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Abstract
Fluid particle break-up and coalescence are important phenomena in a number of
industrial processes.

A Lagrangian momentum balance model for the collision process between two
fluid particles has been developed and tested favorably against experimental data.
It is based on an earlier model developed in our department. Oscillations were
introduced and the volume balances that are solved avoid earlier approximations.
Film drainage was also implemented into the model based on a literature review
given. It is believed this approach will lead to a more fundamental modeling of the
coalescence process.

An improved break-up model has been developed. It is an extension of earlier
work at the department and it introduces an additional criterion for break-up. This
criterion gives a lower limit for the daughter fragment sizes in binary break-up,
thus also limiting the break-up of smaller fluid particles, and is a more consistent
model than the earlier one.

Two break-up models, original model by Luo (1993) and improved model, and a
coalescence model have been implemented in a population balance as algebraic
sink and source terms. This population balance is in turn included in an in-house
CFD-code. The models have been tested against experimental data from a bubble
column in our laboratory, and the improved break-up model compares favorably
with the experimentally obtained accumulated mass distribution. Too few bubbles
are predicted in the lower population classes, but it is shown that this may as well
be a result of the coalescence model used as the improved break-up model.

Reference:

Luo, H. (1993). Coalescence, breakup and liquid circulation in bubble column
reactors. Dr.Ing. Thesis, The Norwegian Institute of Technology, Trondheim.
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CHAPTER 1 Introduction
1.1  Motivation

Fluid particle break-up and coalescence are important phenomena in a number of
process units. Some industries with particular reactor examples in parentheses
are listed below:

• Process industry (slurry columns, bubble columns, stirred vessels)

• Nuclear industry (reactors)

• Biological industry (fermentation)

• Metallurgical industry (electrolytic cells, refining units)

• Mining industry (extraction, flotation)

• Oil industry (scrubbers, gravity separators, cyclones)

Norway is the 9th largest oil producer and the 3rd largest net crude exporter in the
world. However, gas will become more important in the future since the gas
reserves will last much longer than the oil reserves with the current rate of pro-
duction. Currently most of the produced gas on the Norwegian Continental Shelf
is transported by pipelines to the continent. As reserves further to the north are pro-
duced this method will be less profitable and other alternatives will be more inter-
Norwegian University of  Science and Technology, NTNU 1



Introduction
esting. These alternatives include subsea processing, piping to the coastal areas
and further processing of natural gas to LNG or chemical conversion to hydro-
carbons through GTL processes (e.g. Fischer-Tropsch). Thus our interest for fluid
particle break-up and coalescence lies primarily with the oil companies, oil/water/
gas separations and chemical conversion of natural gas. This interest has been
reflected through a number of research programs by NFR (Norwegian Research
Council) where these fundamental phenomena are featured. Examples are
SPUNG (State R&D Program for Utilization of Natural Gas), Chemical Conver-
sion of Gas, CARPET (CFD Applied to Reactor ProcEss Technology) and HiPGaS
(High Pressure Gas Separation). These programs are in general co-sponsored by
government and industry.

My own work is a continuation of an ongoing Ph.D program developing modeling
tools for multiphase reactors that was started in 1987 at our institute. 5 Ph.D.
projects have finished on related topics during these years. My project is sponsored
by the NFR program: Chemical Conversion of Gas.

1.2  Thesis outline

In chapter 2 a general overview of population balances describing dispersed
phases is provided. The continuous phase considered here is primarily a liquid
and the dispersed phase may be either a liquid or a gas.

Chapter 3 contains a literature survey of the theories for fluid particle coalescence
efficiency. This variable is assumed to be determined by particle collision mech-
anisms like film draining (lubrication theory), particle deformation and film rup-
ture.

In chapter 4 a collision model for two colliding fluid particles that are oscillating
is developed. The model solves a Lagrangian momentum balance for each of the
two colliding fluid particles, and this involves the calculation of both the contact
area  and the film thickness between the particles.

In chapter 5 a fluid particle break-up model is developed that is an extension of an
earlier model. The earlier model defines break-up based on only one criteria, i.e.
when the energy applied to a fluid particle is greater than the change of surface
energy due to a break-up. A new criterion is added for the energy density of the
fluid particles and eddies. This criterion limits the lower possible size of daughter
particles and as a consequence also the rate of break-up.
2 NTNU



Thesis outline
In chapter 6 the new fluid particle break-up model developed in chapter 5, together
with the earlier one, and a coalescence model, are implemented into an in-house
CFD code through a population balance. The distribution of bubbles is predicted
for in a bubble column and compared to experimental data obtained in our labo-
ratory.

In chapter 7 conclusions and suggestions for further work are presented.
NTNU 3  





CHAPTER 2 The population 
balance model
This chapter outlines the modeling framework that has been used to describe the
fluid particle break-up and binary coalescence phenomena. It serves as a brief
introduction to the population balance model in order to tie together the remaining
parts of the thesis. First, an overview of the general population balance is pre-
sented. Second, the four source terms, i.e. the birth and death terms due to break-
up and coalescence, are described. Third, the source term parameterizations used
are discussed. Finally, the discretization of the particle size distribution is briefly
outlined.

2.1  Basic number balance (population balance 
equation)

Several formulations of the population balance model exist. Ramkrishna (1985),
Carrica, Drew, Bonetto & Lahey Jr. (1999) and Kocamustafaogullari & Ishii
(1995) uses the Bolzmann transport equation as a starting point, others use con-
tinuum mechanics, Randolph & Larsson (1988). Randolph & Larsson (1988)
start with a population balance in some fixed subregion of particle phase space
and state
Norwegian University of  Science and Technology, NTNU 5



The population balance model
. (2.1)

Considering a subregion, say , to move convectively with particle phase space

velocity v (i.e., take the Lagrangian viewpoint) then the population balance equa-
tion in the subregion may be stated as

. (2.2)

B represents the birth terms and D represents the death terms.  is considered
an (m+3) dimensional particle distribution function defined over a region R con-
sisting of the three spatial dimensions plus m independent internal property coor-
dinates. The former term in (2.2) may be expanded to

. (2.3)

x is the set of internal and external coordinates comprising the phase space R,

. (2.4)

The population balance can be written for the Lagrangian region , and since the

region is arbitrary the integrand must vanish identically giving the differential pop-
ulation balance as

. (2.5)

Diffusion has not been included in (2.5), and growth (or density changes) is part
of the internal term.

Kocamustafaogullari & Ishii (1995) discusses the number balance transport equa-
tion and closure relations.

Applying the alternative approach based on the Boltzmann equation, more
detailed formulations of the source terms are obtained. The procedure accounts for
fluid particles entering and leaving a control system through different mechanisms

Accumulation Input Output– Net generation+=
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Basic number balance (population balance equation)
yielding the fluid particle number density transport equation of particles having
volume :

. (2.6)

Equation (2.6) is seen to be equal to (2.5) when phase change is included in (2.5).
Equation (2.6) is also called a population balance equation and was first introduced
in chemical engineering by Hulburt & Katz (1964). In this equation  is
the particle density distribution function, which is assumed to be continuous and
specifies the probable number density of fluid particles at a given time t, in the spa-

tial range  about a position , with particle volumes between  and .

 is the particle velocity of the same volumes.  represent phase

change terms (nucleation and condensation). The interaction term  repre-

sents the net rate of change in the number density distribution function, f, due to
particle break-up and coalescence. A general representation of these source and
sink terms are as follows, Kocamustafaogullari & Ishii (1995):

, (2.7)

which represent the formation of particles of size  due to break-up of larger par-

ticles.  is the distribution of daughter particles produced upon break-up

of a parent particle having volume .  is the number of daughter particles

produced upon break-up of a parent particle of  and  is the break-up fre-

quency for particle .

, (2.8)

represent the loss rate of particles of size  due to break-up into daughter frag-
ments.

ϑ

t∂
∂f ∇ fvp( )⋅+ Sj Sph+

j 1=

4

∑=

f x ϑ t, ,( )

dx x ϑ ϑ ϑd+

vp x ϑ t, ,( ) Sph

Sj

j 1=

4

∑

S1 x ϑ t, ,( ) β ϑ’ ϑ,( )n ϑ’( )g ϑ’( )f x ϑ’ t, ,( ) ϑ’d

ϑ

ϑmax

∫=

ϑ
β ϑ’ ϑ,( )

ϑ’ n ϑ’( )

ϑ’ g ϑ’( )

ϑ’

S2 x ϑ t, ,( ) g ϑ( )f x ϑ t, ,( )–=

ϑ
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The population balance model
, (2.9)

represents the formation of particles of size  due to coalescence of two particles

of size  and .  is the coalescence efficiency once collision

occurs between particles of volumes  and .  is the collision frequency

of particles of volumes  and .

, (2.10)

represents the loss of particles of size  due to coalescence. The source term for-
mulations given above, (2.7) to (2.10), are well known, e.g. Coulaloglou & Tav-
larides (1977) and Lee, Ericson & Glasgow (1987b). The breakage terms were first
given by Valentas, Bilous & Amundson (1966) and the coalescence terms were
first given by Valentas & Amundson (1966). How to model the different functions
in the source terms is another matter. Some models are described in the next sec-
tion.

There are some requirements to the source term closures, (2.7) - (2.10), the fol-
lowing discussion of these are mainly based on Kocamustafaogullari & Ishii
(1995).

2.1.1  Break-up closure requirements

The following variables are needed for the break-up source terms.

• Maximum particle volume, 

• Daughter particle distribution, 

• Number of daughter particle production, 

• Break-up frequency, 

The fluid particle break-up variables are discussed below:

S3 x ϑ t, ,( ) λ ϑ ϑ ’– ϑ ',( )h ϑ ϑ '– ϑ ',( )f x ϑ ϑ '– t, ,( )f x ϑ ' t, ,( ) ϑ 'd

ϑmin

ϑ 2⁄

∫=

ϑ

ϑ’ ϑ ϑ ’–( ) λ ϑ ϑ ’,( )

ϑ ϑ ’ h ϑ ϑ ’,( )

ϑ ϑ ’

S4 x ϑ t, ,( ) λ ϑ ϑ ’,( )h ϑ ϑ ’,( )f x ϑ t, ,( )f x ϑ’ t, ,( ) ϑ’d

ϑmin

ϑmax ϑ–

∫–=

ϑ

ϑmax

β ϑ ϑ ’,( )

n ϑ’( )

g ϑ’( )
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Basic number balance (population balance equation)
2.1.1.1   Maximum particle volume, 

The maximum particle size which is stable against break-up is found from a gen-
eralized break-up mechanism which can be expressed as a balance between
external stresses, , that attempt to disrupt the fluid particle, and the surface

stress, , resisting the particle deformation. This leads to a critical Weber
number

, (2.11)

where  is the maximum stable fluid particle size.

The hydrodynamic condition responsible for break-up may be, Hinze (1955):

• Turbulent flow (local turbulence)

• Laminar flow (viscous shear)

• Interfacial instability (Rayleigh-Taylor and Kelvin-Helmholtz instabilities,
Drazin & Reid (1981))

According to Kocamustafaogullari & Ishii (1995) the two last types of break-up
may be neglected in most cases in chemical engineering processes due to high Rey-
nolds numbers in such flows. For the turbulent flow the mean square spatial fluc-

tuating velocity, , describes the turbulent pressure forces of eddies of size 

giving the critical Weber number as

. (2.12)

According to Batchelor (1951)

. (2.13)

Thus an approximation for  can be found. As this is just an average value it

can at best be used as an aid for setting the upper limit for the size classes when dis-
cretizising the population balance equation.

ϑmax

τ
σ d⁄

Wecr τdmax σ 1.0≥⁄=

dmax

vc’
2 dmax

Wecr ρcvc’
2dmax σ 1.0≥⁄=

vc’
2 εdmax( )2 3/≅

dmax
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The population balance model
2.1.1.2   Daughter particle size distribution, 

A number of empirical functions exist for describing this distribution, as dis-
cussed by Hsia & Tavarides (1983) and Tsouris & Tavlarides (1994). Valentas et
al. (1966) assume binary breakage with equal sized daughter particles which is a
limiting case of the complex breakage process for which the breakage kernel is
represented by a Kronecker delta function, Kreyszig (1988),

. (2.14)

They alternatively use a normal density distribution function as they assumed it is
reasonable to expect the distribution of daughter particles to be normal or approx-
imately normal. Coulalogou & Tavlarides (1977) also assume that the daughter
distribution follow a normal density function. Narsimhan, Gupta & Ramkrishna
(1979) on the other hand assume a uniform daughter droplet size distribution.

Hesketh, Etchells & Russel (1991) observed bubble and droplet break-up in tur-
bulent liquid flow in a pipeline. They found bubbles to break up into only two
daughter fragments which had a higher probability for unequal rather than equal
size. Two types of breakage was observed:

• Bubble or drop undergoing a large scale deformation resulting in break-up.

• Some kind of tearing mechanism resulting in a very small volume being torn
from the original fluid particle.

Nambiar, Kumar, Das & Gandhi (1992) when modeling stirred tanks, also assumes
unequal breakage in their model. Their model predicts that a large drop is reduced
in size due to stripping of smaller fragments off it through unequal breakage. It is
only when the drop is close to the value of the maximum stable drop diameter that
it breaks into equal parts.

Many different daughter particle distribution functions have thus been proposed,
that are not always consistent with each other.

2.1.1.3   Number of daughter particle production, 

Various experimental data indicate 2-7 daughter particles as the norm from
experimental data in liquid-liquid systems, Chatzi & Lee (1987). Bubble break-
up on the other hand normally gives two daughter particles. Prince, Walters &

β ϑ ϑ ’,( )

β ϑ ϑ ’,( ) δ ϑ 1
2
---ϑ’– 

 =

n ϑ’( )
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Basic number balance (population balance equation)
Blanch (1989) found two principal daughter bubbles and also a number of
smaller daughter fragments. Narsimhan et al. (1979) assumed binary breakage in
their model for stirred liquid-liquid dispersions.

2.1.1.4   Break-up frequency, 

There are two types of flow regimes which heavily influence the break-up fre-
quency models:

• Turbulent flow

• Laminar flow

Several phenomenological models exist for liquid-liquid dispersions, Kocamus-
tafaogullari & Ishii (1995):

• Molecular decomposition analogy model

• Dispersion hydrodynamics break-up models

• Critical velocity break-up frequency model

• Drop oscillation break-up frequency model

Flow conditions decide the type of model to be used. For dispersions in turbulent
flow, the kinetic energy transferred by eddies plays a dominant role in the break-
up process.

Coulaloglou & Tavlarides (1977) proposed a model for  in turbulent flow
based on dispersion hydrodynamics. The model uses eddy-drop collision fre-
quency and energy dissipation and is given as

. (2.15)

 and  are adjustable constants, to be determined from experiments. According

to Prince & Blanch (1990), (2.15) provides results that are in poor agreement with
experimental data for air-liquid systems.

The break-up frequency, , may also be divided into collision frequency,

, and break-up probability, , even though it is not done so in 

and . When divided it is assumed that

. (2.16)

g ϑ’( )

g ϑ( )

g ϑ’( ) c1 ε1 3/ ϑ’2 9/⁄( ) c2σ ρdε2 3/ ϑ’5 9/( )⁄–[ ]exp=

c1 c2

g ϑ’( )
h ϑ λ ’,( ) λ ϑ λ ’,( ) S1

S2

g ϑ’( ) h ϑ λ ’,( )λ ϑ λ ’,( )=
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The population balance model
Luo (1993) used such a division. Lee, Erickson & Glasgow (1987a) assume that
the collision frequency is a Poisson process and they find the frequency function
by using dimensional analysis.

2.1.2  Coalescence closure requirements

The following variables are needed for the coalescence source terms.

• Minimum particle volume, 

• Particle collision frequency, 

• Particle coalescence efficiency, 

The coalescence process can further be divided into three distinctive phenomena,
Kocamustafaogullari & Ishii (1995):

• Collision between two or more fluid particles

• Surface flattening and film drainage between the fluid particles

• Film rupture giving coalescence

For bubbly two-phase flow the collision process may be due to the following phe-
nomena, Kocamustafaogullari & Ishii (1995):

• Turbulent fluctuations

• Size dependent rise velocity differences

• Wake entrainment

• Shear layer induced velocity differences

The three latter are highly dependent on the particle size distribution and internal
flow structure.

2.1.2.1   Minimum particle volume, 

It is often assumed that there is a minimum stable particle size below which a pair
of particles will coalesce upon colliding. By using the adhesion force and the
kinetic energy of a fluid particle - fluid particle collision Shinnar & Church
(1960) and Shinnar (1961) got the following expression for the minimum particle
volume as a function of the diameter

, (2.17)

ϑmin

h ϑ ϑ ’,( )

λ ϑ ϑ ’,( )

ϑmin

dmin C1 ρc
3 8/ ε1 4/( )⁄=
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Basic number balance (population balance equation)
where  is a parameter defined upon critical rupture thickness, , of the film

between the particles. This view is based on an average kinetic energy level, thus
not realistic for simulations where the spectrum of kinetic energy is used, but it
gives an estimate for the lower range of the population balance discretization.

Thomas (1981) developed a similar model by replacing the adhesion force with the
surface tension force acting at the time of rupture getting

. (2.18)

This shows that there are several possible approximations of the minimum particle
volume depending on the assumptions made.

2.1.2.2   Particle collision frequency, 

For liquid-liquid dispersions Tavlarides & Stamatoudis (1981) gave the follow-
ing frequency for collisions in a uniform shear flow (laminar)

. (2.19)

For turbulent flow the gradient may be exchanged,

. (2.20)

When the drop density is approximately equal to the density of the continuous
phase, the collision frequency will be determined by local turbulent flow charac-
teristics giving

. (2.21)

When the drops are large compared to the turbulent eddies they are exposed to
stresses in all directions. This results in a random drop motion and an analogy to
kinetic theory of gases has been used.

2.1.2.3   Fluid particle coalescence efficiency, 

An empirical model based on average contact time and average coalescence time
is widely used, Coulaloglou & Tavlarides (1977),

. (2.22)

C1 hc

dmin 2.4 σ2hc
2 µcρcε( )⁄( )1 4/∼

h ϑ ϑ ’,( )

h d d’,( ) 1.366 d d’+( )3 v r∂⁄∂( )=

v r∂⁄∂ ε ϑ⁄( )1 2/≈

h d d’,( ) 0.618 d d’+( )3 ε ϑ⁄( )1 2/=

λ ϑ ϑ ’,( )

λ ϑ ϑ ’,( ) λ d d’,( ) tcoa d d’,( ) tcon d d’,( )⁄–[ ]exp==
NTNU 13  



The population balance model
Population balance equations generally use volume as basis for the particle coa-
lescence efficiency, Coulaloglou & Tavlarides (1977) uses fluid particle diameter.
It is assumed that these two representations are interchangeable. Different models
based on (2.22) exist for the coalescence efficiency in turbulent and laminar flow
regimes. Coulaloglou & Tavlarides (1977) uses

, (2.23)

which is based on the drainage time of the film between the colliding fluid particles
and the force of the collision itself in a turbulent environment. The average contact
time is similarly given as

. (2.24)

Prince & Blanch (1990) uses

, (2.25)

which is also based on the drainage time of the film between the colliding fluid par-
ticles. The further use

, (2.26)

which is based on dimensional considerations. Chesters (1991) and Luo (1993) use
still other expressions for  and . The model by Luo is given

and used in chapter 6 and the implementation is explained in appendix A.

Low & List (1982) and Orme (1997) use another empirical model for the coales-
cence efficiency. This empirical model is found for raindrops and is based on what
they define as the total collision energy, Orme (1997), or the total energy of coa-
lescence, Low & List (1982). Starting with the change in surface energy as a result
of coalescence

, (2.27)

tcoa d d’,( )
µcρcε2 3/ d d’+( )2 3/

σ2
-----------------------------------------------

1
h2
-----

1
h0

2
-----– 

  dd'
d d'+
------------- 
  2

=

tcon d d’,( ) d d’+( )2 3/

ε1 3/
-------------------------=

tcoa d d’,( ) 1
32
------

dd’
d d’+
------------- 
  3 2/ ρc

σ
----- 
  h0

h
----- 
 ln=

tcon d d’,( ) dd’
4ε2 d d’+( )
--------------------------- 
  2 3/

=

tcoa d d’,( ) tcon d d’,( )

∆Sσ ST SC– πσ d2 d'2+( ) πσ d3 d'3+( )2 3/–= =
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Discretization of the particle size distribution
where  is the surface energy of the parent fluid particles and  is the surface

energy of the coalesced fluid particle. Spherical shape is assumed for all fluid par-
ticles. Further, the collision kinetic energy is defined as

. (2.28)

The total energy of coalescence is then defined as

. (2.29)

The measurements collected from six coalescing drop pairs is then approximated

as the empirical relation (with  representing the smallest drop)

 for  , (2.30)

 for  , (2.31)

with  and .

2.2  Discretization of the particle size distribution

The population balance equation must be discretizised in order to be solved
numerically. As this will be done for the source terms in chapter 6 and in appen-
dix A, only the general form is given here as

. (2.32)

 is assumed to be concentrated at a representative size i, although  is the

total number between  and .

ST SC

CKE ϑ ϑ ’,( )
ρd

16
------

ϑϑ ’

ϑ ϑ ’+
--------------- 
  U U’+( )2=

ET CKE ∆Sσ+=

ϑ’

λ ϑ ϑ ’,( ) λ d d’,( ) a 1 d’ d⁄+[ ] 2–
bσET

2

SC
--------------–exp== ET 5.0< µJ

λ ϑ ϑ ’,( ) λ d d’,( ) 0== ET 5.0> µJ

a 0.778= b 2.61
6×10 J 2– m2=

Ni t( ) n ϑ t,( ) ϑd

ϑ i

ϑ i 1+

∫=

Ni t( ) Ni

ϑ i ϑ i 1+
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The population balance model
Notation
constant, , eq (2.30), -

birth term, eq (2.2), 

constant, , eq (2.30), 

parameter defined upon critical rupture thickness, eq (2.17), -

adjustable constant, eq (2.15), -

adjustable constant, eq (2.15), -

collision kinetic energy, eq (2.28), 

death term, eq (2.2), 

, diameters of fluid particles, eq (2.19), 

maximum stable fluid particle diameter size, eq (2.11), 

minimum particle diameter, eq (2.17), 

total energy of coalescence, eq (2.29), 

particle density distribution function, eq (2.6), 

break-up frequency for particle , eq (2.7), 

liquid film thickness, eq (2.23), 

initial liquid film thickness, eq (2.23), 

collision frequency between particle of volume  and eddy of size

, eq (2.16), 

collision frequency of particles of volume  and , eq (2.9), 

critical rupture thickness, eq (2.18), 

total number of fluid particles between sizes  and ,

eq (2.32), -

m+3 dimensional particle distribution function, eq (2.2), 

number of daughter particles from breakage of parent particle

having volume , eq (2.7), 

number density of particles of volume  at time , (2.32), 

region of integration, eq (2.2), 

a a 0.778=

B 1 m3s( )⁄

b b 2.61
6×10= m2 J2⁄

C1

c1

c2

CKE ϑ ϑ ’,( ) J

D 1 m3s( )⁄
d d’ m

dmax m

dmin m

ET J

f x ϑ t, ,( ) 1 m3⁄

g ϑ’( ) ϑ’ 1 s⁄
h t( ) m

h0 m

h ϑ λ ’,( ) ϑ
λ’ 1 s⁄

h ϑ ϑ ’,( ) ϑ ϑ ’ 1 s⁄
hc m

Ni t( ) ϑ i ϑ i 1+

n R t,( ) 1 m3⁄

n ϑ’( )

ϑ’ 1 m3⁄
n ϑ t,( ) ϑ t 1 m3⁄
R m3
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Discretization of the particle size distribution
sub-region of integration, eq (2.2), 

length axis, eq (2.19), 

birth term due to breakup, eq (2.7), 

death term due to breakup, eq (2.8), 

birth term due to coalescence, eq (2.9), 

death term due to coalescence, eq (2.10), 

surface energy of coalesced fluid particle, eq (2.27), 

surface energy of parent fluid particles, eq (2.27), 

source term, eq (2.6), 

phase change terms, eq (2.6), 

time, eq (2.2), 

average coalescence time for two fluid particles of diameter sizes 

and , eq (2.22), 

average contact time for two fluid particles of diameter sizes 

and , eq (2.22), 

, fluid particle velocities, eq (2.28), 

set of internal and external velocities, eq (2.4), 

fluid velocity, eq (2.19), 

mean square spatial fluctuating velocity, eq (2.12), 

set of external velocities, eq (2.4), 

set of internal velocities, eq (2.4), 

particle velocity, eq (2.6), 

Critical Weber number, eq (2.11), -

set of internal and external coordinates, eq (2.3)

distribution of daughter particles produced upon break-up of parent

particle of volume , eq (2.7), -

R1 m3

r m

S1 x ϑ t, ,( ) 1 m3s( )⁄

S2 x ϑ t, ,( ) 1 m3s( )⁄

S3 x ϑ t, ,( ) 1 m3s( )⁄

S4 x ϑ t, ,( ) 1 m3s( )⁄

SC J

ST J

Sj 1 m3s( )⁄

Sph 1 m3s( )⁄

t s

tcoa d d’,( ) d

d’ s

tcon d d’,( ) d

d’ s

U U’ m s⁄
v m s⁄
v m s⁄

vc’
2 m2 s2⁄

ve m s⁄

vi m s⁄

vp x ϑ t, ,( ) m s⁄

Wecr

x

β ϑ’ ϑ,( )

ϑ’
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The population balance model
change in surface energy, eq (2.27), 

Kronecker delta function, eq (2.14), -

turbulent eddy dissipation, eq (2.13), 

volume of fluid particle, eq (2.7), 

minimum stable particle size below which coalescence occur, 

maximum particle size stable against break-up, 

volume of particle of class i, 

break-up probability for particle of volume  hit by eddy of size ,
eq (2.16), -
coalescence efficiency once collision occurs between particles of

diameters  and , eq (2.22), -

coalescence efficiency once collision occurs between particles of

volumes  and , eq (2.9), -

viscosity of continuous phase, eq (2.18), 

density in continuous phase, eq (2.12), 

density in dispersed phase, eq (2.15), 

surface tension, eq (2.11), 

external stresses, eq (2.11), 

References

Batchelor, G.K. (1951). Pressure fluctuations in isotropic turbulence. Proceedings
of the Cambridge Phil. Society, 47, 359-374.

Carrica, P.M., Drew, D., Bonetto, F. & Lahey Jr., R.T. (1999). A polydisperse
model for bubbly two-phase flow around a surface ship. International Journal of
Multiphase Flow, 25, 257-305.

Chatzi, E. & Lee, J.M. (1987). Analysis of interactions for liquid-liquid dispersion
in agitated vessels. Ind. Chem. Engng. Res., 26, Vol 11, 2263-2267.

Chesters, A.K. (1991). The modelling of coalescence processes in fluid-fluid dis-
persions: A review of current understanding. Trans IChemE, 69, Part A, 259-270.

∆Sσ J

δ
ε m2 s3⁄
ϑ m3

ϑmin m3

ϑmax m3

ϑ i m3

λ ϑ λ ’,( ) ϑ λ ’

λ d d’,( )
d d’

λ ϑ ϑ ’,( )

ϑ ϑ ’

µc kg ms( )⁄

ρc kg m3⁄

ρd kg m3⁄

σ N m⁄
τ N m2⁄
18 NTNU



Discretization of the particle size distribution
Coulaloglou, C.A. & Tavlarides, L.L. (1977). Description of interaction processes
in agitated liquid-liquid dispersions. Chemical Engineering Science, 32, 1289-
1297.

Drazin, P.G. & Reid, W.H. (1981). Hydrodynamic stability. Cambridge university
press, Cambridge, USA, 14-22.

Hesketh, R.P., Etchells, A.W. & Russell, T.W.F. (1991). Experimental observa-
tions of bubble breakage in turbulent flow. Ind. Eng. Chem. Res., 30, 835-841.

Hinze, J.O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in
dispersion processes. AIChE Journal, 1, No. 3, 289-295.

Hsia, M.A. & Tavlarides, L.L. (1983). Simulation and analysis of drop breakage,
coalescence and micromixing in liquid-liquid stirred tanks. Chem. Engng J., 26,
189-199.

Hulburt, H.M. & Katz, S. (1964). Some problems in particle technology. Chemical
Engineering Science, 19, 555-574.

Kocamustafaogullari, G. & Ishii, M. (1995). Foundation of the interfacial area
transport equation and its closure relations. Int. J. Heat Mass Transfer, 38, No. 3,
481-493.

Kreyszig, E. (1988). Advanced engineering mathematics. John Wiley & sons, 6th
ed., New York, USA, 219.

Lee, C.-H., Erickson, L.E. & Glasgow, L.A. (1987a). Bubble breakup and coa-
lescence in turbulent gas-liquid dispersions. Chem. Eng. Comm., 59, 65-84.

Lee, C.-H., Erickson, L.E. & Glasgow, L.A. (1987b). Dynamics of bubble size dis-
tribution in turbulent gas-liquid dispersions. Chem. Eng. Comm., 61, 181-195.

Low, T.B. & List, R. (1982). Collision, coalescence and breakup of raindrops. Part
I: Experimentally established coalescence efficiencies and fragment size distri-
butions in breakup. Journal of the atmospheric sciences, 39, 1591-1606.

Luo, H. (1993). Coalescence, breakup and liquid circulation in bubble column
reactors. Doktor ingeniøravhandling, Institutt for kjemiteknikk, Univeritetet i
Trondheim, Norway.

Nambiar, D.K.R., Kumar, R., Das, T.R. & Gandhi, K.S. (1992). A new model for
the breakage frequency of drops in turbulent stirred dispersions. Chemical Engi-
neering Science, 47, 2989-3002.
NTNU 19  



The population balance model
Narsimhan, G., Gupta, J.P. & Ramkrishna, D. (1979). A model for transitional
breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem-
ical Engineering Science, 34, 257-265.

Orme, M. (1997). Experiments on droplet collisions, bounce, coalescence and dis-
ruption. Prog. Energy Combust. Sci., 23, 65-79.

Prince, M.J. & Blanch, H.W. (1990). Bubble coalescence and break-up in air-
sparged bubble column. A.I.Ch.E. Journal, 36, Vol 10, 1485-1499.

Prince, M.J., Walters, S. & Blanch, H.W. (1989). Bubble break-up in air-sparged
biochemical reactors. In First Generation of Bioprocess Engineering. Edited by
Ghose, T.K.

Ramkrishna, D. (1985). The status of population balances. Chem. Engng., 3, 49-
95.

Randolph, A.D. & Larson, M.A. (1988). Theory of particulate processes. 2nd ed.,
Academic Press Inc., San Diego, USA.

Shinnar, R. (1961). On the behavior of liquid dispersions in mixing vessels. J.
Fluid Mech., 10, 259-275.

Shinnar, R. & Church, J.M. (1960). Predicting particle size in agitated dispersions.
Ind. Engng. Chem., 52, 253-262.

Tavlarides, L.L. & Stamatoudis, M. (1981). The analysis of interphase reactions
and mass transfer in liquid-liquid dispersions. Advances in Chemical Engineering,
11, 199-273.

Thomas, R.M. (1981). Bubble coalescence in turbulent flows. Int. J. Multiphase
Flow, 7, 709-717.

Tsouris, C. & Tavlarides, L.L. (1994). Breakage and coalescence models in tur-
bulent dispersion. A.I.Ch.E. Journal, 40, 395-406.

Valentas, K.J. & Amundson, N.R. (1966). Breakage and coalescence in dispersed
phase systems. I&EC Fundamentals, 5, No. 4, 533-542.

Valentas, K.J., Bilous, O. & Amundson, N.R. (1966). Analysis of breakage in dis-
persed phase systems. I&EC Fundamentals, 5, No. 2, 271-279.
20 NTNU



CHAPTER 3 Fluid particle 
coalescence 
efficiency
This chapter provides a literature overview of the parameterizations accounting
for the mechanisms determining the binary fluid particle collision processes. The
aim is to describe the coalescence efficiency through a fundamental lagrangian
momentum balance model. Models describing the drainage of the film between two
colliding particles are also considered. Other factors that may influence the effi-
ciency are outlined. Finally, experimental data for collisions between fluid par-
ticles are discussed.

3.1  Coalescence efficiency parameterizations, the 
relation to particle collision models

The aim of this chapter is to describe an approach for finding the particle coales-
cence efficiency, , and variables that may affect this efficiency. The goal
is to develop a fundamental model for the efficiency starting with the coalescence
closure requirements, Kocamustafaogullari & Ishii (1995):

• Collision between two or more fluid particles

• Surface flattening and film drainage between the fluid particles

• Film rupture giving coalescence

λ ϑ ϑ ’,( )
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Fluid particle coalescence efficiency
3.1.1  Film rupture

Film rupture is considered more or less instantaneous compared to the other two
processes, Chesters (1991). Further, the film rupture does not happen at a speci-
fied film thickness. It seems that the rupture thickness may vary and that it is also
affected by impurities in the film. Generally rupture occurs when the film at the
initial rupture position is less than a few hundred Å for large fluid particles and
a few tens for small ones, Chesters (1991).

3.1.2  Film drainage

A large number of studies has been published. Most use lubrication theory in
order to describe the drainage process.

3.1.2.1   Lubrication theory

The basic lubrication theory is shown in detail. In order to derive the lubrication
equation start with the Navier Stokes equations and the continuity equation, Bird,
Stewart & Lightfoot (1960). Assumptions used are:

• Newtonian fluid

•  are constants

• Axisymmetry

• Gravity is negligible

A sketch of the lubrication film is shown in figure 3.1.

ρ µ,
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Coalescence efficiency parameterizations, the relation to particle colli-
In cylindrical coordinates the Navier Stokes in r-direction, z-direction, and con-
tinuity equations respectively, may be written as

, (3.1)

, (3.2)

. (3.3)

The lubrication approximation states that . In addition, the following

assumptions are made, Lee & Hodgson (1968):

• , but 

FIGURE 3.1: Definition sketch for two colliding fluid particles, Klaseboer,
Chevaillier, Gourdon & Masbernat (2000). The film between the colliding
particles is shown in detail.
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Fluid particle coalescence efficiency
• , i.e. pseudo steady state.

• , i.e. neglect the inertia term, this assumption is valid for creeping

flow (typically  for creeping flow).

The lubrication approximation shows that the flow between the boundaries may
be assumed parallel since the distance between the boundaries is much less than
the radial length of the boundaries. This in turn gives the assumption  is

 only. The first viscous term in eq (3.1) is proved negligible compared to the
second term by inserting the continuity equation, eq (3.3), and comparing the
terms. The equations (3.1) to (3.3) are reduced to

, (3.4)

, (3.5)

. (3.6)

Equations (3.4) to (3.6) are quite commonly used when solving for film drainage,
see also Jain & Ivanov (1980) and Li (1996). In addition one has the following
boundary conditions

•  at the surface ( )

•  at the surface

•  at the surface, and it is called the kinematic boundary condi-

tion, e.g. Slattery (1990)

•  at  due to symmetry

t∂
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Coalescence efficiency parameterizations, the relation to particle colli-
•  at  due to symmetry

where  is the thickness between the boundaries, and where  is in the centre

of the film, thus the boundaries are at  and . Note that  is a function of

both  and .

By integrating eq (3.4) twice we get

. (3.7)

The integration constants are determined by using the boundary conditions, giv-
ing:

, (3.8)

which is a parabolic velocity profile caused by the pressure gradient.

Integrating the continuity equation (3.6) over half the film and inserting eq (3.8)
gives

. (3.9)

The Leibnitz theorem, Bird et al. (1960), is needed in order to integrate the left hand
side of eq (3.9) (because h is a function of r in the integration limit):

. (3.10)

We have used , , replaced  with  and replaced 

with . We also have

. (3.11)
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Fluid particle coalescence efficiency
Using the Leibnitz theorem on the left hand term in the integrated continuity equa-
tion gives

(3.12)

Computing the integral on the right hand side of eq (3.12)

(3.13)

The second term in the continuity equation (3.6) gives

. (3.14)

Combining eq (3.9), eq (3.12), eq (3.13) and eq (3.14) gives the lubrication equa-
tion

, (3.15)

which is the integrated form of the continuity equation. It is seen from eq (3.15)
that in order to find the drainage rate the pressure gradient in the film between the
two colliding fluid particles is needed.

By using the boundary condition  at , thus not assuming an

immobile film, Danov, Gurkov, Dimitrova, Ivanov & Smith (1997), gives
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Coalescence efficiency parameterizations, the relation to particle colli-
, (3.16)

rather than eq (3.8) which in turn leads to

. (3.17)

The second term in eq (3.17) is solved with Leibnitz theorem, eq (3.10), since 

is a function of .

, (3.18)

where  due to the lubrication approximation giving

. (3.19)

Combining eq (3.3), eq (3.14), eq (3.17) and eq (3.19) gives an expanded version
of the lubrication as given by Klaseboer & Chevallier (1998)

, (3.20)

where the second term is a plug flow part due to moving boundaries and the third
term is the parabolic flow superimposed on the plug flow and this part is due to the
pressure gradient in the film.
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Fluid particle coalescence efficiency
As seen in figure 3.2 the upper plot is the situation assumed deriving equation
(3.15), and the middle plot is given by (3.20).

Klaseboer & Chevaillier (1998) showed two film drainage models introducing few
new improvements. They assumed viscous forces predominant and weak colli-
sions. They further assumed a constant approach velocity for the collision making
their models rather unrealistic, at least for rebounds. The first models assumes par-
tially mobile films and plug flow. This may be an inconsistency in itself as one only
expects plug flow with fully mobile films. The second model assumes immobile
films and Poiseuille flow in the draining film. They use standard lubrication theory

, (3.21)

where the first term on the right hand side is a Couette contribution (or plug flow
contribution due to the moving interfaces) and the second term is a Poiseuille con-

FIGURE 3.2: From Lee & Hodgson (1968), from above the figure shows
immobile, partially mobile and fully mobile films. The form of the pressure
distribution is also shown at the top.
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Coalescence efficiency parameterizations, the relation to particle colli-
tribution (a parabolic velocity profile contribution caused by a pressure gradient).
The pressure is given as

, (3.22)

where the second term on the right hand side is due to the curvature of the film.

Chesters & Hofman (1982) also started out with the Navier-Stokes equations and
continuity to describe the collision between two colliding bubbles. They first
assumed an inviscid liquid and later found out that for Re>100 this was a good
approximation. They also assumed that the velocity at the outer edge of the col-
lision zone is set to a constant. This combines to a poor representation of the phys-
ical system (especially the second assumption) and their results should probably
be disregarded.

Chen, Hahn & Slattery (1984) included the London-van der Waals attraction force
when solving for the film thickness. This force is according to them of importance
when the film is less than 1000 Å. They assumed that the mutual force per unit mass

 known as the London-van der Waals force is representable in terms of a scalar

potential :

. (3.23)

At a planar fluid-fluid interface:

, (3.24)

where  J and  for a film thickness less than 120 Å. When the film

thickness is more than 400 Å  Jm and . No values are given for
the intermediate range. When combined with interfacial tension they got:

 for , (3.25)

 for . (3.26)
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Fluid particle coalescence efficiency
The film is above assumed to be immobile.

Hahn & Slattery (1985) followed up the article to Chen et al. (1984) by extending
it to include the effects of surface viscosities. That is they solve for a partially
mobile film and their new basic assumption is that the film drains slowly. This
assumption may work for the gravity induced drainage where the contact time may
be sufficiently long. For a collision of two fluid particles with a contact time far less
than a second this assumption is not valid. Hahn & Slattery (1986) also included
the effect of dimpling of the film. The resulting equation describes  as a function
of time and radius.

Doubliez (1991) found that the viscous draining was too slow to explain the exper-
imentally found drainage rate. An alternative model was presented. It is assumed
that: 1- the film is plane-parallel, 2- gravity effects can be neglected in the flow,
3- axisymmetric flow without an azimuthal component, 4- the gas flow in the bub-
bles has no influence on the liquid flow, and 5- the radial velocity  is constant

across the film, 

By using the dimensionless variables

, , , , ,

the length scale ratio  and the Reynolds and Weber numbers

,   and , (3.27)

the Navier-Stokes equations may be expressed as (dimensionless form written
without the apostrophes):

, (3.28)

and

. (3.29)
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Coalescence efficiency parameterizations, the relation to particle colli-
With small fluid particles at terminal velocity  and initially  the vis-
cous parts are of minor importance, unlike the lubrication approximation.

Doubliez found the thickness of the film to be

, (3.30)

or in dimensional form

, (3.31)

where initial conditions are needed

. (3.32)

Two hypotheses can according to Doubliez explain the ending of this initial stage,
the rebound process or the dimple formation, which will be looked into later.

3.1.2.2   Force, lubrication theory and drainage

The film drainage is in eq (3.15) and eq (3.20) above given as a function of the
radial pressure gradient in the film. An alternative to using the pressure is to use
the force between the fluid particles, or between a fluid particle and a solid sur-
face as shown in figure 3.3.
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Fluid particle coalescence efficiency
Charles & Mason (1960) found the rate of thinning between two interfaces as a
function of the force between two fluid particles to be

 . (3.33)

where  is the thickness of the film, as seen in figure 3.3. They considered lam-
inar flow in the radial direction, no flow in the z direction and negligible inertial
effects. A no slip condition is applied at the interfaces, and a parabolic velocity pro-
file is used in the r direction.

They further found an expression for the force, , but there are two errors made
during this development, the expression for the excess pressure found from
Laplace’s law and the volume balance. By assuming a parallel disc approach (3.33)
can be simplified to

, (3.34)

FIGURE 3.3: The close approach of a film to a surface in a viscous fluid,
Charles & Mason (1960).
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Coalescence efficiency parameterizations, the relation to particle colli-
by setting  (independent of r) and integrating equation (3.33). This equa-
tion is also called Reynolds equation, Reynolds (1886). Hartland (1967) found
(3.34) by staring with the Navier Stokes equation in cylindrical coordinates for the
radial direction, Bird et al. (1960), and neglecting the transient term, the inertia
terms, assuming axis symmetry and removing the first viscous term by using the
continuity equation and assuming that the velocity in the perpendicular direction
is independent of the radial direction. By integrating (3.34) an expression is found
for the drainage time that was first given by Stefan (1874)

. (3.35)

This assumes that the force between the fluid particles is constant during the col-
lision until breakage. Constant force is not expected due to several reasons. Firstly,
this implies no drag between the fluid particles and the continuous medium. Sec-
ondly, it implies that the film will have constant contact area, which clearly cannot
be the case. It further assumes that there is no loss due to dissipation during the col-
lision itself and that the fluid particles are not oscillating.

Kirkpatrick & Lockett (1974) found that low approach velocities resulted in coa-
lescence while higher velocities resulted in rebounds. They did experiments with
bubbles rising to an interface. They wrote that with low approach velocity the rate
of increase of the contact film area with time was sufficiently slow to allow the con-
tact film to drain to rupture thickness before the bubble was brought to rest. When
a bubble approach an interface, there is film drainage due to excess pressure in the
film, and an increase in contact area. The latter decreases the rate of drainage. A
model was given based on the Bernoulli equation (3.36) without friction, that is no
shear at the film surfaces, and the continuity equation (3.37),

, (3.36)

. (3.37)

By using that  and combining for the edge of the collision radius

they got
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Fluid particle coalescence efficiency
. (3.38)

This can be considered an equation for the bottom case in figure 3.2 (fully mobile
films).

3.1.2.3   Modification of the lubrication theory

Vaughn & Slattery (1995) and Slattery (1999) present a model based on the work
by Bird et al. (1977). Creeping flow is assumed and it is postulated that

, (3.39)

. (3.40)

dh
h

------
16σ
ρcR
--------- 
  1 2⁄ dt

rf
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FIGURE 3.4: From Kirkpatrick & Lockett (1974), shows a collision model
with a flat interface between the fluid particles.
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Coalescence efficiency parameterizations, the relation to particle colli-
The momentum and continuity equations are simplified in accordance with eq
(3.39), eq (3.40) and lubrication theory in general. An illustration of the liquid film
between the two fluid particles is shown in figure 3.5.

 

Immobile interfaces:

The boundary conditions for immobile interfaces are:

, (3.41)

, (3.42)

. (3.43)

The reference frame is fixed to the lower fluid particle.  is the position of the
upper interface. The upper interface can be another fluid particle, a wall or the
interface of another continuous fluid.

It is postulated that

FIGURE 3.5: Idealized film formed as a small fluid particle, here gas, rises
through a continuous liquid to an interface between the liquid and another
fluid particle, here gas, by Vaughn & Slattery (1995). The film is observed in
a frame of reference in which the interface between the fluid particle and the
liquid is stationary.
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Fluid particle coalescence efficiency
. (3.44)

In view of eq (3.44), eq (3.1) can be integrated twice with respect to z, and by using
the boundary conditions this gives

. (3.45)

The continuity equation, eq (3.3), is integrated with respect to r, and by using the
boundary condition, eq (3.43), gives

. (3.46)

By eliminating  from eq (3.45) and eq (3.46) and integrating with respect to z

gives

. (3.47)

Boundary condition eq (3.41) gives , and using eq (3.42) gives

. (3.48)

Combining eq (3.47) with (3.48) gives

. (3.49)

Finally by introducing eq (3.48) into eq (3.45) gives

. (3.50)

The dominant change in pressure (radial direction) and the velocities are now
given as functions of the thinning rate of the film.

By using the boundary condition
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, (3.51)

where  is the hydrostatic pressure eq (3.48) can be integrated to give

. (3.52)

Note though that eq (3.51) is not consistent with the z-component of the momen-
tum equation

. (3.53)

and eq (3.44), this inconsistency is disregarded. Further, by using eq (3.52) the
force that the fluid exerts on the fluid particle is given as

(3.54)

where the normal stress  is always zero for immobile interfaces and  is the

pressure inside the fluid particle.

Mobile interfaces:

The boundary conditions for , equations (3.41) and (3.42), are changed to

. (3.55)

In much the same way as for immobile interfaces the equations for mobile inter-
faces are found. Starting with eq (3.4), integrating it with regard to z, and using the
boundary condition in eq (3.55) gives
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Fluid particle coalescence efficiency
. (3.56)

Using the boundary condition in eq (3.51) gives

. (3.57)

Using the right hand side of eq (3.1),

, (3.58)

removing the first and third term (both zero), and inserting the continuity equation,
eq (3.6) gives

. (3.59)

Integrating the right hand part with respect to r and using boundary condition
(3.42) gives

. (3.60)

Inserting (3.60) into eq (3.46) gives the axial velocity

. (3.61)

Integrating eq (3.60) and using boundary condition (3.41) gives the radial velocity

. (3.62)

The normal stress is now

, (3.63)

and the force that the fluid exerts on the fluid particle is given as
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. (3.64)

The velocity distribution, the pressure distribution and the force exerted on the
fluid particles are thus all found when using the approach described by Vaughn &
Slattery (1995).

3.1.2.4   Dimple in film

The pressure gradient on the deformable interfaces suggests that it is impossible
to have a plane parallel film since a flat film cannot support a gradient in the pres-
sure. In order to support this pressure gradient the film needs to change to a
curved shape. The increase in the pressure radially inward explains the experi-
ments done by Derjaguin & Kussakov (1939), they found a dimple in the film. A
dimple can be defined as a reverse curvature so that a central lens of liquid is
entrapped by a thinner barrier ring. Frankel & Mysels (1962) were the first to
model this dimple.
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Fluid particle coalescence efficiency
They developed a hydrodynamic theory of the stability and evolution of the dimple
which did not require any rigidity of any surface involved. They neglected double
layer, structural and van der Waals effects. The model required that at least one of
the surfaces involved does not dilate radially under the stresses involved. They
found

, (3.65)

where  and .

Platikanov (1964) studied small air bubbles pressed against a glass plate sub-
merged in various fluids, and by using an interference technique it was shown that
the dimple is smaller than predicted by Frankel and Mysels. It must be noted that
the time scale for this process is in order of minutes. Hartland (1967) wrote that a
dimple is visible between about 1 and 10 min. He further noted that during the first
minute drainage occurs in a film that is fairly uniform in thickness. Hartland
though, used rather viscous systems, golden syrup and glycerol in sextol phthalate.

FIGURE 3.6: Taken from Yiantsios & Davis (1990), shows how the interface
may change to a dimple which is marked with dashes.
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Coalescence efficiency parameterizations, the relation to particle colli-
For a small drop resting on an interface, Lee & Hodgson (1968), showed that

, (3.66)

and Chappelear (1961) gave the radius of the film as

. (3.67)

The ratio between these radiuses shows that the distance to the dimple is about 71%
of the total collision radius.

Li (1996) extended the analysis of a dimpled film with immobile surfaces to
account for the effects of dimpling and surface mobility. For the surface mobility
the rate of mass transfer to the surfaces is controlled by diffusion. Li reduced the
Navier-Stokes and continuity equations to eq (3.4) and eq (3.6). Li further assume
the mass transfer do not effect the velocity distribution so that the  - velocity may
be expressed as

      at   , (3.68)

FIGURE 3.7: From Hartland (1969b), shows a drop resting on a rigid plane.
A possible dimple is not included in the figure.
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Fluid particle coalescence efficiency
thus the effect of the dimple is included in the second term on the right hand side
of eq (3.68). These equations for the flow are solved together with an expression
for  at each surface.

This model should only be used for slow collisions or contacts that last much
longer that the collisions one expect in a turbulent flow. In a turbulent flow one does
not expect that a dimple will have time to develop in the contact film, 

 (1988).

3.1.2.5   Surfactants or impurities

Lee & Hodgson (1968) argued for three possible models of the film draining,
namely the immobile, partly mobile and the fully mobile model, see figure 3.2.
Complete immobility means that the fluid particle surface can support an infinite
high shear stress. In reality it means that there must be a surfactant or an impurity
in sufficient concentration to immobilize the surface. Complete mobility is
obtained when the surface can not withstand shear stress. This is the case for very
pure fluids and for the case where the impurities or surfactants are swept away
from the interface due to partial mobility. In the latter case there will according
to Lee & Hodgson (1968), be a back pressure from the swept away impurities due
to a concentration difference. If a surface active third component is virtually
insoluble and wholly confined to the surface its removal from the centre will
increase the interfacial tension there and produce a gradient of interfacial tension
between the periphery of the film and the centre. This can easily produce a shear
stress sufficiently large to immobilize the film.

σ

42 NTNU



Coalescence efficiency parameterizations, the relation to particle colli-
When the surface active third component is soluble it can diffuse to the surface
when expansion occurs. The radial velocity in the film tends to sweep any surface
active material to the periphery of the film, and this is accompanied by an expan-
sion of an element of surface as it is moved radially outwards. The diffusion will
result in a concentration of the surface active component that is between zero and
the equilibrium value in the centre of the film. This provides a partial mobile film.

Lee & Hodgson (1968) found the critical interfacial tension difference promoting
immobility for the parallel disk model to be

FIGURE 3.8: From Lee & Hodgson (1968), establishment of critical
interfacial tension gradients. Starting with a initially uniform profile (i), then
expansion (ii) and (iii), redistribution occurs and film is immobilized (iv) and
further drainage with immobile film (v).
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, (3.69)

and for complete mobility they found

, (3.70)

which is only half the value of complete immobility. A possible scenario for the
collision process between two fluid particles was given. The particles initially has
an even distribution of the surface active agent and are initially fully mobile. The
film will drain fast and the surface active agent will be redistributed radially due
to the radial velocity causing depletion in the centre. The film will soon become
fully immobile (going through a partial mobile phase). At full immobility the shear
stress is balanced by the gradient of the surface active agent. The film will at this
point drain very slowly. At some critical thickness the van der Walls force will
cause instability and the film will again become mobile and drain fast until coa-
lescence occurs. If this critical thickness is not reached, the fluid particles will gen-
erally rebound. MacKay & Mason (1963b) found the film drainage to be much
faster below 0.2  than predicted by the Reynolds equation (3.34). This suggest

that the film changes from immobile to mobile at 0.2  in their experiments, and
it is in agreement with the suggestions Lee & Hodgson (1968) gave regarding
changes of mobility. Hartland (1969b) also wrote that the rate of approach
increases and that the final value is often close to that predicted by assuming a uni-
form film with no shear at the interface. Lee & Hodgson (1968) further argued that
the film drainage process is laminar. Even in relatively inviscid liquids like water
the smallest eddies are in order of 25  which is generally much thicker than the
draining film.
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Mass transfer can play an important role in the rate of thinning of a liquid film
between fluid dispersed particles. MacKay & Mason (1963a) wrote that the thin-
ning rate was found to increase with the diffusion from the dispersed phase and
decrease with the diffusion to the dispersed phase. The film thickness upon rupture
appeared to be unchanged. Groothuis & Zuiderweg (1964) showed quantitatively
that the coalescence rates can be enhanced twenty-fold by adding a relatively small
amount of a third component to the dispersed phase. This agrees well with MacKay
& Mason (1963a), who also showed a decrease in the film thinning by adding the
third component to the continuous phase. A larger percentage was though needed
in the continuous phase in order to get a similar percentage change in the rate of
change of the film thickness. They argued that this may be due to their experi-
mental setup.

FIGURE 3.9: From Lee & Hodgson (1968), shows interface mobility with
soluble surfactant. Expansion is determined by mass transfer. (i) Normal
diffusion from outside film, (ii) normal diffusion from inside film and (iii)
radial diffusion following depletion of film.
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3.1.3  Fluid particle collision (force balance)

The driving force for the film drainage is the pressure difference in the film, ,
or the force on the fluid particles resulting in the pressure difference. This section
deals with the force driving the film drainage.

Chesters (1991) offers a review for the coalescence process and the article is an
excellent reference and starting article for the subject. The collisions are divided
into two categories, viscous and inertial collisions. For the viscous collisions the
inertial part in the Navier-Stokes equations is neglected. This is expected to lead
to a Stoke type expression

. (3.71)

For viscous collisions in turbulent flow the strain rate, , is replaced by , a rate
characteristic of flows in the smallest eddies:

. (3.72)

For inertial collisions a characteristic velocity variation is given by

, (3.73)

with a typical force caused by the external flow on the fluid particles is given by

. (3.74)

Chesters (1991) further write that there is a virtual absence of viscous dissipation,
giving a transfer of kinetic energy to surface energy during a collision. The
assumption regarding the absence of viscous dissipation may not be correct for
forceful collisions. For a forceful collision the collision interface radius, a, is of the
same order of magnitude is the fluid particle radius, R, thus . A gentle

collision on the other hand may be defined as , see figure 3.10. Another
important parameter that is addressed in the article is the virtual mass coefficient.
It is listed as 2/3 for an isolated particle but it rises to about 1 for particles in close
proximity. Normally this is not included in models and the virtual mass coefficient
is assumed constant. Values below 2/3 is also common.

As for how to solve the collision problem, a conceptual solution procedure is given.
This conceptual framework suggests solving the external flow and the internal
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flow independently. The force applied in the internal flow (drainage) is given by
the external flow. Chesters suggests that the contact time is given by the external
flow, this may be true if there is no dissipation as assumed. With dissipation this
is however unlikely since the dissipation is given by the internal flow and this again
affects the amount of energy transferable to the fluid particles during the collision.

It is further assumed that the deformation due to the collision, the  ration, is
small. When comparing with the experimental data given by Scheele & Leng
(1971), it is seen that this assumption is in error. They found experimental values
up to . These collisions were not due to turbulent flow, but it still seems
likely that the assumption is incorrect due to the high values found experimentally.

Ivanov & Traykov (1976) solved for the film thinning by solving the Navier-
Stokes equations for both the film and in their case the droplets. They used three
main assumptions. 1- film is much thinner than the collision interface radius, 2- the
film is plane-parallel, and 3- the dissipation of energy due to liquid motion out from
the film is negligible. The energy is according to them dissipated in a narrow region
situated immediately about the collision zone of the droplets colliding. This dis-

FIGURE 3.10: From Chesters (1991), showing a conceptual framework for
coalescence modelling. External and internal flow is divided. Internal flow
is here defined as flow between the collision surfaces.
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sipation decreases sharply with thicker collision zones. They wrote the normal
stress tensor as

 with , (3.75)

consisting of a pressure part and a viscous normal tensor. As most authors later on
they only kept the pressure term when solving the equations, Middleman (1998).
The Navier-Stokes equations are solved by using the simplifications above and
they get the following expression for the critical film thickness

, (3.76)

where  is the initial thickness at which the film forms.  is given from the col-

lision between the fluid particles.

Jeelani & Hartland (1991a) solved for the movement of a fluid particle toward a
flat interface (or another fluid particle):

, (3.77)

where  is the restoring force,  is the drag force and

 is assumed a constant force. For a bubble or drop toward a horizontal interface

 is the buoyancy force and in this case it is correct to assume that it is a constant.

For a collision between two fluid particles  is normally called the outer force and
it is normally not a constant. Jeelani and Hartland also included an added mass but
did not assume a constant one. The added mass varied from 0.5 at infinite distance
to 0.69 when the colliding surfaces were at contact. An approximation for the
velocity was used based on the geometry of the problem

. (3.78)

This approximation only works well for small contact area compared to the cross-
sectional area of the fluid particle. This becomes the following dimensionless lin-
ear second order differential equation
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, (3.79)

where , ,  and .

When the drag term is neglected, the right hand side of eq (3.79), can be solved ana-
lytically and the analytical solution was given by Jeelani.

The film drainage, which is solved in addition to the movement of the particle
itself, was divided into two parts. The inertial drainage being equal to the restoring
force

, (3.80)

and the viscous drainage being equal to the restoring force

, (3.81)

where the  parameter in (3.80) allows for frictional resistance at the surface. This
parameter is greater than or equal to unity. It was found that the viscous draining
was too slow compared to the experimental data from Scheele & Leng (1971). This
comparison is probably not very realistic since the contact areas in those exper-
iments were in the order of 70% of the cross sectional areas. The small contact area
approximation used by Jeelani and Hartland is thus violated. Further, the surface
oscillation of the fluid particles in the experimental data is not accounted for.

Jeelani & Hartland (1991b) continued the work above by introducing shape oscil-
lations. They used

, (3.82)

where

 and . (3.83)
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The fluid particles oscillate around the centre of mass when they are separate. Once
two particles collide this translates into oscillation around the centre of mass. The
experimental data given by Scheele & Leng (1971) is used for validation. The
match with experimental data is very good. This is probably mostly due to the fact
that five model parameters, , , ,  and , are fitted to each experimental

run.

It is further noted in the article that the frictional losses at the surfaces of the col-
lision area during inertial drainage may be extremely high. Reverse flow may thus
occur in the drops when the oscillatory motion is directed away from the mid-plane
of the collision interface. In their opinion the oscillation is very important for the
coalescence process. This was also noted in the experiments done by Scheele &
Leng (1971).

Luo & Svendsen (1996) offers a rather different view of the collision process
between two fluid particles. They do not take the film drainage into account at all.
The collision interface radius is found from a combination of the volume balances
of each fluid particle and the total distance between the centres of mass of the par-
ticles

. (3.84)

They also find a total collision time, but this time scale is questionable since no
energy loss is accounted for during the collision process.

Svendsen & Luo (1996) uses a model similar to Luo & Svendsen (1996), in accord-
ance with the previous work this model neglects the film drainage. The collision
was split up in three distinct serial processes: the approach, the drainage and the
interface rupture process. This view is rather doubtful, the drainage and the
approach process are most likely simultaneous processes. Though, it may be that
the approach process giving the interface area during the collision is approxi-
mately independent of the drainage. This also is rather doubtful initially, but as the
interface starts to form the film between will quickly drain to a thin film compared
to the radius of the contact area.

Two models are presented, one simple parallel-film model where the maximum
collision area and the collision time for the maximum is found. An energy balance
is used to find the potential energy stored in the collision, or internal kinetic energy
as it is called in the article
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, (3.85)

where

, (3.86)

is the velocity for the centre of mass for the two particles colliding. Further the
increase in surface area can be approximated as

. (3.87)

This simplification is possible since the authors assume that . They further

assume that all internal kinetic energy is stored as an increase in the surface giving

. (3.88)

The maximum interface radius, , is then found.

A more general collision model is also given. This model is based on a force bal-
ance for each fluid particle in order to track the location of both particles. Note that
the models given can handle fluid particles of individually different sizes. The
force balance for each particle is

, (3.89)

where  is the external force, it may be buoyancy, the next term on the right hand
side is the restoration force and the last term is the drag force. In addition to the
force equations, which is combined to a single one, an equation for the distance
between the fluid particle mass centres is needed

, (3.90)

where . The first two terms on the right hand side of (3.90) constitute

the distance between the geometrical centres of the fluid particles and the third
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term expresses the distance between the geometrical centres and the mass centres.
The film area and velocity can then be plotted as a function of the collision time.
Zero external force is assumed in these calculations and the results are compared
with experimental data from Scheele & Leng (1971).

3.1.3.1   Drag force

The drag force may not be the most important one during a collision between two
fluid particles, nevertheless a correct formulation should be used. Most authors use
drag formulation found for a single sphere in a free flow. Hallouin, Gondret, Lance
& Petit (1998) uses a modified formula for a sphere toward a rigid plane wall

, (3.91)

where  is a correction to Stokes’ low given by

(3.92)

where the parameter  depends on the ratio  by the relationship

.

A good approximation that satisfies both limits  and  is

. (3.93)

3.1.3.2   Collision angle and off-centre collisions

Orme (1997) defines the collision angle, , and the impact parameter, b, from
figure 3.11.

F 6πµcRvzλ=

λ λ h R⁄( )=

λ

4
3
--- α n n 1+( )

2n 1–( ) 2n 3+( )
-----------------------------------------

2 2n 1+( )α 2n 1+( ) 2αsinh+sinh

4 n 1 2⁄+( )2 α 2n 1+( )2 α2
sinh–sinh

------------------------------------------------------------------------------------------- 1–

n 1=

∞

∑sinh

=

α h R⁄

α h R 1–⁄( )1–
cosh=

h R⁄ 1» h R⁄ 1«

F 6πµRvz 1 R h⁄+( )=

ψ

52 NTNU



Coalescence efficiency parameterizations, the relation to particle colli-
The impact parameter, b, is thus the distance from the center of one fluid particle
to the relative velocity vector placed on the center of the other fluid particle. The
relative velocity between two fluid particles is given as

. (3.94)

Examples of possible outcomes when the collision is not head on is given in figure
3.12. It was found that the coalescence probability is dependent on the collision
angle and the impact parameter. Figure 3.12 also uses a ‘phasing parameter’. The
impact parameter as described is used in the x-y plane, and the phasing parameter
seem to be identical but in the y-z plane. The z-plane is aligned with the gravity vec-
tor.

FIGURE 3.11: Nomenclature for the binary collision process by Orme
(1977). b is the impact parameter,  is the collision angle,  and  are
the velocities of the large and small fluid particles respectively. U is the
relative velocity,  and  are the radii of the large and small particle

respectively, and  and  are the trajectory angles measured from the
reference of the gravitational vector.
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Not only do the two factors, collision angle and impact parameter, influence the
coalescence probability, they also influence the outcome on collisions that expe-
rience temporary coalescence, as seen schematically in figure 3.12.

Ashgriz & Poo (1990) also shows that coalescence is dependent on the collision
angle and an impact parameter, see figure 3.13. Figure 3.13 shows a coalescence
situation which is only temporary due to a high impact parameter. The result of the
head-on collision with a high impact parameter is a phenomena called a stretching
separation collision. Notice that some mass is exchanged during such a collision.

FIGURE 3.12: Examples of binary droplet collisions illustrating the effect
of impact velocity and impact parameter, b, by Orme (1997): (a) low impact
speed collision resulting in stable coalescence leading to fragmentation
with zero impact and phasing parameter; (b) high impact speed collision
resulting in unstable coalescence leading to fragmentation with zero
impact parameter and finite phasing parameter; (c) high impact speed
collision resulting in unstable coalescence leading to fragmentation with
zero phasing parameter and finite impact parameter (grazing collision).
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Figure 3.12 shows similar cases as figure 3.13, but for non head-on collisions.

3.1.4  Experimental studies

Chi & Leal (1989) lists a number of articles for methods of measuring the film
thickness and a number of articles with such measurements. They pointed out that
even though the literature is crowded with studies of the film drainage step of the
coalescence process it is not clear that the full picture actually results. Most stud-
ies deal with initially placing a drop very close to an interface and measuring the

FIGURE 3.13: Schematic of the stretching separation collision of two fluid
particles by Ashgriz & Poo (1990).
NTNU 55  



Fluid particle coalescence efficiency
gravity approach. Such an approach ignores the dynamics of a collision process
and some of the scales may be of different magnitudes. The time scale is one of
them.

Scheele & Leng (1971) studied experimentally the collision of anisole drops of
diameter 3.4 mm. in water. They used a magnetic variable pulse generator to shoot
the colliding drops toward each other with approach velocities of 1.9 - 11.2 cm/s.
They used mutually saturated liquids with freshly formed interfaces that oscillated
due to the pulse generator generating the fluid particle. The collisions were
recorded by high speed photography. The oscillation phase was found to be very
important, that is the oscillation shape at contact. It was found that collisions start-
ing in an initially elongated shape at first contact had a much higher chance of coa-
lescing. They used the Stefan-Reynolds equation, also called Reynolds equation,
(3.34), to test the drainage of the film. In all cases the Reynolds equation was found
to give drainage of orders too slow, but it was found that the collisions resulting in
coalescence drained somewhat more than the collisions that did not coalescence.

Burrill & Woods (1973a) used various oil-water mixture combinations to study
drainage mechanisms. Their results can be divided into three parts. First, a rapid
approach from distances greater than 0.1 cm to film thicknesses at the deformed

interface less than  m in less than 0.1 s. The film then ruptures or the drop
is arrested. Second, a dimple of water is formed if the drop is arrested. Third, dim-
ple formation is followed by or occur simultaneously with drainage of water. They

FIGURE 3.14: From Scheele & Leng (1971), shows the apparatus used to
create the drop collisions measured experimentally.
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wrote that the initially mobile film became dynamically immobile if transfer of
kinetic energy to surface energy can be completed due to enough surfactant. If not,
the film will become partially mobile and drain to coalescence in a relatively short
time. A dimple is formed due to interfacial tension gradient exceeding the surface
shear stress because the drop inertia that was partially responsible for setting up
this gradient has been dissipated. The bulk interface then contracts and carries
adsorbed surfactant inward which reduces the interfacial tension gradient along
the bulk interface. If the interfacial velocity inward is large, it will carry with it bulk
fluid and generate the dimple. After the initial rapid expansion and contraction of
the bulk interface is over the shear stress can be written as

. (3.95)

Uneven drainage is according to Burrill & Woods (1973a) due to unsymmetrical
outflow of fluid through the barrier ring caused by local interfacial mobility. This
gives a large outflow of liquid and will continue until the equality between the sur-
face shear stress and the interfacial tension gradient is again approached. Thus, the
film will either rupture or regain an approximate symmertical shape.
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A somewhat different reason for uneven drainage was offered earlier. According
to Hartland (1968) and Hartland (1969a) the unsymmetrical outflow is due to cir-
culation patterns in the dispersed fluid. Hartland also notes that high concentration
of surfactant gives symmetrical drainage and relatively uniform film, but this was
due to immobility of the bulk interface causing no circulation. It was also noted that
circulation in the dispersed drop has greater effect than circulation in the bulk.
Also, measurements of interfacial tension indicate that it takes about one hour for
the surface active molecules to reach their equilibrium surface concentration in the
system studied by Hartland. For a drop to a bulk interface collision, Hartland found
that surface active molecules collect to the bulk interface and are swept away from
the drop interface during approach giving a collision with one mobile and one
immobile interface.

FIGURE 3.15: From Hartland (1969a), illustration of the flows and
circulation patterns within a drop, draining film and bulk phase at different
drainage times.
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Burrill & Woods (1973b) found that the interfacial concentration of adsorbed sur-
factant has an effect on the type of film drainage that occurred. For the low vis-
cosity cases the film drained either evenly or unevenly. For other cases it can switch
between even and uneven one or more times.

FIGURE 3.16: From Hartland (1969a), profiles of uneven drainage shown for
different times.
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Experimental data for the drainage of the film for a collision between a bubble and
a surface film is given by Doubliez (1991). Doubliez found that rebounds prob-
ability increase with surface ageing, with is not surprising since it is a well known
fact that fluid particles collect impurities in the fluid after the particles are created.
This gives rise to a less mobile film which in turn is responsible for the rebound
probability increase. Similarly it was found for a given film thickness that the first
stage of drainage thinning happened faster for the second bounce than for the first.
This is probably due to the sweeping away of impurities at the interface during
drainage. The film may then after the first bounce be looked upon as a more freshly
formed fluid particle. Further, Doubliez noted that if bursting of the fluid particle
takes place it more often takes place during the last stage when thickness is increas-
ing. It is also interesting to note that it was experimentally found that higher
approach velocities gives slower initial thinning rates. This is in agreement with
what Chesters (1991) estimates for a parallel film model. The reason seems to be

FIGURE 3.17: From Burrill & Woods (1973a), shows different versions of
drainage and dimple formation. Left figure has small interfacial
concentration of surfactant and right figure has large interfacial
concentration of surfactant.
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that a higher initial velocity gives a faster increase in the surface area which in turn
reduces the drainage rate.

Most articles reviewed about the collision phenomena considers models only and
very few articles contain experimental data. Tsao & Koch (1997) presents some
interesting data and conclusions drawn from this data. They found that a bubble
toward a horizontal wall bounce further than a perfectly elastic bounce for a spher-
ical bubble would account for. Two reasons for this were given, first reason is a
release of energy associated with surface tension. This is due to the approaching
bubble having a ellipsoidal shape due to terminal velocity while the rebounding
bubble has a more spheroid shape. The second reason is due to a change in added
mass with bubble shape. Both reasons transfers potential energy to kinetic energy
giving a larger rebound.

An analysis of the collision with a wall shows that more energy is lost during a col-
lision than what can be accounted for by drag alone. A possible mechanism for the
additional loss is acoustic radiation of energy due to shape oscillations induced by
the collisions, Tsao & Koch (1997). It also seems that most of the energy is lost dur-
ing the rebound part of the collision, only 5% is lost when the bubble reaches its
closest proximity to the wall and 59% is lost in total when the bubble reaches is
maximum distance from the horizontal wall. This should be expected if the mech-
anism suggested is responsible for the energy loss observed, since it is assumed
that the shape oscillations will occur after the rebound and before the bubble
reaches its lowest point. On the other hand, it is seen from the collision radius
reported by Scheele & Leng (1971) that a large part of the energy is lost during the
rebound process itself. A second possible mechanism is a boundary layer sepa-
ration from the rigid wall during the rebound, see figure 3.18.
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Tsao & Koch (1997) conclude that it is important to consider the surface energy
and the changes in added mass during a bubble bounce. This should also be the case
for a collision between two fluid particles.

Ashgriz & Poo (1990) found that in addition to normal coalescence when two fluid
particles collide (in their case water droplets in air), the particles may experience
unstable coalescence through two mechanisms, namely stretching separation (see
figure 3.13) and reflexive separation (see figure 3.19).

FIGURE 3.18: From Tsao & Koch (1997), schematic sketch of the bubble’s
approach to (a) and rebound from (b) a horizontal wall.
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The impact parameter, b, is together with the force of the collision, by use of the
Weber number, variables that give the kind of coalescence. The impact parameter,
b, is defined in figure 3.11.

Experimental data showing the three kinds of coalescence is in figure 3.20 given
for two equal sized droplets for the system water-air, i.e. collisions of water drop-
lets in air.

FIGURE 3.19: Schematic of reflexive separation for the head-on collision
of two equal-sized fluid particles, Ashgriz & Poo (1990).
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Figure 3.21 gives similar experimental data as figure 3.20, but for one droplet
being twice the diameter of the other one.

FIGURE 3.20: Regions obtained for coalescence, reflexive separation and
stretching separation, Ashgriz & Poo (1990). Experimental data: ‘+’ for
stretching separation, ‘o’ for coalescence and filled triangles for reflexive
separation. The fluid particles (water droplets) are of equal size.

b
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By comparing figure 3.21 with figure 3.20 it is seen that stable coalescence is more
probable for the cases with unequal sized droplets. Further, Ashgriz & Poo (1990)
mentions that for stretching separation the initially largest particle will become the
smallest one after the collision. Thus, a large fraction of mass has been transferred.

3.2  Coalescence efficiency

It has been shown that it is very difficult to formulate a proper parameterization for

the coalescence efficiency, . As seen in chapter 2, several attempts have

FIGURE 3.21: Regions obtained for coalescence, reflexive separation and
stretching separation, Ashgriz & Poo (1990). Experimental data: ‘+’ for
stretching separation, ‘o’ for coalescence and filled triangles for reflexive
separation. The largest fluid particle (water droplet) is twice the diameter of
the other fluid particle (water droplet).

b

λ ϑ ϑ ’,( )
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been suggested in the literature, however, most of them are of very empirical
nature. Our goal is to formulate a more fundamental model.

The following procedure for formulating the coalescence efficiency, ,
emerges:

The thickness of the draining film seems to be one of the important variables deter-
mining the coalescence efficiency. The film drainage processes may be very dif-
ferent considering mobile and immobile interfaces, Lee & Hodgson (1968). In
addition, as the film does not rupture at a specific thickness, a coalescence criterion
may be estimated based on a probability density function for the rupture thickness,
or one may simply have to determine a critical rupture thickness empirically. A
third procedure could be developed based on mechanistical model simulations.

The thickness of the draining film between two colliding fluid particles can be cal-
culated by use of a model formulation that couples the particle collision processes
and the film draining. This may be obtained by combining the film draining models
given by Vaughn & Slattery (1995) and Slattery (1999), with a particle collision
model similar to the procedures used by Jeelani & Hartland (1991b) and Svendsen
& Luo (1996).

Such a model should also take into account the size ration between the colliding
particles as discussed by Ashgriz & Poo (1990). The fluid particles will oscillate
in a turbulent environment, Montes, Galan & Cerro (1999), this effect should also
be included because the oscillation phase together with the oscillation amplitude
may be important for the coalescence probability, Scheele & Leng (1971). Further,
the collisions may not be head-on, Ashgriz & Poo (1990), which will affect the coa-
lescence probability. The kinetic energy in the collision may also vary resulting in
a different coalescence probabilities, Low & List (1982) and Ashgriz & Poo
(1990). A mechanistic model should take all these factors into account.

Notation
dimentionless area, eq (3.79), -

parameter, defined below eq (3.65), 

drainage film radius, defined below eq (3.77), 

lower boundary in integration by Leibnitz theorem, eq (3.10)

upper boundary in integration by Leibnitz theorem, eq (3.10)

λ ϑ ϑ ’,( )

A

a m

a m

a1 t( )

a2 t( )
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constant, for different values see text after eq (3.24),

 or  (see text after eq (3.24))

parameter, defined below eq (3.65), 

impact parameter, after eq (3.93)

London-van der Waals force, eq (3.23), 

integration constant, eq (3.7), 

integration constant, eq (3.7), 

diameter of fluid particle, eq (3.73), 

internal kinetic energy, eq (3.85), 

total force on film, eq (3.33), 

constant (or external) force, eq (3.77), 

initial amplitude, eq (3.83), 

restoring force, eq (3.77), 

external force acting on fluid particle, eq (3.74), 

drag force, eq (3.77), 

shape oscillation force, eq (3.82), 

force fluid exerts on fluid particle, eq (3.54), 

dimentionless external force, eq (3.79), -

function of z position and time, eq (3.44), 

function of r position and time, eq (3.44), 

function to be integrated by Leibnitz theorem, eq (3.10)

function of z-direction only, after eq (3.3)

gravity constant, eq (3.27), 

length scale in axial direction, see text above eq (3.27), 

film thickness, after eq (3.6), 

liquid film thickness, eq (3.3), 

initial liquid film thickness, eq (3.31), 

thickness at state 1, eq (3.35), 

B

J Jm

b m

b

bm N kg⁄

C1 1 s⁄

C2 m s⁄

d m

Ek int, N m⋅

F N

F N

F0 m s2⁄

Fc N

Fext N

Fr N

Fs N

Fz N

f

f1 z t,( ) Pa

f2 r t,( ) Pa

f x t,( )
f z( )
g m s2⁄
H m

h m

h r t,( ) m

h0 m

h1 m
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thickness at state 2, eq (3.35), 

critical film thickness, eq (3.76), 

film thickness for particle i, eq (3.68), 

film thickness at the rim, eq (3.25), 

parameter for frictional loss at surface of film, eq (3.80), -

length scale in radial direction, see text above eq (3.27), 

parameter, eq (3.24), -

mass, eq (3.77), 

mass of fluid particle , eq (3.85), 

number of non-dilating surfaces, see below eq (3.65), -

number of immobile interfaces bounding the film, eq (3.81), -

pressure, eq (3.1), 

pressure as a function of radius, eq (3.52), 

pressure at center of radius of film, eq (3.36), 

pressure in dispersed phase, eq (3.54), 

hydrostatic pressure, eq (3.51), 

pressure at the rim of the film, eq (3.36), 

flow through the barrier ring per unit length of periphery, see

below eq (3.65), 

radius fluid particle, eq (3.22), 

radius fluid particle , eq (3.84), 

initial radius fluid particle , eq (3.84), 

film radius for bubble of radius  resting in equilibrium at a free

surface, eq (3.27), 

Reynolds number, , after eq (3.22), -

Reynolds number, eq (3.27), -

Reynolds number for particle, after eq (3.3), -

radial direction, eq (3.1), 

h2 m

hcr m

hi m

hr m

k

L m

m

m kg

m1 m2, 1 2, kg

n

n

P Pa

P r( ) Pa

P0 Pa

Pd Pa

Ph Pa

Pr Pa

Q

m2 s⁄
R m

R1 R2, 1 2, m

R10 R20, 1 2, m

Rm R

m

Re Re ρvzd( ) µ⁄=

Ref

Rep

r m
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interface radius, eq (3.33), 

dimensionless radius, see text above eq (3.27), -

radius of the barrier ring, eq (3.65), 

interface radius, eq (3.3) and (3.38), 

maximum interface radius, after eq (3.88), 

position of minimum film thickness, eq (3.66), 

shear stress, eq (3.95), 

normal stress, , eq (3.54), 

thickness in the middle of the dimple as a function of time,

see below eq (3.65), 

dimensionless time, eq (3.79), -

stress tensor, eq (3.54), 

time, eq (3.1), 

dimensionless time, see text above eq (3.27), -

drainage time from state 1 to state 2, eq (3.35), 

velocity scale in radial direction, see text above eq (3.27), 

collision velocity between two particles, eq (3.94), 

, scalar velocities for particles 1 and 2, eq (3.94), 

plug flow velocity, eq (3.16), 

velocity in radial direction at the centre of the film, eq (3.36), 

velocity in radial direction at the rim of the film, eq (3.36), 

relative approach velocity, eq (3.27), 

radial velocity as a function of r and z positions and time,

eq (3.39), 

velocity in radial direction, eq (3.1), 

dimensionless radial velocity, see text above eq (3.27), -

velocity in axial direction, eq (3.1), 

oscillating velocity in axial direction, eq (3.83), 

r m

r’

r0 m

rf m

rmax m

rmin m

S N m2⁄
Szz Szz 2µc∂vz ∂z⁄= N m2⁄

T

m

T

Tzz N m2⁄

t s

t’

t1 2, s

U m s⁄
U m s⁄
U1 U2 m s⁄

U0 m s⁄

ur 0, m s⁄

ur r, m s⁄

V0 m s⁄

vr r z t, ,( )

m s⁄
vr m s⁄

vr’

vz m s⁄

vz m s⁄
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axial velocity of fluid particle , eq (3.85), 

oscillating velocity to center of mass, eq (3.83), 

axial velocity of the centre of mass of the two colliding fluid

particles, eq (3.85), 

dimensionless axial velocity, see text above eq (3.27), -

axial velocity as a function of z position and time, eq (3.40), 

velocity scale in axial direction, see text above eq (3.27), 

Weber number, eq (3.27), -

axial direction, eq (3.1), 

function of axial direction, eq (3.33)

dimensionless axial length, see text above eq (3.27), -

distance between mass centres of two colliding fluid particles,

eq (3.84), 

parameter, after eq (3.92), -

parameter determining excess pressure in the film, eq (3.77), -
= 1 for an approach to a deformable interface
= 2 for an approach to a plane interface
interfacial tension, eq (3.27), 

amplitude decay rate constant, eq (3.83), 

strain rate, eq (3.71), 

strain rate for smallest eddies, eq (3.72), 

, surplus pressure in the film, eq (3.76), 

increase in surface area due to collision, eq (3.87), 

increase in surface area for particle 1 due to collision, eq (3.87), 

increase in surface area for particle 2 due to collision, eq (3.87), 

, drainage time for the initial state to critical film thickness,

eq (3.76), 

, eq (3.66), 

vz 1, vz 2,, 1 2, m s⁄

vz s, m s⁄

vz um,

m s⁄
vz’

vz z t,( ) m s⁄

W m s⁄
We

z m

z

z’

ztot

m

α
β

γ N m⁄
γ 1 s⁄
γ· 1 s⁄
γ· k 1 s⁄

∆P P0 Ph– Pa

∆s m

∆s1 m

∆s2 m

∆t tcr t0–

s

∆ρ ∆ρ ρ1 ρ2–= kg m3⁄
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, eq (3.69), 

phase angle, eq (3.83), -

turbulent eddy dissipation, eq (3.72), 

dimensionless length scale ratio, see text above eq (3.27), -

dimensionless function, eq (3.75), -

half angle subtended by the draining film, eq (3.78), -

, trajectory angles measured with reference to gravitational vector,

eq (3.94)
dimensionless constant, defined below eq (3.79), -

correction factor, eq (3.91), -

coalescence efficiency once collision occurs between particles of

volumes  and , -

viscosity of continuous phase, eq (3.1), 

kinematic viscosity, , eq (3.72), 

distance from curved particle interface to interface, eq (3.33), 

radius ratio, eq (3.90), -

density in continuous phase, eq (3.1), 

density in dispersed phase, eq (3.27), 

surface tension, eq (3.22), 

interaction potential per unit volume of a semi infinite film liquid in

the limit as the fluid-fluid interface is approached, eq (3.24), 

interaction potential energy per unit mass f the liquid in the film,

eq (3.23), 

 evaluated in the limit as the interface is approached,

eq (3.24), 

collision angle, after eq (3.93)

frequency, eq (3.83), 

∆σ0 ∆σ0 σ0 1, σ0 2,–= N m⁄

δ0

ε m2 s3⁄
ε
η
θ
θ1 θ2

λ
λ

λ ϑ ϑ ’,( )

ϑ ϑ ’

µc kg ms( )⁄

ν ν µ ρ⁄= m2 s⁄
ξ r( ) m

ξ
ρc kg m3⁄

ρd kg m3⁄

σ N m⁄
φB

J m3⁄
ϕ

J kg⁄
ϕ0 ϕ=

J kg⁄
ψ
ω 1 s⁄
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CHAPTER 4 Fluid particle 
collisions in 
turbulent flow
This chapter is based on the paper ‘Theoretical analysis of fluid particle colli-
sions in turbulent flow’ by Hagesaether, Jakobsen & Svendsen, printed in Chem.
Eng. Sci.

4.1  Introduction

Bubble and drop coalescence phenomena observed in many industrial separation
processes and in multiphase chemical reactors such as bubble columns and stir-
ring vessels, often have a significant influence on the process performance. Even
though a number of sophisticated modelling concepts have been presented in the
literature over the years, the chemical and physical mechanisms involved are still
not satisfactory understood. Among the most promising methods applicable for
elucidating these phenomena are the ‘volume of fluid (VOF)’ and the direct
numerical simulation (DNS) methods. On the other hand, the multifluid models
have been found to represent a trade-off between accuracy and computational
efforts for practical applications. In these multifluid models constitutive equa-
tions are needed to describe the coalescing process, and due to the limited under-
standing of these phenomena we still have to resort to empirical correlations.
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The present model belongs to the latter class and deals with the collision process
between two fluid particles. The intention is to formulate a constitutive model that
can be applied for determining whether the particles coalesce or not. The model
should be applicable for both in phenomenological reactors models and in CFD
based reactor models. Turbulence is included by using collision time scales gen-
erally less that a second, and by including fluid particle shape oscillations.

4.2  Model description

The model describes a head on collision for two oscillating rotational ellipsoids
of any volume and velocities. We expect the model to be valid for a large range
of velocities but the lack of experimental data limits our validation of the model.
The same model can also predict side collisions, but the physics of the rolling
motion is not yet accounted for. Off-line collisions, that is collisions not strictly
head-on, may be simulated by using the velocity component in the head-on direc-
tion only. An off-line collision has a higher probability for uneven drainage, Hart-
land (1969), this possible effect is not included in the model. Note that with minor
changes, it is also possible to simulate a tail-end collision with the equations
derived, that is a collision due to one fluid particle catching up and colliding with
another.

The force balance for each particle is

, (4.1)

where m includes added mass:

, (4.2)

where  is the added mass parameter and we have used , Luo & Svendsen
(1996). Other values are also possible. Cook & Harlow (1986) used 0.25 for the
air/water system, and 0.5 to 0.8 is given by Jeelani & Hartland (1991b) as a normal
range. A sensitivity analysis has been performed for the  parameter. The direc-
tions of the two drag forces in eq (4.1) are always opposite to the fluid particle
velocity, and the restoring surface force is always negative.

m
td

duz F FDrag FD form, FC+ += =

m
4
3
---πρca0b0

2
ρd

ρc
----- γ+ 
 =

γ γ 0.5=

γ
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Force balances are solved simultaneously for the individual fluid particles. In these
balances steady drag, lubrication form drag and particle deformations are
accounted for. The drag coefficient parameterisation is taken from Clift, Grace &
Weber (1978) and gives the standard steady drag

, (4.3)

where  is dependent on the Reynolds number. This drag is for rigid spheres and

is thus inaccurate for two fluid particles. However, the steady drag term is found
to be the least important force in the system. The restoring surface force is
described by

, (4.4)

where  is a parameter determining the excess pressure in the film, Jeelani & Hart-
land (1991b). By using the Kelvin equation for spheres, Mørk (1991), the excess
pressure is given as

. (4.5)

This can be combined to

, (4.6)

giving  for spherical fluid elements. In this work the same value of  has
been used for ellipsoids. R in the equation for the deformation is taken to be the
radius of the particle at the border of the collision zone and can be expressed as

. (4.7)

In addition comes an expression for the lubrication form drag. This force describes
the extra form drag caused by the flattening of the colliding surface. According to
Middleman (1998) this can be written as

, (4.8)

where z is the collision direction and the total normal stress tensor is given by

FDrag
1
2
---πρcuz

2
CD=

CD

FC βπσr
2

R⁄=

β

P∆ 2σ Rs⁄=

F A P∆ 2πσr
2

Rs⁄= =

β 2= β

R h
2

r
2

+( )
1 2⁄

=

FD form, 2π Tzz z f 2⁄=
r rd

0

r

∫=
NTNU 79  



Fluid particle collisions in turbulent flow
, (4.9)

where P is the pressure in the film.

In earlier work, Middleman (1998), Jeelani & Hartland (1991b) and Lee & Hodg-
son (1968), the viscous normal stresses have been considered negligible compared
to the pressure term. This assumption is found to be questionable due to the short
time scales involved in the collisions and as the resulting models contain incon-
sistencies, Middleman (1998).

A number of other approaches exists, Colin, Kamp & Chesters (1998) neglect the
viscous energy dissipation and find the interaction time from a total energy con-
servation equation. This approach may work for mobile films, but the model will
underpredict the viscous energy dissipation for immobile films occurring in most
practical applications. Klaseboer, Chevallier, Masbernat & Gourdon (1998), as
several others, apply the lubrication equation to study drainage of liquid films
between fluid particles colliding at a prescribed approach velocity. The coupling
between film drainage and movement of the approaching particles is not accounted
for by the model, thus it has limited application for our purpose. Also time scales
for turbulent collisions are far less than a second while current film drainage mod-
els operate with time scales of minutes.

If one considers the extreme case when all the initial kinetic energy of the fluid par-
ticles dissipate during collision, then only the viscous contribution to the total nor-
mal stress tensor remains. Assuming flat interfaces gives , Lee &

Hodgson (1968) and we obtain,

. (4.10)

In many practical situations this relationship will be a good approximation of the
lubrication form drag, provided that the value of the parameter  is

fitted to experimental data. If one considers the other extreme case where
, Middleman (1998), one get a force term due to the excess pressure in the

film

Tzz P 2µc z∂
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Model description
. (4.11)

We combine these two asymptotic expressions for the total lubrication form drag.

In addition to the force equations some geometric relations are needed, see figure
4.1):

The volume of the ellipsoid where b is rotated is

. (4.12)
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FIGURE 4.1 : Model sketch. Velocities and length variables are shown. The
model is developed for oscillating rotational ellipsoids of different sizes.
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Fluid particle collisions in turbulent flow
Subscript 0 indicates the original shape of the particles, that is when the fluid par-
ticles are just touching each other, b is the radius in the collision direction, and a
is the perpendicular radius. Assuming a flat interface between the colliding fluid
particles and integrating, gives

 where . (4.13)

In this formula the particle volume is retained, whereas, is earlier work, Svendsen
& Luo (1996) and Chesters (1991), the flattening volumes have been disregarded.
No exchange of mass between the fluid particles and the surrounding fluid have
been assumed and the particles has been assumed incompressible. This volume
balance implies that when the particles collide, the size of a, b or both has to
increase. Assuming that the  ratio remains the same, the following equation
is valid

. (4.14)

The total distance between the mass centres is found by adding the distances
between the geometric centres and the interfaces, the distances between the mass
centres and the geometric centres due to the deformation, and the film thickness f,

(4.15)

The indexes specify each fluid particle. By dividing the mass integral by the vol-
ume integral we get the distance between the mass centre and the geometric centre
of the rotational ellipsoid. In bubble columns and agitated reactors the turbulence
motion induces fluid particle shape oscillations, Montes, Galan & Cerro (1998).
To account for these oscillations, it is assumed that the collision axis can be mod-
elled as a decaying sine function, Hagesaether, Luo & Svendsen (1996) and Jeelani
& Hartland (1991a),

. (4.16)
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Results and Discussion
The other length variable, a, is found from the volume balance. An equation for the
variation in distance between the centres of mass for the two fluid particles is also
needed and is expressed as

. (4.17)

Finally, a model describing the film drainage is developed in line with Kirkpatrick
& Lockett (1974). A material balance for the film is combined with Bernoulli’s
equation along a streamline. In contrast to earlier work we include a friction term
in the Bernoulli equation due to laminar flow in the film

, (4.18)

where subscript 0 is for the centre of the film and r is for the radius r. The friction
term is written as

. (4.19)

The equations combined gives a second order equation for  that is solved and

combined with the continuity equation for the film, giving the change of film thick-
ness.

The resulting set of equations represents a DAE system that is solved in MATLAB
using ODE15S for the differential equations (force balances) and BROYDEN for
the algebraic equations.

4.3  Results and Discussion

Detailed experimental data on fluid particle collision is scarce and the only useful
ones found are data given by Scheele & Leng (1971). These are used for model
validation. The parameters , ,  and  in eq (4.16) are all found from exper-
imental data and are not fitted. As mentioned earlier only one parameter in the
lubrication form drag, eq (4.10), has been tuned to the experimental data. The
same parameter value has been used in all simulations. 
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Fluid particle collisions in turbulent flow
The experiments can be divided into two parts. Collisions that result in coalescence
and collisions that result in a rebound. All simulations performed on collisions that
result in rebounds, show that the energy dissipation caused by the lubrication form
drag is dominant. Without it almost symmetrical rebound profiles are obtained,
and the time scales of the collisions are much smaller than that found experimen-
tally. When the lubrication form drag is included, the fit to experimental data is
quite good. 

In fig 4.2A is shown the collision radius, r, as a function of time during the collision
process. It is seen that the simulations predict well the modular form of the r-
response caused by the oscillations of the particles, shown in fig 4.2C. Also the
departure process is well predicted. It should be noted that the agreement between
simulations and experimental values is just as good for all the 4 experimental cases
resulting in rebound. The experimental data comprise collision velocities in the

range 2 - 11 cm/s, and oscillation phase angles at contact in the range 150 - 345o.

Maximum elongation along the collision axis is arbitrarily set as 0o. Since the esti-
mation of the collision velocity is uncertain, a 10% increase has been simulated and
shown by the dotted line in fig 4.2A. The change is not dramatic indicating that the
collision velocity is not a critical parameter in the approach process. Note that the
film thickness profile, fig 4.2D, is hardly changed by the increase in velocity. This
may be due to the assumption of immobile films. In fig 4.2B, the distance between
the mass centres is given as function of time and shows how the particles approach
each other and then depart. A sensitivity analysis of the added mass parameter, ,

showed that an increase of  from 0.5 to 0.8 gave rise to an increased collision
radius, r, of the order similar to that found for a 10 percent velocity rise. Lowering

 to 0.25 gave a corresponding reduction of the collision radius.

γ
γ

γ
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Results and Discussion
The energy dissipation during the collision process is supported by Tsao & Koch
(1997) who found that there is a large energy loss during the collision process, 50%
or more of the energy is generally lost. They attributed this to turbulence during
the rebound process due to large pressure gradients. In all experimental rebounds
we have found that the lubrication form drag can explain this loss completely.
Other possible losses are friction in the liquid film during drainage and the kinetic
energy spent in the drained continuous fluid. These contributions, however, have
been found to be negligible, implying that the fluid particle approach process can
be regarded as independent of the drainage processes in the film.

Dimple formation in the film between the fluid particles is reported by Princen
(1963), Hartland & Robinson (1977) and Klaseboer et al. (1998), both in model-
ling studies and in experiments. For comparison with turbulent flow cases, how-
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FIGURE 4.2 : Simulation of run 14 by Scheele & Leng (1971). Dotted curves
for 10% increase in collision velocity. A - interface radius as a function of
time, B - total distance between mass centres as a function of time, C -
oscillating length variable, b, as a function of time. D - film thickness, f, as
a function of time. The oscillation amplitude is 7.93 percent.
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Fluid particle collisions in turbulent flow
ever, the time scale is of crucial importance. In a collision between two fluid
particles in turbulent flow, the time scale may be in the order of 0.1 second. For
most drop-settling experiments and modelling studies the time scales have been of
the order minutes. This may also be the reason why the whole lubrication form drag
has not, to our knowledge been introduced before. Ivanov (1988) reports that in
order for a dimple to occur, then . The initial film thickness used in
our simulations is much lower indication that it is reasonable to assume a flat col-
lision interface.

Fig 4.3 shows an example of an approach process resulting in coalescence. The
agreement between simulations and experimental data is fair. Three of the four sets
of experimental data show this fair agreement. The last one is a special case where
coalescence takes place after several oscillation periods. The thickness of the film
between the particles is governed by the film drainage model given by eq (4.18)
and (4.19) where a friction factor, , has been introduced as an adjustable param-

eter. Another parameter in the film model is the film thickness at initial contact.

f F 2πσ( )⁄≥

n0
86 NTNU



Results and Discussion
From figs 4.2D and 4.3D, it is seen that the film thickness very rapidly decreases
to values around 10  and then remains almost constant. This is the case for all

simulations and also for any choice of initial film thickness. Changing  has a sig-

nificant impact on the film thickness, as would be expected. However, the profiles
are similar to those shown in figs 4.2D and 4.3D and the differences between the
various simulations remain the same. The simulations show that the film thickness,
after it has levelled off, is consistently 30-50% higher in the rebound cases com-
pared to the coalescence cases. It is; however, to early to speculate whether this can
be used as a criterion for coalescence. Apart from this no clear difference between
the coalescence and rebound cases has been found. Scheele & Leng (1971) claimed
that there was a correlation between the initial oscillation phase angle and coa-
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Fluid particle collisions in turbulent flow
lescence. A closer analysis shows that this finding is not generally valid for all
experiments.

As mentioned earlier, in the literature, normally the viscous term in the total lubri-
cation form drag; is disregarded, whereas the pressure term is believed to domi-
nate. This was tested using the simulation model and a typical result is shown in
fig 4.4. The graph shows clearly that the viscous term dominates the process. This
was the case for all simulations. For the coalescence process however we speculate
that the pressure contribution should have the important effect of increasing the
film drainage compared to the rebound process situations.
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FIGURE 4.4 : Simulation of run 14 by Scheele & Leng (1971). The two parts
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Conclusion
4.4  Conclusion

A model for the approach process between two oscillating particles has been for-
mulated. The model includes a viscous lubrication form drag in the film that has
been disregarded in earlier literature. It has been shown that this term dominates
the approach process together with the surface restoration force.

Simulations have been compared with experimental data for oscillating particles
and good agreement was obtained.

It is found that the particle approach process can be regarded as independent of the
film drainage processes. However, the opposite is not true.

More experimental data is needed to further verify and improve the model. The
immobile film assumption used may be incorrect when the film is drained to below
some thickness.

Notation

area of interface, 

ellipsoid radius, non collision axis, 

ellipsoid radius, collision axis, 

drag coefficient, -

force, 

restoring surface force, 

form drag (due to flattening of the collision surface), 

viscous form drag (due to viscous dissipation in the film), 

pressure form drag (due to excess pressure in the film), 

drag force, 

friction in the film draining process, 

thickness of liquid film, 

A m2

a m

b m

CD

F N

FC N

FD form, N

FD form,
Viscous

N

FD form,
Pressure

N

FDrag N

Ffriction N

f m
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Fluid particle collisions in turbulent flow
distance from geometric centre to interface, see fig 4.1, 

mass of fluid particle, 

parameter in friction force term, -

pressure, 

pressure in the center of the film, 

pressure at the outer rim of the film, 

radius for fluid particle, 

radius of collision interface, 

shift fig 4.1, distance between mass and geometric centres, 

total normal stress tensor, 

time, 

radial velocity of fluid particle, 

axial velocity of fluid particle, 

volume, 

distance between mass centres, 

amplitude of drop oscillation, -

parameter for excess pressure in film, -

added mass coefficient, -

damping factor for oscillations, -

phase angle at first contact, degrees

viscosity, 

density, 

surface tension, 

h m

m kg

n0

P Pa

P0 Pa

Pr Pa

R m

r m

m

Tzz Pa

t s

ur m s⁄

uz m s⁄

V m3

z m

α

β

γ

δ

θ

µ Pa s⋅

ρ kg m3⁄

σ N m⁄
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Conclusion
frequency, 

Subscripts:

continuous phase

dispersed phase

spherical shape

initial state / start of integration

fluid particle 
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CHAPTER 5 Fluid particle 
break-up
This chapter is a based on the paper ‘A model for turbulent binary breakup of dis-
persed fluid particles’ by Hagesaether, Jakobsen & Svendsen, accepted for pupli-
cation in Chem. Eng. Sci. A model for fluid particle break-up is developed.

5.1  Introduction

Luo & Svendsen (1996) developed a model for fluid particle break-up based on
principles of molecular collision, isotropic turbulence and probability. Unlike
earlier work this bubble breakage rate model contained no adjustable parameters
and all constants were calculated from isotropic theory. The daughter size distri-
bution was derived directly from the breakage rate model.

The current model is a further development of an existing model by Luo & Svend-
sen (1996), which has been expanded and refined, and where an inherent weakness
regarding the break-up rate for small particles and small daughter particle frag-
ments is removed. A new criterion regarding the kinetic energy density of the col-
liding turbulent eddy causing break-up has been introduced. This new criterion is
a novel concept describing the break-up process. The details are thoroughly dis-
cussed together with possible further modifications. Based on a new view of the
Norwegian University of  Science and Technology, NTNU 93



Fluid particle break-up
breakage process a new model has been developed. This new model is consistent
in the sense that when the model is used in a population balance model, a steady
state distribution between the population classes should be reached, and that the
overall dispersed fluid particle size distribution should be independent of the
number and distribution of the size classes. This consistent model can be used both
in CFD models and for simpler reactor models.

5.2  Review and discussion of existing break-up 
model

There are at least three possible breakage mechanisms for drops or bubbles in tur-
bulent flow. These are turbulent (deformation) breakage, viscous shear (tearing)
breakage and elongation flow breakage in accelerating flow. The model by Luo
& Svendsen (1996) is concerned only with the turbulent breakage mechanism
which is thought to be the prevailing one in turbulent flow as encountered in mul-
tiphase reactors. Viscous shear breakage on the other hand, is a laminar phenom-
ena, and the elongation flow breakage occurs where the continuous flow is
accelerated like in the vicinity of impellers, Alopaeus, Koskinen & Keskinen
(1999). It is further assumed that the turbulent breakage is binary and the phe-
nomenon is divided into the collision between an eddy and a fluid particle, and
the break-up of the particle due to the colliding eddy. The break-up rate can then
be written as the product of the collision frequency, , and a breakage proba-

bility, ,

. (5.1)

The following should be noted:

• This equation is an approximation since collisions resulting in break-up should
be removed from the class after each event, keeping only particles from colli-
sions that do not result in break-up available for further collisions. Thus, for
population classes with decreasing number of particles,  will be larger than

the real event frequency and vice versa. The same consideration also applies for
coalescence.

• For the limit of one event the equation is correct.

ωB

PB

ΩB ωBPB=

ΩB
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Review and discussion of existing break-up model
• For the steady state case the equation is also correct since any particle removed
from the class will be replaced with birth occurrences (both break-up and coa-
lescence) from other classes, thus keeping the total amount in the class constant.

Further, equation (5.1) is based on the assumption that the collision frequency and
the breakage probability are independent variables. This is a first order model
approximation which is adequate when the integration time step is small as higher
order terms become negligible. For further reading about stocastic processes,
Gikhman & Skorokhod (1980) is recommended.

• Thus in transient cases equation (5.1) may be inaccurate. The error increases
with higher relative number of collisions (collisions/particles) and with an
increasing event probability as the accuracy reflected by birth and death terms
obtained using this model are dependent on the step size choosen for the time
integration.

• The error may be decreased by reducing the time step of integration.

The relative change in each class for each time step should thus be monitored, and
if the change is considered high (say higher than 25%), the time step should be
decreased in order to reduce the error.

5.2.1  The collision frequency

Laidler & Meiser (1982) describes the collision frequency between gas mole-
cules. We can obtain a similar expression for the collision frequency between
eddies of size between  and  and bubbles (or droplets) of size ,

. (5.2)

Here  is the number of eddies of size class  per unit reactor volume, Luo

& Svendsen (1996), and  is the average relative velocity between the eddy

and the fluid particle. Luo and Svendsen simplified the latter to  which is only

the turbulent velocity of the eddy. This simplification may not be justified in all
cases and should be avoided as a first approach. Equation (5.2) is only a good
approximation when the total change in  is not too large. Whereas in situations

where this change is significant the time interval should be reduced. This chapter
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Fluid particle break-up
deals primarily with the break-up probability and the distribution of daughter sizes
from this probability. Thus, the collision frequency is not included in the results
shown later in this chapter. Prince & Blanch (1990) used an identical formulation
for the collision frequency, though they incorrectly used the sum of radiuses rather
than the sum of diameters in the squared part of the equation.

The eddy number density is calculated in accordance with the formula given by
Luo & Svendsen (1996). They applied a spectral representation of the turbulent
energy, , within a wave number interval  (given by the right hand side of
equation (5.3)), combined with a mixed spectral/Lagrangian representation of
eddies having the corresponding turbulent kinetic energy in the wave length/eddy

size interval between  and , in order to derive an expression for 

(which must be integrated in order to find ),

, (5.3)

 giving  (  cancels out).

H e r e  ,  ,  ,  ,

 and .

Differentiating  gives , and inserting this gives

. (5.4)

Rearranging gives

. (5.5)
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. (5.6)

Thus by using the energy spectrum and assuming isotropic turbulence the eddy
density of the interval  and  is described as

 where . (5.7)

A plot of the eddy density function, see figure 5.1, illustrates how the number of
eddies varies as a function of the eddy size, .
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FIGURE 5.1: The number of eddies, see equation (5.7), is plotted as a
function of eddy size . The left hand figure is log-y and the right hand
figure is log-log. A ‘random’ interval is shown with . The lower
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Fluid particle break-up
As seen from equation (5.7) and from figure 5.1, the number of eddies approaches
infinity as the eddy size goes to zero. It must further be noted that isotropic tur-
bulence is assumed, thus limiting the size range. According to equation 1.5.11 in
Tennekes & Lumley (1972), the Kolmogorov micro length scale, is given as

. (5.8)

By using typical values for the air-water system we get

,

where ,  and .  A

typical value for  in a bubble column is used, .

5.2.2  The collision outcome

For a collision between an eddy and a fluid particle the outcome can either be
break-up or no break-up. For the break-up cases the two daughter particles may
have a variety of sizes. This section deals with the criterion for break-up and its
relationship to the daughter sizes resulting from the collision.

The first assumption introduced is that the instability created by the collision
between an eddy and a fluid particle has a duration much shorter than the time
interval between collisions. Thus, the particle will either break up due to the col-
lision or assume normal shape again, i.e. dissipate the previous collision energy,
before a new collision takes place. So, in order to model the break-up of fluid par-
ticles we only have to model the collision between a single eddy and a fluid par-
ticle. Thus, the cases where the dispersed particles are hit by more than one eddy
before the original shape is resumed are modelled as multiple separate instances.
If the assumption is correct there should be a negligible fraction of such cases.

Risso & Fabre (1998) on the other hand found experimentally that some break-ups
are due to series of eddy collisions where the accumulated energy finally result in
break-up. They also found other break-ups which were clearly the result of a single
eddy. So, only the fundamental case where all the energy from previous collisions
are dissipated is modelled and simulated. A possible modification for introducing
partial dissipation is discussed later.
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Review and discussion of existing break-up model
The outcome of the collision is dependent upon the turbulent kinetic energy of the
colliding eddy. The turbulent kinetic energy probability distribution was by Luo
& Svendsen (1996) assumed to be

 where . (5.9)

The new model uses

 where , (5.10)

since this gives

. (5.11)

Also equation 15 in Angelidou, Psimopoulos & Jameson (1979), as used by Luo
& Svendsen (1996), can be rearranged to equation (5.10).

The mean turbulent kinetic energy of an eddy with size , , for the inertial

subrange was by Luo & Svendsen (1996) given as

, (5.12)

where  is a known constant. It is seen that the shape of the turbulent

kinetic energy probability distribution, equation (5.10), is independent of , i.e.

the mean energy is dependent upon , but the distribution around this mean is not.

It must be noted that  is based on a spectral formulation, but it is applied in

a Lagrangian interpretation. This leads to conceptual interpretation problems. As

an eddy contains both translational and rotational velocity components,  in

equation (5.12) is then a vector, and the term may be interpreted as the turbulent

kinetic energy of an eddy. When it comes to equation (5.2),  is related to both

the eddy and the particle velocities. The velocity of a fluid particle is defined by
larger eddies in the system since these eddies are (mainly) responsible for the con-
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Fluid particle break-up
vective movement of the particles. As the eddies are of all length scales we have

used , the velocity of eddies of the same size as the particles as an approximation

of the velocity of the particles, Luo & Svendsen (1996).

A plot of the turbulent kinetic energy distribution around the mean kinetic energy
is shown below in figure 5.2. The plot is normalized with the mean value.

The increase in surface energy due to a break-up can be written as, Luo & Svendsen
(1996),

,

, (5.13)
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FIGURE 5.2: The turbulent kinetic energy distribution, equation (5.9), of a
random eddy size is plotted around the mean turbulent kinetic energy of
that size (mean value set to 1). The right hand plot is log-log.
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Review and discussion of existing break-up model
where  in  is the parent particle and  is the smallest daughter par-

ticle. In equation (5.13) it is assumed that the increase in surface energy is due to
an increase in the surface area during break-up, see figure 5.3. It is thus assumed
that the surface tension itself is not changed when the surface area changes. As a
simplification any change in the internal pressure of the bubbles is disregarded.
Assuming 1 bar bulk pressure this amounts to an error of about +0.04% in the
daughter particles volume for an equal sized break-up of a bubble of radius 1mm.
This error increases with decreasing parent bubble size (0.4% for a 0.1mm bubble)
and is largest for equal sized breakage. Further, since volume is the radius cubed
and surface area is the radius squared, the relative error for the surface area will be
less than for the volume.

By taking into account the volume balance and using the notation of Luo & Svend-
sen (1996) we get

, (5.14)

where  is the volume fraction of the first bubble, in our case the smallest one.

The surface area change coefficient is written as

di ei di dk,( ) dk

πdi
2 πdk

2 πdj
2

FIGURE 5.3: Break-up shown together with the surface area terms for
parent and each daughter particle. Note that the smallest daughter particle
is defined with subscript k.
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Fluid particle break-up
, (5.15)

and signifies the fractional increase of the surface due to a break-up into two
daughter particles. Thus, the change in surface energy may be written as,

. (5.16)

By comparing equation (5.13) and equation (5.16) we see that

. (5.17)

When using the volume balance  we get

. (5.18)

By using equation (5.14) it can be seen that the term in brackets in equation (5.18)
above equals the expression for  in equation (5.15).

The criterion used by Luo & Svendsen (1996) for breakage of a particle was that
when there is enough turbulent kinetic energy in the eddy for the surface increase
of the fluid particle breakage is the result, i.e. the criterion was

. (5.19)

This means that when an eddy has more turbulent kinetic energy than the increase
in energy needed for a particular break-up, the fluid particle will break up into one
of the possible fragmentations.

In order to examine equation (5.19) closer we start by plotting the function
, see figure 5.4. The function is only plotted to about , which cor-

responds to half the volume of the parent particle. For each particle below or equal
to half the volume of the parent particle there will be a corresponding particle that
accounts for the rest of the parent particle volume. This daughter particle is placed
above or at the half volume position, thus the plot is symmetric around half the vol-
ume when volume is used as the x-axis. In figure 5.4 we see that if the turbulent
kinetic energy, , is high enough (upper horizontal line in figure 5.4) the par-

ticle can break up into all possible daughter sizes since the curved line representing
the increase in surface energy is below the horizontal line which represents this tur-
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Review and discussion of existing break-up model
bulent kinetic energy. This gives  for all possible

values of .

Figure 5.5 below shows an example for a case where 

 limits the range of possible break-up fractions.
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FIGURE 5.4: The left hand figure shows the surface energy, the horizontal
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normalized function (described later in section 5.3.1). The x-axis in both
figures is the relative diameter size (daughter diameter divided by parent
diameter).
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Fluid particle break-up
From figure 5.4 and figure 5.5 it is seen that there will always be a daughter size
distribution that requires less energy than what is available in the incoming eddy
since the surface energy goes to zero when the smallest daughter particle diameter
approaches zero. This means that according to the theory by Luo & Svendsen
(1996), all particles will break up when hit by an eddy. With less energy in the eddy
we get a more uneven split of the original particle. This is because it is not possible
to break up the particles into the most even distributions, see figure 5.5 where sizes
larger than the range encircled are not allowed. Taking into account the eddy dis-
tribution with an ‘infinite’ number of small eddies shown in figure 5.1, combined
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FIGURE 5.5: The left hand figure shows the surface energy with a
horizontal line at a randomly chosen value for . The daughter sizes
that can be created by the value are encircled. The right hand figure shows
the normalized function for the encircled part of the left hand figure
(described later by eq (5.20) in section 5.3.2). The x-axis in both figures is
the relative daughter diameter size (daughter diameter divided by parent
diameter).
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The modified model
with figures 5.4 and 5.5 showing that all collisions result in break-up, it can be seen
that the model results in an unreasonable high amount in break-up. This is clearly
not correct. In practical terms a too large number of break-ups by using this theory
would be expected and also the size and number of particle classes would define
the break-up rate and resulting size distribution. If smaller classes are added to a
case, no matter how small these classes are, particles will occur in these classes and
the total break-up rate will increase. Thus there is an inherent inconsistency. In
order to remedy this problem a new break-up criterion, the energy density crite-
rion, has been added to the surface energy criterion. This latter criterion has also
been modified in the sense that a probability distribution for the daughter fragment
classes has been added.

5.3  The modified model

The modified model must both limit break-up downward in size for daughter par-
ticles and limit the break-up frequency for the smallest particles. A new criterion
is introduced, resulting in such limitations. In order to find the daughter size dis-
tribution the existing surface energy criterion is extended. A normalized function
has been proposed which together with a similar function for the new criterion
gives the daughter size distribution.

5.3.1  The surface energy probability

Figure 5.6 below depicts the two extreme cases of energy utilization when an
eddy collides with a fluid particle. The eddy is in this figure shown as concentric
circles representing the shear of the eddy towards the surrounding continuous
fluid. The turbulence energy can be described by the energy spectrum concept
too, thus an eddy can be interpreted in more ways. See for example Alvarez,
Alvarez & Hernandez (1994), figure 2, for an alternative interpretation. The max-
imum energy utilization takes place when the breakage results in two equal-sized
particles. This absorbs the most energy due to the highest increase in surface
energy, see figure 5.4. Further, this breakage is an extreme case since we assume
that exactly all the turbulent kinetic energy of the colliding eddy is used. As
shown in figure 5.6, no energy is left for motion of the resulting particles or for
a remaining portion of the eddy (which means the eddy dies out). Naturally, this
case is not very likely, but we do need a probability distribution for this and other
cases which will be addressed below. Note further that an eddy may of course also
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Fluid particle break-up
have more energy available than what is needed for an equal sized break-up. Such
a case is not shown in figure 5.6. The bottom case is the other extreme. It shows
a break-up where a very small fluid particle is generated together with a particle
of almost the original volume. In addition, the rest of the turbulent kinetic energy
of the eddy may be transferred to kinetic motion of the daughter particles, oscil-
lations of the daughter particles (not shown in figure 5.6), and/or it may remain
with the eddy. The eddy is in this case depicted as the original eddy, but with a
smaller ‘kinetic’ vector. What happens to this ‘drained’ eddy after the collision is
not important for the particle break-up framework. Further, it is assumed that
fluid particles dissipate all collision energy between collisions with an eddy, any
transfer of energy to the daughter particles will not be of consequence in future
collisions. Note that this is a simplification, see Risso & Fabre (1998).

We assume that the probability function for break-up due to turbulent kinetic
energy in an eddy may be written as a normalized function

, (5.20)

where  is the minimum of the crossover value ( ), if it

exists (see figure 5.5), and if not (see figure 5.4), then the diameter of half the total

FIGURE 5.6: An eddy colliding with a fluid particle may result in a collision
that takes up all the turbulent kinetic energy of the eddy (top right), or
surplus energy may leave with the daughter particles and the used eddy
(bottom right). The eddy is here drawn by concentric circles which
represent the rotational part of the eddy.
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The modified model
volume (approximately ). By normalized it is meant that integrating over

all possible sizes gives unity. Equation (5.20) is shown in figure 5.4 and in figure
5.5, in the right hand plots, for two ‘random’ cases. As can be seen from equation
(5.20), a break-up that utilizes all the available energy, has a zero probability. The
probability increases with the amount of energy not used in the break-up process.
This in itself is enough to create a break-up source term in a population balance,
but the consistency problem is still not addressed.

5.3.2  The energy density probability

From a physical point of view it makes sense that a particle is split if enough
energy is applied. Since this alone is not a sufficient criterion, we need one which
takes into account that there is a physical lower limit to the particle size being bro-
ken up. As an introduction, Kolmogorov (1949), Hinze (1955) and Bourne &
Baldyga (1994) report that the maximum stable fluid particle size can be assumed
to be in order of

. (5.21)

Equation (5.21) above is found by balancing the interfacial tension ( )

against the dispersive stress due to inertial, fluctuating motion in the continuous

phase, which is given by . This balance is often expressed as the Weber number

. (5.22)

Two assumptions are used, Bourne & Baldyga (1994):

• The viscosity of the dispersed phase is so small that particle deformation is inef-
fective in opposing dispersion (typically in bubbles).

• The particle size falls in the inertial subrange so that the dispersive stress is iner-
tial and not viscous.

The mean square velocity difference over the maximum particle diameter ( )

is given as, Batchelor (1951)

. (5.23)
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Fluid particle break-up
Equation (5.21) is thus found by a force balance for the particle. Our idea may be
seen as a similarity to the force balance approach, but based on an energy approach.
The first criterion involved the total energy available in the eddy and the energy
needed for break-up. The second criterion involves the energy density of the col-
liding eddy and the energy density of the resulting particle fragments. An analogy
regarding temperature can be sketched: there is more energy in 100 kg of water at
60 degrees Celsius than in 1 kg of water at 80 degrees, but the water at 60 degrees
may not be used to increase the temperature of any amount of water with an initial
temperature of 70 degrees as opposed to the 1 kg at 80 degrees.

Thus we arrive at a second criterion:

• The energy density of an eddy must be higher or equal to the energy density of
the daughter particles resulting from the break-up.

We thus assume that the energy density in the collision framework can not be
increased. The outcome of the collision between an eddy and a fluid particle can
only be daughter fragments with the same or lower energy density than the eddy.

The energy density of a particle is here defined as the surface energy divided by
the volume of the particle, i.e. the surface energy density, , for the smallest

particle

 . (5.24)

Similarly we find an analogue eddy energy density, , to be

 . (5.25)

Here  is the turbulent kinetic energy and it must be determined by using the

probability function found in equation (5.10). It is seen from equation (5.24) that
the smallest daughter particle will have the highest surface energy density. Since
the surface energy density is inversely proportional to the diameter of the particle,
some lower limit for the size of the daughter particle will exist for each possible
break-up case. This lower limit can be found by equating the surface energy density
of the smallest daughter particle with the eddy energy density of the colliding eddy,
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The modified model
. (5.26)

•  is the lower possible limit. As seen in the results, figures 5.13 to 5.16,

we get a distribution of daughter sizes. The average size of the smaller daughter
particles may be much larger than any  found. Note that  is a func-

tion of both the eddy size, , and the turbulent kinetic energy of the eddy,

.

•  is defined as the largest stable particle size which means that we should

get less break-up of particles smaller than . Note though that  is an

approximate value, since  varies over an order of magnitude, depending on

the flow pattern and structure, Parthasarathy, Jameson & Ahmed (1991).

Thus we can not assume that we will get negligible break-up of particles less than
, but we should get markedly less break-up of particles smaller than the mag-

nitude set by .

An important point is the basis used in equation (5.24) and equation (5.25) for cal-

culating  and . We have used a volume basis , whereas

another possibility would be to use a mass basis, thus getting .

It is easily seen that  will be much higher for bubbles than for droplets when

using a mass basis, to be exact a factor  higher. Using a mass basis will

therefore make it unreasonably much harder to break up bubbles. This large dif-
ference will be reduced if one introduced virtual mass when using mass basis.

Looking at the physical system, it may be argued that the energy (or force) supplied
to a bubble will to a larger extent move the bubble than a similar energy (or force)
would move a droplet. This should make it less likely that the bubble will break
up. The argument is flawed since in order to transpose any fluid particle you need
to move the continuous fluid occupying its travelling direction, which is the same
in both cases. Further, a collision in a turbulent environment is assumed to be on
a short time scale, which means that the fluid particle will not be able to move away
from the eddy, i.e. the energy will not be used to move the particles in any of the
cases above.
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Fluid particle break-up
A visual analogy will be balloons filled with water or air kept under water. If you
hit such balloons quickly, none of them will be able to move much before the col-
lision is over. They will just change shape, or burst, during the collision itself.

Another and probably more important factor is the compressibility of the gas
phase. Clearly, a bubble will be better able to withstand break-up due to absorption
of eddy energy into potential energy as a compressed state. Thus more of the col-
liding eddy energy will be available for breaking up the droplet than for breaking
up a dimensionally equal bubble. A compressibility factor is not included, which
means that the break-up rates we get for bubbles will probably be somewhat high.
We have currently not tried to estimate this inherent error, so the simulated values
should be looked upon as maximum values. For the droplets on the other hand, the
model is more accurate.

Figure 5.7 below shows the particle energy density as a function of the smallest
daughter particle size. An arbitrary eddy energy density is shown as the horizontal
line in the plot. The left vertical dash-dotted line shows the corresponding mini-
mum daughter particle size, which is found by equating  to , equa-

tion (5.26). Since the smallest daughter particle has the highest surface energy
density only the smallest particle distribution is plotted in the figure, thus the max-
imum value of the diameter is approximately  (half the volume of the parent

particle), this value is also dash-dotted.
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The modified model
The eddy energy density probability function is assumed to be given by a function
similar to the surface energy probability, equation (5.20), and is for the smallest
daughter particle

, (5.27)
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FIGURE 5.7: The left hand figure shows , equation (5.24), as a

function of  (daughter diameter relative to parent diameter). The

horizontal line is the arbitrarily choosen  value, and the left dash-

dotted line is the lower critical value for the breakage, . The right
hand figure shows the normalized probability function as described by
equation (5.27).
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Fluid particle break-up
where  is normally the maximum possible smaller daughter particle size

. When both criteria are considered together though  may be

larger than the possible break-up size. In these cases the maximum possible break-
up size should be used, see equation (5.20) and figure 5.5. A zero probability is
assigned to the energy density probability function, in the case where the require-
ments exactly match. The right hand side of figure 5.7 shows an example of the
probability function.

As can be seen from figure 5.7 a lower limit for the smallest daughter particle size
is established. If this limit is larger than approximately , the parent particle

itself can not break up in the current eddy collision. Thus the new model now sat-
isfies both requirements stated initially in section 5.3, which were that there is a
minimum size to the smaller daughter particle and that the break-up frequency is
limited for small parent particles. This means the breakage model is consistent
when equation (5.27) is included in the overall break-up probability, , in equa-

tion (5.1).

5.4  Total break-up probability

By combining the surface energy criterion with the energy density criterion, a
total probability distribution for the breakage of the parent particle can be estab-
lished. In this function the probability functions for both separate criteria are
combined, which implicitly assumes that the two probability functions are uncor-
related (are independent of each other),

. (5.28)

According to the theory presented in the previous sections there are two criteria
limiting the number of break-ups, those and a third criterion normally used Luo &
Svendsen (1996), are listed below:

• , this is a reformulation of the energy density criterion, for a par-

ticle of class i breaking up. The energy density of the eddy must be higher than
that of the smallest daughter particle which in turn is at max of same size as the
class below.  is the minimum size of the smallest daughter particle, equa-

tion (5.26), and the size of the class below is .
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Total break-up probability
• , this is the surface energy criterion. The increase in sur-

face area due to break-up can not consume more energy than what is available
in the eddy.

• The length scale of the eddy must be comparable to the length scale of the fluid
particle. By this we assume that the eddy may at most be of the same order of
magnitude as the fluid particle.

According to Luo & Svendsen (1996) and Lee, Erickson & Glasgow (1987) only
eddies which have a length scale comparable to the bubble (or droplet) diameter
can cause break-up. This criterion is here removed. The assumption was that
eddies of a larger scale will just give the fluid particle a translational velocity
whereas eddies of similar scale may break up fluid particles. This criterion has
been removed in this work. We consider eddies as sub volumes of the continuous
fluid that have both rotational and translational motion. When a fluid particle is hit
by an eddy it is subjected to a velocity vector gradient (both translational and rota-
tional velocity), see figure 5.8.

ei di d, i max,( ) e λ j( )≤
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Fluid particle break-up
As already mentioned, in order for the particle to break up only two properties of
the colliding eddy are considered important; the density of the turbulent kinetic
energy, , and the turbulent kinetic energy itself, . The density may be

visualized as a velocity gradient in and between the eddy and the surrounding bulk
phase. Thus a particle will be subjected to this gradient when colliding with an
eddy. The length scale of the eddy, will then only affect the break-up indirectly by
influencing both the turbulent kinetic energy and the energy density.

To find the number of break-ups, the break-up probability, , must be determined

by using both the surface energy and the energy density criteria. Several different
situations may occur, as illustrated in figures 5.9 to 5.12. We define a critical energy
density (CED), which is the energy density required to break a particle in two equal
sized daughter particles. The critical energy level for the energy density criterion
may be found by rearranging eq (5.26) to

FIGURE 5.8: The upper figure shows an eddy having both rotational and
translational velocity about to hit a fluid particle. The lower left figure shows
a fluid particle immersed in an eddy, thus experiencing normal and
tangential stresses on its surface which may result in break-up. The lower
right figure is another possible view of what may happen when they collide.
Here we see that the fluid particle is elongated due to the collision with an
eddy, which may result in break-up.

wd λ j( ) e λ j( )

PB
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Total break-up probability
, (5.29)

where  is the highest possible value for  which is for equal sized

break-up. This is the lowest energy level that a specific eddy can have if it is to
break a given particle. In figure 5.9 the surface energy criterion is given as the solid
curve from 0 to 1. The maximum value for equal sized break-up is shown. Now,
the critical energy density may be illustrated as the horizontal line given. The ordi-
nate axis is strictly energy, but for a given eddy, with given size, there is a one to
one relationship between energy level and energy density. In figure 5.9 the CED
lies above the whole surface energy level curve such that if an eddy has an energy
level at or above CED, it will also satisfy the surface energy criterion. Thus a break-
age will occur if , and only the energy density criterion affects

the break-up probability.

e λ j( )CED σπλj
3 dk min c,,⁄=

dk min c,, dk min,

e λ j( ) e λ j( )CED≥

FIGURE 5.9: An example where the maximum value for the surface energy
is below the minimum value for the critical energy density (CED) resulting
in break-up for all energies that satisfy the energy density criterion.
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Fluid particle break-up
Figure 5.10 is an example where the CED value is below  which is the

increase in surface energy needed in order to get two equal sized particles. At an
energy level corresponding to the CED the surface energy criterion is not fulfilled.
There is not enough turbulent kinetic energy in the eddy for the particle to break
up. An increase in the eddy energy, to e.g. , is in the figure the same as an

upward vertical shift from the horizontal line marked as CED. This increase results
in a lower minimum energy density diameter, , see eq (5.26), as indicated

by a dashed vertical line in the figure. At this energy level the surface energy cri-
terion can at most give a smaller daughter fragment of relative size about 0.33. This
position is encircled. However, the energy density criterion demands that the
daughter particle must be above , and since , the two criteria

can not be fulfilled simultaneously, giving no break-up of the fluid particle. The
range of daughter particle sizes that satisfies the surface energy criterion is shown
in the figure as A, and that satisfying the energy density criterion is shown as B.

ei di di 1–,( )

e λ j( )

dk min,

dk min, dk min, 0.33di>
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Total break-up probability
As the energy level  increases, the range of fulfilled surface energy criterion,

A, increases. At the same time  decreases, i.e. range B increases. Figure

(5.11) shows a situation where both criteria are satisfied. At some point the 

line and the  dashed line will intersect on the curved line for the increase in

surface energy. This point may be called the critical break-up point, CBP. This is
the minimum energy level for break-up to take place, and it is somewhere between
the CED and the maximum surface energy value. Mathematically this point may
be found in the following way

, (5.30)

FIGURE 5.10: An example where the turbulent kinetic energy level is above
the critical value for the energy density, giving a lower  value (dashed
line). At the current energy level the surface energy criterion gives at most
a particle of size shown in circle. Both criteria are not both satisfied at the
current  level for any daughter particle sizes, giving no break-up.
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Fluid particle break-up
where  is found from eq (5.13) by replacing  with , and

solving numerically for . Thus at the current energy level  we get

break-up, but only into one specific daughter size fragmentation as that is the only
fragmentation that satisfy both the energy density criterion and the surface energy
criterion. A smaller daughter size is not allowed by the energy density criterion and
a larger daughter size is not allowed by the surface energy criterion.

A further increase in the eddy energy level, , will result in a wider range of

possible break-up sizes. Figure 5.12 shows that an increase in the eddy energy level
results in a lower  value and a higher possible value for the surface energy

criterion. Thus an overlap between range A and B exists were both criteria are sat-
isfied. The eddy with this specific energy level can result in a specific range of
daughter particles, and this range, as seen, does not include equal sized break-up.

ei di dk min,,( ) dk dk min,

dk min, e λ j( )CBP

FIGURE 5.11: The critical break-up point (CBP) is found graphically at the
intersection between the minimum break-up size, , and the increase
in surface energy.
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Total break-up probability
Increasing the eddy energy level further will eventually result in the situation
shown in figure 5.9 where only the energy density criterion is limiting.

We have now developed a method for deducing  and  for each col-

lision. By using eq (5.10) we find , which is the critical

point for the turbulent kinetic energy probability distribution since  results

in break-up. By integrating eq (5.10) from  to  we then find the fraction of col-

lisions resulting in break-up,

. (5.31)

FIGURE 5.12: An eddy energy level above the CBP results in a range of
possible break-up sizes. Further increase in the eddy energy level will
eventually lead to only the energy density criterion being limiting.
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Fluid particle break-up
Finally, by using equation (5.1) the number of break-ups is found.

5.5  Daughter size distribution

In this section the daughter size distribution for the parent particle  will be

developed. So far we have not defined  with indexes. We use 

which represent the probability of a particle of size , colliding with eddies of

size , with energy level , breaking up into the smallest daughter fraction .

In order to find the probability of one specific daughter class with given parent par-
ticle size and eddy size we sum over the energy levels,

, (5.32)

where  is the fraction of eddies of size  having energy level . The sum

of these fractions is equal to

. (5.33)

This is the break-up fraction found in the previous section. In addition the prob-
ability distribution for the daughter classes has been normalized, giving

. (5.34)

In the transport equation the population balance source term  is needed.

We find this by summing up the eddy contributions,

. (5.35)
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Numerical implementations
The above theory is based on the assumption that a large enough number of break-
up collisions occur justifying the usage of an averaging method. If the number of
break-up collisions is low (without quantifying ‘low’) another method may be
used. This method is described briefly below in a step by step manner.

For each break-up collision do the following:

• Use a Monte Carlo method, Das (1996) and Ramkrishna (1981), to pick the
number of collisions resulting in break-up.

• Use a Monte Carlo method to pick an energy level for the eddy so that
 by using the distribution function, equation (5.10), for the energy

distribution. Note that it may be faster to redefine the distribution function to
encompass values above  only.

• Find the daughter size distribution for the  value picked.

• Use a Monte Carlo method again to pick which smallest particle daughter size
should be used from the daughter size distribution.

• Generate source terms in the population balance from the randomly choosen
daughter sizes.

In this work, however, the averaging method has been used.

5.6  Numerical implementations

This section show how some aspects of the theory are implemented numerically.

5.6.1  Eddy energy

First assume that the energy distribution of the eddies is divided into 50 equal
sized classes as a function of , and that we use the same distribution for all eddy
cases. This gives 50 classes between 0 and 50 (the upper limit should be high
enough for all cases). Further assume that , which gives the following

relative error for the total integration of eddies resulting in break-up

e λ( ) e λ( )c>

e λ( )c

e λ( )

χ

χc 6.75=
NTNU 121  



Fluid particle break-up
. (5.36)

This implies that the answer is 2.1 times too high. Even with 1000 classes the first
class may introduce an error in the order of 5%. This shows that the population
class distribution for the energy levels of the eddies must be adapted for each case
since a general distribution of energy classes introduces an unacceptable high
numerical error. It was found from equation (5.36) that the first class is the most
critical one and that an even distribution as a function of  is a poor choice since
this gave negligible amounts of eddies in all, but the first very few classes (the
smallest -value classes).

Both these weaknesses can be removed by dividing the energy levels of eddies into
equal sized population classes with regard to the number of eddies, starting at .

By dividing the interval  to  into  classes, the accuracy of the number

of eddies included is then

, (5.37)

. (5.38)

If 99.9% of the eddies causing break-up is included, this gives , result-

ing in , as the bandwidth of the energy classes.

As all classes are of the same size, i.e. same  size, they may be written as

, (5.39)
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Numerical implementations
where

. (5.40)

Combining equation (5.39) for the first interval (thus ) and equation

(5.40) gives

. (5.41)

Solving for  gives

. (5.42)

The next interval length is found by setting  and , which

gives

. (5.43)

By similar steps the general equation for the length of each class is found to be

, (5.44)

where . Note that the initial value  does not affect the partitioning of

the eddy energy classes. This is of importance with regard to computational time.
We are implementing a population balance scheme which is fitted to each partic-
ular case even though the partitioning, , only has to be calculated once.
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Fluid particle break-up
5.6.2  Eddy classes

There is a rapidly decreasing number of eddies as the size of the eddies grows. On
the other hand we expect a higher fraction of the larger eddies to cause break-up.
Based on this, it was decided to use the same eddy class division for all fluid par-
ticle classes in order to keep the implementation as simple as possible. Clearly, a
class division which is more adaptive to the fluid particle size may be faster and
it will also be more accurate with the same number of eddy population classes.

Since the number of break-ups increases with increasing eddy class size, an eddy
population class division is derived that gives less and less eddies in each class as
the size of the eddies increases. We assign D eddies in the first class, aD eddies to

the second class,  eddies to the third class, and so on. This scheme is used both
because it gives less and less eddies in each class, and because, as shown below,
it is relatively easy to calculate the eddy size range and number of eddies in each
class. The number of eddies in each class will be a fraction a of the eddy number
of the class below. The total number of eddies can be written as

. (5.45)

From Barnett & Cronin (1986)

. (5.46)

Since  and  are set apriori,  is found by integration of equation (5.7).

m and a are set in the program which gives us D from equation (5.46). The desired
accuracy decides the values used for m and a. It may be difficult to find a good value
for a since this depends on m, the total number of classes. Generally a should be
low for few classes and approach one when the number of classes is high.

The last step is to find the diameters of each individual interval. For the first inter-
val, see equation (5.7),

, (5.47)

where . Solving for  we get
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Numerical implementations
, (5.48)

which is the size of the first class. The sizes of the other classes are found by updat-
ing  and the eddy number D in equation (5.48). E.g., for the second class we

update  to  and D to aD, and similar successive updates follow for

each class.

5.6.3  Daughter class distribution

The integration of  in equation (5.28) between each fluid particle population

class is done as follows. Starting with , equation (5.28) is integrated by using

the Simpson approximation, Edwards & Penney (1986), for each population class
ending with the maximum possible size for the break-up. In addition the moment
of the interval (the weighted middle) is found, Edwards & Penney (1986), and this
is used to split the integral between the lower and upper bounding classes, giving
the following equations:

, (5.49)

. (5.50)

Here W is the weighted middle, and I is the integral between  and . Special

care has to be taken if . This case is solved by numerical integration

from  to  (or ). If the moment is found to be less than  the entire

integral is assigned to the first class. By increasing the energy classes, one will
always come to a point where break-up to below the lowest class is possible. Note
though that there will be few eddies with such high energies, see figure 5.2.
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Fluid particle break-up
5.7  Sensitivity analysis

In order to see if the model predictions are physically reasonable a sensitivity
analysis has been performed with respect to the following variables:  (turbulent

dissipation rate), ,  (gas holdup),  and  (constant from isotropic turbu-

lence theory).

There are two possible cases that must be looked into:

• Break-up is controlled by energy density, see figure 5.9. This situation is more
probable for large eddies and for small particles.

• Break-up is controlled by both criteria, see figure 5.11.

For the first case the critical break-up size is equal to the size of the class below,

. (5.51)

This gives the following critical eddy turbulent kinetic energy for break-up

, (5.52)

which gives

. (5.53)

Equation (5.53) can be written in the following form

. (5.54)

For the second case we start by equating the two density equations, see equation
(5.26), and get

. (5.55)

Since both criteria are limiting we use equation (5.30), and for the surface energy
term we use equation (5.16), which gives

. (5.56)

ε
ρL εG σ β

dk min c,, di 1–=

e λ j( )CBP πσλj
3 di 1–⁄=

χc

e λ j( )CBP

e λ j( )
---------------------

πσλj
3 di 1–⁄

ρLπβε2 3/ λ j
11 3/ 12⁄

----------------------------------------------= =

χc0 kσ0ρL0
1– β0

1– ε0
2 3/–=

e λ j( ) πσλj
3 dk min,⁄=

dk min,
2 dk

2 1 dk min,
3 dk

3⁄–( )2 3/ 1–+⁄[ ]πdk
2σ πσλj

3 dk min,⁄=
126 NTNU



Results
Note that  is independent of the variables mentioned initially. Thus getting

. (5.57)

A term identical to equation (5.54) is found, but with another constant factor. The
influence of each variable can be seen from equation (5.54), giving the following
sample sensitivity cases:

, , (5.58)

, , (5.59)

, , (5.60)

where the change for  is identical with the change for . Further,  is not

changed with any of the variables in both cases and  has no influence. The direc-

tion of change is very reasonable. An increase in the surface tension would be
expected to give a decrease in break-up as shown by equation (5.58). An increase
in break-up from an increase in the eddy dissipation rate is also as expected. The
increase in break-up with increased continuous phase density is less intuitive, but
is an effect of the eddy dissipation being a constant per unit mass. Thus the vol-
umetric effect will be increased and the break-up ability will also increase with
increasing density.

5.8  Results

The simulations were all run for the water/air system with data for the base case

as:  = 998 ,  = 0.0726 ,  = 0.25 ,  = 0.12. The bub-

bles were divided into 14 classes ranging from 0.375 mm to about 7.5 mm in
radius (each class twice the volume of the class below) and the eddies were
divided into 80 classes ranging from 0.75 mm to 300 mm with a = 0.5. The eddy
energy spectrum was split into 20 classes. See section on numerical implemen-
tations for details.

In figures 5.13, 5.14, 5.15 and 5.16, examples are shown of probability distribu-
tions for break-up into the various daughter classes (left hand side of equation
(5.32)). By summing up over all eddy classes multiplied by the collision frequency,
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Fluid particle break-up
equation (5.35), the break-up rate of particle size  into daughter particle size 

can be found. These in turn, are used in order to determine the total source terms
for break-up which are part of the transport equation.

Figure 5.13 shows the probability distribution for collisions between the largest
particle class, class 14, and eddies of class 20. The x-axis in the figure gives the
diameters of the different resulting daughter sizes. Note that figure 5.13 shows the
distribution of the smallest daughter particles. This is why the resulting number in
class 14 is zero (each class is twice the volume of the class below and the smallest
daughter particle can then at most be of a size equal to the class below). The y-axis
gives the break-up probability, see equation (5.28), into each daughter class. The
total break-up probability, , for one of the collisions will be the sum of the prob-

abilities for each class. The figure shows that break-up in this example case will
tend to give mostly large daughter bubbles, class 12 and 13, but that break-up down
to class 8 is significant. The reason for this is that the energy density criterion dom-
inates, and this makes break-up into equal sized or nearly equal sized bubbles most
probable.

A sensitivity analysis is also included in figure 5.13. A 20% increase and decrease
in the turbulent dissipation, , corresponds to a 6.3% increase and 9.2% decrease
in the total break-up probability respectively. It is seen from the bottom figure that
the relative change in break-up is larger for the smallest daughter classes, but as
seen from the top figure the absolute change is higher for the larger daughter size
classes. In this case the absolute change is largest for class 11 and 12. The relative
change is largest for the small classes because  gives a more uneven distribution

when break-up is less likely, i.e. for a lower  value. The direction of change is as
expected. Clearly, an increase in the turbulent dissipation rate should cause more
break-up, which is what the model predicts. The sensitivity cases for other vari-
ables are not shown since these can be directly related to the shown sensitivity case
through theoretical considerations.

di dk

PB

ε

PB

ε
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Results
Figure 5.14 shows the daughter probability distribution for particles of class 10
being broken up by eddies of class 20. The total break-up probability is in this case
about half as high as in figure 5.13. This is reasonable because the maximum size
of the smallest daughter particle for class 10 is less than for class 14, and will there-
fore have a higher energy density. The energy density criterion then becomes more
stringent. The resulting daughter size probability distribution is also seen to be
more narrow in figure 5.14 than in figure 5.13, implying that smaller bubbles will
have a larger tendency to break up into even sized bubbles. This can be related to
the theory described in figure 5.12. For smaller particles we generally have a more
narrow bandwidth of possible break-up sizes. This is because a certain energy
level, and thus a given energy density level, will give a certain lower limit for
daughter sizes. In terms of possible break-up classes this will set a stricter limit for
a small bubble than for a large bubble. The surface energy criterion will in these
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Fluid particle break-up
cases have little influence on the break-up distribution, resulting in a distribution
favouring equal sized break-ups. The change in break-up probability with a change
in , see header to lower figure 5.14, is higher for class 10 bubbles than for class

14. A 20% increase and decrease in  corresponds to a 17% increase and 21%

decrease in the total break-up probability respectively. Since  is higher in this

case, this is expected because the relative change with a change in  should be
larger.

Figure 5.15, also shows the daughter size probability distribution for the break-up
of class 10, but in this case the collisions are with eddy class 10 instead of eddy class
20. The total break-up probability is significantly smaller in this case and the dis-
tribution is still more uneven with almost all smaller fractions into daughter classes
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decrease and increase in the turbulent energy dissipation, .ε
130 NTNU



Results
8 and 9. This is because the energy level of eddy class 10 is lower than eddy class
20. Since the total break-up probability is lower, the sensitivity towards a change
in the turbulent energy dissipation rate, , is even larger than the two previous
cases.

Figure 5.16 shows the results for collisions between particle size 6 and eddy size
20 and is similar to the previous figures shown. As seen the distribution is now
quite narrow. For the break-up of lower classes this trend continues.
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Figures 5.17, 5.18 and 5.19 show the relative contribution of each eddy class to the
total break-up probability for different fluid particles. The total break-up proba-
bility for a given particle class is the sum over all eddy classes, thus it is interesting
to see which eddy classes contributes most to this sum. As noted in the theory sec-
tion, the eddy density decreases with increasing eddy size, see equation (5.7) and
figure 5.1. It is also seen that large eddy sizes generally give a higher break-up
probability than smaller eddy sizes, compare figures 5.14 and 5.15. The relative
importance of each eddy class is of course also dependent on the size of the classes
themselves.

As seen from figure 5.17, for bubble class 14, eddies of size below about 0.3 rel-
ative to the particle diameter contribute insignificantly to the bubble break-up.
Note that the maximum frequency is for an eddy approximately equal to the bubble
size. However, eddies with sizes larger than the bubble contribute significantly to
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Results
the break-up. Thus, the assumption that the size of the eddy must be of the same
order of magnitude or less than the particle seems not to hold for bubbles of size
14 (radius 7.5 mm). If we assume  we get for relatively large eddies

that . Thus the upper boundary for the eddy length scale, ,

should be the boundary of the inertial subrange since  above this limit,
see Tennekes & Lumley (1972). In order to improve the accuracy of the calculation
of the total break-up rate for bubble class 14 more eddy classes in the relative range
between 0.3 and 2 should be included. The y-axis gives the number of particles bro-
ken up during one time unit (which was 1 second). For the simulations we uses ini-
tially 1000 particles in each class. The total break-up rate, given in the bottom
figure, is much higher than this value. This simply means that the time increment
used when solving the population balances must be much lower than 1 second. Ide-
ally this time increment should be so low that the change in the class becomes much
lower than the total number of particles in the class. As mentioned before, steady
state between the classes is a situation which make it possible to use larger time
increments.

PB constant∼

ΩB C’λ j
2
nλ j

C λ j⁄∼∼ λ

E k( ) 0→
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Fluid particle break-up
Figure 5.18 shows the importance of the individual eddy classes in breaking up
bubbles of class 10. The total break-up rate of class 10 is seen to be about 4-5
times smaller than that of class 14. For this bubble size class it is seen that the
larger eddy classes become more important than for class 14. This is because
the energy density criterion, as mentioned before, becomes more stringent for
smaller particles and because the energy density increases with eddy size.

FIGURE 5.17: The relative importance of each eddy class in breaking up
particles of class 14 is shown in the top figure and the accumulated break-
up is shown below. Each eddy class has 50% of the number of eddies in the
class below. The y-axis is a measure of the number of break-ups in one time
unit.
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Results
Figure 5.19 shows a similar plot for the break-up of bubbles of class 6. Eddies with
relative size about 8 and above cause break-up. For this case it is not a good approx-
imation to assume that eddies less than the fluid particle cause break-up. In this
case the total break-up rate is about 140 which is about 25 times less than the break-
up rate for particle class 14.

FIGURE 5.18: The relative importance of each eddy class in breaking up
particles of class 10 is shown in the top figure and the accumulated break-
up is shown below. Each eddy class has 50% of the number of eddies in the
class below. The y-axis is a measure of the number of break-ups in one time
unit.
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Fluid particle break-up
Figure 5.20 shows  for all combinations of particle classes and eddy classes. The

upper plot is the one resulting from using both the energy density criterion and the
surface energy criterion. The bottom plot is from using only the energy density cri-
terion. From the upper plot we se that we get low  values (same as a high prob-

ability for break-up) when we have large eddy classes. For small eddies the surface
energy criterion becomes important and a combination of both criteria is needed.
For small particle classes the density criterion dominates and we have high  val-

ues. The values pass a minimum and we get higher values again as the particle
classes increase due to the surface energy criterion.
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FIGURE 5.19: The relative importance of each eddy class in breaking up
particles of class 6 is shown in the top figure and the accumulated break-
up is shown below. Each eddy class has 50% of the number of eddies in the
class below. The y-axis is a measure of the number of break-ups in one time
unit.
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Results
Where this latter criterion is also of importance is shown in figure 5.21 where val-
ues for the energy density criterion minus values for both criteria are shown. Thus
negative  values indicate that the surface energy criterion is of importance. This
area is circled in the figure. As expected this area is generally larger as the fluid par-
ticles grow in size and also more important when eddies are small in size, since
small eddies have less energy available than eddies which are large in size. Further,
it is for rather few combinations of eddies and particles that the surface energy cri-
terion affects the break-up probability. Also, its effect on the daughter size distri-
bution will be diminishing with increasing eddy size classes,  in equation (5.20),

and equation (5.28), since we get a more and more equal distribution for  as the

0
20

40
60

80

0
5

10
15

0

100

200

eddy class

Density criterion

particle diameter class

χ

0
20

40
60

80

0
5

10
15

0

100

200

eddy class

Both criteria

particle diameter class

χ

FIGURE 5.20: The  values (giving the break-up probability) when both
the energy density criterion and the surface energy criterion are used, are
shown in the top figure. Similar values for only the energy density criterion
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of particle classes and eddy classes.
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Fluid particle break-up
total energy level  increases above the level needed for an equal daughter size
division. The impact of the surface energy criterion is on the other hand quite large
in the region of small eddy classes. A change of 2.3 in  is the same as an order
of magnitude change in the total break-up probability.

Hesketh, Etchells & Russel (1991) observed breakages which they defined as two
types of breakage. The first kind, and most prevalent, was for particles to undergo
large scale deformation resulting in a wide range of daughter sizes. The second
kind was defined as a tearing mechanism giving a local deformation of one end of
a fluid particle producing a daughter fragment of essentially the same volume and
a second daughter fragment which was less than 0.5% of the original volume. The
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Possible model refinements
first breakage type can in our model framework be a large eddy hitting a fluid par-
ticle. Such eddies generally break up particles to daughter fragments which cover
a wide range of sizes, see figure 5.13. The second type can be seen as a small eddy
with a high turbulent kinetic energy level hitting a fluid particle. As seen from fig-
ure 5.21 such an eddy will generally be limited by the surface energy criterion.
Thus daughter fragments from such collisions are expected to be of unequal or
highly unequal size.

5.9  Possible model refinements

Several possible improvements to the developed model are listed below, and the
consequences are discussed.

5.9.1  Activation energy

As an analogy to the chemical reaction activation energy one may assume that
such an approach is also applicable for the collision between an eddy and a fluid
particle. Physically this intermediate step may be seen as a deformed parent par-
ticle with a larger surface area than the sum of both daughter particles, see figure
5.22 below.
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Fluid particle break-up
Since the activated state require more energy than the daughter particles combined
this state will define the energy requirement for the break-up process. The fol-
lowing condition for the surface energy criterion giving break-up can then be writ-
ten as

, (5.61)

where  is the energy requirement for the activated state. Similarly, for

the energy density criterion there may be a need for a surplus energy density in
order to create a daughter fragmentation. Thus, the new lower limit for daughter
size will be (refer to equation (5.26))

, (5.62)

where  represent the surplus of energy density needed. This factor may not be

a constant for the different fragmentations. Including these considerations will
limit the break-up rate and will also change the daughter size distribution between

FIGURE 5.22: Breakage of a fluid particle into two daughter particles is
shown as a direct path and through an activated state (dashed arrows). It
is assumed that , which means the activated state has a larger
surface area than the sum of the two daughter particles.
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Possible model refinements
the daughter classes since  and/or  in equation (5.28) will be more unevenly

distributed.

5.9.2  Surface energy criterion

The surface energy criterion defines that break-up can not require more energy
than what is available in the eddy. This criterion may have to be changed when
the eddy is much larger than the fluid particle. If the diameter of the eddy is say
10 times the diameter of the particle, it is rather unlikely that the particle can
absorb all the energy of the eddy. Absorbing all the turbulent kinetic energy may
be looked upon as a maximum surface energy limit for the model and the simu-
lations. A minimum could be that the particle only absorbs turbulent kinetic
energy corresponding to its size compared to the eddy. Thus when the eddy, ,

is larger in diameter than the fluid particle, , we get

. (5.63)

The inclusion of this criterion will result in a different daughter size distribution
since  will be changed. The distribution will become more uneven favouring

uneven sized break-up (one large and one small particle). If only this modification
is included the break-up rate will not be changed since this criterion is less impor-
tant than the energy density criterion (this has been tested in simulations). This may
be seen from figure 5.21, showing that the energy density criterion is most impor-
tant for large eddy classes. Only for large particles and small eddies will the surface
energy criterion be important. In these cases equation (5.63) is not used since the
particle is larger in diameter than the eddy. Thus, the modification in equation
(5.63) will not affect the break-up rate, but it will change the daughter size dis-
tribution through changing .

5.9.3  Inertial subrange of turbulence

The model assumes we are operating in the inertial subrange of turbulence in the
column. According to Tennekes & Lumley (1972), figure 8.8, the  power

law used for the turbulent energy, , will be reduced dramatically (toward 0)
at the lower boundary of k of the inertial subrange. Thus, a better approximation
of the lower end for k in the inertial subrange will reduce the rate of break-up.
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Fluid particle break-up
Even with the current approximation for the lower end of the inertial subrange
(meaning for larger eddies since ), the turbulent energy is overesti-
mated, thus giving an overestimation of the break-up rate. This can be seen from
the fact that , see after equation (5.3). Combined with figures
5.13 to 5.16, showing a decrease in break-up probability with decreasing turbu-
lent energy dissipation rate, , it is found that an overestimation in the turbulent
energy is the same as an overestimation in the break-up probability. The break-up
rate is also overestimated since the collision frequency also decreases with

decreasing turbulent energy dissipation rate, see the  term in equation (5.2).

5.9.4  Fluid particle rest state

According to Risso & Fabre (1998) energy may be accumulated through succes-
sive collisions, finally resulting in break-up. This can most easily be approxi-
mated by assigning an energy rest state which is above zero as assumed in this
paper. Equation (5.19) could thus be replaced by

, (5.64)

where  is the energy level in the rest state for fluid particle . 

can by caused by numerous collisions with small eddies resulting in low ampli-
tude oscillations. It can also be caused by other flow phenomena which are
superimposed on the turbulent flow, Risso & Fabre (1998). From figure 5.21 it
is seen that this refinement will result in more break-up when small eddies col-
lide with fluid particles.

5.9.5  Number of daughter fragments

As noted by Chatzi & Lee (1987), Prince, Walters & Blanch (1989), Risso & Fabre
(1998) and others, fluid particles may break into more than two fragments. This
may be due to the same eddy breaking up the parent particle and then successive
daughter particles. This is currently not included in the model, but can be imple-
mented relatively easily. However, more likely this will have a negligible impact
on the result. More likely the complex dynamics of a break-up sometimes result
in a number of daughter fragments which can not be explained by the theory given
in this chapter (very small fragments having too high energy densities). Such frag-

k 2π λ⁄=
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Conclusions
mentations probably have to be explained through dynamic CFD simulations on
the micro scale where single fluid particle - turbulent eddy collisions are simulated.

5.9.6  Collision frequency

The formula for collision frequency used, equation (5.2), is based on collisions
between gas molecules. For large eddies covering a significant fraction of the col-
umn diameter this formula is probably a coarse estimate of the actual number of
collisions.

5.9.7  Entropy

The second law of thermodynamics states that the entropy tends toward a maxi-
mum. We have a tentative theory that the change in entropy is zero for the critical
case where the energy density criterion is exactly met, and that an increase in the
energy density would result in a decrease in the entropy. This remains to be
proven.

5.10  Conclusions

A new break-up model has been developed that takes into account a statistical
approach to the energy level and energy density of colliding eddies. It further
introduces a new particle break-up criterion based on the requirement that no
increase in energy density can occur as a result of the collision and break-up. It
is found that the new energy density criterion is more important in finding the
break-up rate for large eddies colliding with fluid particles than the surface
energy criterion. For small eddies the surface energy criterion is important and
the break-up rate is severely limited because of the combination of both criteria.

The daughter size distribution follows directly from the model assumptions. The
distribution varies with fluid particle size, eddy size and energy level, and system
variables. However, generally most of the smaller daughter particles are found in
the particle size classes just below the class breaking up. The spread of daughter
particle sizes is larger for large particles and large eddies than for smaller particles
and smaller eddies.

It is shown that the importance of the relative eddy size (to the particle size) varies
with the colliding particle size. Larger relative eddy sizes are generally more
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Fluid particle break-up
important as the particle size decreases and eddies of magnitude an order or larger
than the particles are important for break-up into smaller particle classes.

The new model needs to be tested and validated with experimental data. In order
to do this the module must be implemented in a CFD model, and is directly appli-
cable for that.

Notation

surface area of activated state, 

surface area of parent particle, 

surface area of daughter particles, 

a number fraction for one class of eddies divided by the number of eddies in

the class below, see equation (5.45), -

b bandwidth of eddy energy, see equation (5.37), -

, first and second bandwidth size of an energy class,

see equations (5.42) and (5.43), -

, bandwidth size of an energy class, see equation (5.44), -

C size of energy integration for one class, see equation (5.39), -

C constant in estimation of , -

constant in estimation of , -

constant, defined in equation (5.7), -

coefficient for increase of surface area, see equation (5.15), -

D number of eddies in first eddy class, see equation (5.47), 

total number of eddies, see equation (5.45), 

, diameter of daughter particle, m

diameter of parent particle, m

A∗ m2

A0 m2

A1 m2

b1 b2

bk bm

ΩB

C’ ΩB

c2

cf k,

1 m3⁄

Dtot 1 m3⁄

d1 d2

di
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maximum diameter of smallest daughter particle when particle of

diameter  breaks up, m

diameter of largest daughter particle, m

, diameter of daughter classes k and , m

 lower limit of diameter due to energy density criterion,

see equation (5.26), m

 critical lower limit of diameter due to energy density criterion, see

equation (5.26), m

minimum crossover diameter, see definition after equation (5.20), m

maximum stable particle size in a stirred vessel, see equation (5.21), m

energy spectrum function of turbulence, 

energy level at rest state for fluid particle, J

energy level of eddy of size , J

average energy level of eddy of size , see equation (5.12), J

critical energy for break-up, see equation (5.30), J

critical energy for break-up, see equation (5.29), J

increase in surface energy when particle with diameter  breaks

up into particle with diameter  and complementary particle, J

increase in surface energy for activated state when particle with

diameter  breaks up into particle with diameter  and

complementary particle, J

breakage volume fraction, index k defines the size of the daughter

fragment, see equation (5.14), -

di 1–

di

dj

dk dk 1+ k 1+

dk min,

dk min c,,

dk max,

dmax

E k( ) m3 s2⁄

E λ j( )0

e λ( ) λ

e λ( ) λ

e λ( )CBP
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ei di dk,( ) di

dk

ei
∗ di dk,( )

di dk

fBV k,
NTNU 145  



Fluid particle break-up
I integral between two daughter diameter classes, see equation (5.49)

k wave number of eddies in turbulence, 

k constant defined after equation (5.47)

k class number variable, see equation (5.44)

surplus fraction of energy density needed, see equation (5.62), -

k_fraction see equation (5.49)

k+1_fraction see equation (5.50)

n number of eddy energy classes, see equation (5.40), -

number of particles of size  per unit reactor volume, 

number of eddies of size  to  per unit reactor volume, 

number of eddies in size group  to  per unit reactor volume,

m number of eddy classes, -

break-up probability, -

break-up probability of particle  colliding with eddy size ,

giving daughter size , -

break-up probability of particle  colliding with eddy size ,

with energy level , giving daughter size , -

normalized probability function for break-up due to energy density, see

equation (5.27), -

normalized probability function for break-up due to turbulent

kinetic energy, see equation (5.20), -

turbulent kinetic energy probability distribution function,

equation (5.9), -

1 m⁄

kae

ndi
di 1 m3⁄

n·λ j
λ j λ j dλ+ 1 m4⁄

nλ j
λ j λ j dλ+

1 m3⁄

PB

PB di λ j dk, ,( ) di λ j

dk

PB di λ j el dk, , ,( ) di λ j

el dk

Pd dk( )

Ps di dk,( )
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fluctuating squared velocity in continuous phase, see equation (5.23),

particle class velocity, 

eddy velocity, 

relative velocity between particle of size  and eddy of size , 

W weighted middle of integral between two diameters,

see equation (5.49), m

Weber number, see equation (5.22), -

energy density of an eddy, see equation (5.25), 

energy density of a particle, see equation (5.24), 

universal constant in turbulence, , used by Luo & Svendsen

(1996), -

universal constant in turbulence, Luo & Svendsen (1996), -

constant defined after equation (5.3), -

constant, reference state defined after equation (5.3),

see equation (5.54), -

defined as accuracy, see equation (5.37), -

turbulent energy dissipation rate, 

reference state of turbulent energy dissipation rate, see equation (5.54),

void fraction, -

Kolmogorov micro length scale, equation (5.8), m

u2

m2 s2⁄

ui m s⁄

uλ j
m s⁄

udi λ j, di λ j m s⁄

Wec

wd λ j( ) J m3⁄

ws di( ) J m3⁄

α α 1.5=

β

β

β0

∆

ε m2 s3⁄

ε0

m2 s3⁄

εG

η
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volume of eddy, 

volume of parent particle for break-up, largest parent particle for

coalescence, 

volume of smallest daughter particle for break-up, 

volume of particle, 

, diameter of eddy, m

length size of first eddy class, see equation (5.48), m

minimum size of lamda used, m

maximum size of lamda used, m

, continuous phase density, 

gas phase density, 

dispersed class i density, 

reference state of continuous phase density, see equation (5.54), 

viscosity of continuous phase, after equation (5.8), 

continuous kinematic viscosity, equation (5.8), 

surface tension, 

reference state of surface tension, see equation (5.54), 

dimension less energy in energy distribution function,

see equation (5.10), -

dimension less critical break-up energy, -

reference state of dimension less critical break-up energy, see equation

(5.54), -

dimension less critical break-up energy, -

ϑ e m3

ϑ i

m3

ϑ k m3

ϑ p m3

λ λ j

λ1

λmin

λmax

ρ ρL kg m3⁄

ρG kg m3⁄

ρi kg m3⁄

ρL0 kg m3⁄

µL Pa s⋅

ν m2 s⁄

σ N m⁄

σ0 N m⁄

χ

χc

χc0

χk
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break-up rate, 

break-up rate of particle with diameter  into daughter particle

with diameter , 

collision frequency, 

collision frequency between particle of size  and eddy of size ,

fraction of eddy of size  with energy level , -
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CHAPTER 6 Modeling of the dispersed 
phase size distribution in 
a bubble column
This chapter is a modified version of the paper ‘Modeling of the dispersed phase
size distributions in bubble columns’ accepted for publication in Industrial &
Engineering Chemistry Research by Hagesaether, Jakobsen & Svendsen. The aim
of this chapter is to verify the model developed in chapter 5 by use of CFD and com-
pare the results with experimental data. Details for the implementation of the
break-up rate and details for the source term formulations are given in appendix A.

6.1  Introduction

The potential of computational fluid dynamics (CFD) for describing the dynamics
of bubble column reactors has been described in several recent publications, and
multi-fluid models have been found to represent a trade-off between accuracy and
computational efforts for practical applications. However, even though the bubble
coalescence and break-up phenomena observed in this type of reactors have a
determining influence on the bubble size distribution and thus the interfacial heat,
mass and momentum transfer fluxes, the chemical and physical mechanisms
involved are still not satisfactorily understood. To improve on the predictive capa-
bilities of these models, more accurate constitutive equations are needed, describ-
ing the coalescing and break-up processes.
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Modeling of the dispersed phase size distribution in a bubble column
In our model development we have chosen to apply a modular approach. At this
stage we focus on the inclusion of elaborate models for bubble coalescence and
break-up phenomena, while the flow formulation is more simplified. To analyze
the important mechanisms involved, a population balance model is developed with
emphasis on the source and sink term formulations describing the birth and death
rates as given by Hagesaether, Jakobsen & Svendsen (2000). The model is devel-
oped such as to facilitate the direct future inclusion into a more sophisticated flow
calculation, a full multi-fluid model.

The current break-up model is based on the work of Luo & Svendsen (1996), but
further expanded and refined by Hagesaether, Jakobsen & Svendsen (2001) to
remove an inherent weakness regarding the break-up rate for small particles and
small daughter particle fragments. The main purpose of this work is to validate the
extended break-up model, as given in chapter 5.

For model validation, the results from both the basic model and the extended model
version are compared to experimental data obtained in our own laboratory for bub-
ble size and volume fraction distributions. The extended model results are found
to be encouraging as the break-up rate is greatly reduced when the dispersed fluid
particles are reduced in size, and the size distribution is in good agreement with the
corresponding experimental data. The coalescence model used is basically the
same as the one used by Luo (1993), although the collision rate formula was mod-
ified when used with the current break-up model.

The results obtained indicate that, for predictive purposes, the population balance
model approach may substantially improve on the empirically based analysis in
use today. Combined with multi fluid CFD evaluations, it appears that this
approach may have inherent capabilities calculating the bubble-bubble and bub-
ble-liquid interactions in a more reliable manner providing improved predictions
of the interfacial contact area and thus the heat-, mass- and momentum transfer
fluxes.

6.2  The model

The continuity equation for the dispersed phase is given by:

 . (6.1)
t∂
∂ ρα( ) ∇ ρ uα( )⋅+ 0= kg m3s( )⁄[ ]
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The model
The dispersed gas phase is divided into a number of subclasses according to par-
ticle mass size, giving one transport equation for the mass of each particle class.
The dispersed phase volume fraction and the mass averaged gas velocity are
defined as:

 and . (6.2)

The following transport or balance equation for each bubble size class can be
obtained adopting the well-known population balance concept:

 . (6.3)

In this approach the individual bubble classes are assumed to have their own veloc-
ities, and the density of the gas phase may be calculated according to a suitable
equation of state. It is assumed that the gas density is constant.

In order to apply the population balance on the discrete particle size distributions
observed in bubble columns, the continuous particle size distribution function is
represented by a finite number of size classes, each discrete particle class repre-
senting a subrange of the size distribution function.

In accordance with Hounslow, Ryall & Marshall (1988), the prescribed bubble
classes are chosen in such a way that the bubble volume (or mass) in class, i+1, is
twice the volume (or mass) of the class below, i,

. (6.4)

This is convenient as it simplifies the particle size redistribution budget calcula-
tions needed to account for the bubble break-up and coalescence processes.

We emphasize that the population balance model formulation used here is based
on mass and is thus of general nature whereas the implementation is volume based.
However, in small columns where the compressibility of the gas phase is unim-
portant, the bubble density may be assumed constant as done in this paper. To relax
this limitation, only a minor modification is needed. The discretization of the par-
ticle size distribution should be based on mass rather than volume. This change is
easily implemented and the result is that particles which rise in the column will not
change class due to changes in pressure. The parameterizations developed for the
sink and source terms are already applicable to variable density flows.

α ni
π
6
---di

3

i
∑= u niuiρϑ i( ) niρϑ i( )

i
∑⁄

i
∑=

t∂
∂ ρni( ) ∇ ρ uini( )⋅+ ρ BB DB– BC DC–+[ ] i= kg m6s( )⁄[ ]

ϑ i 1+ 2ϑ i=
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Modeling of the dispersed phase size distribution in a bubble column
The redistribution scheme adopted requires both the mass and number balances to
be fulfilled. Considering particles of a specific size resulting from a break-up or
coalescence process, indicated by index, j, each being characterized by a mass
lying between two of the prescribed population classes, e.g. i and i+1, the mass bal-
ance yields:

. (6.5)

The mass of these particles, , is redistributed between the two population

classes characterized by the masses, , and . The resulting particle number

densities,  and , are not necessarily integer values, but must comply with

the corresponding number balance:

. (6.6)

The number of particles is thus conserved. Combining (6.5) and (6.6) gives:

, (6.7)

which uniquely defines the redistribution process as  is the only unknown.

An alternative to this redistribution scheme could be to require the mass and area
balances to be conserved, intending to provide better estimates for the mass trans-
fer fluxes. This procedure is, however, not used as an error in the number balance
will be propagated by the source term calculations, as the break-up mechanisms
are a function of the number density of , while coalescence mechanisms are

a function of the number density of . An error in the number balance will
thus introduce an error of unknown magnitude in the area balance.

As stated above, the source terms determine the parameterizations of the under-
lying breakage- and coalescence mechanisms. First, we consider the break-up
parameterizations, discussing how to adjust the resulting daughter size to the pre-
scribed population size discretization scheme. Two versions of the breakage model
are considered here, the model of Luo & Svendsen (1996) and an extension of this
model developed by Hagesaether et al. (2001). These parameterizations are based
on principles of molecular collision and isotropic turbulence and they contain no
adjustable model parameters as all constants are derived from isotropic turbulence

njmj nimi ni 1+ mi 1++=

njmj

mi mi 1+

ni ni 1+

nj ni ni 1++=

mj

ni

nj
---- 
  mi

nj ni–
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-------------- 
  mi 1++=
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O n( )
O n2( )
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The model
theory. The daughter particle size distribution is derived from the breakage rate
parameterizations. The extended parameterization given by Hagesaether et al.
(2001) requires two criteria fulfilled in order to obtain particle break-up. The first
criterion was also used by Luo & Svendsen (1996). It states that the energy of the
colliding eddy must be equal to, or larger than the particle surface energy increase
due to break-up into a particular daughter size configuration. The second criterion
introduced by Hagesaether et al. (2001) states that the energy density of the daugh-
ter particles must be equal to or less than the energy density of the colliding eddy.
This latter criterion limits the possibility of break-up in a more realistic manner,
as the first criterion allows all fluid particles to be broken when hit by eddies. Fur-
ther, a criterion stating that the eddy must be less in size than the bubble in order
for a break-up to be possible, has been removed.

A detailed description of the basic break-up modeling framework was provided by
Luo & Svendsen (1996). This model, and details for numerical implementation of
it (not given by Luo & Svendsen (1996), are found in appendix A. Therefore, only
a brief description of the extended particle break-up parameterization scheme will
be given here, along with some minor updates on the particle collision frequency
parameterization adopted calculating the coalescence rate. For the coalescence a
detailed description is given by Luo (1993).

As discussed by Luo & Svendsen (1996), the break-up parameterization used is
based on the assumption that bubbles break-up into two daughter bubbles only. In
line with previous work, we also assume that the density of the gas phase is con-
stant. For such binary break-up processes, the parent particle volume, , is dis-

tributed into two daughter particles of volumes,  and , in accordance with the

following volume balance:

, (6.8)

where the volume of daughter particle k, , is smaller or equal to the volume of

daughter particle j, . In the model we have set the volume of the smaller daughter

particle, , to one of the population class sizes less than . The volume of daugh-

ter particle j, , must be equal to the prescribed population size class  or

larger, and thus split between size class i and i-1. This may not have been the case
if we had used a factor lower than 2 in the population class discretization scheme,

ϑ i

ϑ j ϑ k

ϑ i ϑ j ϑ k+→

ϑ k

ϑ j

ϑ k ϑ i

ϑ j ϑ i 1–
NTNU 155  



Modeling of the dispersed phase size distribution in a bubble column
see (6.4). The daughter volume, , is divided into the population classes 

and i, according to a modified version of (6.7):

. (6.9)

In addition, we express the volume of the daughter size class, , as a function of

the neighboring population particle sizes in terms of the volume of population class
1,

. (6.10)

Combining (6.4), (6.9) and (6.10) gives

, , (6.11)

where  is the number fraction in class  and  is the number frac-

tion in population class i. Thus, break-up of a parent particle gives the following
volume distribution in the population classes:

. (6.12)

This means that the break-up processes give rise to a whole particle in volume class
(k) below the class (i) being broken up, and one equal or larger particle which is
divided in a number fraction within the class below the one breaking up, i.e.

, and a number fraction in the same class as the one being broken up (i).

The break-up parameterization consists of two parts, the product of the break-up
probability and the collision frequency. Summarizing over the possible eddy sizes
yields (as in chapter 5 the terms are defined by diameters, which can be inter-
changed with identical volume or mass class divisions),

. (6.13)

The collision frequency between eddies of size between  and  and bub-

bles of diameter size , is given as a sum of a turbulent collision and a buoyancy

collision frequency contribution:

ϑ j i 1–( )

ϑ j xi k, ϑ i 1– 1 xi k,–( )ϑ i+=

ϑ j

ϑ j ϑ i ϑ k– 2 i 1–( )ϑ 1 2 k 1–( )ϑ 1–= =
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ϑ i ϑ k xi k, ϑ i 1– 1 xi k,–( )ϑ i+ +=

i 1–( )
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. (6.14)

The turbulent collision is given by Luo & Svendsen (1996):

. (6.15)

The relative velocity between the colliding bubble and turbulent eddy is expressed
as:

, (6.16)

with the turbulent velocity:

, (6.17)

where  is a constant. Equation (6.17) is also used to find the turbulent velocity

of the bubbles replacing the eddy length scale , with the bubble diameter  (Luo

& Svendsen, 1996).

The buoyancy term used is based on Prince & Blanch (1990):

. (6.18)

The relative bubble rise velocity has been approximated by the axial bubble veloc-
ity calculated from experimental data, thus assuming no eddy movement due to
buoyancy effects.

The probability for obtaining one specific daughter class, as a result of a break-up
of a given parent particle size, , colliding with a given eddy size, , is given as

the sum over the different eddy energy levels, :

, (6.19)

where  is the fraction of eddies of size  having energy level . It

is assumed that the turbulent kinetic energy probability distribution is

ωB di λ j,( ) ωB t, di λ j,( ) ωB b, di λ j,( )+=

ωB t, di λ j,( ) π
4
--- di λ j+( )2udi λ j, ndi

nλ j
=

udi λ j, udi

2
uλ j

2
+( )1 2/
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, where . (6.20)

The mean turbulent kinetic energy of an eddy with size , , was by Luo &

Svendsen (1996) given as

. (6.21)

The sum over all, l, fractions is equal to

, (6.22)

where  for the most common situations where the energy

density is the only limiting break-up criterion. When adding the eddy energy den-

sity criterion, we get , where .

 is the probability for breaking up a bubble of diameter  when hit by

a turbulent eddy of diameter .

The sum of the daughter class probability distribution yields:

. (6.23)

The probability distribution, , can be expressed in terms of a nor-

malized product of two functions related to the two break-up criteria. The two
functions are assumed to be independent, giving:

. (6.24)
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The model
The function related to break-up due to the turbulent kinetic energy of an eddy (the
surface criterion) may be written as (non-normalized version of  in

chapter 5)

, (6.25)

where the first term on the right hand side is the turbulent kinetic energy of the
eddy. The function related to break-up due to the energy density causing breakage
into a smallest daughter volume size, , (the energy density criterion) may be

written as (non-normalized version of  in chapter 5)

. (6.26)

The continuous function (6.24) is integrated numerically between each population
balance class, and the moment (weighted average) is also found. The integral is
then split by using the weighted average between the lower and upper limiting
classes giving the  values, see Hagesaether et al. (2001).

Secondly, we consider the coalescence parameterizations and discuss how to
adjust the resulting, or merged, particle size to the prescribed population size dis-
cretization scheme. In the simple case when two particles of equal volume coa-
lesce, the resulting particle will be of one class higher than the two colliding
particles. Thus,

. (6.27)

Note that this is only true if we use the factor 2 between the volume (or mass)
classes, see (6.4). When two unequal sized particles collide, the coalesced particles
will be of a size larger than the largest colliding particle, but smaller than the class
above the largest particle. Thus, for such a collision the resulting particle will
always be placed in the same class as the largest particle and the class above it.
When using a factor lower than 2 between the classes, see (6.4), this may not be
the case. If we assume i to be the largest of the two particles colliding, we get by
using (6.7), converting to volume, and using (6.4):
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. (6.28)

We may also express the two colliding particles as multiples of the class 1 size,

. (6.29)

Combining (6.28) and (6.29) gives:

, , (6.30)

where  is the number fraction in class i and  is the number fraction in

class i+1.

The coalescence rate is also a product of two parts, the coalescence probability and
the collision frequency:

, (6.31)

where the collision rate, Saffman & Turner (1956), may be written as

 with . (6.32)

In the extended model the collision rate is expressed as the sum of contributions
of two different physical mechanisms:

, (6.33)

which are the turbulent collision frequency (as in (6.32)) and the buoyancy col-
lision frequency, respectively. The latter is based on Prince & Blanch (1990):

. (6.34)

Again the measured axial bubble velocities have been used.

The coalescence efficiency is given as  by Coulaloglou & Tav-

larides (1977). Luo (1993) found the coalescence and interaction time scales and
expressed the probability as
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The model
, where 

. (6.35)

The breakage model (6.14) and the coalescence model (6.31) give the source terms
in (6.3). The source terms may be written, assuming no break-up of the smallest
class, , and no coalescence in the largest class, , as:

    , 

, (6.36)

corresponding to the three terms on the right hand side in (6.12), respectively.

, , (6.37)

corresponding to the left hand side term in (6.12).

, , (6.38)

corresponding to the terms on the right hand side in (6.28), respectively.
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Modeling of the dispersed phase size distribution in a bubble column
, , (6.39)

similarly corresponding to the terms on the left hand side in (6.28). The source
terms are further explained in appendix A.

6.3  Numerical methods

The time discretization of the basic balance equations is performed by use of the
fractional time step method that has become very popular in geophysical sci-
ences, e.g. Berge & Jakobsen (1998). The fractional step concept is more a
generic approach than a particular method. It is essentially an approximate fac-
torization of the various numerical operators determining the transport equation.
It is also possible to split the convective and diffusive terms further into their
components in the various coordinate directions. Strang (1968) pointed out that
the accuracy of such splitting methods depends both on the accuracy of the
numerical solution methods applied to the individual operators in the equations,
and on the accuracy of the time splitting procedure itself. By performing the
intermediate time integrations in a prescribed order, the splitting method itself
can be shown to be second order accurate in time. Therefore, when the individual
operators applied are second order (or higher order) in time, the total time inte-
gration procedure will be second order accurate.

The various transport, source and sink terms in the balance equations have accord-
ingly been split into separate numerical operators that are successively solved by
intermediate time integrations. The convective terms are calculated by use of an
explicit second order method in space, a conservative Total Variation Diminishing
(TVD) scheme. The TVD scheme applied was constructed by combining the cen-
tral difference scheme and the classical upwind scheme by adopting the ‘smooth-
ness monitor’ of van Leer (1974) and the Superbee limiter of Roe (1986), see also
Sweby (1984) and Le Veque (1990). An Euler explicit advancement is applied for
the individual source terms. This approach is by definition modular, and the bal-
ance equations can easily be implemented in any consistent CFD code.

DC i( ) ΩC di dj,( ) ΩC di di,( )+
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Model validation
6.4  Model validation

For model validation the simulations were run for the air/water system with data:

 = 998 ,  = 0.0726 ,  = 0.25  and  = 0.025. The

superficial gas velocity was 2  and the water was stagnant. The bubbles
were divided into 14 classes ranging from 0.75 mm to about 1.5 cm in diameter
(each class twice the volume (or mass) of the class below). The column used was
4.3 m high with an inner diameter of 0.288 m. The bubble size and the axial veloc-
ity were measured with a five point conductivity probe at two axial levels in the
column (Buchholz, Zakrzewski & Schugerl, 1981). We have here used measured
data obtained at the centre of the column at axial levels 0.3 m and 2.0 m above the
distribution plate in the bottom of the column. 

The number of particles given in table 6.1 and 6.2, characteristic for each volume
averaged particle size, are time averaged over an interval of about 10 minutes.

Table 6.1 on page 163 gives the measured number values and bubble diameters at
the position 0.3 m above the inlet. The measured data that were originally divided
into 24 discrete particle classes by the data interpretation procedures, have been
adjusted to the 14 prescribed population particle classes used in the simulations in
accordance with equation (6.7).

TABLE 6.1:  First two columns give the numbers of particles measured and
their sizes measured respectively. The last two columns give the numbers
and sizes used in the simulation. The experimental data was measured at 0.3
m above the gas inlet in the centre of the column.

measured 
number

measured 
bubble 

diameter

adjusted 
number

adjusted 
bubble 

diameter

300 0.82 208 0.750
424 1.26 92 0.945
429 1.77 345 1.19
490 2.26 232 1.50
468 2.76 418 1.89
393 3.25 555 2.38
287 3.73 570 3.00
171 4.21 480 3.78
91 4.74 208 4.76

ρL kg m3⁄ σ N m⁄ ε m2 s3⁄ αG

cm s⁄
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Modeling of the dispersed phase size distribution in a bubble column
Table 6.2 on page 165 gives the corresponding data at the position 2.0 m above the
inlet, as well as the measured axial velocities. The axial velocities based on volume
(or mass) were transformed to the population classes used, requiring that the result-
ing particle velocities were consistent with the measured mass flux. The axial
velocities measured at 2.0 m above the inlet were used as fixed rise velocities for
the individual population classes through the column. Similar data were also meas-

66 5.25 77 6.00
37 5.70 28 7.56
21 6.24 12.1 9.52
12 6.79 5.84 12.00
11 7.18 1.37 15.12
5 7.78
5 8.12
5 8.63
4 9.19
2 9.65
4 10.74
3 11.58
1 12.88
1 13.18
1 14.61

TABLE 6.1:  First two columns give the numbers of particles measured and
their sizes measured respectively. The last two columns give the numbers
and sizes used in the simulation. The experimental data was measured at 0.3
m above the gas inlet in the centre of the column.

measured 
number

measured 
bubble 

diameter

adjusted 
number

adjusted 
bubble 

diameter
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Model validation
ured at 0.3 m above the inlet, but we have as a first approach used the data from
2.0 m above the inlet only.

Compressibility effects are not accounted for by the model, thus the simulations
do not take into account the volumetric increase in bubble size as the pressure
decreases toward the top of the column. Therefore, the data measured at level 2.0
m above the inlet have been adjusted, subtracting the volume effect due to the pres-

TABLE 6.2:  First three columns give the numbers of particles measured,
their sizes measured and their axial velocity measured respectively. The last
three columns give the numbers, sizes and axial velocities used in the
simulation. The experimental data was measured at 2.0 m above the gas
inlet in the centre of the column.

measured 
number

measured 
bubble 

diameter

measured 
axial 

velocity

adjusted 
number

adjusted 
bubble 

diameter

adjusted 
axial 

velocity

405 0.82 0.25 343 0.750 0.25
670 1.28 0.33 62 0.945 0.25
739 1.76 0.40 605 1.19 0.33
814 2.26 0.45 489 1.50 0.39
760 2.76 0.50 714 1.89 0.43
585 3.24 0.53 890 2.38 0.48
400 3.73 0.54 926 3.00 0.52
246 4.25 0.57 563 3.78 0.55
133 4.73 0.60 255 4.76 0.61
80 5.22 0.62 93 6.00 0.63
59 5.72 0.68 18.8 7.56 0.62
37 6.24 0.61 4.76 9.52 0.70
8 6.64 0.61 1.33 12.00 0.86
12 7.27 0.62 0.53 15.12 1.37
7 7.69 0.52
3 8.17 0.79
2 8.91 0.74
2 9.78 0.86
2 9.56 0.49
1 12.22 0.58
1 14.42 1.37
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Modeling of the dispersed phase size distribution in a bubble column
sure change, in accordance with the ideal gas law. The experimental diameter

classes are thus multiplied with .

The measured number data must fulfill the global volume balance over the cal-
culation domain,

, (6.40)

where  is the superficial gas velocity and A is the column cross section. For each

population class the corresponding balance is,

, (6.41)

where  is the axial velocity for bubble class i. Combining (6.40) and (6.41)

gives

. (6.42)

The measured data at 0.3 m, must be converted into inlet number densities, assum-
ing a linear relationship gives

, (6.43)

where  is the measured number values (given in tables 6.1 and 6.2). Combining

(6.42) and (6.43), solving for x and inserting for x in (6.43) gives

. (6.44)

The data have thus been normalized to be consistent with the volume (or mass) flux
at the inlet. 

The average gas phase velocity is calculated from the following formula

. (6.45)

P2.0 P0.3⁄( )1 3/ 0.96∼

Q usA=

us

Qi niϑ iua di, A=

ua di,

us niϑ iua di,
i
∑=

ni xñi=

ni
˜

ni ni
˜ us( ) ni

˜ ϑ iua di,( )
i
∑⁄=

uaverage uiniϑ i( )
i
∑ niϑ i( )

i
∑⁄=
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Multi-fluid modeling
6.5  Multi-fluid modeling

The present one-dimensional model, having a constant turbulent dissipation rate,
can easily be extended to two- and three-dimensional cases where the dissipation
fields are non-constant by adding transport equations for turbulent quantities like
the turbulent energy dissipation rate (e.g., a  model). That is, the full two-
fluid model equations have to be solved.

In the churn-turbulent flow regime there are up to four different flow regions;
descending flow, vortical-spiral flow, fast bubble flow and central plume, see
Chen, Reese & Fan (1994). Furthermore, shapes and velocities for the dispersed
phase will vary in the various regions, and in addition to turbulent break-up, tur-
bulent collisions and buoyancy driven collisions between bubbles, dense flow
mechanisms should also be included. Among these mechanisms are the swarming
effects in the fast bubble flow regime. The present model can be used describing
industrial bubble columns operating in the churn-turbulent flow regime, intro-
ducing drag and Sauter mean particle diameter variables to account for shape
effects. The shape of the fluid particles varies significantly within the wider size
distribution. This significantly influences the interfacial drag, heat- and mass-
transfer fluxes. An alternative is to extend the model using shape factors.

When using a multi-fluid model proper boundary conditions are needed, e.g. for
phasic velocities, volume fractions and bubble size, as discussed by Jakobsen
(1993). Normally it is assumed that the gas does not wet the wall indicating that
the gas volume fraction there is zero. By using the time-after volume averaging
procedure the diffusive mass flux through the wall is set to zero by adopting the
boundary condition that the normal volume fraction gradient is equal to zero. This
is clearly not a physical condition and mass weighted velocity variables should
therefore be used, as discussed by Jakobsen (2001). The particle size distribution
obtained just above the distribution plate is very difficult to determine. The current
practice is to assume physically reasonable and uniform bubble size and shape dis-
tributions, and an approximate gas volume fraction (and thus a given phasic veloc-
ity or visa versa). A proper analysis on micro scale determining the Lagrangian
particle distribution should be used developing proper relations for the inlet
boundary value of the gas volume fraction and particle size distribution. Intro-
ductory analyses was performed by Grevskott (1997). However, the flow pattern
is usually not very sensitive to inlet boundary conditions, whereas the interfacial
heat and mass transfer fluxes can be notably affected. This dependents on the
break-up and coalescence rates. At high rates the dynamic equilibrium will be

k ε–
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Modeling of the dispersed phase size distribution in a bubble column
reached close to the inlet boundary, and the transfer fluxes will in this case be insig-
nificantly affected by the chosen inlet gas phase size distribution. At the outlet, the
normal gradients are usually set to zero both for the gas volume fraction and the
number densities. The radial velocity component is also set to zero. This approach
is questionable as the physical flow pattern is turbulent and recirculating zones
exists in this part of the column. Further, the pressure is normally specified at the
outlet. An alternative to the pressure boundary condition is to specify that the axial
velocity gradient is zero at the outlet, but this often reduces the convergence rate
considerably.

6.6  Results and discussion

The basic population model used here is the same as the one used by Hagesaether
et al. (2000). An extended version of the parameterization scheme for particle
breakage developed by Hagesaether et al. (2001) combined with a modification
of the particle-particle collision frequency relation given by Prince & Blanch
(1990) have also been investigated.

In all simulations the local and global mass and bubble number budgets were cal-
culated by integrating the convective fluxes in and out of the boundaries, and the
death and birth rates within the calculation domain. The discrepancies in all bal-
ances were found to be of order close to the machine number representation.

The behavior of the population model using two different versions of the break-
up parameterization scheme, applied to a bubble column is discussed in the fol-
lowing, using the system data given in the previous section. The bubble rise veloc-
ities for the various classes were taken as the experimentally measured axial
velocities at 2.0 m above the inlet of the bubble column. This means that the liquid
velocity profile was indirectly taken into account. The integration time step used
in the calculations was generally 0.001 seconds with the extended break-up model
included, and 0.005 seconds with the basic model of Luo (1993) and Luo & Svend-
sen (1996). The total simulation time was set to 100 seconds, which was more than
enough to obtain steady state conditions. If a larger time step was used with the
extended break-up model, the model gave rise to oscillations in the resulting pro-
files for some of the classes. In space, 32 axial grid cells were used for the cal-
culation domain between 0.3 m and 2.0 m above the column inlet. 

Figure 6.1 shows the bubble distribution for the basic model as log(n) versus the
height of the bubble column. In general, it can be seen that the bubble number den-
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Results and discussion
sity at position 2.0 m increases slowly towards population class 9. After class 9, the
bubble density decreases with bubble size. Based on physical observations, it is
expected that the lowest and the highest population classes will contain very few
bubbles if the prescribed bubble mass (or volume) range is wide enough. If this is
not the case, the assumption of no break-up of the lowest class and no coalescence
of the highest class will influence the results and the prescribed size range has to
be extended.

For the basic break-up model by Luo & Svendsen (1996), the predicted particle
density distribution is given in figure 6.1. The requirement that the prescribed
range of population classes should not affect the simulated results was then eval-
uated by including 3 additional population classes being smaller than the previous
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FIGURE 6.1: Steady state distribution between the two experimental
measuring points in the bubble column. The 14 bubble classes, ranging
from 0.75 mm to about 1.5 cm in diameter, are shown by rows from top left.
Model for break-up, Luo & Svendsen (1996), and coalescence, Luo (1993).
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Modeling of the dispersed phase size distribution in a bubble column
class 1, in a second simulation. The model results from the second simulation, fig-
ure 6.2, show that the mass of gas is further distributed to the lower population
classes. Thus the model predictions are not independent of the prescribed popu-
lation class range. The number densities in the extra classes are about the same as
in the original population classes. Another test, not shown in this work, includes
12 extra classes below class 1. This test also showed a very gradual decrease of the
number densities as the classes got smaller. The smallest additional class had about
10% of the number density of class 1 in the basic setup. Examining the measured
data we find a sharp decrease in the number densities for bubble size classes
smaller than about 0.5-1 mm. It should, however, be noted that the measuring tech-
nique applied has an inherent lower limit of about 0.5-1 mm for detecting bubbles.
It may therefore have been smaller bubbles in the column, but the observed trend
that there is a marked decrease in the number densities for very small bubbles is
believed to be physically realistic.
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Results and discussion
The magnitude of the source terms determining the birth and death rates due to
bubble coalescence and break-up are shown in figure 6.3, as predicted by the basic
model. A general trend that the magnitude of the terms decrease from the entrance
boundary at 0.3 m above the column inlet towards the outlet boundary at 2.0 m
above the column inlet, is observed. The magnitude of the source terms due to coa-
lescence are initially relatively large with a maximum for class 9, but the magni-
tude decreases rapidly within a region of about 0.6 m. This is consistent with the
results shown in figure 6.1, indicating that steady state for the bubble distribution
is nearly reached after about 0.6 m above the inlet boundary. Comparing the cor-
responding profiles from figures 6.1 and 6.2, it can be seen that the particle density
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FIGURE 6.2: Steady state distribution between the two experimental
measuring points in the bubble column. The 17 bubble classes, ranging
from 0.375 mm to about 1.5 cm in diameter, are shown by rows from top left.
The first row contains 3 extra classes which are added below the
experimentally measured bubble sizes. Model for break-up, Luo &
Svendsen (1996), and coalescence, Luo (1993).
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Modeling of the dispersed phase size distribution in a bubble column
profiles are hardly influenced by the population classes added in the second sim-
ulation. Only the first class seem to have been significantly altered by the addition
of the 3 extra classes.

The results obtained by the basic model are not independent of the prescribed pop-
ulation class range in regard to the total number density of bubbles. Though, as
each class is twice the volume of the class below the volume (or mass) distribution
is changed insignificantly with the addition of more classes at the lower end of the
population class distribution.

Figure 6.4 shows a comparison of the corresponding experimental and the basic
model simulated accumulated mass profiles for the gas phase, normalized by the
total amount of bubble mass found experimentally at 2.0 m. It is seen that there is
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Results and discussion
a much higher fraction of smaller bubbles found in the experimental data. The sim-
ulated total volume is about 72% of the experimental one. The deviation is related
to the inaccurate predictions of the bubble size distribution. The larger bubbles
have a higher terminal velocity relative to the smaller ones, indicating that a higher
fraction of larger bubbles will give rise to lower gas hold-up.

To improve on the model predictions for the bubble size distribution, the model
changes suggested by Hagesaether et al. (2001) have been implemented as well as
the modified formulation of the particle-particle collision frequency of Prince &
Blanch (1990). The results obtained based on the extended model are presented in
figure 6.5.
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FIGURE 6.4: Accumulated mass (or volume) as a function of bubble class
at 2.0 m height in the bubble column. Both experimentally measured values
and simulated values are shown. Model for break-up, Luo & Svendsen
(1996), and coalescence, Luo (1993).
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Modeling of the dispersed phase size distribution in a bubble column
These profiles correspond to the results shown in figure 6.1. Comparing the results
presented in the two figures, it can be seen that the extended model version predicts
a stabilization of the size distribution of bubbles within a shorter zone after the
entrance to the calculation domain. This indicates that the source terms are larger
in the extended parameterization. After about 0.3 m above the simulation inlet,
about 0.6 m height in the reactor, steady state is reached for the bubble number den-
sity distribution. For the smallest population classes the number densities pre-
dicted by the extended parameterization deviates more compared to the
experimental data than the results predicted by the model by Luo (1993), but the
results predicted by the extended model are in better agreement with the experi-
mental data for the size classes in the middle of the population class range.
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FIGURE 6.5: Steady state distribution between the two experimental
measuring points in the bubble column. The 14 bubble classes, ranging
from 0.75 mm to 1.5 cm in diameter, are shown by rows from top left. Break-
up model by Hagesaether et al. (2001) and coalescence model by Luo
(1993).
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Results and discussion
The results from adding 3 population classes at the lower end of the population
class range for the extended model version are given in figure 6.6.

As expected, contrary to the results predicted by the original model the extended
model predicts profiles having a sharp drop in the bubble number density toward
the lower classes. The trend observed in these profiles is a result of the energy den-
sity criterion in the bubble break-up parameterization scheme stating that a daugh-
ter bubble can at most have an energy density equal to the colliding eddy. Thus, the
extended model is based on an inherent assumption that for each colliding eddy
there is a minimum size limit for the bubble that can break-up and that there is a
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FIGURE 6.6: Steady state distribution between the two experimental
measuring points in the bubble column. The 17 bubble classes, ranging
from 0.375 mm to 1.5 cm in diameter, are shown by rows from top left. The
first row contains 3 extra classes which are added below the experimentally
measured bubble sizes. Break-up model by Hagesaether et al. (2001) and
coalescence model by Luo (1993).
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Modeling of the dispersed phase size distribution in a bubble column
minimum size for the smallest daughter size fragment being generated in the
break-up process.

Figure 6.7, which is the analogue to figure 6.3, shows the source terms based on
the extended parameterization scheme. The break-up terms predicted by this
model version are much larger than the corresponding ones predicted by the pre-
vious model. This is due to the removal of a break-up criterion used by Luo &
Svendsen (1996), stating that the eddy must be equal or smaller than the colliding
bubble in order to induce break-up, as discussed by Hagesaether et al. (2001).

The accumulated mass (or volume) predicted by the extended model at steady state
for the bubble distribution, is shown in figure 6.8. Comparing the results presented
in figures 6.4 and 6.8, it is seen that the extended model predictions are in much
better agreement with the experimental data than what was obtained by the former
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FIGURE 6.7: Steady state values of the source terms, , ,  and ,
in the transport equation (6.3). Break-up model by Hagesaether et al. (2001)
and coalescence model by Luo (1993).
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Results and discussion
model. As seen from the figure, there are too few particles in the smaller classes
whereas a better fit is obtained for the population classes in the middle of the pop-
ulation size range. The predicted volume fraction is now increased to about 96%
of the experimentally measured one, without introducing any additional model
parameters. The extended model formulation thus seems to provide better esti-
mated for the interfacial heat-, mass-, and momentum transfer fluxes, compared
to the previous one (Luo (1993) and Luo & svendsen (1996)).

Another test was performed in order to check if the break-up parameterization
scheme solely could be the reason for the low number density in the smaller pop-
ulation classes. The coalescence model was in this test turned off for the lowest 5
classes. This modification resulted in number density predictions well above the
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FIGURE 6.8: Accumulated mass (or volume) as a function of bubble class
at 2.0 m height in the bubble column. Both experimentally measured values
and simulated values are shown. Break-up model by Hagesaether et al.
(2001) and coalescence model by Luo (1993).
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Modeling of the dispersed phase size distribution in a bubble column
experimental levels for these classes, as shown in figure 6.9. It thus seems that the
coalescence model predicts too high coalescence probabilities for collisions
within the smallest bubble classes.

For all models considered the turbulent energy dissipation rate was set as a model
parameter fixed at a prescribed value, which was estimated based on the experi-
mental conditions. It is though known that the energy dissipation in a bubble col-
umn varies as a function of axial position, e.g. Grevskott, Sannaes, Dudukovic,
Hjarbo & Svendsen (1996). As a parameter sensitivity analysis, the turbulent

energy dissipation rate was changed from 0.25  to 0.40 , and the
results obtained with the modified parameter value are shown in figure 6.10. It can
be seen from the figure that the void fraction for the simulation becomes approx-
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FIGURE 6.9: Accumulated mass (or volume) as a function of bubble class
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(2001) and coalescence model by Luo (1993). The coalescence terms are
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Results and discussion
imately the same as the experimental one. In this simulation there are still too few
bubbles in the lowest population classes, but the agreement with experimental data
is better.

In a few recent papers, Jakobsen (2001), Krishna, Urseanu, van Baten & Ellen-
berger (1999a), Krishna, Urseanu, van Baten & Ellenberger (1999b), Krishna, van
Baten & Urseanu (2000) and Krishna, van Baten & Urseanu (2001), the interaction
between the interfacial drag and the dispersed phase distribution has been dis-
cussed. For relatively high gas void fraction flows, drag correlations based on
empirical single bubble data have been found unable to predict gas velocity pro-
files with reasonable accuracy compared to experimental data. This has been
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FIGURE 6.10: Accumulated mass (or volume) as a function of bubble class
at 2.0 m height in the bubble column. Both experimentally measured values
and simulated values are shown. Break-up model by Hagesaether et al.
(2001) and coalescence model by Luo (1993). The eddy dissipation rate was
changed to 0.40 m2/s3 (default was 0.25 m2/s3).
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Modeling of the dispersed phase size distribution in a bubble column
related to the inherent limitation that none of these drag relations do explicitly take
into account the hydrodynamic bubble-liquid and bubble-bubble interaction
effects. Krishna et al. (1999a) studied the rise velocity of a swarm of large gas bub-
bles in liquid by use of a multi-fluid model, empirically dividing the bubble dis-
tribution into two size classes. The small bubbles were empirically set to be in the
size range of 3 to 6 mm, whereas the large bubbles were typically in the range of
20-80 mm. The CFD model predictions reported were in very good agreement with
experimental data, but the model suffers from the need of empirical data for deter-
mining the bubble size distribution. In this context, our modeling approach pro-
vides a better modeling framework improving the theoretical analyzes, as it
reduces the need for empirical data on the phase distribution phenomena. An anal-
ysis was performed on the capabilities of the present model for predicting a rea-
sonable bubble number average gas phase velocity. Based on the experimental data
at 2.0 m above the column inlet, a number averaged gas phase velocity of 0.58 m/
s was obtained. The corresponding gas velocity calculated based on the results pro-
vided by the models of Luo (1993) and Luo & Svendsen (1996) was 0.74 m/s,
whereas the extended model of Hagesaether et al. (2001) predicted a number aver-
aged gas phase velocity of 0.60 m/s in good agreement with the experimental data.
With the latter modeling approach it seems possible to improve the predictions of
the bubble number distributions enabling better estimates on the interfacial trans-
fer fluxes for heat-, mass- and momentum within CFD codes. However, the current
break-up and coalescence parameterizations are designed for the homogeneous
bubbly flow regime only. In order to extend the model to the churn turbulent flow
regime, we need to account for flow regime transition mechanisms and regime spe-
cific effects such as bubble swarms. Computational time requirements is also an
important issue. One simulation solving the population balance model with 14 size
classes took approximately 2 hours on a SGI Origin 3800 supercomputer (on one
processor). Combining the dynamic population balance model with a consistent
CFD model will require large computational resources, indicating that these sim-
ulations will benefit substantially from parallelization and performance optimi-
zation of the model. Therefore, research continue in order to develop further
extensions and improve the implementation of this or similar population balance
model formulations within CFD codes (e.g. as is currently performed within com-
mercial codes like CFX (Lo, 1999) and FLUENT (Sanyal, 2001)).
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6.7  Conclusions

A population balance model containing coalescence and break-up parameteriza-
tions have been used to simulate the bubble size distribution within a bubble col-
umn operating in the homogeneous flow regime. The population model with two
different versions of the break-up parameterization scheme, and two different
coalescence rate functions, one for each break-up parameterization, have been
evaluated. The models have been implemented into an in-house code and vali-
dated against experimental number distributions and particle axial velocities
data.

Comparing the results obtained by the two model versions against experimental
data, indicate that the extended model provides an improved description of the
bubble size distribution, hold-up and thus also the volume averaged gas phase
velocity.

Further validation against experimental data are needed in order to evaluate the
capability of the model to predict reasonable size distributions for a variety of
chemical systems and operating conditions. Furthermore, the quantitative
responses due to pertubations in the coalescence rate for some of the population
size classes indicate that further work may be needed on the underlying model for
the coalescence parameterization in particular.

Notation

 cross sectional area of the bubble column, 

 birth break-up, 

 birth coalescence, 

 constant, , -

 death break-up,  

 death coalescence, 

, , bubble (class) diameter, 

minimum daughter break-up size, 

A m2

BB 1 m3s( )⁄

BC 1 m3s( )⁄

C1 C1 1=

DB 1 m3s( )⁄

DC 1 m3s( )⁄

di dj dk m

dk min, m
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eddy energy level, 

energy in eddy of diameter size , 

average energy level in eddy of diameter size , 

function for break-up of particle  into smallest daughter fragment 

due to turbulent kinetic energy in the eddy (the surface criterion), 

function for break-up due to energy density into smallest daughter

fragment  (the energy density criterion), 

normalized function giving the daughter size distribution, -

mass of one particle in population class i, 

mass of one particle in some size class j, 

total number of population classes, -

number density of size i, 

number density of particles in class i, 

number density of eddies in diameter class , 

number density in some size class j, 

number value measured experimentally

pressure, 

break-up probability of bubble with diameter  being hit by eddy

of size , -

break-up probability of a bubble with diameter  being hit by an

eddy of size  breaking up into smallest daughter fragment , -

break-up probability of a bubble with diameter  being hit by

el J

e λ j( ) λ j J

e λ j( ) λ j J

Fs di dk,( ) di dk

J

Fd dk( )

dk J m3⁄

FsFd

mi kg

mj kg

N

ni 1 m3⁄

ndi
1 m3⁄

nλ j
λ j 1 m3⁄

nj 1 m3⁄

ni
˜

P Pa

PB di λ j,( ) di

λ j

PB di λ j dk, ,( ) di

λ j dk

PB di λ j el dk, , ,( ) di
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an eddy of size  with energy level  breaking up into a

smallest daughter diameter fragment , -

coalescence efficiency between two bubbles of diameters  and , -

kinetic energy distribution of eddies in turbulence, -

gas volume flow into the bubble column, 

gas volume flow into the bubble column for population class i, 

 time, 

coalescence time, 

coalescence interaction time, 

velocity vector, 

velocity vector for bubble class i, 

relative velocity between bubbles of diameter sizes  and , 

relative velocity between a bubble of diameter size  and an eddy of

diameter size , 

, axial velocity of bubbles in diameter classes i and j, 

average gas velocity in column, 

bubble class velocity, 

superficial gas velocity, 

, turbulent velocity of bubbles in diameter classes i and j, 

turbulent velocity for an eddy of diameter size , 

 Weber number, -

λ j el

dk

PC di dj,( ) di dj

pe χ( )

Q m3 s⁄

Qi m3 s⁄

t s

tc s

ti s

u m s⁄

ui m s⁄

udi dj, di dj m s⁄

udi λ j, di

λ j m s⁄

ua di, ua di, m s⁄

uaverage m s⁄

ui m s⁄

us m s⁄

udi
udj

m s⁄

uλ j
λ j m s⁄

Weij
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transformation function for conversion of measured bubble numbers

into inlet number concentrations

number fraction for coalescence between volume class  and volume

class , -

number fraction for break-up of volume  into smallest volume class

, -

volume fraction, -

void fraction, -

constant, , -

added mass parameter, , -

 eddy dissipation, 

 volume of the first population class, 

, , volume of population classes i, j and k, 

volume of a fluid particle of size j, 

 eddy diameter class j, 

bubble size fraction, , -

 density, 

 gas density, 

 liquid density, 

 surface tension, 

kinetic energy fraction for eddy in turbulence, , -

 critical breakage energy fraction, -

x

xi j, ϑ i

ϑ j

xi k, ϑ i

ϑ k

α

αG

β β 2.0457=

γ γ 0.5=

ε m2 s3⁄

ϑ 1 m3

ϑ i ϑ j ϑ k m3

ϑ j m3

λ j m

ξ ij ξ ij ϑ i ϑ j⁄=

ρ kg m3⁄

ρG kg m3⁄

ρL kg m3⁄

σ N m⁄

χ χ e λ j( ) e⁄ λ j( )=

χc
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 break-up rate of class with diameter  into smallest daughter class

with diameter , 

 coalescence rate between two bubbles of diameters  and ,

fraction of eddies of diameter size  having energy level , -

 collision frequency between bubble and eddy, 

buoyancy collision frequency between bubble and eddy, 

turbulent collision frequency between bubble and eddy, 

 coalescence collision rate between two bubbles of diameters

 and , 

buoyancy coalescence collision rate between two bubbles of

diameters  and , 

turbulent coalescence collision rate between two bubbles of

diameters  and , 

Indexes used:

i population balance size

i parent break-up bubble

i largest coalescence parent bubble

j largest break-up fragment

j smallest coalescence parent bubble

j random size bubble between classes i and i+1

k daughter size classes

k smallest break-up fragment

l eddy energy classes

ΩB di dk,( ) di

dk 1 m3s( )⁄

ΩC di dj,( ) di dj

1 m3s( )⁄

ω di λ j el, ,( ) λ j el

ωB di λ j,( ) 1 m3s( )⁄

ωB b, di λ j,( ) 1 m3s( )⁄

ωB t, di λ j,( ) 1 m3s( )⁄

ωC di dj,( )

di dj 1 m3s( )⁄

ωC b, di dj,( )

di dj 1 m3s( )⁄

ωC t, di dj,( )

di dj 1 m3s( )⁄
NTNU 185  



Modeling of the dispersed phase size distribution in a bubble column
References

Berge, E. & Jakobsen, H.A. (1998). A Regional Scale Multi-layer Model for the
Calculation of Long-Term Transport and Deposition of Air Pollution in Europe.
Tellus, 50, 205-223.

Buchholz, R., Zakrzewski, W. & Schugerl, K. (1981). Techniques for determining
the properties of bubbles in bubble columns. Int. Chem. Eng., 21, 180-187.

Chen, R.C., Reese, J. & Fan, L.-S. (1994). Flow structure in a three-dimensional
bubble column and three-phase fluidized bed. AIChE Journal, 40, No. 7, 1093-
1104.

Coulaloglou, C.A. & Tavlarides, L.L. (1977). Description of interaction processes
in agitated liquid-liquid dispersions. Chem. Eng. Sci., 32, 1289-1297.

Grevskott, S. (1997). Studies on modelling of bubble driven flows in chemical
reactors. Dr.Ing. Thesis, The Norwegian Institute of Technology, Trondheim.

Grevskott, S., Sannaes, B.H., Dudukovic, M.P., Hjarbo, K.W. & Svendsen, H.F.
(1996). Liquid Circulation, Bubble Size Distribution, and Solids Movement in
Two- and Three-Phased Bubble Columns. Chem. Eng. Sci., 51, No. 10, 1703-1713.

Hagesaether, L., Jakobsen, H.A. & Svendsen, H.F. (2000). A coalescence and
breakup module for implementation in CFD-codes. Computer-Aided Chemical
Engineering, Elsevier Science, 8, 367-372.

Hagesaether, L., Jakobsen, H.A. & Svendsen, H.F. (2001). A model for turbulent
binary breakup of dispersed fluid particles. Accepted for publication in Chem.
Eng. Sci.

Hounslow, M.J., Ryall, R.L. & Marshall, V.R. (1988). A Discretized Population
Balance for Nucleation, Growth, and Aggregation. AIChE Journal, 34, No. 11,
1821-1832.

Jakobsen, H.A. (1993). On the modelling and simulation of bubble column reac-
tors using a two-fluid model. Dr.Ing. Thesis, The Norwegian Institute of Tech-
nology, Trondheim.

Jakobsen, H.A. (2001). Phase distribution phenomena in two-phase bubble col-
umn reactors. Chem. Eng. Sci., 56, 1049-1056.

Krishna, R., Urseanu, M.I., van Baten, J.M. & Ellenberger, J. (1999a). Rise veloc-
ity of a swarm of large gas bubbles in liquids. Chem. Eng. Sci., 54, 171-183.
186 NTNU



Conclusions
Krishna, R., Urseanu, M.I., van Baten, J.M. & Ellenberger, J. (1999b). Influence
of scale on the hydrodynamics of bubble columns operating in the churn-turbulent
regime: experiments vs. Eulerian simulations. Chem. Eng. Sci., 54, 4903-4911.

Krishna, R., van Baten, J.M. & Urseanu, M.I. (2000). Three-Phase Eulerian sim-
ulation of bubble column reactors operating in the churn-turbulent regime: a scale
up strategy. Chem. Eng. Sci., 55, 3275-3286.

Krishna, R., van Baten, J.M. & Urseanu, M.I. (2001). Scale Effects on the Hydro-
dynamics of Bubble Columns Operating in the Homogeneous Flow Regime.
Chem. Eng. Technol., 24 (5), 451-458.

Le Veque, R.J. (1990). Numerical Methods for Conservative Laws. Chapter 16,
Birkhauser Verlag, Basel.

Lo, S. (1999). Application of population balance to CFD modelling of bubbly
flows via the MUSIG model. CFX Technology, UK, Presented at GLS’99 in Delft,
Netherlands.

Luo, H. & Svendsen, H.F. (1996). Theoretical model for drop and bubble break-
up in turbulent dispersions. AIChE Journal, 42, 1225-1233.

Luo, H. (1993). Coalescence, breakup and liquid circulation in bubble column
reactors. Dr.Ing. Thesis, The Norwegian Institute of Technology, Trondheim.

Prince, M.J. & Blanch, H.W. (1990). Bubble Coalescence and Break-Up in Air-
Sparged Bubble Columns. AIChE Journal, 36, 1485-1499.

Roe, P.L. (1986). Characteristic-Based Schemes for the Euler Equations. Ann. Rev.
Fluid Mech., 18, 337-365.

Saffman, P.G. & Turner, J.S. (1956). On collision of drops in turbulent clouds. J.
Fluid Mech., 1, 16-30.

Sanyal, J. (2001). A Break-up and Coalescence Model for Dispersed Gas-Liquid
Flows. Presented at the Fluent User’s Group Meeting, Manchester, NH, USA.

Strang, G. (1968). On the Construction and Comparison of Difference Schemes.
SIAM J. Numer. Anal., 5, No. 3, 506-517.

Svendsen, H.F. & Luo, H. (1996). Modeling of Approach Prosesses for Equal and
Unequal sized Fluid Particles. Can. J. Chem. Eng., 74, 321-330.

Sweby, P.K. (1984). High Resolution Schemes Using Flux Limiters for Hyperbolic
Conservation Laws. SIAM J. Numer. Anal., 21, No. 5, 995-1011.
NTNU 187  



Modeling of the dispersed phase size distribution in a bubble column
van Leer, B. (1974). Towards the Ultimate Conservation Difference Scheme II.
Monotonicity and Conservation Combined in a Second Order Scheme. J. Comp.
Phys., 14, 361-370.
188 NTNU



CHAPTER 7 Conclusions and 
recommendations 
for further work
7.1  General overview

The overall goal of this thesis was to improve upon the understanding of the
break-up and coalescence phenomena by extending earlier models made at the
department for these phenomena. The earlier break-up model was found to be
dependent upon the population balance size distribution used, and no limit for the
lower break-up size nor the amount of break-up existed. All these consistency
problems have been removed by the inclusion of an additional break-up criterion.
The coalescence model was limited to only giving the maximum collision inter-
face radius during the collision between two fluid particles. The new model pre-
dicts both the collision radius and the film thickness as a function of time. The
idea behind the binary coalescence term formulation was to use a Lagrangian
momentum balance model to determine coalescence efficiency and then trans-
form data from this micro-scale model into a coalescence model formulation
suited for inclusion into a macro-scale CFD-program. A force balance model has
been developed, but no clear coalescence criterion was found. Both break-up
models and the existing coalescence model have been implemented into a ‘CFD-
code’. Simulations with the models have been compared to experimental data
from our laboratory, giving a comparison between the two break-up models.
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7.2  General conclusions

A review of population balance models has been written, with focus on the coa-
lescence probability. Details for film drainage, dimpling of the film, non-ideal
systems, force balances and non-ideal collisions are given. Some experimental
data for the coalescence process are also reviewed. A Lagrangian momentum bal-
ance model was envisioned for coalescence probability calculations, thus giving
the general layout and focus of the review.

Collision model:

A general collision model was developed accounting for the following mecha-
nisms:

• different sized fluid particles

• exact volume formulations (new)

• damped oscillations of the particles (new)

• oscillation phase angle at contact (new)

• energy loss through dissipation (new)

• film drainage (new)

A force balance is solved for each individual particle, and the interaction between
the fluid particle collision and the film drainage is calculated and used to find the
shape of the particles. The film contact area and the force balance dictate the film
drainage. The outputs of the model are the collision interface area and the film
thickness, in addition to the length variables of each fluid particle. Generally it is
found that collisions that end in rebound have a tendency to contain thicker films
than collisions that coalesce, but no reliable coalescence criterion was found. The
simulation of the collision interface radius and the contact time were in most cases
in good agreement with experimental data.

Break-up model:

An improved fluid particle break-up model was developed. This model includes
a new criterion requiring the energy density of the daughter particles generated to
be less or equal to the energy density of the eddy, generating the break-up. This cri-
terion limits the degree of break-up through limiting the lower possible size of
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daughter particles. The model calculates a probability distribution for the daughter
sizes, and equal sized daughter particles are favoured in most cases due to the
energy density criterion which limits the rate of break-up in most cases. The other
criterion, the surface energy criterion, states that the increase in surface energy due
to the break-up must be less or equal to the energy available from the colliding
eddy. This criterion favours unequal breakage and is most limiting when small
fluid particles and small eddies collide. A criterion used in earlier models requiring
eddies to be smaller in size than the fluid particle in the collision, has been
removed. The theory predicts that eddies of larger sizes are important for the rate
of break-up and thus also for the daughter size distribution probability.

Population balance:

Underlying algebraic models for the sink and source terms for break-up and coa-
lescence, initially containing integral terms, have been formulated into algebraic
approximations for use in a population balance. Through these terms, two different
break-up models and a coalescence model have been implemented into an in-
house ‘CFD code’. The simulation results from the implementation were com-
pared with experimental data from a bubble column in our laboratory. When com-
paring the accumulated mass for the gas phase given as a function of the bubble
sizes, the new model give a closer fit to the experimental data. There are generally
too few bubbles in the smallest classes, but an evaluation of the coalescence terms
for these classes shows that this may as well be a result of too much coalescence
as too little break-up. Overall the comparison is good. Increasing the turbulent
eddy dissipation parameter results in an even closer fit to the experimental data and
shows that the turbulent eddy dissipation is an important variable in the system, as
expected.

7.3  Recommendations for further work

The force balance model needs to be extended, as additional mechanisms seem to
be relevant. The most important ones are off centre collisions and the contact
angle at collision. Currently only collisions that are head on and along the same
axis are considered. For the contact angle one may use only the head-on compo-
nent as an approximation, but this leaves out the physical mechanism of one fluid
particle rolling off another one. This may also be the case if the collision is not
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perfectly head-on. Further, a flat interface is assumed. This may be a good
assumption in most relevant cases, but for verification one should solve for the
film thickness as a function of the radius of the contact area.

The original scope of the model was to find a coalescence criterion. In order to try
to find a coalescence criterion which is valid for all situations listed above, the sur-
face shape for the whole particles should be solved. One should also solve for the
film thickness at all contact points, and for the flow in the fluid particles them-
selves. In this way one may not only evaluate if the two fluid particles coalesce (if
a coalescence criterion is found), but also if the coalescence is stable or not. In addi-
tion, one may be able to find some criterion for the tearing up of fluid particles,
which sometimes happens when particles collide. Such simulations as described
above would require much more computational time than a simple force balance,
but as the force balance model itself already is too complicated for direct inclusion
into a CFD-code, one may as well try to solve the collision process completely.
This should probably be done in a customized CFD code.

Additional and more detailed experimental data for the collision process between
two fluid particles are needed to validate the present coalescence model and future
extensions. The following variables should be measured, for example by use of a
high speed digital camera:

• contact area

• film thickness for the contact area

• overall particle shape (and the mass centre positions)

• flow inside the dispersed particles

• flow in the draining film

• the (induced) oscillation of the fluid particles

• the pressure field in the contact area

The impact of the following variables or phenomena should be validated:

• impact velocity

• impact angle

• impact position (off centre collisions)

• phase angles

• sizes of fluid particles

• density
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• viscosity

• surface tension

• mass transfer

• heat transfer

All these variables and phenomena are likely to influence the coalescence prob-
ability and should thus be included when gathering data for the collision process.

The break-up model in the current state only applies to turbulent flow (with buoy-
ancy included). Obviously, modifications for other flow phenomena (or combi-
nations of flow phenomena) should be included in order to make the model more
general. Further, only binary breakage is included. There are break-up processes
that lead to more than two daughter particles. Such processes should be included
in a more general model. For the break-up model that is applicable in a turbulent
environment there are also some improvements or possible improvements that
should be looked into. Most noteworthy is the assumption that prior collisions do
not affect the break-up probability. This is a simplification that for low levels of
turbulence has been shown to be incorrect. A possible suggestion for this is
included in the thesis. Another possible improvement is the inclusion of an acti-
vated state that the fluid particle must go through in order to break up. As indicated
in the thesis such an activated state would require more surface energy than both
the parent particle and the combined daughter particles, thus this state should fur-
ther limit the amount of break-up in some cases (when the surface energy limits the
break-up rate). Further, since large eddies are shown to be important, the turbu-
lence structure outside the inertial range should be better described.

The current version of the population balance and the source terms are limited to
each class being twice the mass (or volume) of the class below. The code should
be made more flexible by allowing any class division. This is more of an imple-
mentation problem as the governing equations are already given. Lastly, the CFD
model used has so far only been formulated and implemented in one spatial dimen-
sion only, the model should be extended to 2D/3D.
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APPENDIX A Population 
balances
The primary function of this appendix is to show in detail how to calculate the
source terms for break-up for the model by Luo (1993), and how the birth and
death terms for break-up and coalescence are found.

A.1 Finding the population balance like equation

In order to solve a population balance model for say the different dispersed gas par-
ticle sizes in a bubble column one need to couple the population balance to the flow
model for the continuous phase. Starting with the continuity equation for the dis-
persed phase:

 , (A.1)

and using the following definition for the volume fraction

 , (A.2)

together with a Favre averaged velocity,

t∂
∂ ρα( ) ∇ ρ uα( )⋅+ 0= kg m3s( )⁄[ ]

α ni
π
6
---dv i,

3

i
∑=

# bubbles volume per average bubble⋅
control volume

-------------------------------------------------------------------------------------------- -[ ]=
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, (A.3)

this gives in analogy to population balances a transport equation for each class

 . (A.4)

In eq (A.4) above one have the source and sink terms given as  on the right hand

side. Without mass transfer between classes  is equal to zero. From population
balances one has that

 , (A.5)

which gives

. (A.6)

Combining eq (A.4) and eq (A.6) gives

 , (A.7)

which is the equation that has to be solved together with the flow equations for the
continuous phase.

A.2  Split into classes

A population balance model divides the dispersed phase into different classes
according to some criteria. In this case we divide by mass, or volume since we
approximate the same density in all population classes. We choose to divide the
dispersed phase into classes that are exactly twice as large as the class below. This
means that we split the dispersed phase which got an assumed continuous size
distribution into a finite number of classes with discrete size. How to treat sizes
that fall between the discrete sizes available is shown below.

When choosing that each class is twice the volume of the class below we get

, , ... (A.8)

u niuiρϑ i( ) niρϑ i( )
i
∑⁄

i
∑=

t∂
∂ ρinidv i,

3π
6
--- 

  ∇ ρ iuinidv i,
3π
6
--- 

 ⋅+ S’= kg m3s( )⁄[ ]

S’

S’

S BB DB– BC DC–+[ ]= 1 m3s( )⁄[ ]

S’ Sϑ iρi=

t∂
∂ ρini( ) ∇ ρ iuini( )⋅+ ρi BB DB– BC DC–+[ ]= kg m6s( )⁄[ ]

ϑ 2 2ϑ 1= ϑ 3 2ϑ 2=
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which gives

. (A.9)

Note that the factor two between each class is not arbitrarily chosen. It will be
shown later that a factor lower than two complicates the allocation of particles into
classes when coalescence or break-up occurs. Further a factor higher than two will
decrease the accuracy of the simulations while at the same time decrease compu-
tation time. We choose to maximize the accuracy as this is not a commercial code
where computational speed needs to be optimized.

A given particle of random size must be assigned to one or more classes. When
using this kind of population balance the particle is assigned to the two closest
classes. The following formula is used

, (A.10)

where  is the particle of random size,  is the multiplication factor to the min-

imum class size,  is the fraction assigned to class  and  is assigned to class

. Notice that the number balance of particles is not changed in this oper-
ation. One particle is divided into two classes but the two classes add up to one par-
ticle and the volume balance is still satisfied. Both the number and the volume
balance are kept for any class division, not just for the factor two scaling chosen
in eq (A.9). Eq (A.10) is one equation with two unknowns,  and , but is limited

to  which gives only one possible positive integer value for  when

.

A.3  Break-up

Limitations in the population balance are that the smallest particle class may not
be broken up and that no daughter fragment may be smaller than the smallest par-
ticle class. Further, only break-up into two daughter particles is considered. The
break-up model is taken from Luo (1993) and Luo & Svendsen (1996), and is
based on the arrival of turbulent eddies to the surface of the fluid particles. This
brings about an increase in the surface energy through deformation, and if the
increase is high enough fragmentation occurs. The model is given as

ϑ i 2 i 1–( )ϑ 1=

ϑ yϑ 1 xϑ i 1 x–( )ϑ i 1++ x2 i 1–( )ϑ 1 1 x–( )2iϑ 1+= = =

ϑ y

x i 1 x–( )
i 1+( )

x i

x 0 1,[ ]∈ i

x 0 1( , )∈
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, (A.11)

where

,  and . (A.12)

For the mean turbulent velocity, , Luo uses

, (A.13)

where the theoretical value for  is 2.41 and the measured value is 2.0, Luo (1993).

The integration in eq (A.11) is not straight forward, numerically one need to use
the incomplete gamma function and the gamma function to solve the integral. How
to get from the integral part of eq (A.11) to a numerical implementation of it is
shown below. Starting with writing out the integral part of eq (A.11) we get

. (A.14)

The constants in the exponential part of eq (A.14) may be written as

, (A.15)

giving

. (A.16)

ΩB ϑ i ϑ ifBV,( ) c3 1 εG–( )ni
ε

di
2

----- 
  1 3/ 1 ξ+( )2e χC–

ξ11 3/
------------------------------ ξd

ξmin

1

∫=

χC

12cfξ 11 3/–

Wei
-------------------------= Wei ρLdiui

2 σ⁄= cf fBV
2 3/ 1 fBV–( )2 3/ 1–+=

ui
2

ui
8u2

3π
-------- 
 

1 2/ 8β
3π
------ 
 

1 2/
εdi( )1 3/ β1 2/ εdi( )1 3/= = =

β

Ω’

1 ξ+( )2
12cfσ

ρLdi β1 2/ ελ( )1 3/( )2ξ11 3/
------------------------------------------------------------–

 
 
 

exp

ξ11 3/
-------------------------------------------------------------------------------------------------- ξd

ξmin

1
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γ’
12cfσ

ρLdiβε2 3/
------------------------=

Ω’

1 ξ+( )2 γ’
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----------------------– 
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∫=
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Since  eq (A.16) may be written as

, where . (A.17)

The next step is to change the integration variable. By using , the

derivative, which is , and the change of limits

 and  we get

. (A.18)

Simplifying and using that  gives

. (A.19)

Further simplification gives

, (A.20)

where each of the three integration parts may be solved with an incomplete gamma
function and a gamma function both which are defined and solved in chapter 6 of
Numerical Recipes, Press, Teukolsky, Vetterling & Flannery (1992). The gamma
function is defined by the integral

, (A.21)

and the incomplete gamma function is defined by

ξ λ di⁄=

Ω’

1 ξ+( )2 γ
ξ13 3/
------------– 

 exp

ξ11 3/
-------------------------------------------------- ξd

ξmin

1

∫= γ γ’
di

2 3/
----------=

t γ ξ13 3⁄⁄=

td 13 3⁄( ) γ ξ16 3/⁄( ) ξd–=

ξmin 0 t ∞→⇒∼ ξ 1 t⇒ γ= =

Ω’
1 ξ+( )2e t–

ξ11 3/
--------------------------

3
13
------ξ16 3/– 

  td

∞

γ

∫=

ξ γ t⁄( )3 13/=

Ω’
3

13γ
-------- 1 2

γ
t
-- 
  3 13/ γ

t
-- 
  6 13/

+ + 
  γ

t
-- 
  3 13/

 
  5 3/

e t– td

γ

∞

∫=

Ω’
3

13γ
--------

γ
t
-- 
  5 13/

2
γ
t
-- 
  8 13/ γ

t
-- 
  11 13/

+ + 
  e t– td

γ

∞

∫=

Γ z( ) tz 1– e t– td

0

∞

∫=
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Population balances
, . (A.22)

The compliment of  is also confusingly called an incomplete gamma func-
tion and it is defined as

, . (A.23)

Thus, the first term in (A.20) is written as

. (A.24)

Note that Numerical Recipes returns the natural logarithmic value of , thus
the implementation of eq (A.24) in FORTRAN should be

, (A.25)

the 2nd and 3rd term of eq (A.20) are similarly implemented. Note that the approx-
imation  has been used. It is quite possible to solve the equation without

this approximation, though it requires a few more gamma terms to be solved.

By using eq (A.25) it is possible to solve eq (A.11), but  is only the

chance of one particular fluid particle, , breaking up into another, , and

a corresponding daughter particle. Obviously the total breakage of  may be writ-

ten as the integral

, (A.26)

P a x,( ) γ a x,( )
Γ a( )

----------------
1

Γ a( )
----------- ta 1– e t– td

0

x

∫≡ ≡ a 0>( )

P a x,( )

Q a x,( ) 1 P a x,( ) Γ a x,( )
Γ a( )

-----------------
1

Γ a( )
----------- ta 1– e t– td

x

∞

∫≡ ≡–≡ a 0>( )

Ω1’
3

13γ
--------γ5 13/ Q

8
13
------ γ, 
  Γ 8

13
------ 
 =

Γ a( )

Ω1’
3
13
------γ 8 13/– gammq

8
13
------ γ, 
  gamm

8
13
------ 
 ln 

 exp=

ξmin 0∼

ΩB ϑ i ϑ ifBV,( )

ϑ i ϑ ifBV

ϑ i

ΩB i( ) 1
2
--- ΩB ϑ i ϑ ifBV,( ) fBVd

0

1

∫ ΩB ϑ i ϑ ifBV,( ) fBVd

0

1 2⁄

∫= =
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Break-up
where the factor 1/2 in front of the first integral is to avoid counting each fragment
twice. Due to symmetry only half of the interval need to be integrated as in the sec-
ond integral in eq (A.26). Eq (A.26) may also be written as

, (A.27)

as the  values are found numerically it may seem like a good idea

to use these values in order to find . For  classes the values of 

will be . These values are ill posed

for the summation in eq (A.27). With few values, low N, the accuracy will obvi-
ously not be high enough. When N is large most of the  values will be very low,

i.e. ill posed for finding the summation in eq (A.27).

In our FORTRAN code we find  by choosing M equidistant points between

0 and 0.5. For  this gives 10 values from 0.025 to 0.475. Thus

. (A.28)

We want to transfer the continuous breakage into the discrete points . This is

done by normalizing the discrete points to the total breakage rate, i.e. using

, (A.29)

where  and  are from eq (A.26) and 

is from eq (A.28). By using , also written as , we are now

able to express the breakage source terms algebraically.

ΩB i( ) ΩB ϑ i ϑ ifBV,( )∆fBV

fBV

∑=

ΩB ϑ i ϑ ifBV,( )

ΩB i( ) i 1 .. N= fBV

fBV 0.5 i2⁄ 0.5 0.25 0.125 0.0625  ..., , , ,= =

fBV

ΩB i( )

M 10=

ΩB i( ) ΩB ϑ i ϑ ifBV,( ) 0.05⋅

j 1=

10

∑=

ϑ i

ΩB ϑ i ϑ ifBV,( )
ΩB ϑ i ϑ ifBV,( )

ΩB ϑ i ϑ ifBV,( ) fBVd

0

1 2⁄

∫
-----------------------------------------------------ΩB i( )=

ΩB ϑ i ϑ ifBV,( ) ΩB ϑ i ϑ ifBV,( ) fBVd

0

1 2⁄

∫ ΩB i( )

ΩB ϑ i ϑ ifBV,( ) ΩB ϑ i ϑ j,( )
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A.4  Coalescence

A limitation in the population balance is that the largest particle class may not
coalescence with any classes. We further limit the model to two particle coales-
cence. The model used is taken from Luo (1993), and is a combination of a col-
lision frequency and a collision probability,

. (A.30)

The coalescence probability is expressed as

, (A.31)

where

 and . (A.32)

The coalescence collision rate is written as

, (A.33)

and is based on kinetic gas theory, i.e. collisions between gas molecules.

A.5  Break-up in population balance

When assuming that all break ups are binary, the break-up may be written as

, (A.34)

where  is smaller or equal to  in size. In the models used we assume that 

is of a size identical to a particle class smaller than the particle which is split ( ).

 must thus be of size  or larger, which may not be the case if we had used

a factor lower than 2 for the population class division.  is divided into class

 and class  the following way

(A.35)

ΩC ϑ i ϑ j,( ) ωC ϑ i ϑ j,( )PC ϑ i ϑ j,( )=

PC ϑ i ϑ j,( ) c1

0.75 1 ξ ij
2+( ) 1 ξ ij

3+( )[ ] 1 2/

ρG ρL⁄ γ+( )1 2/ 1 ξ ij+( )3
----------------------------------------------------------------Weij

1 2/–
 
 
 

exp=

Weij ρLdiuij
2 σ⁄= uij ui

2 uj
2+( )1 2/=

ωC ϑ i ϑ j,( ) π 4⁄( ) di dj+( )2ninjuij=

ϑ i ϑ j ϑ k+→

ϑ k ϑ j ϑ k

ϑ i

ϑ j ϑ i 1–

ϑ j

i 1–( ) i

ϑ j xi k, ϑ i 1– 1 xi k,–( )ϑ i+=
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Break-up in population balance
In addition we express the volume as a function of the two other particles and use
the base volume, i.e. volume of class 1.

(A.36)

Combining eq (A.9), eq (A.35) and eq (A.36) gives

, (A.37)

where  is the fraction in class  and  is the fraction in class . Thus

a break-up of a particle gives the following

(A.38)

A test case with  gives the following break-up terms (simplified form used,

 written as ):

, , , Note that size 1 does not break up and that we

, , naturally get fewer break-up possibilities as the

. particles get smaller.

Each of the terms above must be assigned to different classes:

,

,

,

,

,

.

ϑ j yϑ 1 ϑ i ϑ k– 2 i 1–( )ϑ 1 2 k 1–( )ϑ 1–= = =

xi k, 21 k i–+= k i<

xi k, i 1– 1 xi k,–( ) i

ϑ i ϑ k xi k, ϑ i 1– 1 xi k,–( )ϑ i+ +→

N 4=

ΩB ϑ i ϑ k,( ) Ω i k,( )

Ω 4 3,( ) Ω 4 2,( ) Ω 4 1,( )

Ω 3 2,( ) Ω 3 1,( )

Ω 2 1,( )

Ω 4 3,( ) Ω 4 3,( ) in class 3, x4 3, Ω 4 3,( ) in 3 and (1-x4 3, )Ω 4 3,( ) in 4→

Ω 4 2,( ) Ω 4 2,( ) in class 2, x4 2, Ω 4 2,( ) in 3 and (1-x4 2, )Ω 4 2,( ) in 4→

Ω 4 1,( ) Ω 4 1,( ) in class 1, x4 1, Ω 4 1,( ) in 3 and (1-x4 1, )Ω 4 1,( ) in 4→

Ω 3 2,( ) Ω 3 2,( ) in class 2, x3 2, Ω 3 2,( ) in 2 and (1-x3 2, )Ω 3 2,( ) in 3→

Ω 3 1,( ) Ω 3 1,( ) in class 1, x3 1, Ω 3 1,( ) in 2 and (1-x3 1, )Ω 3 1,( ) in 3→

Ω 2 1,( ) Ω 2 1,( ) in class 1, x2 1, Ω 2 1,( ) in 1 and (1-x2 1, )Ω 2 1,( ) in 2→
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Population balances
The break-up death rate may thus be written as

, , (A.39)

and the break-up birth rate must thus be written as

, ,(A.40)

Notice that the last term in eq (A.40) could have been defined as a negative term
in the death rate, eq (A.39). It is just a matter of definition where it is put as long
as the total change in the class, , remains the same.

By writing out all the terms for all  one will get all the terms written in the test case.
Further, eq (A.39) and eq (A.40) can be checked by taking the total volume balance
for all the classes

. (A.41)

For a  case the terms for the volume balance are (simplified form used) writ-
ten below. Note that the multiplication factors for the volumes are written in the
right side column. These factors must be included when cancelling out terms of dif-
ferent sizes.

: 

: 

: 

DB i( ) ΩB i k,( )

k 1=

i 1–

∑= i 2 .. N=

BB i( ) ΩB k i,( )

xi 1 k,+ ΩB i 1 k,+( ) 1 xi k,–( )ΩB i k,( )

k 1 i 1≠,=

i 1–

∑+

k 1 i N≠,=

i

∑

+

k i 1 i N≠,+=

N

∑= i 1 .. N=

BB i( ) DB i( )–

i

BB i( ) DB i( )–( )ϑ i[ ]

i 1=

N

∑ 0=

N 4=

i 1= Ω 2 1,( ) Ω 3 1,( ) Ω 4 1,( ) x2 1, Ω 2 1,( )+ + + ϑ 1⋅

i 2= Ω 3 2,( ) Ω 4 2,( ) x3 1, Ω 3 1,( )
x3 2, Ω 3 2,( ) 1 x2 1,–( )Ω 2 1,( ) Ω 2 1,( )–

+ + +
+

ϑ 2⋅

i 3= Ω 4 3,( ) x4 1, Ω 4 1,( ) x4 2, Ω 4 2,( ) x4 3, Ω 4 3,( )
1 x3 1,–( )Ω 3 1,( ) 1 x3 2,–( )Ω 3 2,( ) Ω 3 1,( )– Ω 3 2,( )–

+ + +
+ +

ϑ 3⋅
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Break-up in population balance
: 

Cancelling terms of same sizes, inserting  and using 

gives:

: 

: 

: 

: 

This simplifies to:

: 

: 

: 

: 

All terms above cancels out which indicates that the terms for birth and death are
correct. For the  term we see that we have one term in the 1st class, half
a term in the 2nd class which is of course pre-multiplied with the factor 2 for
belonging to the 2nd class and finally a factor 4 for the 3rd class multiplied by a
negative half term. The cancellation is thus as follows

, (A.42)

where the volume factor is multiplied with the size of  in each class. Thus,

since all terms cancels out similarly it is shown that for the  case the 1st term
of eq (A.41) equals the 2nd term.

i 4= 1 x4 1,–( )Ω 4 1,( ) 1 x4 2,–( )Ω 4 2,( ) 1 x4 3,–( )Ω 4 3,( )
Ω 4 1,( )– Ω 4 2,( )– Ω 4 3,( )–

+ + ϑ 4⋅

xi k, 21 k i–+= ϑ i 1+ 2ϑ i=

i 1= Ω 2 1,( ) Ω 3 1,( ) Ω 4 1,( ) 2
1 1 2–+ Ω 2 1,( )+ + + 1⋅

i 2= Ω 3 2,( ) Ω 4 2,( ) 2
1 1 3–+ Ω 3 1,( )

2
1 2 3–+ Ω 3 2,( ) 2

1 1 2–+ Ω 2 1,( )–
+ + + 2⋅

i 3= Ω 4 3,( ) 2
1 1 4–+ Ω 4 1,( ) 2

1 2 4–+ Ω 4 2,( )
2

1 3 4–+ Ω 4 3,( ) 2
1 1 3–+ Ω 3 1,( )– 2

1 2 3–+ Ω 3 2,( )–
+ + + 4⋅

i 4= 2
1 1 4–+ Ω 4 1,( )– 2

1 2 4–+ Ω 4 2,( )– 2
1 3 4–+ Ω 4 3,( )– 8⋅

i 1= 2Ω 2 1,( ) Ω 3 1,( ) Ω 4 1,( )+ + 1⋅

i 2= 2Ω 3 2,( ) Ω 4 2,( ) 0.5Ω 3 1,( ) Ω 2 1,( )–+ + 2⋅

i 3= 2Ω 4 3,( ) 0.25Ω 4 1,( ) 0.5Ω 4 2,( ) 0.5Ω 3 1,( )– Ω 3 2,( )–+ + 4⋅

i 4= 0.25Ω 4 1,( )– 0.5Ω 4 2,( )– Ω 4 3,( )– 8⋅

Ω 3 1,( )

Ω 3 1,( ) : 1 1 2 0.5 4 0.5–( ) 8 0⋅+⋅+⋅+⋅ 0=

Ω 3 1,( )
N 4=
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A.6  Coalescence in population balance

When two equal sized particles coalesce the resulting particle will be of one class
higher than the two colliding particles. Thus,

. (A.43)

Note that this is only true if and only if we use eq (A.9) with the factor 2 between
the classes. When two unequal sized particles collide the coalesced particles will
be of a size larger than the largest colliding particle but smaller than the class above
the largest particle. It has to be smaller than the next class since this class is twice
the volume of the class below, i.e. twice the volume of the largest particle. This
clearly demonstrates the advantage of using the factor 2 when dividing the coa-
lescence population into classes. When two particles collide the resulting particle
will always be placed in the same class as the largest particle and the class above.
When using a factor lower than 2 this may not be the case. If we assume  to be
the largest of the two particles colliding this gives

. (A.44)

We may also write the two colliding particles as multiples of the base form (class 1)

. (A.45)

Combining eq (A.9), eq (A.44) and eq (A.45) gives

, , (A.46)

where  is the fraction in class  and  is the fraction in class .

A test case with  gives the following coalescence terms (simplified form

used,  is written as ):

, , , Size 4 does not coalesce and .

, , Further note that for a  coalescence two

, particles are removed from class .

ϑ i ϑ i ϑ i 1+→+

i

ϑ i ϑ j xi j, ϑ i 1 xi j,–( )ϑ i 1++→+ xi j, 2i 1– 1 xi j,–( )2i+( )ϑ 1=

ϑ i ϑ j+ 2i 1– 2j 1–+( )ϑ 1=

xi j, 1 2j i––= i j≥

xi j, i 1 xi j,–( ) i 1+

N 4=

ΩC ϑ i ϑ j,( ) Ω i j,( )

Ω 1 1,( ) Ω 2 1,( ) Ω 3 1,( ) Ω i j,( ) Ω j i,( )=

Ω 2 2,( ) Ω 3 2,( ) Ω i i,( )

Ω 3 3,( ) i
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Coalescence in population balance
Each of the terms above must be assigned to different classes:

,

,

,

,

,

.

For the  coalescence one must also include the factor  in the 

expression to avoid counting each collision twice, Laider & Meiser (1982).

The coalescence death rate may thus be written as

, , (A.47)

and the coalescence birth rate must be written as

          , . (A.48)

By writing out all the terms for all  one will get all the terms written in the test case.
Further, (A.47) and (A.48) can be checked by taking a volume balance

. (A.49)

Ω 1 1,( ) x1 1, Ω 1 1,( ) in class 1 and 1 x– 1 1,( )Ω 1 1,( ) in class 2→

Ω 2 1,( ) x2 1, Ω 2 1,( ) in class 2 and 1 x– 2 1,( )Ω 2 1,( ) in class 3→

Ω 3 1,( ) x3 1, Ω 3 1,( ) in class 3 and 1 x– 3 1,( )Ω 3 1,( ) in class 4→

Ω 2 2,( ) x2 2, Ω 2 2,( ) in class 2 and 1 x– 2 2,( )Ω 2 2,( ) in class 3→

Ω 3 2,( ) x3 2, Ω 3 2,( ) in class 3 and 1 x– 3 2,( )Ω 3 2,( ) in class 4→

Ω 3 3,( ) x3 3, Ω 3 3,( ) in class 3 and 1 x– 3 3,( )Ω 3 3,( ) in class 4→

Ω i i,( ) 1 2⁄ ωC i i,( )

DC i( ) ΩC ϑ i ϑ j,( ) ΩC ϑ i ϑ i,( )+

j 1=

N 1–

∑= i 1 .. N-1=

BC i( ) xi j, ΩC ϑ i ϑ j,( )

1 xi 1 j,––( )ΩC ϑ i 1– ϑ j,( )

j 1=

i 1–

∑

+

j 1 i N≠,=

i 1–

∑= i 2 .. N=

i

BC i( ) DC i( )–( )ϑ i[ ]

i 1=

N

∑ 0=
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Population balances
For a  case the terms for the volume balance are (simplified form used):

: 

: 

: 

: 

Cancelling terms, removing  terms and using  gives:

: 

: 

: 

: 

Inserting  and cancelling terms gives:

: 

: 

: 

: 

All terms above cancels out which indicates that the terms for birth and death are
correct. For the  term the cancellation is as follows

. (A.50)

N 4=

i 1= Ω 1 1,( )– Ω 2 1,( )– Ω 3 1,( )– Ω 1 1,( )– ϑ 1⋅

i 2= x2 1, Ω 2 1,( ) 1 x1 1,–( )Ω 1 1,( )
Ω 2 1,( )

–
Ω 2 2,( )– Ω 2 3,( )– Ω 2 2,( )–

+ ϑ 2⋅

i 3= x3 1, Ω 3 1,( ) x3 2, Ω 3 2,( ) 1 x2 1,–( )Ω 2 1,( )
1 x2 2,–( )Ω 2 2,( ) Ω 3 1,( )– Ω 3 2,( )– Ω 3 3,( )– Ω 3 3,( )–

+ + + ϑ 3⋅

i 4= 1 x3 1,–( )Ω 3 1,( ) 1 x3 2,–( )Ω 3 2,( ) 1 x3 3,–( )Ω 3 3,( )+ + ϑ 4⋅

xi i, 0= ϑ i 1+ 2ϑ i=

i 1= Ω 2 1,( )– Ω 3 1,( )– 1⋅

i 2= x2 1, Ω 2 1,( ) Ω 2 1,( )– Ω 2 3,( )– 2⋅

i 3= x3 1, Ω 3 1,( ) x3 2, Ω 3 2,( ) Ω 2 1,( )
x2 1,

–
Ω 2 1,( ) Ω 3 1,( )– Ω 3 2,( )–

+ + 4⋅

i 4= Ω 3 1,( ) x3 1,– Ω 3 1,( ) Ω 3 2,( ) x3 2,– Ω 3 2,( )+ 8⋅

xi j, 1 2j i––=

i 1= Ω 2 1,( )– Ω 3 1,( )– 1⋅

i 2= 0.5Ω 2 1,( )– Ω 2 3,( )– 2⋅

i 3= 0.25Ω– 3 1,( ) 0.5Ω 2 1,( ) 0.5Ω 3 2,( )–+ 4⋅

i 4= 0.25Ω 3 1,( ) 0.5Ω 3 2,( )+ 8⋅

Ω 3 1,( )

Ω 3 1,( ) : 1 1–( ) 2 0 4 0.25–( ) 8 0.25⋅+⋅+⋅+⋅ 0=
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Incorporation into the transport equation
A.7  Incorporation into the transport equation

The transport equation with source terms eq (A.7) is solved numerically by using
the fractional time step method, Berge & Jakobsen (1998), and by splitting the
convective, diffusive and source terms into their components in the coordinate
directions and solving them sequentially. Strang (1968) pointed out that the accu-
racy of such a splitting depends on the accuracy of how each individual term is
numerically solved and on the accuracy of the splitting itself. The splitting used
can be shown to be of second order in time.

As an explicit method is used to solve the source terms care has to be taken with
the timestep needed for the integration. It is very likely that the timestep needed
for the source terms is quite different from what is needed for the flow and pressure
fields. Further, the timestep needed for the source terms may vary greatly between
different population classes and likewise between different locations in the grid.

Thus, the change and size of the source terms have to be carefully monitored.

Symbols

a exponent in incomplete gamma function

birth from break-up, 

birth from coalescence, 

constant in order of unity, -

constant, -

coefficient, -

, diameters of bubbles in classes i and j, 

diameter of average fluid particle of class i, 

death from break-up, 

death from coalescence, 

breakage volume fraction, -

i, j, k class numbers, -

BB 1 m3s( )⁄

BC 1 m3s( )⁄

c1

c3

cf

di dj m

dv i, m

DB 1 m3s( )⁄

DC 1 m3s( )⁄

fBV
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N total number of classes, -

number in class , 

incomplete gamma function

coalescence efficiency for particles of volumes  and  colliding, -

(complementary) incomplete gamma function

S source terms, 

source terms, 

t time, 

t integration variable, see eq (A.18), -

Favre averaged velocity, 

, average velocities for classes i and j, 

relative velocity between particles of classes i and j, 

Weber number for fluid particle of class i, -

Weber number for collision between fluid particles of classes i and j, -

x volume fraction, -

x lower limit in incomplete gamma function

coalescence between classes i and j gives a volume fraction in class i, -

break-up of class i gives a volume fraction of second particle, , into

class i-1, -

y multiplication factor, see eq (A.10), -

z exponent in gamma function

volume fraction, -

constant, 

ni i 1 m3⁄

P a x,( )

PC ϑ i ϑ j,( ) ϑ i ϑ j

Q a x,( )

1 m3s( )⁄

S’ kg m3s( )⁄

s

u m s⁄

ui uj m s⁄

uij m s⁄

Wei

Weij

xi j,

xi k, ϑ j

α

β β 2.05≅
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Incorporation into the transport equation
constant, 

, gamma function

part of complimentary incomplete gamma function

added mass parameter, -

constant, see eq (A.17), -

constant, see eq (A.15), 

part of incomplete gamma function

eddy dissipation, 

void fraction, -

volume, 

, , volume of fluid particles of class sizes 1, 2 and 3, 

, , volume of fluid particles of class i, j and k, 

eddy diameter, 

size ration, , -

size ration, , -

minimum size ration for break-up, -

density, 

density of class i, 

, gas, liquid phase density, 

surface tension, 

critical breakage energy, -

integral part of , -

part of , -

β β̃ 2.41=

Γ a( ) Γ z( )

Γ a x,( )

γ

γ

γ’ m2 3/

γ a x,( )

ε m2 s3⁄

εG

ϑ m3

ϑ 1 ϑ 2 ϑ 3 m3

ϑ i ϑ j ϑ k m3

λ m

ξ ξ λ di⁄=

ξ ij ξ ij di dj⁄=

ξmin

ρ kg m3⁄

ρi kg m3⁄

ρG ρL kg m3⁄

σ N m⁄

χC

Ω’ ΩB ϑ i ϑ ifBV,( )

Ω1’ Ω’
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Population balances
same as , 

same as , 

break-up rate, 

corrected break-up rate, see eq (A.29), 

break-up rate of size  into a daughter fraction  and a

second particle with the remaining volume (or mass), 

coalescence rate between particles of volumes  and , 

collision rate between particles of volumes  and , 
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