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 14 

ABSTRACT 15 

Identification of distributed precipitation-runoff models for hourly runoff simulation based on 16 

transfer of full parameters (FP) and partial parameters (PP) are lacking for boreal mid-Norway. 17 

We evaluated storage-discharge relationships based model (Kirchmod), the Basic-Grid-Model 18 

(BGM) and a simplified Hydrologiska Byråns Vattenbalansavdelning (HBV) model for multi-19 

basins (26 catchments). A regional calibration objective function, which uses all streamflow 20 

records in the region, was used to optimize local calibration parameters for each catchment and 21 

regional parameters yielding maximum regional weighted average (MRWA) performance 22 

measures (PM).  23 
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    Based on regional median Nash-Sutcliffe efficiency (NSE) and NSEln (for log-transformed 24 

series) for the calibration and validation periods, the Kirchmod model performed better than 25 

the others. Parsimony of the Kirchmod model provided less parameter uncertainty for the FP 26 

case but did not guarantee parameter identifiability.  27 

    Tradeoffs between parsimony and performance were observed despite advantages of 28 

parsimony to reduce parameter correlations for the PP, which requires preliminary sensitivity 29 

analysis to identify which parameters to transfer. There are potential advantages of using the 30 

MRWA method for parameter transfer in space. However, temporal validation indicated 31 

marked deterioration of the PM. The tradeoffs between parameter transfers in space and time 32 

substantiate both spatial and temporal validation of the regional calibration methodology. 33 

Key words: Model identification; Hourly runoff; Regional calibration; Parameter uncertainty 34 

and identifiability; Parameter transfer; Model validation.  35 

 36 

INTRODUCTION 37 

Continuous streamflow simulation by Precipitation-Runoff (P-R) models for prediction 38 

purposes are widely employed, for instance to predict streamflow to reservoirs, floods and 39 

droughts, and to assess effects of alteration of natural flow regime due to anthropogenic 40 

impacts. Moreover, utilization of hydropower reservoirs to satisfy peak energy demands 41 

(hydropeaking operation) requires streamflow forecasting at high temporal resolution. The 42 

European Water Framework Directive requirements for ecological protection further 43 

substantiate the need for better hydrological predictions for ecological impact management in 44 

regulated rivers. In addition, prevalence of flood events associated with the issues of land use 45 

and climate change require forecasting at high temporal resolution.  46 

    The current technology allows for measurements of environmental variables such as rainfall 47 

and streamflow with fine temporal resolution and a vast amount of sub-daily data from different 48 
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sources may be available (see Jones, 2005). However, the majority of previous studies on 49 

identification of the P-R models for continuous simulation and prediction purposes in literature 50 

are based on a daily time scale, which leaves the potential high information content of available 51 

hourly data unexplored. Previous studies (e.g. Kavetski et al., 2011; Bastola and Murphy, 2013) 52 

illustrated the dependence of optimal model parameters on the temporal resolution of data and 53 

substantial drawbacks of parameter transfer from daily calibration to prediction on an hourly 54 

time scale. Therefore, there is an interest in hourly calibration and prediction for operational 55 

use, which requires comprehensive study relevant to the research gaps on identification of 56 

suitable P-R models for the hourly prediction.         57 

    Wagener and McIntyre (2005) conducted a study on the identification of lumped conceptual 58 

rainfall-runoff models for operational applications based on daily streamflow on three 59 

catchments in UK using the ‘split-sample’ and ‘proxy basin’ operational testing schemes of 60 

Klemeś (1986), and goodness-of-fit metrics for different flow ranges. Fenicia et al. (2011) used 61 

a flexible framework to identify model performance of several model structures for four 62 

different catchments in Europe and New Zealand. Smith and Marshal (2009) carried out model 63 

selection based on a suite of 30 conceptual, modular structures for snow-dominated, 64 

mountainous experimental watershed in USA using 12 hourly data. Orellana et al. (2008) 65 

applied seven semi-distributed rainfall-runoff model structures using hourly data from four 66 

gauging stations in the UK. However, these studies focused on coarse temporal resolutions 67 

and/or on a single catchment (with only one or more gauges) or a small number of catchments 68 

in a region rather than on fine temporal resolution (e.g. hourly) and multi-basin regional scale 69 

modelling based identification of the P-R algorithms.  70 

    There are also studies based on both multi-model and multi-basin simulations for both daily 71 

and hourly resolutions. Lee et al. (2005) conducted a study on the selection of 12 daily 72 

conceptual model structures for regionalization for Prediction in Ungauged Basins (PUB) of 73 
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the rainfall-runoff relationships for 28 UK catchments. Oudin et al. (2008, 2010) used two 74 

lumped models and daily streamflow records from large number of catchments in France 75 

respectively for comparison of regionalization approaches for the PUB and for studying the 76 

relationships between physical similarity and hydrological similarity of catchments. Viviroli et 77 

al. (2009a&b) conducted calibration for 140 mesoscale catchments for hourly flood prediction 78 

in ungauged Swiss catchments. However, the majority of the previous studies on multi-model 79 

calibration based on multi-basin data mainly focused on regionalization for the PUB rather than 80 

on the identification or performance evaluation of the models among alternative hydrological 81 

mechanisms as suggested by Jones (2005). An exception is the work by Perrin et al. (2001) 82 

who conducted a multi-model comparative performance assessment of 19 parsimonious to more 83 

complex daily lumped models on 429 catchments mostly located in France.  84 

    A thorough study of the identification of P-R models in simulation mode has the potential 85 

for improving forecast accuracy. Better performance of the precipitation-runoff models in 86 

simulation mode is crucial for forecast modes (see Refsgaard, 1997; Bell and Moore, 1998; 87 

Engeland and Steinsland, 2014). In addition, the specific tools used in forecasting for data 88 

assimilation and correction affect the performance of a forecast (see Nicolle et al., 2014). 89 

Therefore, the review indicates that the previous work on hourly identification of P-R models 90 

based on multi-basin or regional calibration approach is lacking for boreal snow-dominated 91 

catchments. The use of regional scale data and hence data augmentation through the regional 92 

calibration is expected to allow more comprehensive performance evaluation than the at-site 93 

records based local calibration and ‘proxy basin’ based model validation.  94 

    Identification of the P-R models are dependent on objective functions used for model 95 

calibration and performance measures used for model evaluation. For instance, fitting of the P-96 

R models to reproduce the whole hydrograph for scientific research or to a specific flow regime 97 

for operational purposes would result in different optimal parameter vectors. For operational 98 
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applications, it is a common practice to use the P-R models as a ‘fit-for-purpose’ decision 99 

support tools. The commonly used adjustments to make the operational models more right for 100 

a ‘fit-for-purpose’ performance are the error or bias correction parameters for precipitation 101 

measurements (e.g. Sevruk, 1983; Yang et al., 1999; Herrnegger et al., 2014), but Moine et al. 102 

(2007) suggested that this practice should be avoided. In addition, an altitudinal gradient 103 

parameter for precipitation are considered in some applications but Hingray et al. (2010) noted 104 

that omitting an altitudinal gradient is a good option to simulate flood events, especially in cases 105 

of large precipitation events. Such adjustments for operational settings have the potential to 106 

force the models to be ‘right for the wrong reasons’ (Kirchner, 2006).  107 

    Therefore, comprehensive identification of the P-R models is required for reliable continuous 108 

simulation of streamflow (e.g. Wagener, 2003). Hailegeorgis et al. (2015b) focused on multi-109 

model based identification of four different types of regionalization methods including the 110 

regional calibration method defined by parameter sets yielding maximum regional weighted 111 

average (MRWA) performance measures (PM) based on transfer of full set of local calibrated 112 

parameters (FP). The authors applied the three P-R models on 26 catchments in mid Norway, 113 

which are also used in the present study. Due to similar performance of the regionalization 114 

methods based on the MRWA and transferring of regional median parameters (RMedP), the 115 

authors suggested that it is worth testing the performance of fixing some of the parameters to 116 

regional median values, for instance the snow and runoff routing routines parameters that are 117 

common for the three models, and then perform calibration and transfer of partial parameters 118 

(PP). Fixing some of the parameters is advantageous since it allows a more parsimonious 119 

parameterization while it may have potential disadvantages of reducing the performance of the 120 

models. However, studies related to the issues of transferring the full parameter set or partial 121 

parameters are necessary to further improve the results of regionalization tasks. 122 
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    The main objective of the present study is the identification of the three P-R models for 123 

hourly runoff simulation based on calibration and transfer of partial parameters (PP) for the 26 124 

catchments in mid Norway compared to a study for the same region using full parameter 125 

calibration and transfer (FP) case of Hailegeorgis et al. (2015b). 126 

 127 

THE STUDY REGION AND DATA 128 

The study region is the boreal mid Norway, which consists of 26 unregulated gauged catchments 129 

ranging from 39 to 3090 km2 in size (Table 1 and Fig. 1). Streamflow and climate records of 130 

hourly time resolution (01.09.2008-01.01.2012) were used for model calibration. The climate 131 

forcing are precipitation (P), temperature (T), wind speed (Ws), relative humidity (HR) and 132 

global radiation (RG). Figure 1 shows locations of precipitation and streamflow gauging 133 

stations. Table 1 contains some characteristics of the catchments and streamflow stations. 134 

Precipitation occurs in the form of snowfall during winter and rainfall dominates during 135 

summer, spring and autumn. The catchments exhibit wide ranges of variations in elevation and 136 

terrain slope. There is no systematic relationship between elevation and mean annual 137 

precipitation for the region and hence we did not consider altitudinal gradient corrections for 138 

the hourly precipitation data. An environmental lapse rate of -0.65oC/100m was used to account 139 

for elevation-temperature relationship. The dominant land uses/land covers in the study area 140 

are mountainous terrain above timberline and forests. Predominant soil or loose material is 141 

glacial tills and the dominant bedrock types for the study catchments are metamorphic and 142 

igneous rocks (http://www.ngu.no). 143 

 144 

MODELS AND METHODS 145 

We evaluated three different distributed (1x1 km2 grid) precipitation-runoff models namely the 146 

‘top-down’ water balance model based on Kirchner (2009) or Kirchmod, the Basic-Grid-Model 147 
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based on Bell and Moore (1998) or BGM and a simple configuration HBV model. Table 2 148 

presents lists of calibrated parameters and their prior ranges or values of fixed parameters for 149 

both full parameter transfer (FP) and partial parameter transfer (PP) of the present study. For 150 

the PP case, parameters that are common for the three models were fixed to their multi-model 151 

regional median or MMRMedP (Eqn. 9) values of the respective parameters obtained from 152 

calibration of the FP case. Similarly, parameters in the soil moisture accounting routine of the 153 

HBV model and exponent parameter of the subsurface drainage equation (Eqn. 6) of the BGM 154 

model were fixed to their regional median or RMedP (Eqn. 7) values. A total of 6, 7 and 9 155 

parameters were calibrated for the FP case for the Kirchmod, BGM and HBV models 156 

respectively. A total of 3 parameters were calibrated for the PP case for all models. Therefore, 157 

for the PP case a total of 3, 4 and 6 parameters of the Kirchmod, BGM and HBV models 158 

respectively were fixed. Brief descriptions of the models are given here. Descriptions of the 159 

models that are more detailed are referred to Hailegeorgis et al. (2015b).  160 

Kirchner’s runoff response routine (Kirchmod) 161 

The main assumption in the Kirchner’s method (Kirchner, 2009) is the discharge Q depends 162 

solely on the amount of water stored in the catchment S based on a nonlinear catchment storage-163 

discharge relationship and a water balance equation: 164 

dQ dQ dS dQ
I AET Q g Q I AET Q

dt dS dt dS
,                                                           (1)                                                         165 

where g(Q) = dQ/dS is the discharge sensitivity function (Kirchner, 2009). The following linear 166 

regression relationship were inferred based on streamflow recession analysis following 167 

Kirchner (2009):    168 

0 1

1
ln ln ;  S g Q b b Q

g Q
Q dQ                                                                          (2)                                                                                                    169 

The AET was computed from potential evapotranspiration (PET) and discharge: 170 
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1 exp 1PET
Q

AET SCA
EvR

,                                                                                (3)                          171 

where the actual evapotranspiration (AET), infiltration (I) = rainfall + snow melt (SM) and Q 172 

are in mm/hr, storage (S) is in mm and t is a time variable. The EvR denotes a discharge at 173 

which AET equals 0.95*PET. The SCA is snow-covered fraction of grid cell to set the AET to 174 

zero for snow-covered areas. A Runge Kutta 4th order method was used to solve the integral 175 

(eqn. 2) over the time step. The Q is an instantaneous simulated discharge obtained from the 176 

solver while an average Q over the time step is used for calibration against an hourly averaged 177 

observed discharge. Observed discharge before the start of model run was used as an initial 178 

discharge for the numerical solver. Only the three response routine parameters b0, b1 and EvR 179 

were calibrated for the PP case. 180 

 181 

Basic Grid Model (BGM) Runoff Response Routine 182 

The BGM is a simple distributed model based on Bell and Moore (1998). The infiltration excess 183 

runoff, Riex[L] (Horton, 1933), saturation excess runoff, R[L] (Dunne and Black, 1970a&b) and 184 

a subsurface drainage (Drv) runoff generation mechanisms are considered: 185 

max 0, ( )  ; 
iex iexcR SNOWOUT I RTOSOIL SNOWOUT                                                              (4)                                                                                 186 

maxmax 0, ; Δ max 0,R S t TOSTORAGE S S t t S t TOSTORAGE R                 (5) 187 

; ;   

max

Sn
D k S t AET PET TOSTORAGE TOSOIL AET D

rv rvS
,                                 (6) 188 

where SNOWOUT[L] is the rainfall and snowmelt outflow from snow routine, TOSOIL[L] is 189 

the infiltration into the soil, TOSTORAGE[L] is the net input to the subsurface storage (S[L]), 190 

PET[L] and AET[L] are as defined earlier, Drv[L] is the subsurface flow or drainage per unit 191 

area, and L and T denote length and time dimensions. The Ic[L/T] or an infiltration capacity, 192 
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the coefficient k[L1-n/T] and maximum subsurface storage capacity or Smax[L] were calibrated 193 

parameters. Since marked correlation between the k and n[-] parameters was observed for the 194 

FP case in Hailegeorgis et al. (2015b), in the present study the parameter n was fixed to its 195 

calibrated RMedP (eqn. 7) value of the FP case to reduce the correlation and non-identifiability 196 

between the two parameters: 197 

1 2 3 , , ,...,
CNRMedP Median P P P P ,                                                                                                         (7) 198 

where RmedP denotes regional median parameter, P1 to PNC denotes calibrated values of the 199 

parameter for each catchment and NC is the total number of catchments calibrated. 200 

The HBV Runoff Response Routines 201 

The HBV runoff response routine used in the present study consists of two linear reservoirs i.e. 202 

upper and lower reservoirs: 203 

1 0
    ;  

UZ LZ
Q Qk UZ k LZ ,                                                                                            (8)  204 

where QUZ and QLZ respectively are outflows from the upper and lower reservoirs. Percolation 205 

from the upper to the lower reservoir in the runoff response routine is controlled by percolation 206 

parameter (PERC). The soil moisture accounting routine was based on a non-linear partitioning 207 

curve for infiltration into change in soil moisture storage (ΔSM) and recharge (R) to the upper 208 

zone (Bergström, 1976). Only the three parameters of the runoff response routine namely, 209 

recession coefficients in the upper reservoir (k1), base flow recession coefficient (k0) and the 210 

percolation rate (PERC) to the lower zone were calibrated for the PP case. Two of the soil 211 

moisture accounting parameters namely, shape parameter of the partitioning curve (β) and field 212 

capacity (FC) were fixed to RMedP (eqn.7) values calibrated for the FP case (Table 2). The 213 

‘limit for potential evaporation’ (LP) was set to a constant value of 0.90, which is a default 214 

value of HBV-96 (Booij, 2005). 215 

 Snow Accounting Routine 216 
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The snow routine uses a mass balance approach to simulate the melt water release (snowmelt 217 

runoff) from saturated snow (Qs) and the remaining unmelted snow storage or the snow water 218 

equivalent (SWE) based on the Gamma distributed snow depletion curve (SDC). The SDC uses 219 

radiation for surface layer energy and phase change calculations (Kolberg and Gottschalk, 220 

2006) as implemented in ENKI hydrological modelling platform (Kolberg and Bruland, 2012). 221 

The parameters in this routine are common for the three models and include rainfall-snowfall 222 

threshold temperature (TX) and snowmelt sensitivity to wind speed (WS). These parameters 223 

were fixed to MMRMedP values (Eqn. 9) of respective parameters calibrated for the FP case: 224 

1 2 3 , ,MMRMedP Median RMedP M M M ,                                                                     (9) 225 

where M1, M2 and M3 denotes Kirchmod, BGM and HBV models respectively. 226 

 227 

Potential Evapotranspiration Routine 228 

In the present study, we used the PriestleyTaylor method (Priestley and Taylor, 1972) for the 229 

calculation of potential evapotranspiration, PET (mm/h): 230 

 
Δ Δ

Δ
n

v

t
PET α R

γ L
,                                                                                                        (10)                                                                                                                     231 

where α is the Priestley Taylor constant, ∆ is the slope of saturation vapor pressure curve at air 232 

temperature at 2m (kPa/oC), γ is the psychrometric constant (0.066 kPa/oC), Rn (W/m2) is net 233 

radiation, Lv (kJ/m3) is volumetric latent heat of vaporization and Δt (s) is the simulation time 234 

step in seconds. The net radiation is the sum of net shortwave radiation and net longwave 235 

radiation. We computed the net shortwave radiation from the global radiation (RG) and land 236 

albedo, and the net longwave radiation based on Sicart et al. (2006). Following Teuling et al. 237 

(2010), α = 1.26 was used to reduce the number of calibrated parameters.  238 

 Runoff Routing  239 
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Hailegeorgis et al. (2015a) applied a source-to-sink routing with effective velocity of flow for 240 

mountainous catchments in mid-Norway. Li et al. (2014) applied cell-to-cell routing and 241 

source-to-sink routing with spatially distributed velocity of flow for mountainous catchments 242 

in central southern Norway. Following Hailegeorgis et al. (2015b) a simple translation based 243 

on a 1-hr travel time isochrones was used to translate the runoff response from the hillslope 244 

(1x1 km2 grid cells) to the catchment outlet. Routed simulated streamflow at the outlet is the 245 

sum of contributions from each grid cell:  246 

i
1

 ; T  = 
i

N
i i

t t T
i

L
Qsim qsim

V
,                                                                                                (11) 247 

where t and i represent time and grid cells, N is the number of grid cells in the catchments, Qsim 248 

[LT-3] is streamflow at the outlet, qsim [LT-3] is runoff generated at each grid cell, Ti [T] is flow 249 

travel time lag to the outlet for each grid, Li [L] is flow travel path length computed from 25m 250 

Digital Elevation model (DEM). The V [LT-1] is velocity of flow, which is a parameter common 251 

to the three models and was fixed to MMRMedP (eqn. 9) of calibrated values for the FP case.  252 

Model calibration and evaluation 253 

For the regional calibration, the Differential Evolution Adaptive Metropolis (DREAM) 254 

algorithm (Vrugt et al., 2009) was used with residuals based log-likelihood (L-L) objective 255 

function, which was implemented in ENKI hydrological modelling platform (Kolberg and 256 

Bruland, 2012): 257 

2
( ) ( )

, ,
1

2

2
2 ( ) ( ) 2

, ,
1 1 1

/ 2log log
2 2 2

,

i

C i C

n
θ θ

t i t i
t

i

N n N
θ θ i i

i t i t i i
i t i

δ σ π σ

Qsim Qobs
n n

σ
L L Qsim Qobs f ,        (12)  258 

where δ denotes  model parameter, σi
2 and ni respectively are error variance and the length of 259 

non-missing records of streamflow for catchment i, NC is the total numbers of catchments in 260 

the region, Qsim(θ) and Qobs(θ) respectively are Box-Cox (Box and Cox, 1964) transformed 261 

observed and simulated streamflow time series, θ is the Box-Cox transformation parameter and 262 
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f represents a fraction of effectively independent observations which can be estimated from the 263 

autoregressive (AR1) model of error covariance (Ziḙba, 2010). We used the Box-Cox 264 

transformation to approximate Normality and homoscedasticity of the residuals. Values of θ 265 

between 0.25 and 0.30 are common in literature (e.g. Willems, 2009). We used θ = 0.3 and f = 266 

0.001 for the sake of consistency among the catchments. The DREAM calibration algorithm 267 

converges as the Gelman-Rubin convergence (Gelman and Rubin, 1992) comes below 1.2. 268 

Details of the DREAM algorithm can be found from Vrugt et al. (2009).  269 

    We evaluated the local and regional calibration based on the Nash-Sutcliff efficiency or NSE 270 

(Nash and Sutcliffe, 1970) and Nash-Sutcliffe efficiency for log-transferred series (NSEln) 271 

performance measures (PM). The NSE gives greater weight to high flows and the NSEln gives 272 

greater weight to low flows.  273 

The regional calibration used in the present study can be regarded as an 'importance 274 

sampling' strategy for each catchment, where we sample according to an ‘importance surface’ 275 

reflecting where we believe the optimum is likely to be (Hailegeorgis et al., 2015b). The 276 

objective function in eqn. (12) uses streamflow data from all stations in the region rather than 277 

using at-site streamflow records from only a particular site. Therefore, parameter sets among 278 

the DREAM samples which provide maximum performance measures (PM) for each catchment 279 

are taken as optimized parameters for local calibration (LC) for a specific catchment. Optimal 280 

parameter sets for the regional calibration are parameter sets among the DREAM samples that 281 

provided maximum regional weighted average (MRWA) performance measures. In the present 282 

study, the term regional calibration and the MRWA are used interchangeably. Hailegeorgis et 283 

al. (2015b) reported nearly equivalent performance of the MRWA method to more advanced 284 

regionalization methods like the physical similarity and spatial proximity methods. In the 285 

present study, the MRWA is used to evaluate the regional performance and hence performance 286 
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of the models for prediction in ungauged basins. We allocated the weight for each catchment 287 

based on their length of non-missing streamflow records during the calibration period: 288 

1 1

1 1
 ; ln ln

C CN N
i i

MRWA i MRWA i
i iC TS C TS

n n
NSE NSE NSE NSE

N N N N
,                                  (13) 289 

where NTS is the total length of time series for the calibration period. The weights for each 290 

catchment are the term in the parenthesis, which are assigned based on the length of their non-291 

missing streamflow records. 292 

    The classical split-sample test (Klemeś, 1986) was used for validation of the models (for FP 293 

and PP cases) outside the period used for calibration based on NSE for both local and regional 294 

calibration, and NSEln for regional calibration. Due to lack of long records, a validation period 295 

of only one year (01.01.2006-01.01. 2007) was used. The regional calibration used in the 296 

present study is similar to regional calibration works, among others, (Fernandez et al., 2000, 297 

Beldring et al., 2003 and Engeland et al., 2006) except the fact that weighted average 298 

performance measures are used than arithmetic averages for model evaluations. Model 299 

validation for this type of regional calibration is not common in literature. However, Beldring 300 

et al. (2003) used a hierarchical scheme for model validation (Klemeś, 1986) which 301 

distinguishes between simulations performed for the catchment used for calibration and for a 302 

different catchment by noting that the scheme is more adequate than the split-sample scheme 303 

using streamflow data from the same catchment during both calibration and validation. 304 

    We used histograms or distribution fits (e.g. Schoups and Vrugt, 2010) and linear correlation 305 

coefficient matrix of the posterior parameters (e.g. Moreda et al., 2006; Blasone et al., 2007; 306 

Schoups and Vrugt, 2010) to show parameter uncertainty and identifiability. The last 50 % of 307 

the posterior parameters accepted by the DREAM algorithm after the burn-in iterations (Vrugt 308 

et al., 2009) were used to construct the histograms of posterior parameters and to calculate the 309 

correlation coefficients among the posterior parameters. Burn-in iteration refers to discarding 310 

an initial portion of the samples to minimize the effects of initial conditions (Hailegeorgis and 311 
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Alfredsen, 2014). Hailegeorgis and Alfredsen (2014) provided more details of the DREAM 312 

algorithm used in the present study. 313 

 314 

RESULTS 315 

Figure 2a-c and Figure 3a-c display performance of the LC and MRWA of the models for the 316 

NSE and NSEln respectively. For many catchments, the performance of the three models seems 317 

to be close but for some catchments (e.g. catchment 15), the HBV model performed markedly 318 

better than the others did. There are tradeoffs of reduction in performance due to the parsimony 319 

by fixing some of the parameters to their RMedP and MMRMedP values for the PP case as the 320 

large number of free parameters favors for calibration performance for the FP case. The LC 321 

performance of FP is better than that of the PP for all catchments for the three models. For the 322 

MRWA, the NSE values of the FP are higher than that of the PP for the majority of the 323 

catchments except for catchments 2, 12 and 17 for the Kirchmod and BGM models, and 324 

catchments 2, 13 and 19 for the HBV model (Figure 2). This may be related to different levels 325 

of model performance sensitivity to the fixed parameters among the catchments. Generally, the 326 

MRWA for the FP case performed better than the PP case in terms of performance for individual 327 

catchment.  328 

    Similarly, the NSEln values of the FP is higher than that of the PP except slightly higher 329 

NSEln values for some catchments, for instance catchment 2 for the Kirchmod and BGM 330 

models. Table 3 shows the regional median values of the PM or the regional performance of 331 

the models. In terms of the regional median of the NSE corresponding to the LC and MRWA, 332 

the Kirchmod model followed by the BGM model performed better than the HBV model (Table 333 

3). However, the NSE for the Kirchmod and BGM are nearly similar for the FP case. In terms 334 

of the regional median of the NSEln corresponding to the LC and MRWA, the Kirchmod model 335 

followed by the HBV model performed better than the BGM model except for the FP case for 336 
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MRWA (Table 3). However, performance of the HBV model and BGM model are nearly 337 

similar.     338 

    Figure 4a-c present the NSE values for the validation period for both LC and MRWA. For 339 

the validation period, only 12 catchments exhibited NSE ≥ 0.50 for both FP and PP cases for 340 

the LC of the Kirchmod model. Only 8 and 6 catchments exhibited NSE ≥ 0.50 for FP and PP 341 

cases respectively for the MRWA of Kirchmod model. Only 9 and 8 catchments for FP and PP 342 

cases respectively exhibited NSE ≥ 0.50 for both local calibration and MRWA for the BGM 343 

model. For the HBV model, only 8 catchments exhibited NSE ≥ 0.50 for both FP and PP cases 344 

for the local calibration while only 6 catchments exhibited NSE ≥ 0.50 for both FP and PP cases 345 

for the MRWA. However, for the calibration period up to 23 and 16 catchments respectively 346 

exhibited NSE ≥ 0.50 for the LC and MRWA. Therefore, the results of split-sample validation 347 

indicated marked deterioration of the NSE for both the FP and PP cases for the three models.  348 

    Table 4 presents the regional median NSE for validation period for both the LC and MRWA, 349 

and regional median NSEln for the MRWA. In terms of the regional median of the NSE 350 

corresponding to the LC, the Kirchmod and HBV models exhibited equally better performance 351 

followed by the BGM model for the FP case while the Kirchmod model performed better 352 

followed by the BGM model and HBV model for the PP case (Table 4). For the MRWA, the 353 

Kirchmod model performed better followed by the HBV model and BGM model for both FP 354 

and PP cases. In terms of the regional median of the NSEln corresponding to the MRWA, the 355 

Kirchmod model performed better while the BGM and HBV models performed equally for the 356 

FP case. However, for the PP case, the Kirchmod model performed better followed by the BGM 357 

model while the HBV model exhibited the worst performance. The marked deterioration in 358 

performance of the HBV model for the PP case is most probably attributable to fixing the three 359 

parameters of the soil moisture accounting routines namely FC, LP and β to their RMedP values 360 

(Table 2) in addition to parameters that are common to the three models. Therefore, the 361 
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validation results also show that the Kirchmod model performed relatively better than the BGM 362 

and HBV models.  363 

    Figure 5a-c present values of calibrated parameters for the FP and PP, and RMedP or 364 

MMRMedP values of the fixed parameters for the PP case. The values of the calibrated 365 

parameters for the FP and PP are different, which show the sensitivity of calibrated parameters 366 

to fixing some of the parameters i.e. the calibrated parameters compensate for the fact that some 367 

parameters were fixed to their RMedP (Eqn. 7) or MMRMedP (Eqn. 9) values. Figure 6a-f 368 

present the histograms and ‘best-fit’ distributions fitted using the Statistics Toolbox 9.0 in 369 

matlab for the posterior parameters obtained from the DREAM algorithm. The calibration 370 

resulted in different types of ‘best-fit’ posterior distributions of the parameters while the 371 

uniform prior distribution (Table 2) was used for all.  372 

    For the FP case, the three parameters of the Kirchmod model exhibit narrow posterior 373 

distributions (Figure 6a) indicating less parameter uncertainty compared to the parameters for 374 

the BGM model (Figure 6c) and HBV model (Figure 6e). In addition, some parameters like the 375 

coefficient for the storage-discharge relationship (k) of the BGM model and the slow flow 376 

recession coefficient (k0) of the HBV model exhibit narrow posterior distributions. Even though 377 

there are equal numbers of calibrated parameters in the Kirchmod and HBV response routines, 378 

wider posterior distributions (hence large uncertainty) for the HBV response routine parameters 379 

for the FP case probably indicate less sensitivity of the response routine parameters and 380 

interactions between the soil moisture accounting routine and the response routine parameters 381 

for the HBV model. For the PP case, posterior distributions of calibrated parameters are wider 382 

than the FP cases (i.e. large uncertainty) for the Kirchmod (Figure 6b), BGM (Figure 6d) and 383 

HBV (Figure 6f) models.  384 

    Table 5 shows correlation matrices of posterior parameters as a measure of identifiability of 385 

the parameters. The correlation matrices showed considerable interactions among some 386 
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parameters manifested by large positive or negative correlations. Positive correlation 387 

coefficients greater than 0.60 were observed between the regression parameters b0 and b1 for 388 

the Kirchmod model for both FP and PP case. The two parameters support each other to 389 

influence the discharge sensitivity for the change in storage (g(Q)) based on eq. (2), which 390 

shows challenges of parameter non-identifiability even for parsimonious parameterization.      391 

    For the BGM model for the FP case, there is a positive correlation greater than 0.6 between 392 

Smax and the coefficient k and there is a large negative correlation (r < -0.6) between the 393 

exponent parameter n and k, which show that the Smax and k support each other while n and k 394 

compensate each other according to eq. (6) for computation of the subsurface drainage. For the 395 

PP, there is no case of r > 0.6 or r < -0.6 for the BGM model that shows parameterization by 396 

fixing the n in the subsurface drainage equation resulted in reduction of parameter correlations, 397 

which fulfilled the intention of fixing the parameter n.  398 

    For the HBV model, there is a positive correlation greater than 0.60 between the quick flow 399 

recession coefficient (k1) and percolation to the lower zone (PERC) for the FP case. This shows 400 

that an increase in k1 for the discharge from the upper zone (QUZ) compensates the decrease in 401 

the upper zone storage due to an increase in the PERC. However, there is less correlation 402 

between k1 and PERC for the PP case most probably due to fixing the soil moisture accounting 403 

parameters. There is a large negative correlation (r < -0.6) between k0 and PERC for the HBV 404 

for the FP case, which shows that the two parameters compensate each other for the baseflow 405 

contribution from the lower reservoir (QLZ). For the HBV model, there is a large negative 406 

correlation (r < -0.6) between the response routine parameters k0 and k1 for both FP and PP 407 

cases. This compensation between the discharge from the upper and the lower reservoirs in the 408 

response routine regardless of the parsimony obtained by fixing the parameters of the soil 409 

moisture accounting routine indicates higher challenges of parameter non-identifiability in the 410 

multiple storage HBV model.  411 
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DISCUSSION 412 

Performance of calibration and validation 413 

Local and regional calibration based model performance for the NSE (Figure 2 and Figure 3) 414 

indicate that the Kirchmod and BGM models provided better performance for the majority of 415 

the catchments. However, the HBV model provided best NSE and NSEln performance for local 416 

calibration for some catchments, e.g. catchments no. 15, 17 and 19. Generally, the best 417 

performing model varies among the catchments and performance measures and hence it is not 418 

possible to identify a unique model structure for the region. This complies with the uniqueness 419 

of place (Beven, 2000) and previous findings that one cannot expect similar calibration 420 

performance for a model across different ranges of magnitudes of streamflow series (Gupta et 421 

al., 1998; Wagener et al., 2001, Madsen, 2003). Lee et al. (2005) investigated if it is justifiable 422 

to use one model structure to cover a range of catchment types and found that there is no 423 

evidence of relationships between catchment type and preferred model structure. The authors 424 

found the results based on classification of 28 catchments over a range of hydrological types 425 

and wide geographical extent in the UK based on different combinations of three catchment 426 

characteristics namely catchment area, a baseflow index from the hydrology of soil types 427 

classification and annual average rainfall for the period 1941–1970.   428 

    Due to higher values of regional median NSE, the Kirchmod and the BGM models are more 429 

suitable than the HBV model for the MRWA, which has a potential for prediction of high flows 430 

in ungauged basins. For the NSEln, the Kirchmod model provided higher performance than the 431 

HBV and BGM models; however, the HBV model provided slightly higher NSEln than the 432 

BGM model probably due to separate simulation of baseflow from the lower reservoir for the 433 

HBV model. Hailegeorgis et al. (2015b) found similar performance of the MRWA to other 434 

more advanced regionalization methods and hence selection of the models based on their 435 

MRWA performance for the PUB is valid for the region. The ‘top-down’ Kirchmod model, 436 
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which is based on a single catchment storage-discharge relationships and does not consider an 437 

infiltration excess overland flow, performed better in terms of regional NSE and NSEln than 438 

the BGM model that considers both the infiltration excess and saturation excess runoff 439 

generation mechanisms and the HBV routines with multiple storage reservoirs. However, the 440 

general trends in performance of the three models are very close to each other for the majority 441 

of the catchments except for some catchment e.g. catchment 15.  442 

    Deterioration of the NSE and NSEln from their values obtained for the LC were observed 443 

for the MRWA for nearly all of the catchments (Figure 2 and Figure 3). The NSE and NSEln 444 

values for both the LC and MRWA are lower for the PP case than the FP case (Figure 2 and 445 

Figure 3) for the majority of the catchments. These show that despite parsimony could be 446 

achieved by fixing some of the parameters to their RMedP or MMRMedP values, there are 447 

tradeoffs of noticeable deterioration in performance. The catchments with poor NSE and NSEln 448 

are of different sizes and located in different parts of the study region. However, the majority 449 

of these catchments are located far from precipitation gauging stations and hence the less 450 

representativeness of the precipitation stations probably affected the performance for these 451 

catchments.  452 

    The model validation using the split-sample test showed that the NSE for both LC and 453 

MRWA deteriorate for outside calibration period (Figure 4 and Table 4). Similarly, the NSEln 454 

of the MRWA deteriorate for the validation period. For instance, the NSE values for validation 455 

period for LC of the BGM model for catchment 6 are 0.40 and 0.39 for the FP and PP 456 

respectively (Figure 4b) compared to NSE values of 0.83 and 0.81 for the FP and PP 457 

respectively for LC for the calibration period (Figure 3b). Hailegeorgis et al. (2015a) obtained 458 

NSE values of 0.84 for both calibration and validation periods by calibrating catchment 6 by 459 

using only streamflow records for the catchment. The NSE values for validation period for the 460 

LC of the HBV model for catchment 6 are 0.35 and 0.49 for the FP and PP respectively (Figure 461 
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4c) compared to NSE values of 0.74 for both the FP and PP for the calibration period for the 462 

LC (Figure 3c). Hailegeorgis and Alfredsen (2014) based on calibration of the HBV model for 463 

catchment 6 by using a streamflow data only from the catchment obtained NSE values of 0.75 464 

and 0.71 respectively for calibration and validation periods. The results demonstrated that 465 

performance of calibration using only a streamflow data for a particular catchment would 466 

probably result in optimal parameter that has better transferability in time. Split-sample test for 467 

validation of the regional calibration methodology used in the present study, which uses all 468 

available streamflow records from all catchments, is not common in literature. However, the 469 

results of the present study comply with the study by Beldring et al. (2003), who found that 470 

regional calibration of a model failed to model the dynamics of hydrological processes for 471 

several catchments based on a hierarchical scheme for model validation.  472 

    However, there are merits of the multi-basin regional calibration to derive regional 473 

parameters, which yields the MRWA PM to transfer these parameters in space for prediction in 474 

ungauged basins in the region. The multi-basin and regional calibration approach would provide 475 

an opportunity for a more comprehensive evaluation of models better than the proxy basin 476 

(Klemeś, 1986; Wrede et al., 2013) approach. Fenicia et al. (2011) proposed a flexible 477 

framework for conceptual hydrological modelling, SUPERFLEX, with one of the objectives 478 

towards a more robust and reliable performance in operational contexts. For operational 479 

purposes, combined flexible models and multi-basin based identification of robust and reliable 480 

model structures, parameterizations and modelling paradigms (e.g. ‘bottom-up’ process models 481 

and ‘top-down’ inferences from observations) among a pool of plausible competing options are 482 

advisable. Currently, fixed model and catchment scale modelling are more common due to their 483 

simplicity and less computational demand. 484 

    The model calibration based on continuous time series and model evaluations based on 485 

different performance measures (e.g. NSE and NSEln) could not necessarily yield optimal 486 
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parameter sets, which can simultaneously simulate floods associated to high rainfall and 487 

snowmelt events, and low flows especially when extrapolated to the streamflow magnitude 488 

outside the calibration conditions. Wagener and McIntyre et al. (2005) on identification of 489 

rainfall-runoff models for operational applications suggested that a more empirical approach to 490 

identification of models for specific forecasting problems are preferable to trying to achieve a 491 

good all-round representation of the rainfall-runoff processes. Calibration for a specific 492 

modelling objective or reproducing a specific runoff signature may provide reliable prediction 493 

for the specific purpose.  494 

Parameter uncertainty and identifiability 495 

Uhlenbrook et al. (1999) found considerable implications of parameter uncertainty and 496 

identifiability on the predictive uncertainty, and noted that parameter and model structure 497 

uncertainties should be considered for operational (practical) predictions. Wider posterior 498 

distributions (i.e. large uncertainty) of calibrated parameters for the PP case than the FP case 499 

for the Kirchmod (Figure 6b), BGM (Figure 6d) and HBV models (Figure 6f) show that 500 

parsimony in the number of parameters and longer data series for calibration do not necessarily 501 

provide less parameter uncertainty. However, while comparing the models for the FP case, 502 

narrow posterior parameter distributions of the Kirchmod (Figure 6a) compared to the other 503 

runoff response routines (Figure 6c&e) indicate that a small number of free parameters exhibits 504 

least parameter uncertainty. In addition to the parsimony, the model structure based on the ‘top-505 

down’ modelling paradigm and relationship between catchment storage and discharge inferred 506 

from streamflow recession analysis might have contributed to the reduction in parameter 507 

uncertainty. For a given model structure, there is a likelihood of less predictive uncertainty from 508 

less parameter uncertainty, but uncertainties due to input data also contribute to the predictive 509 

uncertainty.  510 
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    Few pairs of response routine parameters exhibit correlation coefficients (r) with either r > 511 

0.60 or r < -0.60 (Table 5). The parsimony for the PP case reduced correlations in runoff 512 

response routine parameters of the BGM and HBV models than the Kirchmod model. In terms 513 

of parameter correlations, the BGM model benefited much better from the parameterization of 514 

the subsurface drainage equation based on fixing the exponent parameter. Correlation of 515 

parameters results in lack of identifiability because a change in one parameter compensated by 516 

a change in another, such that multiple parameter sets give the same output according to some 517 

quantity of interest (Libelli et al., 2014). The existence of either positive or negative correlations 518 

is an indication of non-identifiability of parameters and hence the potential for non-519 

identifiability of the performance of the models, which is one of the main challenges in 520 

precipitation-runoff modelling. Hailegeorgis and Alfredsen (2014) found that compensation 521 

between the discharge from the upper reservoir and baseflow from the lower reservoir in the 522 

different HBV configurations resulted in indistinguishable streamflow hydrographs but less 523 

reliable baseflow simulation by some of the configurations.  524 

    The differences in the values of the calibrated parameters for the FP and PP cases (Figure 5a-525 

c) show the sensitivity of runoff simulation to the fixed parameters, and compensations and 526 

correlations among the parameters. Parameterization issues have potential impacts on 527 

regionalization based on transferring of parameters for PUB. Therefore, regionalization of 528 

precipitation-runoff models should be augmented by preliminary parameter sensitivity analysis 529 

to determine which parameters to transfer. The quality of input (both climate and streamflow 530 

data) should also be able to constrain the model parameters during calibration.  531 

Data quality 532 

The expected conditions for the model calibration is that there is no considerable error in the 533 

observed streamflow data and uncertainty in estimation of precipitation fields is low. Errors in 534 

the observed streamflow and errors in estimation of precipitation fields have the potential to 535 
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affect the reliability of calibrated (optimized) parameters. However, the discrepancies in the 536 

data potentially affect the reliability of modelling inferences and predictions, which is one of 537 

the challenges in hydrological modelling. The density and representativeness of precipitation 538 

gauging stations are crucial to capture the spatial variability of precipitation, for instance, 539 

localized intense precipitation events to reproduce the flood events. Sparse gauging networks 540 

for the hourly precipitation input, which may yield less accurate spatially interpolated 541 

precipitation fields on the 1x1 km2 grids, seems to be a major factor for the low NSE or poor 542 

estimation of peak flows. Engeland and Steinsland (2014) mentioned that they applied a 543 

hydrological forecasting model at daily time-step for small size catchments (with time of 544 

concentration less than one day) in southwestern Norway due to the availability of most input 545 

data at daily resolution, which matches the current daily hydropower scheduling models. In 546 

addition to the density of precipitation data, the density of streamflow data is also important for 547 

the regional modelling. Pokhrel and Gupta (2011) noted the importance of multiple (high-548 

density) streamflow gauging stations at interior catchments and exploiting the spatial 549 

information on soil moisture and evapotranspiration to infer the spatial catchment variability 550 

from streamflow hydrographs and for better identification of models. 551 

 552 

CONCLUSIONS 553 

We conducted identification of three spatially distributed precipitation-runoff response models 554 

based on multi-basin local and regional calibration based on calibration and transfer of both full 555 

parameter (FP) and partial parameter (PP) for hourly runoff simulation in mid-Norway. The 556 

best performing model structure varies among the catchments, which may be related to 557 

uniqueness of catchments. Different best performing models for a catchment were observed for 558 

different PM, which is attributed to different sensitivities of the PM to various parts of the 559 

hydrograph and different quality of streamflow records on various parts of the hydrograph. 560 
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However, models were identifiable based on their overall regional performance and the 561 

calibration and validation results indicated that the Kirchmod model performed best. Even 562 

though it is not possible to identify a single best performing model structure for the whole 563 

catchments in the region, a flexible model and multi-basin based regional modelling framework 564 

were found to be necessary for comprehensive identification of reliable model structure, 565 

parameterizations and modelling paradigms for specific objectives of prediction and for 566 

prediction in ungauged basins (PUB). 567 

    The parsimonious ‘top-down’ model (Kirchmod) provided the least parameter uncertainty 568 

for the full parameter transfer (FP). However, parsimony could not guarantee parameter 569 

identifiability due to the considerable correlations among the calibrated parameters. The 570 

deterioration of performance due to fixing of some of the parameters to their regional median 571 

or multi-model regional median values for the partial parameter transfer (PP) substantiates the 572 

need for preliminary assessment of parameter sensitivity to identify which parameters to 573 

transfer to minimize the tradeoffs between performance and parsimony. In addition, marked 574 

deterioration of performance measures for the validation period for the calibration objective 575 

function used in the present study, which uses streamflow records from all catchments in the 576 

region, indicate tradeoffs in regional calibration for parameter transfer in space for PUB and 577 

parameter transfer in time. Therefore, temporal validation tests for this type of regional 578 

calibration algorithm by using the split-sample scheme is indispensable. Performance of local 579 

calibration by using only at-site records for each catchment should be evaluated compared to 580 

the local calibration results obtained from the regional calibration methodology used in the 581 

present study, which use streamflow records from all catchments in the region. 582 

    Dense hourly precipitation gauging networks, which can provide more accurate spatially 583 

interpolated precipitation on the 1x1 km2 grids, are required for improved hourly prediction 584 

especially for high flows and for improved identification of hourly P-R models for the region. 585 
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In addition, streamflow measurements from dense hydrological gauging networks or spatially 586 

distributed observations of rainfall have the potential to improve multi-basin local and regional 587 

calibration based identification of models for the hourly prediction. 588 
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