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Abstract

Coupled fluid-structure interaction simulations of wind turbines have traditionally been considered computationally too expensive

to carry out. However, more powerful computers and better solution techniques based on IsoGeometric Analysis (IGA) can make

such simulations viable. Literature indicates that the smoothness of IGA approximations generally yield higher accuracy per-

degree-of-freedom. We consider a two-dimensional test case prototypical of wake-vortex analyses and strip-theory approaches

used in the numerical simulation of wind turbine.
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1. Introduction

Wind turbines can establish themself as an important source of renewable energy if increased power output and

reduced installation and maintainence costs can be realized. To increase power output rotor diameters are increased

and wind parks are being moved offshore. These combined trends fundamentally change the operating conditions at

which such turbines are expected to produce power. On account of the strong winds and wind variations and long,

flexible blades Fluid-Structure Interaction (FSI) with large deformations must be taken into account to be able to

accurately predict such destructive phenomena as flutter and buckling.

On the other hand, such simulations have traditionally been considered computationally too expensive to carry out.

The advance of both hardware and solution techniques have however given new impulse to this endeavor. In particular
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Hsu, Bazilevs and coworkers [1–3], have pioneered full FSI computations of the full wind turbine (rotor, nacelle and

tower) using an ALE-VMS method.

There is a continued demand to bring this kind of wind turbine analyses within reach of industrial practice. More

efficient techniques, building on the broad framework layed out in [1,2], need to be explored. A number of comple-

mentary techniques have been explored in this context. Since representative Reynolds numbers can reach 106–107,

turbulence modeling is a vital ingredient. The Variational MultiScale (VMS) and Reynolds-Averaged Navier-Stokes

(RANS) methods have been considered and contrasted [4,5]. Also, a strip theory approach, in which the flow is com-

puted at planes intersecting the structure, is explored in [6]. Projection methods have been observed to perform well

in [5]. Here we consider the use of IGA.

IGA is a technology rendering CAD representations suitable for numerical analysis. One important goal is to

avoid or mitigate any mesh generation efforts. Direct use of the CAD representation implies that any geometrical

approximation error is eliminated in the analysis model. In design, smooth geometries have been a key requirement

from the onset, and inheriting this higher smoothness (and polynomial order) through the isoparametric concept has

incidentally led to highly accurate numerical approximations. The gain obtained by high regularity and order are an

active area of research, cf. e.g. [7], and is dependent on the mathematical model under consideration. For CFD, the

gain of IGA has been investigated in, e.g. [4,5,8]. The higher smoothness has also paved the way for div-compatible

discretizations. Exact satisfaction of the incompressibility constraint greatly improves accuracy, even on very coarse

meshes [9,10]. These indications encourage the exploration of IGA in the context of wind turbines.

In this contribution we consider a Spalart-Almaras turbulence model, which is expected to perform well for bluff

bodies and largely attached flow. The pitching airfoil at high Reynolds number, which exhibits many of the challenging

flow phenomena in wind turbine simulations, is simulated. In this case the flow regime is comparable to that of the

application, some flow separation is expected, and there are considerable deformations of the fluid domain. In this

setting the value of employing IGA is investigated.

This paper is structured as follows. In §2, the mathematical model, its isogeometric discretization and numerical

solution are treated. In §3 the test case is introduced and the numerical results analyzed. Finally, conclusions are

drawn in §4.

2. Modeling, discretization and solution

In this section the physical model and the derived discrete model are presented. First, the governing equations

for incompressible flow with Reynolds-averaged turbulence modeling are given in §2.1. Then, its discretization

into a general finite element framework is elaborated in §2.2. Continuing, the isogeometric approach used in this

finite element context is detailed in §2.3. Finally, we conclude with a note on time-discretization and on solution

techniques §§2.4-2.5.

2.1. Reynolds-averaged Navier-Stokes with a Spalart-Almaras closure model

We consider a time interval (0, T ) and a reference domain Ω0. The domain of the problem is the time-dependent

current domainΩt, which may change on account of the movement of the embedded structure. We denote its boundary

by ∂Ωt. It is the disjoint union of ΓD, where Dirichlet boundary conditions apply, and and ΓN , where Neumann

boundary conditions apply.1 The motion is given through a displacement field d over Ω0. Given an initial velocity

field u0; a body force f and dynamic viscosity μ, a velocity pressure pair (u, p) is sought, that satisfies the Arbitrary

1 Note that it is possible to prescribe combinations of Dirichlet and Neumann conditions in linearly independent directions, for instance, the slip
condition u · n = 0 = t · ∂nσ ∀t ⊥ n.



444   Timo van Opstal et al.  /  Energy Procedia   80  ( 2015 )  442 – 449 

Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations,

∂tu + (u − ∂td) · ∇u − ∇ · σ(u, p) = f in Ωt, (1a)

∇ · u = 0 in Ωt, (1b)

u = g in ΓD, (1c)

∂nσ(u, p) = h in ΓN , (1d)

u(0) = u0 in Ω0. (1e)

In these equations ∂t denotes a time derivative, ∂td the so-called grid velocity, σ(u, p) := με(u) − p is the Newtonian

stress and u(0) is the trace of u at {0}×Ω. Furthermore, ε(u) := ∇u+ (∇u)�. Moreover, we assume that u0 satisfies (1b)

and (1c).

The grid movement is an artificial field that should minimize mesh distortion, especially in the sensitive boundary-

layer region. In this work we consider linear elasticity to govern this displacement field:

∇0 · (FS ) = 0 in Ω

with F = ∇0d the deformation gradient, J = det F, S = JF−1ςF−� the second Piola tensor and ς = 2με(d)+λ(trε(d))I
Cauchy’s stress tensor. Spatial derivatives with respect to the reference are denoted ∇0. The Lamé parameters (λ, μ)
are chosen to be high close to solid boundaries and to decay exponentially.

In the turbulent regime the above system becomes less tractable to solve as turbulent features of small spatio-

temporal scales emerge. As highlighted in the introduction, the present approach to this conundrum is to model the

effect of features of these small scales. The analyst defines the term small, i.e., which features are to be captured by a

model though the spatio-temporal resolution of the discretization. We presently consider RANS, where turbulence is

modeled by an unknown effective eddy viscosity νt, which replaces the known parameter ν in (1). This eddy viscosity

is defined through

νt = ν̃ fv1, fv1 =
χ3

χ3 + c3
v3

, χ =
ν̃

ν
. (2)

The system is then closed with a transport equation for ν̃, the S-A model, [11]

∂tν̃ + u · ∇ν̃ − P(ν̃) + D(ν̃, S̃ ) + A(ν̃) = 0 in [0, T ] ×Ω, (3a)

ν̃(0) = ν0 in Ω, (3b)

ν̃ = ν0 in [0, T ] × ΓI , (3c)

ν̃ = 0 in [0, T ] × ΓW . (3d)

In these equations, P, D and A represent production, wall dissipation and auxilliary forcing terms respectively. The

modified vorticity is denoted S̃ = S̃ (|∇ × u|, ν̃). Also, ΓI := supp(g) and ΓW := ΓD − ΓI represent the inflow and wall

boundaries. The initial value ν0 : Ω → R is generally selected to be 5ν, which renders (3b) and (3d) incompatible.

This is resolved by redefining ν0 to retain the value 5ν everywhere outside a neighborhood of ΓW where it smoothly

decays to zero to satisfy (3d). This is of little consequence, as the definition of ν0 should not affect the result, as long

as it is reasonable. It is beyond the scope of this discussion to give a complete definition of the S-A model and its

several modifications, the interested reader is referred to [12] for further details.

2.2. Finite elements

Numerical approximation of the above system requires stabilization, which is defined in terms of the discrezation.

To this end we introduce a tesselation T h of the domain Ω into elements K such that ∪K∈T h K = Ω, where h is some

measure of the resolution of T h.

Discretization by the FEM departs from a variational form obtained by multiplying the equations (1) and (3a) by

test functions and integrating by parts. This yields the problem:
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for all t ∈ [0, T ], find (u − u0, p, ν̃ − ν0) ∈ V × Q × M such that for all (v, q,m) ∈ V × Q × M:

B((u, p, ν̃); (v, q,m)) = F((v, q,m)) (4)

with B((u, p, ν̃); (v, q,m)) = BNS |ν((u, p), (v, q)) + BS A|u(ν̃,m) where the restriction operator |(·) communicates the

dependence with respect to (·) but implying that it plays the role of data. Also V , Q and M denote suitable vector

spaces in which the solution is sought. In the following, (·, ·) denotes the L2(Ω) inner product.

BNS |ν((u, p); (v, q)) := (∂tu, v) + (u · ∇u, v) + (ν∇u,∇v) − (p,∇v) − (q,∇u),

BS A|u(ν̃,m) := (∂tν̃,m) + (u · ∇ν̃,m) − (P(ν̃),m)

+ (D(ν̃, S̃ ),m) + (A(ν̃),m),

F((v, q,m)) := ( f , v) +

∫
ΓN

hv.

The stream-wise resolution does not contribute much to the accuracy of the results because of the averaging proce-

dure in the RANS and the self-similarity of the flow in this direction. Sacrificing this resolution requires stabilization

due to high local CFL numbers and Streamline Upwind/Petrov-Galerkin stabilization (SUPG) [13] is selected for this

purpose. In addition, an equal order interpolation will be used, so Pressure Stabilization/Petrov-Galerkin (PSPG) [14]

is used. Denoting the residual of the momentum equation (1a) as rM(u, p) := ∂tu + u · ∇u − ∇ · σ(u, p) − f , the

stabilization terms, to be added to the bilinear form B, read

Bstab,M((u, p); (v, q)) :=
∑

K∈T h

(τMrM(u, p), u · ∇v + ∇q)K ,

where (·, ·)K is the L2(K) inner product and τM is the stabilization parameter. Moreover, denoting the residual of the

Spalart-Allmaras equation (3a) as rS (ν̃, u) := ∂tν̃ + u · ∇ν̃ − P(ν̃) + D(ν̃, S̃ ) + A(ν̃), the turbulence model is similarly

stabilized by the SUPG method by adding the stabilizing term

Bstab,S |u(ν̃; m) :=
∑

K∈T h

(τMrS (ν̃, u), u · ∇m)K .

2.3. Isogeometric discretization

In isogeometric analysis, the computational domain is inherited directly from a CAD model of the embedded

structure (such as a turbine blade). This relieves a part of the task of volume mesh generation, but does not obviate

it entirely. The interior of the volume needs to be meshed in a way that retains control over the mesh quality and

resolution, especially in the boundary layer and separation regions. A modified transfinite interpolation technique

is used here, which is detailed in [15]. We merely discuss a few important features of the resulting meshes here.

The mesh (i.e., the tesselation T h) has a tensorial structure and is isotropic, having exponential grading away from

aerodynamic surfaces. Mesh quality in the boundary layer is safeguarded by extending mesh lines in the normal

direction in the vicinity of the boundary. Fig. 1 shows how the linear approximation of the geometry of a typical

airfoil section degrades the aerodynamic surface, and illustrates an advantage of the isogeometric approach.

The approximation spaces derive from the resulting geometrical description of the volume. As airfoil sections are

typically defined by polynomials, we consider b-spline discretizations here as well. A concise introduction to this

technology is given here, the interested reader is referred to [16] for an introduction to isogeometric analysis and

to [17] for their implementation.

A b-spline basis is constructed from a tensor-product (patch in a) mesh, with associated knot-vectors corresponding

to mesh lines in one direction Ξ = {ξi}i≤n+p, where k is a parametric direction ∈ {0, 1}, n the number of elements in that

direction and p the polynomial order in that direction. We consider the case that ξi � ξ j if i � j and p ≤ i, j ≤ n+1, i.e.

for an open knot interval with no repeated interior knots. A b-spline basis of polynomial order p is defined recursively

through the Cox-de Boor formula:

b0
j (ξ) := χ(ξ j, ξ j+1), j ≤ n

bp
j (ξ) :=

ξ − ξ j

ξ j+p − ξ j
bp−1

j (ξ) +
ξ j+p+1 − ξ
ξ j+p+1 − ξ j+1

bp−1

j+1
(ξ), j ≤ n + p − 1
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Fig. 1: Representation of a cross section of a blade using linear elements (left) and cubic splines (right).

with χ(a, b) the indicator function on (a, b). An ansatz function N p
i is then constructed as a product of such univariate

functions, one in each direction. The geometry, and any solution variable is then represented as a linear combination

of such ansatz functions:

x(ξ) = Σi x̂iN
p
i (ξ) andp(ξ) = Σi p̂iN

p
i (ξ), (5)

respectively. The b-spline basis {N p
i }i has a number of properties important in this discussion:

1. N p
i is a piecewise polynomial of degree p and possesses p − 1 continuous derivatives, i.e., it is a member of

Cp−1 (Ω)). So, if p > 1 the basis functions are smooth.

2. Increasing p (performing k-refinement) only mildly increases the number of degrees of freedom, #{bp
i }i = #{bp−1

i }i + 1,

the cost of increasing p rather comes from matrix fill and quadrature.

The term isogeometric analysis has evolved into designating smooth (and not merely continuous) bases. The trilinear

basis, with p = 1, is often called traditional (lagrangian) finite elements; whereas smoother representations with p > 1

are called isogeometric.

2.4. Time discretization

The second-order backward difference technique is used to resolve the time-derivative in BNS and BS A of (4). Thus,

the solution is sought only at time levels tk = kΔt, k < T/Δt. Denoting the solution variable at time level k as uk, the

difference formula reads ∂tu(tk) = (3uk − 4uk−1 + uk−2)/
(
2Δt2
)
+ O(Δt2).

2.5. Solution techniques

The time-discretized version of (4) is solved in a partitioned way: for each time step Newton’s method is applied

first to the (v, q)-equation and then to the m-equation. The target applications are three-dimensional, time-dependent,

high Reynolds number flows. Equation solving then quickly becomes a time-consuming task that is to be addressed

by both parallelization and efficient preconditioners. We build on the MPI functionality and solvers in PETSc [18].

Efficient preconditioners for the discretized Navier-Stokes equations can be derived using the block structure of the

linearized system which is assembled at each Newton iteration, written as:[
F B�

B −C

] {
û
p̂

}
=

{
f̂
0̂

}
,

where û = {ûi}i collects the velocity degrees of freedom defined in (5), similary p̂ collects the pressure degrees of

freedom. A block-diagonal preconditioner based on the Schur complement S = −C − BF−1B� is used. A sufficient

approximation for F−1 is given by the SOR preconditioner. The Schur complement is first approximated by taking

for F−1 the inverse of its diagonal (also called the SIMPLE method), and then using a multigrid or additive Schwarz

method to approximate the inverse of the perturbed Schur complement. Then the system is solved with a Krylov

method for asymmetric systems, e.g. GMRES. Concerning the m-equation, a similar approach to the velocity block

is taken: an SOR preconditioner and a GMRES solver.
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α (t)
U x 0

Fig. 2: Schematic of the problem setup for a pitching airfoil.

Fig. 3: C-mesh of the flow domain.

3. Pitching airfoil at Re=980 000

We consider here a narrow section of a wind turbine blade undergoing a prescribed motion. This problem simplifies

but mimicks the intended application and allows comparison with experiments performed in [19]. We will investigate

the gain an isogeometric approach yields.

A NACA 0015 airfoil oscillates around the quarter chord point, following a sinusoidal pitching motion: α(t) =
14.85° + 9.89°sin(ωt), see figure 2. A so-called C-mesh is constructed, as shown in fig. 3. The mesh consists of

5 · 104 elements with 200 elements along the wing surface. The wall-normal mesh size is 1 · 10−5. A time step of

Δt = 1 · 10−3 is chosen. The response is shown in figs. 4 and 5. In the first panel of fig. 4, the airfoil is in the neutral

position and pitching up. The flow is largely attached. In the second panel, the pitch attains its maximum value and

a large separation bubble causes low pressures along the upper side of the airfoil, causing high lift and drag. The lift

is much higher than what would be expected in the stationary case, where the flow separates soon after α = 15°. As

this bubble travels downstream and reaches the trailing edge, the lift suddenly plunges, as can bee seen in the CL plot

of fig. 5. The third panel shows the separation bubble moving downstream. In the last panel, the airfoil reaches its

minimum pitch, the transients have been transported downstream and the steady response is recovered.

It is clear that a good qualitative prediction can be made of the aerodynamic coefficients, although the SA model

cannot capture the parts of the cycle with large recirculation regions. What is also observed is that in this setup the

increase of the polynomial order has little gain, especially in the light of these large modeling errors.

4. Conclusions and future work

In this paper, an isogeometric ALE-RANS model with a Spalart-Almaras turbulence model was introduced as a

flow simulator for the FSI of wind turbines. The additional value of using isogeometric analysis was investigated

for a pitching airfoil at Re=9.8 · 105. In this setting it is seen that the isogeometric and the traditional finite-element

approach perform equally well when compared to experimental values. The turbulence modeling error is much larger

than that of the discretization. This result complements other scenario’s where the additional smoothness is seen to

significantly improve results. These other scenario’s include those where the Reynolds number is low [20], and those

where more accurate turbulence models are used [4].

The 2D approach to modeling aerodynamic characteristics of a section of turbine blade can have applications in

improving inputs to wake models utilized in mico and mesoscale simulations like the ones presented in [21]. The wake

modeling in a realistic wind farm requires a database of the sectional geometry and aerodynamic coefficients of the

operatinal turbines. So far standard geometries and coefficients are utilized in the simulations but the work presented

in this paper will help in creating a turbine specific database. The accuracy is expected to improve even further with
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(a) t = 0T (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Fig. 4: Snapshots of the horizontal velocity during different phases of the periodic cycle.
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Fig. 5: Aerodynamic coefficients during a periodic cycle, with − experiments from [19], − p = 1 and − p = 2.

the extension of the current work to 3D ([22]) and then its integration to a beam model ([23]) for a realistic fluid

structure interaction simulation.
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