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Abstract

As a part of the ongoing development of the multi level coupled cluster (MLCC)
model ECC2, the work presented here is focused on obtaining transition moments
associated with certain excitation energies. The ECC2 model divides the system
into two subsystems where different levels of theory are used. The idea behind the
method is to use a high level of theory on a small part of the system, the active
space, and a lower level on the bigger part, the inactive space. Specifically the
coupled cluster singles and doubles (CCSD) is used as the higher level, while the
approximate model CC2 is used as the lower level. This allows for retention of
computational accuracy while reducing the complexity and consequently the cost
of the calculations, assuming the active space has been chosen correctly.

An important part of MLCC theory is the partitioning of the system and how
orbitals are described. Here Cholesky decomposition has been chosen, both be-
cause it reduces computational complexity and because it lets the user use his
chemical expertise. The former is a consequence of when the positive semidefinite
density matrix is decomposed into a lower triangular matrix and its tranpose, and
then used to generate localized orbitals. The orbitals are assigned to atomic cen-
ters, and since it is up to the user to choose which orbitals are part of the active
space, use of chemical intuition is key. Transition moments are a local property
and limiting the active space to the orbitals taking part in the corresponding ex-
citation leads to a great reduction in scaling.

A pilot version of the model is tested and compared to CCSD and CC2. The
outcome of the testing suggests that the current version of the code still contains
bugs and needs to be modified, but also show that parts of the model have suc-
cessfully been implemented. The accuracy of the results presented here are not
discussed, as they have proven to be different than expected and suggest further
testing and debugging of the code, before the ECC2 transition moments are pub-
lished.
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Sammendrag

Som en del av den pågående utviklingen av multi level coupled cluster (MLCC)
modellen ECC2 er arbeidet som er presentert her, fokusert på å beregne over-
gangsmomentene som er assosiert med bestemte eksitasjonsenergier. ECC2-modellen
deler opp systemet i to undersystemer hvor ulike teorinivåer er brukt. Ideen bak
metoden er å bruke et høyere nivå på en liten del av systemet, det aktive rommet,
og et lavere nivå på den største delen, det inaktive rommet. Spesifikt er det cou-
pled cluster singles and doubles (CCSD) som brukes for det aktive rommet, mens
den mindre nøyaktige modellen CC2 brukes for det inaktive rommet. Dette gjør
det mulig å opprettholde beregningsnøyaktigheten, samtidig som man får redusert
kompleksiteten og dermed prisen på beregningene. Dette forutsetter riktig valg av
aktivt rom.

En viktig del av MLCC-teori er inndelingen av systemet og hvordan orbitalene er
beskrevet. Her er Cholesky-dekomponering brukt, både fordi det reduserer kom-
pleksiteten av beregningene, og fordi det lar brukeren bruke sin kjemiskekunnskap.
Det første er en konsekvens av at den positive semidefinitte tetthetsmatrisen er
dekomponert i en nedre triangulær matrise og dens transponerte, for så å brukes
til genereringen av lokaliserte orbitaler. Orbitalene er tilskrevet atomiske sentra,
og fordi det er opp til brukeren å velge hvilke orbitaler som skal være en del av det
aktive rommet, er kjemisk intuisjon essensielt. Overgangsmomenter er en lokal
egenskap, og ved å begrense det aktive rommet til orbitalene som tar del i den
tilsvarende eksitasjonen, vil man få en kraftig redusert skalering.

En pilotversjon av modellen er testet og sammenlignet med CCSD og CC2. Utfallet
av testingen viser at den nåværende versjonen av koden fremdeles inneholder pro-
gramvarefeil og derfor må modifiseres, men de tyder også på at deler av modellens
implementering har vært vellykket. Nøyaktigheten til resultatene som er presen-
tert her er ikke diskutert i og med at de viser seg å avvike fra det som er forventet
og antyder at koden bør utvikles og testes videre før ECC2-overgangsmomentene
kan publiseres.
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1 Introduction

1.1 Motivation

The evolution of supercomputers has accelerated the potential of computatonal
chermistry and let theoretical chemists develop and test ideas that were infeasi-
ble only decades ago [1, 2]. It is now possible to use quantum mechanical (QM)
methods on small systems to obtain highly accurate results. The most rigorous
theoretical models are even more accurate than present experimental methods [3].
For larger systems, however, the methods soon become too computationally costly
due to scaling up of the resource heavy calculations. It is therefore more common
to use lower level methods in QM or other methods, such as molecular mechan-
ics (MM) or density functional theory (DFT) for large systems. MM cannot give
answers to all the questions QM can, but it can be combined with a QM method
[4, 5]. DFT, on the other hand, is less reliable than QM due to the uncertainty
rising from the use of the density functionals used to describe the electron density
[6, 7, 8].

Another possibility is to use a multilevel QM method where a higher level method
is used only on the part of the system that is most interesting, for instance the
orbitals taking part in an electron excitation. A lower level method is then used
on the remaining part of the system. Using a multilevel method makes it possi-
ble to achieve results comparable to using the higher level method on the whole
system [9]. This is not a black box scenario, and a thorough understanding of
the chemistry involved is therefore necessary. The work presented here is based
on coupled cluster (CC) theory and is a continuation of the developement of the
multilevel CC method, extended CC2 (ECC2). In this model the biggest part of
the system is treated with the approximate (CC2) model and a small part of the
system is treated with the higher level coupled cluster singles and doubles (CCSD)
model. As shown by Myhre et al.[9], the ECC2 model gives significantly better
results than CC2, while retaining the N5 scaling compared to the N6 scaling of the
CCSD model, where N is the number of orbitals. In the hierarchy of CC models,
the CC2 model enters between coupled-cluster singles (CCS) and CCSD [10] and
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can be compared to a fusion of second-order Møller-Plesset theory (MP2) and the
second-order polarization propagator approximation (SOPPA). Compared to con-
figuration interaction (CI) models, CC with the same parameter space recovers
more of the excitation energy for short bond lengths [11]. While the CI approach
will recover more of the excitation energy as the bond lengths increases, the CC
performance will degrade. Olsen et. al (1996) found that at the equilibrium bond
length, the CCSD recovers more of the correlation energy than the configuration-
interaction singles, doubles and triples (CISDT). One feature of the ECC2 model
that differs from a single level method is that it lets the user apply his chemical
intuition when assigning what part of the system is to be treated with which level
of theory, i.e. this is not a black box model. The partitioning of the system is
something that must be taken into careful consideration as this will affect the com-
putational cost as well as the outcome. Myhre et al. used Cholesky decomposition
[12] to generate orbitals that were located on atoms instead of using molecular
orbitals. Cholesky decomposition has proven to reduce scaling [13, 14, 15], so by
carefully assigning active spaces, sublinearly scaling can be achieved and so the
ECC2 model should be able to compete with DFT.

The ECC2 model will make it possible to achieve more accurate results at a lower
cost than today’s established methods, and can be used on more complex systems,
such as biological ones, to broaden our understanding and knowledge about such
systems. The method is applicable to medical research, the development of drugs,
and many of the challenges caused by the increasing complexity of the oil and gas
industry. The model has previously been tested on excitation energies [9] and the
work presented here is focused on transition moments of the excitations. From the
transition moment one can determine whether a transition is allowed or not [3],
and they are therefore important when the ECC2 model is to be implemented and
used for scientific purposes. The square of the transition moment is proportional to
the intensity of the transition and related to the probability of it occuring [16, 17].
The transition moment is thus used to identify the spectrum of the molecules [18].
This is important when comparing the computational method to experimental
data, and therefore a motivation for the development of less costly methods that
retain accuracy to be used on more complex systems. Because excitation energies
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and transition moments are local properties, a multilevel method is expected to be
a good approximation [19]. The derivation is based on the quasienergy response
method, and both the excitation energy and the transition moment are calculated
from the linear response function [20].

1.2 Outline of the Thesis

Background theory is first presented followed by the derivation of the necessary
equations. An implementation plan for the DALTON software package is then
described. The current version of the code is then tested and discussed in com-
parison to CC2 and CCSD results. After a conclusion of the work done so far, a
description of the future work is suggested.
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2 Theory

After an introduction to coupled cluster theory, Cholesky decomposition and re-
sponse theory, the ECC2 transition moment is derived. The background is ex-
plained in Sec. 2.1 - 2.4 and the derivation is shown in Sec. 2.5. The Hamiltonian
is constructed using the Born-Oppenheimer approximation and is represented by
two creation and annihilation operators, a† and a, from second quantization. [21]

H =

X

pq

hpqa
†
paq +

1

2

X

pqrs

(pq|rs) a†pa†qaras + hnuc (2.1)

In Eq. (2.1) the contributions are given by

hpq =

Z
�⇤
p(x)

 
�1

2

r2 �
X

I

ZI

rI

!
�q(x)dx (2.2)

(pq|rs) =
Z Z

�⇤
p(x1)�

⇤
r(x2)�q(x1)�s(x2)

r12
dx1dx2 (2.3)

hnuc =
1

2

X

I 6=J

ZIZJ

RIJ

(2.4)

where ZI is the nuclear charge of nucleus I, rI the electron-nuclear separations, r12
the electron-electron separation, RIJ the internuclear separations, and � refers to
spin-orbitals. Eq. (2.2) and (2.3) can be interpreted as "amplitudes" of single and
double excitations respectively while Eq. (2.4) represents the nuclear repulsion
energy.[3]

2.1 Coupled Cluster Theory

The coupled cluster (CC) method is best viewed as a correction to the Hartree-
Fock (HF) description, as it cannot be applied to systems with a nearly degenerate
electronic configuration. The CC method should thus be applied to systems that
are dominated by a single electronic configuration, and the method has indeed
proven to be a successful approach to describing electron correlation for such sys-
tems [22, 23, 24, 25]. The method can be described as a product of creation and
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anihilation operators. A pair cluster is used as an example in Eq. (2.5).

⌧AB
IJ = a†AaIa

†
BaJ (2.5)

⌧AB
IJ is an operator that describes the correlated excitation of two electrons ini-

tially occupying the spin oribitals I and J , to two spin orbitals A and B, initially
unoccupied. For the general excitation ⌧µ, the CC wave function may be expressed
as a product of excitation operators and their amplitudes, tµ, using the the fact
that only one electron can occpy each spin orbital, i.e.

⌧AB
IJ ⌧CD

IJ = 0 (2.6)

Excitation µ is then given by Eq. (2.7) while the CC wave function takes the form
shown in Eq. (2.8).

|µi = ⌧µ|HF i (2.7)

|CCi =
Y

µ

(1 + tµ⌧µ)

�
|HF i (2.8)

For practical use, it is more common to express the CC wave function using the
exponential ansatz.

|CCi = exp (X(t)) |HF i (2.9)

Where X(t) is the time-dependent cluster operator defined in Eq. (2.11) and we
have used that

1 + tµ⌧µ = exp(tµ⌧µ) (2.10)

X (t) =
X

µ

tµ (t) ⌧µ (2.11)
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The exponential ansatz can be used because the excitation operators commute [3].
This can be proven using creation and annihilation operators and their anticom-
mutation relations.

[⌧µ, ⌧⌫ ] = 0 (2.12)

2.2 Multi-Level Coupled-Cluster Theory

There are different levels of CC theory, and the simplest one is where all sin-
gle excitations (CCS) within the given basis set are included, and corresponds to
Hartree-Fock theory. While the single excitations represent a relaxation of the spin
orbitals, the double excitations contribute significantly to the description of the
electronic system [3]. This can be explained by the fact that only two electrons
(with opposite spin) can occupy the same spatial orbital. The closer two electrons
are to each other, the more significant their interaction will be. Excitations of
higher levels, such as double, triple and quadruple can also be taken into account.
The cluster operator is then truncated depending on which level of theory is to
be implemented. As the comptational cost increases with the level of theory, this
is something that needs to be taken into consideration even though highly accu-
rate models such as CCSDTQ [26] and even up to CCSDTQ567 [27] have been
implemented. For large systems, however, scaling soon becomes a problem. Even
though coupled-cluster singles and doubles (CCSD) can be used for systems con-
taining more than 25 atoms, biological systems often contain hundreds of atoms,
making the quantum chemical calculations too expensive. This is why approxi-
mate methods, such as CC2 have been developed. The CC2 method lies between
CCS and CCSD in the CC hierachy and includes all single excitations, but double
excitations only up to first order [10]. CC2 computations give results that are
closer to CCS than CCSD. Another popular approximate model is the CCSD(T),
where the triple excitations are treated non-iteratively [28, 29]. By dividing the
system and treating the most important part with CCSD and the remaining part
with CC2, Myhre et al. were able to achieve results closer to CCSD accuracy.
This multi-level CC model is called extended CC2 (ECC2) and the theory behind
this specific model is explained more thoroughly in the following sections.
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2.2.1 Cholesky Decomposition

In general multi-level coupled-cluster (MLCC) theory, the orbital space can be
divided into two or more subsystems where each subsystem is treated with different
levels of theory, and excitations between levels can be assigned to either the higher
or the lower level. However, it is important to take the partitioning of the system
into careful consideration. A simple way is to assign the lowest energy unoccupied
molecular orbital and the highest energy occupied molecular orbital to the active
space and treat the rest of the system as the inactive space. However, this might
give rise to problems as changing the geometry of a molecule will affect the energy
of the orbitals. This can be avoided using Cholesky decomposition to generate
localized orbitals that resemble the classic Lewis structures [12, 30]. These orbitals
are generated from the one-electron Hartree-Fock (HF) density matrix, D given
by

D↵� =

occX

i

C↵iC�i (2.13)

where C↵i is the coeffcient expanding the occupied molecular orbital (MO) i from
the atomic orbital ↵. Similarly for the virtual orbitals, the pseudodensity matrix
DV consists of the elements

DV
↵� =

virtX

a

C↵aC�a (2.14)

Both Eq. (2.13) and (2.14) give positive semidefinite matrices and their rank is
the number of occupied and virtual orbitals respectively. These matrices are then
decomposed into a lower triangular matrix L and its transpose

D = LLT (2.15)

The fact that both D and DV are positive semidefinite causes the Cholesky decom-
position to not be unique, and therefore the pivoting scheme gives rise to different
decompositions. This is used to generate localized active spaces. An advantage of
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Cholesky decomposition compared to alternatives such as linear scaling methods
using multipole expansion of the two-electron Coulomb interaction [31], is that it
does not deteriorate as the size of the basis set increases [32]. Atoms that are of
higher interest than others are considered active and the decomposition is only
done for the active space. This results in MOs that are assigned to an atomic
center. The pivoting is done for both the occupied and virtual orbitals and the
number of spaces depends on how many levels of theory it is appropriate to use.
In the ECC2 model only two levels are used, but one could also choose to add a
third level of CCS, or even a fourth level where no excitations are considered, i.e.
HF. The following figures show an example of decanal with three levels of theory,
and are a courtesy of Alfredo Sánchez de Merás k[33].

Figure 1: CCSD space of decanal.

Figure 2: CC2 space of decanal.

Figure 1 shows which atoms are part of the active space, treated with CCSD. This
is only a small part of the molecule, and is of most significance to the result. The
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Figure 3: CCS space of decanal.

bigger space in Figure 2 shows the part treated with CC2. The atoms that are
furthest from the active space are in this example treated with CCS. The figures
give a picture of how the system is divided into spaces and how these are based
on the relevance of each atom to the specific calculations. They also show how the
highest level of theory is only applied to a small part of the system and why there
will be a reduction in computational cost. Cholesky decomposition is now widely
used to decrease scaling in coupled cluster calculations [12, 14, 15, 34]. The reason
Cholesky decomposition is such a useful tool in computational chemistry is the
saving that results from being able to remove zero or small eigenvalues without
calculating the whole matrix. An illustrative example is a two electron integral
matrix, which would scale as N4, where N is the number of orbitals. The number
of non-zero eigenvalues, however, scales as N , leading to a considerable reduction
in scaling for large basis sets [35].

2.2.2 The ECC2 Model

In the ECC2 model the system is divided into two levels. CCSD is used on the
part that is to be treated most accurately (the active space), and CC2 is used on
the rest of the system (inactive space). CC2 is also used on the excitations that
are semi-external to the active space, i.e. from active to inactive or from inactive
to active space. Using a small active space, the computational complexity should
scale as CC2 while, as shown by Myhre et al., give results closer to or as good
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as CCSD. Eq. (2.17) shows how the energy of the ground state is computed [9],
where T and S come from the splitting of the cluster operator, X

X = S + T (2.16)

In Eq. (2.16) S corresponds to the excitations external and semi-external to the
active space, treated with the CC2 model and T to the excitations in the active
space, treated with the CCSD model.

E0 = hHF |H0 exp (T + S) |HF i (2.17)

Because all single excitations are treated to infinite order in both CC2 and CCSD
combining Eq. (2.11) and (2.16) gives

X = T1 + T2 + S2 =

X

µ1

tµ1⌧µ1 +

X

µT
2

tµT
2
⌧µT

2
+

X

µS
2

tµS
2
⌧µS

2
(2.18)

where µ1 refers to single excitations and µT
2 and µS

2 refer to double excitations
treated with CCSD and CC2 theory respectively. The ECC2 model does not in-
clude triple or higher excitations, and the cluster operator has thus been truncated
at double excitations.

2.3 Response Theory

Response Theory is used to describe a molecular system’s response to external po-
tentials such as electromagnetic fields [17]. Assuming that the external potentials
are weak compared to the internal ones, they can be regarded as perturbations of
the isolated system. As this is the case for electronic excitations, this method can
be used and it is refered to as the quasienergy (QE) method. In practice, only the
ground state wave function needs to be calculated. Properties of excited states can
then be extracted by adding the time dependent perturbation, V t, as shown in Eq.
(2.20), without explicitly computing the excited state’s wave function. The ground
state is found from the time-independent Schrödinger equation, Eq. (2.19), where
H0 is the hamiltonian for the ground state and E0 the corresponding energy.
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H0|HF i = E0|HF i (2.19)

H = H0 + V t (2.20)

The computational advantage of not having to calculate all excited wave functions
explains why response theory is commonly used in computational chemistry [36,
37]. To obtain the excited state properties the general response equation needs to
be solved.

[H� !S]�(n)
(!) = �V (n)

(!) (2.21)

In Eq. (2.21) the unkonwn quantity is the vector �(n)
(!) while the matrices H

and S only depend on the unperturbed ground state wave function. Depending on
the approximation method used, the vectors and matrices in Eq. (2.21) will have
different forms, but the unknown vector �(n)

(!) always contains the nth-order wave
function parameter. The vector V (n)

(!) depends on the lower-order wave function
parameters up to �(n�1) in addition to one or more perturbation operators.

2.3.1 Linear Response Function

The exact linear response function shown in Eq. (2.22) is singular at the molecular
excitation energies [17].

hhA,Bii! =

X

k 6=0

✓h0|A|kihk|B|0i
! � !k0

� h0|B|kihk|A|0i
! + !k0

◆
(2.22)

The fact that the excitation energies give a singular linear response function is
equivalent to them occuring at ±!k0 . This is used to find the excitation energies
when approximate methods such as CC are implemented. The way this is done is
by identifying the frequencies for which Eq. (2.21) is singular. The use of response
theory greatly reduces the computational cost compared to calculating excited
state wave functions explicitly. The residue of the response function at !k0 is the
product of the left and right first-order transition matrix elements.
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lim

!!!k

(! � !k) hhA,Bii! = h0|A|kihk|B|0i (2.23)

lim

!!�!k

(! + !k) hhA,Bii! = �h0|B|kihk|A|0i (2.24)

Even though hk|A|0i = h0|A|ki⇤ in exact theory, it is convenient for comparison
with CC response theory to express the residues in the following way.

lim

!!!k

(! � !k) hhA,Bii! =

1

2


h0|A|kihk|B|0i+

✓
h0|B|kihk|A|0i

◆⇤�
(2.25)

lim

!!�!k

(! + !k) hhA,Bii! = �1

2


h0|B|kihk|A|0i+

✓
h0|A|kihk|B|0i

◆⇤�
(2.26)

2.4 MLCC Response Theory

Using time-dependent perturbation theory, the linear response function for both
CC2 and CCSD can be derived [38, 39, 40]. In the derivation of the linear re-
sponse function for the ECC2 model, Myhre et al. used the Quasi-Energy (QE)
Lagrangian method [41] where the Hamiltonian is divided into a ground state,
H0 and a time-dependent perturbation, V t as shown in Eq. (2.20). The QE
Lagrangian of the ECC2 model [42] is given in Eq. (2.29) where

h˜⇤| = hHF |+
X

µ

¯tµ(t)hµ| exp (�T (t)) (2.27)

|gCC(t)i = exp (T (t) + S(t)) |HF i (2.28)
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L(t) = Re

✓
h˜⇤


H0 + V t � i

d

dt

�
|gCC(t)i

◆

= hHF |H exp(T + S)|HF i

+

X

µ1

¯tµ1

✓
hµ1| ˆH + [

ˆH,X2]|HF i � i
dtµ1

dt

◆

+

X

µT
2

¯tµT
2

✓
hµT

2 | ˆH + [

ˆH,X2] +
1

2

[[

ˆH,X2], X2]|HF i � i
dtµT

2

dt

◆

+

X

µS
2

¯tµS
2

✓
hµS

2 |[ ˆF +

ˆV , S2] +
ˆH + [

ˆH, T2]|HF i � i
dtµS

2

dt

◆

(2.29)

To simplify the Lagrangian, the T1 transformed Hamiltonian, ˆH, is used. ˆH has
the same structure as H, but with different coeffiecients.

ˆH = exp(�T1)H exp(T1) (2.30)

The response function is found by derivating the QE Lagrangian with respect to
the strength parameters ✏A and ✏B that are given by the first order amplitudes,
t
(1)
µ (t).

t(1)µ (t) =
NX

j=�N

X

A

tAµ (!j)✏A(!j) exp(�i!jt) (2.31)

For the ECC2 model, the linear response function [42] is given in Eq. (2.34), where
ˆA is the T1 transformed perturbation operator, A, and

P (A (�!i) , B (!i)) f (A (�!i) , B (!i)) = (2.32)

f (A (�!i) , B (!i)) + f (B (!i) , A (�!i))

M±!fAB
(!A,!B) = fAB

(!A,!B) + [fAB
(�!A,�!B)]

⇤ (2.33)

14



hhA,Bii!i = @{L(2)}⌧
@✏A(�!i)@✏B(!i)

=

1

2

M±!P (A (�!i) , B (!i))

⇢
hHF |[ ˆA, T (B)

1 ] +

1

2

[[

ˆH0, T
(A)
1 ], T

(B)
1 ]|HF i

+

X

µ1

¯t(0)µ1
hµ1|[ ˆA,X(B)

] +

1

2

[[

ˆH0, X
(A)

], X(B)
]|HF i

+

X

µT
2

¯t
(0)

µT
2
hµT

2 |[ ˆA,X(B)
2 ] +

1

2

[[

ˆH0, T
(A)
1 ], T

(B)
1 ]
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�

(2.34)

The operators A and B are found from the Fourier transform of the perturbation
operator.

V t
=

NX

j=�N

X

A

A✏A(!j)e
(�i!jt) (2.35)

The cluster operator in Eq. (2.29) and (2.34) is given by the product of the
excitation operator, ⌧µ, and the amplitude of the excitation, tµ (t), as shown in Eq.
(2.11). In Eq. (2.34) all single excitations hµ1|, are treated to infinite order and are
therefore gathered, i.e. they are treated the same way for CC2 and CCSD. Double
excitations are treated differently, and this is why we have two sums; one over
all excitations treated with CCSD, i.e. the hµT

2 | term and one over all excitations
treated with CC2, which would be the hµS

2 | term. It should also be noted that the
T1 transformation will not affect all of the terms, because the commutators arising
from the transformation do not contribute if they are of a higher order than the
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excitation in question.

2.5 Derivation of the Transition Moment for ECC2

When the excitation energies have been calculated, the residue of the linear re-
sponse function is used to identify the transition moments. Because the transition
moment dictates whether or not a specific excitation is allowed [16], it is a highly
useful property to compute. For the transitions that are allowed, the transition
moment gives information on the probability of it occuring. This is not the only
reason one is interested in the transition moment’s properties. The square of the
transition moment, i.e. the transition amplitude, is proportional to the intensity
of the transition. In general, the greater the transition moment of a given transi-
tion, the more intense spectral lines will be. For the derivation of the transition
amplitude, it is convenient to have Eq. (2.34) expressed in a more compact way.
This can be done using Eq. (2.16) and (2.11). First we create a vector, C(O), of
all the terms containing the operators A and B and a matrix, F , containing the
hamiltonian part. Then the amplitudes, t, can be pulled out of both C(O) and F ,
giving two amplitude vectors, t(A)

(�!) and t(B)
(!). The response equation can

be expressed as a vector product as shown in Eq. (2.38). Inspecting Eq. (2.34)
the components of Eq. (2.38) can be identified as
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(2.37)

hhA,Bii! =

X

⌫

C(A)
⌫ t(B)

⌫ (!) +
X

�

✓
C(B)

� +

X

⌫

F�⌫t
(B)
⌫ (!)

◆
t(A)
� (�!) (2.38)

The CC response equation, Eq. (2.39) can now be compared to the exact response
equation, Eq. (2.21). In Eq. (2.39) we have the unkonwn amplitudes, t(B)

(!), the
unit matrix, 1, the matrix A that is dependent on the ground state of the system
and the vector ⇠B that depends on the perturbation and the 0

th order amplitude.

t(B)
(!) = (!1�A)

�1 ⇠B (2.39)

A is the ECC2 Jacobian, Eq. (2.41) and

⇠B =

0

B@
hµ1| ˆB + [

ˆB,X
(0)
2 ]|HF i

hµT
2 [

ˆB,X
(0)
2 ]|HF i
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ˆB,X
(0)
2 ]|HF i

1

CA (2.40)

AECC2 = (2.41)
0
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hµS
2 |[Ĥ0 + [Ĥ0, T

(0)
2 ]⌧⌫1 ]|HF i hµS

2 |[Ĥ0, ⌧⌫T
2
]|HF i hµS

2 |[F, ⌧⌫S
2
]|HF i

1

CA

The excitation energies are found by determining the eigenvalues of the Jacobian
matrix, A, and this has been done by Myhre et al. To determine the transition
moments, the frequencies for which Eq. (2.39) is singular need to be determined.
As the Jacobian is nonsymmetric it has both right and left eigenstates and a
similarity transformation [16] can be used to diagonalize it:
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(LAR)nm = �nm!n (2.42)

where the nth row column of R is assumed to be the right eigenvector of A, |ki
and the nth row of L the left eigenvector of A, hk| corresponding to the eigenvalue
!n. The excitation and deexcitation operators can now be expressed as diagonal
representations, ⌧n and ⌧ †n, using

⌧n =

X

⌫

⌧⌫R⌫n (2.43)

⌧ †n =

X

⌫

Ln⌫⌧
†
⌫ (2.44)

where Ln⌫ is the element in the nth row and ⌫th column of L. Using the diagnoal
representations Eq. (2.38) may now be written as

hhA,Bii! =

X

n

C(A)
n t(B)

n (!) +
X

m

✓
C(B)

n +

X

n

Fmnt
(B)
n (!)

◆
t(A)
m (�!) (2.45)

where the excitation operators in Eq. (2.34) have been replaced with the diagonal
representations. The represenation of the vector ⇠(A) can also be changed from
⇠
(A)
µ where

µ =

0

B@
µ1

µS
2

µT
2

1

CA (2.46)

to ⇠
(A)
n , using the left eigenvectors of the Jacobian, L and we now have that

⇠(A)
n =

X

µ

Lnµ⇠
(A)
µ (2.47)

Writing Eq. (2.39) on component form using the left eigenvector from the diagonal
representation of A and ⇠(A) we get

19



t(A)
n (�!) = �(! + !n)

�1⇠(A)
n (2.48)

Now this can be substituted into Eq. (2.45) and we end up with an expression
similar to that of Christiansen et al. [43].

hhA,Bii! =

1
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M±!

✓X

n
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(A)
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(B)
n

(! � !n)
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⇠
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m C

(B)
m

(! + !m)
�
X

mn

⇠
(A)
m Fmn⇠

(B)
n

(! + !m)(! � !n)

◆

(2.49)

Comparing Eq. (2.49) to Eq. (2.22), we see that the F term looks like it comes
in addition to exact theory. As a rather uncommon feature for nonvariational
approaches, the coupled cluster F term does not change the pole structure, and
therefore allows for a nonambiguous determination of poles and residues. In fact,
Christiansen et al.[43] point out that the F term arises naturally because of the
nonvariational exponential parametrization, the same way as it enters in time-
independent energy derivatives. The residues at the poles of the response function
at ±!k, i.e. lim!!!k

(! � !k) hhA,Bii! and lim!!�!k
(! + !k) hhA,Bii!, are used

to determine the transition moment properties. From Eq. (2.49) one can see that
the component form of the two residues become
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As we do not need a complete diagonalization it is more common to express the
transition moments using both the diagonal and elementary basis [38, 43]. This
is how they are computed in DALTON [44] and using Eq. (2.43) and Eq. (2.54)
the implementation of the ECC2 model to calculate transition moments becomes
more transparent. In Eq (2.52) and (2.53) we have also used the fact that the F
matrix is symmetric, i.e. Fkn = Fnk.
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Now introducing the CC left and right transition matrix elements, hk|A|0i and
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h0|B|ki, the resemblance to exact theory becomes more apparent.

hk|A|0i =
X

µ

Lkµ⇠
(A)
µ (2.55)

h0|B|ki =
X

⌫

C(B)
⌫ R⌫k +

X

⌫�

t(B)F�⌫R⌫k (2.56)

The ECC2 residues do, in fact, look quite similar to the exact theory, using the
relations in Eq. (2.55) and (2.56). A difference from the transition matrix elements
in exact theory is that in CC hk|A|0i 6= h0|A|ki⇤, which is a consequence of using
the quasienergy response method [43]. This is the motivation for introducing
the symmetrization with respect to complex conjugation and sign reversal of the
frequencies in Eq. (2.25) and (2.26). As the excitaion energies are calculated by
solving the eigenvalue problem ARk = !kRk or LkA = !kLk, either right or left
eigenvectors can be used. For the transition moments, however, both left and right
eigenvectors are needed.
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3 Implementation

The DALTON 2013 software package [44] is used for the implementation of the
ECC2 model. As the C(Ô) vectors are a part of the excitation energy calculation,
the term that we will focus on in this section is the one containing the F matrix. To
test the ECC2 model the already embedded CC2 and CCSD models are combined
and we need to look at the individual F to find the most efficient way to do this.
The ECC2 F matrix therefore needs to be viewed as a sum of the part treated
with CCSD, FCCSD, and the part treated with CC2, FCC2 as in Eq. (3.1), where
the eigenvectors, Ri and amplitudes t(A)

i (�!) as well as the multipliers, t̄(0), and
the zero order amplitudes, X(0) are manipulated to obtain the desired result.
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The response equation for CC2 is given by Christiansen et al. [10].
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After using the permutation operator and following the same steps as for the ECC2
F matrix we find the FCC2 matrix.
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Splitting the second order excitations into S and T gives a three dimensional
matrix. This makes it easier to compare it to the ECC2 F matrix.
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The CCSD response equation, given by Koch et al. [40], is

hhA,Bii! =

X

�

h⇤|[A, ⌧�]|CCit(B)
� (!) (3.3)
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In Eq. (3.3) h⇤| = hHF |+P
µ
¯t
(0)
µ hµ| exp(�X), where X is the CC operator. The

CC wave function is given by |CCi = exp(X)|HF i. Now using the fact that

exp(�X)H exp(X) = H + [H,X] +

1

2

[[H,X], X] +

1

3!

[[[H,X], X], X] + · · · (3.4)

and that

hHF | = hHF | exp(�X) (3.5)

The FCCSD matrix can be derived.
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Now using that the CC operator, X, for a system with N electrons can be written
as

X = X1 +X2 + · · ·+XN (3.6)

and the fact that the FCCSD matrix can be simplified even more using the X1

transformed Hamiltonian, ˆH

ˆH = exp(�X1)H exp(X1) (3.7)

the FCCSD matrix takes the form
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Splitting the second order excitations into S and T gives a three dimensional
matrix, which has some extra terms compared to the one used in the ECC2 model.
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It is possible to obtain the ECC2 F matrix from the CCSD FCCSD matrix, and
to compute the F matrix in the most cost efficient way, the goal is to use as few
calls as possible. Even though using the FCC2 is cheaper, we will need more calls
compared to using only FCCSD. Comparing it to the ECC2 F matrix we see that
the upper left terms are equal except for the hµS

2 | part where we need to subtract
the zero order S

(0)
2 amplitudes. The lower right triangular matrix including the

diagonal is also almost equal for ECC2 and CCSD except for the hµS
2 terms. The

remaining terms are identical for EEC2 and CCSD. Subtraction gives a picture of
what terms in the FCCSD matrix that do not appear in the ECC2 F matrix.
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The routine that computes the F matrix therefore has to be called several times
and the the following system, where i represents the number of times the routine
is called, can be used.

X

i

t(A)
i (�!)FCCSD

i iR = t(A)
(�!)FR (3.9)

where the routine can be manipulated by setting parts of the multipliers, t̄(0), the
vectors, t(A)

(�!) and R or the zero order amplitude vector X(0) to zero. Each of
these vectors include a single excitation part, a CCSD part, T , and a CC2 part,
S, as shown for the first order multipliers in Eq. (2.37). The minimum number
of steps to obtain the ECC2 F matrix is four. By first setting the ¯t

(0)

µS
2

to zero we
get the ground state, single excitation and the T -part of the double excitations.
The second time the routine is called, the S-part of t(A)

(�!) and R as well as ¯t(0)µ1

and ¯t
(0)

µT
2

are set to zero. This gives the right S-terms to F�1⌫1 , F�1⌫T2
and F�T

2 ⌫1 but
we now have two extra terms that need to be subtracted from the matrix. First
setting ¯t0 and the zero order amplitude vector in the same way as in the previous
call, and choosing only the T -part of t(A)

(�!) and R we can subtract the extra
hµS

2 |-term in F�T
2 ⌫T2

. For the fourth and final call ¯t(0) will be set to zero as well
as the T - and S-parts of t(A)

(�!), R and the zero order amplitude vector. Now
the extra ground state term in F�1⌫1 can be subtracted. However, because the
terms containing the F matrix have to be calculated for all the excitations, the
computational cost can be reduced by using an auxiliary vector Y when calculating
the transition moments.

Y = FR (3.10)

As the row vectors of F are dotted with the right eigenvectors we obtain Y , and
the Eq. (3.11) is solved. The response equation can now be simplified as shown in
Eq. (3.12) and (3.13).

M̄ = Y (!k1+A)

�1 (3.11)
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When using Eq. (3.12) and (3.13), the F -terms cannot be computed as described
earlier. That is because we no longer have the flexibility of manipulating two
vectors to obtain the ECC2 F matrix. We now only have one vector to get the
auxiliary vector Y that i used to calculate the F -term. The system that needs to
be solved can now be viewed as

Y =

X

i

FT
i

iR+

X

j

FS
j

jR (3.14)

It is, however, most convenient to only use the CCSD model, i.e. FT and we can
get the whole Y vector computed calling the routine only four times.

1. First setting only ¯t
(0)

µS
2

to zero, we get the biggest part of the Y vector.

33



1Y =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

�hHF |[[H0, ⌧�1 ], ⌧⌫1 ]|HF i
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(0)
2 ]|HF i R1

+

�P
µ1
¯t
(0)
µ1 hµ1|[[ ˆH0, ⌧�1 ], ⌧⌫T2 ]|HF i+P
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2. Secondly R
(A)
1 , R(A)

S2
, ¯t(0)µ1 and ¯t

(0)

µT
2

are all set to zero. After calling the routine
the first time, 2Y T2 and 2Y S2 are reset to zero. Thus ending up with
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2 |[[ ˆH0, ⌧�1 ], ⌧⌫T2 ]|HF iRT2

0
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3. Similarly, for the third call R(A)
T2

, R(A)
S2

, ¯t(0)µ1 , ¯t(0)
µT
2

and the S part of the zero
order amplitude are set to zero, and again after the routine is called 2Y S2 is
reset to zero, giving
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4. The fourth time the routine is called we set the whole t̄(0) vector to zero as
well as R

(A)

µT
2

and R
(A)

µS
2

. This term needs to be subtracted from the rest and
we choose a negative sign, resulting in

4Y = �
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B@
hHF |[[H0, ⌧�1 ], ⌧⌫1 ]|HF iR1

0

0

1

CA

Eq. (3.14) will now give us the ECC2 FR term using iY as described above.
Using the Y (A) vector (Method 2) should reduce the computational cost compared
to using Eq. (2.50) and (2.51) (Method 1). This is because using Method 2, Y (A)

only needs to be calculated once for each eigenvector hk|, while for Method 1 each
term is computed m⇥ n times. Chosing Method 2 instead of method one should
therefore result in a m-fold reduction in computational cost.
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4 Testing

As discussed in the previous section, this work has been focused on deriving the
ECC2 expressions needed for the transition moment and development and imple-
mentation of the calculation of the F matrix that affects the transition moment.
The test results are an indication of the present state of the pilot code. Two
different systems were chosen for the testing.

4.1 Initial Testing

To run the first tests, a small system was chosen; one single water molecule. Figure
4 shows how oxygen was treated as the active space, while both hydrogens were
treated with CC2. The molecule was built in Avogadro [45] and the cc-pVDZ
basis set was used. The initial testing gave results that were in thread with what
was excpect, i.e. somewhere between the CC2 and the CCSD results. They are,
however, not presented here as they are not the correct ECC2 transition moments.
The results give only an indication of the model, and even though the values are
closer to CCSD than CC2 as expected, this still does not prove that the current
version of the code is correct. Further testing is therefore necessary to validate the
pilot code and obtain verified ECC2 transition moments.

Figure 4: H2O
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4.2 Indepth Testing

To further investigate the model, a slightly bigger system was chosen; one water
molecule and one Helium atom. Figures 5 and 6 show the system using two
different active spaces. The particles are separated by 100 Å, and because of the
large distance between them, an excitation in the active space should give the same
result as CCSD while an excitation in the inactive space should give CC2 results.
In Figure 5 the whole water molecule is the active space and this system is refered
to as ECC2A, while Figure 6 shows the He atom as the active space and is refered
to as ECC2B. The Pople type basis set 6-31G was used for the calculations.

Figure 5: ECC2A

Figure 6: ECC2B

The ECC2A model reproduces CCSD results, while the ECC2B model values de-
viate from the CC2 results. The ECC2A and ECC2B test runs suggest that the
lowest excitations all occur within the water molecule. This is because the ECC2A
model gives the same results as CCSD. When the active space is changed to the
helium atom, the outcome is closer to CC2 results. By inspecting the different Y
vectors it is possible to unveil why the two ECC2 models give different results. In
fact, a test where the ECC2A model was used and only the 1Y was calculated
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gave the same result as when all four Y vectors were added together. Because the
S-part of both the eigenvectors, the multipliers and the zero order amplitude was
zero for these four excitations, the 1Y vector was simply the same as calculating
the regular CCSD Y vector, while the addition from 3Y was again subtracted
using 4Y . The ECC2B model, however, requires modification of the eigenvectors,
multipliers, and all except 2Y contribute to the final result, in contrast to the
ECC2A model. It appears that the modification of the vectors affects the result,
but a solution to this bug has not yet been found.

The left and right transition matrix elements can be investigated to narrow down
the root of the problem. Eq. (2.56) and (2.55) show the components of the right
and left transition matrix element respectively. It can be found by inspection that
the ECC2B right transition matrix elements deviate from the CC2 values. As Eq.
(2.56) shows this is the term including the F matrix. The right transition matrix
element also includes the right eigenvectors and the C(O) vector. Finally, printing
and comparing the Y vectors for ECC2B and CC2 shos that they indeed differ
and the current version of the code therefore needs to be further investigated and
debugged.
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5 Conclusion

The theory and implementation plan presented here suggest that the ECC2 model
should give transition moments that are related to CCSD and CC2 in the same
way excitation energies have been proven to be. The current version of the code,
however, does not fulfill these expectations as the results suggest, presumably due
to a bug. Because the implementation is still under developement, the expected
reduction in computational complexity cannot be investigated and for the time
being, the ECC2 model actually requires more time than equivalent CCSD calcu-
lations.
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6 Future Work

As the current version of the code that computes the ECC2 transition moment
does not give the expected values, it needs to be further investigated and tested.
Dividing the system into two levels is the simplest form of a multi level coupled
cluster model, and because the work presented here has not given successful re-
sults, the addition of a third level has not been tested, even though it should be
possible with the current version of the code. When the bilevel version has been
proven successful, the model can be expanded to include more levels.

Versions of the ECC2 model, where a third level has been added, have been tested
for excitation energies and also that part of the model is still under developement.
Because the the pilot version of the code does not allow for any savings in com-
putational cost, it is not appropriate to run calculations on larger systems yet.
Developing a more efficient version of the code is therefore a current objective.
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