that production is at
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Fig. 6. Three snapshots of the closed-loop solution at
t = 0, t = 2 and t = 2.8 yrs. The blue, turquoise
and green scenarios are for the low, expected and
high realizations of the stochastic parameter cParis,
respectively. The maintenance horizon is fixed at 5
years.

maximum. However, the fact that the production has to
be throttled down after a while indicates that the specified
maintenance horizon of 5 years may have been too long.
Preferably, maintenance intervention should have been
scheduled earlier, so that maximum throughput could have
been achieved the entire time. In future work, we will
consider the possibility of adapting the maintenance time
during operation to make sure that maximum throughput
can be achieved. In this case maintenance is scheduled a
year in advance, and will be decided by the optimizer.
Nevertheless, the control structure successfully meets the
constraints while maximizing the production.

7. CONCLUSION AND FUTURE WORK

We presented a framework to combine diagnostics, prog-
nostics and control of a subsea gas compression plant
subject to compressor bearing failure. By including mea-
surements of fault indicators and fault prognostic models
in the MPC framework, we can ensure that the operation
is both economically optimal and safe. In the case of
bearings, vibration measurements can be used to detect-
and estimate the severity of faults. Paris’ law for crack
propagation can be used to predict fault development.

In future work, we will consider multiple failure mecha-
nisms, not only those which can only be influenced through
input manipulation. For example, the production strategy
will look different when a seal fault has been detected and
failure is eminent. Careful operation in order to ”save” the
bearings will be suboptimal, since intervention is required

in the near future to replace the faulty seal. In similar
vein, we will look at the entire subsea plant as a whole, to
ensure that operation is optimal not only for a single unit
(e.g. the compressor), but for all units in the plant.
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