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Summary and Conclusions

In this project I have studied and evaluated several high resolution spectral esti-
mation algorithms to improve accuracy and robustness in a FMCW radar tank
gauge (RTG). The system parameters are taken from KONGSBERG’s GLA-
300 LNG-radar. I have in particular investigated how subspace based spectral
estimation algorithms can improve liquid level estimation in the situation when
the liquid surface is close to a reflector. A radar tracking algorithm have also
been implemented to increase accuracy of measurements and follow the time
variability of the measurements.

The project includes data from simulation of a waveguide, as well as experi-
ments using physical measurements from the actual RTG. All signal processing
have been implemented in MATLAB. Implementations of the spectral estima-
tion algorithms are partly taken from [8] and partly developed self.

The simulation results show that one can not achieve measurement accuracy
that satisfies the accuracy criterion of ±5mm of maximal estimation error with
the proposed signal processing, but the accuracy in measurements are approx-
imately doubled compared to the existing setup. Using a radar tracking in
addition, the accuracy satisfies the accuracy criterion.

The liquid level estimation using physical measurements confirms the results
from simulation and a more stable liquid level estimation is achieved. Com-
pared to the existing method, the high resolution methods are to a lesser extent
affected by resolution problems close to reflectors.
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Chapter 1

Acronyms

FMCW Frequency modulated continuous wave

LNG Liquefied natural gas

RTG Radar tank gauge

SVD Singular value decomposition

SNR Signal to noise ratio

Ullage Unfilled space in a tank
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Chapter 2

Introduction

The main focus in this project is to investigate the improvement of radar tank
level gauge using high resolution spectral estimation algorithms such as ESPRIT
and Root-MUSIC in lieu of an existing Fourier-transform based method. The
radar system is using a frequency modulated continuous wave (FMCW) signal
and a Fourier-transform based spectral estimation technique for detection. The
range resolution of is limited by the bandwidth of the transmitted wave [3].
These spectral estimation methods concerned in this project are so called high-
resolution (also called subspace-based, eigenanalysis-based or super-resolution)
techniques. This is due to their ability to resolve spectral lines in frequency
f = ω

2π by less than 1
N cycles per sampling interval, which is the resolution

limit for classical non-parametric methods. [4] [8]

The a priori assumption is that the signal model of the reflection in the tank
can be approximately described as a sum of real sinusoids. Non-parametric
methods maximize the power spectral density with no information of signal
content, whereas the high resolution methods tries to fit the data the some kind
of assumed sinusodal model. The performance of the high resolution algorithms
will in turn not only be a question about the algorithm itself, but how well the
signal fit in the signal model.

2.1 Background and Motivation

KONGSBERG Maritime, Lade, develops and produces sensors for ship cargo
and engine room monitoring. One of their high-end products and the concern
in this thesis is the GLA-310 Radar Tank Gauge for LNG-fuel tank. The RTG
employs a Frequency Modulated Continuous Wave (FMCW) principle with a
frequency sweeping signal that is emitted by a radar through a standing pipe
acting as a circular waveguide. The radar unit is mounted on a socket on top
of the tank as well as a pressure sensor. The tank has an over pressure system
for keeping oxygen coming in in the tank, as well as it is filled with a high
concentration of nitrogen.
The signal speed in the waveguide is dependent of several factors:

• The amount of LNG vapor inside the pipe
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• Temperature

• Pressure

In order to measure the signal speed in the pipe, there are six teflon reflectors
with exact known locations. (the terms reflectors and disc are used interchange-
ably in this text). Measurements from these reflectors are used to calibrate for
the change in signal speed.

This radar approach for tank level gauging permits high accuracy and reliabil-
ity measurements of tank level as well as resistance to radar clutter. However,
due to the high economically value of the cargo, there is an extreme demand
for accuracy. Additionally, the current implementation has robustness issues in
some scenarios, especially when the distance between a reflector and the liquid
surface is small.

Problem Formulation

When the liquid surface is close to a reflector in the standing pipe, it
is not possible to distinguish the reflector echo from the liquid echo by
standard signal processing. The goal of this thesis is to test and evaluate
other high resolution spectral estimation algorithms such as MUSIC
(MUltiple SIgnal classification), ESPRIT or others to obtain a higher
spectral resolution and improve the accuracy of measurements when the
liquid surface is close to a reflector. The goal is to obtain an accuracy of 5
mm in measurements in ranges up to 50 m.
In addition to high resolution spectral estimation, a suitable radar tracking
algorithm will be implemented to follow the time variability of the surface
due to among other things waves and vibration.

We can provide both simulated and measured data for evaluation of
the algorithms.

2.2 Objectives

The main objectives of this project are:

1. Study relevant theory and develop methods and signal processing algo-
rithms that are fit for processing a signal where interference between close
separated echos make conventional spectral estimation algorithms unsuit-
able. In particular where the liquid surface and a reflector are close. A
particular emphasis are put on Root-MUSIC, ESPRIT and how they per-
form against existing routines.

2. Develop a simulation environment for evaluation of Root-MUSIC, ESPRIT
and other methods. The reflection signal model should be as close as pos-
sible approximation to the real physical case. In the model, it should be
easy to move the liquid surface in the pipe and see the effects of measure-
ments when liquid surface and reflector approaches each other.
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3. Quantify the magnitude of the estimation error in the simulation environ-
ment and compare the existing algorithm to the proposed high resolution
algorithms.

4. Evaluate the algorithms on real physical data from the actual RTG. Eval-
uate, if any, improvements on accuracy, robustness, computational com-
plexity or memory usage.

5. Develop a Kalman filter based radar tracking algorithm to follow the time
variability and minimize estimation error.
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2.3 Limitations

This project includes simulated and measured data. It is necessary to divide
the limitations of the project into limitations in the simulation environment
and limitations regarding real measured data. The following table describes the
limitations of the simulation environment.

• The reflection associated with the bottom of the tank, as well as any
possible reflection outside the pipe is neglected.

• The noise in these measurements are assumed to be zero mean additive
Gaussian noise with varying variance.

• Assume that the pipe sections, LNG-sections and reflectors are homoge-
neous.

Limitations using real measured data

• The physical data is not a complete filling of the tank, but a measurements
of about 3 hours of constant filling up to the lowest reflector in the pipe.

• Measurements are sampled at uneven time instants. This could lead the
radar tracking algorithm to have poorer performance than if it had an
uniform sampling period.
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Chapter 3

System Description

3.1 The Radar

The theory behind a FMCW radar is well known, but it is useful to include
a summary. The following is a mathematical description of the radar system.
The modulation pattern is a stepped staircase modulated signal with the ad-
vantage of of expanding unambiguous range. Pulse radars detect the target by
emitting a short pulse and observing the time of flight of the target echo. This
requires the radar to have high instantaneous transmit power and may need a
large antenna apperature. In contrast, FMCW radars achieve can obtain simi-
lar results using a much smaller transmit power and physical size. The FMCW
radar continuously emitting periodic pulses whose frequency varies with time.
The range to the target is calculated by frequency difference between the re-
ceived and emitted radar signals. The range to the target is a function of this
frequency difference, which in the latter will be referred to as the beat frequency.

As shown in figure 3.1, a microwave signal with a frequency f0 is transmitted
every Ts period, and in the next period stepped to a frequency f1
Frequency step number i:

fi = f0 + i∆f. (3.1)

The emitted signal on frequency step number i, we have

St,i = ej2πfit (3.2)

Where t is the local time within a frequency step.
From a target with distance R the time delay is τ = 2R

c , and the received signal
can be expressed as:

Sr,i = ej2πfi(t−τ)) (3.3)

For the downmixed signal, we have from 3.2 and 3.3

Si = Sr,iS
∗
t,i = ej2πfi(t−τ)e−j2πfit = e−j2πfiτ (3.4)

The phase for the downmixed signal:

φi = −2πfiτ = −2π(f0 + i∆f)τ (3.5)
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Figure 3.1: Stepped staircase modulated signal

The ”frequency” if the downmixed signal, substituted variables from 3.1:

f =
∂φ

∂i
= −2π∆fτ = −2π∆f

2R

c
(3.6)

We can see from 3.6 that the frequency of the received signal is dependent on
the frequency step and the distance. And the range resolution is given by

RES =
c

2∆f
(3.7)

Where c is the speed of light in the medium.

From the estimation of the range to the target is equivalent to the estimation
of the beat frequency. The range resolution is then dependent upon the reso-
lution of the frequency estimation algorithm used in determination of the beat
frequency. By using a standard FFT-based method, we can obtain a frequency
resolution of fs/N [8].
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3.2 Reflection model

The generated data are based on the reflection from a circular standing pipe with
a free space impedance terminated end. This pipe has the same configuration
as the pipe in use today. The pipe is assumed to consist of 5 segments, and
6 reflectors. The figure 3.2 shows an example of how the pipe could look like.
The waveguide is filled with gas with relative permitivity (approx. εr = 1) and
the blue sections modeling reflectors are filled with a permitivity equal to the
reflector permitivity. Note that the lengths of the reflectors in figure 3.2 are
oversized and the number of reflectors are more than shown on the figure.

Figure 3.2: Sketch of the pipe used to generate the data. Blue sections are
reflectors.

In the reflection model we assume that a plane equiphase electromagnetic
wavefront hits the reflectors propagating down the waveguide. A part of the
incident effect will be reflected and a part will be transmitted forming a multi-
reflection pattern. The final reflected signal, Γin, will be a sum of all refected
signals with a phase shift that corresponds to the distance to the objects.

Defining the generated reflection as raw(f)

raw(f) = real(Γin) (3.8)

3.3 Modeling the waveguide in MATLAB

In this following describes the model to simulate the waveguide in MATLAB.
Starting from the waveguide model and associated explanations on FMCW-
radar, we can create a transmission line model that simulates the reflection of
reflectors and liquid surface.
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This MATLAB model is built up of a script and its related functions to simulate
the waveguide. It has the same configuration as the 10Ghz radar in use today
and with the same distance between reflectors. The waveguide consists of 5
cylindrical sections with 4 discs to simulate reflectors and a section to simulate
LNG with appropriate dielectrical constant. The dielectrical constant can be
changed to simulate other types of liquefied gases. There is possible to move
the liquid surface within the pipe.

The waveguide is modeled in MATLAB using ABCD-matrices. For each sec-
tion, the ABCD-parameters are calculated on the basis of the current mediums
dielectrical constant, impedance, wavenumber and length. So each sub-pipe and
reflector are represented by one homogeneous section. The end of the pipe is
terminated by LNG liquid impedance. The total cascade of all ABCD-matrices
makes up the model of shunts that produce a reflective wave. Using conver-
sation methods from [5] the ABCD-parameters are coverted into S-parameters
where the real value constitutes the reflection pattern. The design choice of
taking the real value is due to simplicity and because the SNR is not an issue
in the application according to figure 3.2.

The usefulness of the approach lies in the relatively pragmatic way of build-
ing a complex multiple reflection waveguide structure from simple elementary
two-port networks. In appendix the MATLAB code for creating the waveguide
is included.

Parameters that are used include:

• Waveguide diameter : 50.16 mm

• Carrier frequency : 10 GHz

• Bandwidth : 1.5 GHz

• Relative dielectric constants for discs : 1.39 (in air), 1.78 (submerged in
LNG), values are taken from COMSOL simulation.

• Relative dielectic constant for LNG : 1.6

• Conductivity of the pipe : 1.35 107 Sm

• Reflectors are located at: : [2.6, 7.6, 13.6, 19.6, 25.6, 30.05] m

• Pipe length: : 31,2m

Figure 3.3 shows a typical reflection pattern for the model using Fourier
transform. As the channel is dispersive, there is also a dispersion corrected
version of the reflection, using a proprietary dispersion correction method from
KONGSBERG. As we can see from the figure, there are 5 echoes from the
reflectors at distances d = [2.6, 7.6, 13.6, 19.6, 25.6]. The last echo is due to the
liquid surface approaching the reflector. The accuracy of reflector position are
±2mm using a 5-point center-of-gravity calculation, without noise.
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Figure 3.3: An example of how the reflection coefficients modeled with ABCD-
matrices and using Fourier transform. Both the dispersion corrected and non-
dispersion corrected versions are shown. Note that echo at 30.05m are not
shown. Liquid surface close to 25m.

3.4 Radar tracking / Kalman Filtering

The motivation for utilizing a Kalman filter to this problem is the ability to have
more control over the measurements in the cases where the spectral resolution
is not big enough to separate reflections in the system. In a small region close to
the reflectors, the liquid level can not be estimated correctly, and this feature is
an attempt to overcome this problem. In addition to minimize the mean-square
error of the measurements [1]

The following gives a brief summary of the Kalman filter algorithm in gen-
eral as well as justification for various design choices made when adopting this
to the problem.

3.4.1 Kalman filter algorithm

It is necessary to include a brief summary of the Kalman filter algorithm in or-
der to discuss the design choices in this project. From [1] and [7] we develop the
recursive equations. The optimization criterion is minimization of the mean-
square estimation error of the input.

Assuming we have an initial estimate of the process at time tk. The a pri-
ori estimate, denoted by x̂xxk, where ”hat” means the estimate and super-script
minus means that it is our so far best estimate.

The system is assumed to be linear. When designing the Kalman Filter, the
following notations are introduced:
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eee−k = xxxk − x̂xxk - Prediction error

PPP k = E[eee−k eee
− T
k ]T = Pk = (I −KkHk)P−

k - Prediction error covariance

x̂xxk = x̂xx−k +KKKk(zzzk −HHHkx̂xx
−
k ) - State - Estimated liquid level

φφφk - State transition matrix
KKKk - Kalman gain
QQQk - Process variance
RRRk - Measurement noise variance
HHH - Measurement function

Figure 3.4.1 shows a graphical description of the steps adopted from [1].

Compute Kalman gain:
Kk = P−

k HT
k (HkP

−
k HT

k + Rk)−1

Update estimate with measurement zk
x̂k = x̂−

k + Kk(zk − Hkx̂)

Compute error covariance:
Pk = (I − KkHk)P−

k

Project ahead:
x̂−
k = φkx̂k

P−
k+1 = φkPkφ

T
k + Qk

Figure 3.4: Graphical description of the Kalman filter algorithm

3.4.2 Modeling the system

To make this possible, it is necessary to constrain the problem in which we can
describe by Newton’s equations of motion. We know that the liquid surface can
not make suddenly jumps. By Newton’s equations of motion, given a constant
velocity v, the position of x after time t equals

x = vt+ x0 (3.9)

Where x0 is the starting position. In this problem, both the position and ve-
locity of the surface will be tracked.

Remaining design choices is the values for Rk, Hk and Qk, φk

RRRk was set to the measurement error covariance.
QQQk and φφφk was computed with the Van Loan Method from [1]
HHHk was set to H = [1 , 0]

11



3.5 Real Measured data

The real measured data are obtained from an experiment where the tank are
continuously filled to above the lowest reflector in a time frame of about three
hours. The measurement includes more than 7000 measurements of FMCW
sweeps and creates a basis on which the algorithms accuracy and robustness
where evaluated. There is taken a measurement about every 2nd second at
nonuniform intervals. The measurements are time stamped, so there is possible
to set up at time vector of the experiment. The measurements are split into
several sets that are meant to be consecutive in time, but between two sets there
are a small gap in the measurements as shown in the result chapter.
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Chapter 4

Estimation of liquid level:
spectral estimation
techniques

4.1 Introduction

We may summarize from [8] the traditional spectral estimation techniques in
two main classes.

1. Non-parametric methods.

2. Parametric methods

The non-parametric methods relie entirely on the Fourier transform or PSD
to provide spectral estimates. They provide a reasonably high resolution for
sufficiently long data lengths, but are poor spectral estimators because of their
high variance and does not decrease with increasing data lengths. The variance
of the non-parametric methods have motivated the development of different
methods that have lower variance with a trade off of having poorer resolution.
Several methods have been introduced, we will not go into further details on
this methods because they are not directly relevant to the work done in this
project.

The latter approach, the parametric approach, is to postulate some a model
for the data, in which the data provide, a way to parametrize the spectrum, and
in turn reduce the problem of spectral estimation into a problem of estimating
the parameters in an assumed model.
A sub class of this parametric methods is subspace-based (also called eigenanalysis-
based or super-resolution-methods), in which MUSIC, Root-MUSIC and ES-
PRIT are included.

The main drawback of these methods, compared to other non-parametric meth-
ods, is that the performance degrades if the measurements noise can not be
assumed to be Gaussian [8].
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4.2 High resolution spectral estimation meth-
ods: MUSIC, Root-MUSIC and ESPRIT

According to [8], [6], the high resolution methods consider a signal model as a
mixture of noisy complex exponentials.

x[n] =

N∑
k=1

ck exp(j2πfktk) + w[n] = s[n] + w[n], n = 0 . . . Ns − 1 (4.1)

where x[n] are the Ns samples of the observed noisy signal with noise w[n]. ck
stands for the amplitude, fk are the frequencies of the complex exponentials,
sampled at time instants tn = nTs.

Decomposition of eq. 4.1 eigenstructure is the core of this techniques. The
aim is to separate the observation space in a signal subspace and a noise sub-
space. Where as the signal subspace containing only the useful information. To
perform this estimation, a singular value decomposition (SVD) of its covariance
matrix is used.

Equation 4.1 can be expressed in matrix form

xxx =

N∑
k=1

ckekekek +www (4.2)

Where

ekekek = [1 exp(j2πTsfk) ... exp(j2π(Ns − 1)Tsfk)]T

www = [w(0) w(1) ... w(Ns − 1)]T

EEE = [e1e1e1 e2e2e2 ... eNeNeN ] , ccc = [c1, c2, ... cN ]T

As stated above, the first step for implementing the concerned high resolution
methods is the eigenanalysis of the observed data samples. The estimated au-
tocorrelation matrix of the signal from eq.4.1 can be expressed as

R̂x =
1

Nobs
=

Nobs∑
i=1

= xxxi xxx
H
i (4.3)

Where R̂x is the estimated autocorrelation matrix of the Nobs data samples. The
Rx matrix must be of full rank in order to properly separate the subspaces and
the spectral components.[8]. Spatial smoothing or so called forward-backward
approach can be used obtain a full rank property.

The autocorrelation matrix of order p > N is estimated in the following way
according to [6]:

Rp = DpD
H
p (4.4)
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Where the data matrix Dp in 4.4 is defined as follows:

Dp =


x(0) x(1) · · · x(Ne − p)
x(1) x(2) · · · x(Ne − p+ 1)

...
...

. . .
...

x(p− 1) x(p) · · · x(Ne − 1)

 (4.5)

The columns of the matrix Dp in 4.5 can be seen as the new observation vector
and constitutes the observation space with the dimension p.

4.2.1 MUSIC and Root-MUSIC

MUSIC and Root-MUSIC frequency estimation algorithm are one of the most
widely used high resolution methods and was discovered in 1979. It can be as an
improvement or generalization of Pisarenko’s method. Most of the derivations
in the following sections are adopted from [8], [6].

From eq. 4.2, the autocorrelation matrix results in:

Rp = ERcE
H + ρwIp = Sp +Wp (4.6)

Where Rc is the autocorrelation matrix of vector ccc, in 4.2. ρw are the noise
power and Ip is the identity matrix of order p.

The matrices Sp and Wp in 4.6 constitutes the signal and noise in the sig-
nal space.

Let µi and vvvi be the eigenvalues and eigenvectors of the matrix Sp, respectively.
The decomposition of Sp yields,

Sp =

p∑
i=1

µi vvvivvv
H
i =

N∑
i=1

µivvvivvv
H
i (4.7)

Because of the full rank property of Sp in equation 4.7 µi = 0 for i = N+1 ... p
and since alle the eigenvalues of the identity matrix are equal to 1 and any
ortonormal vector can be its eigenvector, the following relationship holds [8]:

Ip =

p∑
i=1

vvvi vvv
H
i (4.8)

If we combine the equations 4.6, 4.7 and 4.8, we have

Rp =

N∑
i=1

µivvvi vvv
H
i + ρw

p∑
i=1

vvvi vvv
H
i =

N∑
i=1

(µi + ρw)vvvi vvv
H
i +

p∑
i=1

ρwvvvi vvv
H
i (4.9)

The main eigenvectors, corresponding to the N largest eigenvalues, span the
same subspace as the signal vectors, while the other eigenvectors span the noise
subspace. Since all the eigenvectors of an autocorrelation matrix are orthogonal,
the two subspaces are also orthogonal.
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Define the mode vector as:

aaai = [1 exp(j2πTsvi) ... exp(j2π(p− 1)Tsvi)]
T (4.10)

PSDMUSIC(vi) =
1∑p+1

l=N+1

∣∣aaaHi vi∣∣2 =
1

aaaHi (
∑p+1
l=N+1 Vl V

H
l )aaai

(4.11)

Equation 4.11 is the classical MUSIC estimator. The peak values of the spec-
trum tend theoretically towards infinity at frequencies corresponding to a spec-
tral component, but does not in practice because of limited memory in compu-
tation and estimation errors. Referencing [8], [2] the resolution is improved and
are able to outperform non-parametric methods on frequency estimation.

The basis of the MATLAB implementation of Root-MUSIC used in this project
is taken from [8], but major tweaks regarding picking out the useful roots of the
polynomial and estimation of autocorrelation matrix where needed for sufficient
resolution.

Root-MUSIC does not produce a spectrum like MUSIC, but instead its making
a direct calculation of spectral components in a line specter.

Consider the polynomial

Pl(z) = vHl qqq(z), l = N + 1..p (4.12)

where qqq(z) = [1 z ... zp]T

The N zeros of each polynomial in equation 4.12 are represented by zk =
exp(j2πTsfk) for k = 1 ... N . In this case, the vector qqq(z) becomes a sig-
nal vector, that is, orthogonal to any eignenvector vvvl.

The problem left is now to calculate the zeros of the polynomials in 4.12. The
useful zeros are the ones located closest to the unit circle.

P (z) = qqq(z)HVnV
H
n qqq(z) (4.13)

And the Root-MUSIC frequency estimator

PRM (z) = zpqqq(z−1)T Vn V
H
n qqq(z) (4.14)

4.2.2 ESPRIT

ESPRIT (EStimation of signal Parameters via Rotational Invariance Techniques)
is also a high resolution frequency estiamation algorithm. A detailed derivation
of the estimator is omitted in this project, but can be found in [8], [4] and [6].
The MATLAB implementation is directly adopted from [8].
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There also exists methods to reduce the complexity of root-MUSIC and ES-
PRIT. For instance [4], [8] proposes an frequency selective ESPRIT implemen-
tation that are not considered in this project.

4.2.3 Signal subspace dimension and covarinace matrix or-
der

The introduced high resolution methods from 4.2 needs an accurate estimation
of the signal subspace dimension, n [8]. One of the most common tools for
estimating the signal subspace dimension is the Akaike information criterion
Defined as

AIC = 2k − 2ln(L) (4.15)

Where L is the maximum value of the likelihood function for the model and k
is the number of estimated parameters in the model.

The signal subspace dimension is chosen to twice the number of reflections in
the tank. Since we have 6 reflectors and one liquids surface, we have a subspace
dimension of 14.
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4.3 The Existing Model

This section describes the existing algorithm for estimating the ullage in the
tank. The procedure is first highlighted, than discussed in the subsequent sec-
tions.

4.3.1 The existing algorithm

From the generation of the reflection model based on a cascade of ABCD-
matrices in section 3.3, the existing algorithm has essentially the following pro-
cedure:

• Take the real value of the reflection

• (optionally: Range equalizing)

• Dispersion correction.

• Take a Hanning windowed inverse Fourier transform to transform from a
frequency dependent reflection to the ullage (distance) domain.

• Map the Fourier step to an ullage.

• Use a 5-point or 2-point center of gravity calculation on the echo associated
to the liquid surface and return the result.

4.3.2 5-point center of gravity

The center of gravity (COG) are applied for improved precision of finding the
fraction of the echo that is closest to the liqud surface. A weighted sum of the 4
closest points from the peak associated with the liquid surface is used. When the
liquid surface is close close to a reflector, we would introduce an error because
the reflector echo will impact the COG-calculation and pull the estimated level
closer to the reflector. The sidelobes of the Hanning window will also contribute.

4.3.3 The effect on zeropadding

Zero padding refers to adding zeros at the end of a signal before transforming.
It allows one to use a longer FFT, which will produce a longer FFT result vec-
tor. A longer FFT result has more frequency bins that are more closely spaced
in frequency, but will essentially provide the same result as a high quality Sinc
interpolation of a shorter non-zero-padded FFT of the original data.

However, this brings no aditional information to the signal and this interpola-
tion will not help with resolving closely separated sinusoids, nor will it increase
the resolution between adjacent samples. On the other hand, this might be ben-
eficial to the 5-point-center of gravity calculation, since you have more points
and in turn get less contribution from a close sinusoid in frequency.
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IFFT

Decision algorithm

COG

Figure 4.1: Existing procedure for estimating ullage in the system

4.3.4 Range equalizing

In the algorithm presented in the existing model section 4.3, there is a proposed
a range equalizing filter. In order to equalize the attenuation of the signal from
the reflector furthest away from the radar source. This is essentially a filter that
amplifies the signal linearly as a function of frequency. As the signal contains
noise, the noise will also be amplified by the same factor. We will then have
an inverse pink noise process with a power spectral density proportional to the
frequency of the signal, and the reflectors furthest away from the source will
have much more noise than the closest. This is a very unpredictable way of
designing a gauge system, and has been discarded in the current model.
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4.3.5 Dispersion correction

As the waveguide is dispersive, there is developed a dispersion correction routine.
The source code for the routine is proprietary.
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4.4 High resolution approach

The following steps was made to apply MUSIC and ESPRIT

• Take the real value of the reflection coefficient

• Dispersion correction

• Remove the DC-component of the reflected signal

• Apply Root-MUSIC or ESPRIT

• Map the predefined n spectra to an ullage

• A decision algorithm to pick out the line specter associated with the liquid
surface.

• Feed the measurement into the radar tracking algorithm
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Figure 4.2: Proposed procedure for estimating ullage in the system
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Chapter 5

Evaluation

The results in this chapter are obtained from evaluating the proposed algorithms
for several different scenarios and noise. A comparison with the existing Fourier-
transform model is also included. As mentioned in the limitations, since some
of the algorithms produce line spectra, the problem of deciding which peak that
corresponds to to liquid surface is done by a decision algorithm
In order to quantify the estimation error, there is natural to define the error
as the difference between the estimated liquid level and the true liquid level.
In several configurations, different simulations have been completed where the
liquid surface have been consequently moved a distance of ∆x = 1mm for each
iteration. In order to compare for different noise variances σ2

n, we define σ2
e to

be the variance of the estimation error in the following way:
Let the estimation error e be

e = v − v̂ (5.1)

where v and v̂ are the true and estimated liquid level. The variance of the error
from 5.1 is

σ2
e = E(e− ē)2 (5.2)

where ē is the mean of the errors.

The tests used for evaluation are:

1. Filling the whole pipe at constant velocity with no noise.

2. Filling the whole pipe at constant velocity with added Gaussian noise

Consequently for all subspace based algorithms, a subspace dimension of 14 and
a covariance matrix order of 200 have been used. A justification for this choice
is made in the discussion section. The results in the next section shows figures
of the estimation error defined in 5.1.

5.1 Tracking the liquid surface and decicion al-
gorithm

As previously stated in section 4.2, the Root-MUSIC and ESPRIT produce a
number of line spectra as equal to the specified number of complex sinusoids in
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the model. We need a robust decision algorithm that can decide which frequen-
cies that corresponds to reflector and which corresponds to the liquid surface.
In the case when the liquid surface and reflector position completely or almost
completely coincide, the number of complex sinusoids will be reduced by two.
In other words, the subspace dimension will be higher than the number of com-
plex sinusoids in the model in which the algorithm will produce a frequency
not related to the liquid surface or any of the reflectors. This is a problem the
decision algorithm will need to handle and could potentially produce erroneous
results.

In the simulation environment this can be done in an ad-hoc fashion, since
we know exactly the position of the liquid surface. By using this information
in the decision algorithm, tracking the liquid surface can be done by choosing
the frequency that is closest to the true liquid surface frequency, assuming that
this is always correct. The simulation results are obtained in that fashion.

When we are dealing with physical measurements, we no longer have access
to the true liquid level. It is therefore impossible to know exact where the true
level is, and the decision algorithm need to be modified accordingly. The source
code for the decision algorithm used in the Gastrail can be found in Appedix.

5.2 Simulation results

Firstly, the algorithms were evaluated using the reflection pattern described
in section 3.3. The plot below shows the error in estimation of Root-MUSIC,
ESPRIT and Fourier-based spectral estimation. The plots 5.1, 5.2 and 5.3 shows
the difference between the estimated liquid level and the true liquid level. The
blue line is the Kalman filtered version of the same estimation error. The inital
values of the Kalman filter are on purpose set to be off the correct value to see
how well it converges to the measurements.

5.3 Gastrial results

The results from measurements in this section are from real physical data of a
3 hour recording of filling with constant rate. The figures 5.6, 5.4, 5.5 shows
the estimated values and the Kalman filtered values. Note that because the
measurement are divided into several series, there is a small gap in the mea-
surements at approximately 11000s and 17000s after start up. The reflector is
located at Ullage = 30.05m
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Figure 5.1: Estimation error, ESPRIT
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Figure 5.2: Estimation error, Root-MUSIC
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Figure 5.3: Estimation error, Fourier.
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Figure 5.4: Gastrial ESPRIT
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Figure 5.5: Gastrial Fourier
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Figure 5.6: Gastrial Root-MUSIC
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Chapter 6

Discussion and conclusion

The simulation results show that Root-MUSIC and ESPRIT are applicable
to use for radar tank gauging. Regarding Root-MUSIC which turned out to
have best accuracy with a maximum estimation error of approximately 3.75cm.
Together with the tracking algorithm, it satisfies the accuracy requirement of
±5mm estimation error. The results from figure 5.1 and 5.2 shows that there are
not much difference between ESPRIT and Root-MUSIC and they outperform
the Fourier-based algorithm in the simulation. Not only does the Fourier-based
algorithm have the biggest estimation error, but it also have oscillations in the
areas between reflectors that are relatively big.

The order of the covariance matrix n used in Root-MUSIC and ESPRIT are
of great importance, both for the accuracy and the computational complexity.
The matrix order used in the simulations as well as the Gastrail where decided
to be n = 200. [8] argues that these parameters may be chosen as large as pos-
sible, but in order to have a reliable estimation, not too close to the available
samples. This will be a tradeoff between statistical accuracy and computation
time. In addition, there exist a lot of methods to estimate the covariance matrix
efficient and in other ways then done in this project. [8]

The results from the Gastrail figure 5.4, 5.5 and 5.6 shows interesting differ-
ences between the algorithms. The Fourier-based Gastrial result, figure 5.5,
have a overall higher variance than the two others. In addition, one can see
areas where no measurements at all located at distances that is a multiple of
λ
2 away from the reflector, where λ is the wave length of the carrier frequency.
The reason for this is interference as well as the COG-calculation that pulls
liquid spectrum away from its true position. For the Gastrail using ESPRIT,
figure 5.4 we see the area around the reflector where measurements are way off
its true value. This is due to the decision algorithm fail to pick out the correct
frequency due to a reduction in the signal subspace.

One critical issue of using high resolution algorithms in this the fact that one
need to know the signal subspace dimension in advance. Since we have 6 re-
flectors and a liquid surface, we have in total 7 reflections for each sweep. In
the case when the the liquid surface completely coincide with a reflector, we
will have a reduction in in the subspace dimension by 2. This result in a new
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estimated frequency not related to any of the reflectors, nor liquid surface and
may produce erroneous results if the decision algorithm is not optimal. Figure
5.4 showing the Gastrail of ESPRIT demonstrates this issue when the liquid
surface is passing the reflector and obviously wrong results are picked out.

The radar tracking algorithm worked satisfactory in the both in the simula-
tion and Gastrail. It is assumed that the liquid at constant rate fills or empties
the tank. If we had take unexpected stops or other abnormalities in the filling
process into account the Kalman filter tracking algorithm must have been ex-
tended to handle such cases and testing with the existing tracking algorithm for
sudden stops did not produce good results.

Even though the Gastrail measurements are done in a controlled environment,
filling or other movements in the tank give rise to different kinds of forces mak-
ing the liquid move in ways it is hard to predict. The liquid could move in
any direction and non-stationary sloshing waves takes place. Ideally, this set of
algorithms should be able to handle sloshing and vibrations from for instance
sea waves or thrusters, but there is a much higher variance in the measurements
than in the simulated case.

Because we do not have any true liquid level in the Gastrial, we can not say how
big the estimation error is. We can not with certainty conclude on the basis of
this measurement alone.

A number of assumptions have been made in this project. First, the assumption
that the transmission line model from section 3.3 is a good approximation of
the waveguide. Also assuming the noise additive Gaussian might not reflect the
real world case. The sections are also assumed to be homogeneous. In situa-
tions where it is not a clean transition between sections, mixture of liquids with
different characteristics and such, can the accuracy decrease. There is also noise
originating from imperfections and scratches inside the waveguide that can lead
to noise that are quite difficult to model.

6.1 Conclusion

The results from this project have shown that, given this reflection model 4.2,
we can improve the accuracy of level gauging using Root-MUSIC or ESPRIT
as spectral estimation algorithm in lieu of the existing Fourier-based algorithm.
Assuming that the reflection model used are a good approximation, it outper-
forms the Fourier-based spectral estimation algorithm in terms of accuracy in
the problematic areas close to the reflectors.

Root-MUSIC and ESPRIT introduces increased computationally complexity
and requires knowledge of the signal model to be applicable to the problem.

ESPRIT and Root-MUSIC can roughly double the accuracy compared to a
non-parametric approach. The algorithms work under idealized conditions, but
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the resolution problem is still visible around the reflectors.

The frequency estimates of the algorithms evaluated are very sensitive for changes
in the parameters, and must be chosen carefully. Although the requirement ac-
curacy of 5mm was not met with only spectral estimation, using a tracking
algorithm can satisfy the accuracy criterion if we assume constant filling rate.

30



Bibliography

[1] R. Brown and P. Hwang. Random Signals and Applied Kalman Filtering.
John Wiley Sons, Inc., 2012.

[2] S.M Kay. Fundamentals of statistical signal processing : estimation theory.
Prentice-Hall Inc., 1993. isbn: 0133457117.

[3] I.V. Komarow and S.M Smolskiy. Fundamentals of Short-Range FM Radar.
Artech House, 2003.

[4] D Manolakis and J Proakis. Digital Signal Processing: Principles, Algo-
rithms, And Applications. 4th ed. Prentice-Hall Inc., 1992. isbn: 978-0131873742.

[5] 4th Edition Pozar D. Microwave Engineering. John Wiley Sons, Inc., 2004.
isbn: 9780470631553.

[6] A. Quinquis. Digital Signal Processing: Using MATLAB. John Wiley Sons,
Inc, 2007. isbn: 978-1-84821-011-0.

[7] L. Roger. Kalman and Bayesian Filters in Python. https://github.com/
rlabbe/Kalman-and-Bayesian-Filters-in-Python. 2014.

[8] P. Stoica and R Moses. Spectral Analysis of Signals. Prentice-Hall Inc.,
1997. isbn: 0131139568.

31



Appendix A

Additional Information

A.1 MATLAB code for Root-MUSIC, ESPRIT
and Kalman Filter

Listing A.1: Root-MUSIC MATLAB implementation

1

2 f unc t i on w = rmusic (x , n ,m, f s )
3 % Root−MUSIC frequency e s t imat i on a lgor i tm
4 % Written by Henning Sche i
5 % The b a s i s o f the code i s adopted from Spec t r a l Ana lys i s

o f S igna l s ,
6 % Stoc ia , 97
7

8

9 % x −> the data vec to r
10 % n −> the model order
11 % m −> the order o f the covar iance matrix
12 % w <− the f requency e s t imate s
13

14 % v a r i a b l e check
15 narginchk (3 , 4 )
16 i f narg in == 3
17 f s = 1 ;
18 end
19

20

21 R = compute autocovar iance (x ,m) ;
22 % s i n g u l a r va lue decompos it ion
23 [U, ˜ , ˜ ] = svd (R) ;
24 G = U( : , n+1:end ) ;
25 P = G ∗ conj (G) ’ ;
26

27

28 % Calcu la te sum of each d iagona l in P
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29 [ r , c ]= s i z e (P) ;
30 idx=bsxfun ( @plus , ( r :−1:1) ’ , 0 : c−1) ;
31 Q=f l i p u d ( accumarray ( idx ( : ) ,P ( : ) ) ) ;
32

33 % Find the roo t s i n s i d e the un i t c i r c l e and imag−va l != 0
34 r t s = roo t s (Q) ;
35 r t s = r t s ( abs ( r t s ) < 1) ;
36 r t s = r t s ( imag ( r t s ) ˜=0) ;
37 % Find the n roo t s c l o s e s t to the un i t c i r c l e
38 dfc = abs ( abs ( r t s )−1) ;
39 i d x s o r t= a r g s o r t ( d fc ) ;
40 component roots = r t s ( i d x s o r t ( 1 : n) ) ;
41

42

43 ang = −ang le ( component roots ) ;
44 w = f s ∗ang ;
45 end
46 %%
47 f unc t i on R = compute autocovar iance (x ,M)
48 % Henning Sche i
49 % Function to compute the co rva r inace matrix o f a

s i g n a l .
50

51

52 % x −−> array o f input s i g n a l o f s i z e N
53 % M −−> int , o p i t i o n a l . S i z e o f s i g n a l b lock
54 % covmtx <−− NxN auto−covar iance matrix
55

56 N = length ( x ) ;
57

58 x vec t = x ( : ) ; % Force x to be a column vecto r
59

60 % I n i t i a l covar iance matrix
61 yn = f l i p u d ( x vec t ( 1 :M) ) ;
62 R = yn ∗ conj ( yn ) ’ ;
63 f o r i = 2 :N−M
64 yn = x vec t (M−1+i :−1: i ) ;
65 R = R + yn ∗ conj ( yn ) ’ ;
66 end
67

68 R = R/N;
69 end
70

71

72 %%
73 f unc t i on [ so r t ed ind , sorted M ] = a r g s o r t (M, mode)
74 % Argument s o r t
75 % Henning Sche i
76 i f (˜ e x i s t ( ’mode ’ , ’ var ’ ) )
77 mode = ’ ascend ’ ;
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78 end
79 nRows = s i z e (M, 1) ;
80 i n d i c e s = (1 : nRows) ’ ;
81

82 M with ind ice s = horzcat (M, i n d i c e s ) ;
83 [ sorted M , s o r t e d i n d ] = s o r t ( M with ind ice s ( : , 1 ) ,

mode) ;
84 end

Listing A.2: ESPRIT MATLAB implementation

1 f unc t i on w=e s p r i t (y , n ,m)
2 %
3 % The ESPRIT method f o r f requency es t imat i on .
4 % Taken from ’ Spec t r a l Ana lys i s o f S igna l s ’ ,
5 % Written by R. Moses
6 % w=e s p r i t (y , n ,m) ;
7 %
8 % y −> the data vec to r
9 % n −> the model order

10 % m −> the order o f the covar iance matrix in
( 4 . 5 . 1 4 )

11 % w <− the f requency e s t imate s
12 %
13 %
14 y=y ( : ) ;
15 N=length ( y ) ;
16 R=ze ro s (m,m) ;
17 f o r i = m : N,
18 R=R+y ( i :−1: i−m+1)∗y ( i :−1: i−m+1) ’/N;
19 end
20 R=(R+f l i p l r ( eye (m) ) ∗R. ’∗ f l i p l r ( eye (m) ) ) /2 ;
21 % get the e igendecompos i t ion o f R; use svd because i t

s o r t s e i g e n v a l u e s
22 [U,D,V]=svd (R) ;
23 S=U( : , 1 : n ) ;
24 phi = S ( 1 :m−1 , : ) \S ( 2 :m, : ) ;
25 w=−ang le ( e i g ( phi ) ) ;

Listing A.3: Kalman filter recursive equation implementation

1

2 f unc t i on s = kalmanf ( s )
3 % Pred i c t i on f o r s t a t e vec to r and covar iance :
4 s . x = s .A∗ s . x + s .B∗ s . u ;
5 s .P = s .A ∗ s .P ∗ s .A’ + s .Q;
6

7 % Compute Kalman gain f a c t o r :
8 K = s .P∗ s .H’ / ( s .H∗ s .P∗ s .H’+ s .R) ;
9

10 % Correc t ion based on obse rvat i on :
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11 s . x = s . x + K∗( s . z−s .H∗ s . x ) ;
12 s .P = s .P − K∗ s .H∗ s .P ;
13 end

35


