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Abstract—In this paper we calculate probabilistic estimates for
the size of an area a single unmanned aerial vehicle (UAV) can
expect to monitor when tracking multiple objects. The objects
are assumed to move according to a linear velocity model with
Gaussian process noise. We use a Kalman filter to estimate the
position of the objects. By using the covariance matrix of the
Kalman filter, we can derive the necessary visitation period for
a UAV to have a probability within a given confidence interval
of redetecting the object at the estimated position. Then, we use
this visitation period to calculate the probabilistic estimate for
the area a single UAV can monitor. We demonstrate the results
in Monte Carlo simulations.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have many applications
both within military and civilian areas, and the number of
applications are expected to increase in the years to come
[1]. A classical research question relevant for many UAV
applications, is searching and tracking objects (or sometimes
called targets) using a single or multiple UAVs.

Examples of applications for searching and tracking of
objects are: iceberg monitoring, fire detection and monitoring,
border patrol, surveillance and reconnaissance, [2, 3, 4, 5].

The searching and tracking of objects (STO) can be viewed
as a filtering problem. While most research within STO is con-
cerned with path planning, the problem of finding performance
bounds for filters have been less studied.

There are multiple alternatives for performance bounds on
filters [6], but the most popular is the Posterior Cramér-Rao
Lower Bond (PCRLB) first derived by Tichavsky et al. [7].
This is a mean-square error bound on state estimation error of
general discrete-time systems, and the reason for its popularity
is probably the low computational complexity of the bound [6].
PCRLB has been applied to multiple areas of research. For
example path planning [8, 9, 10], and time horizon estimation
[11].

Another approach that can be used to derive bounds on the
performance of a STO problem is to combine the objectives of
searching and object tracking into a single objective function
[12, 13, 14] or divide them into multiple layer objective
function like Tian et al. [15].

To our knowledge there have been no attempts to estimate
the size of the area a UAV can expect to monitor based
on the number and uncertainty of the objects in that area.

This estimate will be useful for allocating resources to STO
problems. It will also provide a performance metric of how
well any algorithm can expect to perform and can be used as
a basis for designing new path planning algorithms.

We assume that a UAV is equipped with a sensor that has
a given measurement frequency and accuracy.

A. Contribution

First, we give some simple results on the necessary visita-
tion frequency for a single object to keep the error in position
estimate within a given confidence interval. Second, we use a
Monte Carlo approach to approximate probability distribution
of traveling salesperson-(TSP) solutions given the number of
objects to track. We then use the results for indicating how
many objects/how large area can be monitored by a single
UAV.

B. Organization

This paper is organized as follows. In Section II we in-
troduce the model we use for the objects, the UAV and it’s
sensor. In addition, we also present the Kalman filter we use
estimating the state of the objects and use as a basis for the
derivations in Section III. The main result of this section is the
necessary visitation frequency for a single object to keep the
error in position estimate within a given confidence interval.
In Section IV we approximate the probability distribution for
the solution of TSPs given the number of objects. We use this
to indicate how large area/how many object a single UAV can
monitor. To demonstrate the result we run 100 simulations
for a single UAV monitoring an area with the estimated size
and count the number of times the objects are redetected and
compare it to the number of times the error in position estimate
gets outside the field of view (FOV) of the UAV in Section
V. Finally, we give a conclusion and further work in Section
VII.

C. Notation

Throughout this paper separate between scalars, vectors
and matrices as follows. Scalar variables are written with
lowercase letters. All vectors and matrices are denoted with
bold lowercase and uppercase letters. In addition, the notation
I and 0 will mean the 2× 2 identity and zero matrices.



II. SYSTEM MODEL AND KALMAN FILTER

We model the objects as particles moving with variable
velocity described as a Gaussian random walk:

ξ̇i =

[
ṡi
v̇i

]
=

[
0 I
0 0

]
ξi +

[
0
I

]
wi(t) ∀i ∈ [1, . . . , nobject]

(1)

where ξi = [si,vi]
T is the state of each object consist-

ing of Cartesian 2D coordinates, si ∈ R1×2, and velocity,
vi ∈ R1×2. The process noise, wi(t), is assumed to be
a Gaussian distribution with zero mean and variance qiI ,
wi(t) ∼ N (

[
0 0

]T
, qiI).

The UAV is modeled as Dubins vehicle:

ż =

ẋẏ
ψ̇

 =

U cos(ψ)
U sin(ψ)

u

 (2)

− ulim ≤ u ≤ ulim

where z is the state of the UAV consisting of Cartesian
coordinates, (x, y)T , in addition to heading, ψ. The velocity,
U , is assumed to be constant, and the turn rate, u, is bounded.

The UAV has a sensor to measure position of objects. The
sensor can for example be a camera that takes a picture with a
given frequency [16]. We assume the sensor obtains position
measurements with a frequency 1

∆T [ 1
s ],

yk = {y |y =
[
I 0

]
ξi,k + vk, ∀ξi,k ∈ FOV} (3)

where yk is the set of position measurements obtained at
timestep k, which can be empty or contain one or more
measurements, corresponding to the number of objects within
FOV. The state of object i at timestep k, ξi,k, is the time
discretized state from equation (1). Finally, the measurement
has a Gaussian distributed noise vk ∼ N (

[
0 0

]T
, rI), where

r is the variance. The notation ξi,k ∈ FOV means that object
i is within field of view (FOV) the UAV at timestep k. We
assume a circular FOV throughout this paper.

The Kalman filter is the optimal estimator for linear systems
with Gaussian noise, (1) [17]. The procedure of a Kalman
filter consists of two parts. First, it propagates the estimated
state and associated covariance matrix. Second, it use the
newest measurement and update the state estimate based on
the certainty of the measurement, given by the variance, r. For
our case, the second step is only performed when the UAV is
observing the current object.

The a priori step of the discrete Kalman filter for each object
(here the subscript i is dropped for clarity):

ξ̂priori
k+1 = Aξ̂k, ξ̂0 =

[
y0 0 0

]T
, (4a)

P priori
k+1 = APkA

T +Q, P0 =

[
rI

rσ2
v,0

∆T I
rσ2

v,0

∆T I σ2
v,0I

]
, (4b)

where

A =

[
I ∆TI
0 I

]
,Q =

[
0 0
0 qI

]
,R = rI,

σ2
v,0 =

1

12
(vmax − vmin)2

where ξ̂ is the estimated state of the object. The subscript
k + 1 and k denotes the next state and the current state.
The superscript priori indicates that this is the prediction
step. The initial state estimates, ξ̂0, is given by the first
measurement, y0. The covariance matrix at timestep k is Pk.
The covariance of the process and measurement noise is Q
and R. The constants, q and r, are the same as in equation
(1) and (3). The initial velocity variance is σ2

v,0, where we
have assumed a uniform distributed velocity of the objects
with limits [vmin, vmax]. Finally, we use the sensor measurement
frequency to set the step length, ∆T .

When a measurement is available, the posteriori step is
performed (also here is the subscript i for each object dropped
for clarity):

K = P priori
k+1 C

T [(CP priori
k+1 C

T +R)]−1 (5a)

ξ̂post
k+1 = ξ̂priori

k+1 +K(yk −Cξ̂priori
k+1 ) (5b)

P post
k+1 = (I −KC)P priori

k+1 (5c)

where

C =
[
I 0

]
here K is the Kalman gain, which calculates the weight to
for the new measurement. The superscript post is to indicate
the update step. The remaining constants are the same as in
equation (4).

III. SINGLE OBJECT VISITATION FREQUENCY

In this section we use the covariance matrix from the
Kalman filter for a single object to calculate the necessary
visitation frequency to keep the error in position estimate
within a given confidence interval.

The Kalman filter gives an estimate for the position of each
objects, but it also gives us a measure of the uncertainty in the
estimate, the covariance matrix. When we study the equations
for the objects (1), and the Kalman equation, (4)-(5), we notice
that the covariance matrix will have the form:

Pk =


σ2
x,k 0 σxvx,k 0

0 σ2
y,k 0 σyvy,k

σxvx,k 0 σ2
vx,k

0

0 σyvy,k 0 σ2
vy,k

 (6)



where σ2
x,k and σ2

y,k are the variances in x- and y-direction
at timestep k. The corresponding velocity variances are σ2

vx,k

and σ2
vy,k

. In addition the covariance between the position and
velocity in x- and y-direction are σxvx,k and σyvy,k.

It is often reasonable to assume that σ2
y = σ2

x, σyvy = σxvx ,
and σ2

vy = σ2
vx . By implementing this in (6), the covariance

matrix is defined by only three parameters.
The simple form for the covariance matrix in equation

(6) is caused by the assumption what there is no coupling
between the north/east position and velocity for the process
and measurement noise defined by the covariance matrices Q
and R.

This observation enable us to derive the following result.

Theorem 1 (Maximum position uncertainty). Let ∆T be the
period for sensor measurement frequency and FOVradius be
the radius (in meter) for the field of view of a UAV. Also
assume that an object is characterized by the system modeled
by equation (1), with process noise variance, q. If χ2

2 is the p-
value for a chi-squared distribution of two degrees of freedom,
then the equation:

1

3
q∆T 3n3 + (∆T 2σ2

vx,k −
1

2
q∆T 3)n2

+ (2∆Tσxvx,k +
1

6
q∆T 3)n+ (σ2

x,k −
FOV2

radius

χ2
2

) = 0

(7)

will have exactly one real solution, denoted nreal. Here σx,k,
σvx,k, and σxvx,k are the elements the of covariance matrix
Pk at time k, (6), for the position estimate of the object with
initial condition given by equation (4b).

Then, if the UAV takes a measurement at the estimated
position of the object given by equation (4a) at the time

Tcrit = nreal∆T (8)

it will have a probability of measuring the real position of the
object within the confidence interval given by the p-value of
the χ2

2 distribution.

For example, if χ2
2 = 5.99 the UAV will have a 95% chance

of finding the object within its field of view when taking a
measurement at the estimated object position if it returns to
the object after Tcrit seconds.

Proof. Let Pk be the covariance matrix of the object at
timestep k. Then, by applying equation (4b) multiple times
we get the following (here we drop the superscript priori since
we assume that the object is never observed):

Pk+n = AnPk(An)T +

n−1∑
i=0

AiQ(Ai)T (9)

here n is the number of steps into the future from time k.
Since

An =

[
I n∆TI
0 I

]
. (10)

we get

Pk+n =

[
anI bnI
bnI cnI

]
+ q∆T

n−1∑
i=0

[
i2(∆T )2I i∆TI
i∆TI I

]
(11)

where

an = σ2
x,k + 2n∆Tσxvx,k + (n∆T )2σ2

vx,k

bn = σxvx,k + n∆Tσ2
vx,k

cn = σ2
vx,k

By using formulas for the sums in the second part of (11), we
get

Pk+n =

[
anI bnI
bnI cnI

]
+ q∆T

[
(∆T )2( 1

3n
3 − 1

2n
2 + 1

6n)I 1
2∆T (n2 − n)I

1
2∆T (n2 − n)I nI

]
(12)

The upper left corner is the position variance at timestep k+n

σ2
x,k+n =

1

3
q∆T 3n3 + (∆T 2σ2

vx,k −
1

2
q∆T 3)n2

+ (2∆Tσxvx,k +
1

6
q∆T 3)n+ σ2

x,k (13)

Let ξ̃k+n =
[
s̃k+n ṽk+n

]
be the error in state estimate

for the object at tk + n∆T and s̃k+n =
[
x̃k+n ỹk+n

]T
the

error in position estimate. In addition, given a circular FOV
of the UAV with a radius = FOVradius. We need

|FOVradius| ≥ |s̃k+n| (14)

FOV2
radius ≥ x̃2

k+n + ỹ2
k+n. (15)

We know that both x̃ and ỹ are Gaussian distributed with zero
mean and an increasing variance of σ2

x,k+n. If we divide the
expression by the variance we get the following:

(
1

σ2
x,k+n

)FOV2
radius ≥

1

σ2
x,k+n

(x̃2
k+n + ỹ2

k+n) (16)

If we look at the right side of equation (16) we have the sum
of two normally distributed random variables squared. This is
a chi-squared distribution of second order. We can calculate a
confidence interval by using this distribution. Let χ2

2 be the p-
value of a given confidence interval. Then, the maximum value
the variance can have without getting outside this confidence
interval is

(
1

σ2
x,k+n

)FOV2
radius = χ2

2 (17a)

σ2
x,k+n =

FOV2
radius

χ2
2

(17b)

We can now combine equation (13) and (17b) to get
equation (7).

Furthermore, the equation (7) is a cubic function in n. If
we let α, β, γ and δ be the constants defining this function,
αn3 + βn2 + γn+ δ = 0. Then, the discriminant is given by

∆ = 18αβγδ − 4β3δ + β2γ2 − 4αγ3 − 27α2δ2 (18)



When the discriminant is negative, the cubic function will
have only one real and two complex conjugated solutions
[18]. Since we must choose q, r, ∆T > 0 and we use initial
conditions given by equation (4b) the discriminant is always
negative, and thus the cubic function in equation (7) will have
only one real solution, nreal.

We now have the maximal value the position variance can
reach. To get the necessary visitation frequency of an object,
we need to know the minimum possible position variance. This
limit depends on the measurement frequency and accuracy of
the sensor, in addition to the process noise of the object.

We can calculate this limit by noticing that the covariance
matrix will eventually reach a steady-state. If we combine the
priori, (4), and the posteriori, (5), step into a single step with
the object model, (1), and measurement model, (3), we get the
following equation for the covariance matrix:

P post
k+1 =

1

a1 + r

[
ra1I rb1I
rb1I (−b21 + (c1 + ∆Tq)(a1 + r))I

]
(19)

where the constants a1, b1, and c1 are given by (11).
The steady-state is reached when P post

k+1 = Pk. This
corresponds to setting equation (19) equal to (6) with
[σx,k, σxvx,k, σvx,k] = [σx,c, σxvx,c, σvx,c], which gives the
following set of equations:

σ2
x,c =

ra1

a1 + r
(20a)

σxvx,c =
rb1

a1 + r
(20b)

σ2
vx,c =

−b21
a1 + r

+ c1 + ∆Tq (20c)

This set of equations is easily solved, for instance with a
Newton-method.

We can now derive the following result.

Theorem 2 (Object necessary visitation period). Assume that
each time a UAV visits an object it obtains a sufficient number
of measurements for the covariance to reach the steady state
defined by (20). Then, the necessary visitation period (NVP)
for the object to guarantee detection for each visit within the
confidence interval given by χ2

2 is:

TNVP = nreal∆T (21)

where nreal is the solution to equation (7) in Theorem 1 with
σx,k = σx,c, σxvx,k = σxvx,c, and σvx,k = σvx,c.

Proof. We have assumed that each time the UAV visits an
object the steady-state of the covariance is reached. Then, by
theorem 1, the maximum position variance, σx,k, will never
exceed the limit, FOV2

radius

χ2
2

. Since the error in position estimate
is a chi-squared distribution, the probability of redetection will
thus be given by the p-value, χ2

2.

Theorem 2 gives us the necessary visitation period of an
object. However, we assumed that the steady-state of the
covariance will be reached each time an object is measured.

When the sensor of a UAV measures an object, the covariance
matrix will converges exponentially fast towards the steady-
state, but never reach it. This might seem like a problem.
However, we can get arbitrary close to the steady-state by
using a iterative method. The procedure is as follows.

First, use Theorem 2 to find [σx,c, σxvx,c, σvx,c]. Then,
use Theorem 1 to calculate nreal and use it to find
[σx,k+n, σxvx,k+n, σvx,k+n] given by equation (13) and

σxvx,k+n = σxvx,k + n∆Tσ2
vx,k +

1

2
q(∆T )2(n2 − n) (22a)

σ2
vx,k+n = σ2

vx,k + q∆Tn (22b)

which can be found from reading the element (1,2) and (2,2)
of the matrices in equation (12).

Finally, use an iterative method with equation (19) to
find the number of iterations necessary to get within, the
distance ε (measured in Euclidian distance), of the covari-
ance matrix characterized by [σx,k+n, σxvx,k+n, σvx,k+n] to
[σx,c, σxvx,c, σvx,c] for the object’s state estimate. If we let
itr be the number of iterations to get within ε of the steady-
state covariance matrix, then the necessary time to observe an
object to get arbitrary close to the steady-state is

Tmeasure = itr∆T. (23)

Note that in practice we do not need many iterations to get
close to the steady state. By studying equation (20a), we see
that when σx,k → ∞ then a1 → ∞ a single measurement is
sufficient to move the position variance to σx,k+1 = r.

Figure 1 illustrates the last two results. Here q = 0.005m
2

s2 ,
r = 5m2, ∆T = 0.1s, FOVradius = 150m. The size
of the confidence interval is 95%, which corresponds to
χ2

2 = 5.99. This leads the minimum covariance matrix to be
[σx,c, σxvx,c, σvx,c] = [0.2187, 0.0489, 0.0224]. The maximum
period between visits is TNVP = 126.7s. The time it takes to
get a set of measurements within ε = 0.01 of the steady-state
covariance matrix is Tmeasure = 110×∆T = 10.1s.

The figure illustrates a simulation of σ2
x for an object

starting at minimum variance and running for T = Tfreq +
Tmeasure + Tfreq. The simulations is split into three intervals
where it is first unobserved, observed, and then unobserved
again.

IV. AREA SIZE ESTIMATES

The results of the last section enable us to calculate the
maximum distance a single UAV can travel while keeping
an object’s position estimate error within a given confidence
interval. We can then use this distance to estimate the size of
the area a single UAV can monitor.

Let us assume that a UAV travels at constant velocity U and
TNVP is the period of the visitation period of an object from
Theorem 2. The the maximum distance it can travel is easily
calculated as

dmax = TNVPU. (24)
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Fig. 1. Demonstration of Theorem 1 and 2. The blue solid line is the variance
of the position estimate error of an object, and the red dotted line is the limit
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For example, consider a UAV traveling at 22ms with the
same sensor and FOV as used in the illustration at the end of
Section III, Figure 1. Assume that the objects in the area also
have the same properties as in that illustration. Then the UAV
will be able to cover the distance

dmax = 126.7× 22 = 2787.4m (25)

Let the minimum turning radius for the UAV be 105.8m. Then,
the area the UAV will be able to monitor could be a rectangular
shape of size with areal 0.836km2, as the one drawn in Figure
2.
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Fig. 2. Example path (blue solid curve) for the area (black dotted curve) a
single UAV can monitor.

When calculating the area in Figure 2 we assume that the
whole area must be visited with the given period. Therefore,
it does not matter how many objects are within the area, since
the UAV will pass every point with the necessary visitation
period for each object. However, if we knew the number of
objects to track, we could estimate a larger area the UAV could
monitor.

To continue we will need some extra assumptions. In
addition to assuming the number of objects known, we assume
the object’s positions are uniformly distributed and the UAV

is not subjected to the nonholonomic constraints of equation
(2).

The necessary visitation period of each object will be the
same as the case illustrated in Figure 2. This means that the
maximal distance the UAV can travel is still given by equation
(24). If we assumed that we had only two objects to track, we
could calculate the probability distribution of distance between
the objects. We could then use this probability distribution
to calculate the probability that the distance will be longer
than the maximal distance the UAV can travel and keep the
variance of each object’s position estimate error within a given
confidence interval.

A challenge with this approach is that it will become
increasingly difficult to calculate the probability distribution
for the shortest distance between N objects. For two and
three objects there will only be one possible route, but as
the number of object increases the number of routs will
increase exponentially. The problem of finding the shortest
route is the traveling salesperson problem (TSP). Calculating
the probability distribution will be a complex task. Instead, we
will assume that the probability distribution for the shortest
distance between N objects in a quadratic area with sides of
length L will be normally distributed and can be approximate
by running many Monte Carlo simulations.

To approximate the probability distribution of the shortest
distance between N objects we solved 1000 TSP problems for
each case of objects from 2 till 18. To solve the TSP problems,
we use the CPLEX solver from IBM [19] implemented with
YALMIP [20] in MATLAB R2016b. We use a mixed integer
linear programming formulation for the TSP similar to Chen
et al. [21].

Figure 3 and 4 plot the sample mean and standard deviation
for the approximation of the probability distribution of the
shortest distance between N objects. In addition, each plot
also shows the 95% confidence interval for each property.
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Fig. 3. The approximate mean of the shortest distance between objects divided
by the side length of the quadrant L. The blue solid curve is the sample mean,
with the 95% confidence interval indicated by black dotted curves.
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Fig. 4. The approximate standard deviation of the shortest distance between
objects divided by side length L. The blue solid curve is the sample standard
deviation, with the 95% confidence interval indicated by black dotted curves.

We can use the approximate distributions to calculate an
estimate on the size of the area we can monitor with a single
UAV assuming we know the number of objects. For example,
if we want it to be a 95% chance that the shortest distance
between the objects is less than dmax, we can calculate the
side length of a quadratic area as

L =
dmax

µ̂i + 1.645σ̂i
(26)

where i is the number of objects we expect to find in an area,
and µ̂i and σ̂i are the approximate mean and standard deviation
for the TSP solution distribution for i objects.

We can use the example from Figure 1 and 2 to calculate
the maximal side length of a quadratic area given a 95% con-
fidence interval for the number of objects from 2 till 18. The
result is plotted in Figure 5. The blue curve is the side length of
the area for the number of objects, the 95% confidence interval
is indicated by the two dotted black curves. In addition, we
have illustrated the side length for the area from Figure 2 if it
were quadratic, which is

√
836130m = 914.4m , with a solid

red line.

V. SIMULATION

To demonstrate the results from Section III and IV we ran
100 simulations of a single UAV following the path from
Figure 2 with 100 objects in the area. The initial position
and velocity of the objects as well as the noise sequences
were randomized within a given interval for each simulation
run. The remaining parameters were constant and are given
in Table I. The confidence interval was chosen to be 95%
(χ2

2 = 5.99).
Based on the simulation, we counted the number of times

a redetected object was found within FOV and compared it to
the number of times the error in position estimate increased
beyond the FOV. The objects that moved outside of the patrol
area of the UAV indicated by the dotted black curve in Figure
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Fig. 5. Assuming a quadratic area, the length of the sides, calculated based
on the maximal distance traveled for a single UAV given the number of
objects. The solid blue curve is the side length, with the black dotted curves
indicating the 95% confidence interval. The solid red line is the comparative
side length for the area monitored by a UAV following the path given in
Figure 2 (

√
836130m = 914.4m), if that area were quadratic.

TABLE I
SIMULATION PARAMETERS

Parameter Value Unit

UAV 1 units
(x0,y0,heading) (300,150,0) (m,m,rad)
Minimum turning radius 105.8 m
FOVradius 150 m
Velocity 22 m/s

Objects 100 units
x0 ∈[-350,1850 ] m
y0 ∈[-350,950] m
vx ∈[-1,1] m/s
vy ∈[-1,1] m/s

Observer
Measurement period, ∆T 0.1 s
Process noise variance, q 0.005 m/s2

Measurement noise variance, r 5 m2

χ2
2 5.99

Simulation
Simulation length, T 500 s

2 were ignored. The results are illustrated in Figure 6 and 7.
Overall the UAV managed to redetect discovered objects with
a success rate of 97.60%.

VI. DISCUSSION

When we study Figure 6 and 7 we realize that in several
cases the UAV does not visit the objects with a period given by
TNVP from equation (21). The reason is that the UAV does not
fulfill the assumption of measuring at the estimated position
of each object, instead it only measures at each position in the
area with period, TNVP. This means that when following the
simple path from Figure 2, the movement of the objects are
not considered. However, as we can see from Figure 6 that for
most objects the visitations occur with a period close to TNVP.
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Fig. 6. The visitation period for the successful cases redetection of objects.
Each case of redetection is indicated by a blue X. The TNVP from equation
(21) is drawn as a solid red line. Only the first 1000 cases of redetection are
shown for clarity of the figure.
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Fig. 7. The time when the error in the estimated position of an object exceeds
the FOV of the UAV. Each case is marked with a blue X. The Tfreq from
equation (21) is drawn as a solid red line

From the chosen confidence interval of 95% we would
expect to redetect objects within FOV in 95% of the cases.
However, the UAV managed to redetect the objects with a
success rate of 97.6%. There are two factors that effects the
success rate. First, as already mention the UAV does not take
into consideration the movement of the objects. An algorithm
that guarantee that each object position estimate is visited
within a time span of TNVP will have a worst case redetection
rate of 95%. When the UAV follows the path from Figure 2,
the estimated position of the objects are not considered and
thus no such guarantee can be given. When we study the cases
where the objects moved outside FOV, illustrated in Figure 7,
for most of them the UAV failed to return within the given
time span TNVP. The second factor that increases the success
rate comes from ignoring the objects that moves outside the
patrol area given by the dotted black curve in Figure 2.

Finally, the result at the end of Section 5 enables us to
select a path planning algorithm based on the size and the
expected number of objects in the area. As the number of
objects increases an optimization algorithm for searching and
tracking objects will perform increasingly worse compared to
following a simple path like the one illustrated in Figure 2.

VII. CONCLUSION AND FURTHER WORK

In this paper we have derived a performance bound for the
variance of the position estimate error of objects following a
constant velocity model with noise. This performance bound
have then been used to calculate the necessary visitation
frequency of an object, such that the probability of the error
in the position estimate, to increase beyond the FOV, is within
a given confidence interval. We calculate the size of the area
assuming that a UAV need to monitor the whole area with the
given visitation period. In addition, we have also approximated
the probability distributions for TSP-solutions with different
number of objects. We have used this to calculate an estimate
of the area size a UAV can monitor when only needing to
visit the objects with the given visitation period. We have
demonstrated a single UAV monitoring a limited area in Monte
Carlo simulations with 100 objects. Finally, based on the
results we have been able to recommend a path planning
strategy based on the size and number of objects in the area.

Future work:
• Extend the results with the probability of detection. Even

when an objects is within FOV of a UAV it is not
guaranteed to get a measurement of the object.

• Generalize the result with a more complicated measure-
ment model for example coupling between north/east
position and velocity.

• Develop similar result for multiple UAVs.
• Create an algorithm based on the visiting frequency,
TNVP, for searching and tracking objects with a UAV.

• Create and perform experimental setup to validate the
results.
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