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Abstract

Increased competition in the process industries requires optimal operation and better
utilization of raw materials and energy. One strategy for achieving improved production
is to use real-time optimization (RTO), based on measured disturbances and process
measurements. The optimal solution is usually implemented by updating setpoints to
the control system which task is to keep the controlled variables at the setpoint. Thus,
the selection of controlled variables integrates the optimization and the control layer.

Selecting the right controlled variables can be of paramount importance. Many chem-
ical processes are influenced by disturbances that are often not measured and where
installing new measurements are not economically viable. Thus, finding controlled
variables where the optimal value is insensitive to disturbances could eliminate the
need of estimating these disturbances online and would reduce the need of frequent
setpoint updates. The use of feedback control introduces implementation errors. It is
important to select controlled variables that are insensitive to implementation errors.
The “optimal” implementation would be to use a dynamic optimizer which, based on
full information of the disturbances and the plant outputs, calculates the optimal in-
puts. In practice, control systems have a hierarchical structure, where different layers
operate on different time scales. Thus, the selection of controlled variables (which links
these layers together) is important.

The ideal situation is to have self-optimizing controlled variables where operation re-
mains near-optimal in presence of disturbances and implementation errors using con-
stant setpoints. This work puts emphasis on methods for selecting such self-optimizing
controlled variables. We base the selection of controlled variables on an economic
measure of the operation. We assume that the setpoints are nominally optimal, and
we propose the null space method for selecting controlled variables as a combination
of measurements. The selection of the controlled variables is based on the optimal
sensitivity matrix from the disturbances to the measurements. This information can
easily be provided by using experiments or a model of the plant. The main focus, is
to find controlled variables that yield good self-optimizing properties with respect to
disturbances. The method uses local information, however, several case studies have
shown that the operation is near-optimal in a wider region of the disturbance space.

To generalize the null space method, we propose a method for selecting measurements
that minimizes the effect of implementation errors on the economic performance for
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ii Abstract

the resulting control structure. Based on the derivation of the null space method,
we propose a simple procedure for finding controlled variables using the null space
method. The procedure is split in two: First, we select measurements that are in-
sensitive to measurement error. Second, we combine these measurements to form the
self-optimizing control structure.

Further, we discuss how non-optimal nominal points affect the selection of controlled
variables for self-optimizing control. We find that the selection of controlled variables
is unaffected by non-optimal nominal points, and that the average increase in loss is
independent of what we select to control.

Another contribution is to provide several case studies where the null space method is
compared with previously proposed methods for selecting controlled variables. The null
space method is illustrated on a Petlyuk distillation column for separation of ternary
mixtures. We find that the null space method yields a control structure with acceptable
steady-state and dynamic performance. Other cases studied are an evaporator process
and oil and gas production networks.

Finally, we show that for the Petlyuk distillation column it is energetically optimal
to over-fractionate one of the products. This surprising result is discussed and expres-
sions for the possible savings are derived.
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Chapter 1

Introduction

In this chapter the thesis is restricted, the work motivated and placed in a wider
perspective. An overview of the thesis and a list of the publications emerging from this
thesis are given. Related work is discussed in Chapter 2.

1.1 Motivation and focus

Increasing demands for efficient operation and improved utilization of energy and raw
materials in chemical processes require more knowledge and understanding of the dy-
namics and the steady-state operation of the processes. Increased efficiency often
implies a more complex control system. Much work has gone into designing more com-
plex controllers (i.e. H∞/H2-control, Model predictive control and Non-linear control)
to improve the dynamics of a process. In most cases, the process outputs (controlled
variables) are assumed known. However, in many systems it is not clear why specific
outputs are controlled, and we need to ask questions such as: “Which variables should
be controlled, which variables should be measured, which inputs should be manipu-
lated, and which links should be made between them” (Foss, 1973).

In particular, the issue of selecting controlled variables has received little attention
in the literature. The focus in this thesis is on the implementation of optimal opera-
tion, and the goal is to find a set of controlled variables which, when kept at constant
setpoints, indirectly leads to near-optimal operation with acceptable steady-state eco-
nomic performance (loss). This is denoted “self-optimizing control”. We restrict the
selection of controlled variables to the steady-state, since the economics in most cases
are primarily decided by the steady-state operation (Skogestad, 2000).

Self-optimizing control follows the ideas of Morari et al. (1980) and Skogestad and
Postlethwaite (1996). The basis is to define the quality of operation in terms of a scalar
cost J . To achieve truly optimal operation, we would need to measure all disturbances,
and we would need to solve the optimization problem online. This is unrealistic for
many chemical processes, and the question is if it is possible to find a simpler implemen-
tation that retains satisfactory economic performance. The simplest operation would
result if we could select controlled variables such that the operation remains acceptable
with constant setpoints, thus turning the optimization problem into a simple feedback
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2 1. Introduction

problem.

The main contribution of this thesis is a new method for selecting controlled vari-
ables which we denote as the null space method. The idea is to utilize the freedom of
selecting controlled variables as combination of measurements, and to find the combi-
nation of measurements that yields near-optimal operation. The selection is based on
defining a steady-state economic measure of the process to be minimized.

1.2 Thesis overview

In Chapter 2 we discuss previous work on self-optimizing control. We also discuss al-
ternative methods for optimizing control.

Chapter 3 introduces the null space method for selecting controlled variables for self-
optimizing control. The focus is on optimal selection of controlled variables in presence
of unmeasured disturbances. We illustrate the method on a simple blending example.
The null space method has been applied in several case studies later in the thesis, e.g.
the Petlyuk distillation column (Chapter 8), an evaporator case (Chapter 11) and two
cases related to offshore production of oil and gas (Chapter 10).

Chapter 4 generalizes the null space method to include implementation error. The
focus is on reducing the sensitivity to measurement errors. We present a procedure
for selecting the best subset of measurements for the null space method and illustrate
the method on a CSTR-example. The case studies of Chapter 8 and Chapter 11 also
illustrate the ideas presented in this chapter. Appendix B supplement this chapter.
In Appendix C a paper on indirect control is included, where the candidate was third
author. Indirect control can be seen as a sub-problem of self-optimizing control.

Chapter 5 discusses how to discriminate between important and unimportant distur-
bances for self-optimizing control and we present rules which can help discriminate
between disturbances.

In Chapter 6 we discuss the effect of having non-optimal nominal setpoints, and how
this affects the loss and internal rank between candidate controlled variables.

Chapter 7 discusses the dynamics of controlling measurement combinations. We show
that controlling measurement combinations may lead to performance limitations such
as right-half plane zeros, and we propose a simple rule for avoiding such behavior.

In Chapters 8 and 9 we discuss the Petlyuk distillation column. Chapter 8 focuses on
the selection of controlled variables for self-optimizing control. The null space method
is compared with alternative methods for selecting controlled variables. Dynamic sim-
ulations where we use a decentralized control structure are included.
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In Chapter 8 we find that it is optimal to over-fractionate one of the product streams
of the Petlyuk distillation column in order to save energy. This is discussed in Chapter
9, where we explain why this is possible and we derive expressions for the possible
savings. We also discuss the possibility of bypassing some of the feed to further reduce
the energy requirements.

In Chapter 10 and 11 we include additional case studies for self-optimizing control.
In Chapter 10 we discuss the selection of control structures for two cases related to
offshore oil and gas production. Appendix D supplements this chapter with the model
equations. In Chapter 11 we discuss a simple evaporator case, which has been used in
previous studies on self-optimizing control. Appendix E supplements this chapter with
the model equations.

Chapter 12 sums up and concludes the thesis. Finally, we discuss directions for further
work.

1.3 Publications

Chapter 3 and 8

Alstad, V. and Skogestad, S.: Robust Operation by controlling the right variable com-
bination, AIChE Annual meeting, Paper 247g, Indianapolis, 3-8 Nov. 2002.

Alstad, V. and Skogestad, S.: Combinations of measurements as controlled variables:
Application to a Petlyuk distillation column, International Symposium of Advanced
Control of Chemical Processes (Adchem-2003), Hong Kong, 11-14 Jan. 2004.

Chapter 4

Alstad, V. and Skogestad, S.: Self-optimizing control: Optimal measurement selection,
AIChE Annual Meeting, Austin, Texas, Nov. 2004, Poster 403e

Chapter 9

Alstad, V. and Skogestad, S.: Optimal operation of Petlyuk distillation column: Energy
savings by over-fractionating, Proc. European Symposium on Computer Aided Process
Engineering (ESCAPE-14), 16-19 May 2004, Lisbon, Portugal. Published by Elsevier,
ISBN 0-444-51694-8, pp. 547-552.

Chapter 10

Case 1: Alstad, V. and Skogestad, S.: Combination of Measurements as Controlled
Variables for Self-Optimizing Control, Proc. European Symposium on Computer Aided
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Process Engineering (ESCAPE-13), 01-04 June 2003, Lappeenranta, Finland. Pub-
lished by Elsevier, ISBN 0-444-51368-X, pp. 353-358.

Case 2: Presented at Petronics Workshop - 2004: “Joining Petroleum, Multiphase
Flow, Chemical and Control Engineering”, June 15-16, 2004, Trondheim, Norway.

Chapter 11

Presented at 12th Nordic Process Control Workshop (NPCW), August 19-22, Göteborg,
Sweden.

Co-authored

Storkaas, E. , Skogestad, S. and Alstad, V.: Stabilizing of desired flow regimes in
pipelines, AIChE Annual meeting, Paper 287d, Reno, Nevada, November 5-9, 2001.

Halvorsen, I.J., Skogestad, S., Morud, J.C. and Alstad, V.: Optimal selection of con-
trolled variables, Ind. Eng. Chem. Res., 42 (14), 3273-3284 (2003).

Hori, E.S. , Skogestad, S. and Alstad, V.: Perfect steady-state indirect control,
Ind. Eng. Chem. Res, In press. (See Appendix C)
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Chapter 2

Brief overview of control structure
design and methods for ensuring
optimal operation

This chapter contains a short overview of different methods for ensuring optimal op-
eration with special emphasis on self-optimizing control. We discuss control structure
design in general and how the control structure is linked to optimization.

2.1 Control structure design

Control structure design is the strategy of selecting which variables to control, which
variables to measure, which inputs to manipulate and which links that should be made
between them. Control structure design go back at least to the work of Foss (1973),
where he criticized the control community for the gap between theory and practice.
Later, the series of papers by Morari & co-workers (Morari et al., 1980a,b,c) on control
structure design, hierarchical control and multilevel optimization, introduced new and
exciting ideas and theories. While the area of control structure design has received
some interest in the literature, it cannot be compared to the enormous amount of work
on controller design, although control structure design is probably the most important
in practice.

2.1.1 Plantwide control

Plantwide control deals with the overall control philosophy of the plant, with emphasis
on structural decisions such as (Skogestad, 2000):

1. Selection of controlled variables and setpoints (c and cs)
2. Selection of measured variables (y)
3. Selection of manipulated variables (u)
4. Selection of control configurations (the structure interconnecting measurements

and manipulated variables)
5. Selection of type of controller (the control law)

7
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The focus of this thesis is on selection of controlled variables and measurements. A
typical control system is organized in a hierarchical structure, see Figure 2.1, divided
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Figure 2.1: Typical control system hierarchy in chemical plants (Skogestad
and Postlethwaite, 1996)

in several layers that operate on different time-scales:

1. Scheduling (weeks): Typically manual and offline, based on higher level economic
models.

2. Site-wide optimization (days): Manual, semi-manual or fully automated. Often
based on steady-state models. Typically a RTO (real-time optimizer).

3. Local optimization (hours): Manual, semi-manual or fully automated, often on-
line.

4. Control layer (minutes and seconds): Often divided into two levels with primary
controlled variables (supervisory control) and secondary controlled variables (reg-
ulatory control). The primary controlled variables deal with slow actions while
the secondary controlled variables deal with stabilization and fast dynamics in
order to achieve acceptable dynamic performance.

Control structure design is a subtask of the plantwide control procedure, see Larsson
and Skogestad (2000) for a review on plantwide control. An important aspect of the
control structure design is the selection of the controlled variables. Here, we focus on
the interaction between the local optimization layer and the control layer as depicted
in Figure 2.2. Typically, two classes of systems exist:� Constrained : At the optimal point all degrees of freedom are used for satisfying

constraints.� Fully of partially unconstrained : One or more of the degrees of freedom are
unconstrained for some or all disturbances.
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Figure 2.2: A typical optimization structure incorporating local feedback.
The process is disturbed (d) and the control system tries to keep the controlled
variables (c) at their setpoints (cs) with accompanied noise n. The optimizer
estimates the disturbance from the measurements and, based on a model of the
plant, new optimal setpoints are found and implemented in the local feedback
loop.

For the constrained variables, active constraint control is used for controlling the opti-
mally active constraints (Maarleveld and Rijnsdorp, 1970). If the constraints are not
measurable, indirect measurements can be used to infer the actual value of the con-
straint, see Appendix C. For the active constraints, the optimal value does not change
with respect to the disturbances. Examples of typical active constraints in chemical
plants are:� Maximum throughput of a unit (e.g. compressor load).� Maximum temperature in reactor.� Minimum composition for distillate products.
In case that the set of optimally active constraints change due to disturbances, an
adaptive active constraint policy can be used (Arkun and Stephanopoulos, 1980). Con-
straints may be categorized, depending on the nature of the constraint. Typically we
have:� Hard constraints : Constraints that cannot be violated� Soft constraints : Constraints that can be violated dynamically, while satisfied at

steady-state.
For the unconstrained degrees of freedom, the optimal values are determined by an op-
timization of the plant and it is not clear what to control or what the control objectives
are.

One approach is to adjust the inputs in an “open-loop” manner and use an online
optimization to calculate new inputs based on a model of the plant and estimated
disturbances. The alternative approach of self-optimizing control, is to use constant
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setpoints for the variables, that is, with no online optimization taking place. The
idea is that the feedback from the process will detect the disturbances and adjust the
remaining degrees of freedom in an optimal manner.

2.2 Policies for optimal operation for systems with

uncertainty

Below we present a short overview of different methods for ensuring optimal operation
for systems operating under uncertainty. This is by no means a complete review of all
possible methods. For more information on each method see the references.

2.2.1 Experimental methods

For simple systems, experimental methods may be applied for finding the optimal
operation of a system with uncertain and unknown parameters (Box, 1957). This
requires carefully designed experiments and the possibility to measure or infer the
objective function (Marlin, 2000). For most continuous systems, experimental methods
are not applicable due to the disturbance frequency (require frequent experiments).
The experiments are often resource intensive and disturb the normal operation. For
systems with parametric uncertainties (model uncertainty) experimental methods may
be applicable, e.g. for finding the degree of deactivation of catalysts.

Adaptive extremum seeking control

Adaptive extremum seeking control is an “experimental optimization” technique that,
by imposing an excitation signal on the process, drives the process to the optimum.
Thus, the identification of the state of the process and the optimal inputs to impose
are combined. For an overview of extremum seeking control, see Ariyur and Krstic
(2003).

Most of the work on extremum seeking control assume that the objective function
is directly measurable. Guay and Zhang (2003) provide a new algorithm where the
objective function is not measurable. However, they require explicit information on the
structure of the objective function (how it depends on the states and disturbances).

In Guay and Zhang (2003) extremum seeking controllers are developed to drive the
system states to the desired setpoints that optimize the value of an objective function.
The proposed adaptive extremum seeking controller is ”inverse optimal” (El-Farra and
Christofides, 2001) in the sense that it minimizes a meaningful cost function that
incorporates a penalty on both the performance error and control action. Krstic and
Wang (2000) consider systems where the structure of the objective function is not
known.

Some fundamental requirements must be present in order to guarantee stability
and extremum attenuation. The most important is the convexity of the disturbance
space to guarantee that the estimation of the unknown parameters converge to the
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true value. A drawback of the proposed method is that an excitation signal must be
introduced in the system in order for the extremum seeking controller to converge to
the true optimal point. In effect, the excitation signal introduces a disturbance to the
plant, with accompanying input usage, which may be undesirable. In addition, finding
the excitation function is not trivial, nor is the assumption of state feedback.

2.2.2 Model based methods

Model based methods require a dynamic or static model of the plant. The type of model
may range from pure empirical models (step responses) to first-principle models.

Optimal control

In optimal control, no distinction is made between optimization and control (Stengel,
1993). The trajectories of the optimal input are calculated based on state and distur-
bance estimates by the use of a dynamic model of the plant. Ideally, this approach is
optimal, but has the following drawbacks (Cao, 2004):

1. The open-loop solution can be provided only if a perfect dynamic model is avail-
able.

2. It is assumed that the disturbances are measurable and predictable (future dis-
turbances are known).

The structural information in the controller comes from the dynamic model of the
plant. Thus, optimal controllers are often more sensitive to modeling uncertainty,
as compared to decentralized control structures (Skogestad and Hovd, 1995). In a
decentralized control structure, structural information is supplied through the linking
of controlled variables and inputs, and is typically not that sensitive to modeling errors.
In addition, the cost of acquiring a detailed dynamic model is often prohibitive.

Real-time optimizing control

Real-time optimizing control (RTO), where optimal setpoints are calculated online
based on online measurements and a process model, is a much used implementation
for ensuring optimal operation of chemical plants (Marlin and Hrymak, 1997), see
Figure 2.3. Real-time optimization often utilize a stationary model for the parameter
estimation and optimization steps (Zhang et al., 2002, 2001), but also dynamic versions
of the RTO-framework have been presented (Kadam et al., 2003).

RTO is well suited for site-wide optimization, see Figure 2.1. While much of the
work in the RTO-literature has focused on the estimation and the optimization layers
(Loeblein and Perkins, 1998), less work has focused on the interaction between the
optimization and control layer (the controlled variables) (Marlin and Hrymak, 1997).
Typically, more manipulated variables than controlled variables exist and a common
approach is to use a model based controlled (e.g. MPC) to implement the RTO output
which is a combination of setpoints for the controlled variables and the inputs. Thus,
the inputs without any accompanied control objective are controlled in an “open loop”
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Figure 2.3: Real-time optimization structure where, based on measurements
from the process y′ and a model of the process, uncertain parameters d are
estimated and fed through the optimizer, which in turn calculates new optimal
setpoints cs.

manner. The real-time optimization structure is complex since both the data reconcil-
iation, the model update and the optimization must be performed online. In addition,
the RTO requires a large and detailed model of the plant. If possible, a preferred struc-
ture would be to have a high-level model for the RTO, while the local optimization in
each sub-unit could be achieved by the use of simple feedback control.

Model predictive control

Model predictive control (MPC) has received much attention in the control community
over the last couple of decades and numerous industrial implementations exist (Qin and
Badgwell, 2003). Traditional MPC is a real-time optimization implementation, where
we need to solve an optimization online, and the same drawbacks as discussed above
apply. The benefit of MPC is that a dynamic cost function is minimized online and an
optimal input trajectory is calculated using a model of the plant.

The great flexibility in formulating the objective function for the MPC controller,
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gives a powerful method for optimizing control. However, MPC is usually used for
setpoint control, where an optimization layer (RTO) gives the optimal setpoints to use
for varying disturbances. If the disturbances are measured, this can be included in the
MPC framework (Robust MPC, see Camacho and Bordons (1998)).

Recent work on explicit MPC (Pistikopoulos et al., 2000; Grancharova et al., 2004),
where an explicit state feedback controller is calculated offline is a promising approach.
The state space is divided into regions, where, in each region, a state feedback control
law is valid. However, the need of state feedback and the fact that the method scales
poorly, limits its applicability in typical chemical processes where the number of states
can be large. One major advantage of explicit MPC is that no online optimization is
necessary.

2.3 Self-optimizing control

Self-optimizing control follows the ideas of Morari et al. (1980a) and is the use of
feedback to compensate and drive the process to the optimal steady-state. The key
in self-optimizing control is to find controlled variables that, when kept at constant
setpoints, indirectly keep the inputs optimal (indirect optimizing control). A model
is most often needed in the analysis part, which can be performed offline. When the
control structure has been decided, no model is needed online. This approach is funda-
mentally different from the RTO approach, where the optimal operation of the plant
is achieved by changing the setpoints to the control system, and the information of
the structure of the problem (cost function) is implemented online. In self-optimizing
control, the structure of the optimization problem is utilized in making structural de-
cisions on the controlled variables.

Self-optimizing control (Skogestad, 2000) is when acceptable operation (small loss)
can be achieved using constant setpoints cs for the controlled variables c (without the
need to re-optimize when disturbances occur).

The loss is defined as the difference between the value of the objective function us-
ing constant setpoints and the true optimal value of the objective function:

L = J(cs + n,d) − Jopt(d) (2.1)

where n is the implementation error (measurement and setpoint error) in keeping the
controlled variable at the setpoint c = cs, J the cost function and d the disturbance.
In general, the controlled variables can be expressed as

c(u,d) = h(y(u,d)) (2.2)

where h is a vector valued function with respect to the measurements (yi). The sources
of uncertainties that contribute to the loss are:

1. Disturbances (d): External unmeasured disturbances.
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2. Implementation error (n): Implementation error constitutes the measurement
error and control error. Often the control error can be neglected if integral action
is included in the controller.

Implementation error is always present in any control configuration; it is the error
of implementing a certain policy. Thus, regardless of the method used for ensuring
optimal operation (i.e. RTO or an optimal controller) the effect of implementation
error must be taken into account. Often, an open-loop policy may give large losses
since the difference between the calculated and implemented input may be large.

In self-optimizing control, we assume that optimally active constraints are controlled
(Maarleveld and Rijnsdorp, 1970), and the problem is to find what to control for the
remaining degrees of freedom (the optimization degrees of freedom, (Marlin, 2000)).
We often simplify and call the optimally active constraints for the active constraints.
For systems where the set of active constraints change with respect to the disturbances,
special care must be taken to ensure that the active set of constraints are controlled
(Arkun and Stephanopoulos, 1980; Cao, 2004).

2.3.1 Optimal operation

In general, the optimal input trajectory can be found by solving a non-linear dynamic
optimization problem:

min
x0,u0

∫ T

t=0

J(t,x0,u0,d)dt (2.3)

subject to

ẋ0 = f(x0,u0,d)

g(x0,u0,d) ≤ 0 (2.4)

x0|t=0
= x0

0

y0 = fy0
(x0,u0,d)

where x0 ∈ Rnx0 is the vector of internal dependent variables (states), u0 ∈ Rnu0 the
vector of manipulated variables, d ∈ Rnd vector of external disturbances, y0 ∈ Rny0

the measurements and J a scalar objective function (cost). The equality constraint
vector (f) corresponds to state equations (model equations), while the inequality con-
straint vector (g) corresponds to process constraints (safety, environmental or process
limitations).

In order to solve the dynamic optimization problem given in eqs. (2.3-2.4), one
needs to have a prediction of the future disturbances. Here, the focus is on slow
varying disturbances, and we make a pseudo steady-state assumption such that the
dynamic optimization problem is reduced to its steady-state equivalent:

min
x0,u0

J0(x0,u0,d) (2.5)
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subject to

f(x0,u0,d) = 0

g(x0,u0,d) ≤ 0 (2.6)

y0 = fy0
(x0,u0,d)

At the nominal optimum (u∗
0,d

∗), a subset (g′) of the inequality constraints will be
active (with g′ = 0). The considerations here are of local nature and we assume that
the set of active constraints do not change (thus no additional constraints becomes
active) and we can reduce the dimension of the problem by enforcing these inequality
constraints (g′ = 0).

Assumption: For all disturbances in the disturbance space d ∈ D, it is assumed that the
same set of inequality constraints g′ is active, i.e. g′ = 0 ∀ d ∈ D.

Clearly, for systems with a small disturbance window in which the set of active con-
straints remains constant, this assumption can be very restrictive.
Arkun and Stephanopoulos (1980) derive methods for handling varying active con-
straints in a decentralized control structure. Alternatively, a centralized approach can
be used, e.g. model predictive control (Kadam et al., 2003).

We assume that the active constraints are measurable or that we can infer the
constraints from indirect measurements. Thus, a subset of the available free variables
(u0’s) is used to fulfill these active constraints and the optimization problem is reduced
to:

min
u

J0(x,u,d) (2.7)

f ′(x,u,d) = 0

y0 = fy0
(x,ud)

where f ′T =
[
f g′

]
, xT =

[
x0 u′

]
where u′ ∈ Rnu′ is the subset of the inputs used to

fulfill the active constraints and u ∈ Rnu denotes the remaining unconstrained reduced
space degrees of freedom. In controlling the active constraints (g′ = 0), the inputs
u′ bound to controlling the active constraints depends on the remaining inputs u and
disturbances d, i.e. u′ = u′(u,d).

The solution of the reduced space problem in (2.7), may be categorized in two
classes. Let nf ′ = dim(f ′).

1. If nu = nu0
+ (nx0

− nf ′) = 0, all degrees of freedom must be used to fulfill
the active constraints and implementation is usually simple by using the ideas of
active constraint control (Maarleveld and Rijnsdorp, 1970). This can be achieved
by direct measurement of the constraint (e.g. a pressure constraint) or an indirect
measurement.

2. If nu > 0, we have unconstrained degrees of freedom at the optimal point and
implementing the remaining degrees of freedom is not straightforward. The task
of selecting what to control for the remaining degrees of freedom will be the focus
in this work.
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By formally eliminating the states (x) by using the equality constraints (f ′ = 0), the
remaining unconstrained problem becomes:

min
u

J(u,d) (2.8)

y0 = fy0
(u,d) (2.9)

In general J is not a simple function in the variables u and d. We assume that
online information about the system behavior is available from the measurements in
the plant:

y0 = fy0
(u,d) (2.10)

where y0 denotes the vector of all measurements in the plant. The measurement vector
y0 ∈ Rny0 generally also include the input vector u0, while the measurements used for
controlling the active constraints (either directly or indirectly) are not included due to
zero gain from u to y (when the active constraint loops are closed).

2.3.2 Optimal controlled variables

From eq. (2.2) the vector of controlled variables is given by:

c = h(y) (2.11)

where the function h is free to choose and y = fy(u,d) is a subset of the available
measurements y0. Inserting into eq. (2.11) yields

c = h(fy(u,d)) = fc(u,d) (2.12)

We assume that the number of controlled variables equals the number of optimization
degrees of freedom u and by assuming that fc is invertible, we have

u = f -1
c (u,d) (2.13)

where f -1
c exists and is unique. Examples of possible controlled variables are:� Difference: h(y) = y1 − y2� Ratio: h(y) = y1

y2� Linear combination: h(y) = h1y1 + h2y2 + h3y3� Open-loop: h(y) = u
With feedback, we adjust u such that c = cs +n, where n is the implementation error.
More precisely, the actual value of the controlled variable c differs from the optimal
value due to:

1. Setpoint error:

v(d)
def
= cs − copt (2.14)

and if the nominal point is optimal (v(d∗) = 0), the setpoint error is only affected
by the disturbance d
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2. Implementation error:
Implementation error is defined as:

n
def
= c − cs (2.15)

and is the sum of the measurement error and the control error. In this work, we
assume that the implementation error can be modeled as additive. In most cases,
we assume that the controllers have integral action such that the control error is
negligible at steady-state. The implementation error for the open-loop candidate
is often large because the actual implemented input u deviates from the setpoint
us since no feedback is used.

The total error is
ec = c − copt = v(d) + n (2.16)

where the disturbances and the implementation errors are assumed independent. Thus,
in order for a candidate controlled variable to be a good self-optimizing variable, both
of the errors need to be small (small v(d) and n).

In eq. (2.16) we added noise on the controlled variable, which makes sense if the
controlled variables correspond to single measurements. Here, we make no restrictions
on the function h so

n = h(ny) (2.17)

where ny is the measurement error on the individual measurements. In general the
optimal self-optimizing controlled variables (the function h) can be found by solving
the following optimization problem.

min
h

∫

· · ·
∫

d∈D, n∈N

J(u,d) dNdD (2.18)

h(y + ny) − cs = 0 (2.19)

where y ∈ y0 and u is an implicit function of h, d, cs and n and cs = h(y∗) where y∗

denotes the nominal value. The goal is to find the vector function h interconnecting
the measurements and the controlled variables that minimize some average measure of
the cost (J) taken over the disturbance and implementation error space.

We assume in this work that we use nominally optimal setpoints, but this can
be relaxed by computing robust optimal setpoints in which we add the setpoints cs

as additional degrees of freedom in eq. (2.18) (Govatsmark and Skogestad, 2002).
Several strategies for selection of setpoints exist, i.e. for ensuring both feasibility
and performance. Feasibility is achieved by using robust optimization (Glemmestad
et al., 1999) in which the setpoints selected must be feasible for all disturbances and
implementation errors. In practice, feasibility is achieved by back-off from the active
constraints and by selecting setpoint for the unconstrained controlled variables that
give feasible inputs for all disturbances and implementation errors.

Instead of minimizing the average cost as in eq. (2.18) we could minimize the
average loss (L) (or the worst-case loss) which results in a min-max problem. The
discussions hereafter will be of local nature and as assumed above, the set of active
constraints remains constant.
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Local Taylor Series Analysis

The following sections summarize the work of Halvorsen et al. (2003), otherwise noted.
For small deviations from the nominal point we have from eq. (2.12) that

∆c = G∆u + Gd∆d (2.20)

where ∆c = c − c∗, ∆u = u − u∗, ∆d = d − d∗, G =
(

∂fc
∂uT

)∗
and Gd =

(
∂fc
∂dT

)∗
.

Similarly, we have for the measurements

∆y = Gy∆u + Gy
d∆d (2.21)

where ∆y = y − y∗ and Gy =
(

∂fy
∂uT

)∗

and Gy
d =

(
∂fy
∂dT

)∗

. Linearization of eq. (2.19)

yields
∆c = H∆y (2.22)

where the matrix H = ( ∂h
∂yT ) is free to choose. Combining these equations yields

G = HGy and Gd = HGy
d (2.23)

Expanding eq. (2.8) around the nominal point (u∗,d∗) gives

J(u,d) = J∗ + JT
u ∆u + JT

d ∆d +
1

2
∆uTJuu∆u

+
1

2
∆dTJdd∆d + ∆dTJdu∆u + O3 (2.24)

where

J∗ = J(u∗,d∗) Ju =

(
∂J

∂u

)∗

Jd =

(
∂J

∂d

)∗

(2.25)

Juu =

(
∂2J

∂u2

)∗

Jdd =

(
∂2J

∂d2

)∗

Jdu =

(
∂2J

∂d∂uT

)∗

(2.26)

The Hessian matrices Juu and Jdd are always symmetric and we have Jdu = JT
ud. If

we assume that the nominal point is optimal (J is at a minimum) then the following
applies:

1. Ju = 0 since the gradient with respect to the independent variables must be zero
at the optimal point

2. Juu is positive definite, i.e. ∆uTJuu∆u > 0 ∀∆u.

Optimal inputs with respect to d

Assume that the nominal point is optimal and that the objective function J is described
by a second order function as given by eq. (2.24). By differentiation with respect to
the input yields:

∂J

∂u
= Juu(u − u∗) + JT

du(d − d∗) (2.27)
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At the optimal input we have ∂J
∂u

= 0 which yields:

uopt(d) − u∗ = ∆uopt = −J-1
uuJud(d − d∗) (2.28)

a second order accurate approximation of the sensitivity in the optimal input to distur-
bances. We can express the control error using eq. (2.20) which yields the first order
accurate equation

∆copt = G∆uopt + Gd∆d = −v(d) =
(
GJ-1

uuJud − Gd

)
∆d (2.29)

In Appendix B we derive a second order function for the loss. This derivation is
different from the one in Halvorsen et al. (2003). However, the resulting second order
expansion of the loss function is equivalent:

L(u,d,ny) =
1

2

[
u(d,ny) − uopt(d,ny)

]T
Juu

[
u(d,ny) − uopt(d,ny)

]

=
1

2
eT

u (d,ny)Juueu(d,ny) (2.30)

which is a function of the disturbances and the implementation errors. From eq. (2.20)
we have for a given disturbance

ec =
(
c − copt

)
= G

(
u − uopt

)
= Geu (2.31)

and if we assume that G is invertible and using eq. (2.29) the corresponding optimal
change in the input is:

eu = G-1 (v(d) + n) (2.32)

For the case of optimal nominal setpoints, inserting eq. (2.29) into eq. (2.32) yields

eu =
(
J-1

uuJud − G-1Gd

)
(d − d∗) + G-1n (2.33)

With this, the basic governing equations have been introduced which lay the basis for
some of the results in this thesis. Next, we illustrate the effect of feedback on optimal
operation.

2.3.3 Visualization of the effect of feedback

Halvorsen (2001) illustrates visually the idea of self-optimizing control and the effect
of disturbances and implementation errors in the input space. Assume that we have
nu = 2 inputs (ui), nd = 3 disturbances di, and nc = nu controlled variables. Further
assume that the nominal point u∗ is optimal, u∗ = uopt(d∗) where d∗ is the nominal
disturbance vector, and assume that the controlled variables (c) are kept at the constant
setpoint (or any setpoint) cs:

(c + n) − cs = 0 (2.34)

where we assume additive implementation error. Let the process model be

c = Gu + Gdd (2.35)
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so the resulting input action is

u = us + G-1(c + n − cs) − G-1Gdd (2.36)

Assume that the control error is eliminated, thus c − cs = 0 and we have

u = us + G-1n − G-1Gdd (2.37)

The effect of implementation errors and disturbances are shown in Figure 2.4. For each
possible disturbance we can map the resulting optimal input (uopt(d)) from the distur-
bances space to the input space. For the controlled variables kept at nominal setpoints,
the corresponding input change is given through the mapping matrices G-1Gd which
give an input which deviates from the optimal value. In addition, the measurement
errors have an effect through G-1.

u1

u2

d1

d2

d3

d ∈ D

n1

n2

n ∈ N
Control

G−1

GdG
−1

uopt(d0)

uopt(d)

u(d)

u(n)

u(d, n)

u(n) for given d

u(d) for given n

uopt(d)

d ∈ D

Countours of objective function
with respect to u

Figure 2.4: Illustration of the effect of disturbances d and measurement
noise n on the objective function. The control signal given by the larger of
the dashed ellipses, shows the input as a function of the disturbance, while
the smaller dashed ellipse shows the effect of the noise. The bold solid ellipse
is the trajectory of the true optimal inputs in the disturbance space d ∈ D
(Halvorsen, 2001).

2.3.4 Previously proposed methods for selection of self-optimizing
controlled variables

Here, previously proposed methods for selecting self-optimizing controlled variables are
discussed. For a detailed summary of the work on self-optimizing control, see Skogestad
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(2000).

Qualitative requirements for self-optimizing controlled variables

Skogestad (2000) presents several qualitative requirements for a good self-optimizing
controlled variable c:

Requirement 1: Its optimal value should be insensitive to disturbances, i.e. ∆copt(d))
small.

Requirement 2: It should be easy to measure and control accurately (its implemen-
tation error should be small).

Requirement 3: Its value should be sensitive to changes in the manipulated input
(u), that is, the gain from u to c should be large.

Requirement 4: For cases with two or more controlled variables, the selected con-
trolled variables should not be closely correlated.

The first requirement deals with sensitivity to disturbances, while requirements 2-4
deal with the implementation errors. All these requirements need to be fulfilled in
order to guarantee a good self-optimizing controlled variable. Note that requirement
1 says that the optimal value of c, i.e. copt should be insensitive toward disturbances,
not that c should be insensitive toward disturbances.

Minimum singular value rule

The minimum singular value rule (Skogestad and Postlethwaite, 1996; Halvorsen et al.,
2003) bases the selection of the controlled variables on a scaled steady-state gain from
the inputs to the candidate outputs. From eq. (2.30) we have that

L =
1

2
eT

uJuueu =
1

2
‖z‖2

2 (2.38)

where

z = J1/2
uu eu = J1/2

uu G-1ec (2.39)

where J
1/2
uu exists since Juu is positive definite (Horn and Johnson, 1991), ec = c− copt

and ‖z‖2 denotes the 2-norm of the vector. It is proposed to scale the variables as
follows:� Scale each candidate controlled variable ci such that the sum of the optimal

range vi and implementation error ni is unity. Then the combined error norm
‖e′c,i‖2 = ‖c′i − copt

i

′‖2 ≤ 1.� Assume that each ui is scaled such that a unit change in each input has the same
effect on the cost function (J).
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Now let G′ be the scaled steady-state gain and from eq. (2.38) we have that the worst
case loss is

max
‖e′c‖2≤1

L = max
‖e′c‖2≤1

1

2
‖z‖2

2 =
1

2

(
σ̄
(
J1/2

uu G′ -1
))2

=
1

2

(
σ̄
(
α1/2G′ -1

))2
=

α

2

1

σ (G′)2 (2.40)

where the constant α = σ̄(Juu) is independent of the choice of the controlled variable
and σ (G′) denotes the minimum singular value of G′. The second equality follows
since σ̄ is the induced 2-norm of a matrix. The third equality holds provided Juu is
unitary. The last equality holds since σ̄(G′ -1) = 1/σ(G′). Thus, we see from eq. (2.40)
that in order to minimize the loss, we should select controlled variables in which the
scaled steady-state gain matrix has a large minimum singular value.

This method may predict erroneously when we have multiple inputs, since the as-
sumption that ‖e′

c‖2 ≤ 1 implicitly assumes that the variations ci − copt
i may occur.

Thus the variables c are assumed independent which may hold for the implementa-
tion error, but certainly does not generally hold for the disturbances. This rule may
therefore predict a structure to be poor, whereas in reality it is acceptable because
of interaction between the controlled variables. For a more detailed discussion of the
minimum singular value and for illustrating examples, see Halvorsen et al. (2003). The
singular value method has been applied to many case studies, see e.g. Govatsmark
(2003); Skogestad (2000) and the references therein.

Exact local method

The exact local method of Halvorsen et al. (2003) utilizes a Taylor series expansion of
the loss function as given by eq. (2.38). The loss is

L =
1

2
‖z‖2

2 (2.41)

and upon substitution of eq. (2.33) into eq. (2.39) yields

z = J1/2
uu

[(
J-1

uuJud − G-1Gd

)
(d − d∗) + G-1n

]
(2.42)

Now, let Wd be a scaling matrix with the expected magnitudes of the disturbances on
the diagonal. Further let Wy

n be a scaling matrix with the expected implementation
errors for each measurement on the diagonal. Note that in general, c = Hy and let
the scaled disturbances and implementation errors be

d − d∗ = Wsd
′ (2.43)

and
n = HWy

nn
y ′ = Wnn

y′ (2.44)

where d′ and ny ′ have magnitudes less than 1. Assume that the combined measurement
and implementation error vector are 2-norm bounded

‖
[
d′

ny ′

]

‖2 ≤ 1 (2.45)
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With these assumptions the corresponding worst case loss is

max
‖[d′ ny ′ ]T ‖2≤1

L = σ̄(M)2/2 (2.46)

where M =
[
Md Mn

]
and

Md = J1/2
uu

(
J-1

uuJud − G-1Gd

)
Wd (2.47)

and
Mn = J1/2

uu G-1Wn (2.48)

and the identity in eq. (2.46) follows from the definition of induced (worst-case) 2-norm
of a matrix. For each candidate, an estimate of the worst case loss is available from eq.
(2.46) above and we can rank candidate controlled variables based on these estimates.

Optimal linear combination of variables

Halvorsen et al. (2003) propose to use brute force optimization and find the optimal
linear combination of measurements to control. They restrict the controlled variables
to be linear combinations of variables (c = Hy) and minimize the worst-case loss as
given by eq. (2.46), that is:

H = arg min
H

L(H,d,ny) (2.49)

This method requires that the Hessian matrices are available.

Gradient function

Halvorsen (2001) (also later Cao (2003)) proposes to find the gradient function analyt-
ically from eq. (2.7) and to use this as controlled variables (since the gradient of the
augmented cost function is zero). The augmented cost function (the Lagrangian) is

JA = J0 + λT f ′(x,u,d) (2.50)

where f ′ is given by eq. (2.8) and λT is the Lagrangian multiplier. Using the Karush-
Kuhn-Tucker (KKT) optimality condition the gradient function is

G(x,u,d)
def
= J0,u − f ′uf

′
x
-1
J0,x = 0 (2.51)

where J0,u = (∂J0

∂u
), J0,x = (∂J0

∂x
), f ′x = ( ∂f ′

∂xT ) and f ′u = ( ∂f ′

∂uT ) and all matrices depend

on x, u and d. It is assumed that f ′x
-1 exists. For large systems, finding analytical

derivatives may prove difficult and the resulting controlled variables are non-linear
functions of the states, disturbances and the inputs. This is a major drawback, since
information on the states and disturbances may not be available (here we assume that
the disturbances are unmeasured). Thus controlling the gradient function directly may
be feasible for simple systems, but the complexity of finding analytic derivatives and
the need for direct state and disturbance information makes the method complex.
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Input sensitivity

Cao (2004) proposes to use input sensitivity method for selecting self-optimizing con-
trolled variables. This is the same as using eq. (2.33) although his derivation is
somewhat different. It is already covered in the exact method above.

Other methods:

Mahajanam et al. (2001) propose a “short-cut” controllability measure to eliminate
poor choices and to generate rank alternatives without solving the optimization prob-
lem. The method is based on scaling all candidate controlled variables so that they
have similar effects on the steady-state profit. The method is similar to the singular
value method above.

2.4 Conclusions

Here, the selection of controlled variables has been discussed with focus on self-optimizing
control. Several other control objectives and other measures used for generating the
control structure can be defined which is not discussed here, see e.g. Skogestad and
Postlethwaite (1996) and van de Wal and de Jager (2001) for more information.

Almost all of the above methods suffer from the fact the form of the function
h = h(y) must be found by other means, thus the interconnection of measurements
to produce the controlled variables must be based on physical insight and engineering
experience. The gradient method is an exception, but requires state and disturbance
information and analytical derivatives, and is not suited for typical chemical processes
where information on the states and disturbances are not easily accessible. The optimal
linear combination of measurements is also an exception, and is attractive as long as
the second order information is available. In Chapter 3 we present a new and simpler
method for finding the optimal linear combination of the measurements for control.
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Chapter 3

The null space method for selecting
optimal measurement combinations
as controlled variables

Based on work presented at
AIChE Annual Meeting 2002, November 3-8, Indianapolis, USA, paper 247f

and
International Symposium on Advanced Control of Chemical Processes (ADCHEM)

2003, January 11-14, 2004, Hong Kong

We present a new simple method for selecting measurement combinations as controlled
variables. The objective is to obtain self-optimizing control, which is when we can
achieve near-optimal steady-state operation with constant setpoints for the controlled
variables, without the need to re-optimize when new disturbances perturb the plant
(Morari et al., 1980; Skogestad, 2000).

The new method yields controlled variables c that are linear combinations of mea-
surements c = Hy and is optimal in terms of uncertain disturbances d. The require-
ment is that we at least have as many measurements as there are unconstrained degrees
of freedom and disturbances. The measurement and control error is neglected, so it
is important that the measurements are properly selected. The goal of this paper is
to introduce the basic idea of the null space method and to illustrate the method on
a simple gasoline mixing example where we find controlled variables that have good
self-optimizing properties.

3.1 Introduction

Although not widely acknowledged by control theorists, controlling the right variables
is a key element in overcoming uncertainty in operation. This paper focus on the
interaction between the local optimization layer and the feedback control layer, see
Figure 3.1, and more specifically on the selection of controlled variables that link the
layers. Two sub-problems are important here:

29
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Optimizer

Process

Controller

Measurement
combination

y0

c

c + n n

cs

u0

d

Figure 3.1: Block diagram of a feedback control structure including an op-
timizer

1. Selection of the controlled variables c: This is a structural decision which is made
before implementing the control strategy.

2. Selection of setpoints cs: This is a parametric decision which can be done both
online and offline.

Here, we focus on the first, structural problem of finding the controlled variables and
we will assume constant nominal setpoints. From Figure 3.1 we see that external dis-
turbances (d) and the manipulated inputs (u0) affect the plant, and information is
available through the measurements y0. Single measurements or functions of the mea-
surements are used as controlled variables (c), and the setpoints cs for the controlled
variables are given by the optimization layer. As seen from Figure 3.1, two sources of
uncertainty are present that will influence the operation:

1. Disturbances d: External unmeasured disturbances.
2. Implementation error n: This is the sum of the measurement error and the

control error introduced by the feedback loop.

Here, we make the following assumptions:

A1 Steady-state: We consider only steady-state operation. The justification for this
is that the cost of operation is primarily determined by the steady-state. Of
course, this assumes that we have a control system in place that can quickly
bring the plant to its new steady-state.

A2 No control error: We assume that the controllers have integral action, such that
we have no steady-state control error in spite of external disturbances.

A3 Neglect measurement error: Here, we neglect the measurement error. This is
a more serious assumption, so the method implicitly assumes that the measure-
ments have been carefully selected. The effect of measurement error is the topic
of Chapter 4.
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A4 Disturbances: Only disturbances that have an effect on the steady-state and
that affect the economics of the process is included. This is the topic of Chapter
5.

A5 Active constraints: We assume that all active constraints remain active for all
values of the disturbances and that we control these constraints.

In typical chemical processes, the operational goal is to optimize an economic mea-
sure of the operation (often minimize the cost J), while satisfying equality and inequal-
ity constraints. Based on the online information in y0, the most obvious operational
policy is probably to combine the “Optimizer” and the “Controller” in Figure 3.1 into
an “optimizing controller”, with frequent model update, re-optimization and subse-
quent implementation of the new optimal input uopt. However, this requires a rather
complicated system for gathering information about the state of the process, fitting
the model used for optimization to the data (system identification), re-optimization
and implementation.

We assume here that we control all active constraints (assumption A5, see Section
2.3.1 for details on the reduced space problem). Thus, we split the original input vector
u0 (degrees of freedom) into:

� u′: vector of degrees of freedom used for controlling the active constraints.

� u : vector of remaining degrees of freedom with dimension nu not used for active
constraints.

The issue in this paper is to find the controlled variables c to be associated with the
“unconstrained” degrees of freedom u.

Remark. It does not actually matter how the original degrees of freedom u0 are divided
into the new subsets of manipulated variables selected for controlling the active constraints
(u′) and the “unconstrained” inputs u, as long as the problem remains well posed. If all
the inputs are used for controlling the active constraints, u′ = u0, then implementation is
simple by the use of active constraint control (Maarleveld and Rijnsdorp, 1970; Arkun and
Stephanopoulos, 1980).

With the active constraints controlled, we assume that the optimal operation of
the process can be quantified in terms of a scalar cost function (performance index) J
which is to be minimized with respect to the nu remaining degrees of freedom (inputs)
u:

min
u

J(u,d) (3.1)

where J is generally not a simple function of u and d.
In practice, the simpler scheme of Figure 3.1 is preferred if it yields acceptable op-

eration. The idea is to select some “good” variables c such that near-optimal operation
is obtained with constant setpoints cs:

Self-optimizing control (Skogestad, 2000) is when an acceptable loss can be
achieved using constant setpoints cs for the controlled variables c (without the need to
re-optimize when disturbances occur).
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The loss is defined as the difference between the objective value using the constant
setpoint feedback structure and the true optimal objective value

L = J(cs + n,d) − Jopt(d) (3.2)

Here n = c − cs is the sum of the measurement and control error. In this paper we
assume n = 0 (assumptions A2 and A3).

We assume that online information about the system behavior is available from the
measurements y0:

y0 = fy0
(u,d) (3.3)

The objective is to find a set of nu controlled variables c as a function of the available
measurements, c = h(y0). In the measurement vector y0, we generally also include
the original input vector u0. Note that the measurements of the active constraints are
not included, because they are not helpful for the remaining control problem since we
have zero gain from the remaining degrees of freedom to the active constraints.

We have in this chapter attempted to keep the mathematics as simple as possible.
A more detailed comparison with previous results is presented in Chapter 4.

3.2 The null space method

We here consider the unconstrained optimization problem as given by eq. (3.1), and the
goal is to find variables c = h(y) to be kept at constant setpoints cs, where y is a subset
of the available measurements y0. We consider linear measurement combinations

c = Hy (3.4)

where y ∈ y0 is a subset of the available measurements which we choose to make
use of and H is a constant nu × ny coefficient matrix. Often, the controlled variables
correspond to single measurements (H is a matrix with zeros and ones with as many
ones as there are u’s), e.g. a pressure or a temperature, so ci = yi. More generally,
the matrix H is free to choose as long as the rank of H is equal to the number of
remaining unconstrained degrees of freedom (u’s). Here, we assume that the nominal
point (u∗,d∗) = (uopt,d∗) is optimal such that c = copt at the nominal point.

To find the optimal coefficient matrix H we make use of the following insight:

With no implementation error, the constant setpoint policy (c = cs) is optimal if
copt(d) is independent of d, i.e. ∆copt(d) = 0.

Note that we do not require that the change in the controlled variables c is inde-
pendent of the disturbances d, but that the optimal values copt are independent of the
disturbances. For small disturbances, the optimal sensitivity of the measurements to
disturbances can be written

∆yopt = yopt(d) − yopt(d∗) = F(d − d∗) = F∆d (3.5)
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where F is a constant sensitivity matrix

F =

(
dyopt

ddT

)∗

=








∂yopt
1

∂d1
. . .

∂yopt
1

∂dnd

. . .
∂yopt

ny

∂dn1

. . .
∂yopt

ny

∂dnd








(3.6)

The ny×nd matrix F is evaluated at the nominal optimal point and F may be obtained
numerically by perturbing the disturbances and re-solving the optimization problem in
eq. (3.1).

Remark 1 Note that perturbing the disturbances and re-solving the optimization problem
require that the set of active constraints remains constant. If not, the derivative is not well
defined. Thus, for a perturbation of a disturbance (di +ε), we get by solving the optimization
problem, uopt(di + ε) and thereby yopt(di + ε) and we can estimate the derivative numerically.
Let nd be the number of disturbances, then using a central difference formula, we must solve

nopt = 2nd + 1

optimizations in order to estimate F. Ganesh and Biegler (1987) provide an efficient and
rigorous strategy for finding the optimal sensitivity based on a reduced Hessian method.

Remark 2 Also, note that we do not necessarily need an explicit model of the plant as we
can find the optimal sensitivity experimentally. In addition, many process simulators have
built-in optimizers from which the optimal sensitivity F is easily available.

From eq. (3.4) the corresponding optimal change in the controlled variables are:

∆copt = H∆yopt (3.7)

and by inserting eq. (3.5):

∆copt = HF∆d (3.8)

The optimal value of the controlled variables depends only on the disturbance and not
on the particular inputs used. From the insight stated above, the constant setpoint
policy is optimal if:

∆copt = HF∆d = 0 (3.9)

This needs to be satisfied for any ∆d so we must require that

HF = 0 (3.10)

To fulfill this, H should be selected such that H is in the left null space of F. The
prerequisite for the null space to exist, is that the number of independent measurements
is equal or larger than the number of unconstrained inputs plus disturbances:

ny ≥ nu + nd (3.11)
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Proof: Let the number of unconstrained degrees of freedom be nu (the length of vectors u

and c equals nu), the number of independent measurements when forming c be ny, and the
number of disturbances be nd. Then F is a ny×nd matrix and H a nu×ny matrix. We assume
that F has full column rank, that is the disturbances are independent, so r = rank(F) = nd.

The fundamental theorem of linear algebra (Strang, 1988) gives that the left null space
of F (N (FT )) has rank ny − r. Since H ∈ N (FT ) it follows that rank(H) = ny − nd and
by assuming that the number of controlled variables must be equal to the number of inputs,
rank(H) = nu, we get that

ny − nd = nu ⇔ ny = nu + nd (3.12)

Thus, the minimum number of measurements needed, is equal to the number of independent
inputs plus disturbances. ¤

The result can be summarized as follows:

Theorem 3.1 The null space method. Assume that we have nu independent un-
constrained free variables u, nd independent disturbances d, and ny independent mea-
surements y. The measurements are combined linearly into nc = nu controlled variables

c = Hy (3.13)

Let

F =

(
dyopt

ddT

)∗

be the optimal sensitivity matrix. If ny ≥ nu + nd, it is possible to select the matrix H
such that HF = 0. With this choice for H, keeping c constant at its nominal optimal
value gives zero loss for small disturbance changes ∆d. The matrix H is generally not
unique.

Selecting H according to Theorem 3.1 is exact for small disturbance perturbations.
For cases where we have more measurements

ny > nu + nd (3.14)

the null space of FT is larger and we have additional freedom in selecting H. We now
illustrate the idea of the null space method with a simple example.

Example 3.1 Consider a system with one unconstrained degree of freedom u and one
disturbance d. Nominally d∗ = 0. Let the cost function be defined by

J(u, d) = (u − d)2

and the measurements be

y1 = 0.9u + 0.1d

y2 = 0.5u − d
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Optimality is ensured when ∂J
∂u

= 2(uopt − d) = 0 ⇒ uopt = d and Jopt = 0 ∀d. The
corresponding optimal outputs are

yopt
1 = d

yopt
2 = −0.5d

and we have that at FT = [1 − 0.5]. We require that ∆copt = H∆yopt = 0 and get

h1 + h2(−0.5) = 0 ⇒ h1 = 0.5h2

that have an infinite number of solutions. For example, by selecting h2 = 1 we have.

c = 0.5y1 + y2 (3.15)

By varying u to keep c at the nominal optimal setpoint cs = 0.5yopt
1 (d∗) + yopt

2 (d∗) = 0,
we remain optimal in spite of disturbances. To see this, note that c−cs = 0 corresponds
to

c − cs = 0 ⇒ 0.5(0.9u + 0.1d) + 1(0.5u − d) − 0 = 0.95u − 0.95d − 0 = 0

which has as solution u = d and, as expected, the loss for the null space candidate is
zero,

Lc = (u − d)2 = (d − d)2 = 0

To compare, the losses for keeping the individual measurements y1 or y2 constant at
the nominal value y1,s = y2,s = 0 are

Ly1
= (−8

9
d)2 and Ly2

= d2

3.3 Discussion

Freedom in selecting H

The above null space method is not restricted to single controlled variables. The
addition of one input, requires one additional measurement. The null space matrix H
has the left null space basis vectors as rows. For systems with multiple unconstrained
degrees of freedom (nu > 1), the null vectors should span the null space, thus they
cannot be linearly dependent. One possible solution is to select the null vectors such
that they are orthogonal, thus

hi ⊥ hj ∀ i 6= j where H =






h1
...

hnu




 (3.16)

If we assume that the process model is given by

∆y = Gy∆u + Gy
d∆d (3.17)
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we have that the controlled variables are:

∆c = H∆y = HGy∆u + HGy
d∆d (3.18)

so we must assume that HGy 6= 0 and HGy
d 6= 0 to avoid zero gain from the inputs

(right-half plane zero at steady-state) or disturbances to the controlled variables.

There are an infinite number of matrices H that satisfy HF = 0 which stems from
the freedom of selecting basis vectors for the null space (Strang, 1988). Let H0 be one
such matrix, i.e. H0F = 0. For example, H0 may consist of the one set of basis vectors
that span the null space of FT . Then H = CH0 also satisfies HF = 0 provided the
nc × nc matrix C is non-singular. The degrees of freedom in the matrix C may be
used to affect G = HGy and Gd = HGy

d. For example, it is possible to select H such
that G = I, which may be desirable, because then we have a decoupled steady-state
response from u to c.

Numerically, H may be obtained from a singular value decomposition of FT . We
have FTHT = 0. Thus, selecting H as the transpose of the input singular vectors of F
corresponding to zero gain in F gives us an orthogonal basis.

Previous results

For the special case where a single measurement yi is truly self-optimizing, then ∆yopt
i

is zero or close to zero, and using a combination of measurements may be unnecessary.
For such measurements, the corresponding row in the sensitivity matrix F would have
small elements. Essentially, this is the idea of the singular value method of Skogestad
and Postlethwaite (1996), where they select single measurements as controlled variables
based on a scaled steady-state gain. The measurements are scaled with respect to the
sum of the optimal change and the measurements error (∆yopt

i +ny) and measurements
with a large gain (small optimal change) should be selected.

The singular value method may fail when we have more than one degree of freedom,
since the method assumes that any output deviation ‖c − copt‖2 ≤ 1 is allowed. This
holds for the measurement error, but certainly not for the disturbance error. The null
space method provides a more systematic method for selecting controlled variables for
the case of two or more degrees of freedom. For the case of measurements with zero
optimal disturbance sensitivity, we could use those as controlled variables provided
they fulfill the requirements on non-zero gain.

Physical interpretation

The proposed null space method yields controlled variables that are linear combina-
tions of the available measurements. A disadvantage is that the physical interpretation
of what we control is usually lost. This is by no means a fundamental limitation, since
in principle we can control any signal from the process as long as they are indepen-
dent. Thus, if all measurements are regarded as signals, the concept of controlling a
combination of signals may be easier to grasp. If possible, one can choose to combine
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measurements of one type, for instance only temperatures (e.g. in a distillation col-
umn) or only mass flows. In any case, we can scale variables such that the resulting
measurements are dimensionless, which is common in practice.

Active constraints

The assumption of the active constraints being constant, may limit the applicability of
the method for some processes. For a process with a small operating window, where
the active constraints shift with the disturbances, other methods may be better suited
for optimizing control, e.g. real-time optimization (RTO)/ Model predictive control
(MPC). Alternatively, we could use the ideas of Arkun and Stephanopoulos (1980) on
how to handle varying active constraints.

Disturbances and observability

Self-optimizing control is based on using feedback to detect disturbances and optimally
adjust the inputs so as to achieve near-optimal operation. Thus, one must require that
the disturbances are observable in the measurements y. One example of disturbances
that are not visible in the measurements is prices. Prices enter only in the objective
function, and are not visible in the measurements. Typically, the cost function is a
sum of contributions from different utilities weighted with the utility cost (or a price),
i.e. J =

∑

i pixi.
Price changes can be handled in two ways:
1. Make the setpoints a function of the prices. Thus for a price change ∆p we have

that

cs = cs(p
∗) + HFp∆p (3.19)

where Fp =
(

dyopt

dpT

)

is the optimal sensitivity from the prices to the measure-

ments.
2. Include the prices as “measured disturbances” and use the regular procedure of

selecting self-optimizing control variables as above.
The first approach is probably the simplest. Note that prices are “measured distur-
bances” and add a feedforward term to to self-optimizing control structure. Other
measured disturbances (regardless of whether they are observable in the measurements
or not) can be handled similarly to prices. We illustrate this with a simple example:

Example 3.2 Consider a process with one disturbance d and one “unconstrained”
degree of freedom u. Assume that we have one measurement y1 such that

∆yopt =

[
∆d

∆yopt
1

]

=

[
1
f1

]

d (3.20)

Now, we require that HF = 0 which yields

h1 + h2f1 = 0 ⇒ h2 = −h1/f1 (3.21)
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One possible solution is h1 = 1, such that

c = d − 1

f1

y1 (3.22)

Let the nominal disturbance be d∗ = 0 which yields cs = − 1
f1

y∗
1. Then we have

c = cs ⇒ d − 1

f1

y1 = − 1

f1

y∗
1 ⇒ y1 = f1d + y∗

1 (3.23)

which gives a feedforward term. Thus we can control y1 and have automatic adjustment
of the setpoint ys = f1d + y∗

1 by measuring d.

All derivations here are based on steady-state models, and we must later check that
the candidate structure has acceptable controllability. If not, we may go back and look
for other measurements to use in the combination. Next we illustrate the null space
method on a gasoline blending example.

3.4 Example: Gasoline blending

This simple gasoline blending example is included to illustrate the null space method.
In practice, such a system is characterized by frequent price changes and thereby
changes in the active constraints, and better suited for an online-optimization ap-
proach. Nevertheless, we want to use a constant setpoint policy and compare the
control structure synthesized using the null space method with other candidate con-
trolled variables. The system is illustrated in Figure 3.2 and consists of four gasoline
feed streams with varying octane number and benzene concentration. The nominal
data is given in Table 3.1.

The operational objective is to minimize the operational cost

min
u0

J =
i=4∑

i=1

piṁi (3.24)

where pi and mi are the price and mass flowrate for stream i respectively, while satis-
fying the following constraints� Produce ṁp = 1 kg/s of gasoline.� Minimum octane number of 98% (Co

p ≥ 98).� The product stream should not contain more that 1 wt% benzene (C b
p ≤ 1 wt%).� The maximum weight fraction of stream 4 in the product is 0.4, ṁ1

ṁp
≤ 0.4.

For the octane number we assume “linear mixing” on weight basis. The full set of
manipulated variables are:

uT
0 = [ṁ1 ṁ2 ṁ3 ṁ4]

and the unmeasured disturbance is assumed to be the octane number of stream 3 (d =
Co

3) which is in the range Co
3 ∈ [95 97]. We assume that the available measurements

are:
yT

0 = [ṁ1 ṁ2 ṁ3 ṁ4 ṁp Co
p Cb

p]
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where Co
i and Cb

i denote the octane and benzene concentration for stream i respectively.
The feed streams have different prices (pi) as shown in the last column of Table 3.1.

ṁ1,

ṁp

ṁ2, Co
4

Co
3

Co
2

ṁ3,

ṁ4,

Co
p, Cb

p

Cb
1

Co
1
,

Figure 3.2: Illustration of the gasoline blending process, where four gasoline
feeds are blended to produce the product.

Table 3.1: Nominal data for the gasoline blending example
Stream i Octane (Co

i ) [wt %] Benzene (Cb
i ) [wt %] Price Units/kg

1 99 2 1.85
2 105 0 2
3 95 0 1.20
4 99 0 (1 + ṁ4)

For streams (1 − 3) the prices are independent of the flow rate, while for stream 4
the price depends on the flow rate. The optimization problem may be formulated as
QP-problem

min
u0

1

2
uT

0 Qu0 + fTu0

subject to
Au0 ≤ b

where:

Q =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2







f =







1.85
2.00
1.20
1







A =













−99 −105 −95 −99
2 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 1













b =













−98
1
0
0
0
0

0.4













(3.25)

and Aequ0 = beq where

Aeq =
(

1 1 1 1
)

beq = 1 (3.26)

The optimal solution to the above problem for the nominal disturbance is:

uopt
0

T
(Co

3 = 95) =
[
0.000 0.196 0.544 0.260

]
(3.27)
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The minimum cost is Jopt(Co
3 = 95) = 1.3724. For a disturbance Co

3 = 97 the optimal
inputs are

uopt
0

T
(Co

3 = 97) =
[
0 0.075 0.725 0.20

]
(3.28)

with a cost of Jopt(Co
3 = 97) = 1.2600. We note that the following constraints are

active for all disturbances

ṁ1 = 0 Co
p = 98 ṁp = 1 (3.29)

and we are left with one unconstrained degree of freedom which is not used to control
the active constraints. We consider the four candidate control structures listed in
Table 3.2. The last candidate is found using the null space method with ṁ2 and ṁ4

Table 3.2: Candidate controlled variables including setpoints for the self-
optimizing controlled variable

CS # c1 c2 c3 c4 Setpoint (c4,s)
1 ṁ1 Co

p ṁp ṁ2 0.1960
2 ṁ1 Co

p ṁp ṁ3 0.5440
3 ṁ1 Co

p ṁp ṁ4 0.2600
4 ṁ1 Co

p ṁp cns = −0.53ṁ2 + ṁ4 0.1550

as measurements. Note that ny = nu + nd = 2, so it is possible to find an optimal
combination with zero loss. The optimal sensitivity matrix at the nominal point is:

[
∆ṁopt

2

∆ṁopt
4

]

=

[
−0.0448
−0.0240

]

∆Co
3 (3.30)

and from the null space method

h = N (FT ) = [−0.53 1] (3.31)

which gives
cns = −0.53ṁ2 + ṁ4 (3.32)

The losses for the candidates for a disturbance Co
3,0 = 95% → 97% are shown in

Table 3.3. The loss for the null space candidate (cns) is negligible and shows perfect self-

Table 3.3: Loss for the different control structures for a disturbance Co
3 :

95 → 97wt%
Rank c4 L L[%]

1 −0.53ṁ2 + ṁ4 1.8 × 10−5 0.0014
2 ṁ4 0.0036 0.2857
3 ṁ3 0.0582 4.6224
4 ṁ2 inf inf

optimizing properties. Candidate ṁ4 also has small loss, and is also a good candidate
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MIXER
ṁp

Co
p

ṁp

ṁ3

ṁ4

ṁ2

ṁ1
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FC

FC

CC

−0.53

1

Figure 3.3: Possible implementation with cns = −0.53m2 + m4 as the self-
optimizing controlled variable.

for self-optimizing control. Candidate ṁ3 shows a loss of approximately 5% while ṁ2

gives infeasible operation. Thus, the best candidate for self-optimizing control is cns.
One possible implementation of the control structure is shown in Figure 3.3. This

is shown for illustration as the pairing of variables does not influence the steady-state.
Note that the self-optimizing controlled variable is a combined measurements of

two inputs. The correction in the input when the disturbance enters, is done implicitly
through the control of the active constraints, i.e. when the octane number of stream
3 (Co

3) increases, this is measured in the product stream (the octane number of the
product stream increases) which in turn leads to a reduction in the flowrate for stream
2. When reducing the flow of stream 2, the flow of stream 3 needs to be increased,
since the total flowrate is now less than 1. At the same time, the flow rate of stream
4 is adjusted so that cns is kept at the nominal setpoint.

3.5 Conclusions

This paper has introduced the null space method for selecting controlled variables
c. We consider a constant setpoint policy, where the controlled variables are kept
at constant setpoints cs. We propose to select self-optimizing controlled variables
as linear combinations c = Hy of a subset of the available measurements y. With
no implementation error, it is optimal to select H such that HF = 0, where F =
(dyopt/ddT ) is the optimal sensitivity with respect to disturbance d. The method has
been illustrated on a simple gasoline blending example where we find that the null
space method yields a controlled variable that has zero loss.
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Chapter 4

Measurement selection in the null
space method

Based on work presented at
AIChE Annual Meeting 2004, November 7-12, Austin, Texas, USA, poster 403e

Chapter 3 introduced the null space method for selecting self-optimizing controlled
variables as linear combinations c = Hy of a subset of the available measurements
y. With no implementation error, it is optimal to select H such that HF = 0, where
F = (dyopt/ddT ) is the optimal sensitivity with respect to disturbance d. Here we
show how to deal with measurement and implementation errors and how to select
measurements when using the null space method.

4.1 Introduction and motivation

Self-optimizing control is when a constant set-point policy yields near optimal opera-
tion with respect to external disturbances and implementation errors. Since optimal
operation is in practice implemented in a feedback fashion, as shown in Figure 4.1, we
have two sources of uncertainty.

1. The external disturbances d
2. The implementation error n = cs − c.

The external disturbances can be suppressed by the feedback loop, provided the con-
trolled variables are appropriately selected. One approach is the null space method
(Alstad and Skogestad, 2004). However, the feedback introduces implementation er-
ror, which was previously neglected.

We here consider steady-state operation only, since the economics are mainly de-
cided by the steady-state. The implementation error has two sources, (1) the steady-
state control error, and (2) the measurement error. Here, we assume that all controllers
have integral action, so we can neglect the steady-state control error. Thus, the term
implementation error and measurements error have the same interpretation in this
work.

43



44 4. Measurement selection in the null space method

Optimizer

Process

Controller

Measurement
combination

y0

c

c + n n

cs

u0

d

Figure 4.1: Feedback implementation of optimal operation

Measurement error is present in all control configurations, regardless of the policy
for ensuring optimal operation. However, the implementation error is often neglected
in the analysis and the focus is on disturbances. In many cases, the implementation
error can be a more important contribution to the non-optimality of the operation than
the disturbances. Thus, implementation error must be considered, regardless of what
policy for ensuring optimal operation is chosen (real-time optimization, MPC, optimal
control, etc.).

Implementation error has previously been discussed in the setting of self-optimizing
control for systems where we control single measurements (c = yi) (Skogestad and
Postlethwaite, 1996; Halvorsen et al., 2003). The ideas presented therein are generally
valid and not only restricted to self-optimizing control.

To motivate and illustrate, consider a case with two possible controlled variables c1

and c2, as shown in Figure 4.2. The figure shows the objective function value (upper)
and the value of the controlled variable (lower) as a function of the input for a given
disturbance. On the ordinate axis, the implementation error (n) in both c1 and c2 are
given. We assume that the magnitude of the implementation error is equal for both
controlled variables. The implementation error gives rise to an input deviation (u−uopt)
which in turn gives a loss. The figure shows that the deviation in the objective (as
measured by ∆J) from the optimal value, is larger for candidate c1 than for candidate
c2, implying that c2 has better robustness with respect to implementation error. This
can be explained by noting that the gain from the input u to candidate c2 is larger
than to c1, i.e. |G2| > |G1|.

This suggests that one should select controlled variables with a high gain from
the input to the output. This is in line with the “minimum singular value rule” of
Skogestad and Postlethwaite (1996), which states that “select controlled variables that
maximize the minimum singular value of the (scaled) steady-state gain matrix from
inputs to selected controlled variables”.
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c1

c2

uuuopt
uopt

n

coptcopt

n

J and c J and c

J(u, d)
J(u, d)

L|c2L|c1

Figure 4.2: Illustration of the effect of the implementation error on the
loss for two different controlled variables, marked by c1 and c2 where |G2| >
|G1| and ∆ci = Gi∆u. The same implementation error is assumed for both
candidates, as indicated by n

In Chapter 3 we found that in order for the null space to exist, we need at least
as many independent measurements (ny) as there are unconstrained inputs (degrees of
freedom) (nu) and disturbances (nd) in the process. Thus,

ny ≥ nu + nd (4.1)

and we derived the null space method for the case where we have just enough measure-
ments, i.e. ny = nu + nd. Besides, we neglected implementation error and we assumed
that it was possible to get zero disturbance loss. Now, we include the implementation
error and we extend the null space method to the following cases:

1. Just enough measurements
2. Use of all available measurements
3. Use selected minimum number of measurements
4. Too few measurements
In summary, the effect of implementation error is important when selecting con-

trolled variables. The objective of this paper is to discuss how implementation error
should be handled when using the null space method to select controlled variables.

4.2 The null space method

In this section, we provide some background material and generalize the null space
method. First, we introduce the governing equations. Second, we generalize the null
space method and show how to use the null space method when considering both
disturbances and implementation errors.
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4.2.1 Notation and background

We use the following notation as listed in Table 4.1. We assume that any “active

Table 4.1: Notation

u - vector of inputs (degrees of freedom) of dimension nu

d - vector of disturbances of dimension nd

y0 - vector of all measurements with dimension ny0

y - vector of selected measurements with dimension ny used in forming c
c - vector of selected controlled variables (to be found) with dimension nc

ny - measurement error associated with y
n - implementation error associated with c

constraints” have been implemented, and we consider the reduced problem in the
unconstrained degrees of freedom. We assume that nc = nu, that is, the number
of controlled variables is equal to the number of inputs.

The magnitudes of d and ny are quantified by the diagonal scaling matrices Wd

and Wy
n, respectively. More precisely, we assume

∆d = Wdd
′ (4.2)

ny = Wy
nn

y ′ (4.3)

where we assume that d′ and ny ′ are any vectors satisfying

‖
[
d′

ny ′

]

‖2 ≤ 1 (4.4)

We have the following linearized (local) relationships in terms of deviation variables1

∆c = G∆u + Gd∆d (4.5)

∆y0 = Gy0∆u + Gy0

d ∆d (4.6)

∆y = Gy∆u + Gy
d∆d = G̃y

[
∆u
∆d

]

(4.7)

where G̃y =
[
Gy Gy

d

]
is the augmented plant. The controlled variables are assumed

to be linear combinations of the selected measurements

c = Hy (4.8)

From eqs. (4.5), (4.7) and (4.8) we have

G = HGy and Gd = HGy
d (4.9)

1We use ∆ to denote deviation variables. Sometimes the ∆ is omitted, for example, for the
measurement noise n
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We assume that the selected controlled variables c are independent such that G is
non-singular and invertible. Further, we assume that we have integral action in the
control of c. The steady-state implementation error n for the control of c, is then given
by the measurement error in y, and from eq. (4.8) we have

n = Hny (4.10)

The reduced space optimization problem in the unconstrained degrees of freedom is for
a given disturbance

min
u

J(u,d) (4.11)

This gives Jopt(d), uopt(d) and yopt(d). The loss is defined as the difference between
the objective value J , with a constant setpoint policy for c (with c = cs + n) and
Jopt(d) (Skogestad and Postlethwaite, 1996):

L = Jopt(cs + n,d) − Jopt(d) (4.12)

A second order Taylor series expansion of the cost function around the nominal
point (u∗,d∗) yields

J(u,d) = J(u∗,d∗) +
[
Ju Jd

]T
[
∆u
∆d

]

+
1

2

[
∆u
∆d

]T [
Juu Jud

JT
ud Jdd

] [
∆u
∆d

]

(4.13)

where ∆u = (u−u∗) and ∆d = (d−d∗). The non-linear functions uopt(d) and yopt(d)
can be linearized, and we have that (Halvorsen et al., 2003)

∆uopt = −J-1
uuJud∆d (4.14)

∆yopt = F∆d = −(GyJ-1
uuJud − Gy

d)∆d (4.15)

An second-order accurate expansion of the loss function (see Appendix B) yields

L =
1

2
(u − uopt)TJuu(u − uopt) (4.16)

Since Juu is positive semidefinite and we have (Horn and Johnson, 1991):

Theorem 4.1 Let A be a positive semidefinite matrix, then there exists a unique pos-
itive semi-definite square root B such that

B2 = A (4.17)

Consequently, we can write

L =
1

2
zTz (4.18)

where

z = J1/2
uu (u − uopt) (4.19)
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4.2.2 Generalized null space method

The original derivation of the null space method in Chapter 3, neglects the imple-
mentation error. It also assumes that we have a sufficient number of measurements
(ny = nu + nd), such that it is possible to get zero disturbance loss. The conclusion is
then to select H such that HF = 0, where F is defined by eq. (4.15).

The overall objective is to find a matrix H such that controlling c = Hy at constant
setpoints, minimizes the loss L. The loss is generally non-zero due to disturbances d
and implementation errors n associated with controlling c. We assume, as mentioned
earlier, that n = Hny, where ny is the measurement error associated with y. We now
want to express the “local” loss L = 1

2
zTz, where z is given by eq. (4.19) in terms of

d and ny, where we assume that u is used to control c at constant setpoint (c = cs)
We then have

(u − uopt) = G-1(c − copt) = G-1(∆c − ∆copt) (4.20)

∆c = ∆cs + n = n (4.21)

∆copt = H∆yopt = HF∆d (4.22)

which gives
z = J1/2

uu G-1(−HF∆d + n) (4.23)

Introducing the magnitudes of ∆d and n from eqs. (4.2) and (4.3) and using that
G = HGy then gives

z = J1/2
uu (HGy)-1H

[
−FWd Wy

n

]
[
d′

ny ′

]

(4.24)

The worst case loss for all disturbances and measurement noise is then

max
‖ d′

ny ′
‖≤1

L =
1

2
σ̄ (M)2 (4.25)

where
M = J1/2

uu (HGy)-1H
[
−FWd Wy

n

]
(4.26)

or
M =

[
Md My

n

]
(4.27)

where

Md = −J1/2
uu (HGy)-1HFWd (4.28)

My
n = J1/2

uu (HGy)-1

︸ ︷︷ ︸

Mn

HWy
n (4.29)

This is identical to the “exact local method” in Halvorsen et al. (2003), but expressed in
terms of the easily available optimal sensitivity matrix F. To minimize the worst case
loss, we thus need to minimize σ̄(M) with respect to H. H does not enter in eq. (4.26)
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in a simple manner, so generally H needs to be obtained numerically2. Optimally, we
should minimize M with respect to H. Instead, we use a simpler (two-step) approach,
where we

1. minimize Md (require Md = 0).
2. Then (with the above constraint), we minimize My

n.

4.2.3 Re-derivation of the original null space method

With no measurement error, we have Wy
n = 0 such that My

n = 0 and the loss is zero if
Md = 0. From eq. (4.28) we see that Md = 0 is achieved if we can find a non-trivial
solution (H 6= 0) such that

HF = 0 (4.30)

Thus, H should lie in the left null space of F and we have re-derived the null space
method. As shown in Chapter 3, it is always possible to find H satisfying HF = 0
provided the number of independent measurements (ny) is greater than the number of
independent inputs (nu) plus disturbances (nd), i.e. ny ≥ nu + nd.

This follows since the null space of F is of dimension ny−nd, and this must be larger
than the number of rows in H, which is nc = nu. Thus, we must require ny − nd ≥ nu

or ny ≥ nu + nd.
The more general treatment given above, will now be used to discuss and generalize

the null space method.

4.2.4 Degrees of freedom in using the null space method

In general, there are an infinite number of matrices H which satisfy HF = 0. First,
consider the case with ny = nu + nd (“just enough measurements”). Let H0 be a
solution to H0F = 0. Then CH0 is also a solution, where C is any non-singular
nu × nu matrix. Since the rows of H0 correspond to the left null space basis vectors of
F, multiplying with C rotates the basis vectors. Thus, if the rows of H0 span the left
null space, multiplying with a non-singular matrix C yields a new set of basis vectors
which is independent (Strang, 1988). Second, when ny > nu + nd we have even more
degrees of freedom, because the null space of F has “excess” dimensions.

The question is now how to utilize these degrees of freedom? First, they can be used
to affect the matrix G = HGy and Gd = HGy

d. For example, it may be desirable to
have G = I, because then we have a decoupled steady-state response from the inputs
to the controlled variables c. Second, and more importantly within the context of this
paper, they can in some cases be used to affect the effect of the measurement error
(ny) on the loss, as expressed by the matrix Mn (or My

n) in eq. (4.29). In order to
study this in more detail, we will first derive a more explicit form.

Remark 1 If we minimize σ̄(M) with M =
[
Md Mn

]
, we can still select G or Mn without

affecting the loss. Consider H = CH0, where H0 minimize M in eq. (4.26) and we assume

2We have used fminunc.m in Matlab for this, with overall good results.
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that C is invertible. Then,

M = J1/2
uu (CH0G

y)-1CH0

[
−FWd W

y
n

]
(4.31)

= J1/2
uu (H0G

y)-1C-1CH0

[
−FWd W

y
n

]
(4.32)

= M0 (4.33)

the loss is the same.

Remark 2 This freedom in selecting G or Mn is not new, it is very similar to decoupling
used in multivariable control (Skogestad and Postlethwaite, 1996), see Chapter 7 for more on
this.

Remark 3 Shaping Mn is possible. However, the effect of n on z has no direct physical
interpretation here. Conversely, in Appendix C we show that for indirect control (a subprob-
lem of self-optimizing control), Mn has a physical interpretation, where we show that it is
the gain from the setpoints to the controlled variables in indirect control.

4.2.5 Noise sensitivity with the null space method

The effect of disturbances and measurement noise on the loss L = 1
2
zTz, can generally

be expressed as
z = MnHny + Md∆d (4.34)

In the null space method we select H in the left null space of F (HF = 0) such that
Md = 0. We now want to derive what this implies in terms of My

n = MnH, which
represents the effect of measurement noise ny on the loss.

From the expansion of the loss function we have, see eqs. (4.14) and (4.20)

z =

J̃
︷ ︸︸ ︷[

J
1/2
uu J

1/2
uu J-1

uuJud

] [∆u
∆d

]

(4.35)

Furthermore, with zero disturbance loss, we have from eqs. (4.34) and (4.35)

z = Mn∆c = MnH∆y = MnHG̃y

[
∆u
∆d

]

(4.36)

where G̃y =
[
Gy Gy

d

]
is the augmented plant. Comparing eqs. (4.35) and (4.36)

yields
MnHG̃y = J̃ (4.37)

This expression gives the noise sensitivity (MnH) for a case with zero disturbance
sensitivity (Md = 0).

Remark. It is clear from eq. (4.18) and (4.36) that it would be optimal to control z directly.
However, since we cannot measure z, we need to use “indirect control” to control z (see
Appendix C).
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4.3 Reducing the effect of measurement noise with

the null space method

To minimize the combined effect of disturbances and measurement noise on the loss,
we should ideally use all measurements and select H such that σ̄(M) in eq. (4.26) is
minimized. However, whereas the disturbances are usually given, we usually have some
freedom in selecting the measurements. Therefore, the “null space method” where we
first minimize the disturbance effect (by selecting HF = 0 to get Md = 0) may be a
good approach in practice.

The basis for the null space method is to minimize the effect of the disturbance.
In this section, we consider how we can, in addition, reduce the effect of measurement
noise. The results in this section are based on the expression in eq. (4.37) for My

n

which applies when Md = 0.
We will consider the following four cases:
1. Just enough measurements (ny = nu + nd).
2. Use all measurements (y = y0, ny0

> nu + nd)
3. Use selected measurements (y ∈ y0, ny = nu + nd)
4. Too few measurements (ny < nu + nd)

4.3.1 Original null space method (Just enough measurements)

In this case ny = nu + nd and G̃y is invertible. Eq. (4.37) then gives

MnH = J̃[G̃y]-1 (4.38)

This means that My
n = MnH is given, so the extra degrees of freedom in the null space

method have no effect on the sensitivity to measurement noise. From eq. (4.38) we see
that the original null space method may give strong sensitivity to measurement noise
if G̃y is close to singular, because then the elements in [G̃y]-1 are large. Note that G̃y

represents the effect of the independent variables on the measurements

∆y = G̃y

[
∆u
∆d

]

(4.39)

Thus, G̃y close to singular means that the measurements are closely correlated in the
sense that they do not contain independent information about u and d.

4.3.2 Null space method using all measurements

In this case we have extra measurements, ny0
> nu+nd, and we select to use all available

measurements when forming the controlled variables, i.e. y = y0 and c = Hy = Hy0.
From eq. (4.37) we have

MnHG̃y0 = J̃ (4.40)

where G̃y0 =
[
Gy0 Gy0

d

]
is the augmented plant model using all measurements. Since

we have extra measurements (G̃y0 is non-square) eq. (4.40) has an infinite number of
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solutions in terms of MnH. We would like to find the solution H, that minimize the
effect of the measurement noise. More precisely, note that

z = MnHny0 =

M
y0
n

′

︷ ︸︸ ︷

MnHWy0

n ny0 ′ (4.41)

where Wy0
n is a diagonal scaling matrix with the expected measurement error for each

measurement in y0 along the diagonal. Rewriting eq. (4.40) as

MnHWy0

n (Wy0

n )-1G̃y0 = J̃ (4.42)

we find that the solution to eq. (4.40) that minimizes ‖My0
n

′‖2 is given by

H = M-1
n J̃(Wy0

n
-1G̃y0)†(Wy0

n )-1 (4.43)

where (Wy0
n

-1G̃y0)† is the pseudo-inverse. Note that we also here have degrees of
freedom left in choosing G, since Mn may be specified by the designer.

Note again that this solution does not minimize the loss in eq. (4.25), but rather
gives the best solution subject to having Md = 0.

Remark. It is appropriate at this point to make a comment about the pseudo-inverse A†

of a matrix. Above we are looking for the best solution for H that satisfies the equation set
HG̃y = M-1

n J̃. In general, we can write the solution of HA = B as H = BA† where the
following points are true.

1. A† = (ATA)-1AT is the left inverse for the case when A has full column rank (we have
extra measurements). In this case, there are an infinite number of solutions and we
seek the solution that minimizes H

2. A† = AT (AAT )
-1

is the right inverse for the case when A has row column rank (we
have too few measurements). In this case there is no solution and we seek the solution
that minimizes the two-norm of E = B − HA (regular least squares).

3. In the general case with extra measurements, but where some are correlated, A has
neither full column or row rank, and the singular value decomposition may be used to
compute the pseudo-inverse A†.

Scaled variables

To simplify notation, we will in the following assume that the measurements (y and
y0) are scaled with respect to the measurement noise, that is, the span for each mea-
surement is its expected measurement noise. We then have that Wy0

n = I, and eq.
(4.43) simplifies to

H = M-1
n J̃(G̃y0)† (4.44)

4.3.3 Null space method using selected measurements

In practice, we often want to use as few measurements as possible, and eq. (4.43) then
gives invaluable insights.
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Assume that ny0
> nu + nd and we want to select a subset y of the measurements

y0, such that ny = nu + nd. We assume that the measurements have been scaled such
that Wy

n = I. The solution to eq. (4.43) that minimize the noise sensitivity ‖MnH‖2

is then given by
MnH = J̃(G̃y)-1 (4.45)

where we can take the inverse since G̃y is invertible.
Now, the issue is to select the best minimum set of measurements yi where i ∈

{1, .., ny} from the full set of measurements y0,j for j = {1, .., ny0
}. First, note that

the choice of Mn does not influence the effect of the measurement noise since the
right hand side of eq. (4.45) is a constant matrix. Thus, for a given minimum set of
measurements, we cannot affect the implementation error by manipulating Mn.

Second, the selection of measurements does not affect the matrix J̃, since it depends
only on the Hessian matrices Juu and Jud. However, the selection of measurements af-
fects the matrix G̃y, and we should select measurements so that ‖MnH‖2 = ‖J̃(G̃y)-1‖2

is minimized. Since the induced 2-norm or maximum singular value of a matrix (σ̄)
provides the worst case amplification in terms of the 2-norm, we have from eq. (4.45)
that

max
‖ny‖2≤1

1
2
zTz = max

‖ny‖2≤1

1
2
‖z‖2

2

= 1
2
σ̄(J̃(G̃y)-1)2 ≤ 1

2

(

σ̄(J̃)σ̄((G̃y)-1)
)2

= 1
2

(

σ̄(J̃)σ(G̃y)
)2 (4.46)

Thus, in order to minimize the effect of the implementation error, we propose the
following two rules:

1. Optimal: In order to minimize the worst case value of ‖MnH‖2 for all ‖ny‖2 ≤ 1,
select measurements such that σ̄

(
J̃[G̃y]-1

)
is minimized.

2. Sub-optimal: Remember that the measurement selection does not affect the
matrix J̃. From the inequality in eq. (4.46), it then follows that the effect of the
measurement error ny will be small when σ(G̃y) (the minimum singular value of
σ(G̃y)) is large. Thus, it is therefore reasonable to select measurements y such
that σ(G̃y) is maximized.

Since the optimal rule needs information on the Hessian matrix of the cost function J ,
the sub-optimal selection rule above is preferred in practice. In Section 4.4 we propose
a procedure for the null space method, where we first select measurements with a small
measurement error, and then select H such that Md = 0.

4.3.4 Null space method with fewer measurements

In this case ny < nu +nd, so it is not possible to get zero disturbance loss with Md = 0.
Nevertheless, it turns out that selecting H such that

MnH = J̃(G̃y)† (4.47)
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may be reasonable. Note that (G̃y)† no longer represents the left inverse, but rather the
right inverse (see remark above). Actually, G̃y might have neither full row or column
rank, and in this case the pseudo-inverse should be obtained from the singular value
decomposition (see e.g. Skogestad and Postlethwaite (1996)).

Mathematically, this choice of H gives the solution which minimize ‖E‖2 where E
is defined as

E = MnHG̃y − J̃ (4.48)

The overall goal is to minimize M in eq. (4.26), and to see why it may be reasonable
to minimize E, note that we can express Md as

Md = E

[
J-1

uuJud

−I

]

(4.49)

Proof: Note that

Md = J1/2
uu (J-1

uuJud − G-1Gd) = MnHG̃y

[
J-1

uuJud

−I

]

(4.50)

and since

E = MnHG̃y − J̃ (4.51)

we see immediately that

Md = E

[
J-1

uuJud

−I

]

(4.52)

¤

Remark 1 In general we can write the solution of HA = B as H = BA†. Further, as noted
in Hori et al. (2005), we here use the right general inverse where A† = AT (ATA)-1 since A

has full row rank (we have to few measurements). In this case there is no solution and we
find the solution that minimize the 2-norm of

E = B − HA (4.53)

i.e. the regular least square solution and with the corresponding minimal ‖H‖2.

Remark 2 The null space method focused on minimizing the effect of the disturbances on
loss. In eq. (4.49) we try to minimize the effect of the measurement error and Md = 0. If we
focus only on the disturbance effect on the loss, we should minimize Md and we have from
eq. (4.23) (assuming n = 0) that

z = Md∆d = J1/2
uu (HGy)-1HF∆d = MnHF∆d (4.54)

and in order to minimize Md we must select MnH that corresponds to the smallest singular

value directions of F = UFΣFVT
F , i.e. select MnH =

[
uF,ny−nu uF,ny

]T
where uF,i is the

i’th output vector corresponding to the i’th singular value. Note, we can still select Mn or
G as appropriate.
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4.3.5 General discussion

The above derivations are local, since we assume a linear process and a second-order
objective function in the inputs and the disturbances. Thus, we cannot guarantee that
the proposed controlled variables are globally optimal. However, using the above ex-
pressions should give an indication on how sensitive the candidates are to measurement
error. For a final validation, we should always check the loss for the proposed structures
using the non-linear models of the process.

We see that the null space method generalizes to the case where we want to use
all available measurements. In general, using all measurements should give a better
estimate on the uncertain disturbances. However, in many cases many of the mea-
surements are closely correlated or are prone with measurement error. In such cases
the advantages of using additional measurements and the increased complexity of the
control structure may not be justified.

A logic extension of the null space method, would be to use eq. (4.24) and to select
MnH as the output singular vectors corresponding to the smallest singular values
of F̃ =

[
−FWd Wy

n

]
. However, we then find the optimal solution when requiring

‖MnH‖2 = 1 which is not necessarily the optimal solution.

Relationship to indirect control

Indirect control is when we want to control a set of primary variables y1, at constant
setpoints. This is a special case of the results in this paper if we select

L =
1

2
‖y1 − ys

1‖2 =
1

2
[y1 − ys

1]
T [y1 − ys

1] (4.55)

with

∆y1 = G1∆u + Gd1∆d = G̃1

[
∆u
∆d

]

(4.56)

we find that

Juu = GT
1 G1 (4.57)

Jud = GT
1 Gd1 (4.58)

The case of indirect control is discussed in more detail by Hori et al. (2005) (see
Appendix C). Note that the results in Hori et al. (2005) follows directly from this
chapter with

Md = Pd = (Gd1 − G1G
-1Gd) (4.59)

Mn = Pc = G-1
1 G (4.60)

where ∆c = G∆u + Gd∆d is the variables we select to control (in order to indirectly
control y1).

Next, we propose a procedure for using the null space method where we also include
measurement error. The procedure is composed of two steps: First, we select a subset
of the measurements that minimize the effect of the measurement error. Second, we
use the null space method and require zero disturbance loss.
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4.4 Procedure: Null space method and extra mea-

surements

We propose a procedure for the null space method using the sub-optimal measurement
selection rule of above. Assume that ny0

≥ nu + nd, i.e. the number of available
measurements is larger than the number of (unconstrained) inputs and disturbances

1. Nominal Optimum:
Solve the reduced space optimization problem as defined by eq. (4.11) for the
nominal disturbance d∗. The solution is (x∗,y∗) = (xopt(d∗),yopt(d∗)).

2. Linearization:
Linearize the process model around the nominal optimal point, which yields

∆y0 = Gy0∆u + Gy0

d ∆d (4.61)

for all measurements y0,i

3. Scaling of variables:
Use the following variable scaling:

� Scale each measurement y0,i with its corresponding implementation error
(|ny0,i

|).� Scale each input uj with its corresponding allowable range (|∆uj,max|). If
we have direct information on the Hessian matrix Juu, scale uj so that Juu

is close to unitary.� Scale each disturbance dk by its corresponding expected disturbance
(|∆dk,max|).

which yields the scaling matrices

Wy0

n =

[
|ny0,1|

...
|ny0,ny0

|

]

Wu =

[
|∆u1,max|

...
|∆unu,max|

]

(4.62)

Wd =

[
|∆d1,max|

...
|∆dnd,max|

]

4. Selection of measurements.

(a) Augmented process model. Calculate the scaled augmented process
model

∆y′
0 = Gy0′∆u′ + Gy0′

d ∆d′ = (Wy0

n )−1Gy0Wu∆u′ + (Wy0

n )−1Gy0

d Wd∆d′

(4.63)
and obtain the scaled augmented process matrix

∆y0
′ = G̃y0′∆ũ′ = [Gy0′ Gy0′

d ]

[
∆u′

∆d′

]

(4.64)
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(b) Best subset of measurements� Sequential method: Two methods for selecting the best subset of
measurements are proposed: (1) the sequential method, in which mea-
surements are selected one-by-one, (2) the direct method, in which all
measurements are selected simultaneously. The computational burden
is the major difference between the two alternatives.

i. Selection of the first measurement. Calculate the row 2-norm
‖G̃y0′

i ‖2 for all measurements y0,i and sort by decreasing row norm.
Select the measurement with highest norm and add the measure-
ment to a selection vector ys.

ii. Selection of the additional measurements. For all remaining
measurements, add measurements one-by-one to the selection vector
ys until nys

= nu + nd and calculate the minimum singular value of
the corresponding augmented process matrix

[
G̃ys′

i

G̃ys′
i−1

]

Select the new measurement which has the highest minimum singu-
lar value and add to the selection vector.� Direct selection (all combinations)

i. Let I be the set of all nc possible combinations of ny measurements
from ny0

measurements, i.e. I = {{1, 2, 3, . . .}, {1, 2, 4, . . .}, . . .}
where I1 is the first set. The number of possible combinations is
nac =

ny0
!

ny !(ny0
−ny)!

ii. For all nac combinations, calculate the minimum singular value for
the augmented matrix

σ
(

G̃y′
Ii

)

= σ
([

Gy′
Ii

Gy′
d,Ii

])

and sort in descending order. Select the subset Ii that maximize
the minimum singular value.

Iopt = arg

[

max
Ii∈I

σ
(

G̃y′
Ii

)]

5. Null space of F and selection of controlled variables.

(a) Obtain the optimal sensitivity matrix F, for example numerically from the
non-linear optimization problem,

F =

(
dyopt

ddT

)∗

or from eq. (4.15).
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(b) Calculate the orthogonal basis hT
1 . . .hT

nc
for the null space of FT , N (FT ).

(c) Select the rows of H =

[
h1

...
hnc

]

such that H ∈ N (FT ) and the rows of H

form a orthonormal basis. This ensures that HF = 0.

6. Shaping G or Mn

Select the matrix C with dimension nu × nu, where H′ = CH, to get G = I or
as appropriate.

7. Loss calculations & feasibility
The above procedure does not ensure feasibility for all disturbances using nominal
setpoints, so this needs to be verified. Usually it is sufficient to check the end
points of the disturbance and implementation error space. In addition, calculate
the loss for the different candidates using the non-linear model.

Remark. The sequential method needs fewer calculations, but it does not guarantee the
subset that maximizes the minimum singular value of the augmented plant. The number of
singular value calculations in the sequential method is

nsc =
1

2
ny(2ny0

− ny + 1)

For example, for a case with ny0
= 48 and ny = 6, nac = 12, 271, 512 calculations is needed

for the direct selection rule, while only nsc = 273 for the sequential method3.

In the next two sections, we illustrate the above procedure on examples.

4.5 Example 1: Toy example

This example is an extension of the example found in Halvorsen et al. (2003). Assume
that we have a SISO system with one disturbance and the following objective function

J = (u − d)2 (4.65)

with the nominal disturbance d∗ = 0. From eq. (4.65) it is clear that Jopt = 0 ∀ d
and the optimal input is uopt(d) = d. Assume that the following measurements are
available:

y1 = 0.1(u − d) y2 = 20u y3 = 10u − 5d y4 = u

We further assume that the system is scaled such that |d| ≤ 1 and |ni| ≤ 1. In matrix
notation, we have the following scaled model ∆y = Gy0∆u + Gy0

d ∆d where;

Gy0T =
[
0.1 20 10 1

]
and Gy0

d
T =

[
−0.1 0 −5 0

]
(4.66)

3On a Pentium 4 class processor with 1 GB RAM running GNU/Linux and Matlab, an estimated
30 minutes is needed for the direct method, while an estimated 0.0434 seconds for the sequential
method
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Since the optimal input is given as uopt = d we have that the optimal sensitivity matrix
is F

∆yopt
0 = F∆d = Gy0∆uopt(d) + Gy0

d ∆d =

[
0.1
20
10
1

]

∆d +

[
−0.1

0
−5
0

]

∆d =

[
0
20
5
1

]

∆d (4.67)

As seen from eq. (4.67), measurement y1 have ∆yopt
1 = 0 so the disturbance contribution

to the loss is zero. However, it turns out that the low gain from the input to y1 yields
a high sensitivity to noise, which in turn results in large loss.

For the single measurement candidates (ci = yi) the losses are

L1 = 100 L2 = 1.0025 L3 = 0.26 L4 = 2

Candidate y1 is the candidate with the largest loss and illustrates the importance of
taking measurement error into account. y3 is the best candidate.

Since ny = nu + nd = 1 + 1, six sets of measurements are possible. Table 4.5 shows
the results from the optimal and sub-optimal rule (as given by eq. (4.46)). From Table
4.5 we see that the candidates involving measurement y1, all are sensitive to noise.
From the sub-optimal rule, we see that the same internal rank applies. c23 is the best
candidate followed by c34, while c12, c14 and c13 are predicted to have approximately
the same sensitivity to noise. Note that using measurements y2 and y4 yields infinite

Table 4.2: The sub-optimal and optimal rules for the toy example.
Sub-optimal Optimal

cyiyj
y# y# σ(G̃y) σ̄(J̃(Gy)-1)

c23 2 3 4.4490 0.2915
c34 3 4 0.4458 1.4422
c12 1 2 0.1 14.1421
c14 1 4 0.0995 14.1421
c13 1 3 0.0447 14.1421
c24 2 4 0 inf

sensitivity to noise, due to G̃y being singular. The optimal combination (H) is for the
best candidate (c23) is found as the null space of F were F2,3 = [20 5]T . The null space
vector is:

N ([20 5]) = [−0.2425 0.9701]T (4.68)

such that the controlled variable is c23 = −0.2425y2 + 0.9701y3. Note that for the
candidates using measurement y1, since ,

N ([F1 Fi]) = [1 0] for i ∈ {2, 3, 4} (4.69)

so the candidates involving measurement y1 would be equivalent to controlling y1 alone
(no contribution from the other measurement). Table 4.3 show the worst case loss for
the candidate controlled variables. From Table 4.3 we see that the candidate with the
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Table 4.3: Worst-case loss for the different candidates

Rank ci L = 1/2σ̄(M)
1 c23 0.0425
2 y3 0.26
3 y2 1.0025
4 c34 1.04
5 y4 2
6 y1,c21,c13,c14 100
7 c24 inf

lowest loss is c23 and it reduces the loss by a factor of 6 compared to the second best
candidate variable which is using the single measurement y3.

Note that controlling c34 has a higher loss than controlling y2 or y3, due to the noise
contribution of y4. This implies that when using the minimum number of measurements
in the null space method, there may be single measurement candidates with a lower
loss. Since we have a quadratic cost function and a linear process model, all candidates
using the null space method has zero disturbance loss.

Halvorsen et al. (2003) show, by formulating the selection problem as an optimiza-
tion problem, that by using all measurements and minimizing the loss, using eq. (4.25),
with respect to hi, H = [h1 . . . h4] this results in a controlled variable with a slightly
lower loss of L = 0.0405. The contribution from the disturbance and the noise is

Md = −0.0606 Mn =
[
0.0057 −0.0645 0.2706 −0.0032

]
(4.70)

and
Hopt =

[
−0.2170 −0.2213 0.9273 −0.2100

]
(4.71)

As seen it is not optimal to require Md = 0, since we can lower the effect of the mea-
surement error by allowing a small contribution from the disturbance. The reduction
in loss (Lopt = 0.0405) is small compared to c23 (Lc23 = 0.0425) and using a two step
approach (select measurements first, and thereafter require Md = 0) is acceptable
here. Using only measurements y2 and y3, the optimal combination that minimize M
is Hopt

23 = [−0.2323 0.9727] with a loss of Lopt
23 = 0.0406.

4.6 Example 2: CSTR with chemical reaction

In this section, we illustrate the null space method on a real example, namely a contin-
uous stirred reactor (CSTR) with a reversible reaction (Economou et al., 1986). The
process consists of an ideal continuous stirred tank reactor, see Figure 4.3, where the
reversible exothermic reaction

A­ B (4.72)

takes place, with the reaction rate expressions on the form:

r = k1CA − k2CB where k1 = C1e
−E1
RT and k2 = C2e

−E2
RT (4.73)
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The process model for the system is:
Mass balances

dCA

dt
=

1

τ
(CA,i − CA) − r where τ =

M

F
(4.74)

dCB

dt
=

1

τ
(CB,i − CB) + r (4.75)

Energy balance
dT

dt
=

1

τ
(Ti − T ) +

−∆Hrx

ρCp

r (4.76)

where Cj,i is the concentration of component j in the inflow, Cj is the concentration
in the reactor for component j, Ti is the inlet temperature while T is the temperature
in the reactor. Nominal data for the example is given in Table 4.4.

Table 4.4: Nominal data for the
CSTR case

Parameter Value Units
F ∗ 1 holdup min−1

C1 5000 s−1

C2 106 s−1

Cp 1000 cal kg−1K−1

E1 104 cal mole−1

E2 15000 cal mole−1

R 1.987 cal mole−1 K−1

T ∗

i input K
C∗

A,i 1 mole L−1

C∗

B,i 0 mole L−1

−∆Hrx 5000 cal mole−1

ρ 1 kg L−1

τ 1 min

A B

Ti

CA,i

CB,i

A B

CB

CA

T

Figure 4.3: CSTR

4.6.1 Objective, inputs, outputs and disturbances

We assume that the economic operating objective is to maximize the profit (max−J =
min J) where:

J = −
[
pCB

CB − (pTi
Ti)

2
]

(4.77)

where pCB
= 2.009 is the price of product CB and pTi

= 1.657× 10−3 is the utility cost
of heating the input stream.

The input is u = Ti, the temperature in the inlet stream, the states are xT =
[CA CB T ], and the disturbances are assumed to be dT = [CA,i CB,i]. The available
measurements are yT

0 = [CA CB T Ti].
We assume that the disturbances are in the range CA,i ∈ C∗

A,i±0.3, CB,i ∈ C∗
B,i+0.3

where C∗
j,i denotes the nominal disturbance, and that the measurement errors are

nCA
= nCB

= 0.01mol/L and nT = nTi
= 0.5 K for the concentrations and the

temperatures respectively. We assume that only one disturbance or implementation
error is present at any time.
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Table 4.5: Optimal values for different disturbances for the CSTR-example
Variable CA,i = 1.3 CA,i = 0.7 CB,i = 0.3 nominal

CA 0.644 0.352 0.585 0.498
CB 0.656 0.348 0.715 0.502
T 429.170 422.601 415.883 426.761
Ti 425.889 420.863 413.810 424.249
−J 0.821 0.212 0.966 0.515

4.6.2 Optimal operation

Table 4.5 summarizes the optimal values for different disturbance realizations. Figure
4.4 shows the absolute value of the objective for three disturbances with respect to
the input. The nominal optimal input T opt

i (d∗) is indicated by the vertical line. The
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Figure 4.4: Plot of objective with respect to the input for four different
disturbances CA,i = 0.7, CA,i = 1.3, CB,i = 0.3 and the nominal point. The
vertical line indicates the nominal optimal input.

optimal input lies in the range Ti ∈ [413 426], while the optimal objective value lies
in the range J = 0.21 to J = 0.97. With the given input and disturbances, we need
ny = nu+nd = 1+2 = 3 measurements to form the controlled variable based on the null
space method. This results in 4!

3!1!
= 4 possible candidate measurements combinations.

In addition to the four candidates synthesized using the null space method, we include
all candidates controlling a single measurement, in total eight different candidates, see
Table 4.6.

We use the sub-optimal rule of Section 4.3.3 to find the best subset of measurements,
see Table 4.7. Candidates c123 and c124 have the highest minimum singular value (G̃)
and should therefore have the lowest sensitivity to noise, while c134 and c234 should be
more sensitive to noise.
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Table 4.6: Candidate control
structures
# Controlled variable Measurements
1 CA CA

2 CB CB

3 T T
4 Ti Ti

5 c123 CA, CB , T
6 c124 CA, CB , Ti

7 c134 CA, T , Ti

8 c234 CB , T , Ti

Table 4.7: Lower singu-
lar value for the four null
space candidates

Variable σ(G̃)
c123 6.44
c124 6.31
c134 1.03
c234 1.21

4.6.3 Loss calculation using non-linear model

The loss is calculated using the non-linear model and is shown in Table 4.8. For all
null space candidates, the corresponding coefficient vector (H) was calculated based on
the null space of the sensitivity matrix found by numerical differentiation (not shown).
As seen from Table 4.8, all four linear combination candidates show small losses with

Table 4.8: Loss (in %) for all candidate structures with respect to distur-
bances and measurement errors. For the measurement error, the worst-case
and the average loss are given in the last two columns.

# candidate C∗

A,i + 0.3C∗

A,i C∗

A,i − 0.3C∗

A,i C∗

B,i + 0.3C∗

B,i ni,max ni,avg

1 CA inf 89.668 inf 1.254 1.127
2 CB 27.689 inf 32.781 inf inf
3 T 0.102 0.698 1.566 0.006 0.006
4 Ti 0.048 0.469 1.4532 0.006 0.006
5 c123 0.006 0.036 0.082 0.034 0.014
6 c124 0.006 0.036 0.073 0.030 0.013
7 c134 0.009 0.056 0.001 1.756 0.695
8 c234 0.008 0.049 0.006 0.6735 0.2943

respect to the disturbances, with only minor differences between them. The largest
difference is for the measurement errors, where candidates c134 and c234 have larger
losses than candidates c123 and c124. If we compare the loss due to measurement error
in Table 4.8, with the singular values in Table 4.7, we see that the sub-optimal rule
based on the minimum singular value, correctly predicts the sensitivity to measurement
error. Both c123 and c124 are insensitive to measurement error while c134 and c234 are
sensitive to measurement error. We see that the loss is marginally larger for c123 than
for c124 which contradict the results from Table 4.7 and can be caused by using the
sub-optimal rule.

For the single measurement candidates, controlling the temperatures (either Ti

or T ) show good self-optimizing properties, both with respect to disturbances and
measurement errors. The losses are largest for a disturbance in CB (approximately
1.5%) for both candidates. Note that keeping the input (Ti) at the nominal optimal
point, has better self-optimizing properties than controlling the reactor temperature.
Controlling CA or CB lead to infeasible operation or a very large loss and are not
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suitable for self-optimizing control. In addition, both candidates show multiple steady-
states and is not considered for further analysis.

Figure 4.5 shows the loss profiles for the feasible candidates with respect to the
disturbances.
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Figure 4.5: Loss profiles for the feasible structures

In conclusion, based on the loss calculations, the candidates c123 and c124 show the
best self-optimizing properties, followed by the candidates T and Ti.

4.6.4 Controllability for the most promising candidates

Finally, we compare the controllability of the most promising candidates. The motiva-
tion is two-fold: First we want to find the candidate that is simplest to control. Second,
we want to show that controlling a linear combination of measurements is possible in
practice.

We expect no limitations for keeping the input constant (system is stable), so this
candidate has not been considered in the dynamic simulations. The three candidates
considered here, are T , c123 and c124. We make the following assumptions for the
dynamic simulations:

1. A time delay of 2 s is assumed for all measurements.
2. The disturbances are modeled as steps, filtered using a first order filter fi = 1

5s+1
.

3. PI-controller is to be used, tuned with Skogestads IMC (Skogestad, 2003) tuning
rules. See Table 4.9 for tuning parameters.

We include only the simulation for a disturbance in CB,i. The responses for a dis-
turbance in CA,i are similar for all candidates. Figure 4.6 shows the responses for
a step in the feed composition of B. Figure 4.6(a) shows the response for CA, CB,
T and the input Ti. The horizontal solid line represents the new optimal value (for
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Table 4.9: PI-controller parameters using SIMC-tuning rules
Variable Kc τI τC

c123 2.89 60 20
c124 0.27a − 2
T 15.0 16 2

aPure integral controller K(s) = KI

s where KI = 1
k

1
(θ+τC)

CB,I = 0.3). From the temperature responses, we see that candidates c123 and c124

settle reasonably close to the new optimal value (a steady-state offset of approximately
3 K), while candidate c = T has a large steady-state offset. This is also confirmed by
the response of the objective function, shown in Figure 4.6(b). Candidates c123 and
c124 track the optimal value of the objective. Candidate c123 exhibits an overshoot in
the controlled variable (not shown), which is reflected by the undershoot in the input.
Based on the combined self-optimizing and dynamic performance, candidate c124 is the
best controlled variable.

4.7 Conclusions

In this paper we have extended the null space method, where we select controlled vari-
ables as linear combinations of the measurements (c = Hy), to include measurement
error. Explicit expressions have been derived to calculate the null space matrix H
under the assumption that we want zero disturbance loss (Md = 0). A procedure for
using the null space method has been proposed. The procedure is separated into two
steps: First, we select the measurements that are insensitive to noise. Second, we find
the coefficient matrix H that yields zero disturbance loss by requiring HF = 0 where
F is the optimal sensitivity matrix.

In addition, we have shown how to use the null space method for cases where we
use all or have too few measurements. Finally, the ideas presented here have been
illustrated on two examples. In both examples we are able to find candidates for self-
optimizing control that are insensitive to both disturbances and measurements errors.
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Chapter 5

Disturbance discrimination in
self-optimizing control

Manuscript in preparation

In most chemical plants, a large number of disturbances are present. However, not
all disturbances are equally important for the optimal operation of the plant. Below,
we present new rules for selecting important disturbances, with emphasis on selecting
important disturbances for self-optimizing control. Ideally, we would prefer to remove
disturbances that are not economically important before we design and analyze the
control structure. The main conclusion here, is that one cannot separate the selection
of economically important disturbances from the selection of control structure. The
rules presented here reflect this observation.

5.1 Introduction

Self-optimizing control is when, by keeping controlled variables at their nominal set-
points by the use of feedback, the process is indirectly kept at the optimal state in spite
of external disturbances and implementation errors (Skogestad, 2000). The plant op-
erational performance is measured using a scalar cost function (e.g. the economic cost)
and depends on the manipulation of the degrees of freedom available to counteract
external disturbances entering the plant.

Consider the steady-state where, for a given disturbance, an optimal value for the
degrees of freedom (the manipulated inputs) can be found and implemented (either
directly or indirectly by the use of feedback). However, for a disturbance change, the
existing state of the process is not longer the optimal and new setpoints need to be
found by repeating the optimization with subsequent implementation in the process.

To avoid the need of re-optimization and for a direct measurement or an estimate
of the disturbances, we use feedback to correct for the new disturbances so that the
plant is kept at (or near) the optimal state. The key to achieve this, is to select the
correct feedback controlled variables.

69
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One method for finding self-optimizing controlled variables c, is the null space
method of Alstad and Skogestad (2004). It gives controlled variables that are linear
combinations of a subset of the available measurements, i.e. c = Hy where y is
a vector of a subset of the measurements. One important requirement, is that the
number of measurements (the dimension of y) must at least be equal to the number of
unconstrained inputs (u’s) and disturbances (d’s), that is

ny ≥ nu + nd (5.1)

In typical chemical plants, the number nd of disturbances may be large and the required
number of measurements as given by eq. (5.1), may not be available. Fortunately, not
all disturbances are equally important for the optimal operation of the plant, and we
then have the possibility of eliminating some of them. Thus, reducing the number of
disturbances has two advantages: (1) we need fewer measurements in the null space
method (design) and (2) less effort is needed in evaluating the self-optimizing properties
of the candidate control structures (analysis).

The issue of reducing the number of disturbances has received limited attention in
the literature on self-optimizing control. Previous methods for selecting self-optimizing
controlled variables have focused on using single measurement candidates, i.e. ci = yi.
Thus, the design of the self-optimizing control structures are unaffected by a large
number of disturbances, and the only incentive for reducing the number of disturbances
is to reduce the computational effort in analyzing the self-optimizing properties of
the candidates. Often, the important disturbances are assumed given, by physical
experience or by means of other methods. One exception is the early work of Morari
et al. (1980) where several rules on how to select important disturbances were presented.

Related to this is the work on parameter estimation. For example, Krishnan et al.
(1992) discussed selecting which parameters to estimate based on a given set of distur-
bances.

Below we present some background and previous work on the selection and eval-
uation of self-optimizing control structures. Thereafter, we present rules on how to
discriminate disturbances, including illustrative examples.

5.2 Background and theory

Assume that we have the reduced space optimization problem, in the unconstrained
variables u

min
x,u

J(x,u,d0) (5.2)

f ′(x,u,d0) = 0 (5.3)

where f ′ is the model equations, J the cost function, d0 the vector of disturbances, x
the states and dim(f ′)=dim(x), that is the problem has only equality constraints (see
Section 2.3.1 for a motivation). The problem is to find the controlled variables c and
setpoints cs such that with c = cs the loss

L(d0) = J(c,d0) − Jopt(d0) (5.4)



5.2. Background and theory 71

is acceptable. Here, J(c,d0) is the objective value by enforcing c = cs and Jopt(d0)
is the true optimal objective value. Here, the focus is on steady-state economic per-
formance which is motivated by the fact that the economics are mainly decided by
steady-state effects (Skogestad, 2000).

Let y0 denote the measurements and c = Hy0 denote the controlled variables
(where H can be a full matrix). At the nominal optimal point we have

∆y0 = Gy0∆u + Gy0

d0
∆d0 =

[
Gy0 Gy0

d0

]
[

∆u
∆d0

]

= G̃y0

[
∆u
∆d0

]

(5.5)

∆c = G∆u + Gd0
∆d0 (5.6)

where ∆y0 = (y0 − y∗
0) is the vector of all measurements, ∆u = (u− u∗) is the inputs

and ∆d0 = (d0 − d∗
0) is the vector of all disturbances in deviation variables.

A second order accurate expression for the loss is (Halvorsen et al., 2003):

L(c,d0) = 1
2
(u − uopt)TJuu(u − uopt) = 1

2
zTz (5.7)

where Juu is the Hessian matrix with respect to the inputs and z = J
1/2
uu (u − uopt). If

we neglect measurement error we have for a constant c (Halvorsen et al., 2003):

(u − uopt(d0)) = (J-1
uuJud0

− G-1Gd0
)∆d0 (5.8)

where Jud0
is the Hessian in ud0

1. If we include measurement error n = c−cs we have

z =

Md0
︷ ︸︸ ︷

J1/2
uu (J-1

uuJud0
− G-1Gd0

)(d0 − d∗
0) +

Mn
︷ ︸︸ ︷

J1/2
uu G-1 n (5.9)

From eq. (5.9) it is clear that the effect of a disturbance on the loss depends on
both the controlled variables (through G and Gd0

) and the cost function (trough Juu

and Jud0
). We neglect the measurement error, and we split the contributions from the

disturbances into M1
d0

= J
1/2
uu J-1

uuJud0
and M2

d0
= −J

1/2
uu G-1Gd0

where

Md0
= M1

d0
+ M2

d0
(5.10)

where M1
d0

is the contribution to the loss from the cost function and M2
d0

the contri-
bution to the loss function from feedback.

From eq. (5.9) we see that for disturbances where the rows of Md0
have small ele-

ments (assuming d0 is scaled) have a negligible effect on the loss. Since z is independent
of scaling, it seems to be an ideal metric for discriminating between disturbances. How-
ever, since z depends on the selection of controlled variables it is obvious of limited
value.

In the next section we discuss the importance of disturbances for self-optimizing
control, and propose a set of rules that can guide the discrimination of disturbances.

1If we assume that the disturbance vector is 2-norm bounded ‖∆d0‖2 ≤ 1 and we neglect imple-
mentation error the worst case loss is given by

L =
1

2
σ̄(Md0

)2

where Md0
= J

1/2
uu (u − uopt) = J

1/2
uu (J-1

uuJud − G-1Gd).
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5.3 Rules for disturbance discrimination

Here, we present rules for discriminating between disturbances in self-optimizing con-
trol.

Rule 1: Steady-state effect: Include only disturbances that have a steady-state ef-
fect (on the cost or on the measurements y0)

The rule is obvious, since we have made “the pseudo steady-state assumption” where
the plant economics (cost J) are determined by the steady-state behavior. In practice,
this assumes that we have an effective control system in place such that the plant
moves immediately from one steady-state to another, and that dynamic disturbances
are immediately rejected.

Even though the rule may seem obvious, some additional remarks are in order.

1. A disturbance with no steady-state effect on the optimal cost should still be in-
cluded if it has steady-state effect on the measurements. The reason is that the
disturbance may result in non-optimal operation because the measurements are
used in forming the controlled variable c.

Example 5.1 Let J = (u − d1)
2 and

y0 =





y1

y2

y3



 =





u
5u + d1 + d2

7u − d1



 (5.11)

We then need to include disturbance d2 if the measurement y2 is included in the set of
measurements y used in forming c = Hy, but not otherwise.

2. On the other hand, it is not necessary to include disturbances with no steady-state
effect on the measurements y0, in the selection of controlled variables c (even
if they do affect the cost J). The reason is that the loss with respect to this
disturbance will be independent of the selected controlled variable c. If the loss
with respect to this disturbance is unacceptably large, then we need to obtain
additional measurements that depend on the disturbance.

Example 5.2 Let J = d2(u − d1)
2 − u and

y0 =





y1

y2

y3



 =





u
5u + d1

7u − d1



 (5.12)

Note that d2 has no effect in y0. For example, d2 may be a price. There is then no
need to include d2 in the selection of the controlled variables c = Hy. On the other
hand, changes in d2 do affect the optimal operation, but these can only be corrected for
by introducing a measurement of d2.
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5.3.1 Initial screening rule (Rule 2)

It is difficult to eliminate disturbances because their effect depend on the selected
controlled variables c = Hy, which is yet to be found. Therefore, disturbances cannot
be eliminated without considering the measurements. Here, we propose a method for
discriminating between disturbances based on controlling all available measurements
y0 (minimize the overall measurement deviation). The idea is that if the disturbance
is unimportant in terms of the loss when controlling all measurements, then it can be
eliminated.

From eq. (5.5) we have

∆y0 = Gy0∆u + Gy0

d0
∆d0 (5.13)

For ny0
> nu it is not possible to get ∆y0 = 0, but the solution that minimizes ‖y0‖2

is
∆u = −[Gy0 ]†Gy0

d0
∆d0 (5.14)

where [Gy0 ]† is the pseudo-inverse of Gy0 . By recognizing that ∆uopt = −J-1
uuJud0

∆d0

(Halvorsen et al., 2003) we then have

z0 = J1/2
uu (∆u−∆uopt) = J1/2

uu (J-1
uuJud0

−[Gy0 ]†Gy0

d0
)∆d0 = −J1/2

uu [Gy0 ]†FWd0
d′

0 (5.15)

where the last equality follows since F = −(Gy0J-1
uuJud0

− Gy0

d0
).

We use the following scaling:� We scale the disturbances with respect to the expected range, i.e. (d0 − d∗
0) =

Wd0
d′

0.� We scale the measurements with respect to the measurement error ny.

Disturbance discrimination rule 2: Include only disturbances that have a large ef-
fect on the loss when controlling all measurements (minimizes ‖∆y0|2). That is,
eliminate disturbances that have a corresponding small effect on the elements of
z0, which corresponds to small column vectors [J

1/2
uu [Gy0 ]†[−FWd0

]j j ∈ 1..nd as
given by eq. (5.15).

The above rule must be used with some caution, since a disturbance that yields a
small loss when controlling all measurements, may be important for a small subset of
measurements. Rule 2 has been applied to a Petlyuk distillation case, see Chapter 8.

Rules 1-2 are general methods for disturbance discrimination. We now discuss rules
3 and 4 that are specific to the null space method of Chapter 3. Typically, one would
start with rules 1-2, and if the number of disturbances still exceeds the maximum for
the null space method, we need methods for dealing with such situations.

5.3.2 Lumping similar disturbances (Rule 3)

Here we discuss disturbance discrimination based on the assumption that we want to
use the null space method of Alstad and Skogestad (2004) to select controlled variables.
We here assume that we have too few measurements, i.e. ny0

< nu + nd0
.
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In order to use the null space method with the given set of measurements, one pos-
sible solution is to lump similar disturbances and consider only significantly “different”
disturbances. Thus, two disturbances that show the same effect on the measurements
are assumed “equal”. To achieve this we utilize a singular value decomposition (SVD)
of Gy0

d0
that has dimensions ny0

× nd0

Gy0

d0
= Uy0

d0
Σy0

d0
Vy0

d0

T (5.16)

where
Σy0

d0
is a ny0

× nd0
matrix with k = min(ny0

, nd0
) non-negative singular values σi,

arranged in descending order along its main diagonal; the other entries are zero.
Uy0

d0
is a ny0

× ny0
unitary matrix of output singular vectors , uy0

d0,i.
Vy0

d0
is a nd0

× nd0
unitary matrix of input singular vectors, vy0

d0,i.
The idea is to neglect disturbance directions that correspond to small singular values
σj (as compared to σj−1) and form a set of pseudo-disturbances which is used in
synthesizing the controlled variables using the null space method.

Assume that the singular values σj, j = l, .., k are small as compared to σl−1 and

since Vy0

d0
is unitary we have [Vy0

d0

T ]
−1

= Vy0

d0
and it follows that:

Gy0

d0
Vy0

d0
= Uy0

d0
Σd0

(5.17)

and we select the columns of Vy0

d0
corresponding to the “large” singular values of Σy0

d0

Gy0

d0
[vy0

d0,1 vy0

d0,2 · · · vy0

d0,l−1] = Uy0

d0
[Σy0

d0,1 Σy0

d0,1 · · · Σy0

d0,l−1] (5.18)

and we have that

∆d0 ≈ [vy0

d0,1 vy0

d0,2 · · · vy0

d0,l−1]∆d̃ = Ṽy0

d0
∆d̃ (5.19)

such that
∆y0 ≈ Gy0∆u + Gy0

d0
Ṽy0

d0
∆d̃ = Gy0∆u + G̃y0

d0
∆d̃ (5.20)

Note that the pseudo-disturbances d̃ are only used in the synthesis of the controlled
variable (using the null space method). This method will not guarantee good self-
optimizing controlled variables if the singular values σi, i = 1, .., k are of equal mag-
nitude. For such cases it is not possible to form pseudo-disturbances that properly
represent the disturbances. In practice this will happen if the physical “source” of the
disturbances differ.

Implication for the null space method

Assume that we form a new pseudo-disturbance as given by eq. (5.20) such that

nd̃ = ny0
− nu, and ∆d0 ≈ ∆Ṽy0

d0
d̃0. The the new optimal sensitivity matrix is

F̃ = FṼy0

d0
(5.21)

where Ṽy0

d0
has dimensions ny0

× (ny0
− nu) and it follows that:

∆yopt
0 ≈ F̃∆d̃ (5.22)

The coefficient matrix H is found by requiring HF̃ = 0
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Disturbance discrimination rule 3: Lump similar disturbances Lump the nd0

disturbances into nd̃ pseudo-disturbances d̃, based on a singular value decompo-
sition of the steady-state gain matrix from disturbances to outputs (Gy0

d0
). The

set of pseudo-disturbances is ∆d0 = Ṽy0

d0
∆d̃0 where Ṽy0

d0
is found from a singu-

lar value decomposition of the steady-state disturbance gain Gy0

d0
. Form the new

optimal sensitivity matrix F̃ = FṼy0

d0
which is used in the null space method.

Below we include a simple example to illustrate rule 3.

Example 5.3 Example Consider the following objective function

J(u,d0) = (u − d1)
2 + 0.5(u − d2)

2 + (u − d3)
2 (5.23)

with one input (u) and three disturbances (d1, d2 and d3), where |di| ≤ 1 and d∗1 = d∗2 =
d∗3 = 0. The Hessian matrices are Juu = 5 and Jud =

[
−2 − 1 − 2

]
. In using the null space

method, we need ny0
= nu + nd0

= 1 + 3 = 4 measurements. Assume that we have only three
measurements available:

∆y0 = Gy0∆u + G
y0

d0
∆d =





∆y1

∆y2

∆y3



 =





0.1
−1
−0.5



∆u +





1 −1 0.42
5 2 5.8
3 −2.5 2









∆d1

∆d2

∆d3



 (5.24)

where G
y0

d0
has full rank (= 3), and the singular value decomposition is

G
y0

d0
= U

y0

d0
Σ

y0

d0
V

y0

d0

T
(5.25)

where

U
y0

d0
=





−0.106 0.340 −0.934
−0.917 −0.398 −0.041
−0.385 0.852 0.354



 Σ
y0

d0
=





8.506 0.000 0.000
0.000 3.421 0.000
0.000 0.000 0.114



V
y0

d0
=





−0.687 0.266 −0.676
−0.090 −0.955 −0.284
−0.721 −0.134 0.680





From the singular values we see that σ2

σ3
≈ 30 so we propose to lump the disturbances

into two pseudo-disturbances. Recognizing that

F = −Gy0J-1
uuJud + Gy0

d0

we have

F =





1.040 −0.980 0.460
4.600 1.800 5.400
2.800 −2.600 1.800





and

Ṽy0

d0
=





−0.687 0.266
−0.090 −0.955
−0.721 −0.134





which give the new sensitivity matrix in terms of the pseudo-disturbances

F̃ =





−0.958 1.150
−7.216 −1.222
−2.988 2.984




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Calculating the null space we get

H =
[
−0.936 −0.021 0.352

]
(5.26)

Let the controlled variable be cns = Hy0 and compare the loss for this candidate with
the single measurement candidates (c = yi). If we ignore the noise, the loss is given
by L = 1

2
z2 and is as in Table 5.11. Compared to the candidates c = yi, i = {1, 2, 3}

Table 5.1: Loss for different disturbances for candidate controlled variables.
The loss in column 5 is for worst-case disturbance.

ci d1 = 1 d2 = 1 d3 = 1 ‖d‖ = 1
cns 0.31 0.05 0.31 0.67
y1 270.4 240.1 52.9 563.4
y2 52.9 8.1 72.9 133.9
y3 78.4 67.6 32.4 178.4

the candidate cns has substantially lower loss and shows good self-optimizing properties,
and lumping disturbances yields a candidate with acceptable loss.

5.3.3 Extended null space method (Rule 4)

The above procedure where we lump disturbances, may not give candidate controlled
variables with good self-optimizing properties if the disturbances are “different”, so
that we cannot form pseudo-disturbances. In Chapter 4 we generalized the null space
method for the case of too few measurements. In Section 4.3.4 we found the locally
exact expression

MnHG̃y0 = J̃ (5.27)

where G̃y0 = [Gy0 Gy0

d0
] is the augmented plant and J̃ = [J

1/2
uu J

1/2
uu J-1

uuJud0
].

Since the number of measurements ny0
< nu + nd0

the matrix [Gy0 Gy0

d ] is non-
square and not invertible. For this case, perfect disturbance rejection (Md = 0 in eq.
5.15) is not possible). We found in Section 4.3.4 that a reasonable approach was to use
the pseudo-inverse (the Moore-Penrose generalized inverse, Horn and Johnson (1985))
and select MnH such that

MnH = J̃[G̃y0 ]† (5.28)

which is an explicit expression for the matrix MnH. This is the best MnH with
Md ≈ 0. This motivates rule 4.

Disturbance discrimination rule 4: Extended null space method Use the ex-
tended null space method and select MnH such that

MnH = J̃[Gy0 ]† (5.29)

Mn can be selected freely.

1Note that when calculating the loss in Table 5.1 the full disturbance vector is used. The reduced
disturbance space is only used in the synthesis of the controlled variable.
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Now, we illustrate the null space specific rules 3 and 4 on a simple example.

Example 5.4 Example Here we consider a simple example with two inputs, u1 and u2,
and three disturbances, d1, d2 and d3. Assume that the objective function is

J = (u1 − d1)
2 + 0.5(u2 − d2)

2 + 2(u1 − d3)
2 + u1u2 (5.30)

and assume that we have four measurements available, where y0 = Gy0u + G
y0

d0
d and

Gy0 =







16.492 0.2300
-14.675 6.5730
1.4760 1.8520
2.7840 -3.6420







and G
y0

d0
=







-19.044 14.801 11.385
1.9460 -9.2150 -6.6230
2.8300 -2.1020 -11.343
6.4410 1.9830 7.4590







and the nominal disturbances are d1 = d2 = d3 = 0 Here, we consider the following
candidates for self-optimizing control, see Table 5.2. The worst case loss for the case

Table 5.2: Candidate controlled variables for the example.
c1 c2 Comment
c1
ns,1 c1

ns,2 Linear combination all four measurements using the
extended null space method (Rule 4)

c2
ns,1 c2

ns,2 Linear combination all four measurements using
lumping of disturbances (Rule 3)

y1 y2 Measurements y1 and y2

y1 y3 Measurements y1 and y3

y1 y4 Measurements y1 and y4

y2 y3 Measurements y2 and y3

y2 y4 Measurements y2 and y4

y3 y4 Measurements y3 and y4

of no noise is Ld = 1
2
σ(Md)

2 and if we include noise the loss is Ldn = 1
2
σ([Md My

n])2

as given by eq. (5.9). Table 5.3 summaries the losses for all candidates, where we also
include the true minimum loss. From the table we see that both Rule 3 and 4 yield

Table 5.3: Worst case loss for all candidates with and without noise. Ld

denotes the worst-case disturbance loss, while Lnd denotes the worst-case com-
bined noise and disturbance loss

c1 c2 Ld Ldn

c1
opt c2

opt 1.4651 1.6472

c1
ns,1 c1

ns,2 1.6602 1.7968
c2
ns,1 c2

ns,2 1.6588 1.8857

y1 y2 15.303 15.335
y1 y3 26.470 26.576
y1 y4 12.097 12.131
y2 y3 25.121 25.352
y2 y4 17.362 17.645
y3 y4 43.549 44.075

candidates with good self-optimizing properties. In fact, the lumping of disturbances
yields a candidate with lower disturbance loss than using the extended null space method
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(Rule 4). However, when we include noise, the candidate using the extended method
has smaller loss. All single measurement candidates show large losses.

The above methods are not exact and must be used with some caution.

5.4 General discussion

Rule 1 above is generic in the sense that it does not depend on the resulting controlled
variables. Rule 2 may yield inaccurate results, and must be used with caution. Rules
3 and 4 are specific for the null space method.

Morari et al. (1980) proposed several disturbance classification rules. Their “distur-
bance classification rule 2” proposed to include only disturbances that have a serious
impact on the objective function. They suggest to measure the impact by the the
Lagrange multiplier, λi = (∂Jopt/∂di)f ′=0, which is a constrained derivative (f ′ = 0)
evaluated at the nominal disturbance d∗. The value of the Lagrangian multiplier indi-
cates the sensitivity of the optimal objective value for a perturbation of the disturbance.
Intuitively, this rule makes sense since a disturbance that has a small impact on the
optimal value of the objective function, could be neglected. However, the rule is not
sound. First, it does not consider the measurements. Second, the idea of considering
the effect on the Lagrangian multiplier may give wrong results, as illustrated by the
two scenarios in Figure 5.1. In Figure 5.1(a) we see that for a given disturbance change
the optimal change in the objective function is small; Nevertheless, the optimal change
in the input is large, so the disturbance is important. Conversely, in Figure 5.1(b) we
show that a large change in the optimal objective function may correspond to a small
input change. For both scenarios, it is clear that selecting disturbances based on the
Lagrangian multipliers may be inaccurate. Thus, we do not recommend using “rule 2”
of Morari et al. (1980).

The above rules have been illustrated on simple examples. In Chapter 8 we use
rule 2 above on finding important disturbances for a Petlyuk distillation column. In
Chapter 11 we use the lumping of disturbances (rule 3), on a Evaporator case.

5.5 Conclusions

In typical chemical processes, the number of disturbances can be large. Few methods
for discriminating between disturbances exist in the literature. Here, we have focused
on disturbance discrimination in the setting of self-optimizing control. We find that we
cannot separate the disturbance discrimination from the selection of control structure.
Nevertheless, we propose two generic rules for selecting disturbances. The first rule
is to select disturbances that have a impact on the cost or the measurements. The
second rule says that we should include measurements that have an impact on loss
when minimizing the measurement deviation from the nominal point.

In addition, we propose two rules that are specific for the null space method of
Chapter 3. The above rules must be used with some caution.
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(a) Scenario 1: The optimal sensitivity is
small, while the optimal change in input is
large
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(b) Scenario 2: The optimal sensitivity is
large, while the optimal change in the input
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Figure 5.1: Effect of disturbances on optimal objective function (J) and
corresponding optimal change in input
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Chapter 6

Effect of non-optimal nominal
setpoints on self-optimizing control
structures

Manuscript in preparation

The previous work on self-optimizing control has assumed that the nominal point
is optimal. This paper shows that the average difference in loss between alternative
choices of controlled variables is the same when the nominal point is non-optimal.
Thus, the previous results hold also for non-optimal nominal setpoints.

6.1 Introduction

In this paper we consider the loss imposed by using a constant setpoint policy, c = cs.
We have previously shown that the expected loss may depend strongly on the selected
controlled variables. However, in the previous work we assumed that the nominal point
was optimal, but this is not likely to be the case in practice. The question then is:
Does the ranking of candidate controlled variables depend on the nominal point? In
this paper we show that the answer is “no”. We show that the average difference in
loss between alternative choices for the controlled variables c is the same, irrespective
of the nominal point.

The selection of non-optimal nominal setpoints has been discussed for the con-
strained case, when all controlled variables lie on active constraints. We then need
to “backoff” from the constraints for the solution to remain feasible in presence of
measurement errors (Perkins et al., 1990; Narraway et al., 1991; Kookos and Perkins,
2002b,a). For the case of “unconstrained” degrees of freedom, which is the focus here,
the effect of nominal setpoint error has not been discussed. Govatsmark and Skoges-
tad (2005) discuss the selection of robust setpoints, by the use of robust optimization
(Glemmestad et al., 1999), to remain feasible for all disturbances, but do not discuss
the effect of using non-optimal setpoints on the candidate rank and the effect on the
loss.

81
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The goal of this paper is to answer questions such as:
1. How do non-optimal nominal setpoints affect the loss for each candidate con-

trolled variable, i.e. how sensitive is each candidate to nominal setpoint error?
2. How is the rank (if at all) between the best candidates for self-optimizing control

altered when uncertainties in the nominal point exist?
Let the true optimal point, corresponding to the nominal disturbance d∗ be

(u∗,d∗) = (uopt(d∗),d∗) (6.1)

where u is the input and d is the disturbance and let the actual nominal point be

(u0,d∗) (6.2)

where by assumption u0 6= u∗, so the nominal point is not optimal.
Below we illustrate the effect of non-optimal setpoints on a simple example. The

observations made in this example are analyzed in the subsequent section.

Example 6.1 Introductory example

Consider a simple toy example, with one unconstrained input (u) and one disturbance
(d) with the following operational objective

J = (u − d)2 (6.3)

Let the nominal disturbance be d∗ = 0. From eq. (6.3), we see that the optimal input is
uopt(d) = d and the nominal optimal input is uopt(d∗) = 0. Assume that the following
measurements are available:

y1 = 0.1(u − d) y3 = 2u − 0.5d (6.4)

y2 = 2u − d y4 = u − 3d (6.5)

(6.6)

Using the true nominal optimal setpoint (uopt(d∗)), we have the following setpoints
ys

i = 0 ∀ i and the resulting corresponding inputs when requiring yi = ys
i

y1 − ys
1 = 0 → u = d y3 − ys

3 = 0 → u = 1/4d (6.7)

y2 − ys
2 = 0 → u = 1/2d y4 − ys

4 = 0 → u = 3d (6.8)

Since Jopt(d) = 0 ∀ d we have that the loss for the different candidates with respect to
the disturbance is:

L1 = (d − d)2 = 0 L3 = (1/4d − d)2 = 9/16d2 (6.9)

L2 = (1/2d − d)2 = 1/4d2 L4 = (3d − d)2 = 4d2 (6.10)

The losses using nominal optimal setpoints are plotted in Figure 6.1 for all candidate
controlled variables. As seen, candidate y1 has the lowest loss for all disturbances,
followed by y2, y3 and y4, in that order. At the nominal point, all candidates have zero
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Figure 6.1: Loss using nominal optimal setpoints u∗. The average loss for
each candidate is shown to the left of the plot.
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Figure 6.2: Loss with non-optimal nominal operation (u0 6= u∗ = 0). The
average loss (Li,a) is shown to the left of each plot. Note that the difference in

loss (in going from u∗ to u0) is the same for all candidates, e.g. (L
(u0=−1)
i,a −

L
(u0=0)
i,a ) = 1 for all candidates going from u∗ = 0 to u0 = −1.
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Table 6.1: Average loss for all candidates using nominal optimal setpoint.
yi y1 y2 y3 y4

Li 0 0.0833 0.1875 1.333

loss. The average loss for all candidates using nominal optimal setpoint is shown in
Table 6.1.

Assume now that the actual nominal point is not optimal, but lies in the range
u0 ∈ [−1, 1]. In Figure 6.2 we plot the loss with respect to the disturbance for all
candidates (with u0 as a parameter).

With a nominal setpoint error we find, as expected, that the loss is reduced for
some disturbances, but on the other hand it becomes even larger for other disturbances.
Thus, if we consider a specific value of the disturbance, then the ranking may vary.
However, more importantly we find that the difference in the average loss (assuming
that all values of d are equally likely) is not changed. That is, candidate y1 has always
the lowest average loss, followed by y2, y3 and y4. This shows that, at least for this
example, the effect of using non-optimal nominal setpoint does not change the rank
between the candidates. In fact, it seems that the difference in the loss between the
candidates is unaffected by the setpoint error. Note that the difference in worst case
loss between the candidates increases.

Example 6.1 shows that the internal rank of the candidate does not change for a
setpoint error. Below, we show that this holds generally for the local loss for cases with
one disturbance and one input.

6.2 Problem definition and governing equations

We assume that the operational objective can be described by

min
u

J(u,d) (6.11)

where J is a scalar cost function and we assume that all active constraints have been
implemented. Locally, let the controlled variables be given by

c = Gu + Gdd (6.12)

where G and Gd are the steady-state gain from the inputs and disturbances, respec-
tively, to the controlled variables c. Assume that the nominal point (u0,d∗) (with the
nominal disturbance d∗) is different from the true optimal nominal point (uopt,d∗).
The nominal setpoints are:

cs = Gu0 + Gdd
∗ (6.13)

Requiring c − cs = 0 yields

c − cs = Gu + Gdd −
[
Gu0 + Gdd

∗
]

= G(u − u0) + Gd(d − d∗) = 0
(6.14)
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We assume that G is invertible such that

u = u0 − G-1Gd(d − d∗) (6.15)

which is an expression for the actual implemented input, if we neglect control error
(assuming integral action in the controllers). Halvorsen et al. (2003) show that the
true optimal input vector is:

uopt(d) = uopt(d∗) − J-1
uuJud(d − d∗) (6.16)

where Juu and Jud are the Hessian matrices of the cost function J given in eq. (6.11).
The input deviation (the deviation from the true optimal input) is from eqs. (6.15)
and (6.16)

u − uopt =
(
u0 − G-1Gd(d − d∗)

)
−
(
uopt(d∗) − J-1

uuJud(d − d∗)
)

=
(
u0 − uopt(d∗)

)
+
(
J-1

uuJud − G-1Gd

)
(d − d∗)

(6.17)

Let eu = u − uopt and e0
u = u0 − uopt(d∗), and eq. (6.17) simplifies to:

eu = e0
u + G-1 (v(d) + n) (6.18)

where v(d) = GJ-1
uuJud − Gd and n is the measurement error in c. Thus, the input

deviation for a given d is the sum of the nominal setpoint error e0
u and the error from

the disturbances (v(d)) and the implementation error (n). From eq. (6.18) we see that
eu may be zero for a disturbance d 6= d∗, if e0

u = −G-1 (v(d) + n).
Halvorsen et al. (2003) show that the loss,

L = J(c + n,d) − Jopt(d) (6.19)

defined as the difference between the objective value for a given controlled variable and
the true optimal objective value, is given by

L =
1

2
eT

uJuueu =
1

2
zTz where z = J1/2

uu eu (6.20)

where Juu is positive semi-definite so L ≥ 0 ∀ d and L is quadratic in the input
deviation.

Below, we study the scalar case with one degree of freedom (u) and one disturbance
(d).

6.3 Effect of using non-optimal nominal points:

Scalar case

We first study the effect of using non-optimal nominal setpoint for the simplest pos-
sible system with one disturbance (d) and one unconstrained input (u). We make the
following assumptions:
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1. The true loss function is given by eq. (6.20), i.e. we consider the local behavior.

2. The equations describing input-output behavior are linear as given by eq. (6.12).

For the moment, we disregard the effect of noise (n = 0). Eq. (6.17) yields

eu =
(
u0 − uopt(d∗)

)
+
(
J -1

uuJud − G-1Gd

)
(d − d∗)

= e0
u +

(
J -1

uuJud − G-1Gd

)
(d − d∗)

(6.21)

Since eu is scalar, we have from eq. (6.20),

L = 1/2z2 (6.22)

i.e. the loss is proportional to z2 where z is given by

z = J1/2
uu eu = J1/2

uu e0
u + J1/2

uu

(
J -1

uuJud − G-1Gd

)
(d − d∗)

= J1/2
uu e0

u + Md(d − d∗)
(6.23)

where Md = J
1/2
uu (J -1

uuJud − G-1Gd). For the case of optimal nominal point (e0
u = 0)

(we indicate this by prime ( “ ′ ”):

z′ = Md(d − d∗) (6.24)

For a given controlled variable (given Md), the increase in loss for having non-optimal
nominal setpoint is:

L(d) − L(d)′ = 1/2(z(d)2 − z(d)′2) = 1/2
([

J1/2
uu e0

u + Md(d − d∗)
]2 − [Md(d − d∗)]2

)

= 1/2
(

Juue
0
u
2
+ 2Juu

1/2e0
uMd(d − d∗)

)

(6.25)

Since Juu is positive definite (positive in the scalar case), we have that the first term
on the last line in eq. (6.25) is always positive. Assume now that d ∈ [d1, d2], and
∆dmax = (d2 − d∗) = −(d1 − d∗) such that the disturbance is symmetric around the
nominal disturbance d∗. The maximum (worst-case) and minimum (best-case) change
in loss are:

L − L′
|max

= 1/2
(

Juue
0
u
2
+ 2J1/2

uu |e0
uMd|∆dmax

)

(6.26)

L − L′
|min

= 1/2
(

Juue
0
u
2 − 2J1/2

uu |e0
uMd|∆dmax

)

(6.27)

Depending on the relative magnitude of the first and second term, the loss may in fact
decrease (L ≤ L′) for some values of ∆dmax. This was confirmed in Example 6.1, see
for instance for candidate y4 for d = −0.25 , where the loss is higher for u0 = 0 (the
optimal nominal value) than for u0 = 0.5.
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However, let us consider the average loss over d ∈ [d1, d2], which is defined as:

Lavg =
1

d2 − d1

∫ d2

d1

L(d) dd (6.28)

The change in loss when introducing non-optimal nominal setpoint is given by:

[L − L′]avg =
1

d2 − d1

∫ d2

d1

[L − L′] dd

=
1

d2 − d1

∫ d2

d1

1/2
(

Juue
0
u
2
+ 2J1/2

uu e0
uMd(d − d∗)

)

dd

=
1

2(d2 − d1)

[

Juue
0
0
2
d + J1/2

uu e0
uMd(d − d∗)2

]d2

d1

=
1

2(d2 − d1)

(

Juue
0
u
2
(d2 − d1) + J1/2

uu e0
uMd

(
(d2 − d∗)2 − (d1 − d∗)2

))

=
1

2∆dmax

(

Juue
0
u
2
∆dmax + e0

uMd

(
∆d2

max − (−∆dmax)
2
))

=
Juu

2
e0

u
2

(6.29)

where we have assumed that dmax = (d2 − d∗) = −(d1 − d∗). Thus, we have the very
important result that for a nominal setpoint error, the increase in loss is independent
of what we control (independent of c).

Remark. If the nominal disturbance is not in the center of the allowable range, the second
term on line four in eq. (6.29) (quadratic in d) is not zero, and would bias the change in loss.
Depending on what direction the nominal disturbance is biased, this could potentially result
in a decrease in the average loss.

In summary, the increase in average loss is independent of what candidate we select
to control. Thus, the difference in average loss between two candidates is equal to the
difference with optimal nominal setpoints. In other words, the candidate rank remains
the same, independent of the nominal setpoint error. If the average increase in loss is
not acceptable, focus should be on finding better estimates of the nominal optimum,
since we cannot affect the loss by selecting another controlled variable.

6.4 General derivation

The generalization to multiple inputs and multiple disturbances is straightforward.
The loss is given by

L(d) = 1/2z(d)Tz(d) 4 1/2‖z(d)‖2
2

4 1/2
nu∑

i=1

(zi)
2 (6.30)
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where z = [z1 · · · znu
] and we assume that zi is real. The loss is then given as the sum

of squares of zi. If we neglect the implementation error (n = 0) we have that

zT = J1/2
uu e0

u + Md(d − d∗) (6.31)

where Md = J
1/2
uu (J-1

uuJud − G-1Gd). The loss is the sum of squares of zi and

zi = J
1/2
uu,ieu + Md,i(d − d∗) (6.32)

where Juu,i and Md,i is the i’th row of the matrices Juu and Md, respectively. Let
d ∈ D where each di is in [d1,i, d2,i], (D is a hyper-rectangle). Then the average loss is
given by

Lavg =
1

VD

∫

· · ·
∫

D

∑

i

z2
i dD =

1

VD

∑

i

∫

· · ·
∫

D

z2
i dD (6.33)

where VD is the “volume” of the nd-dimensional hyper-rectangle defined by D and the
integral of the sums equals the sum of the integrals. Thus, the loss is the sum of the
contributions from each element in the vector z2

i . The effect of a nominal setpoint error
on the loss for a given set of controlled variables is then

Lavg − L′
avg =

1

VD

∑

i

∫

· · ·
∫

D

(z2
i − z′i

2
) dD (6.34)

and it can be shown that

∫

· · ·
∫

D

(z2
i − z′i

2
)dD = 2nd

(

J
1/2
uu,ie

0
u

)2
nd∏

j=1

∆dj,max (6.35)

where nd is the number of disturbances and it has been assumed that di ∈ [d1,i, d2,i].
Since the volume of a hyper-rectangle is given by

VD = 2nd

nd∏

j=1

∆dj,max (6.36)

we have eq. (6.34) that the total increase in loss is

Lavg − L′
avg = 1/2

1

2nd

∏nd

j=1 ∆dj,max

∑

i

2nd

(

J
1/2
uu,ie

0
u

)2
nd∏

j=1

∆dj,max

= 1/2
∑

i

(

J
1/2
uu,ie

0
u

)2

(6.37)

which is always positive, and more importantly, independent of what we select to
control. Thus, the ranking of the candidate controlled variables c does not depend on
the nominal point being optimal in the multivariable case either.
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Effect of non-optimal nominal point on candidate rank

For illustration, compare two candidates, where we have for each candidate that

z1
i = J1

uu,i
1/2

eu + M1
d,i(d − d∗) (6.38)

and

z2
i = J2

uu,i
1/2

eu + M2
d,i(d − d∗) (6.39)

As was the case for the single input-single disturbance case, the increase in the loss
for a nominal setpoint error is independent of the controlled variable as given by eq.
(6.37). Comparing two candidate control structures, c1 and c2, (these are vectors) we
can easily show that the increase in loss due to a nominal setpoint error is given by:

[L2 − L1]avg = 1/2
∑

i

z2
2,i − z2

1,i = 1/6
∑

i

(
nd∑

j=1

((
M2,j

d,i

)2 −
(
M1,j

d,i

)2
)

[∆dj
max]

2

)

= [L′
2 − L′

1]avg (6.40)

where M j
d,i is matrix element from row i and column j. If we assume that

((
M2,j

d,i

)2 −
(
M1,j

d,i

)2
)

≥ 0 ∀j

then the effect of implementation error does not influence the rank between the candi-
dates, nor the difference in loss.

The implication of this assumption, is that for all disturbance directions the loss
is higher for candidate c2 than for c1. This assumption is strong, since the difference
in loss between two candidates is independent of the nominal setpoint error. Thus, we

may have directions in which
((

M2,j
d,i

)2 −
(
M1,j

d,i

)2
)

≤ 0, as long as the sum over all

disturbances are positive (as long as [L′
2 − L′

1] ≥ 0).
While the nominal setpoint error does not influence the rank between the candi-

dates, the absolute loss is higher, as given by eq. (6.37). If the increase in loss is not
acceptable, one should improve the estimate on the nominal optimum, since the loss is
unavoidable, regardless of which controlled variables are being used.

6.5 Conclusions

In this paper, the effect of non-optimal nominal setpoints on the self-optimizing control
properties has been investigated. The nominal setpoint error yields a higher loss for all
candidates structures, but the average effect on the loss is independent of the candidate
controlled variable. This is fortunate, since then the best structure for self-optimizing
control does not depend on the nominal setpoint error.

The assumptions on system behavior (linear models, quadratic objective), are re-
strictive but hold, at least, locally.
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Chapter 7

Dynamics of controlling
measurements combinations

Manuscript in preparation

In this paper, we discuss the dynamics of controlling measurement combinations. The
basis for the discussion is the null space method of Chapter 3, where we proposed
to form controlled variables c = Hy as linear combination of measurements. The
coefficient matrix H is selected as the null vectors of the optimal sensitivity matrix
F from the disturbances to the measurements such that HF = 0. For systems with
multiple unconstrained degrees of freedom, we discuss the freedom of changing the null
vector basis, and how this degree of freedom may be used in order to achieve improved
dynamic properties.

The null space method is steady-state only, and selecting controlled variables as
linear combinations of measurements may give rise to complex dynamic behavior. We
show here, that the freedom of selecting basis vectors for the left null space of F,
translates into the use of static compensators. We compare this work with previous
work on compensator design (Skogestad and Postlethwaite, 1996). More importantly,
using a combination of measurements as controlled variables may give rise to right-half
plane (RHP) zeros and we propose a method of using filters on the measurements to
avoid the limitations imposed by RHP zeros.

7.1 Introduction

Self-optimizing control deals with how to select controlled variables based on stationary
economic models (Skogestad, 2000) and is a sub-task of the plantwide control design
procedure, see Larsson and Skogestad (2000) for a review on plantwide control design.
In plantwide control design procedures the selection of controlled variables (outputs) is
decoupled from the actual linking of the manipulated inputs and outputs. The selection
of controlled variables in the supervisory control layer is often based on steady-state,
and the controllability of the resulting control structure must be analyzed before the

91



92 7. Dynamics of controlling measurements combinations

control structure can be accepted. If the controllability of the proposed structure is
not acceptable, we need to go back and redo the design.

Here, we discuss controllability issues related to the use of the null space method of
Chapter 3. The null space method is a systematic method for selecting self-optimizing
controlled variables as linear combinations of measurements (c = Hy), where the
coefficient matrix H is selected such that the rows hi of H span the left null space
of the optimal sensitivity matrix from the disturbances to the measurements F. That
is, hi is the null vectors of the left null space of F. The basis vectors can be selected
freely (see Chapter 4), as long as they are linearly independent (they span the left null
space), i.e. HF = 0. Thus, the choice of basis vectors does not affect the steady-state
self-optimizing properties of the resulting structure. Another set of basis vectors will
certainly produce another set of controlled variables (the measurements are weighted
differently), however the self-optimizing properties are retained. Especially, in the case
of multiple unconstrained degrees of freedom, we can use this freedom in shaping the
plant.

We extend the static coefficient matrix H, and propose a new transfer function
matrix

Hc(s) = C(s)HCy(s) (7.1)

where the nc × ny matrix H is selected such that HF = 0, C(s) is a nc × nc transfer
function compensator matrix and Cy(s) is a diagonal filter matrix. We require that
Cy(0) = I and C(0) is non-singular such that Hc(0)F = 0, i.e. the self-optimizing
properties are retained. This configuration is illustrated in Figure 7.1.

K(s)

Gy(s)
u

y1

y2

yny

+

cc
s

G
y
d

d

+

+

+

+

+

+

−

CONTROLLER KH

cc
Compensator

C(s) c

HCy(s)

Combine
measurements

Measurement
filter

Figure 7.1: Block diagram of the extended coefficient matrix Hc(s) for the
null space method

First, we recapitulate some results from the null space method of Chapter 3. There-
after, we discuss the use of compensators (C(s) above) and finally, we discuss the use
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of measurement filters (Cy(s) above) for improving the controllability for controlled
variables that are combinations of measurements.

7.2 Previous work: The null space method

The basic idea of the null space method for selection of self-optimizing control variables
is to find a linear combination of measurements (the matrix H) and by using constant
nominal setpoints, operation is near-optimal in spite of disturbances and implementa-
tion errors.

In general, the controlled variables, synthesized using the null space method, are
on the form:

c(s) = Hy(s) = HGy(s)u(s) = G(s)u(s) (7.2)

where G(s) is a transfer function matrix and the real constant matrix H (the coefficient
matrix) is selected such that the rows of H correspond to the null vectors of the left
null space of the optimal sensitivity matrix

∆yopt = F(0)∆d (7.3)

where d is the disturbance vector (inputs which we cannot affect) and F(0) is evaluated
at steady-state. We want to select H such that ∆copt = 0 for all disturbances. This
is obtained by selecting H in the left null space of F(0) such that HF(0) = 0. The
optimal sensitivity matrix F depends on the objective function J which we want to
minimize. In Chapter 4 we showed that selecting another set of basis vectors for the
left null space of F yields

Hc = CH (7.4)

where C is a nc×nc non-singular matrix and CHF(0) = 0, i.e. the matrix C rotates the
basis vectors for the null space. In addition, we showed that changing the basis vectors
do not affect the steady-state loss from disturbances (Md), nor affect the contribution
from the implementation error (Mn) on the loss for a given set of measurements y.
Thus we cannot improve the steady-state self-optimizing behavior by selecting another
set of basis vectors (by manipulating matrix C).

7.3 Dynamic compensators

Here we consider using the freedom of selecting C for systems with multiple uncon-
strained degrees of freedom (u) and show that this is similar to the use of compensators
(Skogestad and Postlethwaite, 1996) in multivariable control design.

Consider the block diagram representation in Figure 7.2. Inputs and disturbances
enter through Gy(s) and Gy

d(s), respectively. The measurements from the plant enter
the block H which takes all (or a subset of the) measurements and returns the controlled
variables c. Normally, the controlled variables c correspond to single measurements
yi, but in general it can be any function fy(y) of the measurements, as long as the
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number of controlled variables equals the number of inputs. The block C represents
a compensator, resulting from the freedom of selecting basis vectors for the null space
method. Thus, the analogy to the use of compensators in multivariable control design
is apparent. We assume that C is static (rotating the null vectors), but this is not a
fundamental limitation, and we can use any transfer function matrix C(s) as long as
C(0) 6= 0 which would give zero steady-state gain.
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+

+

+
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CONTROLLER KH

C(s)

cc
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Figure 7.2: Block diagram representation of the use of compensators C.

To illustrate, assume for the moment that G(s) is invertible. Introducing the com-
pensator C(s) yields the new shaped plant

cc(s) = C(s)Hy(s) =

Gc(s)
︷ ︸︸ ︷

C(s)HGy(s)
︸ ︷︷ ︸

G(s)

u(s) +

Gc
d
(s)

︷ ︸︸ ︷

C(s)HGy
d(s)

︸ ︷︷ ︸

Gd(s)

d(s) (7.5)

Assume now that the preferred plant is diagonal, i.e. Gc(s) = C(s)G(s) = I. By
selecting C = G(s)-1 we have the shaped plant

cc(s) = G(s)-1G(s)u(s) + G(s)-1Gd(s)d(s) = Iu(s) + Gc
d(s)d(s) (7.6)

This approach is similar to the use of pre- and post-compensators (W1 and W2 re-
spectively) in multivariable controller design, where the shaped plant is

Gc = W2GW1 (7.7)

The compensator terms Wi(s) are used to counteract the interactions in the plant and
to give a resulting desired plant (Skogestad and Postlethwaite, 1996). Both pre- and
post-compensators are used, such as in SVD-controllers (Hovd et al., 1994; Hung and
MacFarlane, 1982). Typically, a set of controlled variables with a corresponding control
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objective is given, and the compensators are added such that the controller design is
simplified. The most important result from the use of compensators in multivariable
controller design is the use of decoupling in decentralized control. Below we summarize
the most important results.

7.3.1 Decoupling

A decoupled control is achieved when the compensator (or the null vector rotation)
matrix C is such that Gc(s) in eq. (7.5) is diagonal at a selected frequency (or range
of frequencies). Skogestad and Postlethwaite (1996) list several possible decoupled
systems:

1. Dynamic decoupling : Gc(s) is diagonal at all frequencies. Then the compensator
is C(s) = G(s)-1 and the resulting plant is Gc(s) = I for all frequencies. Since
the system is diagonal for all frequencies, we can design a diagonal controller

K(s) =

[
k1(s)

...
knc

]

.

2. Steady-state decoupling : Gc(0) is diagonal. Thus we select the post-compensator
as C = G(0)-1.

3. Approximate decoupling at frequency ω0: Gc(jω0) is as diagonal as possible .
This is achieved by selecting the post-compensator as a constant C = G-1

0 where
G0 is the real approximation of G(jω0). A real approximation may be found
using the align method of Edmuns and Kouvaritakis (1979) (see also Maciejowski
(1989)). The bandwidth frequency is a good selection for ω0, because the effect
on performance of reducing interaction is normally greatest at this frequency.

In the setting of the null space method, the steady-state decoupling is of greatest
interest since we consider slow varying disturbances (low frequency disturbances). Note
that the above decoupling may simplify the controller design since we can design a
diagonal controller. To summarize, the selection of C (basis vectors) is similar to the
use of compensators in multivariable controlled design.

Next, we consider the effect of rotating the null vectors on the resulting poles and
zeros of the plant.

7.4 Effect of null space basis on poles and zeros

Here we consider the effect of changing the null space basis vectors (selecting a static
C) for the poles and zeros of the resulting controlled plant. From eq. (7.5) we have

cc(s) = Gc(s)u(s) + Gc
d(s)d(s) (7.8)

where Gc(s) = CG(s) and Gc
d(s) = CGd(s).

Poles

For a multi-input multi-output (MIMO) system on transfer function form, the poles
are defined as:
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Theorem 7.1 (MacFarlane and Karcanias, 1976) The pole polynomial φ(s) corre-
sponding to a minimal realization of a system with transfer function matrix G(s), and
is the least common denominator of all non-identically zero minors of all orders of
G(s).

As seen from eq. (7.8), Gc(s) has the same set of poles as the transfer function
G(s) as long as the compensator C does not have any dynamic terms. For dynamic
compensators, the situation is different in that the resulting plant contains the poles of
the two subsystems (if no pole/zero cancellation is allowed). For the case of a dynamic
decoupler, as discussed above, we intentionally cancel poles and zeros by using the
inverse of the plant as a decoupler.

Zeros

In general, zeros are the values of s for which G(s) loses rank. More specific, following
the definition of MacFarlane and Karcanias (1976), the zeros are defined as:

Theorem 7.2 Zeros. zi is a zero of G(s) if the rank of G(zi) is less that the normal
rank of G(s).

From eq. (7.8) it is clear that if C is a static matrix, the rank of Gc equals the rank of
G, as long as C is non-singular (Skogestad and Postlethwaite, 1996). To conclude, the
poles and zeros are unaffected by using another set of basis vectors (by changing the
matrix C) for the null space. Next, we show that the pole and zero directions depend
on the basis vectors used.

Pole and zero directions

Let G(s) have a zero at s = z. Then G(s) loses rank at s = z, and we have non-zero
vectors uz and cz such that

G(z)uz = 0, cH
z G(z) = 0 (7.9)

Here uz is defined as the input zero direction and cz is defined as the output zero
direction. The output directions yield the directions that may be difficult to control
(zero gain).

Let G(s) have a pole at s = p, then G(p) is infinite, and we may write

G(p)up = ∞ cH
p G(p) = ∞ (7.10)

where up is the input pole direction and cp is the output pole direction. By using static
compensators (no additional poles or zeros in the compensator C) the output pole and
zero directions are

cc
z
HGc(z) = (cH

z C)G(z) = 0 and cc
p
HGc(p) = (cH

p C)G(p) = ∞ (7.11)

and it is evident that we can move the effect of zeros and poles to one output. One
example, is to move a RHP zero to one output (Skogestad and Postlethwaite, 1996).
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If the zero is pinned to one output (e.g. cz has only one element different from zero),
we cannot move the effect to another output.

To summarize, the use of a static compensator does not affect the poles and zeros,
however, we can affect the pole and zero output direction. On the other side, we can
use a static compensator (freedom of selecting the basis vectors) to shape the plant
at a desired frequency. Next, we illustrate, by means of an example, the use of static
compensators in the null space method, and how it affects the economics of operation.

Example 7.1 Here we study a system with three measurement, two inputs and one
disturbance1. The input and disturbance gains are:

Gy(s) = f(s)

[
16.8(920s2+32.4s+1) 30.5(52.1s+1)

−16.7(75.5s+1) 31.0(75.8s+1)(1.582s+1)
1.27(−939s+1) 54.1(57.3s+1)

]

(7.12)

and

Gy
d(s) = f(s)

[
4.30(7.28s+1)
−1.41(74.6s+1)

5.40

]

where f(s) =
e−2s

(18.8s + 1)(78.8s + 1)(5s + 1)
(7.13)

We assume that the operational objective is J(u, d) = (y2 − y1)
2 +(y1 −d)2 and we find

that the optimal sensitivity matrix ∆yopt = F∆d evaluated at steady-state (s = 0) is
FT =

[
1 1 4.4154

]
. The orthogonal basis for the null space is

[
h1

h2

]

=

[
−0.2157 0.9617 −0.1690
−0.9523 −0.1690 0.2540

]

(7.14)

Now, we consider three different static decouplers C:
1. Using the above basis vectors the resulting system is (labeled ’c0’ hereafter).

G0(s) = f(s)
[
−19.8991(1+3.126s)(1+53.59s) 14.0942(1+2.542s)(1+99.66s)

−12.8551(1+47.31s+(33.84s)2) −20.5454(1+0.5602s)(1+54.51s)

]

(7.15)

with the poles and zeros

p = {−0.2000,−0.0532,−0.0132,−0.2000,−0.0532,−0.0132}
z = {−0.4054,−0.0533,−0.0379,−0.0132} (7.16)

respectively.
2. Steady state decoupling C = G0(0)

-1 =
[
−0.822 −0.564
0.514 −0.796

]
(labeled ’css’ hereafter)

Gss(s) = f(s)
[

23.6(10.9s+1)(42.9s+1) −545.9s(4.72s+1)
−96.2s(−104s+1) 23.7(1.45s+1)(68.1s+1)

]

(7.17)

with the same poles and zeros as in eq. (7.16).

1This model is actually a very crude model of a Fluid Catalytic Cracking (FCC) reactor (Skogestad
and Postlethwaite, 1996), where the inputs [u d]T = [Fs Fa kc] represent the circulation, airflow and
feed composition, and yT = [T1 Tcy Trg] represent three temperature measurements in the reactor. It
is assumed that the feed composition to the reactor is a disturbance to the system. Here we treat the
model as a purely mathematical model, without any reference to the origin.
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3. Decoupling at ω = 10−0.3 (labeled ’chf ’) where C = G0(ω)−1 = [ 0.147 0.343
−0.970 0.233 ]

Ghf (s) = f(s)
[

−7.3412(1+51.06s+(27.48s)2) −4.9792(1−1.678s)(1+37.11s)
16.3121(1−0.2018s)(1+58.64s) −18.4572(1+2.229s)(1+87.76s)

]

(7.18)

with the same poles and zeros as in eq. (7.16).
As expected, we see that all three candidates have the same poles and zeros.

Assume that we want to use decentralized control, and we pair inputs and outputs
based on the relative gain array (RGA). Figure 7.3 shows the frequency dependent RGA
for all candidates (plotting element RGA(1,1))(jω). Based on Figure 7.3 it follows that
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Figure 7.3: RGA(1,1)-element
with respect to frequency for can-
didates css, c0 and chf

Candidate Loop Kc τI τD

c0 1 −0.3187 16 5
2 −0.1692 21 −

css 1 0.1614 5 −
2 0.22 18.8 3.547

chf 1 −0.2572 18.8 5
2 −0.2361 20.18 −

Table 7.1: PID tunings for all can-
didates control structures using the Sko-
gestad IMC tuning rules where we have
assumed that the closed-loop time con-
stant τc is equal to the dominating time
constant of the process

we should pair on the diagonal at low frequencies, while at high frequencies we should
pair on the off-diagonal elements for c0. We are mainly interested in tight control at low
frequencies and select to pair on the diagonal elements. Using Skogestad IMC tuning
rules (Skogestad, 2003) we get the PI(D)-parameters as given in Table 7.1.

The dynamic response for a ramped up disturbance d = 1 using 100 time units is
shown in Figures 7.4-7.5. The measurement responses in Figure 7.4 show the same
steady-state behavior for all candidates, however candidate chf exhibits an over-shoot
due to large input usage for u2 (see Figure 7.4(a)). Candidates css and c0 show sim-
ilar dynamic behavior. From the plot of the dynamic cost in Figure 7.5, it is evident
that candidate css has the lowest cost, while candidate chf has the highest cost. The
integrated cost for all candidates are

J int
0 = 11.3570 J int

ss = 8.6793 J int
hf = 13.2439 (7.19)

and we see that candidate chf has a total cost that is 1.5 times higher as compared to
the best candidate, while the steady-state is equal for all candidates. This can easily be
explained from the RGA, where we see that the steady-state decoupler yields only small
interactions at low frequencies as opposed to the other two candidates. This results in
less interaction between the control loops and better dynamic performance.

This example has shown that the effect of rotating the null space basis will influence
the dynamic performance of the closed loop system (at least for decentralized control),
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Figure 7.4: Dynamic responses for a disturbance change

while the steady-state performance is unaffected. As shown, the steady-state decoupler
improves the performance compared to using the orthogonal basis vectors, due to the
decoupled loops at low frequencies where there are strong interactions for the other two
candidates.
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Figure 7.5: Plot of objective function value J and controlled variables for
all candidates

In the rest of this paper, we discuss single-input single-ouput (SISO) systems and the
use of measurement filters for improving the dynamic properties of a controlled variable
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that is a combination of measurements.

7.5 Improving dynamic performance using measure-

ment filtering

In the previous section, compensator design was discussed based around the freedom
of selecting basis vectors for the left null space of F(0). Here the approach is slightly
different, in which we use compensators (or filters) on the measurements as illustrated
by the block Cy in Figure 7.1. Let the filter block Cy(s) be diagonal, such that

Cy(s) =






cy
1(s)

. . .

cy
ny

(s)




 (7.20)

The goal is to design Cy for SISO systems to improve the dynamic performance. Per-
formance limitations for SISO systems can be summarized as the effect of� Right-half plane (RHP) zeros� Right-half plane poles� Time delays� Disturbances� Input limitations� Uncertainties
More specifically, we focus on how to avoid the limiting effects of right half plane zeros
for controlled variables synthesized using the null space method. For SISO systems,
the null space has a given direction (H is a vector) and all other null space vectors are
in the same direction Hj = cH. The resulting plant is

cc(s) = HCy(s)y(s) = HCy(s)Gy(s)u(s) (7.21)

The only requirement we impose is that at steady-state

Cy(0) = I

that is, the identity matrix, which is necessary since altering the steady-state gain will
affect the direction of Hc such that Hc(0)F(0) 6= 0.

The motivation for considering right-half plane zeros, is that, when selecting con-
trolled variables as a combination of measurements based on the steady-state, one may
select measurements that are located at different positions in the plant. Thus, the dis-
turbance and input propagation to the measurements may have different time scales,
which in turn may lead to competing effects propagating to the measurement. The
competing effects may give rise to right half plane zeros, which limits the close-loop
performance for SISO systems. More specifically, a RHP zero will give inverse response
and limit the bandwidth of the controller. We illustrate this with a simple example
with two measurements and one input.

c(s) = G(s)u(s) = h1g1(s)u(s) + h2g2(s)u(s) (7.22)
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The process G(s) consists of two sub-systems interconnected in parallel with a weighting
vector H = [h1 h2], as illustrated in Figure 7.6. Assume that each sub-system gi(s) is

g
y
1

g
y
2

u(s)
h2

h1

+
+

c(s)

y1

y2

Figure 7.6: Parallel interconnection of two sub-systems

modeled as a rational transfer function on the form gi(s) =
ngi

(s)

dgi
(s)

, thus the resulting

plant is:

c(s) = (h1g1(s) + h2g2(s)) u(s) =

(

h1
ng1

(s)

dg1
(s)

+ h2
ng2

(s)

dg2
(s)

)

u(s)

=

(
h1ng1

(s)dg2
(s) + h2ng2

(s)dg1
(s)

dg1
(s)dg2

(s)

)

u(s)

(7.23)

From eq. (7.23) it is clear that the poles of the resulting plant, are the poles of the two
sub-systems g1 and g2 while the zeros are changed. For systems where h1g

y
1 and h2g

y
2

have opposing effects, this may lead to right-half plane zeros, which limit the control
performance. Note that even for sub-systems gi with no zeros (ngi

= ki), the resulting
plant G =

∑
higi may have zeros arising from competing effects of the poles.

The idea here is to utilize dynamic compensators in series with the individual
measurements in order to reduce the competing effects, and to smooth out the resulting
controlled variable signal c. The following example illustrates the idea:

Example 7.2 Let two sub-systems be of first order

y(s) =

[
1.4
s+1
−2

0.2s+1

]

u(s) (7.24)

Both sub-systems are stable and have no right-half plane zeros. The system has one
input and we assume that the null space of the optimal sensitivity matrix is H =
[h1 h2] = [0.6 0.3]. The process G consists of two systems in parallel, weighted with H
as seen in Figure 7.6. The resulting plant is

c(s) = [0.6 0.3]

[
1.4
s+1
−2

0.2s+1

]

u(s) =
0.24(−1.8s + 1)

(s + 1)(0.2s + 1)
u(s) (7.25)

and we have a right-half plane zero at z = 1/1.8 = 0.5556 and the poles are the poles
of the two sub-systems. The RHP-zero results in an inverse response for a step in the
inputs as illustrated in Figure 7.7(a) and it is clear that the competing effects in the
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Figure 7.7: Unfiltered and filtered responses

two measurements, give rise to the inverse response. Assume now that we filter y2 with
the low-pass filter cy

2(s) where

cy
2(s) =

1

s + 1
(7.26)

which results in the following plant cc(s) = Gcu(s) where

Gc = 0.24
0.7s + 1

(s + 1)(0.2s + 1)
(7.27)

We see that the zero of the filtered plant is in the left-half plane (z = −1/0.7 = −1.4286)
and does not impose any limitation on the controllability of the plant. The resulting
dynamic response for a step in the input is shown in Figure 7.7(b). We see that the
filtered plant has a smooth response and that the rise time is faster than for the unfiltered
plant, even when the response for y2 is slower than in the unfiltered case. Note, that
the steady-state is unchanged.

Comparing different filter time-constants, see Figure 7.8, we see that it is important
to select the time-constant of the filter appropriately. As seen from the figure, a filter
time constant of τCy = 1 yields a smooth response. Note that irrespectively of the filter
time constant, the steady-state performance is unchanged.

The above example illustrates a method for using measurement filters for removing
the bandwidth limiting effect of RHP zeros, without changing the steady-state. For ny

number of measurements we have in general that

cc(s) = HCy(s)y(s) = HCy(s)Gy(s)u(s) (7.28)

where Cy is a diagonal filter matrix. For the case of multiple measurements which
exhibit complex dynamic behavior, it may prove difficult to find what measurements
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Figure 7.8: Time response of cc = Gc(τcy)u for a step in the input with
respect to the time constant of the filter τcy .

to filter and the form and parameters of the time-constants. If we restrict the filter
design to 1-order transfer functions, a reasonable approach to the design of the filter
is:

Proposition: Given the sub-plants gi = ni(s)
di(s)

with dominating time constants τi,1

and the static vector H such that the resulting plant is c(s) =
∑

i higi(s)u(s) add
a filter cy

i (s) = 1
τis+1

to measurements that have fast poles (small τ ’s) such that all
measurements have the same dominating pole (largest τ).

This is of course not a general rule, and for more complex plants, more advanced con-
troller design methods (e.g. H∞ design methods (Skogestad and Postlethwaite, 1996))
may be a better approach. Alternatively, if there is freedom in selecting a different set
of measurements, selecting measurements that are physically close may improve the
dynamics the system.

7.6 Conclusions

In this paper we have extended the null space method to improve the dynamics of the
resulting plant. We have discussed the freedom of selecting basis vectors for the null
space method, and have shown that this is similar to the use of compensators in the
design of multivariable controllers. In addition, we discussed the use of measurement
filters, where we focused on using filters to remove right-half plane zeros. We proposed
a simple rule, to eliminate the performance limiting effects of right-half plane zeros.
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Chapter 8

Selection of self-optimizing control
structures for a Petlyuk distillation
column

Based on work presented at
AIChE Annual Meeting 2002, November 3-8, Indianapolis, USA, paper 247f

and
International Symposium on Advanced Control of Chemical Processes (ADCHEM)

2003, January 11-14, 2004, Hong Kong

8.1 Introduction

The Petlyuk distillation column is an appealing alternative for the separation of ternary
mixtures. Compared with the traditional configuration of two columns in series, Smith
and Triantafyllou (1992) report typical savings in the order of 30% in both energy
and capital cost. Several authors have studied the potential energy savings in using
the Petlyuk column, see for example Fidkowski and Krolikowski (1986); Carlberg and
Westerberg (1989b,a), and minimum energy expressions have been derived both for
sharp splits and for non-sharp splits (Fidkowski and Krolikowski, 1986; Halvorsen and
Skogestad, 2003). Distillation columns are often the unit operation with the highest
energy cost in chemical plants. However, despite the relative large savings in both
energy and capital cost, few implementations of the Petlyuk column exist in industry
(Adrian et al. (2002, 2004) report approximately 40 industrial columns world-wide).

One explanation for its limited usage can be difficulties with the design of and
operational issues with (uncertainty) the Petlyuk column (Smith and Triantafyllou,
1992). The Petlyuk column, being more coupled both in mass and energy, imposes
operational challenges that are more difficult to understand than the alternative and
simpler configuration of two columns in series. In fact, non-optimal operation of the
Petlyuk column may easily yield worse performance in terms of energy usage as com-
pared with the direct or indirect columns in series. Thus, the advantage of being more

105
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energy efficient, comes at a price of more complex operation.
The goal here is to suggest simple operating policies that ensure near-optimal oper-

ation. We are looking for a self-optimizing control structure which, despite of external
disturbances and measurements errors, gives near-optimal operation with constant set-
points. The null space method of Chapter 3 is used for synthesizing the controlled
variables, and the proposed control structures are compared with previously proposed
structures and structures synthesized using alternative methods.

8.1.1 The Petlyuk column structure

The Petlyuk column, illustrated in Figure 8.1, consists of six column sections. Here,
the sections are arranged in the same column shell (often named a “divided wall col-
umn”). The ternary feed consists of components A, B and C with mole fractions
zT = [zA zB zC ], component A being the most volatile and component C the least
volatile. The feed point is located between sections 1 and 2 in the pre-fractionator.
Ideally, components A and B (rich in A) go over the top of the pre-fractionator, while
a mixture of B and C (rich in C) leaves the bottom. In the main column (sections
3 − 6), three product streams are drawn off. The light component A dominates the
distillate stream (D), component B dominates in the side-stream (S) while the heavy
component C dominates the bottom stream (B). The boilup and reflux streams are
split over the “dividing wall” with split fractions RV and RL respectively, where

RL =
L1

L3

and RV =
V2

V6

where Li and Vi denote the molar liquid and vapor flows in section i respectively.
With a given feed and pressure, the Petlyuk column has five steady-state degrees

of freedom. For example, these may be selected as

uT =
[
L V S RL RV

]
(8.1)

corresponding to the reflux, boilup, side-stream flow, liquid split and vapor split, re-
spectively. Dynamically, the level in the condenser and reboiler must be stabilized, and
we choose to use D and B, respectively (resulting in the “LV”-configuration).

For the Petlyuk column, three product specifications may be specified during oper-
ation (Halvorsen and Skogestad, 2003):

1. Distillate purity (xA,D)
2. Bottom purity (xC,B)
3. Side-stream purity (xB,S)

where xi,j denotes the mole fraction of component i in stream j.
In the side-stream there are two impurities, and one may wish to specify these

independently, resulting in four purity specifications. However, in practice, this leads
to discontinuities in the feasible region (Wolff et al., 1994; Wolff and Skogestad, 1996)
and is not recommended in operation. For a detailed analysis of the Petlyuk column
and explicit expressions for the minimum energy required for a given separation, see
Halvorsen and Skogestad (2003).
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Figure 8.1: The Petlyuk Distillation column implemented in a single column
shell (“the divided wall column”).

Measurements

The following measurements are assumed available online:� Temperatures (Ti) on each stage. Index i denotes the stage number in increasing
order for sections 1-6, in total 6NT temperatures, where NT is the number of
stages in each section.� The main component composition in each product stream xA,D, xB,S and xC,B.� All flows and flow ratios in u as given by eq. (8.1).� Holdup in the distillate drum (MD) and bottom sump (MB).

resulting in the measurement vector:

yT
0 =

[
xA,D xB,S xC,B TT uT MB MD

]
(8.2)

Unmeasured external disturbances

The unmeasured external disturbances are assumed to be:� The feed flow rate (F ).� The feed compositions zT = [zA zB zC ].� The liquid fraction of the feed (ql).
In addition, we assume that all measurements have corresponding measurement error,
while we assume that the control error is negligible (integral action in all control loops).
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8.2 Operational objective and active constraints

We assume that the operational objective is to minimize the cost of energy while
maintaining the product purity specifications. This translates into minimizing the
boilup V , since all products are assumed to have equal economic value. Note that
we are not over-fractionating any of the product streams in accordance with normal
operational practice. However, as shown in Chapter 9, this is not necessarily optimal for
the Petlyuk distillation column, where we in fact can save energy by over-fractionating
one of the product streams. A preliminary optimization study of the Petlyuk distillation
column, revealed that for certain column specifications, it is optimal to over-fractionate
one of the products (Aaboen, 2003).

Nevertheless, we here consider “three-point” composition control, and we then have
two degrees of freedom left for optimizing the operation, that is, to reduce the boilup.
Since the objective is to minimize the boilup, which also is an input, one may mistakenly
believe that one can use an open-loop approach, where the optimal value for the boilup
is calculated and implemented in the column:

V = V opt (8.3)

where V opt is the minimal boilup. Halvorsen and Skogestad (1999) point out that such
an approach is impossible (or at least very difficult):

1. Operation is infeasible for V < V opt, so we need to ensure that V ≥ V opt.
2. The optimal value of V varies with respect to disturbances and may be hard to

find, requiring a detailed model and a direct measurement of the disturbances
(or a very accurate estimate) in order to be viable. This is unrealistic in most
cases.

3. Measurement or estimation of V may be difficult to achieve (measuring vapor
flow), thus it may be sensitive to measurement error when trying to implement
the optimal V .

Thus, the approach here is to use feedback control to ensure optimality, eliminating the
need of estimating the disturbances and the problems of measuring and implementing
V directly.

8.3 Previous work on control structure selection for

the Petlyuk column

The Petlyuk column has been studied extensively in the literature, with the main
focus on the potential energy savings as compared with the traditional two columns in
series design. The methods and control structures for achieving the potential savings
in energy have received much less attention in the literature. However, Halvorsen
and Skogestad (2003); Halvorsen et al. (2000) discuss several candidate self-optimizing
control structures based on the assumption of three-point composition control. In
addition, Halvorsen and Skogestad (2003) studied the effect of keeping one additional
degree of freedom constant (fixing the input RV ), and found that this yields acceptable
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self-optimizing control for most control structures. Thus, in order to operate (near)
optimally, only one of the remaining degrees of freedom needs to be adjusted. A short
summary of their findings is given below:

1. Temperature profile symmetry, DTS: This candidate was proposed based on the
visual observation that the optimal temperature profile across the dividing wall
remained almost constant for different disturbances implying good self-optimizing
properties. The controlled variable is defined as

DTS = (T1 − T4) + (T2 − T5) (8.4)

where Ti denotes the average temperature in section i. In practice only one or
two temperature measurements from each section need to be selected. The DTS-
variable showed the best self-optimizing properties of all proposed candidates and
is attractive due to the availability of temperature measurements. Note that eq.
(8.4) is actually a linear combination of measurements with a unit (±) weight for
each measurement.

2. Position of profile in the main column, ∆N : The peak composition of the mid-
component occurs at the location of the side-stream when the column operates
optimally. A measurement of the stage number with the highest composition
is proposed as a feedback controlled variable. This candidate is unlikely to be
used in practice since online measurement of the compositions on each stage
is rarely available. The candidate showed good self-optimizing performance for
disturbances in the feed composition.

3. Fractional recovery of intermediate component B leaving pre-fractionator, β: Chris-
tiansen (1997) showed that the key to optimal operation is to operate the pre-
fractionator at minimum reflux characteristics and proposed to control the im-
purity of the heavy component in the top and/or the impurity of the light com-
ponent in the bottom of the pre-fractionator. This candidate behaves almost as
good as the DTs, and is robust against measurement error. Again, the need of a
composition measurement makes it less attractive as a feedback variable.

4. Pre-fractionator flow split, D1: The variable D1 = V1 − L1 is the flow difference
between vapor and liquid flow in the top of the pre-fractionator. This candidate
may be difficult to measure, since we need to measure a vapor flow. In addition
it was found that it yields very poor performance for disturbances in the feed
composition.

Of the candidates proposed above, the temperature profile symmetry (DTS) was evalu-
ated as the best candidate for self-optimizing control, both based on the availability of
temperature measurements and that it has good self-optimizing properties (Halvorsen
and Skogestad, 2003).

Serra et al. (2003, 2001) studied the controllability of the divided wall column and
compared it with the controllability of direct and indirect column configurations for
several different feed compositions and relative volatilities. They fail to utilize the
remaining degrees of freedom for control, as they fix both RV and RL. They conclude
that the best controllability is achieved when a non-optimal nominal setpoint is used
for RL and RV which implies that the nominal operation is non-optimal.
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Adrian et al. (2002, 2004) claim that the Petlyuk column is difficult to control
using decentralized control. They claim that in order to achieve good controllability
and acceptable economic operation, a multivariable controller must be used (MPC).
They compared the performance of the decentralized control structure with an model
predictive controller. For the decentralized controller, the following three loops are
closed.

1. They select to control a temperature in the top of the pre-fractionator with L/D
in the main column (to prevent component C from going over the top of the
pre-fractionator).

2. In addition, they propose to control a temperature in the top of the bottom
section (section 6) with the side-stream (S) (indirect control of component C in
the bottom stream).

3. And finally, they select to control a temperature in top of section 4 with the
liquid split RL (to control indirectly the composition in the side-stream).

Note that the boilup (V ) is kept constant and that there is no control of the composition
of the distillate. In practice, the bottom is over-fractionated by using excess energy (V ).
For the multivariable controller, they include the boilup (V ) as an extra manipulated
variable (more inputs than outputs) and conclude that the multivariable controller has
better performance than the decentralized structure. The improved performance for
the multivariable controller must partly be assigned the use of the extra manipulated
variable. In addition they claim that the potential energy savings are not meet using
the decentralized controller, which is obvious since V is kept constant. They do not
justify the choice of which temperatures to control. Thus, they fail to discuss the
possibly most important aspect of controllability, namely the selection of controlled
variables. On the other side, they close two temperatures in the main column and one
in the pre-fractionator, which is sufficient for stabilization of the temperature profile.

8.3.1 Modeling assumptions and data used

The following standard modeling assumptions are used for the simulations:
1. Constant relative volatility α: The relative volatility between components i and

j is:

αij =
(yi/xi)

yj/xj

=
Ki

Kj

(8.5)

where x and y are the composition of the liquid and gas, respectively. In practice,
Ki = Ki(T, P ) is a function of pressure and temperature. The relative volatility
is less dependent on temperature, so in most cases it is a good approximation for
simple calculations. See Halvorsen and Skogestad (2000) for more details.

2. Constant molar flows : That is Ln = Ln+1 and Vn−1 = Vn on a non-feed or
non-product stream stage. No energy balance is then needed. The first two
assumptions are reasonable for separation of similar components (similar heat of
vaporization).

3. Equilibrium on each stage.
4. Constant pressure P .
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5. Estimation of temperatures based on composition. The temperature estimates are
based on the method of Halvorsen and Skogestad (2000)

T ≈ Br

log(p0
r) − Ar

+ Cr where p0
r =

P
∑

i xiαi

(8.6)

and where Ar, Br and Cr are Antoine parameters.
6. The liquid flow dynamics are modeled as

Li = L0,i +
Mi − M0,i

τL

+ (Vi−1 − V0,i−1)λ (8.7)

where Mi is the holdup on stage i and M0,i is the nominal holdup. Thus, it takes
some time for changes in the liquid flow to propagate through the column, e.g.
see Skogestad (1997). The liquid holdup has no steady-state effect, and is only
important for the dynamic simulations.

Data for the simulations are shown in Table 8.1 (x∗ denotes the nominal value):

Table 8.1: Data for the Petlyuk simulation case
Column
Physical data Relative volatilities αT =

[
9 3 1

]

Liquid time constant τL = 3.78
Holdup distillate drum and bottom MB = MD = 20Mi

Holdup stages Mi = 1
Number of stages for the 6 sections NT = 8
Boiling point A, B and C TT

B =
[
299.3 342.15 399.3

]

Antoine’s parameters [Ar Br Cr] =
[
2.8594 −1142.8 −0.34965

]

Feed Flow F ∗ = 1

Composition z∗T = [1/3 1/3 1/3]
Liquid fraction q∗l = 0.477

Product compositions Distillate x0∗

A,D = 0.97

Side-stream x0∗

B,S = 0.97

Bottom x0∗

C,B = 0.97

Disturbances Feed flow F = F ∗ ± 0.1
Feed composition zA = z∗A ± 0.1

zB = z∗B ± 0.1
Liquid fraction ql = q∗l ± 0.1

Product specification x0
A,D = x0∗

A,D ± 0.01

x0
C,B = x0∗

C,B ± 0.01

x0
B,S = x0∗

B,S ± 0.01

Measurement error
Temperatures 0.5 K (absolute)
Flows 2.5% (relative)
Flow splits 0.025 absolute



112 8. Self-optimizing control structures for a Petlyuk distillation column

8.3.2 Nominal optimum

The nominal optimal flows that minimize the energy (V ) are

uopt(d∗)
T

= [L∗ V ∗ S∗ R∗
L R∗

V ] =
[
0.7618 0.5811 0.3227 0.3792 0.5123

]
(8.8)

The minimum boilup (Vmin) using infinite number of stages is V ∞
min = 0.5438 so the

design gives a nominal optimal boilup that is approximately 6% higher than the the-
oretical minimum. The nominal concentration profile is shown in Figure 8.2. Note
that no component C is present in the distillate and no component A is present in
the bottom stream B. Interestingly, there is also no component A in the side-stream
S. Thus, the side-stream consists of components B and C only. The corresponding
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Figure 8.2: Nominal composition profile, component A solid (−), component
B dashed (−−) and component C dash-doted (−·).

temperature profile is shown in Figure 8.3.

8.4 Selection of self-optimizing control structures

Below, we compare two different methods for selecting good self-optimizing controlled
variables, namely the singular value method (Skogestad and Postlethwaite, 1996; Halvorsen
et al., 2003) and the null space method of Chapter 3. Both methods assume that the
active constraint loops (here, the product compositions) are closed and we analyze the
reduced space problem. The best candidates found using these methods, are compared
with the DTS-candidate proposed by Halvorsen et al. (2000) and we also include the
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structure proposed by Serra et al. (2003) where RV and RL are fixed. Thus, the goal
of the following analysis is two-folded:

1. Compare the null space method and the singular value method for selecting
controlled variables that are self-optimizing.

2. Find good candidate variables for self-optimizing control and compare the best
candidate with previous proposed structures (DTS).
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Figure 8.4: Contour plot at the nominal disturbance V (RL, RV )

Halvorsen et al. (2000) found that the vapor split (RV ) can be fixed and good self-
optimizing control can be achieved by selecting the last controlled variable correctly.
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The argument for keeping RV constant is the observation that the solution surface when
the active constraint loops are closed has shape as a “valley”, see Figure 8.4. As seen
from the figure this also holds for the nominal data used in this example (the solution
surface is sensitive to the liquid fraction in the feed). If we are able to operate in the
“valley”, then fixing RV may give acceptable economic performance. This argument
holds, if the solution surface is similar for all disturbances.

8.4.1 Candidate control structures using the null space method

Using the null space method we propose to control combination of measurements,
and base the selection on the optimal sensitivity matrix from the disturbances to the
measurements. Two candidate structures are proposed based on the null space method
of Chapter 3, denoted CS 1 and CS 2. Below we also include the DTS (denoted CS 3)
and the structure where we fix both remaining degrees of freedom (denoted CS 4).

1. CS 1 (Control structure 1, controlling ctdf,1 and ctdf,2):
Here, both remaining degrees of freedom are used for self-optimizing control. The
disturbance vector is

dT
0,tdf =

[
F zA zB ql nxA,D

nxB,S
nxC,B

]
(8.9)

resulting in a total of ny0,tdf
= nu + nd0,tdf

= 2 + 7 = 9 measurements, where the
sub-script “tdf” denotes “two degrees of freedom”. To reduce the dimensionality
of the problem by removing unimportant disturbances we apply Rule 2 of Section
5.3.1 and the resulting disturbance vector to include in the synthesizing of the
controlled variables is:

dT
tdf =

[
zA zB ql nxB,S

]
(8.10)

Note that the implementation error in controlling the product compositions in
the distillate (D) and the bottom stream B is not important . The total number
of measurements needed in the null space method is then

nytdf
= nu + ndtdf

= 2 + 4 = 6 (8.11)

The sequential method of Section 4.4 is used to select the best sub-set of mea-
surements and gives:

yT
tdf =

[
T37 T11 T43 T25 T4 T9

]
(8.12)

The physical location of the selected measurements is shown in Figure 8.5(a).
The null space method gives the following measurement combinations

ctdf,1 = −0.472T37 + 0.312T11 + 0.113T43 − 0.457T25 + 0.561T4 − 0.378T9 (8.13)

ctdf,2 = 0.185T37 + 0.376T11 − 0.667T43 − 0.524T25 − 0.154T4 + 0.285T9 (8.14)

2. CS 2 (Controlling codf and fixing RV ):
In practice it may be difficult to implement a vapor split, so if the resulting loss
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Figure 8.5: Physical location of the best subset of measurements

using a fixed RV is acceptable, this is the preferred structure. In fixing RV , we
add the implementation error of controlling RV to the disturbance vector and we
get

dT
0,odf =

[
F zA zB ql nxA,D

nxB,S
nxC,B

nRV

]
(8.15)

and we use sub-script “odf” to denote the use of “one degree of freedom”. Follow-
ing the null space method of Chapter 3, the number of measurements required
is ny0,odf

= nu + nd0,odf
= 1 + 8 = 9 measurements. As above, the important

disturbances are found from the method of Section 5.3.1 and correspond to

dT
odf =

[
zA zB ql nxB,S

nRV

]
(8.16)

Note, that in addition to the above selected disturbances, we must include the
implementation error in controlling RV as an important disturbance in synthe-
sizing the controlled variable using the null space method. The corresponding
minimum number of measurements needed is:

ny,odf = nu + ndodf
= 1 + 5 = 6 (8.17)
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and using the sequential method of Section 4.4 to select the best subset of mea-
surements (selected sequentially), the following subset of measurements is found:

yT
odf =

[
T37 T10 T43 T27 T5 T12

]
(8.18)

and the corresponding physical location are illustrated in Figure 8.5(b). Note, the
location of the measurements is similar to the ones found for CS 1. Note that the
majority of measurements are located in the bottom part of the column, and only
two measurements are located above the feed point. The optimal measurement
combination is

codf = −0.388T37 − 0.658T10 + 0.192T43 − 0.0471T27 + 0.448T5 + 0.421T12 (8.19)

3. CS 3 (controlling DTS and fixing RV ):
We select to use the middle temperature in each of the sections and select

cDTS
= (T4 − T28) + (T12 − T36) (8.20)

CS 3 is included since it has been proposed as a good self-optimizing variable in
the literature (Halvorsen et al., 2000).

4. CS 4 (Fixing both RV and RL):
In addition, we include the candidate where we fix the last degree of freedom
(RL) as this control structure is proposed in the literature (Serra et al., 2001,
2003).

8.4.2 The singular value method

The singular value method of Skogestad and Postlethwaite (1996) is used as an alter-
native method for finding good candidates for control. For this method, the user must
define the candidate variables and the singular value method is used to rank the most
promising candidates. In using the singular value method we select to fix RV and seek
in all candidate measurements as given by eq. (8.2) for a good self-optimizing controlled
variable. The singular value method is based on ranking variables with a large scaled
steady-state gain (minimum singular value in the multiple input case). The gain is
found by linearizing with the active constraints closed (including RV ). Each candidate
controlled variable is scaled with the sum of the optimal range and the measurement
error. Table 8.2 gives the scaled steady-state gain for all candidates considered.

As seen, the most promising candidates are temperatures from section 5 and 1. The
variable RL is ranked number 16 and has better (predicted) self-optimizing properties
than many of the temperature measurements. Temperatures from section 6 (the lower
section) have the smallest gain indicating poor self-optimizing properties. The same
is true for temperature measurements in the top of the column and for the inputs L,
V and S. Note that all active constraints have zero gain. The eight most promising
candidates are selected for further analysis and Table 8.3 summarizes the candidate
control structures selected for further analysis.
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Table 8.2: Most promising candidates sorted by scaled steady-state gain
(|G(0)|)

Rank c |G(0)|
1 T35 89.408
2 T36 79.260
3 T34 73.433
4 T37 48.482
5 T33 47.022
6 T38 29.189
7 T4 22.455
8 T3 21.540
9 T5 19.753
10 T2 16.694
11 T39 16.116
12 T6 15.159
13 T31 11.199
14 T7 10.219
15 T1 9.7529
16 RL 8.0979
17 T30 6.8319
18 T40 6.6713
19 T12 6.5947
20 T13 5.9587
21 T8 5.8239
22 T11 5.8082
23 T14 4.6642
24 T10 4.2749
25 T27 3.9173
26 T15 3.4791
27 T28 3.0981
28 T26 2.6186

Rank c |G(0)|
29 T24 2.5723
30 T9 2.3445
31 T16 2.2577
32 T32 1.1068
33 T23 0.86450
34 T29 0.67638
35 T22 0.30016
36 T41 0.26000
37 T25 0.21658
38 T21 0.11830
39 T42 0.096164
40 T20 0.057791
41 T43 0.041086
42 L 0.025043
43 T19 0.023880
44 T44 0.022758
45 T45 0.016549
46 T46 0.013955
47 T47 0.0078295
48 T18 0.0072547
49 V 0.0053109
50 T48 0.0030346
51 T17 0.00068834
52 S 1.0637 × 10−5

53 RV 0
54 xB,S 0
55 xA,D 0
56 xC,B 0

Table 8.3: Most promising control structures
CS # c1 c2 c3 c4 c5

1 xA,D xB,S xC,B c1
tdf c2

tdf Null space method, use RV and RL

2 xA,D xB,S xC,B RV codf Null space method, fix RV

3 xA,D xB,S xC,B RV DTS Fix DTS and RV

4 xA,D xB,S xC,B RV RL Constant splits RV and RL

5 xA,D xB,S xC,B RV T35 Single temperature, fix RV

6 xA,D xB,S xC,B RV T36 Single temperature, fix RV

7 xA,D xB,S xC,B RV T34 Single temperature, fix RV

8 xA,D xB,S xC,B RV T37 Single temperature, fix RV

9 xA,D xB,S xC,B RV T33 Single temperature, fix RV

10 xA,D xB,S xC,B RV T38 Single temperature, fix RV

11 xA,D xB,S xC,B RV T4 Single temperature, fix RV

12 xA,D xB,S xC,B RV T3 Single temperature, fix RV
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8.5 Loss evaluation using the non-linear model

Using constant nominal setpoints for the controlled variables, the loss for all candidates
is shown in Table 8.4. Note that we allow only one disturbance or implementation error
at a time.

Table 8.4: Percentage loss (L) for all disturbances using nominal setpoints
. (“−” denotes negative perturbation, “+” denotes positive perturbation from
the nominal value). The last two columns give maximum loss and average
loss for the measurement errors. “inf” means infeasible operation.

Loss [%]
CS # F− F+ zA−

zA+ zB−
zB+ ql− ql+

1 0.0 0.0 0.0171 0.0207 0.0166 0.0111 0.0001 0.0000
2 0.0 0.0 0.0037 0.1340 0.2247 0.1666 0.1876 0.1084
3 0.0 0.0 5.0840 11.8810 0.3469 0.8295 1.0441 1.1740
4 0.0 0.0 46.7037 6.3019 95.1660 9.8256 32.4629 6.0578
5 0.0 0.0 0.22826 2.6973 0.30078 0.40385 0.18903 0.12882
6 0.0 0.0 0.43234 inf 0.56891 1.7347 0.20494 0.17341
7 0.0 0.0 0.12667 1.3807 0.22211 0.18703 0.18794 0.11290
8 0.0 0.0 0.82264 inf 1.1556 inf 0.25233 0.31315
9 0.0 0.0 0.11772 1.7075 0.31570 0.16848 0.21236 0.10722
10 0.0 0.0 1.6053 inf 2.3873 inf 0.38058 1.0685
11 0.0 0.0 9.3786 42.029 0.22507 0.28417 0.66607 1.0851
12 0.0 0.0 inf 33.300 0.52408 0.28762 0.77086 1.0070

Loss [%]
CS # nx0

A,D +
nx0

A,D−

nx0

C,B +
nx0

C,B−

nx0

B,S +
nx0

B,S−

Lmax
n Lavg

n

1 0.0025 0.0095 0.0639 0.2082 0.0002 0.0007 0.0213 0.0117
2 0.0040 0.0110 0.0060 0.0174 0.0004 0.0004 0.0847 0.0206
3 0.0074 0.0207 0.0033 0.0034 0.0025 0.0075 0.2108 0.0475
4 0.0262 0.0253 0.0245 0.0311 0.2579 1.0198 9.3142 3.6254
5 0.0040 0.0110 0.0029 0.0035 0.3334 2.5693 0.0861 0.0673
6 0.0040 0.0110 0.0041 0.0063 0.3088 2.7112 0.0857 0.0587
7 0.0040 0.0112 0.0028 0.0026 0.4040 2.8982 0.1215 0.1034
8 0.0040 0.0110 0.0069 0.0126 0.3037 3.6569 0.0864 0.0586
9 0.0044 0.0128 0.0055 0.0042 0.7108 4.9155 0.7517 0.3805
10 0.0040 0.0110 0.0132 0.0289 0.3148 inf 0.0881 0.0667
11 0.0036 0.0108 0.0072 0.0106 0.3439 1.9349 0.1046 0.0589
12 0.0034 0.0131 0.0087 0.0130 0.3318 1.7321 0.1097 0.0963

8.5.1 Discussion loss evaluation

All candidate structures consist of intensive variables and since the column efficiency
is assumed independent of load, they show perfect self-optimizing control for changes
in the feed flow rate.

For a negative perturbation in the composition of component A in the feed, the loss
for CS 4 (keeping RL and RV constant) and CS 11 is high (46% and 9% respectively).
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Candidate CS 3 (DTs) has a loss of approximately 5%, while candidate CS 12 yields
infeasible operation. All other candidates have a loss below 1.6%, with candidates
CS 1 and CS 2 having the smallest losses.

For a positive perturbation in the composition of component A, CS 3 (DTS) has
a higher loss than keeping the inputs constant (CS 4), while CS 6, CS 8 and CS 10
give infeasible operation. Again, candidates CS 1 and CS 2 have the smallest losses.

For a disturbance in the feed concentration of component B, CS 4 shows the highest
loss. The same is true for changes in the feed liquid ratio (ql). Thus, keeping both RV

and RL constant leads to non-acceptable operation from a steady-state point of view.
Note, that the best single measurement candidate (CS 7) has smaller losses than DTS.

CS 7 has small losses for all perturbations, except for a measurement error in xB,S

where the loss is approximately 3%.
Note that all candidates selected using the singular value method, are sensitive to

noise in the composition of the side-stream, while the losses for CS 1-CS 3 are small.
For all perturbations, the candidates CS 1 and CS 2 show small losses. Keeping

RV constant (CS 2) gives a somewhat larger loss compared to CS 1, however the loss
remains lower than 0.22%. Taking the additional complexity of using RV as a degree
of freedom (CS 1) into account, CS 2 is the best candidate structure with respect to
the steady-state loss. The second best candidate is CS 7 using a single measurement
on stage 34, which shows remarkably good self-optimizing properties.

The last two columns of Table 8.4 list the maximum and average loss for the mea-
surement errors. The effect of measurement error on the loss shows that CS 4 (fix
RV and RL) gives high loss, while the other candidates show negligible losses. This
can be seen from Figure 8.4, where the contours are close (large losses) in the positive
vertical direction (RV ) direction. Thus, failing to realize the importance of using the
additional degrees of freedom for optimization, may give operation that has a higher
energy cost than the corresponding direct or indirect split. One of the benefits in using
the Petlyuk column is then lost.

8.5.2 Summary loss calculation

To summarize, the candidates with acceptable loss are CS 1, 2, 5, 7 and CS 9. We
select candidates CS 2, CS 3 (DTS), CS 7 and CS 11 for further analysis. We include
CS 11 since this is the best candidate using a single temperature and that utilize
information from the pre-fractionator. Candidate CS 3 is also included, since it is a
linear combination of the measurements. Fixing both RL and RV (CS 4) is eliminated
due to high losses (up to 95%).

Figure 8.6 shows the losses with respect to disturbances in F , zA and zB for the
four candidate structures selected for further analysis. As seen, the losses are not
symmetrical around the nominal disturbance. Figure 8.6(a) confirms that the feed
rate does not have any steady-state effect on the loss. Figure 8.7 plots the losses with
respect to disturbances in the feed liquid fraction (ql) and the control errors in the
purities (nxA,D

, nxB,S
and nxC,B

). CS 11 and CS 7 are sensitive (2 − 3% loss) to a
control error in x0

B,S.
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Figure 8.6: Loss with respect to disturbance F , zA and zB for all candidate
structures

8.6 Controllability analysis

Up until now, only the steady-state operation has been considered in discriminating
between the candidate control structures. For the final validation, a controllability
analysis was performed on the four above mentioned control structures, namely CS 2,
CS 3, CS 7 and CS 11. The dynamic degrees of freedom are

uT
d =

[
L V S RL RV D B

]
(8.21)

In addition, the internal accumulator for the liquid split and the side-stream accumula-
tor are assumed perfectly controlled. The reboiler and condenser levels (holdups) need
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Figure 8.7: Loss with respect to disturbances ql, nxA,D
, nxB,S

and nxC,B
for

all candidate structures

to be stabilized, and we select B and D as manipulated variables, respectively, leaving
five degrees of freedom. In addition, for all candidates we fix RV at the nominal optimal
value, leaving 4 inputs for control. We choose to use a decentralized control structure
for all candidates and we pair the inputs and outputs based on the steady-state relative
gain array (RGA) (Skogestad and Postlethwaite, 1996). Using the RGA we should:

1. Avoid pairing on negative RGA-elements
2. Preferably pair on RGA-elements close to one.

For candidates where more than one possible pairing exist, we select to make use of
the RGA-number to discriminate between the candidate pairings. The RGA-number
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is defined as
RGA-number(ω) = ‖Λ(ω) − I‖sum (8.22)

and is a measure of the diagonal dominance (Skogestad and Postlethwaite, 1996).
It is preferable to select structures that have a small RGA-number at the crossover
frequency.

The linear model used in tuning the controllers and in calculating the RGA is found
with the level loops closed. All systems are open-loop stable, but have right-half plane
zeros which may limit the bandwidth of the resulting controller.

8.6.1 Pairing

CS 2

For candidate CS 2 we have the following inputs and outputs:

uT
cl =

[
L V S RL

]
and cT

CS 2 =
[
xA,D xC,B xB,S codf

]

and the steady-state RGA is:

ΛCS 2(0) =






1.0697 −0.0672 −0.0015 −0.0009
−1.6937 2.0186 0.6748 0.0003
1.6228 −0.9513 0.3268 0.0018
0.0012 −0.0001 −0.0000 0.9989




 (8.23)

From pairing rule 1, the only possible choice is to pair on the diagonal elements.
Alternatively, one could pair on elements close to zero for input V , and some alternative
pairings are shown in Table 8.5. The first pairing is the one as given by the steady-state

Table 8.5: Alternative pairings for CS 2
Pairing # L V S RL

1 xA,D xC,B xB,S codf

2 xA,D codf xC,B xB,S

3 xB,S codf xC,B xA,D

4 codf xB,S xC,B xA,D

RGA, as discussed above. For the other candidate pairings, we must pair on elements
close to zero. Using the RGA-number, we see from Figure 8.8. that at frequencies
below ω = 100, pairing 1, as proposed by the steady-state RGA, is preferred.

It turns out that the RGA for the other control structures are very similar. For
example for CS 3 (DTS) we have

cT
CS 4 =

[
xA,D xC,B xB,S cDTS

]

and the steady state RGA matrix is:

ΛCS 4(0) =






1.0691 −0.0671 −0.0015 −0.0005
−1.6939 2.0187 0.6748 0.0005
1.6226 −0.9513 0.3268 0.0019
0.0022 −0.0003 −0.0000 0.9981




 (8.24)
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Figure 8.8: Frequency dependent RGA-number, Λ(ω) for candidate CS 2

which is almost identical to eq. (8.23). Thus, for the candidates CS 3, CS 7 and CS 11
we select to pair in the same manner with RL used for temperature control.

8.6.2 PI-controller parameters

Here, we use PI-controllers tuned with Skogestad’s IMC tuning rules (Skogestad, 2003).
A schematic diagram of the the control structures are shown in Figure 8.9. Each com-
position measurement is assumed to have a measurement delay of θx = 5 min and each
temperature measurement a delay of θT = 1 min. The PI-controller parameters are
shown in Table 8.6. The interaction between the control loops makes it necessary to

Table 8.6: PI-controller parameters for all control structures using Skoges-
tad’s IMC tuning rules. τC is the specified first-order closed loop response
time.

CS 2 ui ci Kc τI τC

L xA,D 2.6568 80 15
V xC,B 2.1916 110 22.5
S xB,S −2.8197 81.7 25.5

RL codf −0.0175 21 10

CS 3 ui ci Kc τI τC

L xA,D 2.6568 80 15
V xC,B 2.1916 110 22.5
S xB,S −2.8197 81.7 22.5

RL cDTS −0.061 33.5 10

CS 7 ui ci Kc τI τC

L xA,D 2.6568 80 15
V xC,B 2.1916 110 22.5
S xB,S −2.8197 81.7 22.5

RL T34 0.0327 44 10

CS 11 ui ci Kc τI τC

L xA,D 2.6568 80 15
V xC,B 2.4599 98 22.5
S xB,S −2.8197 81.7 22.5

RL T4 −0.0337 33.3 20

have a rather large desired closed loop time constant (τC). For CS 7, the proposed
structure and PI-parameters gave oscillatory response, with resulting unstable oper-
ation for a disturbance in feed composition zA. Re-tuning of the controllers was not
successful. Since this structure does not use measurements from the pre-fractionator
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Figure 8.9: Control structures CS 2, CS 3, CS 7 and CS 11
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(sections 1 and 2), the pre-fractionator may drift and component C can go over the
top without being measured. Thus, in order to get stable operation using T34 as a
self-optimizing controlled variable, the pre-fractionator must be stabilized. In order to
avoid that component C breaks through in the top of the pre-fractionator, we select to
control temperature T4 (which is the self-optimizing controlled variable in CS 11) and
use the setpoint of this loop as the new input for the self-optimizing control loop.

For candidates CS 2 and CS 3 this stabilization is implicit, since information on
the state of the pre-fractionator is included in the self-optimizing controlled variable
(codf and DTS respectively). Thus, the self-optimizing controlled variable for these two
loops serves two purposes:

1. Stabilize the pre-fractionator to avoid component C distributing over the top of
the pre-fractionator.

2. Self-optimizing control to keep the system near the true optimal point when
disturbances enter.

In practical implementations, this dual control objective may not be acceptable.
Typically, the pre-fractionator is stabilized, say, controlling a temperature in section
1, and thereafter, the setpoint for this loop would be used as an input for the self-
optimizing control loop. In this simulation study, we neglect this for structures CS 2
and CS 3, while for candidate CS 7, we use the cascade structure of Figure 8.10. The
tuning of the cascade controller was based on the tunings for the candidate CS 11 and
the cascade loop was tuned based on a linear model where the four inner loops were
closed. The PI-controller parameters for the cascade controller are:

KC = −1.4420 τI = 50 τC = 40 (8.25)

8.6.3 Non-linear closed-loop simulations

The main goal with the dynamic simulations, see Figures 8.11-8.13, is to compare the
closed-loop performance for the disturbances zA and control error in xB,S, which were
found to be the worst disturbances. The disturbances zA and xB,S are ramped up
or down over a time period of 200 min, starting at t = 100 min, respectively. The
dynamic response for the disturbances F , zB, ql, xs

A,D and xs
C,B are similar for all

control structures, and is not shown.

Disturbance zA

The input and output responses for a negative change in the feed composition of com-
ponent A (∆zA = −0.1) are shown in Figure 8.11. Note that:� CS 2 tracks the steady-state optimal values for both a negative and a positive

perturbation of zA. The composition loops show smooth responses.� CS 3 yields a steady-state loss for both a negative and a positive disturbance in
zA. For a positive disturbance, the responses are oscillatory with a large control
error in the bottom purity in Figure 8.12.
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� CS 7 is very similar to CS 2 with respect to a disturbance in zA. For a positive
disturbance, see Figure 8.12, the boilup is higher than for CS 2 (in accordance
with the steady-state results of Table 8.4.� CS 11 shows the worst performance with the highest boilup. A positive distur-
bance in zA results in a large control error in xC,B (0.92) before it returns to the
setpoint.

For all candidates, the side-stream purity is least affected by a disturbance in zA, while
both the bottom and top composition show large deviations for CS 7 and CS 11 (the
single temperature candidates).

Measurement error xB,S

Figure 8.13 shows the responses for a negative control error in xB,S.� CS 2 tracks the steady-state optimal value. The composition loops show smooth
responses.� CS 3 is similar to CS 2.� CS 7 gives the highest boilup. The purity responses are slower as compared to
CS 2 and CS 3.� CS 11 gives a higher boilup than CS 2 and CS 3. The purity responses are
similar to CS 7.
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Figure 8.11: Plot of boilup (V ) and purities (xA,D, xB,S and xC,B) for a
change zA : 0.33 → 0.23

Conclusions dynamic simulations

From the dynamic simulations it is clear that CS 2 and CS 7 show the best dynamic
performance, while CS 11 and CS 3 yield oscillatory and poor performance for a
positive disturbance in zA. Taking into account the higher boilup for CS 7 for with
a control error in the side-stream purity, CS 2 shows the best combined steady-state
and dynamic performance.

8.7 Conclusions

In this chapter, different self-optimizing control structures for a Petlyuk distillation
column have been compared for both dynamic and steady-state performance. New
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Figure 8.12: Plot of boilup (V ) and purities (xA,D, xB,S and xC,B) for a
change zA : 0.33 → 0.43

control structures have been proposed which have improved steady-state and dynamic
properties as compared to previously proposed structures in the literature. Failing to
utilize the degrees of freedom in the Petlyuk column may yield non-optimal operation
for disturbances entering the column. In order to achieve near optimal operation, it is
acceptable to fix the vapor split RV , while we need to manipulate the liquid split RL to
remain optimal. A new structure based on the null space method has been compared
to candidate variables found with the singular value method. Both methods provide
candidate variables with good self-optimizing properties. Based on both steady-state
and dynamic performance, the best self-optimizing control structure is CS 2 which is
a combination of six temperature measurements.
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Chapter 9

Optimal operation of a Petlyuk
distillation column: Energy savings
by over-fractionation

Based on work presented at
the 14th European Symposium on Computer-Aided Process Engineering (ESCAPE

14), 16-19 May 2004, Lisbon, Portugal

This paper shows the unexpected result that over-fractionating one of the product
streams in a Petlyuk distillation column may be optimal from an energy point of view.
Based on the Underwood equations, we derive analytic expressions for the potential
energy savings. The potential energy savings by over-fractionation may be further in-
creased by bypassing some of the feed and mixing it with the over-fractionated product
to meet product specifications. For normal operating conditions the energy savings are
small, so the main significance of our results is to point out that over-fractionation is
energetically optimal in some cases.

9.1 Introduction

The Petlyuk distillation column, see Figure 9.1, with a pre-fractionator (C1) and a
main column (consisting of sections C21 and C22), is an interesting alternative to the
conventional cascade of binary columns for separation of ternary mixtures. The po-
tential savings are reported to be of approximately 30% in both energy and capital
cost (Smith and Triantafyllou, 1992). The savings in energy are possible since the pre-
fractionator and the main column are thermally coupled. The saving in capital cost as
compared with two columns in series is possible since the column can be implemented
in a single colum shell with one reboiler and one condenser.

The feed (F ) consists of components A, B and C and enters the pre-fractionator
with composition zT =

[
zA zB zC

]
, liquid fraction ql and relative volatility αT =

[
αA αB αC

]
where component A is the light and C the heavy component. The

column has three product streams, the bottom stream (B), the side stream (S) and

133
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the distillate (D). xi,j is the mole fraction of component i in stream j. The internal
vapor and reflux flows are split (with split fraction RV and RL respectively) to the
pre-fractionator and the main column.

9.1.1 Problem Formulation

In this work it is assumed that the operational objective is to minimize the energy
conversion, which translates into minimizing the boilup V , while satisfying constraints
on the composition of the main component in the three product streams. With this
formulation, we implicitly assume that all product streams have the same economic
value. In mathematical terms, the operational objective is

min
u

V (9.1)

s.t.
xA,D ≥ x0

A,D, xB,S ≥ x0
B,S, xC,B ≥ x0

C,B (9.2)

where uT = [L V S RL RV ] is the vector of steady-state degrees of freedom (manip-
ulated inputs), and x0

i,j denotes the minimum mole fraction for the main component
i ∈ {A,B,C} in each product stream j ∈ {D,S,B}. In addition we must require that
all flows are positive.

It is well known that when the products have different economic value, it may
be economically optimal to over-fractionate the least valuable product in order to
maximize the amount of the most valuable product. Here, we intend to show that
there may be cases where it is optimal to over-fractionate one of the products to save
energy even when they are equally valuable. Bagajewich and Manousiouthakis (1992)
showed that for a conventional binary distillation column, bypassing a portion of the
feed and mixing it with the products does not affect the energy consumption to produce
a specified product.

9.1.2 Motivation

The motivation for this work was a preliminary study on the optimal operation of
the Petlyuk column, see Chapter 8. We found that one of the constraints on the
composition in eq. (9.2), was not active. To illustrate, consider a column with data as
given in Table 9.1. When treating the inequality constraints in eq. (9.2) as equality
constraints

xA,D = x0
A,D, xB,S = x0

B,S, xC,B = x0
C,B (9.3)

in the optimization, the Lagrangian multipliers for the composition constraints xA,D,
xC,B and xB,S are:

[λxA,D
λxC,B

λxB,S
] = [−0.0342 0.5896 1.0445] (9.4)

and the optimal inputs are

[
L V S RL RV

]T
=
[
0.603 0.946 0.323 0.215 0.610

]
(9.5)
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Figure 9.1: Illustrative sketch of the Petlyuk column, for separation of
ternary mixtures with one reboiler and one condenser.

Table 9.1: Data for the Petlyuk simulation case.
Feed Flow F = 1

Composition zT = [1/3 1/3 1/3]
Liquid fraction ql = 1

Product compositions Distillate x0
A,D = 0.97

Side-stream x0
B,S = 0.97

Bottom x0
C,B = 0.97

Physical data Relative volatilities αT =
[
9 3 1

]

Number of stages each section NT = 16a

aThe column is divided into 6 sections with two sections in the pre-fractionator,
one section below the split of V one above the split of L and two sections above
and below the side-stream outlet S
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The Lagrangian multiplier is a measure of how a small perturbation of the value of
the constraint affects the optimal objective value (Nocedal and Wright, 1999). From
eq. (9.4), we see that by increasing the purity constraint on the distillate stream, the
boilup is reduced (negative change in the boilup), i.e. a 0.01 increase in the purity of the
distillate, yields a reduction of ∆V = 0.946− 0.0342 ∗ 0.01 = 0.0003, a 0.03% decrease
in the boilup. Thus by increasing the purity to pure component A a 0.1% reduction of
the boilup is possible. Similar behavior was observed for other feed compositions and
relative volatilities, and motivated the derivations in this paper.

9.2 Vmin-diagram and Underwood equations for the

Petlyuk distillation column

The Vmin-diagram is a graphical representation of the energy requirements in distil-
lation columns and provides an effective tool for analyzing the minimum energy re-
quirements for different mixtures and feed properties (Halvorsen and Skogestad, 2003).
Here, we construct the Vmin-diagram from the Underwood equations (Underwood,
1945) based on the assumption of constant molar flows, constant relative volatility
and we assume an infinite number of stages.

An example is shown in Figure 9.2 for a given ternary feed mixture (A,B,C) in a
two-product column, where the vapor flow VT (above the feed stage) and net product
split D/F are the degrees of freedom. The peaks in the diagram represent the minimum
energy required for a sharp split between A/BC (PAB) or AB/C (PBC). A sharp split
between A/C requires operation above the V-shaped PAB-PAC-PBC . In the triangular
region below the V-shaped region, a set of components AB, ABC or BC may be
distributed to both products.

VT

D = VT − LT

AB ABC
BC

A

PAB

PBC

θA θB

θA, θB

PAC

B

C

Figure 9.2: Vmin-diagram for a binary column (the pre-fractionator) with
sharp splits when where the separation A/AB is limiting.

For a three-product column with sharp splits, it can be shown that the minimum
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energy diagram maps the Vmin-diagram for the pre-fractionator C1 operated at the
preferred split (Halvorsen and Skogestad, 2003). Thus, Figure 9.2 also illustrates the
Vmin diagram for the Petlyuk column with sharp splits. The peak PAB corresponds to
the split A/BC, while the peak PBC corresponds to the split AB/C. The minimum
energy is given by the highest peak, which corresponds to the most difficult separation.

For non-sharp splits the same diagrams apply, but now with the vapor flows related
to the non-sharp splits D/SB and DS/B, so the minimum energy for non-sharp splits
is (Halvorsen and Skogestad, 2003):

V Petl
T,min = max(V

D/SB
T,min , V

DS/B
T,min ) = max(V C21

T,min, V C22

B,min + (1 − ql)F ) (9.6)

where D, S and B here represent the three products with their defined compositions.
For the case of non-sharp splits there will be no component C in the distillate (xC,D =
0 ) and no component A in the bottom stream (xA,B = 0 ) in normal operation regions.
However, in the side-stream (S) all components may be present, and we select xA,S as
a free variable, since we only specify one of the product compositions in each product
stream. Halvorsen and Skogestad (2003) show that three different regimes of operation
are possible, with accompanying optimal values for xA,S:� Case 1: C22 is limiting:

This is the case when the separation B/C is the most difficult separation, so peak
PBC is above peak PAB, thus: V Petl

T,min = V C22

B,min(0) + (1 − ql)F > V C21

T,min(1 − xB,S)
for xA,S = 0 and xC,S = 1 − xB,S. This case is illustrated in the Vmin-diagram of
Figure 9.3.� Case 3: C21 is limiting:
This is the case when the separation A/B is the most difficult separation and:
V Petl

T,min = V C21

T,min(0) > V C22

B,min(1 − xB,S) + (1 − ql)F where xA,S = 1 − xB,S and
xC,S = 0. This case is illustrated in Figure 9.4� Case 2: Balanced main column:
This is when the required vapor loads are equal: V Petl

T,min = V C22

B,min(xA,S) + (1 −
ql)F = V C21

T,min(xA,S) for 0 < xA,S < 1 − xB,S and xC,S = 1 − xB,S − xA,S.
Based on the Underwood equations, Halvorsen and Skogestad (2003) found that the
vapor flows are given by

V C21

T,min =
αAwC21

A,T

αA − θA

+
αBwC21

B,T

αB − θA

= D

[
αAxA,D

αA − θA

+
αB(1 − xA,D)

αB − θA

]

(9.7)

and

V C22

B,min =
αBwC22

B,B

αB − θB

+
αCwC22

C,B

αC − θB

= −B

[
αA(1 − xC,B)

αA − θB

+
αB(xC,B)

αB − θB

]

(9.8)

where θA = θA(z, ql, α) and θB = θB(z, ql, α) are the Underwood roots carried over
from C1 to C21 and C22, respectively.

wC21

A,T = xA,DD and wB,T = xB,DD = (1 − xA,D)D

are the net component flow of A and B in C21 respectively and

wC22

B,B = −(1 − xC,B)B and wC22

C,B = −xC,BB
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V C21

Tmin(xA,S)

Figure 9.3: Vmin-diagram for Case 1 where C22 is limiting. No component
A is present in the side-stream (xA,S = 0). The most difficult separation
corresponds to peak PBC corresponding to the split AB/C. The line parallel
with the right-most line, corresponds to the minimum energy with respect to
the parameter xA,S, and we see that the energy is minimized for xA,S = 0 as
indicated by the horizontal line.

are the net component flow of B and C in C22. The Underwood roots θA and θB are
functions of the feed properties only and independent of the product specifications.

The key observations from eqs. (9.7) and (9.8) are:

� When C21 is the limiting section, keeping xC,B constant, V C21

T,min/D is constant.

� When C22 is the limiting section, keeping xA,D constant, V C22

B,min/B is constant.

The only restriction is that C21 and C22 remain the limiting column section, respec-
tively. Based on the above eqs. (9.7) and (9.8) we now use the material balance of the
column and express B and D with respect to the feed properties and product speci-
fications. Based on these expressions, we develop explicit expressions for the energy
savings from over-fractionating one of the product streams.

9.3 Energy savings by over-fractionation

Inside the main column, the same amount of vapor flows in both sections C21 and
C22. This implies that when the column operates in either Case 1 or Case 3 modus,
the non-limiting section has a higher vapor flow than necessary for the separation to
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Tmin(xA,S)

Figure 9.4: Vmin-diagram for Case 3 where C21 is limiting. No component
C is present in the side-stream (xC,S = 0). The most difficult separation is
A/BC which is indicated by the horizontal line.

take place. Thus, it is possible to over-fractionate in the non-limiting section without
increasing the boil-up.

Actually we can go even further and decrease the overall boilup. This is less obvious,
so consider Case 1 where AB/C is the most difficult separation (C22 is limiting). For
this case we have excess vapor in the top of the main column (C21) so the top product
can be over-fractionated, for example, we can get pure A in the distillate product.
The intermediate component B, that used to go into the top product, now goes into
the side-stream product, thus increasing the purity of the side-stream with respect
to component B. The purity of the side-stream product can then be maintained at
its specified value x0

B,S by moving some (small) amount of component C from the
bottom to the side-stream product. This results in a smaller bottom flow B and we
can reduce the boilup V accordingly, while keeping V/B constant as seen from eq.
(9.8). Thus, in conclusion, we can reduce the boilup to the limiting bottom section by
over-fractionating in the top.

The same argument applies for operation in Case 3, when the top section C21 limits
the separation, but now we over-fractionate the bottom product B.

Below we derive expressions for the potential reduction in boilup for the two cases
when

1. The bottom section C22 is limiting, and we can over-fractionate the distillate in
order to reduce the boilup.

2. The top section C21 is limiting and we can over-fractionate the bottom stream in
order to reduce the boilup



140 9. Energy savings by over-fractionation in the Petlyuk column

9.3.1 Energy savings by over-fractionation, Case 1: C22 is lim-
iting

The material balance of the column is as given by eq. (9.9)




zA

zB

zC



F =





xA,D xA,S 0
(1 − xA,D) xB,S (1 − xC,B)

0 (1 − xB,S − xA,S) xC,B









D
S
B



 (9.9)

where it is assumed that there is no heavy product in the top (xC,D = 0) and no light
component in the bottom stream (xA,B = 0). The assumption for this work is that only
the main component in each product stream is specified, so in order to solve eq. (9.6),
it has to be minimized with respect to xA,S, as is evident from eq. (9.9). For Case 1,
the optimal value is xA,S = 0. The cause for this is that it is optimal to introduce as
much B into the side-stream as possible in order to reduce the boilup in the limiting
section, thus moving A to the top. Therefore, when operating in Case 1 mode, the
constraints in (9.2) are given by

xB,S = x0
B,S

xC,B = x0
C,B

xA,D ≥ x0
A,D

From eq. (9.9) we find that the bottom stream is given by

B = −F

(

1 − zA

xA,D

)

xC,S − zC

xC,B − xC,S

(9.10)

which is found by setting xA,S = 0 and inverting. From the mass balance equations
it follows that when the fraction of component B is reduced in the distillate, we can
transfer an amount

∆LC21
= FzA

(1 − x0
A,D)

x0
A,D

to the side-stream S, see also Figure 9.5. To fulfill the side stream purity constraint,
we can transfer an amount

∆VC22
= ∆LC21

x0
C,S

x0
C,B − x0

C,S

from the bottom stream to the side-stream. Further, it follows that the relative energy
savings, when the purity is increased from the constraint value x0

A,D to xA,D, is

EC22

S =
V C22,0

B,min − V C22

B,min

V C22,0
B,min

=
x0

C,SzA

(
xA,D − x0

A,D

)

(
zAx0

C,S + zCx0
A,D − x0

A,Dx0
C,S

)
xA,D

=

1
x0

A,D

− 1
xA,D

zC

zA

1
x0

C,S

+ 1
x0

A,D

− 1
zA

(9.11)
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A,D
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A,D

∆VC22
= ∆LC21

x0

C,S

x0

C,B−x0

C,S

Figure 9.5: Illustration of the change in the internal streams when increasing
the purity of the distillate from x0

A,D to xA,D = 1 for operation in Case 1.

which is positive as long as

zAx0
C,S + zCx0

A,D − x0
A,Dx0

C,S = xAx0
C,S + x0

A,D(zC − x0
C,S) ≥ 0

which is usually the case, since in practice zC > x0
C,S .

From eq. (9.11) we note that:� Lowering the purity requirement (x0
A,D) will increase the potential energy savings.� Normally

zC

x0
C,S

À 1

so increasing zA will also increase the energy savings.� Increasing the amount of C in the side-stream S will reduce the energy savings.� Normally xA,D = 1 and zAx0
C,S + zCx0

A,D − x0
A,Dx0

C,S ≈ 1 (let zA = zC = z and
x0

B,D = x0
C,S = x), then

EC22

S ≈ x2

the energy savings is proportional to the impurity specifications in the side-stream
and the distillate. Thus, for high purity distillation, the savings are modest.

Note that the relative energy savings, as given by eq. (9.11), do not depend on the
Underwood roots nor the product specifications of the bottom stream, as long as the
same column section is limiting the separation.

To illustrate the potential energy savings, several cases are shown in Figure 9.6
for different feed compositions and product specifications. As seen from Figure 9.6, if
some impurity is allowed in the side-stream, energy savings up to 3.5% are achievable
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Figure 9.6: Energy savings by over-fractionation for different feed compo-
sitions and purity requirements. The impurity specification is shown on the
ordinate for the different sub-figures, while the feed specifications are shown
on the abscissa. V 0−V

V 0 ∗ 100% yields the savings in percent by increasing the
purity from xA,D = x0

A,D to xA,D = 1.

for the data shown. For the case of equimolar feed, see column 1 of the sub-plots, we
see that the potential energy saving is in the order of 1%. Also, note that the impurity
requirements of the bottom stream do not influence the energy savings, as was noted
above.

9.3.2 Energy savings by over-fractionating, Case 3: C21 is lim-
iting

We here summarize the results for Case 3 for completeness. For Case 3 we have that

V C21

T,min =
αAwC21

A,T

αA − θA

+
αBwC21

B,T

αB − θA

=

[
αAxA,D

αA − θA

+
αB(1 − xA,D)

αB − θA

]

D (9.12)
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where wC21

A,T = xA,DD and wB,T = xB,DD = (1−xA,D)D, and it is assumed that there is
no C in the distillate. We see that for a given purity in the distillate, in order to reduce
the boilup we must reduce the distillate stream. From the component mass balance in
eq. (9.9) and using that zB = 1 − zA − zC we get

D = F
xA,S

(
zC

xC,B
− 1
)

+ zA

xA,D − xA,S

(9.13)

where xC,S = 0, as seen from Figure 9.4. Assume that xB,S and xA,D are fixed at the
constraint, as given by (9.1), then

xB,S = x0
B,S

xA,B = x0
A,B

xC,B ≥ x0
C,B

and the change in boilup in over-fractionating the bottom stream (going from x0
C,B to

xC,B) is given by

EC21

S =
V C21,0

T,min − V C21

T,min

V C21,0
T,min

=
x0

A,S zC

(
xC,B − x0

C,B

)

(
zA x0

C,B − x0
C,B x0

A,S + x0
A,S zC

)
xC,B

=

1
x0

C,B

− 1
xC,B

zA

zC

1
x0

A,S

+ 1
x0

C,B

− 1
zC

(9.14)

which is positive as long as

(
zA x0

C,B − x0
C,B x0

A,S + x0
A,S zC

)
> 1

We see that eq. (9.14) is structurally similar to eq. (9.11) and if we assume equimolar
feed (zA = zC) and that the allowable impurity in the product streams is (1− x0

C,B) =
xA,S = x, the energy savings in over-fractionating the bottom stream to pure C (xC,B =
1) is given by EC21

S ≈ x2, the same as for Case 1. From the above discussions it is
clear that there is a potential for saving energy when increasing the purity of one of the
product streams. Explicit expressions for the savings have been derived, together with
a physical explanation of the behavior. Below, we discuss the possibility of increasing
the savings by allowing bypass of a fraction of the feed and mix it with the over-
fractionated product.

9.3.3 Energy savings for a finite number of trays

The discussion so far has assumed a column with an infinite number of stages. In
practice, for a finite number of stages the achievable purity in each product stream
depends on the the number of stages in each section. For the case of an infinite
number of stages, it was optimal to produce pure product in the section that was not
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limiting the column. For a real column, the optimum degree of over-fractionation will
move away from pure product, as the number of stages in the non-limiting section is
reduced. Here, we illustrate the effect of changing the number of stages in each section
and how this affects the degree of over-fractionation.

To illustrate, consider a feed with composition zT =
[
0.45 0.3 0.25

]
, relative

volatility αT =
[
9 3 1

]
and the product specifications x0

B,S = 0.9 and x0
C,B = 0.97.

A plot of the boilup with respect to the purity of the distillate is shown in Figure
9.7. When the number of stages is reduced, the optimum with respect to the purity in
the distillate moves away from pure product and it is optimal to produce a distillate
with some component B. Depending on the design of the column and on the product
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Figure 9.7: Plot of the boilup with respect to the amount of impurity of
component B in the distillate for different number of stages (NT = 8, 9, 10, 12)
in each section.

specifications, the optimum may or may not be on the constraint. Thus, for the case of
a non-balanced column (either Case 1 or Case 3) we may use the available separation
work in the non-limiting sections in two ways:

1. To over-fractionate the non-limiting section of the column to produce a product
with higher purity than the required, and mix a fraction of the feed into the
product to achieve the product specification. This would have the effect of re-
ducing the boilup for a given feed and increase the throughput of the process
which would reduce the operational cost of the column.

2. We can reduce the number of stages in the non-limiting section, and by that save
capital cost.

These results have also been confirmed using the process simulator HYSYS
�

, with a
mixture of n-pentane (A), n-hexane (B) and n-heptane (C) with feed z = [1/3 1/3 1/3],
liquid fraction ql = 1 and xB,S = 0.9 and xC,B = 0.97 and where we assume 28
theoretical stages in the pre-fractionator, and 40 in the main column. The Peng-
Robinson equation of state was used for the thermodynamic calculations. A plot of
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the boilup with respect to the purity of the distillate is shown in Figure 9.8, where
increasing the purity from xA,D = 0.9 to xA,D = 0.997 yields a 1.2% decrease in the
heat input to the column, which is approximately the same energy savings as predicted
by Figure 9.6. Taking into account that distillation often is the main energy consumer
in a plant, a 1% reduction can yield large cost savings.
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Figure 9.8: Plot of heat input to boiler (Q) with respect to the product
specification in the distillate (xA,D) for the HYSYS

�
model

9.4 Additional energy savings by introducing by-

pass

Over-fractionating one of the product streams makes it possible to bypass some of the
feed and mix it with the product while retaining the constraints on the composition of
the products as given by (9.2). Two scenarios are possible:� Case 1 : This results in a distillate containing pure A, while the side-stream

contain B and C (rich in B), and the bottom stream contains C and B (rich in
C).� Case 3 : We have pure C in the bottom stream, the side-stream contains B and
A (rich in B) and the distillate contains A and B (rich in A).

For both cases, one of the streams contains a purer product than necessary (as given by
the product specifications in eq. (9.2) and in order to fulfill the constraint, we can mix
some of the feed into the over-fractionated product. Thus, we can further increase the
energy savings, since for a given feed we can bypass a fraction of the feed and mix it
with the product. However, we must allow component C (A) in the distillate (bottom
stream), a component that normally is not present in that stream.

For Case 1 (see Figure 9.9), we assume that the distillate is over-fractionated to
pure A (xA,D = 1). The resulting distillate flow is then D = zAF (remember xA,S = 0).
The amount of feed to bypass (FB) is then given by (9.15)
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Figure 9.9: Illustration of bypass for Case 1 where a fraction of the feed
is bypassed the main Petlyuk column and mixed with the over-fractionated
product (the distillate for Case 1) while retaining the composition constraint
on the distillate

FC22

B = D(xB,D = 0)
x0

B,D

1 − x0
B,D − zA

(9.15)

where D(xB,D = 0) is the distillate flow for pure product, which can be calculated by
eq. (9.13). To illustrate, consider Figure 9.10 which shows the relative energy savings
calculated as the reduction in boilup per feed unit with respect to x0

B,D for different
feed compositions and purity specifications when increasing the purity from x0

A,D to
xA,D = 1 in the distillate.

A potential saving of maximum 3.5% is possible without bypass, while including
bypass the potential saving is approximately 14%. Since the amount of bypass depends
on the composition of the distillate and the feed stream only, the total energy savings
are not sensitive to the product specifications of the other streams. Bypassing some of
the feed has two effects:

1. First, the energy savings would increase, since we for a given feed can reduce the
boilup.

2. Second, for a column that is a bottleneck in the process, we can increase the
throughput of the plant by bypassing some of the feed.

For Case 3, when C21 is limiting, we have that xC,S = 0 optimally. Assume that
the bottom stream is over-fractionated to pure component C, then B = zCF and the
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Figure 9.10: Energy savings per feed unit by over-fractionation with by-
pass (dashed) and without (solid) for different feed compositions and pu-
rity requirements. The impurity specification is shown on the ordinate for
the different sub-figures, while the feed specifications are shown on the ab-
scissa. V 0−V

V 0 ∗ 100% yields the savings in percent by increasing the purity
from xA,D = x0

A,D to xA,D = 1

bypass is given by

FC21

B = B(xB,B = 0)
x0

B,B

1 − x0
B,B − zC

(9.16)

The same savings can be achieved for the bottom stream as was shown for Case 1
above.
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9.5 Discussion

9.5.1 Alternative configurations

Above we assumed that we can tolerate all three components in the product that is
over-fractionated. If we require that the products should have the following product
specifications:

xA,D = x0
A,D

xB,S = x0
B,S (9.17)

xC,B = x0
C,B

and we can not tolerate any component C in the distillate or any component A in
the bottom stream, several alternative column structures could be proposed where we
assume that we over-fractionate the distillate (or bottom stream) and add component
B by

1. Separating the bypass stream in a binary column, where we split AB/C and add
the distillate from that column to the over-fractionated distillate stream from the
Petlyuk column.

2. Taking the side-stream product from the Petlyuk column (which contains B and
C) and separating in a binary column a fraction of the side-stream to get the
required amount of B and mix it with the distillate from the Petlyuk column

3. and several other possible column structures.
The calculations showed that we could not lower the energy input (the boilup) by
using alternative structures. The alternative structures had the same or higher en-
ergy demand as running the Petlyuk column without over-fractionation. The entropy
production for the different configurations were also compared, with the same conclu-
sion. For the product specification in eq. (9.17) running the Petlyuk column without
over-fractionation was the optimal configuration.

9.5.2 Implications on control

From Figure 9.7 it is evident that the boilup increases rapidly if we operate to the
left of the optimal impurity. This has important implications for control, since a
small measurement error would yield large penalties in the boilup. Thus, controlling
the composition at the optimum is a poor self-optimizing controlled variable, that is
very sensitive to measurement error. Thus it may be preferable to back-off from the
optimal value (since the gradient is much smaller to the right of the optimum) where
a measurement error would have a much smaller effect on the boilup.

9.6 Conclusions

In this paper it is has been shown that for Petlyuk distillation columns, it may be
optimal from an energy point of view, to over-fractionate one of the product streams.
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Additional energy savings may also be possible when bypassing some of the feed and
mixing it with the over-fractionated product stream. However, it should be noted that
the resulting product will contain a component that normally is not present. These
results have been confirmed numerically for the case of finite number of stages, where
it is optimal to over-fractionate the non-limiting section as expected.
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Chapter 10

Control structure selection for oil
and gas production networks

Based on work presented at
the 13th European Symposium on Computer-Aided Process Engineering (ESCAPE

13), June 1-4, 2003, Lappeenranta, Finland (Case 1)
and

Petronics Workshop - 2004: “Joining Petroleum, Multiphase Flow, Chemical and
Control Engineering”, June 15-16, 2004, Trondheim, Norway (Case 2)

In this paper, we study two cases related to the production of oil and gas from typical
offshore facilities. Offshore production networks are prone with uncertainty due to
the low degree of observability, with few and unreliable measurements. The focus
here is on how to deal with uncertainty in such systems by selecting self-optimizing
control structures. The first case deals with the optimal allocation of lift gas, which
is a technology for increasing the production by injecting gas in the wells. The main
conclusion is that we are able to find a control structure with acceptable loss using
the null space method. The second case considers a special type of horizontal wells
where free gas from the reservoir is drawn directly into the well. We find that by using
practically available measurements and by using the null space method to find the
control structure, the loss is acceptable. In both cases we neglect measurement and
control error.

10.1 Introduction

Typical offshore production networks for oil and gas consist of multiple wells that
are connected to nodes (manifolds). From each node, the hydrocarbons flow through
transportation lines to new nodes or to a processing facility. From the reservoirs the
fluid flows due to the pressure gradient into the well. The total flowrate in each well
can be controlled using valves situated at the top of the well, see Figure 10.1. The
reservoir fluid is a mixture of hydrocarbons and water, and, depending on the pressure
and temperature in the reservoir, a free gas phase may be present. Due to the pressure
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drop the fraction of free gas increases downstream. The reservoir fluid consists of the
three phases oil, water and gas which flow concurrently in the wells and transportation
lines to the separation unit where water, light and heavy hydrocarbons are separated
by reducing the pressure in a three-phase separator (or separators). Thereafter, the
gas and oil are transported to the market, while water is re-injected into the reservoir
or released to sea after cleaning. Gas can also be re-compressed and re-injected in the
reservoirs or used as process fuel.

Typical constraints are:

� Processing capacity topside. Gas production may be limited by the compressor
capacity, while water processing capacity may be limited by size of the separators.

� Flow constraints in the wells and transportation lines, because of friction.

� Reservoir constraints, for example to avoid sand in the production system.

The above constraints are not a complete list, see e.g. Golan and Whitson (1996) for
more details. Below we consider two case-studies. In both cases we aim at (indirectly)
achieving near optimal production by feedback control of the “right” variables utilizing
the ideas of self-optimizing control (Skogestad, 2000).

1. The first study deals with the optimal distribution of lift gas in gas-lifted wells.
A simple system, consisting of two wells with a common transportation line, is
considered. The relative amount of gas to oil in the reservoir is unknown and is
considered as a disturbance. We assume that the wells produce from different
reservoirs such that the disturbances are not correlated. To increase production,
a portion of the produced gas is recycled back into the wells. The operational
objective is to maximize profit, where we add a penalty for re-compressing the lift
gas. Gas-lift technology is typically used in systems where the pressure gradient
is not sufficient to produce the reservoir fluids to the surface.

2. The second case study deals with a special type of reservoir, where free gas
is present (as a gas phase) and is drawn directly into the well. The effect on
production is that the relative amount of gas and oil from the reservoir depends
on the rate of production from the well. In this case, the rate of change of free
gas to the production rate is considered a disturbance. The system under study
consists of five wells, of which three wells have uncertain inflow characteristics.
The topside processing capacity for gas is limited, and we study how to find a
self-optimizing control structure that yields acceptable economic operation.

10.2 Case 1: Optimal operation of gas-lifted wells

10.2.1 Introduction

In many offshore hydrocarbon production networks, the production of oil, gas and
water is constrained by the processing capacity and other process constraints, such
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as available flow-line transportation capacity. Wang et al. (2002) point out that the
available literature does not provide robust procedures on how to formulate and solve
typical optimization problems for such systems. Often, the “optimization” considers
the constraints sequentially, or only sub-problems are considered (e.g. by not including
the transportation line to the processing facility). Many heuristic rules on how to
operate “optimally” exist, see e.g. Golan and Whitson (1996), and often an open-
loop approach is used where the setpoints for the inputs are calculated off-line without
considering uncertainty.

Dutta-Roy and Kattapuram (1997) studied the effect of including process con-
straints for a two-well case that share a common transportation line to the process.
They found that failing to include the process constraints (in this case the transporta-
tion line) gave a sub-optimal solution to the the problem.

Here, we focus on how to implement optimal operation in the presence of low fre-
quency disturbances. In typical hydrocarbon producing systems, there are many uncer-
tainties (e.g. reservoir properties, models, etc.) and few measurements. Thus, meth-
ods that can improve the operation such that the process is operated near-optimally
in presence of disturbances, are of great value. Here, we propose to use the ideas
of self-optimizing control (Skogestad, 2000) as a method for achieving near-optimal
operation.

10.2.2 Case description

We consider the gas-lift structure shown in Figure 10.1, with two vertical wells and
one vertical transportation line. The data for the case are shown in Table 10.1.
We use a distributed pseudo one-phase flow model (Taitel, 2001), where we assume
black oil compositional PVT behavior (Golan and Whitson, 1996). The valves are
modeled as one-phase valves, with a linear valve characteristic. The flow-model rep-
resents a two-point boundary value problem and the partial differential equations are
discretized using orthogonal collocation (Villadsen and Stewart, 1967) and solved as a
set of algebraic equations.

Problem formulation

The two wells (W1 and W2) produce from separate reservoirs and are connected to the
same manifold. Thus, both wells share a common transport line (T ) to the processing
facility. We assume that the system is dynamically stable. Gas is injected into the
wells through valves CV6 and CV7 to increase the production from the reservoir.

The operating objective is to maximize the profit,

J = poṁ0 + pgṁg − pgiṁgi (10.1)

where indices o, g, gi are oil, gas and injected gas respectively, pi is the price and mi is
the mass rate for phase i. We have neglected water in this work. The seven degrees of
freedom are

uT = [V1 V2 V3 V4 V5 ṁgi,1 ṁgi,2] (10.2)
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Figure 10.1: Illustration of the gas-lift allocation network

where Vi is the valve position for valve i and ṁgi,j is the mass rate of injected gas in
well j. We assume that the pressure and level in the separator are controlled using
V4 and V5, respectively. The level has no steady-state effect and we assume that the
pressure of the separator is given, thus removing two degrees of freedom.

In some reservoirs, the ratio of oil and gas (GOR, the ratio of stock-tank gas mass
rate to stock-tank oil mass rate) is not exactly known, and we assume that the distur-
bances (uncertain parameters) are the ratio of gas and oil in reservoir 1 and 2.

dT = [GOR1 GOR2] =
[
0.1 ± 0.03 0.05 ± 0.02

]

The available measurements are the pressures upstream of the valve in each well,
the mass rate of lift gas, the flow of gas in each well and the total mass rate of gas (i.e.
the sum from both wells).

yT
0 =

[
PV1

PV2
ṁgi,1 ṁgi,2 ṁg,1 ṁg,2 ṁg,tot

]
(10.3)
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Table 10.1: Data for the gas-lift allocation case
Parameter Value Unit Comment
LW1,W2 1500 m Length well 1 and 2
DW1,W2 0.12 m Diameter well 1 and 2

LT 300 m Length transportation line
DT 0.2 m Diameter transportation line

Pres,1 150 bar Pressure reservoir 1
Pres,2 155 bar Pressure reservoir 2

PIres,1 1 × 10−7 m3

s Pa
Production index well 1

PIres,2 0.98 × 10−7 m3

s Pa
Production index well 2

Psep 50 bar Pressure separator

ρ1 750 kg
m3 Black oil density reservoir 1

ρ2 800 kg
m3 Black oil density reservoir 2

Mg 20 kg
kmol

Molecular weight gas

GOR0
1 0.1 kg

kg
Nominal gas oil ratio a

GOR0
2 0.05 kg

kg
Nominal gas oil ratio

ṁg,tot 14 kg
s

Maximum gas processing capacity

aGOR is defined as
ṁg

ṁo
at standard conditions

It is assumed that there is an upper limit in the gas processing capacity (ṁmax
g,tot) of

the process, due to compressor capacity limitations. The optimally active constraints
(for all disturbances) are found to be [ṁmax

g,tot V max
1 V max

2 V max
3 ] corresponding to the

total mass flow of gas, the valve positions for well 1 and well 2, and the transportation
line. This is reasonable, since decreasing the valve position restricts the flow from the
reservoir. Here, we assume that we control these constraints, removing four degrees of
freedom. The remaining degrees of freedom are one, see Table 10.2.

Table 10.2: Degrees of freedom analysis
Manipulated variables 7

Valve positions V1,2 (2)
Valve trans.line V3

Gas injection ṁgi,12 (2)
Pressure P
Level L

- Control L and P 2
- Active constraints 4

Total mass flow gas ṁmax
g,tot

Valves V1,2,3

= Steady-state degrees of freedom 1

Thus, we have only one unconstrained DOF. Since it is optimal to control the total
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mass flow of gas at the constraint, we have

J ′ = poṁo + pgṁ
max
g − pgiṁgi = poṁo − pgiṁgi +

constant
︷ ︸︸ ︷

pgṁ
max
g (10.4)

and we can reformulate the objective and only consider the cost of injecting the gas
into the wells

J = poṁ0 − pgiṁgi (10.5)

Here we have assumed that po = 0.17[$/kg], corresponding to an oil price of � 20
per barrel. The cost of re-compressing gas for gas-lift is assumed to be pgi = 0.05[$/kg],
where we assume the cost to be half the market price of gas (assumed to be 0.1$/Sm3).

10.2.3 Nominal optimal values

The nominal optimal values are summarized in Table 10.3.

Table 10.3: Nominal optimal values for the gas lift allocation case
Variable Value Units
ṁg,1 7.6661 kg/s
ṁg,2 6.3339 kg/s
ṁo,1 37.8880 kg/s
ṁo,2 42.2843 kg/s
ṁgi,1 3.8773 kg/s
ṁgi,2 4.2197 kg/s
PV1

60.982 bar
PV2

61.022 bar
J 13.2244 � /s

10.2.4 Candidate control structures for self-optimizing con-
trol

With only one degree of freedom left for optimization, we need to select one controlled
variable c. We select the controlled variable c as a linear combination of the measure-
ments

c = Hy (10.6)

where H is a vector. If H consists of only one non-zero element, then a single measure-
ment is used. We consider the measurements in eq. (10.3), except for the total mass
flow of gas (since we already have assumed that we control that variable at its con-
straint value). We are looking for a controlled variable that, when kept at the nominal
optimal value, yields optimal operation in the presence of uncertainty. We compare
the use of a single measurement, c = yi, with the candidate cns synthesized using the
null space method of Chapter 3. In this case we have neglected the implementation
and measurement error and we assume for all candidates that the active constraints
are controlled.
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Null space method

Following Section 3.2, we have that the minimum required number of measurements is

ny = nu + nd = 1 + 2 = 3

where ny is the number of measurements, nu the number of unconstrained degrees of
freedom and nd the number of disturbances. Thus, we need three measurements for
the null space method. We select to make use of measurements ṁgi,1, ṁgi,2 (the inputs)
and ṁg,1 because the gas lift flowrates are easily available since they can be measured
topside. In addition, we assume that we can measure the flowrate of gas from well 1
(we could have used another measurement here). Following Chapter 3, we obtain the
optimal sensitivity function ∆yopt = F∆d where





∆ṁopt
gi,1

∆ṁopt
gi,2

∆ṁopt
g,1



 =





−20.253 −16.026
−12.332 −22.473
12.819 −17.356





[
∆GOR1

∆GOR2

]

F is calculated by imposing the above active constraints. Upon requiring HF = 0, the
resulting controlled variable is

cns = Hy =
[
0.633 −0.703 0.325

] [
ṁgi,1 ṁgi,2 ṁg,1

]T
(10.7)

= 0.633ṁgi,1 − 0.703ṁgi,2 + 0.325ṁg,1

with nominal setpoint cs
ns = 1.9811.

10.2.5 Loss evaluation for all candidates

The loss
L = J(c, d) − Jopt(d)

is the difference between the objective function value using controlled variable c and
the true optimal objective value. The results from the loss calculation for nine different
disturbance combinations are shown in Table 10.4.

From Table 10.4 it is evident that controlling cns at the nominal optimum yields
perfect self-optimizing control for all disturbance combinations.

Controlling either PV1
or PV2

yield infeasible operation for cases where the amount
of gas in the reservoir increases (the pressure at the wellhead decreases due to less
liquid in the well).

Controlling either ṁgi,1 or ṁgi,2 at constant nominal setpoint, yield feasible op-
eration for all disturbances with a worst-case loss of 0.92% and 0.59%, respectively.
Controlling the mass rate of gas in either well 1 or well 2 at constant nominal setpoint,
yields a worst-case loss of 0.42%. The percentage losses are small, which indicates that
the optimum is flat in these variables. Keeping the mass rate of well 1 or well 2 con-
stant yields similar loss, since we also control the total gas rate (the active constraint).
Thus, as long as the gas processing capacity of the process are utilized (by actively
controlling the total rate of gas), near-optimal operation is achieved.
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Table 10.4: Loss for the candidate control variables for the gas-lift allocation
case. The disturbance values are indicated in the two left-most columns. Loss
for each candidate is given in % (L%) and in 106$/year (L$). “inf” denotes
infeasable operation

Disturbance PV1
PV2

ṁgi,1 ṁgi,2 ṁg,1 ṁg,2 cns

GOR1 GOR2 L% L$ L% L$ L% L$ L% L$ L% L$ L% L$ L% L$

0.07 0.03 0.41 1.75 0.34 1.48 0.65 2.80 0.52 2.21 0.00 0.01 0.00 0.01 0.00 0.00
0.07 0.05 0.27 1.15 0.22 0.93 0.30 1.28 0.12 0.51 0.12 0.51 0.12 0.51 0.00 0.00
0.07 0.07 0.08 0.34 0.25 1.04 0.08 0.33 0.00 0.01 0.42 1.76 0.42 1.76 0.00 0.00
0.10 0.03 0.17 0.74 0.17 0.72 0.09 0.39 0.16 0.69 0.09 0.38 0.09 0.38 0.00 0.00
0.10 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.10 0.07 inf inf inf inf 0.09 0.39 0.18 0.73 0.09 0.38 0.09 0.38 0.00 0.00
0.13 0.03 inf inf inf inf 0.07 0.29 0.01 0.04 0.40 1.67 0.40 1.67 0.00 0.00
0.13 0.05 inf inf inf inf 0.38 1.54 0.11 0.44 0.11 0.44 0.11 0.44 0.00 0.00
0.13 0.07 inf inf inf inf 0.92 3.69 0.59 2.37 0.00 0.00 0.00 0.00 0.00 0.00

On the other side, because of the very large flowrates in an oil and gas production
networks, the losses when measured in profit are large. In fact, the worst-case losses are
in the range 1.76− 3.69 million � /year and this could possibly be saved by controlling
another variable, such as cns.

10.2.6 Conclusions Case 1

Here, selection of controlled variables has been illustrated on a gas lift allocation ex-
ample. The results show that the control structures as synthesized using the null space
method yields increased profit as compared to the alternative structures.
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10.3 Case 2: Optimal operation of horizontal wells

in high-permeable reservoirs by selecting the

right control structure

10.3.1 Introduction

In this section we study a special type of reservoir, where the gas-oil ratio (GOR)
depends on the flowrate in each well. This may occur in high-permeability reservoirs,
where a gas cap (also called “free gas”) exists or where the injected gas accumulates
and forms a gas cap over the oil layer over time, see Figure 10.2. In many cases the gas
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Figure 10.2: Schematic illustration of a well with separate zones producing
”free gas”. When the production from the well is increased, the area

production is unwanted, so the production from each well is limited by a critical rate
(qc) in which gas penetrates into the well. When the reservoir matures, production of
free gas is unavoidable. How to operate such reservoirs optimally is of great importance
for the economics of a production field.

Giger (1989) develops a model for when the gas-oil contact reaches the well (called
cresting), focusing on the time before cresting. Papatzacos et al. (1989) further de-
veloped the methods of Giger (1989) to estimate the time before breakthrough of gas.
Konieczek (1990) developed a model for the production of oil from a thin oil layer
with an overlaying gas cap by using a semi-analytic two dimensional model of the con-
tact layer between the oil and gas. The model assumes a horizontal well and predicts
the GOR reasonably well. Tiefenthal (1992) extended the model of Konieczek (1990),
allowing for non-homogeneous permeability in the reservoir.

While complex models and simulation tools exist for predicting the variable gas
oil ratio (e.g. reservoir simulators), simple semi-analytical models are more commonly
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used based on fitting experimental data. Depending on the quality of the experimental
data, the models may have large uncertainty with respect to the prediction of the rate
dependencies of the GOR.

The inherent uncertainty in predicting the inflow behavior to the wells makes the
planning and implementation of the optimal operation difficult. Two approaches for
the implementation of optimal operation are

� Real-time optimization (RTO). At each optimization step, measurements are used
to estimate the uncertain parameters in the model. Based on the updated model,
new optimal inputs are implemented. For a brief discussion of RTO, see Chapter
2.

� Self optimizing control (Skogestad, 2000) based on simple feedback.
Self-optimizing control is when constant setpoints indirectly give near-optimal
operation.

Note that, feedback is necessary in order to achieve more optimal operation, either
through the model update step of the RTO or with the direct feedback in self-optimizing
control.

10.3.2 Case description

The system under study is illustrated in Figure 10.3. The system consists of five wells,
W1-W5. All wells are connected to the same manifold and fluid is transported to
the processing unit through a common transportation line (T ). The processing unit
operates at a constant pressure (P ) and constant level (L).

The operational objective is to maximize the oil production (ṁo,tot) while keeping
the gas production below the processing capacity (ṁg,tot ≤ ṁmax

g,tot). Since the wells
share the same transportation line, the flow in the wells are constrained by the com-
mon downstream pressure in the manifold. Each well has a production choke valve
at the inlet to the manifold with a valve opening Vi. The choke valve for the trans-
portation line is situated at the inlet to the separation unit with valve opening VT .
The manipulated variables are listed in Table 10.5 and the available measurements are

Table 10.5: Manipulated variables
Variable Unit Comment

Vi m2 Valve openinga well i, i = 1, · · · , 5
VT m2 Valve opening transportation line
P bar Pressure separation unit
L m Level separation unit

aWe model the valves as compressible flow of ideal gas through an
area Ai and we manipulate directly on the allowable flow area of the
valve.

listed in Table 10.6. The data and the models used are given in Appendix D.
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Figure 10.3: Network of wells to be optimized (the horizontal part of the
well is not included).

Table 10.6: Available measurements
Variable Unit Comment

Pi bar Pressure upstream choke valve well i
Pbhp,i bar Bottom hole pressure well i
Pm bar Pressure manifold
Vi m2 Choke valve opening well i
VT m2 Choke valve opening transportation line
ṁg kg/s Total mass rate of gas
ṁo kg/s Total mass rate of oil
ṁg,i kg/s Mass flowrate gas well i
ṁo,i kg/s Mass flowrate oil well i
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Gas oil ratio (GOR) model

The GOR is defined as the ratio of gas and oil (measured at standard conditions)

GORi =
ṁg,i

ṁo,i

where we here use mass basis. A typical dependency of GOR on the flowrate is shown
in Figure 10.4. At low oil rates, the GOR is constant and equal to the fraction of gas

TR

ṁo,c ṁo

GOR

Figure 10.4: Sketch of the dependency of GOR with respect to flowrate of
oil for a typical horizontal well with free gas.

dissolved in the oil. In a small transition region, the GOR increases non-linearly (TR
in Figure 10.4) with oil rate. At higher rates, the change in GOR is close to linear with
respect to the oil rate. Thus, if we assume that the operation of each well should be
above the transition region, then a change in GOR with respect to oil rate is close to
linear.

Fitting the data to the GOR model is not trivial and the resulting model has un-
certain parameters. This can be seen from Figure 10.5, where two different realizations
that fit the experimental data are shown for wells W1, W4 and W5. As can be seen, the
transition region is rather small such that a piecewise linear model of the data gives a
reasonable description. This results in a model on the form

GORi = max
(
GORi,sol, GORi,0 + di(ṁo,i − ṁ0

o,i)
)

(10.8)

where the parameter di can be seen as an uncertain parameter (disturbance) and
GORi,sol is the GOR without breakthrough of gas. A piecewise linear approxima-
tion to the data is shown in Figure 10.6 and the parameters for the model are given in
Table 10.7. We assume that only three of the wells have uncertain parameters.

We select to include only some disturbance combinations, see Table 10.8 to reduce
the computation time. We assume that the nominal point (nominal disturbance) cor-
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Table 10.7: Data for the GOR model
Well

Parameter W1 W2
a W3

b W4 W5

GORi,0 0.331 0.053 0.053 0.392 0.096
ṁ0

i,o 3.2534 3.8129 2.8129 2.1181 4.3885
d1

i 0.1716 0.1522 0.1810 0.4745 0.1193
d2

i 0.3370 0.1522 0.1810 0.648 0.223
GORi,sol 0.056 0.0530 0.0530 0.0578 0.0513

aNo uncertainty
bNo uncertainty

Table 10.8: Disturbance combinations, where the sign ± indicates the low
and high value of the disturbance, as given by Table 10.7

# d1 d4 d5

0 - - -
1 + - -
2 - + -
3 - - +
4 + + +

responds to the disturbance scenario “0” in Table 10.8 since the amount of gas drawn
into the well typically increases with time.

Optimal operation

We assume that the operational objective is to maximize the production of oil. For a
given disturbance the optimization problem is:

max
Vi

J = ṁo,tot (10.9)

∑

i

ṁg,i ≤ ṁmax
g,tot = 7.172 [kg/s]

0 ≤ Vi ≤ Vi,max

Table 10.9 summaries the optimal flowrates for the disturbance combinations given in
Table 10.8.

Degrees of freedom analysis

As seen from Table 10.9, it is optimal for all disturbance combinations to operate at
the maximum gas processing capacity (ṁg,tot = ṁmax

g,tot = 7.172). This removes one
degree of freedom. In addition, it is optimal to have VT , the transportation line valve,
fully open (not shown), removing additionally one degree of freedom. Thus, there are
four degrees of freedom at steady-state, see Table 10.10.
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Table 10.9: Optimal flowrates for different disturbances combinations.

Well
# Variable Units W1 W2 W3 W4 W5 Sum

0 ṁg,i kg/s 1.6666 1.5332 1.3812 0.4413 2.1497 7.172
0 ṁo,i kg/s 3.7236 5.148 4.1422 1.7291 6.1812 20.92
0 GORi kg/kg 0.44757 0.29782 0.33344 0.25521 0.34779 -
1 ṁg,i kg/s 0.61139 1.8401 1.6392 0.53932 2.542 7.172
1 ṁo,i kg/s 2.7701 5.4114 4.3637 1.8132 6.5178 20.88
1 GORi kg/kg 0.22071 0.34004 0.37566 0.29744 0.39 -
2 ṁg,i kg/s 1.7355 1.6112 1.4468 0.12902 2.2495 7.172
2 ṁo,i kg/s 3.7844 5.2168 4.2001 1.5509 6.2691 21.0213
2 GORi kg/kg 0.4586 0.30885 0.34447 0.083194 0.35882 -
3 ṁg,i kg/s 2.0661 1.9853 1.7614 0.58571 0.77355 7.172
3 ṁo,i kg/s 4.061 5.5298 4.4632 1.8511 4.4928 20.3978
3 GORi kg/kg 0.50877 0.35902 0.39464 0.31642 0.17217 -
4 ṁg,i kg/s 0.92433 2.5355 2.224 0.34541 1.1428 7.172
4 ṁo,i kg/s 3.012 5.9489 4.8157 1.7223 4.7741 20.2729
4 GORi kg/kg 0.30688 0.42621 0.46183 0.20056 0.23937 -

Table 10.10: Degrees of freedom analysis
Manipulated variables 8

Valve position wells Vi (5)
Valve trans.line VT

Pressure P
Level L

- Control L and P 2
- Active constraints 2

Total mass flow gas ṁmax
g,tot

Valve trans.line VT

= Steady-state degrees of freedom 4

10.3.3 Loss for alternative control structures

Based on the degrees of freedom analysis, we need to find four variables to control.
Again, we neglect the effect of implementation error. Since the number of possible
candidate structures is very large, we consider only structures which would be plausible
in practice and compare these structures with the structure using the null space method
of Chapter 3. The alternative candidates are summarized in Table 10.11.

For all candidate structures we have assumed that V3 is used for satisfying the total
flowrate of gas (we can select any of the steady-state degrees of freedom). Candidates
(4-6) utilize flowrate information from the wells. In practice, measuring the flowrate
in multiphase flow is difficult, and in many cases these measurements are not avail-
able. Thus, if possible, a control structure with practically available measurements is
preferred.
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Table 10.11: Candidate control structures
CS # cac,1 cac,2 c1 c2 c3 c4 Description

1 VT ṁg,tot P1 P2 P4 P5 Well head pressures
2 VT ṁg,tot Pbhp,1 Pbhp,2 Pbhp,4 Pbhp,5 Bottom hole pressures
3 VT ṁg,tot V1 V2 V4 V5 Inputs constant
4 VT ṁg,tot GOR1 GOR2 GOR4 GOR5 GOR
5 VT ṁg,tot ṁg,1 ṁg,2 ṁg,4 ṁg,5 Mass flowrate gas
6 VT ṁg,tot ṁo,1 ṁo,2 ṁo,4 ṁo,5 Mass flowrate oil
7 VT ṁg,tot cns,1 cns,2 cns,3 cns,4 Null space method

Controlled variables for the null space method

We have nu = 4 unconstrained degrees of freedom and nd = 3 disturbances, so the
number of measurements to include in the null space method is

ny = nu + nd = 3 + 4 = 7 (10.10)

To get a simple system, we choose not to include any flowrate measurements from the
wells. The following seven measurements are used:

yT =
[
ṁo,tot Pm V1 V2 V3 V4 V5

]
(10.11)

As discussed in Chapter 3, the disturbances and inputs (if not measured) must be
visible in the measurement space. With the measurements given by eq. (10.11), it may
seem that we cannot distinguish between the disturbances since we utilize five input
measurements and only two measurements from the process. However, note that there
is feedback from the active constraint (by controlling ṁg,tot). Thus, the use of three
measurements mo,tot, Pm and one of the inputs is sufficient. Calculating the optimal
sensitivity matrix

∆yopt = F∆d (10.12)

and finding H in the left null space of F (HF = 0) yields

H =







0.006 −0.007 0.135 0.991 −0.011 0.003 −0.020
0.009 −0.011 0.159 −0.011 0.987 0.003 −0.024
−0.013 0.019 −0.054 0.005 0.006 0.998 0.010
−0.036 0.045 0.242 −0.013 −0.014 0.003 0.968







with the corresponding setpoints cs
ns =

[
−0.146 −0.258 0.539 1.147

]
.

Table 10.12 summarizes the loss results, for all seven control structures and we find
that:� Control structure 1, with wellhead pressure control, yields infeasible operation for

all disturbance combinations. As can be seen from Figure 10.5, all disturbance
combinations give a higher GOR ratio, implying that the static pressure drop
over the well decreases. In order to keep the well head pressure constant, the
rate must be increased, such that the effect of friction compensates for the loss in
pressure drop due to the increased holdup of gas, or the rate must be decreased
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Table 10.12: Loss in kg/s (L) and in 106 $ (L$) for all control structures
for different realizations of the uncertain parameters

d1
1 → d2

1 d1
4 → d2

4 d1
5 → d2

5 d1
i → d2

i , i ∈ {1, 4, 5}
CS # L[kg/s] L[ F 106/year] L[kg/s] L[ F 106/year] L[kg/s] L[ F 106/year] L[kg/s] L[ F 106/year]

1 inf inf inf inf inf inf inf inf

2 0.3528 1.5723 0.0214 0.0956 inf inf inf inf

3 0.5896 2.6279 5.0189 22.3695 6.2979 28.0702 4.5353 20.2142
4 0.1568 0.6991 0.0441 0.1964 0.1562 0.6960 0.1802 0.8033
5 0.1949 0.8689 0.0395 0.1759 0.2368 1.0554 0.2870 1.2790
6 0.3528 1.5723 0.0214 0.0956 inf inf inf inf

7 0.0708 0.3156 0.0000 0.0000 0.0370 0.1647 0.0604 0.2691

in order for the GOR to be reduced with resulting increase in the pressure drop.
As seen, this is not feasible.� Control structure 2, with bottom hole pressure control, yields feasible operation
for disturbance combinations 1 and 2 and infeasible operation for combinations
3 and 4. An additional important point is that the gain from the manipulated
variables to the bottom hole pressure is small, making it sensitive to measurement
noise (which is not included in this analysis).� Control structure 3, with constant valve opening, is feasible for all disturbance
scenarios. This structure is often used in practice. The loss is in the range
2.7% − 29.5%, corresponding to a yearly loss in the range 2.6 − 28 million � .

All the above control structures utilize measurements that are found in most pro-
duction systems. All proposed structures either give infeasible operation or a high
economic loss. Next, we consider control structures 4-6 where we assume that flow
measurements are available.� Control structure 4, with constant GOR for each well (assumed measured) gives

a loss of 0.2 − 0.8 million � /year, which is acceptable.� Control structure 5, with constant mass flowrates for gas for each well (assumed
measured), yields losses in the range 0.18% − 1.38% corresponding to 0.17 − 1.3
million � /year, which is acceptable.� Control structure 6, with constant mass flowrate for oil for each well (assumed
measured), yields infeasible operation for disturbance combinations 3 and 4. The
physical explanations is that one tries to produce more oil than the well can
deliver, while satisfying the maximum gas constraint.

Finally, let us consider control structure 7, which is based on using practically available
measurements and the null space method.� Control structure 7, with the optimal combination of measurements, yields the

lowest losses of all candidates (in the range 0 − 0.3 million � /year). This is
achieved, without any direct measurement of the flowrate from each well.

10.3.4 Conclusions Case 2

In summary, we have shown that using practically available measurements we can
achieve almost perfect self-optimizing control, using the null space method. Keeping
the valve positions (the inputs) constant, yield feasible but far from optimal operation,
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a loss which can be saved by using the correct variables to control.

10.4 Conclusions

This paper has focused on the selection of controlled variables for two cases related to
offshore production of oil and gas. The goal has been to achieve self-optimizing control.
For the first case, where we maximize the profit by distributing lift gas to the wells,
we found that using the null space method for selecting controlled variables yield zero
disturbance loss and true optimal operation. For the second case, where we maximize
the amount of oil for a cluster of five wells with uncertain inflow characteristic, we found
that using the null space method with practically available measurements, we are able
to operate near-optimally, in the presence of disturbances. We neglected measurement
error in this work.
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Chapter 11

Control structure selection for an
evaporator example

Based on work presented at
12th Nordic Process Control Workshop (NPCW), August 19-22, Göteborg, Sweden.

11.1 Introduction

The evaporator example of Newell and Lee (1989) has been studied by several authors
in search for the best self-optimizing control structure (Govatsmark and Skogestad,
2001; Cao, 2003; Govatsmark, 2003). In the evaporator process, see Figure 11.1, the
concentration of dilute liquor is increased by means of a heat exchanger with recircu-
lated liquor. The feed enters with flow F1, composition x1 and temperature T1 and is
evaporated by the use of steam (F100). The evaporated liquid is fed to a flash separa-
tor, where a fraction of the liquid is recycled back and mixed with the feed (F3). The
product stream (F2), with temperature T2 and composition x2, is split off the recycled
stream. The vapor from the separator is cooled using cooling water with flow F200 and
temperature T200. The model equations for the evaporator case are given in Appendix
E.

11.1.1 Problem formulation

The objective of the operation is to minimize the operational cost J [$/h] related to
utility cost of steam, cooling water and pump work (Wang and Cameron, 1994),

J = 600F100 + 0.6F200 + 1.009(F2 + F3) (11.1)

when satisfying the process constraints

35% ≤ x2

40 kPa ≤ P2 ≤ 80 kPa
P100 ≤ 400 kPa

0 kg/min ≤ F200 ≤ 400 kg/min
0 kg/min ≤ F3 ≤ 100 kg/min

(11.2)
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Figure 11.1: Evaporation case

using the four manipulated variables

uT
0 = [F200 P100 F3 F2] (11.3)

which correspond to the flow of cooling water, steam pressure, recirculating flow rate
and the product flow rate, respectively. The separator level must be controlled; how-
ever it has no steady state effect, resulting in three steady-state degrees of freedom.
The major disturbances are assumed to be the feed flow rate, feed composition, feed
temperature and cooling water temperature, each with a expected variation of ±20%
from the nominal value:

dT = [F1 x1 T1 T200] = [10 ± 2 kg/min 5 ± 1% 40 ± 8◦C 25 ± 5◦C] (11.4)

Here we assume that the available measurements in the system are as given in eq.
(11.5) (note that all inputs are assumed to be measurable) with

yT
0 = [F2 F3 F4 F5 x2 T2 T3 L2 P2 F100 T100 P100 Q100 F200 T201 Q200]; (11.5)

with corresponding expected measurement error as shown in Table 11.1 (Govatsmark,
2003):
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Table 11.1: Measurement errors.
Measurement type Measurement error
Flow rates ± 10 %
Compositions ± 1 % (absolute)
Temperatures ± 1 ◦C
Pressures ± 2.5 %
Flow ratios ± 22 %

11.1.2 Nominal optimal point

The steady-state optimal point is found by minimizing the cost function in in eq. (11.1)
subject to the constraints in eq. (11.2), and the resulting optimal nominal data are
shown in Table 11.2.

Table 11.2: Nominal optimal values for the evaporator case
Variable Description Value Units

F1 Feed flow rate 10 kg/min
F2 Product flow rate 1.43 kg/min
F3 Circulating flow rate 27.72 kg/min
F4 Vapor flow rate 8.57 kg/min
F5 Condensate flow rate 8.57 kg/min
x1 Feed composition 5 %
x2 Product composition 35 %
T1 Feed temperature 40 ◦C
T2 Product temperature 90.92 ◦C
T3 Vapor temperature 83.49 ◦C
L2 Separator level 1 m
P2 Operating pressure 56.19 kPa

F100 Steam flow rate 9.99 kg/min
T100 Steam temperature 151.52 ◦C
P100 Steam pressure 400 kPa
Q100 Heat duty 365.65 kW
F200 Cooling water flow rate 230.19 kg/min
T200 Cooling water temperature inlet 25 ◦C
T201 Cooling water temperature outlet 45.48 ◦C
Q200 Condenser duty 330 kW

11.1.3 Active constraints and back-off

To achieve optimal operation we should control the active constraints (Maarleveld
and Rijnsdorp, 1970). To find the active constraints we calculate the optimum for all
possible disturbances and implementation errors, and we find that the product quality
constraint (x2) and the maximum steam pressure constraint (P100) are always active.
In addition, the evaporator pressure constraint (P2) is active for a feed rate of F1 =
8 kg/min. Thus, the set of active constraints varies with the disturbances, violating the
assumption that the set of active constraints must be active for all disturbances. For
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the moment we disregard this and assume that we control the steam pressure (P100)
and the product composition (x2), leaving one degree of freedom left for self-optimizing
control. Due to the implementation error in enforcing the active constraints, we back
off from the optimal values (35% and 400 kPa respectively) to avoid violating the
constraints. Thus, the nominal set points for the active constraints are as given in eq.
(11.6).

cs
x2

= 36%

cs
P100

= 390kPa
(11.6)

Using the above setpoints for the active constraints we re-optimize and find the backed-
off optimal values which we use in the subsequent work.

11.2 Control structures for the evaporator case

11.2.1 Previously proposed control structures

Govatsmark (2003) ranks several possible self-optimizing control structures based on
the singular value method (Skogestad and Postlethwaite, 1996; Halvorsen et al., 2003).
The singular value method ranks candidates based on the smallest singular value (which
corresponds to the absolute value in the SISO case) of the scaled steady-state gain
G(0). The most promising self-optimizing control structures as reported by Govatsmark
(2003) are given in Table 11.3. As seen from Table 11.3, candidates that require

Table 11.3: Most promising alternative sets of controlled
variables based on the singular value method

Rank c1 c2 c3 |G(0)|
1 x2 P100 T201 0.0150
2 x2 P100 F200/F1 0.0135
3 x2 P100 F200 0.0108
4 x2 P100 P2 0.0044
5 x2 P100 T2 0.0042
6 x2 P100 T3 0.0042
7 x2 P100 F3 0.0018
- x2 P100 T201 − T200 0.0181a

aNot included by Govatsmark (2003)

direct disturbance information (F1) are included. Cao (2003) found, by differentiation,
that a promising controlled variable, in addition to the ones already mentioned, were
T201−T200, the temperature difference on the cold side in the condenser. This candidate
controlled variable was found by inspecting the gradient function, which for this simple
example, is possible to derive analytically. Note that the candidate proposed by Cao
(2003) also require direct measurement of the disturbance (T200) and based on the
singular value rule should be the best self-optimizing controlled variable.
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The goal here is to use the null space method of Chapter 3 to synthesize self-
optimizing control structures without requiring direct disturbance information, and
compare these with the previously proposed structures.

11.2.2 Measurement selection and controlled variables using
the null space method

Following the procedure for selecting the best subset of measurements for the null space
method as given in Section 4.4, we linearize the model equations around the backed-off
nominal optimal point (remember, this is a constrained linear model where we enforce
the active constraints). The resulting model is

∆y0 = Gy0∆u + ∆Gy0

d ∆d (11.7)

where u is the unconstrained input (F200), y0 is the vector of all available measurements
as given by eq. (11.5). The minimum number of measurements required for the null
space method is

ny ≥ nu + nd = 1 + 4 = 5 (11.8)

where ny is the number of selected measurements, nu the number of unconstrained
inputs and nd the number of disturbances. The measurement selection procedure of
Section 4.4 suggests to select the subset of measurements that maximize the minimum
singular value of the scaled augmented plant matrix (G̃y = [Gy Gy

d]). Following this
rule, the five most promising sets of measurements are shown in Table 11.4. From Table

Table 11.4: Most promising sets of measurements based on maximizing the
minimum singular value of the scaled augmented process matrix

Rank y1 y2 y3 y4 y5 σ(G̃)y

1 F2 F3 P2 F200 T201 0.178
2 F2 F3 T2 F200 T201 0.173
3 F2 F3 T3 F200 T201 0.169
4 F2 P2 F100 F200 T201 0.140
5 F2 P2 Q100 F200 T201 0.140

11.4, note that even though F2 by it self has zero gain (not shown), this measurement
is included in all candidate sets due to high disturbance gain. All five sets of mea-
surements have similar minimum singular value, and show very similar self-optimizing
performance. Therefore, only the first candidate is included in the following analysis.
The controlled variable for the null space method is the optimal combination given by
∆c = H∆y where the vector H is given by requiring HF = 0 where F is the opti-
mal sensitivity from disturbances to the measurements ∆yopt = F∆d. For the most
promising set of measurements we get

∆cns = H∆y =
[
−0.84465 −0.0028331 −0.24302 0.10253 0.46582

]

[
∆F ′

2 ∆F ′
3 ∆P ′

2 ∆F ′
200 ∆T ′

201

]T
(11.9)
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where the nominal setpoint is cs
ns = 29.874.

11.3 Loss evaluation with nominal set points

The losses, defined as the difference in objective function value for the constant setpoint
policy and the true optimal value, for the most promising candidates using a nominal
setpoint policy, are shown in Table 11.5. We also include the loss for the re-optimized
case, in which we keep the constraints at the backed off setpoint while re-optimizing for
each disturbance, assuming no implementation error in implementing the last degree
of freedom (“the benchmark structure”). We also include the best candidates that
require disturbance information as discussed above.

For the loss calculations it is assumed that only one disturbance di or measurement
error ny

j may occur at any time. The last column of Table 11.5 shows the average loss
for all measurement errors.

As is evident from the loss data, the dominating contribution to the loss is due to the
backoff from the constraints, since all structures show losses comparable in magnitude
to the re-optimized case. As seen from Table 11.5, controlling the last input at its
nominal setpoint (CS 9 or CS 11) yields a higher loss for a disturbance in the feed
flow F1. Of the two, controlling F200 (CS 9) shows the best performance. This implies
that the objective function is flat with respect to F200 as illustrated in Figure 11.2.
As seen from Table 11.5, none of the candidates are feasible for all disturbances using

210 220 230 240 250
0.54

0.55

0.56

0.57

F
200
s

L 
[%

]

Figure 11.2: Loss in percent with respect to the input F200 at the nominal
disturbance.

nominal set points due to the pressure constraint on P2 becoming active. Feasible
operation for all disturbances may be achieved using robust optimization or flexible
back-off, see Govatsmark (2003) for more details. Alternatively, one can implement
a cascade structure where the setpoint of P2 is used as an input and use a min/max
selector where we limit the signal to stay within the allowable range (Cao, 2003), see
Section 11.5.3 for details.
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If we compare the candidates, controlling cns (CS 1) shows the same loss perfor-
mance as the re-optimized case, which implies that controlling cns implicitly tracks the
true optimal value, without any direct measurement of the disturbances. Compared
to the other candidates that have no direct disturbance information, controlling T201

and F200 show comparable loss performance. Controlling T201 yields a higher loss for
a disturbance in the cooling water temperature, while for disturbance F200 we get a
slightly higher loss for a positive perturbation of the feed disturbance (F1).

Compared to the control structures utilizing direct disturbance information, we see
that controlling the temperature difference T201−T200 and the ratio F200/F1 give almost
as good loss performance as the cns candidate. Overall, while the differences between
the candidates are minor, the candidate synthesized using the null space method show
the lowest losses, and is preferred from a steady-state point of view. Only the structures
with no direct disturbance information will be considered in the following analysis.

11.3.1 Disturbance lumping

As seen from Table 11.5, some of the disturbances have a small effect on the loss. This
is true for disturbance T1, and is partially true for disturbance F1 (if one disregard the
infeasibility) which may indicate an opportunity for reducing the disturbances into a
subset of pseudo-disturbances, thus reducing the number of measurements needed for
the null space method. Following the rules for disturbance discrimination in Section
5.3.2, we check if using a smaller number of measurements (lumping disturbances) in
the null space method is acceptable. A singular value decomposition of Gy

d (scaled
with respect to the expected disturbances) yields the following singular values:

σ1 = 28.25, σ2 = 8.00, σ3 = 6.03, σ4 = 2.67 (11.10)

There is a leap in the singular values from σ1 to σ2, with a ratio of σ1/σ2 ≈ 3.5. Based
on this observation, two new candidates are proposed:

1. The first candidate (c2
ns) using only two measurements (reducing the disturbances

from four to one pseudo disturbance) and

2. the second candidate (c3
ns) using three measurements (reducing the disturbances

from four to two pseudo-disturbances).

The same procedure for selecting the best subset of measurements are applied as for the
candidate using five measurements. Table 11.6 summarize the best set of measurements
and the resulting coefficient vector H.

The losses for these candidates are shown in the last two rows of Table 11.5. For
candidate c2

ns the loss with respect to a disturbance in the feed flow rate is as low
as candidate cns, while the loss for a disturbance in T200 is higher (approximately the
same as for candidate T201). Thus, lumping four disturbances into one does have a
penalty. On the other side, using three measurements (candidate c3

ns) the candidate
has as good self-optimizing properties as candidate cns and shows that for this case



11.4. Dynamic comparison of control structures 179

Table 11.6: Best subset of measurements, the coefficients vector H for the
null space method using two and three measurements. The nominal setpoints
are included in the last column.

Candidate y1 y2 y3 h1 h2 h3 ci,s
ns

c2
ns P2 T201 - −0.0145 0.9998 - 44.656

c3
ns F3 P2 F200 −0.71031 −0.54379 0.44694 51.751

three measurements are sufficient for acceptable self-optimizing properties using the
null space method.

To conclude, these simulations show that the major contribution to the loss is due to
the backoff from the constraints, and that there are only small differences between the
candidates. The candidates using the null space method (cns and c3

ns) have marginally
better self-optimizing properties.

11.4 Dynamic comparison of the economically most

promising control structures

Here, the most economically promising structures are compared dynamically. One of
the possible disadvantages of the null space method is that the controlled variable does
not have any physical interpretation; it is a linear combination of several measurements
from different parts of the plant. Thus, this may give rise to more complex dynamic
behavior. In the following section, three promising candidates, namely CS 1, CS 3
and CS 9 from Table 11.5 are compared. Note that candidate CS 15 is not included
since it shows very similar dynamic properties as candidate CS 1 (not shown). For all
structures the level in the separator (L2) is stabilized using the product flow rate (F2)
and a decentralized control structure with PI-controllers is used.

11.4.1 Control structure analysis CS 1

The Relative Gain Array (RGA) is used to pair the inputs and outputs. For this
structure we have 



x2

P100

cns



 = GCS 1





P100

F200

F3



 (11.11)

and the steady-state RGA and the corresponding pairing are:

RGACS 1(0) =





0 0.0382 0.9618
1 0 0
0 0.9618 0.0382



 ⇒
c u

cns ↔ F200

P100 ↔ P100

x2 ↔ F3

(11.12)

Note that RGA2,1
CS 1 = 1 ∀ ω, so it is sufficient to look at one element from the RGA

since all columns and row sums up to one (Skogestad and Postlethwaite, 1996). Figure
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11.3 shows the RGA1,3
CS 1-element with respect to frequency and we see that the same

pairing applies for frequencies near the cross-over frequency. With the level stabilized,
all poles and zeros are in the left half plane (LHP, not shown), so no fundamental
control limitations are expected.

11.4.2 Control structure analysis CS 3

For candidate CS 3 the same pairing applies with respect to the active constraints as
seen by the steady-state RGA shown in eq. (11.14) and from the plot in Figure 11.3





x2

P100

T201



 = GCS 3





P100

F200

F3



 (11.13)

we have the following steady-state RGA and pairing:

RGACS 3(0) =





0 0.0622 0.9378
1 0 0
0 0.9378 0.0622



 ⇒
c u

T201 ↔ F200

P100 ↔ P100

x2 ↔ F3

(11.14)

All poles and zeros are in the left half plane, so no fundamental limitations for control
should be expected.
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Figure 11.3: Plot of RGA1,3 for control structure CS 1, CS 3 and CS 9
with respect to frequency

11.4.3 Control structure analysis CS 9

Controlling F200 as a self-optimizing variable, implies fixing one additional input (al-
ready fixed P100 and x2) and the resulting RGA (independent of frequency) and corre-
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sponding pairing are:

RGACS 9(ω) =





0 0 1
1 0 0
0 1 0



 ⇒
c u

F200 ↔ F200

P100 ↔ P100

x2 ↔ F3

(11.15)

11.5 Dynamic simulations using non-linear model

For the three candidates, a decentralized control structure was designed using PI con-
trollers tuned with Skogestad’s IMC tuning rules (Skogestad, 2003). The sequential
disturbance signal shown in Figure 11.4 was imposed. The disturbance signal is mod-
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Figure 11.4: Plot of imposed disturbance signal (all variables in percent of
nominal value).

eled as step signals passing through a first order filter with time constant τdi
and a

duration Tdi
, see Table 11.7 for data on each disturbance. The measurement lag is

Table 11.7: Step duration and time constant for the disturbance signal
d Tdi

[min] τdi
[min]

F1 500 20
x1 300 2
T1 100 5

T200 500 5

assumed to be modeled as a first-order process with a time constant of τ = 0.1 and it
is assumed no measurement error.
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11.5.1 Dynamic cost for the candidates

Figure 11.5 shows the dynamic objective function value for all three control structures.
The resulting average dynamic operating cost is given in Table 11.8. The dynamic
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Figure 11.5: Plot of objective (percentage relative change from the nominal
objective value J−J∗

J∗
100[%]) for control structures CS 1 (cns), CS 3 (T201)

and CS 9 (F200).

Table 11.8: Average dy-
namic cost for the self-
optimizing control structures
CS# Average cost [/hour]

1 6199.8
9 6200.7
3 6201.3

Table 11.9: Average cost in
period when disturbance T201

is active
CS# Average cost [/hour]

1 6195.5
9 6195.5
3 6199.7

economic performance for all structures are similar as seen from Table 11.8, which
confirms the stead-state results of Table 11.5, with CS 1 having a slightly better
performance. As seen from Figure 11.5 and 11.6 the largest deviations between the
candidates with respect to the operating cost is for the disturbances F1 and T200. For
a disturbance in T200 (the lower right plot in Figure 11.5) the steady-state cost is
higher for candidate CS 3 than CS 1 and CS 9. The average dynamic cost for the
same period is shown in Table 11.9 which confirms this. For a disturbance in F1,
the loss is higher for CS 9 than for CS 1 and CS 3, see Figure 11.6, which confirm
the findings in Table 11.5. For the other disturbances, all candidates show the same
dynamic loss. The similar overall losses illustrate two points. First, the results show
that there are no limitations in controlling the linear combination of measurements,
since the performance is as good as controlling only one variable. This is of course not
a general result, but for this case it applies. Second, these results show that the lower
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Figure 11.6: Plot of the difference in cost (JCS 1−JCS 9) for the disturbance
in F1

losses for the candidate CS 1 are minor, and a simpler structure (e.g. fixing F200) may
be preferable from an implementation point of view.

11.5.2 Constraints

Figure 11.7 plots the concentration of the product x2 for all three structures. All
structures keep the concentration above the constraint. Minor differences are observed
for a disturbance in T200, where controlling T201 gives a somewhat faster response, and
for a disturbance in F1 where candidate CS 9 shows longer rise time. Figure 11.8 shows
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Figure 11.7: Plot of the product composition (x2) for the three control struc-
tures. Note that the scaling on the ordinate axis is different for the four
sub-plots

the pressure in the evaporator (P2) for all candidates. For control structures CS 1 and
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CS 3, the performance are similar and both structures violate the minimum allowed
pressure for the feed disturbance as pointed out earlier. For the disturbance T201 the
variation in P2 is smaller for CS 3. Control structure CS 9 shows a larger constraint
violation in P2 and also touches the upper constraint. When including measurement
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Figure 11.8: Plot of evaporator
pressure (P2) for the three control
structures

Table 11.10: Average dy-
namic cost for all struc-
tures including disturbances
and noise
CS# Average cost [/hour]

1 6199.8
9 6200.7
3 6201.3

error, all candidates show the same performance. The steady-state loss is shown in
Table 11.5 and the corresponding dynamic cost is shown in Table 11.10. As seen from
Table 11.10, including measurement error does not affect the economic performance to
a great extent nor does it alter the rank between the candidates.

11.5.3 Cascade structure for self-optimizing control

As proposed by Cao (2003), one approach to avoid constraint violation is to use a
cascade control structure as illustrated in Figure 11.9. The inner loops correspond to

-
PLANTK2

Active Constraint Control

Self-optimizing control

1K
-

+
c1

u2cs,2
cs,1

c2

Figure 11.9: Cascade structure for implementing active and partially active
constraints, including saturation block for the input to the inner loop.

the active constraints, i.e. controlling P2, x2 and P100. For active or partially active
constraints, we close these loops using the available inputs. The set points (cs,2) for the
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controlled variables in the inner loops are the outputs from the controller in the outer
loop. Normally, some constraints are always active for all disturbances and should be
controlled without any change of the setpoints by the outer loop. Some constraints
may be partially active and the setpoint for that loop is given by the outer loop when
not active. We use the saturation block to override the self-optimizing loops when these
constraints become active. This structure has been implemented for the pressure in
the evaporator (P2) which is partially active for one the feed flow disturbances. For the
inner loops (the active constraints) we have the following manipulated and controlled
variables 



x2

P100

P2



 = GAC





P100

F200

F3



 (11.16)

The steady state RGA is

RGAAC =





0 0.357 0.643
1 0 0
0 0.643 0.0357



 (11.17)

and the frequency dependent RGA (not shown) gives the same pairing. Based on the
RGA, the following pairing is proposed:

c u
P2 ↔ F200

P100 ↔ P100

x2 ↔ F3

(11.18)

After closing the inner loops, the set point cP2
s is used as the manipulated variable for

the self-optimizing control loop. All loops are closed using PI-controllers tuned with
Skogestad IMC tuning rules. The cascade structure ensures near optimal operation
for all disturbances if the self-optimizing controlled variable (which is active when
not all degrees of freedom are used in controlling the active constraints) shows good
self-optimizing properties. The disturbance signal in Figure 11.4 (the same as in the
previous simulation) is imposed. The average dynamic cost for the cascade structure
is shown in Table 11.11 and as seen from Figure 11.10 the constraint on P2 is not
violated. Note that the effect on the average loss is small, but the system remains
feasible for all disturbances. To conclude, the candidate synthesized using the null
space method shows the best steady-state and dynamic self-optimizing properties, and
is the best candidate for control. Since the improvement in performance is minor, a
simpler structure such as CS9, where we keep the last input constant, may be favorable.

11.6 Conclusions

Here we study control structure selection for an evaporator example. The new proposed
structure, using the null space method, has improved self-optimizing properties as
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Figure 11.10: Plot of evapora-
tor pressure (P2) for all candidate
control structures using cascade.

Table 11.11: Average cost
for all structures for the cas-
cade structure.
CS# Average cost [/hour]

1 6199.9
9 6200.5
3 6201.4

compared to previously proposed structures. The idea of disturbance discrimination
in the null space method has also been illustrated. We find that it is possible to lump
disturbances together, reducing the number of measurements needed in the null space
method without any penalty on the loss.
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Chapter 12

Concluding remarks and further
work

12.1 Concluding remarks

This thesis has dealt with the selection of controlled variables that are self-optimizing.
The simplicity of the self-optimizing control structure, where we can achieve acceptable
economic operation with constant setpoints, is the main motivation for this thesis. We
have proposed a new method, the null space method, for the selection of controlled
variables as measurement combinations, c = Hy. Let F be the optimal sensitivity
matrix ∆yopt = F∆d and we propose to select the coefficient matrix H such that
HF = 0 (the left null space). In forming the controlled variables, we need as many
measurements as there are unconstrained inputs and disturbances.

We generalized the null space method to include measurement errors, and proposed a
procedure for selecting the best subset of measurements to reduce the effects of mea-
surement error on the loss. The procedure is split in two. First, we select the minimum
required number of measurements (to reduce the effect of measurement error) based on
maximizing the minimum singular value of the steady-state augmented plant. Second,
we combine the measurements using the null space method (to reduce the effect of the
disturbance), and form controlled variables as c = Hy. We applied the procedure to a
case study of the Petlyuk column, and we found measurements that are insensitive to
measurement errors.

The null space method has been applied to several case studies. For a Petlyuk dis-
tillation column, we found that we could achieve acceptable steady-state economic
performance when fixing one of the unconstrained degrees of freedom (RV ) and con-
trolling a combination of temperatures using the last unconstrained degree of freedom
(RL). The disturbance loss is small and the dynamic performance is acceptable. We
compared this structure with previously proposed structures (the DTS) and found that
the structure using the null space method gave the best self-optimizing performance.
We also used the singular value method of Skogestad and Postlethwaite (1996) to syn-
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thesize a self-optimizing control structure, and we found a structure with almost as
good self-optimizing properties as the one using the null space method. We found that
failing to utilize the remaining unconstrained degrees of freedom yields large losses and
is not recommended. .

We have shown that using non-optimal setpoints do not affect the internal ranking
of candidate controlled variables. In fact, we found that the average increase in loss
is independent of what we select to control. However, if the loss is not acceptable we
must put effort into finding a better estimate on the nominal optimal point.

For the Petlyuk distillation column we found that it is optimal to over-fractionate
one of the product streams to save energy. We derived explicit expressions for the
possible savings using the Underwood equations (Underwood, 1948). The physical ex-
planation for this is that when the required separation work in the top and bottom
of the main column is different, we can use the “extra” energy to over-fractionate the
non-limiting section. Additional savings is possible by bypassing some of the feed and
mix it with the over-fractionated product stream. This requires that we can accept all
three components in one of the products.

The gas-lift case considers the optimal distribution of lift-gas for increased oil pro-
duction. We found that controlling the total gas flow rate at the outlet of the process
at the constraint, is most important for good economic performance. The additional
savings for using the null space method for the design of the controlled variables, are in
the range 1.8 − 3.6 million � /year. The second case study considered a special type of
reservoir, where the ratio of gas and oil from the reservoir depends on the rate of pro-
duction. We found that by using practically available measurements we could achieve
acceptable operation using the null space method as compared to other candidates
using flow measurements from each well. We found that controlling the choke valves
(keeping the inputs constant) yield unacceptable operation, and is not recommended.

In the evaporator process, we compared the singular value method (Skogestad and
Postlethwaite, 1996; Halvorsen et al., 2003) with the null space method. We found
that we could achieve good self-optimizing control by controlling a combination of
three measurements with the same performance as previously proposed structures that
required direct disturbance information (T201 − T200 and F200/F1). To remain feasible
using nominal setpoints, we used a cascade structure as proposed by (Cao, 2004).

12.2 Directions for further work

12.2.1 Model uncertainty

The effect of model uncertainty when selecting controlled variables based on economics
should be studied in more detail. We have shown that parametric uncertainty can be
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handled in the null space method. However, it is unclear how structural model un-
certainty would affect the loss for structures synthesized using the null space method.
Structural model uncertainty is difficult to describe mathematically. One way to han-
dle structural model uncertainty is through the measurement error. However, then
the measurement errors are correlated and we must find methods for describing the
correlation.

12.2.2 Experimental verification

Controlling measurement combinations should be verified by experiments. A promising
case study would be the Petlyuk column, where the potential losses are large if not
operating close to the optimal point. The Petlyuk column is also interesting from a
dynamic point of view. It has been stated in the literature that in order to achieve
good dynamic performance, a model based controller such as MPC is necessary (Adrian
et al., 2004), which should be investigated in more detail. The simulations in this thesis
show that acceptable operation can be achieved using a decentralized control structure.

12.2.3 Disturbance discrimination

The methods for disturbance discrimination presented here are crude, and better meth-
ods for finding what disturbances to include in the design and analysis of self-optimizing
control structures should be studied in more detail.

12.2.4 More case studies

More cases should be studied using the existing tools for selecting self-optimizing con-
trolled variables. Focus should be on large scale systems, see for example (Luyben
et al., 1998).

12.2.5 Active constraints

One important limitation of self-optimizing control is the assumption of a constant set
of active constraints. This limits the applicability for systems with many constraints
and where they change depending on the value of the disturbances. The methods of
(Cao, 2004) should be studied in more detail.

12.3 Case studies

12.3.1 Case studies in Chapter 10

The models used in the study of the gas-lift optimization and the rate-dependent GOR
in Chapter 10 should be improved. In the work here, we used a simple pseudo-one
phase assumption on flow equations, and a simple thermodynamic model.
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Appendix A

Extended null space method

Manuscript in preparation

Here we extend the null space method of Chapter 3 to a more general class of
models and we derive explicit solutions for the optimal inputs parameterized in the
disturbances d. We derive controlled variables parameterized in d that when kept at
constant setpoint yield optimal operation. We need explicit disturbance information
by means of direct measurement of inferred by other measurements. The extended
method for selecting controlled variables is illustrated on a simple continuous-stirred-
tank reactor.

A.1 Introduction

Increasing demands on more economical and environmental operation of process plants,
have introduced more focus on the optimal operation. In Chapter 2, we listed several
alternative methods for ensuring optimal operation:

1. Optimal control
2. Real time optimization
3. Self-optimizing control

Here we extend the ideas of the null space method of Alstad and Skogestad (2004),
in which controlled variables are selected as linear combinations of the measurements.
The extension is to include the uncertain parameters (disturbances) explicitly in the
controlled variables, while retaining the self-optimizing properties of the null space
method. The idea of the null space method is to map the optimality condition onto
the measurement space. Mathematically, the method proposed in Alstad and Skogestad
(2004) assume a linear relation between the optimal outputs and the disturbances

∆yopt = F∆d (A.1)

where ∆yopt is a ny × 1 vector and we select controlled variables ci = hiy where hi is
a 1 × ny vector and selected to be in the left null space of F. This implies a perfect
self-optimizing structure for small perturbation of the disturbance around the optimal
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nominal point. The performance of the self-optimizing control structure depends on the
degree of non-linearity of the problem where a highly non-linear system may be poorly
described by the linear relation of eq. (A.1) which may result in poor self-optimizing
properties.

To address this, we extend the null space method to include non-linearity with
respect to the disturbances, and we limit the work to a special class of models. For the
moment, assume that the relation between the optimal change of the outputs and the
disturbances are given by eq. (A.2)

∆yopt = F(d) (A.2)

and we would select controlled variables such that hi is in the null space of F(d).

A.2 Optimal operation

Typically, optimal operation is formulated as a mathematical programming problem
where the purpose is to minimize some time average of the objective (J) of the plant
(Biegler et al., 2002)

min
x0∈X0,u0∈U0,d∈D

∫

t∈T

J0(t,x0,u0,d)dt (A.3)

s.t.

dx0

dt
= f(t,x0,u0,d) (A.4)

p(t,x0,u0,d) = 0 (A.5)

g(t,x0,u0,d) ≤ 0 (A.6)

where x0 is the vector of states, u0 the inputs, d the parameters (disturbances), f is the
right-hand side of the differential equations, p is the algebraic equations, and g defines
the inequality constraints that need to be fulfilled. For a given disturbance trajectory
d(t), the problem of eq. (A.3) can be solved using regular NLP solvers (often variations
of Successive Quadratic Programming (SQP) methods). Due to the computationally
complexity of solving problems of this type and the need for a disturbance prediction
model (or feedback from the process for estimating the parameters d), a pseudo-steady
state assumption is often made, resulting in:

min
x0∈X0,u0∈U0,d∈D

J(x0,u0,d) (A.7)

s.t.

f ′(x0,u0,d) = 0 (A.8)

g(x0,u0,d) ≤ 0 (A.9)

where f ′T = [fT pT ]. For a given disturbance d, the problem in eq. (A.7) can be
solved and the optimal inputs (uopt

0 ) implemented in the plant resulting in the optimal



A.2. Optimal operation 195

states (xopt
0 ). If the disturbances do not vary with time, this could be performed off-line

once and the process would be operating optimally. New setpoints are calculated and
implemented in an open-loop fashion, only if product specifications change. In most
systems, the disturbances vary and keeping the operation at the nominal optimal value
may lead to non-optimal operation and resulting economic loss. In order to address this,
some sort of feedback from the process is necessary: Key steps in ensuring optimality
are:

1. Detect that a change in the disturbances has happened.
2. Update the underlying model using available measurements (information) in the

plant.
3. Redo the optimization with the updated model.
4. Implement new optimal values in the control system and start over.

One approach for ensuring optimality is Real-Time Optimization (RTO) (Cutler and
Perry, 1983; Marlin and Hrymak, 1997). RTO is a much used method for ensuring
optimal operation in presence of varying disturbances. In the RTO framework, new
setpoints for the control layer are calculated on-line and implemented by the underlying
control layer. An illustration of a typical RTO system is given in Figure A.1 (Marlin
and Hrymak, 1997). The RTO framework uses online measurements as feedback in

Process Model update

Model based
optimizer

Results
Analyzer

Setpoints

measurements

Parameter estimates

cs

d

y

d̂

Figure A.1: Illustration of a typical RTO structure

order to update the models of the plant used for optimization. An optimization is
carried out, and the result is analyzed, before implemented in the process. The RTO
can be fully automated or semi-automated, depending on the complexity of the system
and the details of the model.

As compared to RTO, the self-optimizing control framework tries to incorporate the
identification and the optimization in the control layer by selecting controlled variables
that when kept at constant setpoints give near optimal operation. Thus, the local
feedback loop ensures optimal operation, which implies that no model needs to be
updated online. In order for self-optimizing control to be an alternative, the set of
active constraints (the subset of the inequality constraints g that is active) must be
constant for all disturbances (see Section 11.5.3 for a method to relax this assumption).
Mathematically, this implies that a subset g′ ∈ g is active such that g′ = 0 ∀ d ∈ D.
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The resulting optimization problem has only equality constraints where we use a subset
of the inputs u0 to enforce the active inequality constraints.

f ′′ =

[
f ′

g′

]

(A.10)

For many chemical processes, this prerequisite is valid, at least for small perturbations
of the disturbance. Typically, production is constrained by the capacity of the plant,
which translates into the situation that many of the degrees of freedom are used for
active constraints. Implementation in such cases is often simple, by which we can
utilize the ideas of active constraint control (Maarleveld and Rijnsdorp, 1970). As
pointed out by Govatsmark (2003), normally it is possible to assign a single measured
(or estimated) variable y related to each constraint and use the relation

gi = yi − yi,max or gi = yi,min − yi (A.11)

depending on the constraint being a maximum or a minimum. We here assume that the
constraints can be measured or inferred from indirect measurements. In the following
we simplify the notation and let f denote all equality constraints (including the active
inequality constraints).

A.2.1 Mapping of the optimality condition on the measure-
ment space

The idea of self-optimizing control (Skogestad, 2000) is to find controlled variables that
when kept at constant setpoints, indirectly give optimal operation. This correspond to
finding feedback controlled variables that, when a disturbance enters the plant, result
in the (near) optimal inputs as given by:

(xopt
0 (d),uopt

0 (d)) = arg

[

min
x0,u0

J(x0,u0,d)

]

(A.12)

s.t.

f(x0,u0,d) = 0 (A.13)

g(x0,u0,d) ≤ 0 (A.14)

The optimal point
(
xopt

0 (d),uopt
0 (d)

)
, depends on the disturbance d and the idea is to

map the optimality condition onto the output space and by using feedback control,
indirectly keep the system optimal.

To illustrate, assume that the optimal objective is given as in Figure A.2 and
that we map the optimality into the measurement space. For each disturbance, this
corresponds to the optimal output vector yopt(d)T = [yopt

1 (d) yopt
2 (d) yopt

3 (d)] which is a
point in the measurement space. We see from Figure (A.2) that the objective is smooth
with respect to the disturbances, and that the mapping is smooth.
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Figure A.2: Optimal objective value J opt(d) with respect to the disturbance
d and the mapping into output space.

A.3 Optimality condition and class of models

Consider the simplified problem where we have assumed that all active inequality
constraints are enforced.

min
x,u

J = J(x,u,d) (A.15)

s.t. f(x,u,d) = 0 (A.16)

where u is the remaining degrees of freedom. The goal here is to derive explicitly how
the optimal input depends on the disturbances.

A.3.1 First order optimality condition

With the objective function and model as given by eqs. (A.15) and (A.16), the first
order optimality condition is given by (considering d as a parameter) (Stengel, 1993):

∂J

∂u
+

∂xT

∂u

∂J

∂x
= 0 (A.17)

where
∂f

∂uT
+

∂f

∂xT

∂x

∂uT
(A.18)

and

f(x,u,d) = 0 (A.19)

Assuming that
(

∂f
∂xT

)
is invertible yields

∂x

∂uT
= −

[
∂f

∂xT

]-1
∂f

∂uT
(A.20)
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which yields the first order optimality condition

∂J

∂u
−
[[

∂f

∂xT

]-1
∂f

∂uT

]T
∂J

∂x
= 0 (A.21)

The nu equations in eq. (A.21) is used to find u, while eq. (A.19) gives nx equations
to define the state variables (x). Assume that

1. no state information is available (in general this assumption may be relaxed using
an estimator) and that

2. the disturbances can be measured directly or inferred from indirect measure-
ments.

This limits the class of problems, both with respect to the form of the objective function
and the model equations. The class of problems treated here is:

1. The objective function (J) can be second order with respect to the states (x) ,
the inputs (u) and the disturbances (d).

2. The equality constraint equations f must be linear with respect to the states (x)
and inputs (u).

If the original problem does not fit this class of models, a Taylor series expansion of the
system yields the assumed form. Next, we formulate a second order accurate expression
of the objective function.

A.3.2 Second order accurate Taylor series expansion of the
objective function

First, consider the Taylor series expansion of the objective function and the pro-
cess model as given by eqs. (A.15) and (A.16) around the nominal optimal point
(xopt(d∗), uopt(d∗)) = (x∗, u∗) where d∗ is the nominal disturbance (Morud, 1995).

J ≈ J0 + JT
x∆x + JT

u∆u + JT
d∆d +

1

2

[
∆xT ∆uT ∆dT

]
HJ

[
∆xT ∆uT ∆dT

]T

(A.22)
where all partial derivatives are evaluated at the nominal optimal point. Similarly, for
a general function f(x,u,d) = 0 we have the second-order Taylor series expansion:

0 ≈ ∆f = fT
x ∆x + fT

u ∆u + fT
d ∆d +

1

2

[
∆xT ∆uT ∆dT

]
Hf

[
∆xT ∆uT ∆dT

]T

(A.23)
again with all partial derivatives evaluated at the nominal optimal point. Multiplying
eq. (A.23) with λT , the Lagrangian multiplier yields

J ≈ J0 + LT
x ∆x + LT

u ∆u + LT
d ∆d +

1

2

[
∆xT ∆uT ∆dT

]
HL

[
∆xT ∆uT ∆dT

]T

(A.24)
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where L ≡ J +λT f is the Lagrangian function and HL is the Hessian of the Lagrangian
function.

HL =





HL,xx HL,xu HL,xd

HL,ux HL,uu HL,ud

HL,dx HL,du HL,dd



 (A.25)

At the nominal optimal point, Lx = 0 and Lu = 0 due to the first order conditions, so
the second order accurate expansion may be written as

J ≈ J0 + LT
d ∆d +

1

2

[
∆xT ∆uT ∆dT

]
HL

[
∆xT ∆uT ∆dT

]T
(A.26)

As pointed out by Morud (1995) this give an second order accurate representation of
the objective function. Similar derivation is made in Morari et al. (1980) but they
use a first order model of the process, and the resulting Taylor series expansion is not
second order accurate.

A.3.3 Optimal inputs

Assume that the model equations are on the form

f = A(d)x + B(d)u + e(d) = 0 (A.27)

where A(d), B(d) and e(d) depend on d. The process model is linear with respect
to the states and the inputs, while non-linear with respect to the disturbances d. To
simplify notation we skip the explicit dependency on the disturbance vector d. The
restriction on the model class is necessary, in order to avoid the need of direct state
information. In addition, we seek an explicit expression for the optimal inputs with
respect to the disturbances, which requires linearity with respect to the inputs. Note
that if the system can be modeled as in eq. (A.27), the Taylor series expansion above
is simplified. If the model does not fit the model class, we can use the Taylor series
expansion as given by eq. (A.23) where we truncate the expansion after first order
terms for the states and the inputs, while we for the disturbances may have as high
order as necessary (bit with no cross terms). Eq. (A.20) yields:

∂x

∂uT
= −[A(d)]-1B(d) (A.28)

where we assume that A(d) is invertible for all d. Assume that the objective function
is given by eq. (A.26) which yields

∂J

∂∆u
=

∂J

∂u
=HL,uu∆u + HL,ux∆x + HL,ud∆d (A.29)

=HL,uuu + HL,uxx + HL,udd + ku(d∗) (A.30)

and

∂J

∂∆x
=

∂J

∂x
=HL,xx∆x + HL,xu∆u + HL,xd∆d (A.31)

=HL,xxx + HL,xuu + HL,xdd + kx(d
∗) (A.32)
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where

ku =HL,uuu
∗ + HL,uxx

∗ + HL,udd
∗ (A.33)

kx =HL,xxx
∗ + HL,xuu

∗ + HL,xdd
∗ (A.34)

are constant values given the nominal disturbance d∗. Substituting eq. (A.30) and
(A.32) into (A.21) and solving for uopt yields:

uopt = −
[

HL,uu −
[
A(d)-1B(d)

]T
HL,xu

]-1

(
[

HL,ux −
[
A(d)-1B(d)

]T
HL,xx

]

xopt+
[

HL,dd −
[
A(d)-1B(u)

]T
HL,xd

]

d +
[

ku −
[
A(d)-1B(d)

]T
kx

]

)

= −B-1
[
Axopt + Ed + k

]

(A.35)

where

B = HL,uu −
[
A(d)-1B(d)

]T
HL,xu (A.36)

A = HL,ux −
[
A(d)-1B(d)

]T
HL,xx (A.37)

E = HL,dd −
[
A(d)-1B(u)

]T
HL,xd (A.38)

k = ku −
[
A(d)-1B(d)

]T
kx (A.39)

where we have assumed that B has full rank. Solving eq. (A.27) for xopt yields

xopt = −A(d)-1
[
B(d)uopt + e(d)

]
(A.40)

which inserted into eq. (A.35) and solved for uopt gives

uopt = −
[
B −AA(d)-1B(d)

]-1 [Ed −AA(d)-1e(d) + k
]

(A.41)

which is explicit in d. Using eq. (A.41) and (A.40) have an explicit expression for
the optimal inputs and states with respect to the disturbances. The expression for the
optimal input in eq. (A.41) resembles the expression for the optimal inputs as given
by Halvorsen et al. (2003)

∆uopt = −J-1
uuJud∆d (A.42)

if e(d) is a linear term. Thus, the major difference from the previous work is that we
allow the process model to include non-linear terms with respect to the disturbances
in the process model.

A.4 Optimal outputs

Based on the above explicit expressions for the inputs and states, we can calculate the
optimal outputs. Assume that the measurement vector y is given by (the non-linear
vector function)

y = fy(x,u,d) (A.43)
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and by inserting eq. (A.40) and (A.41) the optimal change for the measurements from
the nominal disturbance d∗ to a disturbance d is

∆yopt = yopt(d) − yopt(d∗) = F(d,d∗) =

fy
(
xopt(d),uopt(d),d

)
− fy

(
xopt(d∗),uopt(d∗),d∗

)
(A.44)

which is generally a nonlinear vector function with respect to the disturbances. Below
we illustrate the above derivations on a simple CSTR example.

Example A.1 Consider an iso-thermal CSTR, with a first order reversible reaction

A®B (A.45)

with the following rate expression

r = k1CA − k2CB with ki = Cie
−Ei
RT (A.46)

and component balances

dCa

dt
=

1

τ
(CA,i − CA) − r

dCB

dt
=

1

τ
(CB,i − CB) + r (A.47)

where the states are xT = [CA CB], the input u = CA,i, and the disturbance d = k1.
The equations can be expressed on the form of eq. (A.27) where

A(k1) =

[
− 1

τ
− k1 k2

k1 − 1
τ
− k2

]

B =

[
1
τ

0

]

e =

[
0

CB,i

τ

]

(A.48)

Solving for the states (assuming that A(d) is invertible) yields

[
CA

CB

]

=
1

1 + τ(k1 + k2)

[
k2τ + 1

k1τ

]

CA,i +
1

1 + τ(k1 + k2)

[
k2τ + CB,i

CB,i(1 + k1τ)

]

(A.49)

Assume that the objective of the plant operation is given by

J(u,x, d) = pAC2
A + pBCB (A.50)

where pi is the price of the products. Here we assume that pA = −1 < 0 and pB = 1 > 0
such that there is a quadratic penalty for producing product with component A. The
first order optimality condition in eq. (A.21) yields

∂J

∂u
−
[[

∂f

∂xT

]-1
∂f

∂uT

]T
∂J

∂x
= 0 +

1

1 + τ(k1 + k2)

[
1 + k2τ k1τ

]
[
−2CA

1

]

(A.51)

Substituting for CA from eq. (A.49) and solving for the optimal inputs (Copt
A,i) gives

Copt
A,i = − 1

2(1 + k2τ)2
[τk2(k2τ + 2)CB,i − τk1(1 + k1 + k2τ)] (A.52)
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and we have an explicit expression for the optimal inputs and states, which makes us
able to find the optimal change in the outputs by substitution. Assume here, that the
available measurements are y = [CA CA,i], then after some algebra:

[
∆yopt

1

∆yopt
2

]

=

[
Copt

A (k1) − Copt
A (k10)

Copt
A,i(k1) − Copt

A,i(k10)

]

=






τ
2

k1−k10

k2τ+1

τ2

2

k2
1−k2

10

(k2τ+1)2




 (A.53)

which correspond to the change in the optimal outputs for a change from k10 to k1.
Note that the second element is nonlinear in k1.

A.5 Selection of controlled variables

In the framework of self-optimizing control, the optimal self-optimizing control variable
is the one in which a change in the uncertain parameter (or disturbance) does not
change the optimal value of the control variable (but may change the value of the
controlled variable). This simple insight is used to find controlled variables that inhibits
this property. In this work we consider the controlled variables on the form

∆c(y,u,d) =

nu+nd∑

i=1

hi(d,d∗)∆yi(x,u,d) (A.54)

where the coefficient vector hi depends on the disturbance vector d. As discussed in
Chapter 3, perfect self-optimizing control is achievable if

∆copt
j =

nu+nd∑

i=1

hij(d)
(
yopt

i (d) − yopt
i (d∗

)
= hj(d)∆yopt(d) = 0 (A.55)

where hj = [h1j h2j . . . hnyj] is an 1 × nyvector function and

∆yopt = [∆yopt
1 ∆yopt

2 . . . ∆yopt
ny

]T

which corresponds to selecting suitable weights for each measurement (h′
ijs) such that

eq. (A.55) is fulfilled for all values of the uncertain parameters. For the simplest
linear case (F is linear), a constant weight would be selected which corresponds to the
null space method Alstad and Skogestad (2004). For the case of multiple controlled
variables we have:

∆copt = H(d)∆yopt(d) (A.56)

where

H =

[
hj

...
hnu

]

Below, we derive parameterized versions of the coefficient vector h
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A.5.1 Extended null space method

Assume for the moment that ∆yopt = F∆d, where F is a constant matrix and h(d) =
H, a constant nc × ny matrix. Let hj denote the j’th row of H, then we see that we
should select hj such that they are in the left null space of F A

hj ∈ N (FT ), j = 1..nc (A.57)

which yields hjF = 0 for i = 1..nd. For the general case, assume that ∆yopt = F(d) =
[F1(d) . . . Fny

(d)]T , and we seek hj(d) such that

hjF(d) = 0 ∀j ⇒ h1jF1(d) + h2jF2(d) + . . . + hnyjFny
(d) = 0 (A.58)

Since direct disturbance information is available, in most cases one should add the
corresponding disurbances to the measurement vector,

yT =
[
y1 . . . ynu

d1 . . . dnd

]
(A.59)

so that
yoptT =

[
yopt

1 . . . yopt
nu

d1 . . . dnd

]
(A.60)

It is clear that the number of measurements when requiring h∆yopt = 0 is ny = nu+nd.
If we select to not include the disturbances in the measurements vector, we need nyt

=
nd + nu + 1 total measurements.

Remark. Number of measurements

To illustrate consider the following case, where nu = 2, and let

∆yopt
1 = g1 ∆yopt

2 = g2 ∆yopt
3 = g3 (A.61)

Assume first that we want to use two measurements, then we have

h1
1g1 + h2

1g2 = 0 ⇒ h1
1 = −h2

1

g2

g1
(A.62)

h1
2g1 + h2

2g2 = 0 ⇒ h2
2 = −h1

2

g1

g2
(A.63)

which is equal to

H =

[

−h2
1

g2

g1
h2

1

h1
2 −h1

2
g1

g2

]

=

[

− g2

g1
1

1 − g1

g2

] [
−h2

1 0
0 h1

2

]

= 0 (A.64)

which has rank equal 1. This implies that the two controlled variables are linearly dependent.
Therefore, we must require the use of three measurements. Using three measurements, we
get that

h1
1g1 + h2

1g2 + h3
1g3 = 0 ⇒ h1

1 = −h2
1

g2

g1
− h3

1

g3

g1
(A.65)

h1
2g1 + h2

2g2 + h3
2g3 = 0 ⇒ h2

2 = −h1
2

g1

g2
− h3

2

g3

g2
(A.66)

which corresponds to [

−h2
1

g2

g1
− h3

1
g3

g1
h2

1 h3
1

h1
2 −h1

2
g1

g2
− h3

2
g3

g2
h3

2

]

= 0 (A.67)

which has rank 2 (if h2
1 ∨ h3

1 6= 0 and h1
2 ∨ h3

2 6= 0).
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We now revisit the CSTR example in order to find a self-optimizing control variable
that inhibits the properties of eq. (A.55).

Example A.2 CSTR revisited

For the CSTR example, we have that the optimal change in the measurements from the
nominal optimal value k10 to k1 is given by eq. (A.53) and further we have that

[
∆yopt

1

∆yopt
2

]

=

[
Copt

A (k1) − Copt
A (k10)

Copt
A,i(k1) − Copt

A,i(k10)

]

=






τ
2

k1−k10

k2τ+1

τ2

2

k2
1−k2

10

(k2τ+1)2




 (A.68)

The requirement for a perfect self-optimizing variable is given in eq. (A.58), and we
see that

h · F = [h1 h2] · [F1 F2]
T = h1F1 + h2F2 = 0 ⇒ h1 = −h2F2

F1

(A.69)

As is evident, the solution of eq. (A.69) has an infinite number of solution. One
solution correspond to setting

h2 = −1 (A.70)

which leads to

[h1 h2] = [
(k10 + k1)τ

k2τ + 1
− 1] (A.71)

The self-optimizing control variable is then

∆Cc = [
(k10 + k1)τ

k2τ + 1
− 1][∆CA ∆CA,i]

T (A.72)

and we need an estimate or measurement of the uncertain parameter k1.
To illustrate, consider the plot of the dynamic response for a ±1% change in E1

(assuming that the uncertainty in the parameter k1 stems from E1), see Figure A.3
for three different controlled variables, namely the self-optimizing variable as given
by eq. (A.72) and controlling CA and CB at their respective nominal value. As is
evident from Figure A.3 is that the proposed candidate, track the steady state optimality
perfectly, with nominal optimal setpoint. The drawback is that the disturbances need to
be measured directly or inferred from secondary measurements.

For this simple case, F are almost linear in the uncertain parameter k1 so using a
linearized version of eq. (A.68) yields similar self-optimizing properties. Alternatively,
using yT = [k1 CA] as measurements (measuring the disturbance) we need ny = 2
measurements and [

∆yopt
1

∆yopt
2

]

=

[
1

τ/2
k2τ+1

]

(k1 − k10) (A.73)

is linear in k1 and the resulting in constant coefficients hi.

By selecting controlled variables using the above methods, we need to ensure that the
coefficient vector h is not singular (resulting in zero gain).
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Figure A.3: Responses for a step in E1 at t = 0 and at t = 1000 for
three different candidate controlled variables. The steady-state optimal values
correspond to the dotted lines.

A.6 Conclusions

In this paper we extend the null space method. We assume that the objective function
is second order in the states, inputs and disturbances, while the equality constraints
are linear in the states and inputs, but non-linear in the uncertain parameters (dis-
turbances). A method for selecting self-optimizing controlled variables are presented.
The proposed ideas are illustrated on a simple CSTR-example.
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Appendix B

Taylor series expansion of the loss
function

An alternative derivation of the Taylor series expansion of the loss function is presented
here. In Halvorsen et al. (2003), a second order accurate Taylor series expression of
the objective function was given as:

J(u,d) = J∗ + JT
u (u − u∗) + JT

d (d − d∗) +
1

2
(u − u∗)TJuu(u − u∗)

+ (d − d∗)TJdu(u − u∗) +
1

2
(d − d∗)TJdd(d − d∗) + O3 (B.1)

where Juu is the second derivative of the cost function with respect to u, etc. and
(u∗,d∗) is the nominal point in which we expand around. Assume that the nominal
point is optimal such that (u∗,d∗) = uopt(d∗),d∗), then Ju = 0. Further we have that
the optimal input is given by

∂J

∂uT
=

∂J

∂(u − u∗)T
= 0 (B.2)

then

∂J

∂(u − u∗)T
=

1

2
Juu(u

opt − u∗) +
1

2
JT

uu(u
opt − u∗) + (d − d∗)TJdu

= Juu(u
opt − u∗) + (d − d∗)TJdu = 0

(B.3)

since Juu = JT
uu. If we assume that the optimal point is unique, then in the case of

minimum (or maxima in case of maximization) Juu must be positive definite (negative
definite), and we have that Juu = JT

uu. The objective function for the optimum input
u = uopt is

J(uopt,d) = J∗ + JT
d (d − d∗) +

1

2
(uopt − u∗)TJuu(u

opt − u∗)

+ (d − d∗)TJdu(u
opt − u∗) +

1

2
(d − d∗)TJdd(d − d∗) + O3 (B.4)

207
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and the loss is given by the difference from eq. (B.1) and (B.4)

L(u,d) = J(u,d) − J(uopt,d)

= JT
d (d − d∗) +

1

2
(u − u∗)TJuu(u − u∗) + (d − d∗)TJdu(u − u∗)

− JT
d (d − d∗) − 1

2
(uopt − u∗)TJuu(u

opt − u∗) − (d − d∗)TJdu(u
opt − u∗) (B.5)

By recognizing that (x − y)TA(x − y) = xTAx − xTAy − yTAx + xTAx we have

L(u,d) =
1

2

(
uTJuuu − uTJuuu

∗ − u∗Juuu + u∗TJuuu
∗
)

− 1

2

(

uoptTJuuu
opt − uoptTJuuu

∗ − u∗Juuu
opt + u∗TJuuu

∗
)

+ (d − d∗)TJdu

(
u − uopt

)

=
1

2
uTJuuu − uTJuuu

∗ − 1

2
uoptTJuuu

opt + uoptTJuuu
∗ + (d − d∗)TJdu

(
u − uopt

)

(B.6)

since uTJuuu
∗ = u∗TJuuu and uoptTJuuu

∗ = u∗TJuuu
opt. Using eq. (B.3) we have

L(u,d) =
1

2
uTJuuu−uTJuuu

∗− 1

2
uoptTJuuu

opt+uoptTJuuu
∗+(d−d∗)TJdu

(
u − uopt

)

=
1

2
uTJuuu − uTJuuu

∗ − 1

2
uoptTJuuu

opt − uoptTJuuu
∗ − (uoptT − u∗)Juu(u − uopt)

=
1

2
uTJuuu − uTJuuu

∗ − 1

2
uoptTJuuu

opt − uoptTJuuu
∗ − uoptTJuuu

+ uoptTJuuu
opt − u∗TJuuu

opt + u∗TJuuu
opt (B.7)

and we then have that

L(u,d) =
1

2
uTJuuu +

1

2
uoptTJuuu

opt − 1

2
uoptTJuuu − 1

2
uTJuuu

opt

= (u − uopt)TJuu(u − uopt) (B.8)

which is the same as given in Halvorsen et al. (2003). Thus, the expansion around a
“moving optimal point” follows directly from the equations and using the optimality
condition. In Halvorsen et al. (2003), a distinction was made between the Hessian from
the expansion around the stationary nominal point (u∗,d∗) and the “moving nominal
point” (uopt(d),d). However, the derivation above shows that this distinction is not
necessary when we assume that the nominal point is optimal. The same Hessian Juu

applies in both cases.
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Appendix C

Perfect steady-state indirect control

Eduardo S. Hori, Sigurd Skogestad1 and Vidar Alstad
Department of Chemical Engineering

Norwegian University of Science and Technology
N–7491 Trondheim Norway

Ind.Eng.Chem.Res., In press

Indirect control is commonly used in industrial applications where the primary
controlled variable is not measured. This paper considers the case of “perfect indirect
control” where one attempts to control a combination of the available measurements
such that there is no effect of disturbances at steady-state. This is always possible
provided the number of measurements is equal to the number of independent variables
(inputs plus disturbances). It is further shown how extra measurements may be used
to minimize the effect of measurement error. The results in this paper also provide
a nice link to previous results on inferential control, perfect disturbance rejection and
decoupling (DRD), and self-optimizing control.

C.1 Introduction

Indirect control (Skogestad and Postlethwaite, 1996) is used when we for some reason
cannot control the “primary” outputs y1. Instead, we aim at indirectly controlling y1

by controlling the “secondary” variables c (often denoted y2) (Skogestad and Postleth-
waite, 1996). More precisely,

Indirect control is when we aim at (indirectly) keeping the primary vari-
ables y1 close to their setpoints y1s, by controlling the secondary variables
c at constant setpoints cs.

1Corresponding author. E-mail: skoge@chemeng.ntnu.no; Fax: +47-7359-4080; Phone: +47-7359-
4154
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An example is control of temperature (c) in a distillation column, in order to indi-
rectly achieve composition control (y1).

A less obvious example of indirect control, is the selection of “control configura-
tions” in distillation columns. The term “control configuration” here refers to which
two flows or flow combinations are left as degrees of freedom after we have closed the
stabilizing loops for the condenser and reboiler levels. Ideally, keeping the selected two
flow combinations (c) constant will indirectly lead to good control of the product com-
positions (primary outputs, y1). For example, in the LV -configuration the condenser
and reboiler levels are controlled such that the flows L (reflux) and V (boilup) are left
as free variables for the layer above. However, keeping these flows constant (selecting
L and V as c’s) gives large changes in the product compositions (y1) when there are
disturbances in the feed flowrate. Instead, one may use the L/D V/B-configuration. In
this case, keeping L/D and V/B constant (c’s) gives almost constant product compo-
sitions (good control of y1) when there disturbances in the feed flowrate. However, the
changes in the product composition are large (poor control of y1) for feed composition
disturbances (e.g. (Skogestad et al., 1990)). Häggblom and Waller (1990) looked for a
flow combination that handles all disturbances, and proposed the “disturbance reject-
ing and decoupling” configuration. This partially motivated our work, and is discussed
in more detail below.

In the following, we let the set y denote the “candidate” measured variables for
indirect control. We will refer to the entire set y as “measurements”, but note that
we in this set also include the original manipulated variables (inputs) (e.g. L, V , D
and B for the distillation example). In this paper, we select as “secondary” controlled
variables c a linear combination of the variables y,

∆c = H∆y (C.1)

In other words, we want to find a good choice for the matrix H. In the simplest case
individual measurements y are selected as c’s, and the matrix H consists of zeros and
ones. However, more generally we allow for combinations (functions) of the available
measurements y, and H is a “full” matrix with all entries nonzero. In the paper, we
show that if we have as many measurements as there are independent variables (inputs
plus disturbances), then we can always achieve at steady state “perfect indirect control”
with perfect disturbance rejection and in addition with a decoupled response from the
setpoints cs (the “new” inputs) to the primary variables y1.

Indirect control may be viewed as a special case of “self-optimizing control”
(Halvorsen et al., 2003). This is clear from the definition:

Self-optimizing control (Skogestad, 2000) is when we can achieve ac-
ceptable (economic) loss with constant setpoint values for the controlled
variables c (without the need to re-optimize when disturbances occur).

In most cases the “loss” is an economic loss, but for indirect control it is the setpoint
deviation, i.e. L = ‖y1 − y1s‖. The implications of viewing indirect control as a special
case of self-optimizing control are discussed later in the paper.
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Another related idea is inferential control (Weber and Brosilow, 1972). However,
in inferential control the basic idea is to use the measurements y to estimate the
primary variables y1, whereas the objective of indirect control is to directly control a
combination c of the measurements y.

In the paper we only consider the steady-state behavior. The notation in this paper
largely follows that used by Halvorsen et al. (2003).

C.2 Perfect indirect control

Consider a setpoint problem where the objective is to keep the “primary” controlled
variables y1 at their setpoints y1s. We also have

u: Inputs (independent variables available for control of y1)
d: Disturbances (independent variables outside our control)
y: Measurements (including u and possible measured d’s)

Problem definition: Find a set of (secondary) controlled variables c = h(y) such
that a constant setpoint policy (c = cs) indirectly results in acceptable control of the
primary outputs (y1).

We make the following assumptions

1. The number of secondary controlled variables c is equal to the number of inputs
u (nc = nu), and they are independent such that it is possible to adjust u to get
c = cs.

2. We consider the local behavior based on linear models.

3. We only consider the steady-state behavior.

4. We neglect the control error (including measurement noise), that is, we assume
that we achieve c = cs at steady state (this assumption is relaxed later).

5. We assume that the nominal operating point (u∗, d∗) is optimal, that is, at the
nominal point (where d = d∗ and c = cs) we have y∗

1 = y1s.

The linear models relating the variables are

∆y = Gy∆u + Gy
d∆d = G̃y

[
∆u
∆d

]

(C.2)

∆y1 = G1∆u + Gd1∆d = G̃1

[
∆u
∆d

]

(C.3)

∆c = G∆u + Gd∆d = G̃

[
∆u
∆d

]

(C.4)

where ∆u = u − u∗, etc. From (C.4) we can obtain the inputs ∆u needed to get a
given change ∆c:

∆u = G−1∆c − G−1Gd∆d
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where G−1 exists because of assumption 1. Substituting this into (C.3) yields the
corresponding change in the primary variables

∆y1 = G1G
−1

︸ ︷︷ ︸

Pc

∆c + (Gd1 − G1G
−1Gd)

︸ ︷︷ ︸

Pd

∆d (C.5)

The “partial disturbance gain” Pd gives the effect of disturbances d on the primary
output y1 with closed-loop (“partial”) control of the variables c, and Pc gives the effect
on y1 of changes in c (e.g., due to a setpoint change cs).

The controlled variables c are combinations of the measurements, ∆c = H∆y, and
it follows from (C.2) and (C.4) that

G = HGy; Gd = HGy
d; G̃ = HG̃y (C.6)

Ideally, we would like to choose H such that Pd = 0. Somewhat surprisingly, at least
from a physical point of view, it turns out that this is always possible provided we
have enough measurements y, and that we in fact have additional degrees of freedom
left which we may use, for example, to specify Pc. For example, it may be desirable to
have Pc = I, because this (at least at steady state) gives a decoupled response from cs

(which are our “new inputs”) to the primary controlled variables y1.

“Perfect indirect control” (refined problem definition): Find a lin-
ear measurement combination, ∆c = H∆y, such that at steady state we
have perfect disturbance rejection (Pd = 0) and a specified setpoint response
(i.e. Pc = Pc0, where Pc0 is given.)

We make the following additional assumptions:

6. The number of primary outputs y1 is equal to the number of secondary controlled
variables c (i.e., ny1

= nc), such that Pc0 is invertible.

7. The number of (independent) measurements y is equal to the number of inputs
plus disturbances (ny = nu + nd), such that the matrix G̃y is invertible (this
assumption is relaxed later).

Solution to refined problem definition: We have ∆c = H∆y and want to find H
such that

∆y1 = Pc0∆c + 0 · ∆d

This gives ∆y1 = Pc0H∆y, and using (C.2) and (C.3) gives

∆y1 = G̃1

[
∆u
∆d

]

= Pc0HG̃y

[
∆u
∆d

]

which gives G̃1 = Pc0HG̃y or

H = P−1
c0 G̃1G̃y

−1
(C.7)

which is the solution to the refined problem definition.
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Extension 1. More generally, we may specify Pd = Pd0 (where Pd0 is given and
may be nonzero) and the resulting choice for H is

H = P−1
c0 Ĝ1G̃y

−1
(C.8)

where
Ĝ1 =

[
G1 Gd1 − Pd0

]
= G̃1 −

[
0 Pd0

]
(C.9)

Extension 2. If the measurements y are not independent or closely correlated,
then the matrix G̃y in (C.7) and (C.8) will be singular or close to singular, resulting

in infinite or large elements in G̃y
−1

. In this case, one needs to consider another set of
measurements y or use more measurements. This is discussed separately below.

C.3 Application to control configurations for distil-

lation

The results of Häggblom and Waller (1990) on control configurations for “disturbance
rejection and decoupling (DRD) of distillation” provide an interesting special case of
the above results, and actually motivated their derivation. Häggblom and Waller (1990)
showed that one could derive a DRD control configuration that achieved

1. Perfect disturbance rejection with the new loops closed (i.e. Pd = 0 in our
notation).

2. Decoupled response from the new manipulators to the primary outputs (i.e. Pc =
I in our notation).

Häggblom and Waller (1990) derived this for distillation column models, and made no
attempt of generalizing their results. However, they can be shown to be a special case
of the above results when we introduce

y1 =

[
yD

xB

]

, y =







L
V
D
B







, u =

[
L
V

]

, d =

[
F
zF

]

(C.10)

Comments:

1. The primary outputs y1 are the product compositions (bottoms and distillate
product)

2. The measured variables are y = u0 where u0 =
[
L V D B

]T
(flows) are the

original manipulated inputs for the distillation column.

3. The inputs u (a subset of u0) are the remaining two inputs after satisfying the
steady-state constraints of constant MB and MD (reboiler and condenser level

have no steady-state effect). In (C.10) we have selected u =
[
L V

]T
, but it

actually does not matter which two variables we choose to include in u, as long
as the variables in u are independent.
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4. The disturbances d are feed flowrate and feed composition.

Note that we in (C.10) only allow for flows as measurements, y = u0. This implies that
we want to achieve indirect control by keeping flow combinations at constant values.
This implicitly requires that the feed composition zF has an effect on at least one of
the flowrates. This will generally be satisfied in practice where u0 represents mass or
volumetric flows, but it will not be satisfied in the “academic” case where we use the
“constant molar flows” assumption (simplified energy balance) and assume that we
manipulate molar flows.

We want to use a combination ∆c = H∆y of the measurements y as controlled
variables,

∆c1 = h11∆L + h12∆V + h13∆D + h14∆B

∆c2 = h21∆L + h22∆V + h23∆D + h24∆B

From (C.7) we derive the choice for H that gives “perfect indirect control” at steady
state, and we find that it is identical to that of the DRD-configuration in Häggblom
and Waller (1990).

As a specific example, consider the model of a 15-plate pilot-plant ethanol-water
distillation column studied by Häggblom and Waller (1990). The steady-state model

in terms of u =
[
L V

]T
(LV-configuration) is
[
∆yD

∆xB

]

= G1

[
∆L
∆V

]

+ Gd1

[
∆F
∆zF

]

y =







∆L
∆V
∆D
∆B







= Gy

[
∆L
∆V

]

+ Gy
d

[
∆F
∆zF

]

with (Häggblom and Waller, 1990)

G1 =

[
−0.045 0.048
−0.23 0.55

]

Gd1 =

[
−0.001 0.004
−0.16 −0.65

]

(C.11)

Gy =







1 0
0 1

−0.61 1.35
0.61 −1.35







Gy
d =







0 0
0 0

0.056 1.08
0.944 −1.08







(C.12)

From (C.7) we derive that the following variable combination gives perfect disturbances
rejection and decoupling (DRD):

H =

[
−0.0427 0.0430 0.0025 −0.0012
−0.5971 1.3625 −0.7281 −0.1263

]

(C.13)

which is identical with the DRD-structure found in Häggblom and Waller (1990).
We note that our derivation is much simpler. In addition, our results generalize the

results in Häggblom and Waller (1990) in two ways:
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1. The results are generalized to other measurements than the choice y = u0 (flows).
For example, it is possible to derive a DRD-configuration based on keeping two
combinations of four temperature measurements constant.

2. The results are generalized to other processes than distillation.

A further extensions is discussed next.

C.4 Extension 2: Selection of measurements and

effect of measurement error

Above we assumed that the number of independent measurements was equal to the
number of independent variables, i.e. ny = nu + nd (Assumption 7), and neglected the
effect of measurement error (noise) and control error by assuming that we can achieve
perfect control of c, i.e. c = cs at steady state (Assumption 4). These assumptions are
related, since the violation of Assumption 7, will lead to sensitivity the measurement
error neglected in Assumption 4.

Let ny denote the measurement error associated with the measurements y. Since
∆c = H∆y, the effect on the controlled variables c is nc = c − cs = Hny. This
corresponding error in the primary outputs is then

∆y1 = PcHny (C.14)

From (C.14) we have that the effect of measurement error is large if the norm of
the matrix PcH is large. With “perfect indirect control” we have from (C.7) that

PcH = G̃1G̃y
−1

which is large if the measurements are closely correlated since then G̃y

is close to singular and the elements in G̃y
−1

are large.
If we have extra measurements, ny > nu + nd, then we may use these extra mea-

surements to affect PcH and thus minimize the effect of the measurement noise. This
may be done in two ways as discussed below:

(a) Select the best subset of all the measurements, (“use the most independent mea-
surements”).

(b) Use all the measurements and select the best combination (“average out the mea-
surement error”).

Method (b), where we use all the measurements, it always better mathematically, but
method (a), where we use only a subset, may be preferred in practice because it uses
fewer measurements. In addition, there may cases where we have too few or correlated
measurements, so that it is impossible to achieve “perfect” disturbance rejection. We
would then like to:

(c) Select (control) a combination of the available measurements so that the effect of
disturbances on the primary variables is minimized.
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(a) Best subset of measurements. This is the case discussed earlier where we
select as many measurements as there are inputs and disturbances (ny = nu +nd). The
matrix G̃y is then invertible and from (C.7) we have for “perfect indirect control” that

PcH = G̃1G̃y
−1

(C.15)

The issue here is which subset of the measurements to select.
First, we note that the choice of Pc does not affect the sensitivity to measurement

error G̃1G̃y
−1

, that is, the “degree of freedom” in selecting Pc is not useful in terms of
measurement error. Also note that the choice of measurements y does not influences
the matrix G̃1. However, the choice of measurements y does affect the matrix G̃y,
and if we have extra measurements then we should select them such that the effect of
measurement error is minimized, that is, such that G̃1G̃y

−1
is minimized. To choose

the best measurements we first need to scale the measured variables:

� Each measured variable y is scaled such that its associated measurement error
ny is of magnitude 1.

Since the induced 2-norm or maximum singular value of a matrix, σ̄, provides the
worst-case amplification in terms of the two-norm, we have from (C.14) and (C.15)
that

max
‖ny‖2≤1

‖∆y1‖2 = σ̄(G̃1G̃y
−1

) ≤ σ̄(G̃1)σ̄(G̃y
−1

) = σ̄(G̃1)/σ(G̃y) (C.16)

This has the following implications:

1. (Optimal) In order to minimize the worst-case value of ‖∆y1‖2 for all ‖ny‖2 ≤ 1,

select measurements such that σ̄(G̃1G̃y
−1

) is minimized.

2. (Suboptimal) Recall that the measurement selection does not affect G̃1. From
the inequality in (C.16) it then follows that the effect of the measurement error
ny will be small when σ(G̃y) (the minimum singular value of G̃y) is large. It
is therefore reasonable to select measurements y such that σ(G̃y) is maximized.
Here G̃y represents the effect of u and d on y.

(b) Best combination of all the measurements. Let G̃y
all represent the effect

of the independent variables on all the available measurements. A derivation similar
to (C.7) gives that “perfect indirect control” is achieved when

HG̃y
all = P−1

c0 G̃1 (C.17)

However, we now have ny > nu + nd, and (C.17) has an infinite number of solutions
for H. We want to find the solution that minimizes the effect of measurement error
on the primary outputs y1. The solution that minimizes the 2-norm of y1 is the one
with the smallest 2-norm of PcH, see (C.14). With Pc = Pc0 = I (decoupling) this is
obtained from (C.17) by making use of the pseudo inverse:

H = G̃1G̃
y
all

†
(C.18)
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In this case Gy
all

† is the left inverse of Gy
all. With this choice the effect of measurement

error is

PcH = G̃1G̃
y
all

†

(c) Few measurements. We here consider the case with fewer measurements
than independent variables, i.e. ny < nu + nd. In this case, (C.17) has no solution,
so perfect disturbance rejection (Pd = 0) is not possible. One possibility, is to delete
or combine disturbances such that (C.17) has a solution. Another possibility, is to use
the pseudo inverse as shown in (C.18),

H = G̃1G̃
y
all

†
(C.19)

but in this case the pseudo inverse is the right inverse. This corresponds to selecting H
such ‖E‖2 is minimized, where E = P−1

c0 G̃1 − HG̃y
all. This seems reasonable as we can

show that Pd∆d = P−1
c0 E

[
∆u
∆d

]

, so a small value of E implies a small value of Pd∆d,

and thus a small disturbance sensitivity.

Comment. It is appropriate at this point to make a comment about the pseudo
inverse of a matrix. Above we are looking for the best solution for H that satisfies
the equation set HG̃y

all = P−1
c0 G̃1. In general, we can write the solution of HA = B as

H = BA† where

� A† = (AT A)−1AT is the left inverse for the case when A has full column rank (we
have extra measurements). In this case there are an infinite number of solutions
and we seek the solution that minimizes H.

� A† = AT (AAT )−1 is the right inverse for the case when A has row column rank
(we have too few measurements). In this case there is no solution and we seek the
solution that minimizes the two-norm of E = B −HA (“regular least squares”).

� In the general case with extra measurements, but where some are correlated, A
has neither full column or row rank, and the singular value decomposition may
be used to compute the pseudo inverse.

C.5 Discussion: Link to previous work

Inferential control. If we choose Pc0 = I, then we find, not unexpectedly, that
(C.7) is the same as Brosilow’s static inferential estimator; see eq. (2.4) in Weber and
Brosilow (1972). To more clearly see the link, recall that the idea in inferential control
is to first “infer” from the measurements ∆y the inputs and disturbances, and from
this estimate the primary output. From (C.2) the inferred input and disturbance is

[
∆u
∆d

]

= G̃y
−1

∆y
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and from (C.3) the resulting estimated value of the primary output is

∆y1 = G̃1G̃y
−1

∆y

On the other hand, in indirect control, the idea is to control a measurement com-
bination, and from (C.7) with Pc = I (that is, we want ∆y1 = ∆c) the resulting
measurement combination is

∆c = H∆y = G̃1G̃y
−1

∆y

which is identical to the estimated primary output found with inferential control. The
advantage with the derivation in our paper is that it provides a link to control configu-
rations, regulatory control, cascade control, indirect control and self-optimizing control,
and also provides the generalization (C.8).

Self-optimizing control. The results in this paper on perfect indirect control
provide a nice generalization of the distillation results of Häggblom and Waller (1990),
but are themselves a special case of the work of Alstad and Skogestad (2002) on self-
optimizing control with perfect disturbance rejection (Alstad and Skogestad, 2002)
(Alstad and Skogestad, 2003). To see this link we need to write the cost function as

J =
1

2
(y1 − y1s)

T (y1 − y1s) (C.20)

Differentiation gives

Ju = (G1∆u + Gd1∆d)T G1, Juu = GT
1 G1, Jud = GT

1 Gd1 (C.21)

and we can compute the matrix M in the exact method of Alstad and Skogestad (2002)
and search for the optimal measurement combination. We find that:� Pd = 0 (“perfect control” with zero sensitivity to disturbances) implies Md = 0

(zero loss for disturbances). To prove this premultiply Pd by G†
1 and note that

G†
1G1 = I since G†

1 is a left inverse.

� However, unless ny1
≤ nu we do not have G†

1G1 = I, so Md = 0 (zero loss) does
not generally imply Pd = 0 (“perfect control”). This is easily explained: We can
only perfectly control as many outputs (y1) as we have independent inputs (u).

C.6 Conclusions

Indirect control is commonly used in industrial applications where the primary con-
trolled variable is not measured. In this paper we considered the case of “perfect
steady-state indirect control” where one attempts to control a combination of the
available measurements such that there is no effect of disturbances at steady-state.
This is always possible provided the number of measurements is equal to the number
of independent variables (inputs plus disturbances). It is further shown how extra
measurements may be used to minimize the effect of measurement error. This paper
generalizes the work of Häggblom and Waller (1990), but is itself a special case of the
work of Halvorsen et al. (2003) and Alstad and Skogestad (2002) on self-optimizing
control.
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Appendix D

Models and data for oil and gas
examples

D.1 Model equations

Here we list the models used for the wells and transportation lines.

Continuity equations

One-dimensional steady-state assumption

d

dx
(ρu2) = −∂P

∂x
− ρg

dz

dx
− 2ρu|u|

D
f (D.1)

where ρ is density, u velocity, P pressure, g gravity, D diameter, x axial direction
(positive along the flow direction), z the vertical displacement and f the friction factor.
Orthogonal collocation is used to discretized the equations. The friction factor f is
modeled as (assuming turbulent flow)

f = 0.079Re−0.25/4 (D.2)

where Re is the Reynolds number.

Well inflow

q = PI(Pr − P ) (D.3)

where q is the volumetric rate, PI is the production index, Pr is the reservoir pressures
and P the pressure in the well.

PVT

Black oil PVT model (Golan and Whitson, 1996). Let mo be mass of black oil, mg mas
of gas (free and dissolved) and ms mass of dissolved gas. The amount of dissolved gas
is

ms = moGORs (D.4)
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where GORs is the GOR at standard conditions (stock tank conditions). Let GORr

be gas oil ratio at reservoir conditions, then

GOR(P ) =
P − Ps

Pr − Ps

GORr (D.5)

where Ps is the standard pressure (stock tank pressure),P the pressure in the well and
Pr the pressure in the reservoir. The gas is modeled as ideal gas.

Valve model

The valve is modeled as compressible flow of ideal gas (White, 1999).

ṁ =
AP√
RT

√
√
√
√ 2k

k − 1

(
Ps

P

)2/k
[

1 −
(

Ps

P

)(k−1)/k
]

(D.6)

where A is the area, Ps is the downstream pressure, P the upstream pressure, R the
universal gas constant, T the upstream temperature and

k =
Cp

Cv

(D.7)

where Cp and Cv are the specific heat capacity.

D.2 Data for Section 10.3

The data used in the simulations are shown in Table D.1
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Table D.1: Data for the rate dependent GOR example
Variable Value Units Description
ṁmax

g,tot 7.1720 kg/s Max gas capacity
Ps 25 bar Pressure separator
Pr 155.8 bar Pressure reservoir all wells
Tr 100 G Temperature reservoir
Ts 50 G Temperature separator
ρo 890 kg/m3 Black oil density
PI 0.0012 m3/s, bar Production index W1

PI 0.0026 m3/s, bar Production index W2

PI 0.0025 m3/s, bar Production index W3

PI 0.0008 m3/s, bar Production index W4

PI 0.0018 m3/s, bar Production index W5

LW 1240 m Vertical height wells
DW 0.15 m Diameter wells
LT 7500 m Length transport line
DT 0.254 m Diameter transport line
αT 3 H Angle transportation line with horizontal
µo 0.15 Pa s Viscosity oil
µg 1 × 10−3 Pa s Viscosity gas
k 1.4 - Relative specific heat-capacity





Appendix E

Evaporator-Model equations

The model equations for the Evaporator process, shown in Figure E and as studied in
Chapter 11, are given below.

T100
P100

F2 x2 T21F x1 T1

T200
200F

5F

Separator

T201

L2

Pump

Steam

100

Evaporator

P2

F4 T3

F3

F

Cooling water
Condenser

ProductFeed

Condensate

Condensate

Figure E.1: Evaporation case
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dL2

dt
=

F1 − F4 − F2

20
(E.1)

dx2

dt
=

F1x1 − F2x2

20
(E.2)

dP2

dt
=

F4 − F5

4
(E.3)

T2 = 0.5516P2 + 0.3126x2 + 48.43 (E.4)

T3 = 0.507P2 + 55 (E.5)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(E.6)

T100 = 0.1538P100 + 90.0 (E.7)

Q100 = 0.16(F1 + F3)(T100 − T2) (E.8)

F100 =
Q100

36.6
(E.9)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(E.10)

T201 = T200 +
13.68(T3 − T200)

0.14F200 + 6.84
(E.11)

F5 =
Q200

38.5
(E.12)


