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Abstract

Riser slugging is a flow regime that can occur in multiphase pipeline-riser systems, and
is characterized by severe flow and pressure oscillations. The irregular flow caused by riser
slugging can cause large operational problems for the downstream receiving facilities, and an
effective way to handle or remove riser slugging is needed. Recently, anti-slug control sys-
tems that stabilize the flow in the pipeline at the same operating conditions that uncontrolled
would yield riser slugging has emerged as the preferred solution to avoid riser slugging.
This thesis offers a comprehensive analysis of the system characteristics that are relevant to
control and, based on that controllability analysis, robust anti-slug controllers are designed.

The controllability analysis is done using two different models. Initially, a simplified two-
fluid model is used, and the analysis shows that riser slugging can be avoided by a simple
control system that manipulates the valve at the top of the riser. The type and location of the
measurement to the controller is, however, critical, and the best choice is to use a pressure
measurement located either at the pipeline inlet or at the riser base. A flow measurement at
the top of the riser can also be used, but, because the steady-state gain is close to zero, it
should only be used in combination with another measurement.

The analysis with the two-fluid model also revealed that the,for control purposes, an
even simpler model can be used. Based on this conclusion, a simple nonlinear dynamic
model with only three states is developed. This model coversboth riser slugging, and, more
importantly, the unstable but preferred non-oscillatory flow regime that exists at the same
boundary condition. The three-state model is verified throughout the thesis by providing
the same controllability results as the more complicated two-fluid model, by showing the
same dynamic behavior as both the two-fluid model and OLGA, and finally by the fact that
controllers based on the three-state model show excellent performance when they are tested
on the other models.

The valve used as manipulated input for anti-slug controllers is large and often slow-
acting. A too slow valve can result in saturations problems,and we derive conditions that
give a lower bound on the input rate for stabilizing control and perfect disturbance rejection.
The required input rate can be combined with the input magnitude limitations to form a
frequency-dependent bound on the input that can be used directly in a controllability analysis
or in controller design.

Both simple PID controllers and model basedH∞ controllers are designed and tested by
simulations with all three models (three-state, two-fluid and OLGA). If an upstream pres-
sure measurement is used as input, a PID controller is close to optimal and provides good
performance and robustness. Controllers that are based onlyon topside measurements (e.g.
pressure drop over valve, flow or even valve position) can also provide robust stability, but if
fast setpoint tracking is required, a MISO (multiple-inputsingle-output)H∞ controller must
be used.

Finally, the scope for pipeline control is extended to coverother multiphase phenomena
than only riser slugging. In an industrial case study, an extended slug controller is introduced
that, in addition an anti-slug controller, contains flow controllers to minimize the effect of
transient slugs such as surge waves and startup slugs.
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Chapter 1

Introduction

1.1 Motivation

Flow assurance technology has played a key role in the development of the offshore oil
and gas industry for the past 20 years. The term flow assurancecovers the entire spectrum
of design tools, methods, equipment, knowledge and professional skills needed to ensure
the safe, uninterrupted and simultaneous transport of gas,oil and water from reservoirs to
the processing facilities (Buller et al., 2002). The background for the important role of
flow assurance is that the North Sea is becoming a mature region in terms of hydrocarbon
production. The majority of the new discoveries are now, andare likely to be in the future,
too small to be developed as independent, stand-alone fields. Also, as existing fields are
entering their tail-phase production, spare processing capacity is becoming available on the
existing offshore processing facilities. Thus, the smaller fields are being tied in to existing
infrastructure as satellite fields both to make the production from these fields economically
viable and to utilize the existing production capacity.

The tie-in lines from the satellite fields are transporting the untreated wellstream, con-
sisting of a mixture of gas, oil, water and in some cases sand,from the wellhead clusters into
the production platforms. The flow assurance challenges associated with the transport of
this mixture over long distances involves handling physical flow-impeding phenomena such
as slug flow and sand transport and physio-chemical flow-impeding phenomena such as hy-
drates, scale, asphaltenes, wax and emulsions. In additionto the flow-impeding phenomena,
corrosion problems has to be addressed and equipment for metering, pumping/compression
and flow restriction/control have to be designed and optimized (Buller et al., 2002).

The topic of this thesis is slug flow, or more precisely, how toavoid slug flow. Slug
flow is a flow regime in multiphase pipeline flow that is characterized by varying or irregular
flows and surges of gas and liquid through any cross-section of a pipeline. The irregular flow
conditions can create severe problems for the downstream processing facilities, and a means
for removing or reducing the undesirable slug flow in the pipeline is sought.
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1.2 Flow regimes in multiphase pipelines

The spatial distribution of the phases in multiphase flow is dependent on operating conditions
such as phase velocities and pipeline angle. The different configurations the flow can arrange
itself in are called flow regimes or flow patterns (Baker, 1954;Mandhane et al., 1974; Taitel
and Dukler, 1976; Taitel et al., 1980; Barnea, 1987; Weisman et al., 1979). The possible flow
patterns include stratified flow, annular flow, bubbly flow, slug flow and churn flow. Various
intermediate flow patterns can also be present in pipelines.

Slug flow can occur on different time- and length scales depending on the underlying
mechanism for the slug flow formation. In this work, the definitions in Buller et al. (2002)
are used to divide slug flow in pipeline-riser systems into four different types:

• Hydrodynamic sluggingdevelops in horizontal parts of the pipeline when liquid waves
grow on the gas-liquid interface and eventually close the cross-section, thus forming
liquid slugs

• Riser sluggingoccurs when liquid blocks the low-point where a down-sloping pipeline
is attached to a riser. The blockage initiates the slug, which thereafter grows upward
in the riser and back through the pipeline. This continues until the pressure build-up
over the slug is sufficiently high to blow it out of the riser, whereupon the entire cycle
is repeated.

• Terrain slugginginvolves slug development where pipelines traverse rough seafloor
terrain. The slug picks up liquid accumulated in inclined sections and may become
very extensive

• Transient sluggingis caused by increased liquid flow rates at pipeline exit to processing
facilities in response to changes in operating conditions

Of these four, riser slugging, possibly combined with or initiated by terrain slugging,
is the most serious for oil/water-dominated systems. For the most serious cases, the riser
slugs can fill up the entire riser and be several hundred meters long. The inlet separator
on the receiving facilities is not large enough to receive these slugs. If such a large slug
were to arrive into the separator it would cause overfilling which would trip the production.
Even smaller riser slugs can be problematic, as the uneven feed to the process will lead to
poor separation, varying compressor load and wear and tear on the equipment. Hence, riser
slugging must be avoided in pipeline-riser systems.

1.3 Anti-slug control

Control systems that are designed to avoid riser slugging in pipeline-riser systems are often
called slug controllers. This term is misleading, as it suggests that the riser slugs still exist in
the pipeline, and that the control system is only trying to limit or suppress them. The real role
of these control systems are to completely remove the riser slugs by stabilizing a desired, but
unstable, flow regime that exists at the same boundary conditions as riser slugging. We will
use the termanti-slugcontrol with the following definition:
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Definition 1.1 An anti-slug controller is a controller that stabilizes a desired, non-oscillatory flow
regime that exists at the same boundary conditions as riser slugging and thereby avoids the formation
of riser slugging in the system.

1.3.1 Previous work

Up until the last few years, the preferred solution to avoid or reduce the problems associ-
ated with riser slugging has been to design the system such that the slugging potential is
minimized or to change the boundary condition (that is, reducing the topside choke valve
opening) to remove the slug flow from the system (Sarica and Tengesdal, 2000). None of
these solutions are optimal. Design changes often involve installation of expensive equip-
ment such as slug catchers and reducing the topside choke valve opening introduces extra
pressure drop that will limit production when the reservoirpressure goes down as the reser-
voir is depleted.

An alternative approach based on feedback control to avoid riser slugging was first pro-
posed by Schmidt et al. (1979a). The key concept in that paper was to avoid riser slugging
by automatically adjusting the topside choke valve position based on an algorithm with a
pressure measurement upstream of the riser and a flow measurement in the riser as inputs.
Hedne and Linga (1990) used a more conventional PI controller based on an upstream pres-
sure measurement to avoid riser slugging. Both these papers are based on experimental work
in medium scale flow loops and show the potential for using control solutions to avoid riser
slugging in pipeline-risers systems. The benefits of using acontrol solution are that no ex-
pensive equipment is needed and that no significant pressuredrop is added to the system.
However, the work of Schmidt et al. (1979a) and Hedne and Linga (1990) did not result in
any reported industrial applications.

In the last ten years or so, there has been a renewed interest in control based solutions
to avoid riser slugging. Courbot (1996) presents a control system to prevent riser slugging
implemented on the Dunbar pipeline. The approach in this paper was to implement a control
system that uses the topside choke valve to keep the pressureat the riser base at or above
the peak pressure in a the riser slug cycle, thus preventing liquid accumulation in the bottom
of the riser. This approach effectively removed riser slugging in the system, but it did so by
automating the old choking strategy rather than affecting the stability of the flow regimes in
the pipeline. This means that an extra pressure drop was introduced in the system due to the
high setpoint for the pressure controller. Henriot et al. (1999) presents a simulation study
for the same pipeline as Courbot (1996), where the setpoint for the riser base pressure is set
considerably lower. In this work, the controller is probably stabilizing an unstable operating
point rather than just keeping the process away from the riser slugging region, although this
is not shown explicitly.

The first industrial implementation of an anti-slug controller is reported by Havre et al.
(2000), who presents an anti-slug control system for the Hod-Valhall pipeline and illustrates
its performance both with simulations and actual field data.The simulation results illustrate
an interesting fact; by turning the control system off and keeping the same valve opening
as was implemented (on average) by the control system, the riser slugging returns in the
system. This proves that the control system stabilizes an unstable operating point. This
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unstable operating point, where the flow in the pipeline is steady, exists at the same boundary
condition as would normally result in riser slugging. Havreand Dalsmo (2002) give a more
detailed treatment of the control system introduced in Havre et al. (2000).

Skofteland and Godhavn (2003) use conventional PID controllers to stabilize the flow
in pipeline-riser systems and reports both field experiencefrom the Heidrun field and ex-
perimental results from Sintef Petroleum Research Multiphase Flow Laboratory. A main
contribution in this paper is the introduction of a cascade control system, where an inner
flow loop is combined with an outer pressure loop to suppress bot severe and moderate slug-
ging. Additional experimental work is reported in Godhavn,Mehrdad and Fuchs (2005)
and Fard et al. (2003). Godhavn, Strand and Skofteland (2005) reports an application at the
Tordis field, where an anti-slug controller is combined withmodel predictive control to also
handle slugs that enter the inlet separator.

Hollenberg et al. (1995) presents a different approach for removing severe slugging form
a pipeline-riser system. By introducing a small separator ontop of the riser, the gas and
liquid flow can be controlled separately above a certain frequency. This structure, called the
S3 R© Slug Suppression System also allows for accurate measurement of the gas and liquid
rate, and by controlling the total mixture flow rate and the pressure in the small separator, the
system can be stabilized. Kovalev et al. (2003) report that the S3 system has been successfully
implemented at the North Cormorant and Brent Charlie platformsin the North Sea.

As this brief literature review shows, most of the publishedresults regarding avoiding
riser slugging are from either oil companies or engineeringcompanies. These companies,
which have been active in this field of research for some time,may have in-house expertise
regarding the slug control that are not published and hence not available as background
material for this work.

1.4 Contributions and thesis outline

This thesis offers a comprehensive analysis of the controllability properties of a pipeline-
riser system at riser slugging conditions. Based on the controllability analysis, robust anti-
slug controllers that stabilize the flow and thus avoid riserslugging are designed. A number
of different control structures and controller designs areconsidered, with the primary aim
of stabilizing the flow whilst avoiding input saturation andproviding low-frequency perfor-
mance.

The scope of this thesis is, except for the case study in chapter 7, limited to two-phase
flow, where the oil and water phase is treated as one continuous phase. Water can, especially
in cases where the water cut is high, have a significant impacton the riser slugging problem,
but this effect is not included in this work. Also, the scope is limited to tie-in lines from
subsea templates with respect to pipeline geometry. Other typical pipeline geometries, such
as a pipeline from a wellhead platform to a production platform, are not considered.
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1.4.1 Model development and controllability analysis

Chapter 2

A simplified two-fluid model based on distributed mass and momentum conservation equa-
tions for each phase is developed and fitted to a simulated OLGA test case. From an analysis
of the model, we find that the transition from stable flow (at low choke valve openings) to
riser slugging (at higher valve openings) is through a Hopf bifurcation, and that the system
contains a pair of complex conjugate unstable polespi. A controllability analysis reveals that
the system can be stabilize by simple controllers provided that the right measurements are
used.

Chapter 3

The main contribution in chapter 3 is the introducing of the simplified three-state model. The
model is fitted to both experimental data and to data from a simulated OLGA test case with
good results. The model is further verified by comparing open-loop step responses to both
the two-fluid model and OLGA and by comparing local (linear) behavior and results from a
controllability analysis with the two-fluid model.

The three-state model is well suited for analysis and controller design because of its
limited complexity and its ability to predict the system characteristics important for control,
and is thus an important tool for designing anti-slug controllers for pipeline-riser systems.

1.4.2 Effect of input rate limitations

Chapter 4

Stabilizing control of the pipeline-riser system is based on manipulating the topside choke
valve. These choke valves are big and often slow-action, andthe opening time for the valve
can be a limiting factor for an anti-slug controller. Therefore, we introduce a method for
calculating the required valve rate for stabilizing control, as well as for perfect disturbance
rejection. The limitations on the input rate is then combined with the input magnitude lim-
itations to form a frequency-dependent bound on th input usage that can be used directly in
controllability analysis and controller design.

1.4.3 Controller design

Chapter 5

The controllability analysis performed in chapters 2 and 3 gave clear answers as to which
measurements should be used for the anti-slug control. In chapter 5, we design PID con-
trollers based on these controllability findings and test them on the three models that are
used in this thesis (three-state, two-fluid and OLGA). Usingthree different models provides
some insight into the robustness properties of the model. The controllers designed in this
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chapters generally perform very well, but cascade controllers based on only topside mea-
surements are fundamentally limited by unstable zeros dynamics in the process, and are thus
slower than controllers that are based on an upstream pressure measurement.

Chapter 6

In this chapter we useH∞ optimization based on the 3-state model to design anti-slugcon-
trollers. We use aS/KS mixed-sensitivity optimization, which means that we are minimiz-
ing the input usage and optimizing the performance (in termsof the sensitivity functionS).
MISO (multiple-input single-output)H∞ controllers based on topside measurements are not
limited by the same unstable zeros that limited the bandwidth of the cascade controllers and
significantly improved low-frequency performance is achieved.

Attempts are also made to design a stabilizing LQG controller with an extended Kalman
filter. The controller manages to stabilize the process, butthe resulting performance is poor.

Chapter 7

Chapter 7 contains an industrial case study where the scope ofthe control system is extended
from only avoiding riser slugging to also suppressing transient slugs such as surge waves and
startup slugs. This is done by combining the anti-slug controller with individual flow con-
trollers that are designed to average out the flow and thus avoid large peaks in the production.
The controllers are combined through a minimum select function that implements the lowest
signal from the different controllers, and, provided that the controllers are properly tuned,
prioritizes between the different tasks.

1.4.4 Publications

The following publications have so far resulted from this work:

Chapter 2 and 3

E.Storkaas, S. Skogestad and V. Alstad, ”Stabilizing of desired flow regimes in pipelines”,
AIChE Annual meeting, Paper 287d, Reno, Nevada, November 5-9,2001.

E. Storkaas and S. Skogestad, ”Stabilization of severe slugging based on a low-dimensional
nonlinear model”, AIChE Annual meeting, Paper 259e, Indianapolis, 3-8 Nov. 2002.

E. Storkaas, J.-M. Godhavn and S. Skogestad, ”A low-dimensional dynamic model of severe
slugging for control design and analysis”, Proc. 11th International Conference on Multiphase
flow (Multiphase’03), San Remo, Italy, 11-13 June 2003, Published by BHR Group, ISBN
1-85598-048-7, pp. 117-133.

E. Storkaas and S. Skogestad, ”Controllability analysis of an unstable, non-minimum phase
process”, accepted for publication at IFAC world congress Prague, Czech Republic, July
2005.
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Chapter 4

E. Storkaas and S. Skogestad, ”Effect of Input Rate Limitation on Controllability”, AIChE
Annual Meeting, Austin, Texas, Nov. 2004, Presentation 406d.

Chapter 5

E. Storkaas and S. Skogestad, ”Cascade control of unstable systems with applications to
stabilization of slug flow”, Proc. of 7th international symposium on advanced control of
chemical processes, Hong Kong, 11-14 Jan. 2004.

Chapter 7

E. Storkaas and J.-M. Godhavn, ”Extended slug control for pipeline-riser systems”, ac-
cepted for publication at 12th International Conference on Multiphase flow (Multiphase’05),
Barcelona, Spain, 25-27 May 2005.





Chapter 2

Controllability Analysis of Two-phase
Pipeline-riser Systems at Riser Slugging
Conditions

Espen Storkaas and Sigurd Skogestad

Based on a paper submitted to IEE Proceedings Control Theory and Applications

Abstract

A PDE-based two-fluid model is used to investigate the controllability properties of a typical pipeline-riser
system. Analysis of the model reveals a very interesting andchallenging control problem, with the presence of
both unstable poles and unstable zeros.

We show that riser slugging in pipeline-riser systems can beavoided with a simple control system that
manipulate the valve at the top of the riser. The type and location of the measurement to the controller is
critical. A pressure measurement located upstream of the riser (that is, at the riser base or pipeline inlet) is a
good candidate for stabilizing control. On the other hand, apressure measurements located at the top of the
riser cannot be used for stabilizing control because of unstable zero dynamics. A flow measurement located
at the top of the riser can be used to stabilize the process, but, because the steady state gain is close to zero, it
should in practice only be used in an inner control loop in a cascade.

The analysis of the system properties reveals that the dominating dynamical behavior of riser slugging

probably can be described by a simpler model than the PDE-based model used in this chapter.
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2.1 Introduction

Stabilization of desired fluid flow regimes in pipelines offers challenges of immense potential
value. The opportunities for control engineers in this fieldare large, as control technology
has only just started to make a significant impact in this area. Pipeline flow has commonly
been analyzed based the on the flow regimes that develops in the pipeline under different
boundary conditions. However, with feedback control, the stability of the flow regimes can
be changed to facilitate improved operation.

The best known example of an open-loop flow regime change is probably the transi-
tion from laminar to turbulent flow in single-phase pipelines which is known to occur at a
Reynolds-number of about 2300. It is well known that by carefully increasing the flow rate
one may achieve laminar flow at much larger Re-numbers, but that in this case a small knock
at the pipeline will immediately change the flow to turbulent. This indicates that the laminar
flow region exists for higher Re-numbers, but that it is unstable. In theory, stabilization of the
laminar region should be possible, and some attempts have been made in applying control
to this problem (e.g. see Bewley (2000) for a survey), but short time and length scales make
practical applications difficult.

Another unstable flow phenomenon occurs in multiphase pipelines, where pressure-flow
fluctuations known as slug flow can be induced both by a velocity difference between the
gas and liquid phase (hydrodynamic slugging) and by the pipeline geometry (terrain induced
slugging, riser slugging). The latter slugging phenomenonoccurs at a time and length scale
that makes control a viable option and is the focus of this thesis.

A typical flow regime map for a pipeline-riser system is shownin figure 2.1. The flow
regime map is taken from Taitel (1986), and includes some theoretical stability conditions.
It is important to notice that flow regime maps such, as the onein figure 2.1, apply without
control. With feedback control, we can move the boundaries,thereby stabilizing a desirable
flow regime where riser slugging ”naturally” occurs.

Traditionally, undesirable slugging has been avoided in offshore oil/gas pipelines by
other means than control, for example, by changing the operating point or making design
modifications (Sarica and Tengesdal, 2000). Up until very recently, the standard method
for avoiding this problem was to change the operating point by reducing the choke valve
opening. However, the resulting increase in pressure results in an economic loss.

In many cases the problems with unstable flow regimes occur asthe oilfields get older
and the gas-to-oil ratio and water fraction increases. Since these transport systems are highly
capital cost intensive, retrofitting or rebuilding is rarely an option. Thus, an effective way to
stabilize the desired unstable flow regimes is clearly the best option.

The first study that applied control to this problem and by that avoided the formation of
riser slugging was reported by Schmidt et al. (1979a). The use of feedback control to avoid
severe slugging was also proposed and applied on a test rig byHedne and Linga (1990),
but this did not result in any reported implementations. More recently, there has been a
renewed interest in control-based solutions (Havre et al.,2000; Hollenberg et al., 1995; Hen-
riot et al., 1999; Skofteland and Godhavn, 2003). These applications are either experimental
or based on simulations using commercial simulators such asOLGA. None of the control
systems are based on a first principles dynamic model and subsequent analysis and con-
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Figure 2.1: Flow regime map for an experimental pipeline-riser system (Taitel, 1986). The
map shows the flow regime in the pipeline as function of superficial gas and liquid velocities.
Low gas and liquid velocities results in riser slugging.

troller design. Several industrial applications are also reported (Havre et al., 2000; Cour-
bot, 1996; Skofteland and Godhavn, 2003; Havre and Dalsmo, 2002; Kovalev et al., 2003).

In this chapter, we analyze, based on a simple first-principles model, a typical riser slug-
ging case, and present a controllability analysis that highlight the system characteristics that
are important from a control point of view. This analysis gives information on sensor/actuator
selection, hardware requirements and achievable performance that are critical for a success-
ful design of a stabilizing controller for the system.

2.2 Riser Slugging Phenomenon

The cyclic behavior of riser slugging is illustrated schematically in figure 2.2. It can be
broken down into four parts. First, gravity causes the liquid to accumulate in the low point
(step 1), and a prerequisite for severe slugging to occur is that the gas and liquid velocity is
low enough to allow for this accumulation. The liquid blocksthe gas flow, and a continuous
liquid slug is formed in the riser. As long as the hydrostatichead of the liquid in the riser
increases faster than the pressure drop over the riser, the slug will continue to grow (step 2).

When the pressure drop over the riser overcomes the hydrostatic head of the liquid in the
slug, the slug will be pushed out of the system and the gas willstart penetrating the liquid in
the riser (step 3). Since this is accompanied with a pressuredrop, the gas will expand and
further increase the velocities in the riser. After the majority of the liquid and the gas has
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Figure 2.2: Graphic illustration of a slug cycle

left the riser, the velocity of the gas is no longer high enough to pull the liquid upwards. The
liquid will start flowing back down the riser (step 4) and the accumulation of liquid starts
again. A more detailed description of the severe slugging phenomenon can be found in for
example Taitel (1986).

It is well known that riser slugging may be avoided by choking(decreasing the opening
Z) of the valve at the riser top. To understand why this is the case, consider a pipeline-riser
system in which the flow regime initially is non-oscillatory. A positive perturbation in the
liquid holdup in the riser is then introduced. Initially, the increased weight will cause the
liquid to ”fall down”. This will result in an increased pressure drop over the riser because
1) the upstream pipeline pressure increases both due to compression and less gas transport
into the riser because of liquid blocking and 2) the pressureat the top of the riser decreases
because of expansion of the gas. The increased pressure dropwill increase the gas flow and
push the liquid back up the riser, resulting in more liquid atthe top of the riser than prior to
the perturbation. Now, if the valve opening is larger than a certain critical valueZcrit, too
much liquid will leave the system, resulting in a negative deviation in the liquid holdup that
is larger than the original positive perturbation. Thus, wehave an unstable situation where
the oscillations grow, resulting in slug flow. For a valve opening less than the critical value
Zcrit, the resulting decrease in the liquid holdup is smaller thanthe original perturbation, and
we have a stable system that will return to its original, non-slugging state.
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2.3 Case Description

In order to study the dominant dynamic behavior of a typical,yet simple riser slugging prob-
lem, the test case for severe slugging in OLGA is used. OLGA isa commercial multiphase
simulator widely used in the oil industry. The nomenclatureand geometry for the system
are given in figure 2.3. The pipe diameter is 0.12 m. The feed into the system is nominally
constant at 9 kg/s, withWL = 8.64 kg/s (oil) andWG = 0.36 kg/s (gas). The pressure after
the choke valve (P0) is nominally constant at 50 bar. This leaves the choke valveopeningZ
as the only degree of freedom in the system. The feed of oil andgas and the pressureP0 are
regarded as disturbances outside of our control.

In most real cases, the inflow is pressure dependent (WL andWG depends onPI). This
has some consequences on the results presented later in thischapter, and will be commented
on when relevant. Real pipelines lie in hilly terrain which produce smaller terrain induced
slugs, but these are assumed to be included in the disturbance description introduced later.

For the present case study, the critical value for the transition between a stable non-
oscillatory flow regime and riser slugging is at a valve openingZcrit = 13%. This is illus-
trated by the OLGA simulations in figure 2.4 with valve openings of 10% (no slug), 20%
(riser slugging) and 40% (riser slugging).

Simulations, such as those in figure 2.4, were used to generate the bifurcation diagram in
figure 2.5, which illustrates the behavior of the system overthe whole working range of the
choke valve. For valve openings above 13% we have riser slugging and the two solid lines
in figure 2.5 give the maximum and minimum pressure for the oscillations shown in figure
2.4. The dashed line represents the (desired) non-oscillatory flow regime, which is unstable
without control. Since it is unstable, it is not normally observed in OLGA simulations, but
we were able to compute these values by initializing the OLGAmodel to steady-state using
the OLGA Steady State Processor. Thus, for choke valve openings above 13%, we have
two solutions for each valve opening; one stable limit cycleand one unstable steady-state
solution. For valve openings below 13%, the single solid line represents the stable non-
oscillatory flow regime corresponding to the topmost simulation in figure 2.4.

2.4 Model Description

The primary goal of this chapter is to analyze the controllability properties of a system with
riser slugging, and the type and complexity of the model we choose to use is affected by this
goal. First, we need a model that can be linearized, as the analysis methods are based on
linear models. This means that the internal states of the model should be readily available
and that the model should be first-order continuous (at leastaround the operating points).
The OLGA model is not suitable as the internal states are not available. Second, we will
make simplifying assumptions that allows us to limit the complexity of the model.

Two types of one-dimensional models are commonly used to model multiphase flow; the
drift flux model, with mass balances for each phase and a combined momentum balance,
and thetwo-fluid model, with separate mass and momentum balances for each phase. For
the drift flux type model, one also needs algebraic equationsrelating the velocities in the
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Figure 2.3: (a) Nomenclature used for the pipeline riser system and (b) System geometry
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different phases. More details on the modeling of slug flow can be found in for example
Bendiksen et al. (1985) and Taitel and Barnea (1990).

In this work we use a simplified two-fluid model, where the conservation equations for
mass and momentum for the two phases are given by the following Partial Differential Equa-
tions (PDEs):
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The notation and details regarding closure relations and model discretization etc. are given
in appendix A. The model has four distributed dynamical states (αLρL, αGρG, αLρLuL and
αGρGuG), which together with the summation equation for the phase fractionsαL +αG = 1
gives the phase fractions (αL, αG), gas density (ρG) and both velocities (uL, uG). We have
assumed the following:

• Incompressible liquid with constant densityρL

• No pressure gradient over the pipeline cross-section, implying equal pressure in both
phases at a given point in the pipeline

• No mass transfer between the phases

• No liquid droplet field in the gas

• Isothermal conditions

• Ideal gas equation of state, corrected with a constant compressibility factor.

• Flow out of the riser can be described by the choke valve modelfrom Sachdeva et al.
(1986), which is based on a no-slip assumption for the liquidand gas and assumes
incompressible liquid and adiabatic gas expansion.

Horizontal and declined flow are fundamentally different from inclined flow due to the
effect of gravity. Our model is based on stratified flow for thehorizontal and declining pipe
sections, and annular or bubbly flow for inclined pipe sections. The flow regime change from
horizontal/declining pipe to inclining pipe does not introduce discontinuities, as this switch
is only dependent on geometry.

It is assumed that the same algebraic relations between phase densities, velocities and
friction are valid for all flow regimes, both horizontal and inclined. The expression for the
wetted parameter is the only difference between the regimes. For bubble flow in inclined
pipes, the wetted perimeter is computed based on an average bubble diameter. For annular
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flow, the wetted perimeter is that of a gas core in a body of liquid. The transition between the
two flow regimes for inclined flow is modeled using a sinusoidal weighting function (sin(x),
0 ≤ x ≤ π) and is assumed only to be a function of phase fraction (x = f(αL)).

The model is implemented in Matlab.

2.5 Model tuning and verification

The model described above is similar, but significantly simplified, compared to the one used
in OLGA. For the purpose of this work, the OLGA model is assumed to be an accurate de-
scription of a real system, and data from the OLGA simulations are used to fit the parameters
in the model (tune the model).

The level of tuning required for any mathematical model depends on the assumptions
and simplifications made. In our case, we have assumed that the liquid density is constant.
In fact, the density varies weakly with pressure, and we needto use a density that is repre-
sentative for the problem we are studying. The same can be said about the equation of state;
the ideal gas law is used for simplicity, and some tuning on the gas molecular weight and/or
compressibility factor is needed as these change throughout the system. Other important tun-
ing parameters are the proportionality constants in the friction correlations and the average
bubble diameter for bubbly flow in the riser (for determiningwetted perimeter in inter-phase
friction).

Still, even with all these tuning factors, obtaining a good fit to the data for all valve
openings is difficult. The system is distributed, and the effect of each tuning parameter
is not always clear. We have focused on achieving a good qualitative fit to the data, as
we are mainly interested in studying the general behavior ofsuch a system. Also, we are
mainly interested in studying the unstable stationary operating points rather than the stable,
undesired slug flow. Thus, we want to fit the model to the stationary (unstable) operating
line, the open-loop (uncontrolled) riser slugging data is of less importance.

The tuning was done by manually adjusting the model parameters using the bifurcation
diagrams as tuning aids. The resulting fit is illustrated in figure 2.6, where the bold lines
are the reference data (OLGA) and the thin lines are computedfrom the simple two-fluid
model. We see that the fit for the stable non-oscillatory flow regime (at low valve openings)
is excellent, whereas there are some deviations for the slugflow regime. Since the slug
flow regime is undesirable, these deviations are, as mentioned above, of less importance for
control purposes. Of more interest is the desired unstable non-oscillatory flow regime. We
note that the fit is excellent for the riser top pressure (figure 2.6(b)), but that there is a small
deviation of up to 1 bar for the inlet pressure in figure 2.6(a).

The deviation in pressure drop over the system is probably due to the assumption of no
mass transfer between the phases and the related assumptionof constant liquid density. If
mass transfer were included, the lighter components in the oil would flash off as the pressure
drops along the pipeline. This would increase both the gas fraction and the liquid density
and thus affect the pressure drop over the pipeline.
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Figure 2.6: Verification of tuned model for (a) Inlet pressurePI and (b) Pressure drop over
choke valveDP
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2.6 Controllability analysis

The riser slugging case is interesting and challenging for control because it turns out to con-
tain many conflicting controllability limitations. The riser slugging phenomena is oscillatory,
and we find as expected that the unstable (RHP) polespi are complex. The most serious chal-
lenge for stabilizing control (avoiding riser slugging), is that there, for some measurement
alternatives, also are unstable (RHP) zerosz located close to the unstable (RHP) polespi.
Let us first illustrate some of the controllability problemsby simulations before we review
some control theory.

2.6.1 Introductory open-loop simulations

The main objective for anti-slug control is to stabilize thenon-oscillatory flow regime using
the valve positionZ as a manipulated variable. In theory, for linear systems, any measure-
ment where the instability is observable may be used. However, in practice input saturation
(in magnitude or rate) or unstable zero dynamics (RHP-zeros)may prevent stabilization.
To gain some insight into the latter, we show in figure 2.7 the simulated response to a step
change inZ at t = 0 for four alternative measurements: Inlet pressure (PI), Riser base pres-
sure (PRb), pressure drop over topside choke valve (DP ) and volumetric flow out of the riser
(Q). The responses are both for the simple two-fluid model (thinlines) and OLGA (bold
lines).

The valve position prior to the step isZ = 10%, and a2% step increase is applied,
so this it at a point close to instability. The simulations show that the step change induces
oscillations, but because we are at a stable operating point, these eventually die out. The
oscillations for the OLGA simulation have a period of a 25 minutes, corresponding to a
frequency ofp = 2π/(25 ·60s) = 0.004s−1. The oscillations are a bit faster for the two-fluid
model, with a period of about 17 minutes corresponding to a frequencyp = 0.006s−1.

For the three pressures, the main difference is for the initial response shown at the right.
ThePRb, there is an immediate decreasing initial response and we expect no problems with
stabilization. ForPI , there is an effective delay of about 10 seconds, which will make stabi-
lization a bit more difficult, but the time delay is probably not large enough to cause major
problems. ForDP there is also an effective delay of about 2 minutes with the two-fluid
model and 4 minutes with OLGA, caused by inverse response. Finally, for the flowQ, the
response is immediate, but we note that the steady-state gain is close to zero asQ eventually
returns to its original value. This means that control ofQ cannot be used to affect the steady-
state behavior of the system. The small steady-state gain for Q is easily explained because
the inflow to the system is given, and the outflow must at steady-state equal the inflow.

The inverse responses in the time domain for the measurementy = DP correspond to
RHP-zeros in the transfer function model. Also, the shape of the inverse response, with the
initial response is in the ”right” direction followed by a correction in the ”wrong” direction,
indicate a complex pair of RHP-zeros. The transfer functionscan be used to derive more
exact expressions for the deteriorating effect the RHP-zeros have on control performance.
Such expressions are discussed next.
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2.6.2 Controllability analysis: Theoretical Background

Transfer functions

Consider a processy = G(s)u+Gd(s)d controlled by the controllerK(s) yielding the input
to the plantu = K(s)(r − y − n). The closed-loop response is:

y = Tr + SGdd− Tn (2.5)

whereS = (I +GK)−1 andT = GK(I +GK)−1 = I − S are the sensitivity and comple-
mentary sensitivity function, respectively. The input to the plant is

u = KS(r −Gdd− n) (2.6)

In addition to the closed-loop transfer functions in (2.5) and (2.6), the transfer functionSG
gives the effect of input disturbances on the outputy (setGd = G in (2.6)). The transfer
functionsS, T, KS andSG can also be interpreted as robustness to various kinds of uncer-
tainty, where small magnitudes for the closed-loop transfer functions indicates good robust-
ness properties. For example,S is the sensitivity toward inverse relative uncertainty, which
is a good model of uncertainty in the pole locations (Skogestad and Postlethwaite, 1996).

Thus, by obtaining the lower bounds for the closed-loop transfer functionsS, T , KS,
SG, KSGd andSGd, we can get information regarding both achievable performance and
possible robustness problems. We will consider bounds on the H∞ norm,
‖M‖∞ = maxω |M(jω)|, which is simply the peak value for the transfer function. The
bounds presented below are all independent of the controller K, and are thus a property of
the process itself. The bounds are, however, dependent on a systematic and correct scaling
of the process, which will be addressed after the bounds has been introduced.

Lower bound on S and T

The lowest achievable peaks in sensitivity and complementary functions, denotedMS,min

andMT,min, are closely related to the distance between the unstable poles (pi) and zeros (zi).
For SISO systems, Skogestad and Postlethwaite (1996) show that for any unstable (RHP)
zeroz;

‖S‖∞ ≥MS,min =

Np
∏

i=1

|z + p̄i|
|z − pi|

(2.7)

Note that the bound approaches infinity asz approachespi.
For systems with only one unstable zero, the bound holds withequality. Chen (2000)

shows that the bound in (2.7) also applies to‖T‖∞, and generalizes the bound to apply for
MIMO systems with any number of unstable poles and zeros:

MS,min = MT,min =

√

1 + σ̄2
(

Q
−1/2
p QT

zpQ
−1/2
z

)

(2.8)
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where the elements of the matricesQz, Qp andQzp are given by:

[Qz]ij =
yH

z,iyz,j

zi + z̄j

, [Qp]ij =
yH

p,iyp,j

p̄i + pj

, [Qzp]ij =
yH

z,iyp,j

zi − pj

(2.9)

The vectorsyz,i andyp,i are the (unit) output direction vectors associated with thezerozi and
polepi, respectively. For SISO systems, these direction vectors all equal 1.

Time delays pose additional limitations. Chen (2000) show that the bound for‖T‖∞ is
increased by a factor|epθ| for a single RHP-pole and by at least a factor|epiθ| for multiple
poles.

Lower bound onKS

The transfer functionKS from measurement noisen to plant inputsu is at low frequencies
closely related to the inverse of the process transfer functionG. This can be seen by rewriting
KS = G−1T (usingGKS = T ) and recalling that with integral action,T (0) = I. Unstable
plants requires control and a connection betweenKS andG−1 is also found in the bound
(Havre and Skogestad, 1997; Havre and Skogestad, 2001)

‖KS‖∞ ≥ |Gs(p)
−1| (2.10)

whereGs is the stable version ofG with the RHP-poles ofG mirrored into the LHP. The
bound is tight (with equality) for one real unstable polep. For multiple and complex unstable
polespi, Glover (1986) gives the tight bound

‖KS‖∞ ≥ 1/σH (U (G)) (2.11)

whereσH (U (G)) is the smallest Hankel singular value of the antistable partof G.

Lower bound on SG and SGd

Chen (2000) reports that for any unstable zeroz in G;

‖SG‖∞ ≥ |Gms(z)|
Np
∏

i=1

|z + p̄i|
|z − pi|

(2.12)

‖SGd‖∞ ≥ |Gd,ms(z)|
Np
∏

i=1

|z + p̄i|
|z − pi|

(2.13)

where the subscriptms denotes the stable, minimum-phase version of the transfer function
(both RHP-poles and RHP-zeros mirrored into the LHP). These bounds are only tight for
one unstable zeroz, but since they are valid for any RHP-zeroz, they can also be applied for
systems with multiple unstable zeros.



2.6. CONTROLLABILITY ANALYSIS 23

Lower bound onKSGd

The stable, minimum phase partGd,ms of Gd can be regarded as a weight onKS. Thus, for
any unstable polep (Havre and Skogestad, 1997; Skogestad and Postlethwaite, 2005):

‖KSGd‖∞ = |G−1
s (p)| · |Gd,ms(p)| (2.14)

The bound is only tight for one real unstable polep. For multiple and complex unstable poles
pi, the following bound is tight (Skogestad and Postlethwaite, 2005):

‖KSGd‖∞ ≥ 1/σH

(

U
(

G-1
d,msG

))

(2.15)

Pole vectors

For a plantG(s) with state space realization (A, B, C, D), the output pole vectoryp,i for a
polepi is defined by (Havre and Skogestad, 2003)

yp,i = Cti (2.16)

whereti is the right (normalized) eigenvector corresponding topi (Ati = piti). Havre and
Skogestad (2003) finds, based on minimum input usage for stabilization, that the measure-
ment corresponding to the largest element in the output polevectors should be used for sta-
bilizing control. Correspondingly, for input selection, the input that has the largest element
in the input pole vectorup,i = BHqi, whereqi is the left eigenvector of A (qH

i A = piq
H
i ),

should be selected. One limitation on the use of pole vectorsis that the relationship between
the magnitude of the input usage and the magnitude of the polevectors elements only holds
for plants with a single unstable polep. In our case, we have a pair of complex conjugate
unstable polespi, but we shall see that the pole vectors still give some information about
measurement selection.

Low frequency performance

Disturbance rejection is not strictly required for stabilizing control. However, to avoid the
possible destabilizing effect of nonlinearity, the systemshould not ”drift” too far away from
its nominal operating point. To achieve low-frequency performance, the low-frequency gain
must be sufficiently large. Specifically, for perfect low-frequency disturbance rejection, we
must require|G(jω)| ≥ |Gd(jω)| at frequenciesω > ωd where|Gd| > 1.

2.6.3 Scaling

The models are scaled as outlined in Skogestad and Postlethwaite (1996), such that all signals
in the system should be less than one in magnitude. This is both to include saturation effects
and to be able to compare signals of different magnitude.

The outputs are scaled with the maximum allowed deviation given in tables 2.1 and 2.2.
Nonlinear effects cause the process gain to vary with valve opening, and we find that the
gain is smallest for large valve openings. Therefore, we scale the input with the maximum
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allowed positive deviation in valve opening. For example, with a nominal valve opening of
Z = 30%, the input scaling isDu = 70%.

There are several different sources for uneven flow into the riser in a pipeline-riser sys-
tem. First, the feed into the pipeline itself can vary, caused by upstream events (e.g changed
production rate, routing of a different subset of wells intothe pipeline or unstable wells). Sec-
ond, hydrodynamic slugging, caused by the velocity difference between the liquid and the
gas, can occur in the pipeline and give rise to uneven flow. Finally, terrain slugs, caused by
accumulation of liquid in local low-points in the pipeline,can create small or medium-sized
slugs in the pipeline. Flow variations into the pipeline areeasily represented as weighted
feed disturbances. To include the effect of hydrodynamic and terrain slugging in the control-
lability analysis without having to include the physical effects that cause these phenomena in
the model, we assume that the effect of hydrodynamic and terrain induced slugging can be
approximated as sinusoidal feed disturbances. Thus, we assume that the feed disturbances
WL andWG are frequency-dependent. The disturbance weight

D = 0.2

(

2π
180
s+ 1

) (

2π
160
s+ 1

)

(

2π
90
s+ 1

) (

2π
30
s+ 1

)2 (2.17)

will give the disturbance distribution in figure 2.8. This disturbance weight allows for a 20%
variation for the stationary value of the feed for each phase, and has a peak in the frequency
range0.03s−1 - 0.2s−1, corresponding to slug periods between 3 minutes and 30 seconds.

The downstream pressureP0 is scaled to allowed for a frequency-independent variation
of 1 bar.
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Figure 2.8: Disturbance weight to allow for hydrodynamic and terrain induced slugs in the
feed pipeline
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2.6.4 Stability - Poles

When the valve opening is increased, the stationary operating point moves along the single
solid line in figure 2.6, through the bifurcation point at valve openingZcrit = 13% and
onwards along the dashed line for the unstable operating points. At the bifurcation point,
there is a pair of complex poles (eigenvalues of the state matrix A of the linearized model)
that cross into the right half plane, as seen from the root-locus plot in figure 2.9. This
indicates that the bifurcation point is a Hopf bifurcation (Thompson and Stewart, 1986),
which is also consistent with the shape of the bifurcation maps in figure 2.6.

Note that, as expected, the frequency of the oscillations (p = 0.006s−1) observed for
the step change fromZ = 10% to Z = 12% in figure 2.7 correspond very closely to the
imaginary parts of the poles in the figure 2.9.
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Figure 2.9: Open-loop root-locus plot with valve openingZ as independent parameter. In-
stability occurs at forZ ≥ 13%

2.6.5 Measurement evaluation

We will in the following study two different operating points, one at valve openingZ =
17.5%, where the instability is fairly slow, and one at valve opening Z = 30%, where the
instability is faster and stabilization is more difficult. The process modelG and disturbance
modelGd is obtained from linearizing the discretized PDE model around these two operating
points.
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Figure 2.10: Minimum peaks on|S| and|T | (as given by the relative distance between RHP-
poles p and RHP-zeros z) as function of pressure sensor location in pipeline

Pressure measurements are the most reliable measurements for stabilizing these systems.
The location of the pressure sensor has a significant impact on the location of the RHP-zeros
and hence on the controllability of the system. In figure 2.10, the minimal achievable peak for
the sensitivity functionsS andT , MS,min = MT,min from (2.8) is plotted against pressure
sensor location for the operating point withZ = 30%. Figure 2.10 show that pressure
measurements located in the horizontal or declining part ofthe pipeline (upstream of the
riser), have no RHP-zeros that limit performance. However, as the pressure measurement is
moved up the riser toward the choke valve, the fastest RHP-zero moves closer to the unstable
pole, making stabilizing control more difficult.

Note that the effective time delay, which will increase as the pressure measurement is
moved toward the pipeline inlet, is not included in figure 2.10. From the step responses in
section 2.6.1, the effective time delay to the pipeline inlet is about 10 seconds, which will
increaseMT,min with a factor|e|pi|θ| = e0.011·10 ≈ 1.1. Thus, the line forMS,min = MT,min

in figure 2.10 should slope slightly upwards toward the inlet, but the time delay is not large
enough in this case to make a significant impact in this case.

For practical reasons, the pressure sensors are usually located at the pipeline inlet (PI)
and at the choke valve (PT ). For some pipelines, there is also a pressure measurement at
the riser base (PRb). Since we assume constant pressureP0 behind (downstream) the choke
valve, the pressure drop (DP = PT − P0) over the choke and the pressure in front of the
choke (PT ) are equivalent. In addition to these pressure measurements, we will include the
density at the top of the riser (ρT ), the mass flow through the choke (W ) and the volumetric
flow through the choke (Q) as measurement candidates for stabilizing control.
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Table 2.1: Controllability data for the operating pointZ = 17.5%. Unstable poles atp =
0.0014 ± 0.0085i. † denotes RHP-zeros that are not important for the control problem

Minimum peaksa

Measurement Value ScalingDy Smallest RHP-zerob Pole vectorb |G(0)|b |S| = |T | |KS| |SG| |KSGd| |SGd|
PI [bar] 70 1 99† 0.36 18.9 1.0 0.03 0.0 0.06 0.0
PRb[bar] 69.5 1 1155† 0.37 19.0 1.0 0.03 0.0 0.06 0.0
DP [bar] 1.92 1 0.01 ± 0.01i 0.21 17.6 1.6 0.04 17.1 0.08 0.95
ρT [kg/m3] 432 50 0.016 0.28 1.5 1.4 0.03 28.6 0.07 1.60
W [kg/s] 9 1 -† 0.59 0 1 0.02 0 0.06 0
Q[m3/s] 0.0208 0.002 -† 0.51 1.8 1 0.02 0 0.06 0

Table 2.2: Controllability data for the operating pointZ = 30%. Unstable poles atp =
0.0045 ± 0.0108i. † denotes RHP-zeros that are not important for the control problem

Minimum peaksb

Measurement Value ScalingDy Smallest RHP-zeroa Pole vectora |G(0)|a |S| = |T | |KS| |SG| |KSGd| |SGd|
PI [bar] 68.7 1 98.1† 0.30 3.3 1.0 0.30 0.0 0.35 0.005
PRb[bar] 68.2 1 1140† 0.31 3.3 1.0 0.28 0.0 0.33 0.004
DP [bar] 0.66 0.5 0.01±0.01i 0.17 6.1 4.3 0.62 16.8 0.97 5.5
ρT [kg/m3] 427 50 0.015 0.27 2.6 0.18 0.64 14.6 0.55 4.7
W [kg/s] 9 1 -† 0.63 0 1 0.17 0 0.32 0
Q[m3/s] 0.0211 0.002 -† 0.59 0.33 1 0.17 0 0.32 0.002

aWant these small
bWant these large
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Tables 2.1 and 2.2 show the lower bounds on all the closed-loop transfer functions de-
scribed in section 2.6.2 for all the measurement candidatesand at both operating points. The
location of the smallest unstable (RHP) zero and the pole vector elements, as well as the
nominal value, stationary gain and scaling factorDy (maximum allowed deviation) for each
measurement candidate are also included in the tables. The following conclusions can be
drawn from the tables:

• It is theoretically possible to stabilize the system with all the measurement candidates
based since the input magnitude given by‖KS‖∞ and‖KSGd‖∞ are less than unity
for all measurement candidates.

• Upstream pressure measurements (PI andPRb) are well suited for stabilizing control
with a large steady-state gain and all peaks small.

• In practice, the pressure drop over the valve (DP ) and density at the top of the riser
(ρT ) should not be used for stabilizing control because of the high peaks for|S|, |T |
(about 4) and|SG| (about 20). The high peaks for these transfer function are caused
by RHP-zerosz close to the RHP-polesp.

• Flow measurements at the pipeline outlet (W or Q) can be used for stabilizing con-
trol, also in practice. However, they both suffer from a close-to zero stationary gain
(|G(0)| = 0 and0.33, respectively), which means that good low-frequency (steady-
state) performance is not possible. Note that the mass flowW has zero stationary gain
because we assume that the feed rate is constant. For real systems, the feed rate is
pressure dependent, and there would be a non-zero low-frequency gain, but it would
probably still be too small to allow for low-frequency performance.

• The pole vectors give the same general conclusions as the closed-loop peaks, but since
the link between pole vectors and measurement selection only holds for plants with a
single unstable pole, the difference between the pole vector elements for the good and
the bad control variables is not very large.

2.6.6 Controllability analysis of flow control (y = Q)

From table 2.2, the potential problem with flow control (y = Q) is a low steady-state gain.
To confirm this, we show in figure 2.11 the Bode magnitude plot ofthe linear scaled process
modelG(s) obtained at the operating pointZ = 30%, together with the modelsGd1−3(s) for
the disturbances. The disturbance gain for the flow disturbances are high for low frequencies
and drops off sharply above aboutω = 0.2. Aboveω = 0.2, flow disturbances are effectively
dampened through the pipeline. The downstream pressure disturbanceP0 does not pose a
problem for control. Note that the high-frequency gain for this disturbance is unrealistic, and
stems from the fact that we used a constant scaling over all frequencies.

Thus, if the volumetric flow (y = Q) is chosen as the primary controlled variable, the
controller will not be able to suppress low-frequency disturbances because the disturbance
gain is higher that the process gain,|Gd| > |G|. This may cause a disturbance to drive the
operation into a point where the controller no longer manages to stabilize the process. This
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Figure 2.11: Frequency dependent gain fory = Q at operating pointZ = 30%

implies that this measurement is best suited to use in an inner loop in a cascade controller,
rather than for independent stabilizing control.

2.6.7 Controllability analysis of upstream pressure control (y = PI or
y = PRb)

From tables 2.1 and 2.2, the upstream pressure measurementsPI andPRb both seem to be
very promising candidates for control. In figure 2.12, we show the Bode magnitude plot of
the linear scaled process modelG(s) for the inlet pressurey = PI , obtained at the operating
pointZ = 30%, together with the modelsGd1−3(s) for the disturbances. The corresponding
Bode plot for the riser base pressure (y = PRb) is almost identical. The process gain is
higher that the disturbances,|G| > |Gd|, for frequencies up to aboutω = 0.15. Above this
frequency, the disturbance gain is lower than unity, and disturbance rejection is not strictly
needed. However, we will see in the next section that the peakin the disturbance magnitude
atω ≈ 0.2 can, even if it is below 1, cause oscillatory flow out of the system and excessive
valve movement for the stabilized system.

The analysis has so far not considered the major difference between the measurementsPI

andPRb, which is the effective time delay due to pressure wave propagation in the pipeline.
The simulations (both with OLGA and with the simple two-fluidmodel) in section 2.6
showed that there are virtually no time delay through the riser to the riser base measurement
PRb, whereas the pressure wave takes about 10 seconds to propagate back to the measure-
mentPI . This imposes an upper bound on the closed-loop bandwidth ofthe system, as we
need the crossover frequencyωc to be less than the inverse of the time delayθ, ωc < 1/θ. On
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Figure 2.12: Frequency dependent gain fory = PI at operating pointZ = 30%

the other hand, the instability requires a bandwidth of approximatelyω ≥ |p| for complex
unstable poles (Skogestad and Postlethwaite, 1996). With|p| ≈ 0.01, this means that we
for this operating point would have to have a closed-loop crossover frequency in the range
0.015 < ωc < 0.1 when usingy = PI . For even longer pipelines than the one studied in
this example, the time delay may be to high for the inlet pressure to be used for stabilizing
control.

Thus, the analysis shows that the riser base pressurePRb and the inlet pressurePRb are
good candidates for stabilizing control of these systems. We should be able to design a con-
troller that stabilize the system with little input usage, that is able to effectively suppress
(low-frequency) disturbances, and that has good setpoint tracking properties. Our main con-
cern would be to suppress flow disturbances in the medium-to-high frequency range (flow
disturbances withω ≈ 0.2, meaning waves and/or hydrodynamic slugging with a period of
about 30 seconds).

2.6.8 Additional remarks

We have so far mainly discussed single input-single output (SISO) control, but from the
above discussion, the measurements have advantages in different frequency ranges. An up-
stream pressure measurement (PI or PRb) has excellent low-frequency properties, while a
measurement of the flow through the choke valve (Q orW ) has good high-frequency proper-
ties. Combining these two measurements in a cascade controller or a similar control scheme
that can utilize the benefits of both the measurement candidates would probably be a good
way to approach the problem. Such a scheme has indeed alreadybeen reported by Skofte-
land and Godhavn (2003) and Godhavn, Mehrdad and Fuchs (2005). However, analysis of
such systems is outside the scope of this chapter, and we willreturn to this in chapter 5 and
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6.
It should also be mentioned that the operating point atZ = 30%, used in the above

analysis, is a fairly aggressive operating point with relatively fast instability and low process
gain. If we were to perform the same analysis at the more conservative operating point
(Z = 17.5%), the controllability of the system would be significantly improved to a relatively
minor cost in terms of pressure drop.

2.7 Simulations

Since direct design of model-based optimal controllers arecomplicated due to the complex-
ity of the model, simple PI-controllers are used to illustrate and confirm the results from
the controllability analysis in section 2.6. The simulations use the simple two-fluid model
described in section 2.4. One reason for not using the OLGA model is that it is difficult with
OLGA to impose the type of disturbances we want to consider. In chapters 5 and 6, where
the focus will be more on controller design and less on controllability analysis, we will test
our controllers on the reference systems against which theywere tuned.

2.7.1 Stabilizing pressure control (y = PI)

A simple feedback PI controller with controller gainKc = −0.3bar−1 and integral time
τI = 500s stabilizes the system and give a crossover frequency ofωc = 0.033s−1 for the
operating point withZ = 30%. However, nonlinear effects make it difficult to stabilize
the process directly at this operating point from initial severe slugging behavior. An easy
solution to this problem is to initially stabilize the process at a less aggressive operating
point and then change the pressure setpoint gradually to getto the desired operation point.

In figure 2.13, the process is started up without control witha constant valve opening
of Z = 30%. At t = 30 min, the controller is turned on with a setpoint of 70 bar and we
see that the PI controller stabilizes the system. Att = 120 min the setpoint is changed to
the desired value of 68.7 bar. We have attempted to representthe real-life hydrodynamic
slugging at the inlet by applying sinusoidal feed signals incounter-phase for the gas and
liquid feed. The amplitude of the oscillations were±100% of its nominal value, and the
frequency were0.2rad/s. The controller manages to keep the process stable even withthese
large disturbances, but the valve movement and flow oscillations at the outlet might be a
problem.

2.7.2 Stabilizing flow control (y = Q)

To stabilize the process by controlling volumetric flowQ, we use a simple feedback PI
controller with gainKc = 80m−3s and integral timeτI = 500s. We added a lag filter
with two poles atω = 0.5s−1 to the controller to avoid sensitivity to noise. The crossover
frequency for this system isωc = 0.28s−1. The setpoint for the flow is reached quickly, and
the disturbance rejection is far better than the above case with pressure control. However,
the low-frequency (stationary) behavior of the system is very sluggish, as expected from
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Figure 2.13: Simulation of stabilizing pressure control (y = PI). Controller turned on at
t=30 min. Setpoint change at t=120 min.

the controllability analysis. This is illustrated by the slow return of the pressure (PI) to its
steady-state. This could at least partly be remedied by an outer loop, but the response time
would depend on the input to the outer loop.

The poor low-frequency response is further illustrated by applying a 10% reduction in
the liquid feed rate. As shown in figure 2.15, the system underflow control goes unstable
because the control system cannot suppress the disturbance. This moves the system away
from its nominal operating point and into an operating region where the controller no longer
can stabilize the system. The pressure control system has noproblems in dealing with the
step in the liquid feed rate.

2.8 Comments on model complexity

The PDE-model used in this chapter is discretized in space totransform it into a system of
ODE’s that is needed for conventional controllability analysis and controller design. The
drawback of this model structure is that the model order (state dimension) of the resulting
system of ODE’s is high, and the direct numerical optimization needed for design of (opti-
mal) model based controllers gets complicated. Additionally, due to high model order, any
controller based on a systematic design procedure, such as LQG control, will have a high
number of states. This may be partly remedied by model reduction, but other solutions may
also be conceivable.

The Bode diagram for the linear process model obtained aroundthe operating point
Z = 30% with y = PI as measurement is given in figure 2.16. Both the phase and the
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Figure 2.14: Simulation of stabilizing flow control (y=Q). Controller turned on at t=30 min.
Setpoint change at t=120 min.
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Figure 2.15: Simulation of step in liquid feed at t=120 min illustrating low-frequency distur-
bance rejection problems with flow control



34
CHAPTER 2. CONTROLLABILITY ANALYSIS OF TWO-PHASE

PIPELINE-RISER SYSTEMS AT RISER SLUGGING CONDITIONS

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−1800

−1440

−1080

−720

−360

0

P
ha

se
 (

de
g)

10
−10

10
0

M
ag

ni
tu

de
 (

ab
s)

Figure 2.16: Bode diagram for process modelG(s), y = PI atZ = 30%

magnitude are relatively smooth, and resemble a significantly simpler model than the one
used in this work. This leads one to suspect that the underlying mechanics of this process
can be described using a greatly simplified model. This suspicion is further strengthened by
physical arguments. The severe slugging is mainly a processdriven by the competing effects
of the pressure in the upstream (horizontal/declining) part of the pipeline and the weight of
the liquid in the riser. Since both pressure and gravity are bulk quantities, we should be able
to describe the process using greatly simplified model basedon bulk quantities rather than
the distributed model used in this chapter. Such a simplifiedmodel will be introduced in
chapter 3.

2.9 Conclusions

We have shown that riser slugging in pipelines can be stabilized with simple control sys-
tems, but that the type and location of the measured input to the controller is critical. Of the
possible candidates studied in this work, only an upstream (inlet or riser base) pressure mea-
surement and a flow measurement at the outlet are viable candidates for stabilizing control.

Use of an upstream pressure measurement works well for stabilization, but is less suited
for suppressing high-frequency flow disturbances such as small hydrodynamic slugs that
might be formed in the pipeline. It might also be a problem using the inlet pressure as a
primary control variable for long pipelines due to the time delay associated with pressure
wave propagation.

Use of an outlet flow measurement is effective for suppressing high-frequency flow dis-
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turbances. However, the low-frequency disturbance rejection and setpoint tracking properties
are poor, and this makes a stabilizing controller based on a topside flow measurement a vi-
able option only if it is used in combination with another measurement (for example cascade
or SIMO control).

The analysis of the properties of this system reveals that the underlying mechanics of the
system probably can be described by a simpler model than the PDE-based model used in this
work.
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Chapter 3

A low-dimensional dynamic model of
severe slugging for control design and
analysis

Espen Storkaas and Sigurd Skogestad

Based on a paper submitted to SPE Journal

Abstract

A novel simplified dynamic model of a pipeline-riser system at riser slugging conditions is introduced. The
model covers the stable limit cycle known as riser slugging,and even more importantly for control purposes,
predicts the presence of the unstable but preferred stationary flow regime that exists at the same boundary
conditions.

The model has only three dynamic states, namely the holdups of gas and liquid in the riser and the holdup
of gas in the upstream pipeline. The most important adjustable parameters are the ”valve constant” for the flow
of gas into the riser and two parameters describing the fluid distribution in the riser.

The model has been fitted to data both from an OLGA test case andexperiments. We have in all cases
achieved good agreement with the reference data. The model has been further verified by showing that its
controllability predictions are almost identical to thoseof a more detailed two-fluid model based on partial
differential equations.
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3.1 Introduction

To design efficient control systems, it is advantageous to have a good model of the process.
Here, the word ”good” must be seen in context with how the model is used. For control
purposes, it is important to concentrate on the physical phenomena that are significant at the
relevant timescales for control. This allows us to use simpler models for control purposes
than for more detailed simulations.

In chapter 2, a PDE-based two-fluid model was used to show thatthere existed an unsta-
ble non-oscillatory flow regime at the same boundary conditions as riser slugging in pipeline-
riser systems, and that simple control systems could be usedto stabilize this unstable oper-
ating point. It was also found that the model was unnecessarily complex for performing
controllability analysis and controller design for a pipeline-riser system. Based on the fre-
quency response for the linearized two-fluid model, it was concluded that a simplified model
could be used to describe the process.

The objective of a control system design to avoid riser slugging is to stabilize the unstable
operating point and by that avoiding riser slugging. The relevant timescale for control is
then the time it takes for the instability (riser slug formation) to evolve. Recall from chapter
2 that the unstable poles for an industrial-scale system hada frequency of about 0.005-
0.01s−1, corresponding to about 100-200 seconds. This means that the relevant timescale
for stabilizing the flow in such pipeline-riser systems is onthe order of a few minutes. Based
on that timescale, physical phenomena whose dominant dynamical behavior is in the order
of a few seconds in industrial-sized systems can be regardedas instantaneous. Note that this
does not limit the models applicability for smaller, lab-scale systems since the timescales for
both the control problem and the relevant physical phenomena are relative to the size of the
system. Thus, the timescale of the riser slugging problem allows us to use a simple ”bulk”
model of the distributed system with only three states.

We did not find any published simplified dynamic models of riser slugging that were
suitable for control purposes. A related phenomena is instability in gas lift systems, and
our starting point was simplified models for this (Jansen et al., 1999; Eikrem et al., 2004).
However, direct extension of these models was not successful, and we had to include new
mechanisms for riser inlet blocking and ”entrainment” in the riser.

After developing the simplified model, we proceed to show that the model predicts sys-
tem properties relevant to control which are very similar tothose found using the more
complicated distributed model used in chapter 2.

3.2 Model Description

The conventional multiphase flow models (e.g. the two-fluid model used in chapter 2) use
distributed conservation equations and are developed to cover the behavior of two-phase flow
in pipelines over a wide range of pipe geometries, flow regimes and boundary condition. We
are looking for a simple model that predicts the following important characteristics of the
riser slugging system (in order of importance):

1. the presence of the (desired) unstable stationary solution (flow regime) at the same
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boundary conditions as those corresponding to riser slugging

2. the dynamic behavior of the unstable points (i.e. the nature of the transition from
smooth flow to riser slugging)

3. the stability of the flow regimes as function of choke valveopening

4. the amplitude/frequency of the oscillations of fully developed riser slugging

The order of the items above show that we for control purposesare more interested in the
desired (open-loop unstable) flow regime than the naturallyoccurring (open-loop stable) riser
slugging. This is because the purpose of the model is to be a tool to help us avoid the riser
slugging and by that ensure smooth operation. A parallel to this can be found in everyday
life; if you are teaching someone to ride a bike, you are teaching them how the bike behaves
when they have mastered the balancing act of riding the bike (the desired unstable operating
point), not how it behaves when it lies on the ground (the undesired slug flow).

3.2.1 Assumptions

The model is based on the setup depicted in figure 3.1. The mainassumptions are:

A1 Neglected liquid dynamics in the upstream feed pipeline,that is, constant liquid
velocity in this section.

A2 Constant gas volumeVG1 (but possible varying mass of gas) in the feed pipeline.
This follows from assumption A1 if we also neglect the liquidvolume variations
due to variations in the liquid levelh1 at the low-point.

A3 Only one dynamical state (mL) for liquid holdup in the riser section. This state
includes both the liquid in the riser and in the low-point section (with levelh1)

A4 Two dynamical states for gas holdup (mG1 andmG2), occupying the volumes
VG1 andVG2, respectively. The gas volumes are ”connected” by a pressure-flow
relationship in the low-point.

A5 Ideal gas behavior

A6 Stationary pressure balance over the riser (between pressuresP1 andP2)

A7 Simplified valve equation for gas and liquid mixture leaving the system at the
top of the riser

A8 Constant temperature
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Figure 3.1: Schematic representation of model parameters
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3.2.2 Model fundamentals

The model has three dynamical states, as stated by assumptions A3 and A4:

• mass of liquidmL in the riser and around the low-point

• mass of gasmG1 in the feed section

• mass of gasmG2 in the riser

The corresponding mass conservation equations are

∂

∂t
mL = wL,in − wL,out (3.1)

∂

∂t
mG1 = wG,in − wG1 (3.2)

∂

∂t
mG2 = wG1 − wG,out (3.3)

Based on assumptions A1 - A8 and figure 3.1, the computation of most of the system
properties such as pressures, densities and phase fractions are then straightforward.

Some comments:

• The stationary pressure balance over the riser (AssumptionA6) is assumed to be given
by

P1 − P2 = ρ̄gH2 − ρLgh1 (3.4)

Here ρ̄ is the average mixture density in the riser. The use of a stationary pressure
balance is justified because the pressure dynamics are significantly faster than the time
scales in the control problem. For long pipelines, it might be necessary to add some dy-
namics (i.e. time delay) between the pipeline pressure (P1) and the measured pressure
if the pressure sensor is located far from the riser.

• The boundary condition at the inlet (inflowwG,in andwL,in) can either be constant or
pressure dependent.

• A simplified valve equation for incompressible flow is used todescribe the flow through
the choke valve,

mmix,out = K1z
√

ρT (P2 − P0) (3.5)

If a more accurate description of the flow out of the system is needed, the Sachdeva
model (Sachdeva et al., 1986) can be used.

• The most critical part of the model is the phase distributionand phase velocities in the
riser. The gas velocity is based on an assumption of purely frictional pressure drop
over the low-point and the phase distribution is based on an entrainment model. This
is discussed in more detail below.

The entire model is given in detail in Appendix B. A Matlab version of the model is
available on the web (Storkaas, 2003).
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3.2.3 Relationship between gas flow into riser and pressure drop

When the liquid is blocking the low point (h1 > H1 in figure 3.1(a)), the gas flowwG1 is
zero.

wG1 = 0, h1 ≥ H1 (3.6)

When the liquid is not blocking the low point (h1 < H1 in figure 3.1(b)), the gas will flow
from VG1 to VG2 with a mass ratewG1[kg/s]. From physical insight, the two most important
parameters determining the gas rate are the pressure drop over the low-point and the free
area given by the relative liquid level ((H1 − h1)/H1) at the low-point. This suggests that
the gas transport could be described by a valve equation, where the pressure drop is driving
the gas through a ”valve” with opening(H1 − h1)/H1. Based on trial and error, we propose
to use the following ”valve equation”:

wG1 = K2f (h1)
√

ρG1 (P1 − P2 − ρLgαLH2), h1 < H1 (3.7)

wheref(h1) = Â(H1 − h1)/H1 andÂ is the gas flow cross-section at the low-point. Note
thatf(h1) = Â(H1 − h1)/H1 is approximately quadratic in the ”opening”(H1 − h1)/H1.

Separating out the gas velocity withwG1 = vG1ρG1Â yields

vG1 =











K2
H1−h1

H1

√

P1−P2−ρLgαLH2

ρG1

h1 < H1

0 h1 ≥ H1

(3.8)

3.2.4 Entrainment equation

The final important element of the model is the fluid distribution in the riser. This distribution
can be represented in several ways. One approach is to use a slip relation to relate the liquid
velocity to the gas velocity and use the velocities to compute the distribution. This is similar
to the approach used in a drift flux model (Zuber and Findlay, 1965). We made several
attempts to derive a model based on this approach, but were not successful.

Another approach is to model directly the volume fraction ofliquid (αLT ) in the stream
exiting the riser. We found that this approach was better suited for our purposes. The liquid
fraction will lie between two extremes:

1. When the liquid blocks the flow such that there is no gas flowing through the riser
(vG1 = 0), we haveαLT = α∗

LT . In most cases we will then have only gas exiting the
riser (see figure 3.1(a)), andα∗

LT = 0. However, eventually the entering liquid may
cause the liquid to fill up the riser andα∗

LT will exceed zero. For more details, see
appendix B.

2. When the gas velocity is very high there will be no slip between the phases,αLT = αL,
whereαL is average liquid fraction in the riser.

The transition between these two extremes should be smooth.We assume that the transi-
tion depends on a parameterq as depicted graphically in figure 3.2 and represented by the



3.2. MODEL DESCRIPTION 43

entrainment equation

αLT = α∗
LT +

qn

1 + qn
(αL − α∗

LT ) (3.9)

The parametern is used to tune the slope of the transition, as illustrated infigure 3.2.

q=f(v
G1

,.....)

α LT

Entrainment transitions for different powers n of v
G1

 n = 0.5 
n = 1 

n = 1.5 

n = 2 

No gas flow , α
LT

=α∗
LT

No slip, α
LT

=α
Lα

L

α∗
LT

Figure 3.2: Transition between no and full entrainment

The final parameterq in (3.9) must depend on the gas velocity in the system. To derive
this relationship, we note that the entrainment of liquid bythe gas in the riser is somewhat
similar to flooding in gas-liquid contacting devices such asdistillation columns. The flooding
velocity is equal to the terminal velocity for a falling liquid drop and is given by

vf = kf

√

ρL − ρG

ρG

(3.10)

This expression only gives a yes/no answer to whether it is flooding (vG > vf ) or not (vG <
vf ). To get a smooth transition, we use the square of the ratio ofthe internal gas velocityvG1

to the flooding velocityvf . Thus,q = k
(

vG1

vf

)2

and introducingvf from (3.10) gives

q =
K3ρG1v

2
G1

ρL − ρG1

(3.11)

whereK3 = k/k2
f . Equation (3.11) combined with (3.9) produces the transition depicted in

figure 3.2. The tuning parameterK3 will shift the transition along the horizontal axis.
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3.3 Tuning Procedure

The simplified three-state model contains four empirical parameters that can be used to tune
the model. These are:K1 in the choke valve equation (3.5),K2 in the expression for internal
gas velocity (3.8) andK3 andn in the entrainment model ((3.9) and (3.11)). In addition,
some of the physical parameters that are assumed constant inthe model are varying in the
real system, and the values for these parameters can also be adjusted to improve the fit to the
reference data. These physical parameters include the average molecular weight of the gas,
MG, and the upstream gas volume,VG1.

The tuning of the model will depend on the available data. Field data for the real system
is obviously the best alternative, but sufficient data is rarely available for industrial systems,
especially for riser slugging. An alternative approach is to obtain data from a more detailed
model, for example a commercial multiphase simulator such as OLGA, that is tuned to give
a reasonably accurate description of the system. This approach can provide reference data
over a wide range of operating conditions and valve openingswithout the prohibiting costs
associated with field test.

The analysis of a riser slugging system in chapter 2 shows that the system goes through
a Hopf bifurcation at the transition from the stable flow regime to riser slugging. Here the
system must have a pair of purely complex eigenvalues (poles). This fact restricts the solution
space for the stationary solution (the zero solution of (3.1), (3.2) and (3.3)) at the bifurcation
point.

Our tuning strategy is to identify the bifurcation point from the reference data and use two
measurements (for example the upstream pressureP1 and the topside pressureP2) to fix two
degrees of freedom in the stationary solution of the model.K2 andh1 are strongly correlated
through (3.7), and since the stationary value ofh1 is bounded in the interval0 < h1 < H1,
it is easier to assign a value toh1 than toK2 when tuning the model. Thus, fixingh1 and
iterating on the value forn to obtain purely complex eigenvalues allows us to findK1, K2

andK3 from the stationary solution of the model. Finally, the value used forh1 and possibly
the physical propertiesMG andVG1 can be adjusted to to get an acceptable fit of pressure
levels, amplitudes, and frequencies for other valve openings.

Note that since the pipeline leading into the riser is treated as one control volume, we
cannot model variations in pressures etc. along the pipeline. This means that we can only
tune the model to data from a specified point in the feed pipeline.

3.4 Model verification

For verification, the model is fitted to experimental data from a medium scale loop (15 m
riser) and to the OLGA test case (300 m riser) used in chapter 2. Sivertsen and Skogestad
(2005) have also fitted the model to experimental data from a miniloop (1 m riser) with good
results.
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Table 3.1: Parameters identified to fit experimental Tiller data
Parameter Value Unit
K1 in choke valve equation 0.0014 m−2

K2 in the expression for internal gas velocity (3.8) 2.81 -
K3 in the entrainment model (3.11) 16.7 s2/m2

n in the entrainment model (3.9) 1.75 -
Upstream gas volumeVG1 0.80 m3

Molecular weight gasMG 146.1 kg/kmole

3.4.1 Experimental Tiller data

The experimental data were obtained from recent experiments performed by Statoil at a
medium scale loop at the SINTEF Petroleum Research Multiphase Flow Laboratory at Tiller
outside Trondheim, Norway. The loop consists of a 200 meterslong slightly declining feed
pipeline entering a 15 meters high vertical riser with a control valve located at the top. The
fluids used areSF6 for the gas and Exxsol D80 (a heavy hydrocarbon) for the liquid. After
the riser the mixture enters a gas-liquid separator with an average pressure of 2 bar. The
inflow into the feed pipeline is pressure dependent. More information on these experiments
can be found in Skofteland and Godhavn (2003), Fard et al. (2003) and Godhavn, Mehrdad
and Fuchs (2005).

The experimental data consist of four data points for non-oscillatory flow, where one is
for stable flow, one is the bifurcation point and the last two point are for stabilized (open-
loop unstable) operation. In addition, data for riser slugging with 100% open choke valve
are available. The experimental data are represented by thedots in figure 3.3, where the two
dots atZ = 100% represent the maximum and minimum pressure in the slug cycle.

As seen in figure 3.3, we were able to obtain a very good fit with our simplified model
to the experimental results using the tuning procedure described in section 3.3. The model
parameters from the tuning are given in table 3.1. More importantly, the controllers designed
based on the simplified model reproduced the stability results confirmed experimentally. In
fact, the optimized controller tunings found using the model matched the ones found to be
optimal from the experimental work.

Note that this is the only case studied in this thesis where the feed flow is pressure de-
pendent. However, the inflow mechanism seems to have little influence on the controlla-
bility. An analysis of the model gives the same general controllability findings and local
(linear) behavior as for the simulated OLGA test case with constant inflow studied chapter 2.
The only major difference is that, as expected, the low-frequency gain associated with flow
measurements at the outlet is larger when the inflow is pressure dependent. However, the
low-frequency gain is still low, so the controllability problem remains.
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Figure 3.3: Bifurcation diagram for the Tiller experimentaldata

3.4.2 Simulated OLGA test case

The test case for riser slugging OLGA, also studied in chapter 2, is used as a second veri-
fication case. The case geometry and nomenclature is shown infigure 2.3 (page 14). The
relationship between the nomenclature used in the model (figure 3.1) and the nomenclature
used for the physical system depicted in figure 2.3(a) are given in table 3.2.

Model Tuning

The model was tuned as outlined in section 3.3 and resulted inthe parameters given in table
3.3. The reference data was from OLGA simulations consistedof data both for riser slugging
and for the stable and unstable regions of the stationary flowregime. The unstable stationary

Table 3.2: Nomenclature for physical system and model.∗ Only one of these pressures can
be described by the model.

Description Physical system (figure 2.3(a)) Model (figure 3.1)
Topside pressure PT P2

Topside density ρT ρ2

Riser-base pressure∗ PRb P1

Inlet pressure∗ PI P1
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Table 3.3: Parameters identified to fit the simulated OLGA data
Parameter Value Unit
K1 in choke valve equation 0.0054 m−2

K2 in the expression for internal gas velocity (3.8) 6.84 -
K3 in the entrainment model (3.11) 0.11 s2/m2

n in the entrainment model (3.9) 2.3 -
Upstream gas volumeVG1 12.64 m3

Molecular weight gasMG 20.6 kg/kmole

operation points were obtained using the OLGA Steady State Processor. The bifurcation
point were identified to be at a valve opening ofZ = 13%, and the corresponding values for
the inlet pressurePI and pressure drop over the valveDP were used to obtain a first tuning
of the model.

Comparison with OLGA reference data and two-fluid model

In figure 3.4, the bifurcation diagrams for the inlet pressurePI and the topside pressurePT

predicted by the simplified 3-state model are compared to theOLGA reference data and
to the data from the PDE-based two-fluid model used in chapter2. For each model, the
solid lines represent operation with constant valve opening (without control). Riser slugging
is represented by two solid lines, and the system is oscillating between the maximum and
minimum pressure levels indicated in the bifurcation diagrams. The dashed lines indicate
the unstable stationary flow regime.

Figure 3.4 shows that the simplified model gives an excellentfit to the OLGA reference
data for the desired, non-oscillatory flow regime. The amplitude of the riser slugging is also
predicted with good accuracy. Figure 3.4(a) shows that the simplified model actually gives
the correct pressure drop over the pipeline-riser system, whereas the more complicated PDE-
based model predicted the pressure drop to be about 5% too high. The pressure drop over
the choke valve in figure 3.4(b) fits the reference data for thestationary flow regime for both
models while there are some minor deviations for the riser slugging regime.

The slug frequency is not included in the bifurcation diagram, but simulations show
that the simplified three-state model predicts a slug frequency that, compared to the OLGA
simulations, is about 10-20% too high for low-to-medium range valve openings and up to
about 50% too high for large valve openings. The higher frequency probably comes from
neglecting the liquid dynamics in the feed section. This is not surprising since we have in
this case tuned to achieve a good fit for the amplitude, and when the upstream gas volume is
fixed, we cannot fit both frequency and amplitude simultaneously.

3.5 Control properties of model

To further verify the model, we first investigate the open-loop step responses for the OLGA
test case for the 3-state model and compare these with the twofluid model from chapter 2
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and with OLGA. We then compare the local (linear) behavior and the controllability results
for the simplified model and two-fluid model at a valve openingof Z = 30%. We generally
find an excellent agreement with the significantly more complicated models, which is based
in quite different modeling assumptions. This further shows that the simple 3-state model is
excellent for control purposes.

3.5.1 Open-loop step response

Figure 3.5 shows the simulated step response to a step fromZ = 10% toZ = 12% at t=0 for
the simple 3-state model, the two-fluid model used in chapter2 and OLGA. The same step
response (without the 3-state model) was used in section 2.6.1 to gain some insight into the
dynamic behavior of the different measurement alternatives.

We observe the following for the 3-state model:

• The oscillations have a frequency that is similar to OLGA, which indicates that the
imaginary parts of the poles responsible for the oscillatory behavior have almost the
same magnitude.

• An effective time delay of about 10s is missing in the response fory = PI

• The effective time delay iny = DP , which is caused by unstable (RHP) zero dynam-
ics, is 1-2 minutes. This is similar to the two-fluid model, but shorter than in OLGA.
Also, the inverse response in the 3-state model has a shape that is consistent with real
RHP-zeros, whereas the other two responses are indicative ofcomplex RHP-zeros.

• The response fory = Q is very similar to the two other models.

3.5.2 Frequency response comparison

Figure 3.6(a) shows the Bode plot with the valve openingZ as input and the inlet pressure
PI as output for the simplified model (solid lines) and the two-fluid model from chapter 2
(dashed lines). Recall thatPI was identified in chapter 2 as a good candidate for stabilizing
control.

The step responses in the previous section show that a time delay of about 10 seconds is
missing in the simplified 3-state model. The time delay is dueto pressure wave propagation
through the pipeline. Time delay manifests itself in a Bode plot as a drop in the phase and
is evident in the lower part of figure 3.6(a). For a time delay of aboutθ = 10 s, the phase
should theoretically drop about57◦ at ω = 1/θ = 0.1 and drop sharply after this. This is
consistent with the phase behavior of the two-fluid model. Note that this delay may easily
be added to the simplified model to improve its behavior.

Another difference is a drop in the process gain (magnitude)for high frequencies in the
two-fluid model. This drop in gain is a dampening effect that occurs due to the dynamics in
the feed line which is not included in the simplified model. However, this damping occurs
at higher frequencies than the desired bandwidth of the control problem, and the model
deviation is therefore not important.
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Figure 3.6: Comparison of frequency responses for simplified(solid) and two-fluid model
(dashed).
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A third difference is that the simplified model has a higher gain in the frequency range
around the instability. The reason for this is not clear, andwe make no claim as to which
model gives the right representation of the gain. However, we will show later in the thesis
that effective and robust controllers can be designed basedon the 3-state model, which serves
as a strong indication that the gain representation is reasonably correct.

Figure 3.6(b) shows the Bode plot with the valve openingZ as input and the volumetric
flow through the choke valveQ as output. The differences are small, except for a higher gain
around the frequency of the instability.

Figure 3.7 shows the corresponding responses for disturbances in liquid feed (WL), gas
feed (WG) and downstream pressure (P0). As above, the deviations between the simplified
model and the two-fluid model can be explained by the difference in feed-line dynamics.
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Figure 3.7: Comparison of disturbance frequency responses for 3-state (solid) and two-fluid
model (dashed). Left column:y = PI , right column:y = Q. First row: d1 = WL, second
row: d2 = WG, third row: d3 = P0.
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3.5.3 Controllability analysis

In chapter 2, the lower bounds on the transfer functionsS, T ,KS, SG,KSGd andSGd were
computed based on the two-fluid model. The lower bounds serveboth as measures of the
achievable performance (e.g. the lower bound onKSGd give the minimum input usage due
to disturbances) and a as robustness indicators (e.g.SG is a measure of the sensitivity toward
inverse additive uncertainty). Values significantly higher than unity for any of the lower
bounds on the closed loop transfer functions are indications of controllability problems. The
pole vectors were also computed as a tool for measurement selection

Chapter 2 considered the input pressurePI , the riser-base pressurePrb, the pressure drop
over the choke valveDP , the density in the top of the riserρT , the mass flow rate through
the choke valveW and the volumetric flow rate through the choke valveQ as measurement
candidates for stabilizing control of the pipeline-riser system. The controllability analysis
concluded that the inlet or riser-base pressure were the best measurement candidates. The
flow-rateQ andW were also found to be good candidates, but only in an inner loop in a
cascade controller due to poor properties at low frequencies.

We here compare the models by computing the same bounds for the simple 3-state model,
except that we omit the riser-base pressurePRb from the analysis since in the simplified
model,PRb ≈ PI .

Tables 3.4 and 3.5 summarize the controllability results for the two models atZ = 17.5%
andZ = 30%, respectively. The bounds on the closed loop transfer functions and the pole
vectors are computed as described in chapter 2. Although there are some differences between
the two models, the conclusion is as before; we should preferably control the inlet pressure
PI , and if that measurement is not available, we should use the volumetric flowQ or the
mass flowW in an inner loop in a cascade controller.

One trend is that the value forminK ‖KS‖∞ (that is, the minimum peak for|KS|) is
lower for the simplified model than for the PDE-based two-fluid model. This is consistent
with the difference in peak gains observed form the Bode plots.

For the measurement alternativesDP andρT , which both have unstable zeros, the value
for MS,min = MT,min are lower for the simplified model than for the PDE-based model from
chapter 2. The reason is the difference in the location of theunstable zeros, which are also
given in the tables. Fory = DP , the simplified model has real unstable zeros, whereas
the PDE model has a pair of complex unstable zeros that lie closer to the complex pair of
unstable poles. This is consistent with the shape of the inverse responses in figure 3.5.
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Table 3.4: Controllability data for the operating pointZ = 17.5%. Unstable poles atp = 0.0007 ± 0.0073i for simplified model and
atp = 0.0014 ± 0.0085i for PDE-based model.

Minimum peaksa

Measurement Value Scaling Smallest RHP-zerob Pole vectorb |G(0)|b |S| = |T | |KS| |SG| |KSGd| |SGd|
PI [bar] (3-state) 69.35 1 - 0.49 19 1 0.01 0 0.06 0
PI [bar] (PDE) 70 1 99 0.36 18.9 1.0 0.03 0.0 0.06 0.0

DP [bar] (3-state) 1.91 1 0.018 0.21 17.7 1.1 0.02 5.9 0.06 1.37
DP [bar] (PDE) 1.92 1 0.01±0.01i 0.21 17.6 1.6 0.04 17.1 0.08 0.95

ρT [kg/m3] (3-state) 464 50 0.0045 0.35 1.4 1.2 0.01 27.4 0.06 2.25
ρT [kg/m3] (PDE) 432 50 0.016 0.28 1.5 1.4 0.03 28.6 0.07 1.60
W [kg/s] (3-state) 9 1 - 0.64 0 1 0.01 0 0.06 0
W [kg/s] (PDE) 9 1 - 0.59 0 1 0.02 0 0.06 0
Q[m3/s] (3-state) 0.0194 0.002 - 0.42 1.5 1 0.01 0 0.06 0
Q[m3/s] (PDE) 0.0208 0.002 - 0.51 1.8 1 0.02 0 0.06 0

Table 3.5: Controllability data for the operating pointZ = 30%. Unstable poles atp = 0.0038 ± 0.0115i for simplifeid model and at
p = 0.0045 ± 0.0108i for PDE-based model.

Minimum peaks
Measurement Value Scaling Smallest RHP-zerob Pole vectorb |G(0)b| |S| = |T | |KS| |SG| |KSGd| |SGd|
PI [bar] (3-state) 68 1 - 0.32 3.4 1 0.11 0 0.31 0
PI [bar] (PDE) 68.7 1 98.1 0.30 3.3 1.0 0.30 0.0 0.35 0.005

DP [bar] (3-state) 0.68 0.5 0.016 0.17 6.3 1.9 0.25 15.1 0.31 5.8
DP [bar] (PDE) 0.66 0.5 0.01±0.01i 0.17 6.1 4.3 0.62 16.8 0.97 5.5

ρT [kg/m3] (3-state) 459 50 0.0045 0.34 0.26 1.5 0.13 4.4 0.38 2.0
ρT [kg/m3] (PDE) 427 50 0.015 0.27 0.27 2.6 0.64 14.6 0.55 4.7
W [kg/s] (3-state) 9 1 - 0.73 0 1 0.06 0 0.31 0
W [kg/s] (PDE) 9 1 - 0.63 0 1 0.17 0 0.32 0
Q[m3/s] (3-state) 0.0196 0.002 - 0.47 0.28 1 0.09 0 0.31 0
Q[m3/s] (PDE) 0.0211 0.002 - 0.59 0.33 1 0.17 0 0.32 0.002

aWant these small
bWant these large
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3.6 Conclusions

We have developed a simplified model of riser slugging suitable for controller design and
analysis. The model has three states and is based on ’phenomenological’ modeling, where we
identify the major characteristics of the system at hand anddevelop a model that incorporates
these characteristics. The major characteristics of the riser slugging systems are the stability
of the flow as a function of choke valve position, the nature ofthe transition to instability
(Hopf bifurcation), the presence of an unstable steady-state solution and the amplitude of
the oscillations. It should be stressed that it is more important for the model to describe the
(desired) steady state flow regime than than the (undesired)slug behavior.

We have fitted the model to data both from an OLGA test case and from medium-scale
experiments. We have in both cases achieved good agreement with the data. It is our experi-
ence that the simplified model is easier to fit to experimentaldata than the more complicated
PDE-based two-fluid models that are based on a more ”rigorous” representation of the true
system. A controllability analysis shows the same results for a PDE-based two-fluid model
and the simplified model, adding additional verification to the simplified model. The model
has also been used for controller design (chapters 5 and 6) with good results.

The model is available on the web (Storkaas, 2003).
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Chapter 4

Implication of input rate limitations on
controllability and controller design

Espen Storkaas and Sigurd Skogestad
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Abstract

The conventional process controllability analysis on input usage has focused almost exclusively on signal
magnitudes. However, input rate can in many cases be more important, especially when large valves are used
for stabilizing control and/or for suppression of (relatively) fast disturbances.

This chapter will introduce simple expressions for computing the minimum input movement rate required
for control of both stable and unstable systems. The input rates can be included in a frequency-dependent
bound on the inputu. The bound can be used for controllability analysis and alsofor controller design.
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4.1 Introduction

Prior to designing a control system, there is a number of questions that should be asked;
How well can the process be controlled? What control structure should be used? How
might the process be changed to improve control? These questions can be answered by a
controllability analysis (Skogestad and Postlethwaite, 1996) performed on the process prior
to the actual controller design. For example, design parameters like the valve size (e.g. CV
value) that would ensure a controllable system can be determined by such an analysis.

In order to interpret the results from the controllability analysis, it is recommended that
the process models are scaled such that the signals have similar magnitude. The models are
usually scaled such that the inputs and outputs are less thanone in magnitude. For example,
u = 1 may imply that a valve is fully open andu = −1 that a valve is fully closed. However,
if input movement rate is limited, then this should be taken into account when scaling the
process.

The significance of the input movement rate is highly case-dependent. Small valves
with low pressure drop are usually fast-acting, and when such valves are used to control
slow processes, the input rate is will probably not affect the control problem. On the other
hand, the movement rate of large valves may be in the same frequency range as the desired
bandwidth for the process. In these cases, the effect of the input movement rate may be
crucial.

The objective of this chapter is two-fold. 1) Find the minimum input movement rate
necessary to achieve the design targets for the control system and then 2) design control
systems that explicitly takes the limited input movement rate into account. The effect of a
limited input movement rate is especially important for stabilizing controllers for unstable
systems where input saturation can destroy the stabilizingfeedback effect of the control
system and thus cause instability.

Notation

We base the analysis on sinusoidal input (and output) signals whereu(t) is a sinusoidal
signal with frequencyω and frequency-dependent magnitude|u0(ω)|, u(t) = |u0(ω)|sinωt.
The process gain|G(jω)| gives the frequency-dependent amplification of a sinusoidal input
signalu(t) resulting in a output signaly(t) with magnitude|y0(ω)| = |G(jω)||u0(ω)|.

4.2 Control limitations imposed by input magnitude con-
straints

The inputs are assumed to be limited by hard (magnitude) constraints of the kindumin ≤
u ≤ umax. Then, without considering input movement rate limitations, the process would
normally be scaled with the maximum allowable input change,G(s) = Ĝ(s)Du, whereĜ(s)
is the unscaled process transfer function andDu = min(|umin−unom|, |umax−unom|) where
unom is the nominal input magnitude. Taking the minimum allows for possible asymmetry
in the input range. It is assumed in the remainder of this chapter that the models are scaled to
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take into the account the magnitude constraint on the inputs. Thus, to avoid input magnitude
saturation we will require

|u0(ω)| < 1 (4.1)

4.3 Effect of input rate limitations on input magnitude

When the input movement rate is limited, it is not possible to implement sinusoids with
unit amplitude at higher frequencies. This is illustrated in figure 4.1, where a sinusoidal
signalu(t) with unit amplitude is sent through a rate limiter which limits the slope of the
signal (|du

dt
|) to be less that a valuėumax, |du

dt
| ≤ u̇max. We see that input signalsu(t) with

frequencies equal to or lower thanω = u̇max is unaffected by the rate limitations, whereas
rate saturation of signals with higher frequencies lead to distorted output signals.
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Figure 4.1: Illustration of rate limitation. Dashed line issinusoidal input, solid is output

The effect of the rate limitation in figure 4.1 is easy to explain. The slope of a sinusoidal
signalu(t) = |u0(ω)|sinωt is du

dt
= |u0(ω)|ω cosωt and has|u0(ω)|ω as its maximal value.

The rate limiter will not affect the sinusoidal signalu(t) if
∣

∣

du
dt

∣

∣ ≤ u̇max or, equivalently,
|u0(ω)|ω ≤ u̇max. This gives the input magnitude limitation due to the rate limitation:

|u0(ω)| ≤ u̇max

ω
(4.2)

Combining the limitations from input magnitude (4.1) and rate (4.2) yields

|u0(ω)| ≤ min

(

u̇max

ω
, 1

)

(4.3)

The maximum input magnitude in (4.3) is shown graphically infigure 4.2 as a function
of frequency.

Instead of maximum ratėumax on the input movement, we may specify the opening time
TI . If the inputs has been scaled in the range [-1, 1] as just outlined, then the time to go from
a closed (u = −1) to an open (u = 1) valve with an input ratėumax is

TI =
2

u̇max

(4.4)
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Figure 4.2: Graphical illustration of available input magnitude

4.4 Required input rates for stabilizing control

Saturation, whether it is caused by input magnitude or rate,is usually most critical for a
control system designed to stabilize an unstable plant. Feedback is needed, and stabilizing
control relies on constantly making small changes to the process inputs to keep the system
stable. If the input saturates, then the process is effectively ”open loop” and the stabilizing
effect is lost (at least until the input comes out of saturation). Thus, for unstable plants, it is
important to avoid that disturbances or noise drive the input into saturation. For an everyday
example of this, imagine balancing a stick in the palm of yourhand. This is normally quite
easy to do (at least with a reasonably long stick), but imagine not being allowed to move
your hand to the right? If the stick starts tilting to the right, you will clearly no longer be
able to keep the stick upright.

For a processG(s) and disturbance modelGd(s) (y = Gu + Gdd), the closed loop
transfer function from disturbanced to plant inputu is KSGd and we have in terms of the
magnitude

|u0(ω)| = |KSGd(jω)| · |d0(ω)| (4.5)

For an unstable plant we need feedback and there exists a lower bound on‖KSGd‖∞ for
any controllerK. With a sinusoidal disturbance of magnitude|d0(ω) = 1 (d(t) = sinωt),
we have for any unstable polep (Havre and Skogestad, 1997; Skogestad and Postlethwaite,
2005),

max
ω

|u0(ω)| = ‖KSGd(s)‖∞ ≥
∣

∣Gs(p)
-1Gd,ms(p)

∣

∣ (4.6)
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Here, the subscripts denotes the ”stable version” of the transfer function (the RHP-poles
mirrored into the LHP) and the subscriptms denotes the ”minimum-phase, stable version”
(both RHP poles and zeros mirrored into the LHP).

In terms of Laplace transforms,L
(

du
dt

)

= su(s). Thus, the corresponding bound on the
input rate|du/dt| due to sinusoidal disturbances of magnitude 1 is

max
ω

∣

∣

∣

∣

du

dt

∣

∣

∣

∣

= ‖sKSGd(s)‖∞ ≥
∣

∣pGs(p)
-1Gd,ms(p)

∣

∣ (4.7)

Equation (4.6) combined with the the magnitude limitation|u| ≤ 1 yields the criteria for
stabilizing control without input magnitude saturation:

∣

∣Gs(p)
-1Gd,ms(p)

∣

∣ ≤ 1 (4.8)

Correspondingly, equation 4.7 combined with the rate saturation demand|du
dt
| ≤ u̇max yields

the criteria for stabilizing control with input rate limitations:

∣

∣pGs(p)
-1Gd,ms(p)

∣

∣ ≤ u̇max (4.9)

The bounds in (4.6) and (4.7) are only tight for plants with a single unstable polep. For
the general case, with multiple unstable poles or MIMO, the following conditions are exact
(Skogestad and Postlethwaite, 2005):

σ−1
H

(

U
(

G-1
d,msG

))

≤ 1 (4.10)

σ−1
H

(

U
(

s-1G-1
d,msG

))

≤ u̇max (4.11)

whereσH (U (X)) is the smallest Hankel singular value of the antistable partof the argument
X.

The same expressions can be used to describe the effect of noise by replacingGd withN ,
whereN is the noise model. For combined noise and disturbance rejection, we may replace
Gd by [Gd N ]T .

Example 4.1 Consider the unstable processG(s) = 20(s+1)
(10s+1)(2s−1) with disturbance modelGd(s) =

10
(10s+1)(s+1) . Since|Gs(p)-1Gd,ms(p)| = (2·0.5+1)

2(0.5+1)2
= 0.44 ≤ 1, it is possible to stabilize the process

without saturating the input if the input rate satisfiesu̇max ≥ p|Gs(p)-1Gd,ms(p)| = 0.22 sec-1. This
corresponds to an opening time of less thanTI = 2/0.22 = 9 sec. SinceG(s) contains only one
unstable pole, (4.8) and (4.9) are equivalent to (4.10) and (4.11) for this example.

4.5 Required input rate for performance

We do not only require stability, for control performance wewant the control errore small.
We will here consider the required input usage for perfect control (e = 0). Note that, for
unstable systems, the performance requirements derived inthis section come in addition to
the requirements for stability derived in the previous section.
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For perfect control (e = y−Rr = 0) of the planty = Gu+Gdd, the plant input must be

u = G-1Rr −G-1Gdd (4.12)

Thus, for perfect rejection of a sinusoidal disturbance with amplitude|d0(ω)| = 1, we need
|u0(ω)| = |G-1Gd|. Perfect disturbance rejection is a reasonable assumptionat low fre-
quencies if we require low-frequency performance. However, perfect disturbance rejection
is unrealistic at high frequencies. If we assume that it is acceptable to have control error
|e| < 1 at high frequencies, then we do not need control at frequencies aboveωd where|Gd|
drops below 1. To be able to achieve perfect control and satisfy the input limitations in (4.3)
we must then require

∣

∣G (jω)−1Gd (jω)
∣

∣ ≤ min

(

u̇max

ω
, 1

)

∀ ω ≤ ωd (4.13)

or equivalently, in terms of individual bounds,

max
ω≤ωd

∣

∣G (jω)−1Gd (jω)
∣

∣ ≤ 1 (4.14)

max
ω≤ωd

∣

∣ωG (jω)−1Gd (jω)
∣

∣ ≤ u̇max (4.15)

The corresponding requirements for perfect reference tracking can be found by replacingGd

byR in (4.14) and (4.15).
Perfect control can never be realized in practice, but the input usage is usually close to

what is needed in practice, as is also shown later in this chapter. More exact requirements can
easily be derived for acceptable control (|e| ≤ 1), but the resulting bounds were not found
to be useful in our case. For an unstable system, the requirements for perfect control will
be stricter than the requirements for stabilization for process where disturbance rejection is
needed for frequencies around the instability(Gd,ms(p) > 1). For processes where the dis-
turbance gain is low around the instability(Gd,ms(p) < 1), the requirements for stabilization
(i.e. (4.9)) will usually be stricter.

Example 4.2 The required input rate for performance for the process from example 4.1
(

G(s) = 20(s+1)
(10s+1)(2s−1) , Gd = 10

(10s+1)(s+1) , ωd = 0.78
)

with the reference modelR = 2
(10s+1)2

(ωr = 0.1) are

• for perfect disturbance rejection:̇umax = 0.45 sec.-1, corresponding to a opening time of
TI = 4.4 sec.

• for perfect command tracking:̇umax = 0.0072 sec.-1, corresponding to a opening time of
TI = 278 sec.

Thus, in this case, the requirement for perfect disturbance rejection is stricter than the requirement
for stabilization.
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4.6 Controller design with input rate limitations

Designing controllers that satisfy the upper bounds on input rate derived above requires a
systematic design procedure, especially if the available input rate is close to the theoretical
minimum. To minimize the input magnitude for a process with disturbances, the transfer
functionKSGd should be minimized. Frequency-varying bounds on the input, such as (4.3)
can be included by introducing a weightWu(s), |u| < |W−1

u (s)|. The transfer function to be
minimized becomesWuKSGd.

4.6.1 Input weight for controller design

For controller design, the bound in (4.3) can not be used as a weightWu since it has a
infinite-dimensional realization due to the break point atω = u̇max. Thus, a lower-order
approximation has to be used, and we use a first order lag-filter approximation

min

(∣

∣

∣

∣

u̇max

ω

∣

∣

∣

∣

, 1

)

≈
∣

∣

∣

∣

∣

1
jω

u̇max
+ 1

∣

∣

∣

∣

∣

which gives

Wu(s) = u̇-1
maxs+ 1 (4.16)

The difference between the exact bound in (4.3) and the weight W−1
u is illustrated in

figure 4.3. Note that the approximation is conservative, in that the bound implied by the
weightWu is tighter than the actual bound.

Requiring|u| ≤ W -1
u , with Wu described by (4.16), results in the following bounds on

the input rate:
Stabilization:

u̇max ≥ |p|
(∣

∣Gs (p)Gd,ms (p)-1
∣

∣− 1
)-1

(4.17)

Perfect disturbance rejection:

u̇max ≥ max
ω≤ωd

∣

∣

∣
ω
(

G(jω)Gd(jω)-1 − 1
)-1
∣

∣

∣
(4.18)

Again, the required input rates for command tracking can be found for by substitutingR
for Gd.

Example 4.3 For the unstable process in example 4.1 and 4.2, equation (4.17) gives the new bound
u̇max ≥ 0.4 for stabilization. For performance, (4.18) gives new bounds for perfect disturbance
rejection,u̇max ≥ 0.61, and for perfect command tracking,u̇max ≥ 0.0069. The bounds using the
exact input limitation in (4.3) are 0.22, 0.45 and 0.0072, respectively. The bound for stabilization is
thus significantly increased when the approximate bound is introduced.
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Figure 4.3: Exact bound and lag filter approximation

4.6.2 H∞ controller design

To illustrate the controller design procedure, we design aH∞ controller that minimizes
‖WuKSGd‖∞ for the unstable process from example 4.1. The input rate limitation is set
to the minimum value computed from (4.17) (u̇max = 0.4). The corresponding input weight
isWu = 2.5s+ 1.

TheH∞ controller design was performed using thehinfsyncommand in Matlab, yielding
the controller:

K(s) =
−0.01(10s+ 1)(s+ 1)(0.00025s+ 1)

(1.5s+ 1)((0.003s)2 + 0.0043s+ 1)(0.0285s+ 1)
(4.19)

Since the minimum input rate is used, the resulting frequency response for|WuKSGd(jω)|
is ”flat” with ‖WuKSGd‖∞ = 1. This is not surprising sinceH∞ controller design usually
results in flat responses if possible and the peak value of oneis given by (4.6) and (4.17) with
equality. This implies that the controller in (4.19) just manages to keep the input away from
saturation for sinusoidal disturbances of magnitude 1 if the input limitations are described by
W -1

u . However, there is some conservatism introduced for frequencies arounḋumax through
the use of the lag filterWu from (4.16) instead of the exact bound in (4.3). The transfer
functionKSGd is plotted together with the input weightW -1

u in figure 4.5.
Figure 4.6 shows a simulation where the process in figure 4.4 is stabilized by the con-

troller in (4.19). A sinusoidal disturbance with magnitude1 and frequencyp = 0.5 is im-
posed on the process. The upper plot shows the process output(y), the middle one shows the
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Figure 4.4: Unstable process from example 4.1
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controller output (u) and the lower plot shows the difference, due to the rate and magnitude
limitations, between the output from the controller and theinput to the plant. For the simu-
lation on the left hand side, the input limitation is set todu/dt ≤ u̇max = 0.4. The system is
stable, and the rate and magnitude limitations do not affectthe system at all. If the maximum
input rate is reduced by 30% to 0.28, as in the simulations on the right hand side in figure
4.6, the rate limitations results in saturation, and the system goes unstable.
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Figure 4.6: Effect of input limitation onH∞ stabilizing controller for example 4.1

This design has stabilization as its sole target. There are no performance or robustness
targets, and, as can be observed from the simulation in figure4.6, the resulting controller
can not keep the outputy within its desired range of|y| ≤ 1. Also, the design has other
weaknesses. For instance, the weighted closed-loop transfer function from measurement
noisen to plant inputu, WuKSN , whereN = 0.1 is the noise model, has a peak value of
‖WuKSN‖∞ = 922, indicating that the plant input would be very sensitive to measurement
noise. If the controller design targets is extended to also minimize‖WuKSN‖∞ by solving



4.7. INPUT RATE LIMITATIONS FOR STABILIZATION OF SLUG FLOW 67

the problemminK

∥

∥ WuKSGd WuKSN
∥

∥

∞
, then‖WuKSGd‖∞ and‖WuKSN‖∞ both

exceed unity (‖WuKSGd‖∞ = 1.2 and‖WuKSN‖∞ = 1.26). To avoid input saturation
due to both disturbancesd and noisen, the allowed input rate has to be increased by about
60% todu/dt ≤ 1.6·u̇max = 0.64 yielding‖WuKSGd‖∞ = 0.99 and‖WuKSN‖∞ = 0.99.

If performance targets in terms ofS are added to the design objective, the input rate has
to be further increased. The input rate requirement for perfect disturbance rejection for this
plant isu̇max = 0.61 (example 4.3), and the combined effect of stabilization andperformance
requirements in addition to the effect of measurement noisewill, as we will see in the next
section, require a input rate that is higher than the individual bounds.

4.7 Input rate limitations for stabilization of slug flow

Stabilizing control of multiphase flow in pipeline-riser systems at riser slugging conditions
provides a good and relevant example for illustrating the importance of input rate limitations.
The actuator in these systems is the valve opening of a large choke valve located on the top
of the riser. For safety reasons, the choke valves should be slow-acting. The reason for
the safety restriction on the valve rate is that if the valve were to open quickly at a time
when the pressure drop over the valve is high, flow in to the inlet separator would increase
dramatically. This could result in overfilling or over-pressurizing of the separator. Thus, we
would like to design a choke valve that is just fast enough forachieving the control targets,
and being able to quantify the required input rate may be a critical factor in the design of
stabilizing controllers.

The pipeline-riser system studied in chapters 2 and 3 provides a simple, yet representative
example of a case where riser slugging can be removed using stabilizing feedback control.
We will use the model derived in chapter 3 to calculate the required input rate for stabilizing
control of the pipeline-riser system.

The process is linearized around the operating point corresponding to a choke valve open-
ing of 30%, giving the (unscaled) process model from the valve openingu = Z to the inlet
pressure measurementy = PI

Ĝ(s) =
−4.87(260.8s+ 1)

(0.218s+ 1)(6808s2 − 51.75s+ 1)
e−10s (4.20)

The hat (̂) is used to indicate that the model has not been scaled. Note that a 10 second delay
is included the model. This is done based on the analysis in chapter 3, were it was concluded
that, because of the neglected pipeline dynamics, a delay ofabout 10 seconds was missing
in the simplified model.

The disturbance models from gas feed flowWG, liquid feed flowWL and downstream
(separator) pressurePO are

Ĝd(s) =















31.56(20.3s−1)(0.23s+1)
(0.218s+1)(6808s2−51.75s+1)

0.82(30s+1)
(0.218s+1)(6808s2−51.75s+1)

1.07(260.8s+1)
(0.218s+1)(6808s2−51.75s+1)















(4.21)
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Table 4.1: Minimum input rate for stabilization of the pipeline-riser system. The disturbance
model augmented to include measurement noise (Gd,aug = [Gd N ])

Bound Eq. # u̇max Opening Time [min]
‖pGs(p)

-1Gd,aug,ms(p)‖2 (4.9) 0.0074 4.5
1/σH

(

U
(

G-1
d,aug,msGs

-1
))

(4.11) 0.0052 6.6

The plant input is scaled with the maximum positive input deviation (70% ⇒ Du = 0.7), the
output is scaled with the maximum allowed deviation (∆PI = 1 bar ⇒ Dy = 1) and the
disturbances are scaled by the following scaling matrix

Dd =













0.072( 2π
180

s+1)( 2π
160

s+1)
( 2π

90
s+1)( 2π

30
s+1)

2 0 0

0
1.728( 2π

180
s+1)( 2π

160
s+1)

( 2π
90

s+1)( 2π
30

s+1)
2 0

0 0 1
(10s+1)













The basis for the disturbance scaling is given in section 2.6.3. The resulting scaled models
are found asG = D-1

y ĜDu, Gd = D-1
y ĜdDd.

The plant has a complex pair of unstable poles,pi = 0.0038 ± 0.0115i and three dis-
turbances. To include the effect of measurement noise, the disturbance model is augmented
with the disturbance modelN = 0.1. Table 4.1 shows the minimum input rates for stabiliza-
tion using the bounds in (4.11) and (4.9). The bound in (4.11), which applies for plants with
multiple unstable poles, is difficult to evaluate for non-square disturbance models and is thus
evaluated one disturbance at a time. The value 0.0052 for theworst disturbance is shown.
On the other hand, the bound 0.0074 in (4.9) applies to multiple disturbances (‖d‖2 ≤ 1),
but is not tight for multiple unstable poles. The actual value for u̇max will therefore exceed
0.0074.

4.7.1 Design 1 - Stabilization with input limitation

For controller design, we use the approximate input limitation descriptionWu in (4.16) and
the rate limitationu̇max = 0.0103, which is obtained from (4.17). This resulting input weight
isWu = 97s+ 1. The stabilizing controller is then found by solving the control problem

min
K

∥

∥ WuKSGd WuKSN
∥

∥

∞
(4.22)

The frequency response for the resulting controller is shown in the top plot in figure
4.7. The input usage for the different disturbances are shown in the middle plot together
with the input weightW−1

u . The middle plot shows that neither the disturbancesd nor the
measurement noisen can individually drive the input into saturation. This is confirmed by
the closed-loop norms‖WuKSGd‖ = 0.96 and‖WuKSN‖ = 0.96. The lower plot in
figure 4.7 shows the sensitivity functionS and the complementary sensitivity functionT .
The sensitivity functionS is high at all frequencies, which implies that there is no reference
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Figure 4.7: Controller, input usage and performance for riser slugging case, design 1.

tracking properties in the design. This is not surprising, since there are no low-frequency
performance requirements in the design.

Low-frequency performance is not strictly needed for stabilizing control, but without it,
the process might drift away from its operating point even for small disturbances. This is
indeed what happens with design 1, as shown in figure 4.8, where, as a result of a 5 %
reduction in the feed at t=1 h, the process drifts off and the input saturates. Thus, to stabilize
the pipeline-riser system in practice, a low-frequency performance condition has to be added
to the design.

4.7.2 Design 2 - Stabilization with input limitation and low-frequency
performance

To avoid the process drifting off from its operating point, aperformance weight is added to
design problem. The weight

Wp =
s/M + ω∗

B

s+ ω∗
BA

(4.23)

on the control errore = r − y will demand the sensitivity functionS to be less thanA at
low frequencies. At high frequencies,S is required to be less thanM . ω∗

B constitutes the
approximate bandwidth requirement for the closed loop process. The control problem with
input and performance requirements is

min
K

∥

∥

∥

∥

WuKSGd WuKSN WuKSR
WpSGd WpSN WpSR

∥

∥

∥

∥

∞

(4.24)
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Figure 4.8: Simulation of riser slugging case with controller design 1 showing that the oper-
ating point drifts off and the input saturates when the feed flow is slightly reduced.

whereR is the weight for setpoint tracking.
With the extended control problem defined by (4.24), a higherinput rate is required to

fulfill the design objectives. WithM = 5, ω∗
B = 0.01, A = 0.1 andR = 1/(100s + 1)2,

the obtained peak values for the weighted closed loop transfer functions for setpoint tracking
(WpSR), disturbance suppression (WpSGd), input usage due to noise (WuKSN ) and input
usage due to disturbances (WuKSGd) for different input rates are given in table 4.2. Table
4.2 shows that the required valve rate for achieving the performance target whilst avoiding
input saturation iṡumax = 0.021, a value 2 times higher than the one computed from (4.6.1).

From (4.15), the required input rate for perfect control of the pipeline-riser system, is
u̇max = 0.014. Thus, as expected, the combined effect of stabilization and disturbance
rejection requires a higher input rate than the individual requirements for stabilization and

Table 4.2: Input usage and performance for increasing valverates
u̇max ‖WpSR‖∞ ‖WpSGd‖∞ ‖WuKSGd‖∞ ‖WuKSN‖∞
0.012 0.34 1.29 1.40 1.38
0.015 0.27 1.11 1.22 1.19
0.018 0.22 0.99 1.09 1.06
0.021 0.19 0.89 1.00 0.97
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disturbance rejection.
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Figure 4.9: Controller, input usage and performance for riser slugging case, 2nd design

Figure 4.9 shows the controller, the input usage and the sensitivity functions for the
controller designed based on the input rateu̇max = 0.021. This control system should be able
to stabilize the system under the influence of all the disturbances considered in the design.
An interesting observation is that the structure of the resulting H∞ optimal controller is very
similar to a PI controller with gain around 0.3 bar−1, integral time of about 200 seconds and
a lag filter on the measurement with a filter constant of about 1.5 seconds.

This example has shown that a theoretical lower bound on the required input movement
rate can be computed for a ”real” system. It has also shown that, as more design objectives
are added, a faster and faster input is needed. We will not pursue the controller design for
the riser slugging case further in this chapter, as this is left for a more thorough treatment in
the next two chapters.

4.8 Conclusion

Simple equations for computing the minimum input rate required for control of both stable
and unstable systems have been derived. For stabilizing control of an unstable plant, the
minimum input rateu̇max is bounded by

∣

∣pGs(p)
-1Gd,ms(p)

∣

∣ ≤ u̇max

Correspondingly, the minimum input rate for perfect disturbance rejection is bounded by

max
ω≤ωd

∣

∣ωG (jω)−1Gd (jω)
∣

∣ ≤ u̇max



72
CHAPTER 4. IMPLICATION OF INPUT RATE LIMITATIONS ON

CONTROLLABILITY AND CONTROLLER DESIGN

For an unstable plant, the requirements for perfect controlwill be stricter than the re-
quirements for stabilization for process where disturbance rejection is needed at frequencies
around the instability, that is, when|Gd,ms(p)| > 1, approximately. For processes where
the disturbance gain is low at frequencies around the instability (i.e. |Gd,ms(p)| < 1), the
requirements for stabilization will usually be stricter.

The input rates can be included in a frequency-dependent weightWu(s), which can be
used in controllability analysis and controller design.

Two examples have been provided that illustrate the importance of the input rate. The
examples have also shown that if both input limitations and performance requirements are
included in the controller design objective for an unstableplant, the input rate must be higher
than the theoretical minimum for both stabilization and performance.

For the simulated OLGA cases with riser slugging, which is used as the main case study
in this thesis, a minimum input rate iṡumax = 0.0074s−1 for stabilization andu̇max =
0.014s−1 for perfect disturbance rejection. TheH∞ controller designed in this chapter,
with both input limitations and performance requirements,required a valve rate oḟumax =
0.021s−1.
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Stabilization of multiphase flow in
pipelines with single-loop and cascade
controllers
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Abstract

Stabilizing PID anti-slug controllers are designed for theOLGA pipeline-riser system case studied in
chapters 2 and 3. The controller parameters are optimized based on the simplified, three-state model developed
in chapter 3, and the choice of measurements are based on the controllability findings from chapters 2 and 3.
The controllers are tested with simulations on both the simplified three-state model, the two-fluid model from
chapter 2 and the OLGA model.

Control is based on manipulating the valve position (u = Z). Single-loop (SISO) PID controllers based
on an upstream pressure measurement (y = inlet pressurePI or y = riser base pressurePRb) perform well if
tuned to minimize‖S‖∞ (the peak of the sensitivity functionS). Minimizing ‖T‖∞ results in too aggressive
controllers. A flow controller (withy = Q) can also stabilize the process, but the low-frequency performance
is, as expected, poor.

The stabilizing flow controller is, however, well suited as an inner loop in a cascade controller (y2 = Q).
If the inlet pressure (y1 = PI ) is used as the primary measurement in the cascade controller, the performance
is slightly improved over the SISO pressure controller. A cascade controller can also stabilize the process
with only topside (downstream) measurement by using the pressure drop over the choke valveDP or the
valve positionZ as a primary control variable (y1). These controllers are, however, slower due to the inherent
controllability limitations in the process.
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5.1 Introduction

Chapters 2 and 3 dealt with modeling of and controllability analysis for multiphase flow in
pipeline-riser systems at riser slugging conditions. Two different models were described,
a conventional two-fluid model and novel simplified dynamic model with only 3 dynamic
states. For both these models, controllability analysis show that it should be possible to avoid
riser slugging in the system by stabilizing an unstable operating point that exists at the same
boundary conditions that uncontrolled would yield riser slugging. It has also been shown that
the choice of control variable is crucial. We now consider the design of controllers based on
the controllability findings from these two chapters.

The focus of this chapter will be on PID controllers, either as single-loop or cascade
controllers. These controllers are by far the most common inpractice, and can be easily
implemented in most control systems. The controller parameters are optimized based on the
simplified model introduced in chapter 3, but the resulting controllers are tested on both the
simplified model, the two-fluid model used in chapter 2 as wellas on the OLGA model that
provides the reference data for the model tuning. The use of three different models to test the
controllers provides some insight into the robustness properties of the controllers. Testing
the controllers designed based on the simplified model on other models also gives further
information regarding the quality of the simplified model.

We will first, in section 5.2, discuss the requirements for a stabilizing control of a pipeline-
riser system. These requirements are based the set of properties that the resulting closed-loop
system should have in order to guarantee stable operation. Section 5.3 deals with single-loop
(SISO) stabilizing PID controllers for three different measurements alternatives, namely in-
let pressure (PI), riser base pressure (PRb) and volumetric flow out of the riser (Q). We
will design PID controller with these measurements that meet the control requirements and
evaluate their performance. Section 5.4 deals with cascadecontrollers where the volumetric
flow Q is used as a secondary measurement in an inner loop. The main goal of this section is
to design controllers based on only topside measurements, and evaluate the performance of
these controllers compared to the controllers based on upstream measurements. This chapter
will thus give good insight into the achievable performancewith PID anti-slug controllers
for a wide range of control structures.

5.2 Control objectives

The main control objective for any stabilizing controller is obviously to keep the process
stable. This implies that the (nominal) closed loop system needs to have all its poles in the left
half plane (nominal stability, NS). Keeping the process stable will also impose requirements
on the input usage, on low-frequency performance (at least for nonlinear systems) and on the
robustness of the system. These requirements will in this section be formalized to form a set
of control objectives for the controller design process.
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5.2.1 Input usage

All real processes have hard constraints on the inputs determined by the equipment used to
manipulate the process. A valve, which is the most common manipulated input in the process
industry, cannot be more than fully open or fully closed and there is a limit to how fast it can
be opened. When the process input is at one of its constraints (that is, it is saturated) it is
impossible to implement the action demanded by the control system.

To ensure that the process inputu stays away from saturation, we will require that nei-
ther the disturbancesd nor the measurement noisen bring the input into saturation. The
closed-loop transfers functions from disturbances and measurement noise to process input
areKSGd andKSN , respectively. Assuming that the inputs are bounded by an input weight
Wu(s) such that|u(jω)| ≤ |Wu(jω)-1|, and the modelsGd andN contain scaling such that
the disturbance and noise signals are less than one in magnitude (|d|, |n| ≤ 1), input satura-
tion will be avoided if

|WuKSGd| ≤ 1 ∀ ω ⇔ ‖WuKSGd‖∞ ≤ 1 (5.1)

|WuKSN | ≤ 1 ∀ ω ⇔ ‖WuKSN‖∞ ≤ 1 (5.2)

These two requirements will hence form a part of the design objective for the controller
design.

5.2.2 Low-frequency performance

Low-frequency performance is not really a requirement for stabilizing control, at least not
for linear systems. However, real systems are nonlinear andthe lack of low-frequency per-
formance might cause the process to drift into an operating region where the linear model is
not valid and the controller no longer manages to keep the process stable. Thus, in practice
we need low-frequency performance to ensure stability.

A low value for the closed-loop transfer functionS at low frequencies will ensure that
disturbances have little steady-state effect on the process. We will require

|S(0)| ≤ 0.1 (5.3)

corresponding to less than 10% offset for a reference change. This is consistent with the
performance bounds that will be used in the next chapter. Note, however, that we for most
of the PID-controllers used in this chapter include integral action, which yieldsS(0) = 0.

5.2.3 Robust stability

Robust stability implies that the control system is able to maintain closed-loop stability even
though the plant on which it is implemented differs from the one its design was based on.
Differences between the mathematical model of the plant andthe actual plant are always
present, and it is important for the control system to be insensitive to these differences. For
the riser slugging case, one indication of robust stabilitywould be that a controller that
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stabilizes the simplified 3-state model would also stabilize the two-fluid model from chapter
2 and the more detailed OLGA model that provided the reference data.

In chapter 3, we compared the properties of the simplified 3-state and the two-fluid
model. The comparison showed that there were some differences in the pole and zero lo-
cations. There were also some differences in the process gain, particularly at frequencies
around the instability. This indicates that there are some errors in the model which we may
represent as uncertainty.

Uncertainty can be represented in different ways (Skogestad and Postlethwaite, 1996),
depending on the source of the uncertainty. Once the uncertainty is described, the block
diagram with uncertainty∆ may be rearranged into theM∆-structure depicted in figure 5.1
to test for robust stability. Minimizing‖M‖∞ will maximize the robust stability, or more
precisely, maximize the allowed magnitude of the uncertainty such that the system remains
stable.

Figure 5.1: M∆ structure for robust stability analysis

Table 5.1: Uncertainty sources, mathematical description, and transfer function to be mini-
mized.

Source Type Set of plants M
Relative gain and zeros Multiplicative input Gp = G(I + ωI∆I) T
Relative pole location Inverse multiplicative inputGp = G(I + ωiI∆iI)

-1 S
Absolute gain and zeros Additive Gp = G+ ωA∆A KS

Table 5.1 shows some sources of (assumed) model uncertainty, the corresponding uncer-
tainty type, mathematical representation of the set of possible plants, and the expression for
M . The resultingM for the three uncertainty sources areS, T andKS, respectively. It
is, however, difficult to determinea priori which of the uncertainties that are most limiting
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in practice. One simple approach is to design controllers for all three (S, T andKS) and
evaluate the result by simulating on the three nonlinear process models (3-state, two-fluid,
OLGA).

5.2.4 Startup of anti-slug controllers

In most cases, the anti-slug controller can be started up by first bringing the process into the
stable region by manually reducing the choke valve (see for example figure 2.5 on page 15)
and then turning on the controller to move the process to the desired operating point inside
the unstable region. However, this will result in an increased pipeline pressure, which in
some cases may be a problem, and the controller may have to be able to bring the system
directly from riser slugging to the desired operating point. To deal with this problem, Havre
and Dalsmo (2002) introduced a startup condition in the presented control system to ensure
that the controller was turned at a suitable place in the slugcycle. In this work we test the
controllers ability to bring the process from riser slugging to the desired operating point, but
we will not include any start-up design criteria in the control objectives.

5.3 Single-loop stabilizing control of pipeline-riser systems

Figure 5.2: Block diagram for feedback control using a PID controller and a measurement
filter Fy

In this section we design stabilizing PID controllers usingthe setup in figure 5.2. The
transfer functionsG andGd for the inputsu and the disturbancesd are obtained from lineariz-
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ing the simplified 3-state model described is chapter 3. A measurement filterFy is included
in the feedback loop to filter out some of the measurement noise. The PID controller and the
measurement filter are

PID = Kc

(

τIs+ 1

τIs

)(

τDs+ 1

ατD + 1

)

, Fy =
1

τF s+ 1
(5.4)

whereα = 0.1 is used to limit the derivative action to one decade.
The controllability analysis performed in chapter 2 and confirmed in chapter 3 concluded

that an upstream pressure measurement, either located at the pipeline inlet (y = PI) or at the
riser base (y = PRb), would be a good control variable for stabilizing control.The analysis
also showed that it should be possible to stabilize the process using a flow measurement
located at the pipeline outlet (either volumetric flowy = Q or mass flowy = W ), but that
there might be problems with low-frequency performance anddisturbance rejection. The
analysis showed that a pressure measurement at the top of theriser (e.g. pressure drop over
the valveDP ) couldnotbe used for stabilizing control because of RHP-zeros locatedclose to
the RHP -poles. In this section we design SISO (single-input single-output) PID controllers
and check the results from the controllability analysis.

5.3.1 Control of inlet pressurePI

Linear model and process scaling

We use the simple three-state model developed in chapter 3. The unscaled process model
from valve openingu = Z to inlet pressure measurementy = PI , linearized around the
operating point corresponding to a choke valve opening of 30%, is

Ĝ(s) =
−4.87(260.8s+ 1)

(0.218s+ 1)(6808s2 − 51.75s+ 1)
e−10s (5.5)

The hat (̂) is used to indicate that the model has not been scaled.
Note that a 10 second delay is included in the model. This is done based on the analysis

in chapter 3, were it was concluded that, because of the neglected pipeline dynamics, a delay
of about 10 seconds was missing in the simplified three-statemodel.

The disturbance models from gas feed flowWG, liquid feed flowWL and downstream
(separator) pressurePO are

Ĝd(s) =















31.56(20.3s−1)(0.23s+1)
(0.218s+1)(6808s2−51.75s+1)

0.82(30s+1)
(0.218s+1)(6808s2−51.75s+1)

1.07(260.8s+1)
(0.218s+1)(6808s2−51.75s+1)















(5.6)

The plant input is scaled with the maximum positive input deviation (70% ⇒ Du = 0.7),
the output is scaled with the maximum allowed deviation (∆PI = 1 bar ⇒ Dy = 1) and
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the disturbances are scaled by the following scaling matrix

Dd =













0.072( 2π
180

s+1)( 2π
160

s+1)
( 2π

90
s+1)( 2π

30
s+1)

2 0 0

0
1.728( 2π

180
s+1)( 2π

160
s+1)

( 2π
90

s+1)( 2π
30

s+1)
2 0

0 0 1
(10s+1)













(5.7)

This scaling, which was introduced in chapter 2.6.3, allowsfor feed variations and varia-
tions in the separator pressure. The resulting scaled models areG = D-1

y ĜDu andGd =

D-1
y ĜdDd.

Input weight

In section 4.7, the minimum required valve rate for this control problem was found to be
u̇max ≥ 0.0074s−1, corresponding to an opening time for the valve of 4.5 minutes. This
bound is based only on stabilization and does not include performance requirements. Avoid-
ing saturation with this valve rate would also require an optimal controller with respect to
input usage. Thus, when using a simple PID controller and imposing low-frequency perfor-
mance demands, the input needs to be faster than the minimum value computed in section
4.7. Therefore, in the simulations and in designing the controllers, a opening time for the
valve of 1 min is used, corresponding to a valve rate ofu̇max = 1/(Du · 60s) = 0.024s−1.
The corresponding input weight is then:

Wu(s) = u̇-1
maxs+ 1 = 40s+ 1 (5.8)

PID controller design

To achieve the design objectives described in section 5.2, the controller parametersKc, τI ,
τD andτF must be found. To both simplify the design and assure reasonable setpoint tracking
properties, the integral time is fixed atτI = 600s. This is slower than the bandwidth of the
system, and should therefore not interfere with the stabilization. The remaining controller
parameters are found by solving the following optimizationproblem:

minKc,τD,τF
(‖M‖∞) (5.9)

s.t.
‖WuKSGd‖∞ ≤ 1
‖WuKSN‖∞ ≤ 1

(5.10)

whereM is the closed-loop transfer function to be minimized (M = S, T orKS).
Table 5.2 shows the results from the optimization problem defined by (5.9) and (5.10). In

the last row, we give the lowest achievable norms with PID control, obtained by minimizing
‖S‖∞, ‖T‖∞ and‖KS‖∞, respectively, without the constraints in (5.10). Table 5.2 reveals
that the cost of the input limitations (5.10) in terms of robustness is not very high, as the
differences between the achieved norms and lowest achievable are fairly small.
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Table 5.2: Controller tunings for PID control withy = PI

Minimized (M ) Kc[bar
−1] τI [s] τD[s] τF [s] ‖S‖∞ ‖T‖∞ ‖KS‖∞

‖S‖∞, ‖KS‖∞a -0.098 600 14.2 6.9 1.26 1.91 0.29
‖T‖∞ -0.20 600 14.3 12.3 1.60 1.44 0.50
Lowest achievable with PID controller 1.18 1.18 0.29

aThe controller that minimizes‖KS‖∞ is not unique; these parameters minimize‖S‖∞ and achieves
minK(‖KS‖∞)

Integral action in the controller ensuresT (0) = 1. This imposes a lower bound onKS,
‖KS‖∞ = ‖G-1T‖∞ ≥ |G-1(0)| = 0.29, and since in our case the required input usage is
highest at low frequencies, it implies that the controller that minimizes‖KS‖∞ is not unique.
The controller that minimizes‖S‖∞ in table 5.2 achieves the lower bound on‖KS‖∞ and
should be robust toward uncertainty in relative pole location as well as absolute gain and zero
location. Note that the same controller parameters are found by minimizing[S KS]T∞. The
controller that minimizesT is more aggressive with higher controller gain.

Simulation results

To test the controllers, the following scenario is simulated: The process is started up in open-
loop with a valve opening ofZ = 30%. This valve opening brings the process well within
the riser slugging region, and riser slugging develops for all three models. The controller
is turned on after 30 minutes with a setpoint forPI corresponding to a valve opening of
Z = 17.5%. After 90 minutes, the setpoint is reset to the lower pressure corresponding
to a valve opening ofZ = 30%. The gradual lowering of the setpoint is done both to
test the working range of the controller and to make the transition from riser slugging to
stabilized flow easier. White measurement noise|n| of magnitude about0.1 is added to the
measurement.

In figure 5.3, the controller that minimizesS andKS (Kc = −0.1bar−1, τI = 600s, τD =
14.2s, τF = 6.9s) is tested on the simplified model, the two-fluid model, and the OLGA
model. The controller stabilizes the process with all threemodels, and the responses are in
fact remarkably similar. The only slight difference is in the transition from riser slugging to
the first operating point, where the input usage is different. This is because the controller is
turned on at different phases of the slug cycle for the different models. Noise suppression,
input usage and setpoint tracking is very good for all three models. Based on the simulations
in figure 5.2 and the data in table 5.2, we conclude that the controller that minimizes‖S‖∞
(and also(‖KS‖∞)) achieves robust stability.

The controller that minimizes‖T‖∞ (Kc = −0.2bar−1, τI = 600s, τD = 14.3s, τF =
12.3s) produces similar responses as those in figures 5.3(a) and 5.3(b) with the simplified and
the two-fluid model. However, the controller is more aggressive (‖KSGd‖∞ = 0.50) with
higher loop gain, and thus closer to instability. The problems are even more profound with
the OLGA model, as shown in figure 5.4, where the controller barely manages to stabilize
the process. Thus, we conclude that with inlet pressure measurement, minimizing‖S‖∞
results in more robust controllers than minimizing‖T‖∞.
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(a) Simplified 3-state model
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(b) Two-fluid model
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(c) OLGA model

Figure 5.3: Anti-slug control (y = PI) with three different nonlinear process models. PID
tuning:‖S‖∞ minimized.
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Figure 5.4: Anti-slug control (y = PI) with OLGA model. PID tuning:‖T‖∞ minimized

In the following we will only show simulations with the OLGA model which generally
is the most difficult to control. Simulations with all three models are found in appendix C.

5.3.2 Control of riser base pressurePRb

Linear model and process scaling

The unscaled process model from valve openingu = Z to riser base pressure measurement
y = PRb, linearized around the operating point corresponding to a choke valve opening of
30%, is

Ĝ(s) =
−4.73(242.6s+ 1)

(0.437s+ 1)(6431s2 − 53.34s+ 1)
(5.11)

The disturbance models from gas feed flowWG, liquid feed flowWL and downstream
(separator) pressureP0 are

Ĝd(s) =















27.8(20.58s−1)(0.46s+1)
(0.437s+1)(6431s2−53.34s+1)

0.75(30.8s+1)
(0.437s+1)(6431s2−53.34s+1)

1.07(242.6s+1)
(0.437s+1)(6431s2−53.34s+1)















(5.12)

Note that the model parameters in the simple 3-state model have been slightly changed
to represent the riser base pressure instead of the inlet pressure. This is the reason for the
slightly different pole locations. However, the process and disturbance model are almost
identical to the models withy = PI , except for the lacking time delay. The process is scaled
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in the same manner as withy = PI ; that is, with the tuning matrices described in the first
section of chapter 5.3.1. The missing time delay does not significantly affect the required
input rate, so we use the same input weight (5.8) as before.

PID controller design

Table 5.3: Controller tuning for PID control withy = PRb

Minimized (M ) Kc[bar
−1] τI [s] τD[s] τF [s] ‖S‖∞ ‖T‖∞ ‖KS‖∞

‖S‖∞, ‖KS‖∞a -0.16 600 0 0.9 1.03 1.52 0.30
‖T‖∞ -0.30 600 0 2.0 1.11 1.25 0.45
Lowest achievable with PID controller 1.00 1.00 0.30

aThe controller that minimizes‖KS‖∞ is not unique; these parameters minimize‖S‖∞ and achieves
minK(‖KS‖∞)

Table 5.3 shows the optimized controller parameters for thedesign problem defined by
(5.9) and (5.10). Compared to the controller design in section 5.3.1, theH∞ norms for the
closed-loop transfer functionsS andT are lower, whereas the norm forKS is almost the
same. This is expected, since there is no time delay in this case.

Simulation results

The controllers that minimizes‖S‖∞ and‖T‖∞ perform well for all three models, and the
responses are very similar to the those in the previous section. Figure 5.5 shows the OLGA
simulation with‖S‖∞ minimized (Kc = −0.16bar−1, τI = 600s, τD = 0s, τF = 0.9s).
The remaining simulations are given in appendix C.

5.3.3 Control of volumetric flowQ

We have already stated, based on the controllability analysis, that the volumetric flowQ
should not be used alone in a single-loop control scheme. This conclusion was further
strengthened by the simulations example in chapter 2.7.2, where a step in the liquid feed
flow resulted in instability for a pipeline-riser system stabilized by aH∞ flow controller. To
confirm this conclusion, we now design PID controllers using(5.9) and (5.10).

Linear model and process scaling

The unscaled process model from valve openingu = Z to topside volumetric flow rate
y = Q, linearized around the operating point corresponding to a choke valve opening of
30%, is

Ĝ(s) =
8.1 · 10−4(1301s+ 1)(292.7s+ 1)(0.3184s+ 1)

(0.218s+ 1)(6808s2 − 51.75s+ 1)
(5.13)

We note the very low steady-state gain of0.0008.
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Figure 5.5: Anti-slug control (y = PRb) with OLGA model. PID tuning:‖S‖∞ minimized

The disturbance models from gas feed flowWG, liquid feed flowWL and receiving (sep-
arator) pressurePO are

Ĝd(s) =















−0.025(259s+1)(0.56s−1)
(0.22s+1)(6808s2−51.75s+1)

0.0012(212.7s−1)(10.57s−1)
(0.22s+1)(6808s2−51.75s+1)

−1.8·10−4(1301s+1)(292.7s+1)(0.32s+1)
(0.22s+1)(6808s2−51.75s+1)















(5.14)

The process is scaled as described in the first section of chapter 5.3.1. The same scaling
matrices is also used, except for the process outputy, whereDy = 0.002 is used. We use the
same input weight (5.8) as before.

PID controller design

To achieve the low-frequency performance criteriaS(0) ≤ 0.1, the stationary gain in the con-
troller must satisfy|1 +G(0)K(0)| ≥ 0.1-1 which gives|K(0)| ≥ 9/|G(0)| = 11100 s/m3.
For the scaled model this gives‖WuKSGd‖∞ ≥ ‖WuKSGd(0)‖2 = 4.36. This is larger
than 1 and means that low-frequency performance cannot be achieved because of input sat-
uration. This is consistent with the controllability findings in chapters 2 and 3. Avoiding
input saturation is more important than low-frequency performance, so the low-frequency
performance requirement will be dropped as a control objective. This implies that integral
action is removed from the controller, resulting in a PD-controller plus a measurement filter.

Table 5.4 shows the resulting controller tunings. We note that derivative action is not used
such that we in effect have proportional control. None of this controllers will be effective
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Table 5.4: Controller tuning for PD control withy = Q
Minimized (M ) Kc[s/m

3] τD[s] τF [s] ‖S‖∞ ‖T‖∞ ‖KS‖∞
‖S‖∞a 120 0 145 1.00 1.34 0.31
‖T‖∞ 270 0 135 1.00 1.16 0.63
‖KS‖∞ 55 0 135 1.35 2.02 0.15

aDesign not unique, these parameters achieves‖S‖∞ = 1 with minimal input usage

for setpoint tracking, and should not be considered for stabilizing control without an outer
loop (cascade) that keep the process at its desires operating point. Again, the controller
that minimizes‖T‖∞ is the most aggressive with‖KS‖∞ = 0.63 for the nominal model,
and since the process gain with this measurement increases strongly as the valve opening is
reduced (based on the data for the stationary gain data in tables 3.4 and 3.5 on page 54), this
controller will not robustly stabilize the process due to saturation.

Simulation results

The responses with the controller that minimizes‖S‖∞ (Kc = 120s/m3, τF = 145s) is
shown in figure 5.6. We observe that the controller stabilizes the process quite effectively,
but, as expected, the setpoint tracking is poor. The controller that minimizes‖KS‖∞ gives
similar responses whereas designs based on minimizing‖T‖∞ performs poorly. Simulations
where‖KS‖∞ and‖T‖∞ are minimized are given in appendix C.
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Figure 5.6: Anti-slug flow control (y = Q) with OLGA model. PID tuning:‖S‖∞ mini-
mized
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5.3.4 Summary of SISO anti-slug PID control

The design of single-loop PID controllers has shown that minimizing either‖S‖∞ or‖KS‖∞
results in robustly stable controllers. This is consistentwith the normal practice for tuning
stabilizing controllers, where one usually seeks to minimize input usage. Minimizing‖T‖∞
results in controllers that are too aggressive to robustly stabilize the pipeline-riser system.

5.4 Cascade control of pipeline riser systems

Section 5.3 showed that a flow measurement should not be used in a single-loop stabiliz-
ing control scheme for the pipeline-riser system. The flowrate can, however, be used as a
secondary measurement in a cascade controller (y2 = Q), since the primary (outer) loop
in a cascade would take care of the low-frequency performance in the system, and the flow
measurement could be used only for stabilization.

An additional argument for cascade control of the pipeline-riser system, see chapter 2,
is that an upstream pressure measurement is not well suited for suppressing mid-to-high
frequency disturbances (ω > 0.1). Finally, there are cases with no upstream pressure mea-
surement available. In this section we therefore investigate cascade controllers with the
secondary measurementy2 = Q.

5.4.1 Cascade control: Theory

Figure 5.7: Block diagram for cascade control system, 1 - primary (outer) loop, 2 - secondary
(inner) loop

We first derive some transfer functions in order to better understand the stability and
performance properties of the cascaded system in figure 5.7.The secondary controllerK2

controls the processG2 from the inputu to the secondary measurementy2. The setpointr2 to
the inner loop is the output from the primary controllerK1, which is controlling the primary
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measurementy1. The disturbancesd affects the outputsy1 andy2 through the disturbances
modelsGd1 andGd1, respectively. The measurement filtersFy1 andFy2 are included to
reduce the sensitivity to measurement noise.

Transfer functions

To find controller parameters for the outer loop based on the same approach as we have used
earlier in this chapter, we need the transfer functions for the closed-loop system. With both
loops closed the response is

[

y1

y2

]

=

[

G1

G2

]

·K1K2S · r1 +

[

(1 +G2K2Fy2)Gd1 −G1K2Fy2Gd2

−K1Fy1K2G2Gd1 + (1 +K1Fy1K2G1)Gd2

]

·S ·d−
[

G1K1Fy1 G1Fy2

G2K1Fy1 G2Fy2

]

K2S

[

N1n1

N2n2

]

(5.15)

The corresponding plant input signal is

u = K2K1S · r1 − (K1Fy1Gd1 + Fy2Gd2)K2S · d−K2 [K1Fy1 Fy2]S

[

N1n1

N2n2

]

(5.16)

and the control error is

e1 = y1 − r1 = (G1(1 − Fy1)K1K2 −G2K2Fy2 − 1)S · r1+

((1 +G2K2Fy2)Gd1 −G1K2Fy2Gd2)S · d− [G1K1Fy1 G1Fy2]K2S

[

N1n1

N2n2

]

(5.17)

with the sensitivity functionS for the system given by:

S = (1 +G2K2Fy2 +K2K1G1Fy1)
-1 = (1 + G̃1K1Fy1)

-1 (5.18)

G̃1 = G1S2K2 = G1(1 +G2K2Fy2)
-1K2 (5.19)

These closed-loop responses for cascade control yields thefollowing equivalents for the
usual SISO closed-loop transfer functions:

T = 1 − S (5.20)

KS = K2 · [K1F1 F2]S (5.21)

KSGd = KS ·
[

Gd1

Gd2

]

(5.22)

KSN = KS ·
[

N1 0
0 N2

]

(5.23)

where the sensitivity functionS is given by (5.18).
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Effect of stabilized RHP-poles on outer loop

In this work, the task for the inner loop is to stabilize the process and the task for the outer
loop is to provide low-frequency performance. Thus, the process as seen from the outer loop
(G̃) is stable, but the original instability will in some cases still affect this outer control loop.

With the inner loop closed, the transfer functioñG for the remaining control problem
is given by (5.19), and includes the sensitivity function for the inner loop,S2 = (1 +
G2K2Fy2)

-1. Since the requirement for internal stability prohibits the unstable poles inG2

from being canceled byK2, S2 must have RHP-zeros in the same location as the RHP-poles
of G2. Depending on the primary processG1, the stabilized RHP-poles will have one of the
following effects on the primary loop:

• If the unstable modes inG2 are observable iny1 (G1 contains the same unstable poles
asG2), the RHP-zeros inS2 will be canceled out by the RHP-poles inG1 and the
stabilized modes will not affect the primary loop. Thus, anybandwidth limitation due
to RHP-zeros in the primary loop must come fromG1 itself.

• If the unstable modes inG2 are not present inG1, the RHP-zeros inS2 will not be
canceled. Thus,̃G will have RHP-zeros at the same location as the RHP-poles inG2,
and these RHP-zeros will limit the bandwidth in the primary loop. For example, this
will be the case if we choose the input as primary output (y1 = u, G1 = 1)

The latter of these two cases has an interesting implication; The slower the instabilities in
G2 (easy stabilization), the slower the inverse response throughG̃ and the lower the allowed
bandwidth in the primary loop (slower control). In other words, the harder job the secondary
controller has, the better control can be achieved in the primary loop.

5.4.2 Cascade control withPI in outer loop

It is not necessary to use a cascade controller if an upstreampressure measurement is avail-
able, but, as discussed in chapter 2, an inner flow control loop might help with disturbance
rejection. Furthermore, the cascade controller with inletpressure as a primary control vari-
able (y1 = PI) and volumetric flow through the choke valve as a secondary variable (y2 = Q)
will serve as performance reference for the other cascade systems that will be developed in
this section. Because the system can be stabilized using the primary control variable alone,
the inner loop does not necessarily have to stabilize the process. An alternative to use a sta-
bilizing inner loop could be to use an inner loop that provides local disturbance rejection and
”linearizes” the actuator. However, to unify the treatmentof the cascade controllers, we will
in this work use a stabilizing inner loop.

Secondary (inner) loop

When tuning a cascade controller, the inner loop is usually tuned first, with little regard for
the outer loop. This implies that we should be able to use the flow control parameters derived
in section 5.3.3 for the inner loop, and should thus be able torely on a robustly stable inner
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loop. Note that theH∞ sensitivity norms in table 5.4 are the norms for the stabilizing loop,
so for the purposes of cascade control, we should replaceS, T andKS in section 5.3.3 by
S2, T2 andK2S2, respectively.

In section 5.3.3 we found that minimizing‖S2‖∞ or ‖K2S2‖∞ yield flow controllers
suitable for stabilizing the process. This implies that thegain in the inner loop should be in
the range55s/m3 ≤ Kc2 ≤ 120s/m3. It turns out, from simulations, that when combining
the inner flow loop withy1 = PI in the outer loop, minimizing input usage (‖K2S2‖∞) in
the inner loop results in the best controller. Thus, we useKc2 = 55s/m3 andτF2 = 135s in
the inner flow control loop.

Primary (outer) loop

Integral action in the primary loop provides the desired low-frequency performance. Min-
imizing the peak value for the overall sensitivity functionS with the inner loop parame-
ters constant gives the controller parametersKc1 = −0.001m3/(bar · s), τI1 = 600s and
τF1 = 135s. These controller parameters achieves for the total control system‖S‖∞ =
1, ‖T‖∞ = 1.9, ‖KS‖∞ = 0.29, ‖WuKSGd‖∞ = 0.93 and‖WuKSN‖∞ = 0.17 based
on the expressions for the closed-loop transfer functions on page 87. Compared with the
SISO PID controller from section 5.3.1,‖S‖∞ is reduced from 1.25 to 1 and the noise sen-
sitivity ‖WuKSN‖∞ is reduced from about 0.8 to 0.17. The other transfer function peaks
are unchanged by the inner flow loop. The bandwidth for the system (the frequency where
S first crosses1/

√
2 from below) isωB ≈ 0.001s−1.

Simulation results

The simulation with the OLGA model is shown in figure 5.8. The performance is similar
to the single-loop PID controller in section 5.3.1, but withslightly less input usage (Z) due
to better noise suppression. Simulations with the 3-state model and the two-fluid model are
shown in appendix C.

5.4.3 Cascade control withDP in outer loop

Without upstream pressure measurements such asPI or PRb available, a topside measure-
ment has to be used in the outer loop. In real systems, the topside densityρT is usually too
noisy to be used directly for control, so we will only consider the pressure drop over the
valveDP . The controller parameters for the inner loop (y2 = Q) are, as in the previous
section,Kc2 = 55s/m3 andτF2 = 135s.

With the inner loop closed, the scaled model for the process as seen from the outer loop
is

G̃1 = G1S2K2 =
−0.95(135s+ 1)(63s− 1)(0.7s− 1)

(82s+ 1)(0.22s+ 1)(10692s2 + 64s+ 1)

Thus, the process is stabilized, but there are two unstable (RHP) zeros in the model̃G1,
stemming from the original unstable zeros in the response fromz toDP (G1). These unstable
zeros are also the reason for not usingDP for stabilizing control. When usingDP in the
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Figure 5.8: Cascade control (y1 = PI , y2 = Q) with OLGA model.

outer loop, these unstable zeros will limit the bandwidth ofthe system, and the controller
based on only topside measurements are therefore slower than control systems based on
upstream pressure measurements.

The controller parametersKc1 = −0.00015m3/(bar · s), τI1 = 600s, τF1 = 135
for the outer loop constitutes a compromise between lowering the peaks for the closed-
loop transfer functions and achieving a reasonable bandwidth for the system. With these
tuning parameters,‖S‖∞ = 1.42, ‖T‖∞ = 2.1, ‖KS‖∞ = 0.16, ‖WuKSGd‖∞ =
0.98, ‖WuKSN‖∞ = 0.16. The closed-loop bandwidth isωB ≈ 0.0001, which is ten
times slower than with the controller with inlet pressure asa primary measurement.

The OLGA simulation is shown in figure 5.9. Note that since thesetpoint response is
considerably slower with this controller, the simulation time is extended compared to the
previous simulations in this chapter. Apart from the slowerresponse, the controller performs
very well.

5.4.4 Cascade control with valve positionZ in outer loop

An alternative is to use the valve openingZ in the outer loop (y1 = Z). This may seem a bit
strange sinceZ is also the input (u = Z), but note that the objective of the outer loop is to
avoid steady-state drift and this may be achieved by slowly ”resetting”Z to its desired value.

Secondary (inner) loop

With y1 = Z, the disturbances does not affect the primary measurement directly (Gd1 = 0).
The primary measurement is however affected by disturbances through the inner loop, as can
be seen from (5.15). Because of this interaction, we need tighter control in the inner loop to
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Figure 5.9: Cascade control (y1 = DP , y2 = Q) with OLGA model. Note the extended
simulation time.

reject disturbances, and the controller gainKc2 in the inner loop is increased compared to
the previous cascade controllers. The controller parametersKc2 = 90s/m3, τD2 = 0 and
τF2 = 135 for the inner loop will stabilize the process and at the same time enables us to
design an outer loop that can provide low-frequency performance.

Primary (outer) loop

With y1 = Z, the process model for the outer loop isG1 = 1 (figure 5.7). With the inner
loop closed, the transfer function as seen from the outer loop is

G̃1 = G1S2K2 =
0.17(135s+ 1)(6808s2 − 52s+ 1)

(44s+ 1)(19457s2 + 142s+ 1)

Again, we note that the transfer functioñG1, with the inner loop closed, contains unstable
(RHP) zeros that will limit performance. The RHP-zeros are located at the same location as
the original unstable (RHP) poles. As noted earlier, this is afundamental limitation when we
selecty1 = u. Thus, whereas withy1 = DP , the RHP-zeros originate from the RHP-zeros
of the measurement, withy1 = Z they originate from the RHP-poles of the process.

With the controller parametersKc1 = 0.002, τI1 = 600, τF1 = 135 for the primary
controller, the process is stabilized with a reasonable bandwidth ofωB = 0.0004. With this
controller, the peak values for the closed-loop transfer functions are‖S‖∞ = 1.14, ‖T‖∞ =
1.54, ‖KS‖∞ = 1.42, ‖WuKSGd‖∞ = 0.88 and‖WuKSN‖∞ = 0.1.

Simulation results

The OLGA simulation is shown in figure 5.10. The setpoint tracking is slow but otherwise,
the controller performs well.
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Figure 5.10: Cascade control (y1 = Z, y2 = Q) with OLGA model. Note the extended
simulation time.

5.5 Conclusions

This chapter has confirmed, mainly through simulations, theconclusions from the controlla-
bility analysis performed in chapters 2 and 3. When the valve position is used as a manipu-
lated input (u = Z):

• Upstream pressure measurements (inlet pressurePI or riser base pressurePRb) are
well suited for stabilizing control of pipeline-riser systems

• Volumetric flow through the choke valve (Q) can be used to stabilize the process, but
the low-frequency performance is poor

• The flow measurement is well suited for an inner loop in a cascade controller,y2 = Q.

• With y2 = Q, the valve position may be used in the outer loop, but performance is
limited by unstable zeros caused by the original unstable poles.

• Alternatively, the pressure drop over the valvey1 = DP may be used in the outer loop,
but in this case performance is limited by unstable zeros in the measurement.

The controller design has shown that minimizing the input usage (that is, minimizing
‖KS‖∞) or the sensitivity peak‖S‖∞ (alternatively[S KS]T∞) results in robust stability.
This has been proved by testing the controllers on the simplified model developed in chapter
3, the two-fluid model used in chapter 2 and the OLGA model thatprovided the reference
data.
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Model-based anti-slug controllers
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Abstract

A SISOH∞ controller based on the inlet pressurePI is found to be almost identical to the PID controller
designed earlier in this thesis. This indicates that, as long as an upstream pressure measurement (e.g. inlet
pressurePI or riser base pressurePRb) is available, a PID controller is well suited for stabilizing control of the
pipeline-riser system.

Cascade controllers based on topside measurements are fundamentally limited by RHP-zeros and have
poor setpoint tracking properties. A MISOH∞ controller based on the same measurements is not limited
by RHP-zeros, and show significantly faster setpoint responses. Attempts were also made to design an LQG
controller with an extended (non-linear) Kalman filter based on these measurements. It also stabilizes the
process, but the achieved performance is significantly worse than with theH∞ controllers.

The success of designing controllers based on the simplified3-state model introduced in chapter 3 provides
additional confirmation of the applicability of the model.
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6.1 Introduction

Chapter 5 demonstrated that PID controllers, either as single-loop or cascade controllers, can
stabilize the flow in pipeline-riser systems. The PID controllers based on upstream pressure
measurements provided excellent performance, both in terms of disturbance rejection, noise
suppression and setpoint tracking. The cascade controllers based on only topside pressure
measurements are also good for disturbance rejection and noise suppression, but the setpoint
tracking is slow. The slow setpoint tracking is illustratedin figure 6.1, where we compare
the responses with stabilizing SISO control (y = riser base pressurePRb, solid lines) and
cascade control with topside measurement s (y1 = pressure drop over topside valveDP and
y2 = flow out of riserQ, dashed line).
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Figure 6.1: Comparison of SISO controller based on riser basemeasurement (y = PRb, solid
line) and cascade controller with topside measurement s (y1 = DP andy2 = Q, dashed
line).

The slow setpoint tracking for the cascade controller basedon topside measurements is
caused by unstable (RHP) zeros for the measurementy1 = DP . The other topside measure-
ment (y2 = Q) does not contain these RHP-zeros, so we may expect that a controller that
utilize the two measurements simultaneously (MISO, Multiple Input - Single Output) does
not suffer from these performance limitations. However, MISO controllers are more difficult
to design and tune than PID controllers, and direct model-based controller design is usually
needed.

There are also several other reasons for investigating model-based controllers and the
added performance they might provide:
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• The model-based controllers are optimal (based on some optimality criteria) and will
hence serve as a benchmark that allows us to better assess thequality of the PID con-
trollers.

• The improved performance and robustness provided by model-based controllers might
be necessary for more complex cases for which PID controllers may no longer be
sufficient.

• The controllers will be based directly on the simplified 3-state model from chapter 3.
Testing the controllers on the two-fluid model from chapter 2and the OLGA model
will give additional verification of the simplified model

Section 6.2 discussesH∞ controllers, both based on an upstream pressure measurement
as a benchmark for the PID controllers and on topside measurements to achieve good low
frequency performance. Section 6.3 deals with LQG controllers with an extended Kalman
filter based on the 3-state simplified model.

6.2 H∞ controller design for stabilizing control of pipeline
riser systems

H∞optimization was introduced as method to design robust controllers by Zames (1981). In
short, the method involves finding the controllerK that minimizes the maximum singular
value (H∞ norm) of one or more (weighted) closed loop transfer functions and thereby
maximizing robustness and, through the weights, shaping the closed loop response.

6.2.1 General control problem formulation

For the general control configuration depicted in figure 6.2,the H∞ optimization can be
interpreted as minimizing the worst-case ”error” signalz for all exogenous signalsw. The
exogenous signalsw can include disturbancesd, commandsr and measurement noisen. The
process in figure 6.2 is described by

[

z
v

]

= P (s)

[

w
u

]

=

[

P11 P12

P21 P12

] [

w
u

]

(6.1)

u = K(s)v (6.2)

whereu is the control variables andv is the measured variables. The control problem is to
find the controller(s)K that minimizes

‖Fl(P,K)‖∞ ∆
= max

ω
σ̄(Fl(P,K)(jω)) (6.3)

where
Fl(P,K) = P11 + P12K(I − P22K)-1P21 (6.4)

is the linear fractional transformation for the system in figure 6.2.



96 CHAPTER 6. MODEL-BASED ANTI-SLUG CONTROLLERS

Figure 6.2: General control configuration

6.2.2 Mixed sensitivityH∞ control: performance requirements and in-
put limitations

Problem formulation

For the pipeline riser system, chapter 4.7 showed that it wasimportant to include perfor-
mance requirements in the design objectives. It has also been stressed in this thesis that
avoiding input limitations is essential for stabilizing controllers. Thus, the signals that we
want to minimize are the error signale = y − r and the control signalu. Weighing these
signals with the weightsWP andWu respectively aims to achieve|u(ω)| ≤ |Wu(jω)-1| and
|e(ω)| ≤ |WP (jω)-1|. The exogenous signals that affect the process are disturbancesd, mea-
surement noisen and commandsr. With these exogenous signals, the generalized plant P is
given in figure 6.3.

The expression for the generalized plant P can easily be derived from figure 6.3:

P11 =

[

WpR −WpN −WpGd

0 0 0

]

P12 =

[

−WpG
Wu

]

P21 =
[

R −N −Gd

]

P22 = −G
(6.5)

This yields for the linear fractional transformation (6.4)

Fl(P,K) =

[

WpSR −WpSN −WpSGd

WuKSR −WuKSN −WuKSGd

]

(6.6)

Note that minimizing‖Fl(P,K)‖∞ in (6.6) is different from the PID parameter opti-
mization in chapter 5. This is both because we in this chapterminimize weighted transfer
functions (e.g.WpSGd) and because we minimize the maximum singular value of the matrix
in (6.6) rather than the individual transfer functions. This may result in higherH∞-norms for
individual transfer function (e.g.S), but it should, provided that sensible weights are chosen,
result in better overall robustness and performance.

Thus, usingH∞ controller design to minimize‖Fl(P,K)‖∞ is a systematic way to avoid
input saturation and achieve the performance targets for the riser slugging case.
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Figure 6.3: Mixed sensitivity minimization for the pipeline riser case

Input and performance weight

To enable direct comparison with the PID controllers from chapter 5 we use the same input
weight (derived in chapter 4) and the same valve rate (u̇max = 1/(Du · 60s) = 0.024s−1,
corresponding to an opening time of 1 minute). However, to beable to balance the input
limitation with the performance requirement, the input weight is multiplied by a constantk:

Wu(s) = k(u̇-1
maxs+ 1) = k(40s+ 1) (6.7)

The performance weightwP is given by

WP (s) =
s/M + ω∗

B

s+ ω∗
BA

(6.8)

where|S(0)| ≤ A is the requirement for low-frequency performance,ω∗
B is the bandwidth

requirement and|S| ≤M is the requirement for higher frequencies above the bandwidth.

6.2.3 H∞ control of inlet pressurePI

The PID-controller in section 5.3.1, which was based on inlet pressure as measurement (y =
PI), performed well with all the three models on which it was tested. As a benchmark for
the PID controller, we design and test aH∞ controller using the same measurement.

The PID-controller is used as a starting point for theH∞ controller design. Fitting the
performance weightWP to the sensitivity function for the PID-controller resultsin A = 0.1
(allowing for 10% steady state error),M = 1.26 (maximum peak) andω∗

B = 0.001 (desired
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bandwidth). To guarantee that the input does not saturate, we usek = 2 in the input weight
(6.7).

With these weights, the resulting controllerK is shown together with the PID controller
in figure 6.4. The two controllers are remarkably similar, which indicates that the PID con-
troller is close to optimal for this control problem. This isconfirmed by simulations with
all the three models used in this thesis. The OLGA simulationis shown in figure 6.5, and is
almost identical to the response with the PID controller (figure 5.3(c), page 81). Simulations
with the other two models (3-state, two-fluid) are given in appendix C.

Comparing the closed-loop norms, we find that‖S‖∞ and‖KS‖∞ are higher for theH∞

controller than for the PID controller (1.48 vs. 1.26 and 0.43 vs. 0.29, respectively). How-
ever, the norm for‖T‖∞ is lower for theH∞ controller (1.35 vs. 1.91). The higher norms
are, as previously mentioned, caused by the problem formulation for theH∞ optimization,
whereweightedclosed loop transfer functions are minimized. The weightedtransfer func-
tions in (6.6) are generally lower for theH∞ controller than for the PID controller.
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Figure 6.5:H∞stabilizing control withy = PI , OLGA model.

6.2.4 H∞ control using only topside measurements

Stabilizing control of pipeline riser systems based on upstream pressure measurements per-
forms well, and is, with good reason, the preferred practiceon real pipelines. There may,
however, be systems that need stabilizing control where an upstream pressure measurement
is not available. Skofteland and Godhavn (2003) as well as section 5.4 showed that a cascade
controller based on a secondary flow measurement and a primary topside pressure measure-
ment could stabilize the system without relying on an upstream measurement.

As mentioned in the introduction to this chapter, the cascade controllers based on topside
measurements are slow due to (SISO) bandwidth limitations caused by RHP-zeros. These
occur both with valve openingy1 = Z as well as with pressure drop over the topside valve
y1 = DP in the outer loop. Note that processes with more outputs (y) than inputs (u) rarely
have RHP-zeros, except when the RHP-zero is pinned to one of theoutputs. In our case
there are no pinned RHP-zeros, and to see if performance can beimproved, we will in this
section designH∞ MISO controllers for the same two topside measurement combinations
used in chapter 5: 1)y = [DP Q]T , with pressure drop over valveDP as primary control
variable (meaning that we want low-frequency performance for this measurement) and 2)
y = [Z Q]T , with valve openingZ as a primary control variable. Neither of these con-
trollers will be limited by RHP-zeros, and we expect significantly improved low-frequency
performance compared with the corresponding cascade controllers. As noted in section 5.4.4,
it may seem strange to use the valve openingZ as both controller input and output, but the
purpose of this is to provide low-frequency performance, and we shall see that using this
”measurement” yields a good controller.

The design objective for theH∞-optimization will be the same as in the previous section:
minimize the worst-case effect of disturbancesd, measurement noisen and commandsr on
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the weighted process inputu and the control errore = r − y1. . To avoid input saturation,
we must put more emphasis on the input usage by settingk = 3 in (6.7), but other than that,
the input weight and the performance weight is the same.

Table 6.1 shows closed-loop norms and bandwidth for the resulting MISO controllers
compared to the cascade controller in section 5.4. The majorimprovement provided by the
MISO controllers is the bandwidth, which is increased by a factor of 25 fory = [DP Q]T

and a factor of 2.5 fory = [DP Q]T . ‖T‖∞ is also significantly reduced, whereas there are
only small differences for other closed-loop norms.

Table 6.1: Closed-loop norms and bandwidth for MISOH∞ controllers compared to corre-
sponding cascade controllers.

y = [DP Q]T y = [Z Q]T

H∞ Cascade H∞ Cascade
‖S‖∞ 1.27 1.42 1.16 1.14
‖T‖∞ 0.94 2.10 0.91 1.54
‖KS‖∞ 0.37 0.16 0.91 1.42

‖WuKSGd‖∞ 0.61 0.98 0.61 0.88
‖WuKSN‖∞ 0.33 0.16 0.61 0.10

ωB 0.0025 0.0001 0.0010 0.0004

Figure 6.6 shows OLGA simulations with theH∞ controllers. The setpoint tracking is
significantly faster than with the cascade controllers (figure 5.9, page 91 and figure 5.10,
page 92), but still a bit slower than with controllers based on upstream pressure measure-
ments. Simulations with the other two models, given in appendix C, shows equally good
performance.
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(a) Measurementsy = [DP Q]
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(b) Measurementsy = [Z Q]
T

Figure 6.6: MISOH∞ anti-slug control with OLGA model.
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6.3 LQG control

LQG control, which reached maturity in the 1960’s, has been successfully applied to many
control problems, especially for mechanical systems, which are characterized by accurate
mathematical models and well defined optimization problems. For other control problems,
where the models are less accurate and the assumption of white noise disturbance is not
always well founded, LQG control has not been as successful,particularly because of ro-
bustness issues (Skogestad and Postlethwaite, 1996). We will in this section design LQG
controllers for the pipeline-riser system.

In his diploma thesis, Trudvang (2003) designed LQG controllers based on the simplified
three-state model from chapter 3 for a case that was similar to the simulated OLGA case
used as the main case study in this thesis. He found that linear Kalman filters should not
be used to estimate the states for the pipeline-riser systemsince the linear model, on which
the Kalman filter is based, are valid for a too limited region of the state space. On the other
hand, an extended (non-linear) Kalman filter, with the non-linear 3-state model used in the
filter instead of the linearized model, was found to estimatethe states quite effectively, and
was thus well suited for stabilizing control.

Section 6.2 proved that PID controller were close to optimalif upstream pressure mea-
surement, either at the pipeline inlet (y = PI) or at the riser base (y = PRb), were used as a
primary control variable. Because it is unlikely that a LQG controller will improve perfor-
mance when these measurements are available, we will only consider LQG control based on
the topside measurementsy1 = DP (pressure drop over valve) andy2 = Q (volumetric flow
out of riser).

6.3.1 Theory

Traditional LQG control is based on a (known) linear processmodel with stochastic mea-
surement noisewn and disturbance signalswd (process noise) of known variance:

ẋ = Ax+Bu+ wd (6.9)

y = Cx+ wn (6.10)

If the statesx are known, the optimal solution to the LQR control problem

Jr =

∫ ∞

0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt (6.11)

wereQ andR are weighting matrices (design parameters), is a constant state feedback

u(t) = −Krx(t) (6.12)

The controller gainKr is found by solving an algebraic Ricatti equation.
If the statesx cannot be measured, an estimatex̂ is obtained from a Kalman filter. The

filter gainKf can be found from an algebraic Ricatti equation, and depend onthe statistical
properties of the noise signals. The combination of a Kalmanfilter and optimal state feed-
back is called a LQG controller. We will in this work us an extended (nonlinear) Kalman
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filter. For this filter, the filter gainKf normally depends on the state estimatex̂, but we will,
for simplicity, use a constant filter gain, computed from thelinear model. The same approach
was used in Trudvang (2003) with good results.

The LQG controller have only proportional action, and to avoid steady-state deviations
and safeguard against input saturation, we modify the LQG controller to include an integrat-
ing loop acting on a subsetyI of the measurements, as shown in figure 6.7. To compute the
controller gainKr for this controller, the state space matrices are augmentedto include the
measurement model for the measurements with integral action (yI = CIx+DIu) (Skogestad
and Postlethwaite, 2005):

A∗ =

[

A 0
−CI 0

]

, B∗ =

[

B
−DI

]

(6.13)

With integral action, only the measurements are weighted inQ (eq. (6.11)). Thus,Q and
R are given by

Q =

[

0 0
0 I

]

, R = k · I (6.14)

wherek is used to adjust input usage vs. output performance.

Figure 6.7: LQG controller with extended (nonlinear) Kalman filter, and integral action

6.3.2 LQG controller for the pipeline-riser system

The controller tuning is based on the linear model obtained from linearizing the simplified
three-state model around the operating point for a valve opening of 30%. The filter gainKf
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is computed using the matlab routinekalman.mbased on 2% variance for the process noise
(disturbances) and 2% variance for the measurement noise. As mentioned above, we will
use a constant filter gain even though we are using a nonlinearKalman filter. The controller
gainKr is computed using the matlab rutinelqr.m with k = 80e6 in the weighting matrices
in (6.14). The high value fork is is used because the statesx are not scaled and have a
significantly higher numerical value than the inputu.

The resulting LQG controller performs well for the simplified three-state model and,
with the same simulated scenario as earlier in this thesis, stabilizes the operating points
corresponding to both a valve opening of 17.5% and 30%. If model error is introduced
by testing the LQG controller on the two-fluid and OLGA model,the controller manages
to stabilize the first operating point (Z=17.5%), but after the setpoint change, the systems
starts to oscillate. This indicates that the LQG controlleris not robust enough towards the
errors in the simplified three-state models. Also, since thecontroller manages to stabilize
an operating points with slower instabilities than the one it is designed for (Z = 17.5%),
but not the operating point it was designed for(Z = 30%), the failure of the extended LQG
controller can indicate that the simplified model predicts too slow instabilities for high valve
openings.

By design the controller for a higher valve opening than the desired operation point we
can get around the robustness problems. It turns out that it is sufficient to design the state
feedback gainKr for a more aggressive operating point, and designingKr from the model
linearized aroundZ = 40% and retaining the extended Kalman filter designed atZ = 30%,
the LQG controller is able to stabilize all three models usedin this thesis. However, the
close loop sensitivity peaks are very high for the resultingdesign (‖S‖∞ and‖T‖∞ both
exceed 10), and the bandwidth is low (ωB = 0.0004, which equals the bandwidth for the
corresponding cascade controller). Even though the input usage is low, with‖KS‖∞ =
0.43, we would not recommend using this controller in practice, especially since theH∞

controllers designed in the previous section provides muchbetter performance and are easier
to design.

The OLGA simulation with the LQG controller, shown in figure 6.8, confirms the slow
setpoint tracking.

6.4 Conclusions

TheH∞ controllers designed in this chapter stabilize the flow in the pipeline-riser system
with little input usage and quick and accurate setpoint tracking, and must, both based on
closed loop norms and simulations, be said to be close to optimal. TheH∞ controller based
the inlet pressure (y = PI) is very similar to the PID controller designed in chapter 5.3.1,
indicating that using a PID controller based on an upstream pressure measurement is a very
good control strategy.

TheH∞ controllers based on topside measurements (y = [DP Q]T ) and (y = [Z Q]T )
show that good performance with fast setpoint tracking can be achieved even without relying
on an upstream pressure measurement. The setpoint responsewith these MISOH∞controllers
are significantly faster than with the cascade controllers designed in section 5.4.3. The rea-
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Figure 6.8: LQG control with extended Kalman filter,y1 = DP andy2 = Q, OLGA model,

son for the faster setpoint response with theH∞ controllers is that their bandwidth is not
limited by RHP-zeros.

An LQG controller with an extended Kalman filter based on the simplified 3-state model
can also be used for stabilizing control of the pipeline riser system, even if only topside mea-
surements are available. However, due to model errors in thesimplified 3-state model, the
achieved performance is poor. The LQG controller had to be designed for a more aggressive
operating point than it is intended to be used at to achieve robust stability.

The success of theH∞ controllers design from the simplified 3-state model introduced
in chapter 3 provides the final confirmation of the applicability of the model. However, the
problems with designing the LQG controller may imply that 3-state model predicts too slow
instabilities at higher valve openings.





Chapter 7

Extended Slug Control - An industrial
application
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Abstract

Control systems that prevent the development of riser slugging in pipeline-riser systems have in recent years
been introduced on several offshore processing facilities. These anti-slug control systems are based on active
use of the topside choke valve to control a pressure measuredsomewhere upstream of the riser. Anti-slug
control systems have been a great success, and are emerging as the standard method to avoid riser slugging in
multiphase production pipelines.

There are several other multiphase phenomena occurring in pipeline-riser systems that can cause opera-
tional problems for the downstream production facilities.Among these are 1) Surge waves, which are large
liquid waves that can occur when the production rate in a gas-condensate pipeline is increased and 2) Start-up
slugs, which can occur when the pipeline is started up from shut-in conditions. The start-up slugs are similar
to surge waves but can be even more serious as they potentially can initiate riser slugs and thereby cause even
larger peaks in the liquid production.

In this chapter we introduce a novel control structure that extends the scope of pipeline control by in-
cluding suppression of surge waves and start-up slugs. The control system combines a stabilizing anti-slug
controller with individual flow controllers for each phase seamlessly through a minimum select function. The
flow controllers use the pipeline as a buffer volume to smear out the flow variations that can not be handled by
the separator. The performance of the control system is illustrated with simulations of an industrial case study.
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7.1 Introduction

Many remaining offshore oil and gas reserves in the North Seaare in small fields. Subsea
installations and long multiphase tie-in lines to existinginfrastructure are emerging as the
preferred solutions for extracting the reserves in these smaller fields. This development is
made possible by technological advances in the last twenty years. In this chapter we address
some of the challenges associated with multiphase transport of hydrocarbons in these tie-in
lines and introduce a control system to meet these challenges.

This thesis has so far focused on avoiding riser slugging in pipeline-riser systems with
stabilizing anti-slug controllers. Riser slugging has beenone of the main operational con-
cerns with these systems, and, over the last few years, several such anti-slug control systems
that stabilize the flow at operating conditions that uncontrolled would yield riser slugging
have been implemented (Courbot, 1996; Havre et al., 2000; Havre and Dalsmo, 2002; Skofte-
land and Godhavn, 2003; Kovalev et al., 2003). A typical control structure for an anti-slug
controller is shown in figure 7.1. The anti-slug controller has removed a major obstacle for
multiphase transport of hydrocarbons, and has also introduced the use of the topside choke
valve for control purposes.

Figure 7.1: Control structure for a conventional slug control system

Due to the success of the control systems for avoiding riser slugging, the focus for
pipeline control has recently broadened to include other troublesome multiphase flow phe-
nomena as targets for an extended slug controller. The goal of such a controller would be to
handle most, if not all, of the operational challenges caused by transient multiphase flow phe-
nomena, thus minimizing the need for operator interventionand at the same time optimizing
production.

Other types of slug flow, such as hydrodynamic and terrain induced slugging, have been
considered in this thesis as disturbances affecting the anti-slug control system. The small
hydrodynamic and terrain induced slugs are usually not a bigoperational problem for the
receiving facilities, and, although some emphasis has beenput on reducing the effect of
these smaller slugs (i.e. smoothing them out), the motivation for the disturbance rejection
has been aiding the anti-slug controller (avoid input saturation) rather than suppressing the
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disturbances.
The last of the four types of slug flow defined in the chapter 1 istransient slugging,

where slugs or large waves are caused by changes in operatingconditions. These transient
slugs can be very large and cause significant problems for thereceiving facilities. We will
in this chapter introduce controllers that suppress these transient slugs by manipulating the
valve opening of the topside choke valve (u = Z). These controllers are combined with the
anti-slug controller to form an extended slug controller.

In section 7.2, we describe the physical phenomena that are causing the control chal-
lenges and in section 7.3, we introduce the Extended Slug Controller. The case study in
section 7.4 is based on the development of the Tyrihans field in the North Sea, and illustrates
the actions and benefits of the proposed control structure.

7.2 Challenges for an extended slug controller

7.2.1 Surge waves

The liquid holdup in a pipeline is a function of the fluid velocities, and therefore a function
of the production rate for the pipeline. Low production implies high liquid holdup and vice
versa, as illustrated in figure 7.2. This means that during a rate change from low to high
production, the excess volume of liquid relative to the new stationary liquid holdup will have
to be transported out of the pipeline during the transition period. As a consequence, the peak
liquid production will exceed the new stationary liquid production, and possibly also the
liquid processing capacity of the receiving facility. The peak rate will depend on the ramp-
up time from low to high production, and a possible strategy for avoiding capacity problems
is to slowly ramp up the production during rate transitions.

Production rate
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Figure 7.2: Typical relationship between liquid holdup andproduction rate

A slow ramp-up will lead to loss of production in the transition period, and the goal for
an extended slug controller would be to facilitate faster rate transitions whilst keeping the
feed to the processing facility within its operating range.
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7.2.2 Start-up slugs

Startup of pipelines from shut-in condition is a phenomenonclosely related to rate increases
resulting in surge waves. The major difference is that the flow variations resulting from an
(fast) startup usually are more severe, as the waves in the pipeline can initiate riser slugs. The
flow variations at the outlet have characteristics as a combination of surge waves and riser
slugs, and must be handled either by a slow start-up procedure or by an automatic control
system. Again, the goal of such a control system would be to minimize the time it takes to
start up the production in a safe manner.

7.2.3 Other possible tasks

Surge waves and start-up slugs are mainly challenging the processing capacity (in terms of
maximum throughput) of the receiving process, including the separators, the water treatment
facilities and compressor trains. Other types of equipments could potentially also impose
restriction on the allowed rate out of the pipeline. For example, a condensate heater has only
a limited amount of heating medium available, and if too muchcold condensate enters the
process, the temperature controller for the condensate heater would saturate. In this situation,
it would be wise to limit the production of cold condensate, but these types of restrictions
are outside the scope of this work. However, the extended slug controller could easily be
extended to include these types of limitations.

Also, we assume fixed, time-invariant limitations on the fluid processing capacity. As
there are usually more than one pipeline producing to a common separator and compressor
train, the limitations for one pipeline will depend on the production rate from other sources.
A natural extension to the control system would be to connectthe available capacity in the
processing facility to the extended slug controller to optimize the production. To limit the
scope and complexity of the work herein, this is assumed to bedone manually by an operator.

7.3 Extended Slug controller

The goal of the extended slug controller developed here is, in addition to prevent riser slug-
ging from developing, to keep the flow of all three phases (gas, oil and water) within the
capacity limitations imposed by the receiving facility. Toachieve this, the controller utilizes
an upstream pressure measurement and flow rate measurementsfor each phase as illustrated
in figure 7.3. The flow rate measurements can either be obtained from a multiphase meter
located close to the control valve or estimated from separator measurements.

The controller itself is shown in figure 7.4. It consists of a regular anti-slug controller
(in this case controlling the riser base pressure) and flow controllers for each phase. The
minimum select functionality ensures that only the controller that demands the lowest valve
opening is active. This ensures a consistent system and, when properly tuned, prioritizes
between the different tasks according to its importance.

Note, however, that the anti-slug controller can only stabilize the flow in the system when
the flow controllers are inactive, as stabilization is basedon continuously manipulating the
input u = Z. If one of the flow controllers ”take over” while the anti-slug controller is
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Figure 7.3: Control structure for an extended slug control system

Figure 7.4: Extended slug controller
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stabilizing the process, the feedback loop for the stabilizing anti-slug controller is broken
and the controller can no longer keep the process stable. Thus, the extended slug controller
can only handle the situation where riser slugging occurs atreduced flow rates. This is not as
limiting as it may seem since surge waves and startup slugs are mainly a problem in pipelines
where the GOR (Gas-to-Oil Ratio) is above a certain value, andat these GOR values, riser
slugging only occurs at low flow rates.

The flow controllers are selected to be simple P-controllers(proportional action only),
possibly with gain scheduling to reduce the controller gainif the pressure drop over the
control valve, and by that also the process gain, gets significantly higher than its nominal
value. Integral action is not included in the controllers because 1) the steady-state gain is
low and 2) we are only interested in the dynamical behavior anyway.

If the flow rate for a given phase exceeds the setpoint for thatphase, the flow controller
will close the choke valve and retain more fluid in the pipeline. Thus, the effect of the flow
controllers is to use of the pipeline volume as a buffer. It makes perfect sense to do this,
as the pipeline volume far exceeds the available volume in the inlet separator. Therefore,
the main philosophy behind the extended slug controller is,in addition to stabilizing any
(desired) unstable flow regimes, to use the choke and the pipeline volume to average out the
flow variations that can not be handled by the separator. Thisis similar to ”averaging level
control”.

The flow controllers should be tuned with equal gain relativeto the maximum allowed
deviation for the given phase. This implies that the flow controllers whose nominal rates
are close to their maximal rates (as imposed by the downstream processing capacity) should
have higher gains than the flow controllers for the phases where there are more leeway in
terms of production rates. If these tuning principles are used, the extended slug controller
would always limit the production based on the most ”critical” phase. The setpoint for the
flow controllers should be at or slightly above the nominal values to give the controllers a
certain working range for the flows.

The pressure- and flow controllers will usually be active in different phases of the pro-
duction, except possibly when dealing with start-up slugs.The switch between the pressure
and flow modes of the controller is done seamlessly by the minimum select functionality.

Example 7.1 To illustrate the tuning of the flow controllers, consider the following simple example:
We want to control a pipeline with nominal flow rates and processing capacity as given in table
7.1. As stated above, the gain relative to the maximum allowed deviation should be constant, which
means that for each phasei, the controller gain should beKi = K/∆Wi. Setting K = 100 yields the
controller gains for the flow controllers given in table 7.1.

Table 7.1: Data for example 7.1
Oil Water Gas

Nominal rate / Setpointri [kg/s] 10 5 20
Processing capacity [kg/s] 13 10 30
Max deviation∆Wi[kg/s] 3 5 10
Controller gain [s/kg] 33 20 10
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Now assume that, at some point during the operation, the flow rates are measured to be 12 kg/s
oil, 7 kg/s water and 15 kg/s gas. A P-controller has the simple algorithmu = u0 +K · (r−y). Here,
u is the controller output,u0 is the bias (set tou0 = 100%, corresponding to a fully open valve in this
example),K is the controller gain,r is the reference (setpoint) andy is the measurement. For this
example, this yields a valve opening of u = 34% from the oil flow controller (u = u0 + K · (r − y) =
100 + 33 · (10 − 12) = 34%), u = 60% for the water flow controller and u =150% for the gas
flow controller. Because of the minimum select functionality, only the smallestone of these will be
used, and the controller will set the valve opening to u = 34%. Thus, the oil flow controller limits the
production as the oil flow rate is closest to maximum value (66% of its allowed deviation).

7.4 Case Study - Tyrihans

The simulation example for this work is based on models for the Tyrihans field, owned
by Statoil, ExxonMobil, Norsk Hydro, Total and Eni, and currently under development by
Statoil. The Tyrihans field consists of the reservoirs Tyrihans Nord and Tyrihans Sør, and is
located in the Halten area about 35 km southeast of theÅsgard field and about 35 km east of
the Kristin field. The fields were discovered in 1983 (Sør) and1984 (Nord) and the sea depth
is about 290 meters. The production from Tyrihans will be tied in to the Kristin production
platform with a scheduled production startup in July 2009.

The Tyrihans pipeline will be about 43 km long, with a 16” pipeline (0.4 m inner diam-
eter) along the seabed. The characteristics of the pipelinegeometry is a slight downward
inclination and a hill close to the riser. The riser is a 14” S-riser (0.36 m inner diameter). The
receiving pressure at Kristin will be about 88 bar, and typical pressures in the pipeline are as
shown later in figures 7.7 and 7.11. Exact values for flow rates, GOR and water cut cannot
be revealed, but the values are fairly typical for such a pipeline.

The flow in the Tyrihans pipeline will initially be oil-dominated, but the GOR will in-
crease as the field matures, resulting in gas-dominated flow in the pipeline for the later pro-
duction years. Riser slugging can be a problem when the flow is oil dominated, especially
when the production is reduced. Surge waves will primarily be an issue when the flow is gas
dominated. Start-up slugs need to be handled for all operating conditions.

To test the extended slug controller’s ability to handle theflow related challenges de-
scribed in section 7.2, a scenario including start-up slugs, maximum production, reduced
production with riser slugging and surge waves are investigated. Figure 7.5 shows the inflow
profile for the simulated production scenario. The production (feed rate) is ramped up from
0 to 100% during the first 4 hours and kept at maximum production for 8 hours. Problems
with start-up slugs are expected in this phase (A). Then the production in ramped down to
33% over the next 4 hours and kept at reduced production for 8 hours. For oil-dominated
flow, we expect riser slugging in this phase (B). Finally, the production is ramped back up
to maximum production over 2 hours and kept there for the last10 hours of the simulation.
The last phase (C) of the simulation will produce surge waves that may cause problems.

In the simulations, the initial condition is a shut-in, cold, low pressure pipeline resulting
from a controlled shutdown. The feed into the pipeline is assumed to be independent of the
pipeline pressure. We have also assumed constant inlet separator pressure.
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Figure 7.5: Illustration of simulation scenario represented by inflow to the pipeline

Below we present simulation results for both the oil-dominated (low GOR) and the gas-
dominated (high GOR) production phase. For oil dominated production we will focus on
suppressing start-up slugs and avoiding riser slugging at reduced rates, whereas for gas dom-
inated flow we will focus on surge waves.

The simulations were preformed with OLGA2000 v.4.10.1, a commercial multiphase
flow simulator. The controllers were implemented in Matlab and the link between the two
programs was done with the OLGA-Matlab toolbox available inthe OLGA distribution.

7.4.1 Oil-Dominated Case

The oil-dominated case will occur during the first years of production from Tyrihans. In
figure 7.6 we show the simulated flows of the individual phasesinto the separator and the
choke valve opening for the production profile in figure 7.5. The dashed line is without
control and the solid line is with the Extended Slug Controller. The pressure profile in the
pipeline for the same simulations is shown in figure 7.7, where the subscripts I, MP and RB
denotes Inlet, Middle of the Pipe and Riser Base, respectively.

At first glance, we observe that the peak flow rates for the start-up slugs are reduced
significantly and that the riser slugging occurring at reduced production is removed by the
extended slug controller. We will now focus on the differentphases of the production sce-
nario to explain and discuss the actions of the controller.

Startup slug suppression for oil dominated flow

Figure 7.8 shows the start-up slugging part of the simulation in figures 7.6 and 7.7. With
control, the peak in the oil production is reduced from about100% to about 50% above the
nominal rate and the water peak is reduced from 140% to 70% above its nominal rate. The
gas flow is less affected, the peak is slightly reduced, but the gas phase still needs control
due to the otherwise deteriorating effect the control of theother phases would have on the
gas production.
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Figure 7.6: Simulated flows for oil-dominated case. Solid lines for controlled case, dashed
lines for uncontrolled.
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Figure 7.7: Simulated pressures for oil-dominated case. Solid lines for controlled case,
dashed lines for uncontrolled.
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Figure 7.8: Startup-phase (A) for the oil-dominated case. Solid lines for controlled case,
dashed lines for uncontrolled.

In the lower plot in figure 7.8, the choke valve action is giventogether with a indication of
the active controller mode selected by the min. select in figure 7.4. We see that the pressure
controller takes care of the ramp-up phase. When start-up slugs starts to appear around t =
3.3 hours, the flow controllers take over. The major peak in liquid production between 3.3
and 4.3 hours consists of both water and oil and the controller switches between these two
modes to limit the flow of the most critical phase. Also the gasflow controller is active in
order to reduce the peak in gas production that follows the liquid peak. As the start-up slugs
dies out, the extended slug controller will slowly and gently open the choke valve as the
production rates approach their nominal values.

One concern with using the choke to smooth out the flow during start-up is that the pres-
sure in the pipeline could increase to the extent that it would severely affect the production.
It can be observed from figure 7.7 that the pipeline inlet pressure (PI) is only slightly in-
creased by the choking, and the total production would not besignificantly affected by this
(transient) pressure increase. This argument is further strengthened by remembering that the
alternative to the control is a slower start-up. The reduction in production volume due to
increased pressure in the pipeline for the controlled case will probably be significantly lower
than the reduction in production during a slow start-up. This could, however, not be tested
in this work since we have assumed that the inflow is independent on the pipeline pressure.
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Figure 7.9: Reduced production phase (B) for oil-dominated case.

Stabilization of riser slugging

Figures 7.6 and 7.7 show that there will be riser slugging in the system at reduced production
for the uncontrolled case. The rates will be well below the setpoints for the flow controller
when the production is reduced, so the flow controllers are inactive. This means that the
extended slug controller will work as a regular anti-slug controller during this phase. Figure
7.9 shows the details of the transition to slug flow for the uncontrolled case (dashed line) and
the stabilized operating point for the controlled case (solid line).

The control system stabilizes the flow in the pipeline and keeps the riser base pressure
PRb at its setpoint. The setpoint is chosen to achieve a suitablepressure drop (around 2
bars) over the choke valve to ensure enough process gain for the stabilizing controller to be
effective. Note that feedback control is essential for keeping the flow stable, as a constant
valve opening of 30% (which is the same as average valve opening implemented by the
control system) would result in riser slugging.

7.4.2 Gas-Dominated Case

We now repeat the simulations for the gas-dominated case, which will occur as the Tyrihans
field matures. From the simulations in figures 7.10 and 7.11, we see, as expected, that riser
slugging at reduced rates no longer occurs. The startup slugs have a similar effect as in the
oil-dominated flow section, but the surge waves arising during the production increase have
a more serious effect in this case.
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Figure 7.10: Simulated flows for the gas-dominated case. Solid lines for controlled case,
dashed lines for uncontrolled.
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Figure 7.11: Simulated pressures for the gas-dominated case.
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Surge wave suppression
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Figure 7.12: Simulated flows for production increase phase (C) for the gas-dominated case.

The suppression of surge waves, shown in more detail in figure7.12, is very similar to
the suppression of start-up slugs described in section 7.4.1. The ramp-up from reduced flow
is handled by the pressure controller and when the wave arises the flow controllers take over
and limit the flow. For this case, the water is regarded by the controller (through the tuning
parameters) as the most critical phase. Again the pipeline volume is used as a buffer to smear
out the wave(s). After the majority of the liquid wave has passed through the choke valve,
the gas flow controller takes over to avoid a burst of (compressed) gas following the liquid
surge wave.

Figure 7.11 shows that the inlet pressurePI is only marginally affected by the choking to
suppress the surge waves. Thus, the total production volumeduring the rate transition would
not be significantly affected (see also discussion in section 7.4.1).

7.5 Conclusions

The extended slug controller introduced in this paper is designed to avoid riser slugging
and suppress both start-up slugs and surge waves. Riser slugging is avoided by a anti-slug
controller that stabilize the flow based on measuring the riser base pressure. Start-up slugs
and surge waves are averaged out with individual proportional action flow controllers for
each phase. The flow controllers reduce the choke valve opening if the flow for the given
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phase exceeds its setpoint and will hence use the pipeline asa buffer volume, rather than
letting the waves enter the inlet separator, which has a significantly lower volume than the
pipeline.

The flow and pressure controller that constitute the extended slug controller are combined
through a minimum select functionality. This ensures, through the tuning principles intro-
duced in this paper, that the controller effectively limitsthe flow based on the most critical
phase (relative to its maximum allowed production as definedby the downstream production
capacity). The minimum select functionality also ensures abumpless switch between the
pressure and flow modes of the controller.

The actions and benefits of the proposed extended slug controller are illustrated by sim-
ulations from an industrial case study. The case study clearly shows that the controller effec-
tively eliminates riser slugging, and that the peak rates ofthe start-up slugs and surge waves
are significantly reduced by smearing out the waves.



Chapter 8

Conclusions and further work

8.1 Conclusions

Chapter 2

A controllability analysis based on a simplified two-fluid model finds that an upstream pres-
sure measurement, located either at the pipeline inlet or atthe riser base, is well suited for
stabilizing control. A topside pressure measurement cannot be used for stabilizing control
due to unstable zeros dynamics. A flow measurement can be usedfor stabilizing control, but
due to low steady-state gain, it should only be used in an inner loop in a cascade controller
or in combination with another measurement in a MISO (multiple-input single-output) con-
troller. The chapter also concludes that a simpler model of the system could be used for
control purposes.

Chapter 3

A simplified, nonlinear model with only 3 dynamic states for apipeline-riser system is in-
troduced. The model fitted it to both experimental data and data from a simulated OLGA
test case with good results. The model is further verified by acontrollability analysis that
shows the same results as for the two-fluid model used in chapter 2. The model is easy to fit
to experimental data, and is well suited for controllability analysis and controller design.

Chapter 4

Simple equations are derived for computing the minimum input rate required for both stable
and unstable systems. The input rate limitation is combinedwith the input magnitude limi-
tation to form a frequency dependent bound on the input that can be used in controllability
analysis and controller design. The applicability of the bounds are demonstrated on a simple
example and on the simulated OLGA case, where input rate limitations can be a limiting
factor for stabilizing control.
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Chapter 5

A anti-slug PID controller based on an upstream pressure measurement (located either at the
pipeline inlet or at the riser base) is shown to provide good performance, and can possibly
also be extended with an inner flow loop to further improved the disturbance rejection. A
cascade controller based on only topside measurements (flowcontrol in inner loop, pressure
drop over valve or valve position as measurement in outer loop) can also be used to stabilize
the process, but the setpoint tracking is slow due to unstable zeros dynamics in the outer
loop.

Chapter 6

A SISOH∞ controller based on an upstream pressure measurement is almost identical to a
PID controller, which confirms that a PID controller is a goodchoice when this measurement
is used for stabilizing control. MISOH∞ controllers based on only topside measurements
show significantly improved low-frequency performance compared to the cascade controllers
in chapter 5. We were not able to design an LQG controller based on topside measurements
that could provide the same performance as the corresponding H∞ controller.

Chapter 7

An extended slug controller based on an anti-slug controller combined with individual flow
controllers for each phase is shown to be effective for both avoiding riser slugging and sup-
pressing transient slugs (i.e. surge waves and startup slugs). The suppression of the transient
slugs are based on using the pipeline as a buffer volume to average out the flows, rather that
the (significantly smaller) inlet separator.

8.2 Directions for future work

Model extensions

The simplified model developed in chapter 3 are based on a simple pipeline-riser system with
a regular L-shaped riser. Another limitation is the assumption of constant liquid holdup in
the pipeline leading into the riser, which prevents that both frequency and amplitude of the
oscillations can be fitted simultaneously. The following extensions of the simplified 3-state
model should thus be investigated

• Other pipeline and riser configurations, including S-shaped risers

• Varying liquid holdup in the pipeline

• Extension to three-phase (inclusion of water)

• Gas lift entering at the riser base
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The last point would also mean that the a common model for bothcasing-heading in-
stabilities in gas-lifted systems (Jansen et al., 1999; Eikrem et al., 2004) and riser slugging
should be developed. A model that combines both these phenomena would also be useful to
study the stabilizing effect that gas lift has on pipeline-riser systems.

New measurements or combination of measurements for anti-slug controllers

When only topside measurements are available, fundamental limitations in the process (e.g.
unstable zero dynamics, low steady state gain) prevents us from using SISO (single-input
single-output) anti-slug controllers. There may exist other physical measurements, or alter-
natively combinations of existing measurements, that are not limited by these fundamental
limitations. For example, the model for the flow out of the riser does not contain any unsta-
ble zeros, whereas the model for both the topside pressure and density both contain unstable
zeros. However, flow measurement is often obtained from a density and a pressure measure-
ment by using a valve equation (Skofteland and Godhavn, 2003). This shows that (nonlinear)
combinations of measurements have different properties than the original measurements and
that it may be possible to find topside measurements or combinations of measurements that
can be used for SISO stabilizing control.
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Appendix A

Two-fluid model for a pipeline-riser
systems

A.1 Modeling details

The PDE-based two-fluid model consist of mass balances (eq. A.1 and A.2) and momentum
balances (eq. A.3 and A.4) for the liquid and gas phase. The balance equations combined
with the summation equation for the phase fraction (eq. A.5)will give the four statesαLρL,
αGρG, αLρLuL andαGρGuG.

∂

∂t
(αLρL) +

1

A

∂

∂x
(αLρLuLA) = 0 (A.1)

∂

∂t
(αGρG) +
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∂
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(αGρGuGA) = 0 (A.2)
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∂
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(αGρGuG) +

1
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∂
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αGρGu
2
GA
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= −αG
∂P

∂x
+ αGρGgx −

SGw

A
τGw − Si

A
τi (A.4)

αL + αG = 1 (A.5)

The following assumptions form the basis for the model:

• One-dimensional flow

• Constant liquid densityρL

• Constant pressure over a pipe cross-section, implying equalpressure in both phases

• No mass transfer between the phases

• No liquid droplet field in the gas

• Isothermal conditions
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Table A.1: Notation used for the two-fluid model
Symbol Description Unit
αk Volume fraction
ρk Density kg/m3

x Axial distance m
uk Local phase velocity m/s
A Pipe cross-section m2

gx Gravity vector in pipe direction m/s2

Skw Wetted perim., phase k and wall m
Si Wetted interphase perim. m
τkw Wall friction Nm2

τi Inter-phase friction Nm2

ǫ Wall roughness m
Dhk Hydraulic diameter for phase k m
Rek Reynolds number -
Db Bubble diameter m

• Ideal gas equation of state corrected with a compressibility factor.

The notation used for phases k = L and G are given in table A.1
Since we assume constant liquid densityρL, we can extract phase fractionsαk, gas den-

sity ρL and phase velocitiesuk directly from the states. To solve the balance equations,
we need to relate the shear stresses against the wallτkw, the inter-phase shear stressτi, the
friction factorsfw andfi and the wetted perimetersSi andSkw to the state information.
The algebraic relations used for friction correlations are:

τkw = fwρk
u2

k

2
(A.6)

τi = fiρg
(uG − uL)2

2
(A.7)

fw = max

(

64

Rek

, 0.005

(

1 +

(

2 ∗ 104ǫ

Dhk

+
106

Rek

)1/3
))

(A.8)

fi = 0.02
1 + 75αL

4
(A.9)

The wetted perimeters are implicit in phase fraction, and are approximated by polynomials:

Si(stratified) =
(

α2
L − αL

)

(−4D) (A.10)

Si(annular) = πD
√
αG (A.11)

Si(bubble) =
παGD2

Db
(A.12)

Skw = παkD (A.13)
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A.1.1 Discretization of the PDEs

In order to solve the system of PDEs, we discretize in space and solve the resulting set
of Ordinary Differential Equations (ODEs). A staggered grid approach is used, where the
momentum equations is solved on a grid that are displaced by half a cell relative to the grid
used for the mass conservation equation. This is required for numeric stability of the solution
with standard ODE solvers (in this work we use the built-in MatLab solver ODE23tb). We
used 13 grid points for the mass conservations equations and12 grid points the momentum
equations, resulting in a set of 50 ODEs. The grids points were unequally distributed, with
highest density of grid points around the bottom of riser. The spatial derivatives are computed
using a backward difference scheme (Patankar, 1980). Sincethe direction of the flow can
change in this system, care has to be taken when allocating data to the ODEs. For forward
flow, the data for the spatial derivatives is collected upstream the control volume, when the
flow reverses, the data is collected downstream.

A.1.2 Dealing with different flow regimes

Multiphase flow may change between different flow regimes. Flow regime maps, showing
the stability region of the various flow patterns as functionof liquid and gas velocity, have
been developed based on experimental data. Baker (1954) was one of the first to investigate
the stability of the different flow regimes, the resulting map for horizontal flow of oil and gas
is shown in figure A.1.

Figure A.1: Flow regime map for horizontal flow of oil and gas
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The parameters used on the axis in figure A.1 are

γ =
[( ρG

0.075

)( ρL

62.3

)]0.5

, ψ =
73

σ

[

µL

(

62.3

ρL

)2
]1/3

(A.14)

More recent work can be found in Schmidt et al. (1979b). Friction, phase distribution and
other system properties which depends on flow regimes are computed either by algebraic cor-
relations or interpolated from experimental data based on the predicted flow regime. Com-
mercial multiphase flow simulators use flow regime maps and the experimental data behind
these maps to determine the flow regime and the suitable correlations for the problem at
hand. However, the flow regime maps are, as already mentioned, based onopen loopex-
perimental data. In this work, where we are concerned with operation in open-loop unstable
operating points, the maps do not apply. Because of this, we donot use flow regime depen-
dent correlations (except for the possibility for annular and bubbly flow in the riser, where
we only consider this change to be a function of phase fraction)
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Simplified model for a pipeline-riser
systems

This appendix contains the set of equations that constitutes the simplified model of a
pipeline-riser system at riser slugging conditions that was developed in chapter 3. The model
is implemented in Matlab and the model files are available at the web (Storkaas, 2003)

B.1 Model Assumpions

A1 The liquid dynamics in the feed pipeline are neglected by assuming constant
liquid velocity.

A2 Constant gas volumeVG1 in the feed pipeline. This follows from assumption
A1 if we also neglect the liquid volume variations due to variations in the liquid
levelh1 at the low-point.

A3 Only one dynamical state for liquid holdup (the control volumeVL with holdup
mL includes both the riser and the part of the feed pipeline fromthe low-point
to the levelh1)

A4 Two dynamical states for gas holdup ,mG1 andmG2, occupying the volumes
VG1 andVG2, respectively. The gas volumes are separated by the low point, and
connected through a pressure-flow relationship.

A5 Ideal gas behavior

A6 Stationary pressure balance over the riser (between pressuresP1 andP2)

A7 Simplified valve equation for gas and liquid leaving the system at the top of the
riser

A8 Constant temperature
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B.2 Model Equations

Conservation equations

d

dt
mL = wL,in − wL,out (B.1)

d

dt
mG1 = wG,in − wG1 (B.2)

d

dt
mG2 = wG1 − wG,out (B.3)

Calculation of state-dependent internal variables

P1 =
mG1RT

VG1MG

(B.4)

ρG1 =
mG1

VG1

(B.5)

VL =
mL

ρL

(B.6)

h1A1 + VLR = VL (B.7)

VT = A2 (H2 + L3) (B.8)

VG2 = VT − VLR (B.9)

ρG2 =
mG2

VG2

(B.10)

αL =
VLR

VT

(B.11)

P2 =
mG2RT

VG2MG

(B.12)

ρ̄ =
mG2 + VLRρL

VT

(B.13)

ρ̄g (H2 +H3) − ρLgh1 = P1 − P2 (B.14)

αLT = (VLR > H2A2)α
∗
LT +

wn

1 + wn
(αL − (VLR > H2A2)α

∗
LT ) (B.15)

α∗
LT =

VLR − A2H2

A2L3

(B.16)

w =
K3ρG1v

2
G1

ρL − ρG1

(B.17)

ρT = αLTρL + (1 − αLT ) ρG2 (B.18)

αm
L =

αLTρL

αLTρL + (1 − αLT ) ρG2

(B.19)



B.2. MODEL EQUATIONS 135

Flow equations

vG1 = (h1 < H1)K2
H1 − h1

H1

√

P1 − P2 − ρLgαLH2

ρG1

(B.20)

wG1 = vG1ρG1Â (B.21)

mmix,out = K1z
√

ρT (P2 − P0) (B.22)

wG,out = (1 − αm
L )mmix,out (B.23)

wL,out = αm
Lmmix,out (B.24)

Geometric equations

H1 =
2r

cos (θ)

A1 =
A2

sin (θ)

φ =

(

π − acos

(

1 − (H1 − h1) cos (θ)

r

))

Â = r2 (π − φ− cos (π − φ) sin (π − φ)) (B.25)
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B.3 Notation
Symbol Description Unit Remarks
mGi Mass of gas in volume i Kg State variable
mL Mass of liquid Kg State variable
VGi Gas volume i m3 VG1 = const
VL Volume occupied by liquid m3

VLR Volume of liquid in riser m3

VT Total volume in riser m3

Pi Pressure in volume i N
M2

ρGi Gas density in volume i kg
m3

ρL Liquid density kg
m3 Constant

ρ̄ Average density in riser kg
m3

ρT Density upstream valve kg
m3

vG1 Gas velocity at lowpoint m
s

vmix,out Liquid velocity through choke valve m
s

wG1 Internal gas mass flowrate Kg
s

wG,out Gas mass flowrate through choke valveKg
s

wL,out Liq. mass flowrate through choke valveKg
s

αL Average liq. frac. in riser, volume basis -
αLT Liq. frac. upstream valve, volume basis -
αm

L Liq. frac. upstream valve, mass basis -
α∗

LT Liq. frac. upstream valve without entr. -
h1 Liquid Level upstream the dip m
H1 Critical liquid level m Constant
H2 Height of riser m Constant
r Radius of pipe m Constant

A1 Area in horizontal plane,V1 m2 Constant
A2 Cross section area,V2 m2 Constant
Â Gas flow area at lowpoint m2

L3 Length of horizontal top section m Constant
θ Feed pipe inclination rad Constant
R Gas Constant 8314 J

K·Kmol Constant
g Spesific gravity 9.81m

s2 Constant
T System Temperature K Constant

MG Molecular weight of Gas Kg
Kmol Constant

wG,in Mass rate of gas into system Kg
s Disturbance

wL,in Mass rate of liquid into system Kg
s Disturbance

P0 Pressure after choke valve N
M2 Disturbance

z Valve Position - Input
K1 Choke valve constant - Tuning param.
K2 Gas Flow constant - Tuning param.
K3 Friction parameter - Tuning param.
n wn in the friction expression - Tuning param.
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Simulations

This appendix contains all the simulations with the controllers designed in chapters 5 and
6 with all three models used in this thesis (the three-state model from chapter 3, the two-
fluid model from chapter 2 and OLGA). The controller parameters and closed loop norms,
calculated based on the three-state model, are given for each controller.

C.1 SISO PID-controllers

Table C.1: Tuning parameter and achieved closed loop norms for SISO PID control
y Minimized Kc τI [s] τD[s] τF [s] ‖S‖∞ ‖T‖∞ ‖KS‖∞
PI ‖S‖∞, ‖KS‖∞a -0.098bar−1 600 14.2 6.9 1.26 1.91 0.29
PI ‖T‖∞ -0.20bar−1 600 14.3 12.3 1.60 1.44 0.50
PRb ‖S‖∞, ‖KS‖∞a -0.16bar−1 600 0 0.9 1.03 1.52 0.30
PRb ‖T‖∞ -0.30bar−1 600 0 2.0 1.11 1.25 0.45
Q ‖S‖∞b 120 m3

(bar·s)
∞ 0 145 1.00 1.34 0.31

Q ‖T‖∞ 270 m3

(bar·s)
∞ 0 135 1.00 1.16 0.63

Q ‖KS‖∞ 55 m3

(bar·s)
∞ 0 135 1.35 2.02 0.15

aThe controller that minimizes‖KS‖∞ is not unique; these parameters minimize‖S‖∞ whilst achieving
minK(‖KS‖∞)

bDesign not unique, these parameters achieves‖S‖∞ = 1 with minimal input usage
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(a) Simplified model,‖S‖∞ minimized
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(b) Simplified model,‖T‖∞ minimized
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(c) Two-fluid model,‖S‖∞ minimized
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(d) Two-fluid model,‖T‖∞ minimized
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(e) OLGA model,‖S‖∞ minimized
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(f) OLGA model,‖T‖∞ minimized

Figure C.1: Anti-slug control (y = PI)
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(a) Simplified model,‖S‖∞ minimized
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(b) Simplified model,‖T‖∞ minimized
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(c) Two-fluid model,‖S‖∞ minimized
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(d) Two-fluid model,‖T‖∞ minimized
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(e) OLGA model,‖S‖∞ minimized
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(f) OLGA model,‖T‖∞ minimized

Figure C.2: Anti-slug control (y = PRb)
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(a) Simplified model,‖S‖∞ minimized
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(b) Simplified model,‖KS‖∞ minimized

0 0.5 1 1.5 2 2.5 3
0

0.05

V
ol

um
et

ric
 fl

ow
Q

 [m
3 /s

]

0 0.5 1 1.5 2 2.5 3
66
68
70
72
74

In
le

t P
re

ss
ur

e
P

I [B
ar

]

0 0.5 1 1.5 2 2.5 3
0

50

100

V
al

ve
 o

pe
ni

ng
Z

 [%
]

Time [hrs]

Pressure corresponding to flow set point

(c) Two-fluid model,‖S‖∞ minimized
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(d) Two-fluid model,‖KS‖∞ minimized
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(e) OLGA model,‖S‖∞ minimized
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(f) OLGA model,‖KS‖∞ minimized

Figure C.3: Anti-slug control (y = Q)
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(a) Simplified 3-state model,‖T‖∞ minimized

0 0.5 1 1.5 2 2.5 3
0

0.05

V
o

lu
m

e
tr

ic
 f

lo
w

Q
 [

m
3
/s

]

0 0.5 1 1.5 2 2.5 3
66
68
70
72

In
le

t 
P

re
ss

u
re

P
I [

B
a

r]

0 0.5 1 1.5 2 2.5 3
0

50

100

V
a

lv
e

 o
p

e
n

in
g

Z
 [

%
]

Time [hrs]

Pressure corresponding to flow setpoint

(b) Two-fluid model,‖T‖∞ minimized
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(c) OLGA model,‖T‖∞ minimized

Figure C.4: Anti-slug control (y = Q)
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C.2 Cascade controllers

Table C.2: Tuning parameter and achieved closed loop norms for SISO PID control

y Kc1 τI1[s] τF1 = τF2[s] Kc1[s/m
3] ‖S‖∞ ‖T‖∞ ‖KS‖∞

[P1 Q] -0.001 m3

(bar·s)
600 135 55 1 1.9 0.29

[DP Q] -0.00015 m3

(bar·s)
600 135 55 1.42 2.1 0.16

[Z Q] -0.002m3

s
600 135 90 1.14 1.54 1.42
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(a) Simplified 3-state model
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(b) Two-fluid model
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(c) OLGA model

Figure C.5: Anti-slug control (y1 = PI , y2 = Q)
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(a) Simplified 3-state model,y1 = DP, y2 = Q
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(b) Simplified 3-state model,y1 = Z, y2 = Q
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(c) Two-fluid model,y1 = DP, y2 = Q
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(d) Two-fluid model,y1 = Z, y2 = Q
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(e) OLGA model,y1 = DP, y2 = Q
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(f) OLGA model,y1 = Z, y2 = Q

Figure C.6: Anti-slug control (y = Q)
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C.3 Model based controllers

Table C.3: Closed loop norms and bandwidth for model-based controllers
‖S‖∞ ‖T‖∞ ‖KS‖∞ ωB

H∞ controller,y = PI 1.48 1.35 0.43
H∞ controller,y = [DP Q] 1.27 0.94 0.37 0.0025
H∞ controller,y = [Z Q] 1.16 0.91 0.91 0.0010

LQG controller,y = [DP Q] 14 13 0.43 0.0004
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(a) Simplified 3-state model

0 0.5 1 1.5 2 2.5 3
66

68

70

72

In
le

t 
p

re
ss

u
re

 P
I [

b
a

r]

0 0.5 1 1.5 2 2.5 3
0

50

100

Time [hrs]

V
a

lv
e

 o
p

e
n

in
g

 Z
 [

%
]

Setpoint

(b) Two-fluid model

0 0.5 1 1.5 2 2.5 3
64

66

68

70

72

74

In
le

t 
p

re
s
s
u

re
 P

I [
b

a
r]

0 0.5 1 1.5 2 2.5 3
0

50

100

Time [hrs]

V
a

lv
e

 o
p

e
n

in
g

 Z
 [

%
]

Setpoint

(c) OLGA model

Figure C.7: Anti-slugH∞ control withy1 = PI
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(a) Simplified 3-state model,y = [DP Q]
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(b) Simplified 3-state model,y = [Z Q]
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(c) Two-fluid model,y = [DP Q]
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(d) Two-fluid model,y = [Z Q]
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(e) OLGA model,y = [DP Q]
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(f) OLGA model,y = [Z Q]

Figure C.8: Anti-slug MISOH∞ control
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(a) Simplified 3-state model
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(b) Two-fluid model
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(c) OLGA model

Figure C.9: LQG Anti-slug control withy = [DP Q]


