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Abstract

Heat transfer in revolving Bödewadt flow above a planar surface has been considered. We have shown that a similarity solution of
the thermal energy problem does not exist as long as the surface is impermeable. The failure of the existence of physically realistic
similarity solutions for the thermal field is ascribed to the fact that the axial flow component is directed away from the surface. If
the planar surface is porous and allows for suction, the direction of the axial flow can be reversed. Similarity solutions have been
obtained for some different values of the dimensionless suction velocity A and the Prandtl number Pr. The thermal boundary layer
became gradually thinner with increasing suction A and for higher Pr, thereby also increasing the heat transfer rate through the
planar surface .
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1. Introduction

The steadily revolving flow of a viscous fluid above a solid
surface was first studied by Bödewadt [1] who transformed the
governing partial differential equations into a set of ordinary
differential equations by means of the same similarity transfor-
mation as originally used by Von Karman [2] in his classical
study of the swirling flow driven by a constantly rotating disk.
The Bödewadt flow can be considered as a reversed Von Kar-
man flow with the axial velocity component directed away from
the planar surface rather than towards the rotating disk. How-
ever, the three velocity components in the Bödewadt flow ex-
hibit a more complex variation than in the Von Karman flow
and the Bödewadt boundary layer is substantially thicker than
the corresponding Von Karman boundary layer.

In this paper we consider the heat transfer in steadily re-
volving Bödewadt flow. The heat transfer in this prototype
flow seems to have received only negligible attention in com-
parison with the heat transfer in the Von Karman flow. Heat
transfer in flow above a rotating disk was first studied by Mill-
saps & Pohlhausen [3] and Sparrow & Gregg [4], followed by
many others. See, e.g., the book by Shevchuk [5]. Shevchuk
and Buschmann [6], for instance, found self-similar solutions
for the flow and heat transfer in a fluid co-rotating with a
rotating disk with a radially varying disk temperature. One
may speculate whether the lack of studies of heat transfer in
Bödewadt flow is due the relatively higher complexity of the
three-dimensional flow field.

The only earlier studies that we are aware of are the recent pa-
pers by Sahoo [7], Sahoo et al. [8], and Turkyilmazoglu [9]. Sa-
hoo [7] included heat transfer analysis in his study of Bödewadt
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flow of an electrically conducting fluid with partial slip. Some
temperature profiles were presented, but not for pure Bödewadt
flow of a Newtonian fluid with no-slip at the solid surface. Sa-
hoo et al. [8] also focussed on non-Newtonian fluid properties
and the majority of their results were concerned with the flow
field, but two figures showing heat transfer results also for New-
tonian fluids were included. As we will see later, these results
might be questionable. Even more recently, Turkyilmazoglu [9]
studied the heat transfer in Bödewadt flow over a stretching but
non-rotating disk. In the absence of stretching, however, his
results suggested a constant temperature all across the viscous
boundary layer and therefore failed to satisfy the outer bound-
ary condition for the thermal field. In this paper heat transfer
in Bödewadt flow will be revisited with the view to clarify the
contradictory findings of Sahoo et al. [8] and Turkyilmazoglu
[9].

2. Mathematical Model Equations

Let us consider the steadily revolving flow of a viscous fluid
above a planar surface. In cylindrical polar coordinates (r,θ ,z)
the governing mass conservation, momentum and thermal en-
ergy equations become:
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where (u, v, w) are the velocity components of the fluid in the
radial, circumferential and axial directions, respectively, and T
is the temperature. Here, we have assumed rotational symmetry
about the vertical z-axis, i.e.∂/∂θ = 0. The kinematic viscosity
of the fluid is ν and Cp is the specific heat at constant pressure
of the fluid. k is the thermal conductivity of the fluid.
The boundary conditions are

u = 0, v = 0, w =−
√

νΩA, T = Tw, at z = 0,
u = 0, v = rΩ, p = 1

2 r2Ω2, T = T∞, as z→ ∞,

}
.

(6)
Here, Ω and T∞ are the angular velocity and temperature of
the revolving fluid high above the surface, while A and Tw are
the dimensionless suction velocity and temperature at the solid
surface at z = 0. In the present study the temperature Tw of
the stationary disk is constant. Shevchuk and Buschmann [6],
however, allowed for a radial power-law variation of the surface
temperature of a rotating disk.

3. Similarities Transformations

Following Bödewadt we express the fluid velocity compo-
nents and pressure as

u(r,z) = rΩF(η),
v(r,z) = rΩG(η),

w(r,z) =
√

νΩH(η),
p(r,z) = ρ(−νΩP(η)+ 1

2 r2Ω2),
T (r,z) = T∞ +(Tw−T∞)Θ(η),

(7)

where η is a dimensionless variable defined by

η = z
√

Ω/ν . (8)

In terms of the non-dimensional variables defined by (7)-(8)
the governing equations (1)-(5) become:

2F +H ′ = 0, (9)

F ′′−HF ′−F2 +G2 = 1, (10)

G′′−HG′−2FG = 0, (11)

P′+2FH−2F ′ = 0, (12)

Θ
′′−PrHΘ

′ = 0, (13)

where Pr is the Prandtl number, Pr = Cpµk
k . The corresponding

boundary conditions specified in (6) transfer to :

F(η) = 0, G(η) = 0, H(η) =−A, Θ(η) = 1 at η = 0,
F(η) = 0, G(η) = 1, P(η) = 0, Θ(η) = 0 as η → ∞.

(14)

4. Exact Analytical Solution

The ODE for the thermal field (13) can be integrated twice to
give the solution for the temperature profile:

Θ(η) = 1− I(η)

I(∞)
, (15)

where
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and H(η) is the axial velocity component obtained from the
solution of the accompanying flow problem.
Now , I′(η) = exp

[
Pr
∫ η

0 Hds
]

and therefore I′(0) = 1 so that
the temperature gradient at the surface becomes:

Θ
′(0) =− I′(0)

I(∞)
=− 1

I(∞)
. (17)

If we for simplicity assume that the axial velocity component
is constant, i.e. H(η) = H0, the integration can be performed
analytically as:
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and finally , I(η) = 1
PrH0

[exp(PrH0η)−1] which gives I(∞) =

− 1
PrH0

provided that H0 < 0. This gives the temperature gradi-
ent Θ′(0) = − 1

I(∞) = PrH0 < 0. The assumption of a constant
axial velocity H0 is made here to be able to demonstrate that the
sign of temperature gradient at the surface is determined by the
sign of H0. In reality, however, the axial velocity H varies with
η . Nevertheless, it was shown by Turkyilmazoglu [10] that the
axial velocity component of the von Karman flow becomes con-
stant in presence of strong suction. The same tendency is likely
to appear also in the Bödewadt flow.

5. Numerical Approach

We solved the two-point boundary value problem consisting
of the coupled set of ordinary differential equations (9)-(13)
subjected to the boundary conditions (14). For this purpose
we have used the bvp4c MATLAB solver, which gives very
good results for the non-linear ODEs with multipoint BVPs.
This finite-difference code utilizes the 3-stage Lobatto IIIa for-
mula, that is a collocation formula and the collocation poly-
nomial provides a C1-continuous solution that is fourth-order
accurate uniformly in [a,b]. For multipoint BVPs, the solution
is C1-continuous within each region, but continuity is not au-
tomatically imposed at the interfaces. Mesh selection and error
control are based on the residual of the continuous solution.
Analytical condensation is used when the system of algebraic
equations is formed ; see e.g. Shampine et al.[11]. Numerical
solutions of the three-dimensional flow problem were provided
by Nath and Venkatachala [12] for three different values of the
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suction parameter A. The comparisons in Table 1 show that
the results of the present computations compare very well with
their data. Moreover, the entries for A = 0 match exactly with
the corresponding data tabulated by Turkyilmazoglu [9].

Table 1: Effect of suction parameter A on the shear stress characteristics F ′(0)
and G′(0). Comparisons with results computed by Nath and Venkatachala [12]
in their Table 1.

A -F ′(0) G′(0)

present N & V present N & V
0 0.9420 0.9420 0.7729 0.7729

0.5 0.9033 NA 1.0652 NA
1.0 0.8351 0.8350 1.3885 1.3863
2.0 0.6468 0.6462 2.1560 2.1550
3.0 0.4800 NA 3.0611 NA

6. Numerical Results

Figure 1: Radial velocity component F(η) for some different
values of the suction parameter A.

Figure 2: Circumferential velocity component G(η) for some
different values of the suction parameter A.

Figure 3: Axial velocity component H(η) for some different
values of the suction parameter A.

6.1. Velocity Field
Computed results for the three velocity components are

shown in Figures 1- 3. In absence of suction, the fluid motion
well above the surface is characterized by a uniform angular
velocity G, which is reduced through a viscous boundary layer
in order for the fluid to adhere to the no-slip condition G = 0
at the solid surface. The reduction of the circumferential veloc-
ity component in the vicinity of the surface reduces the radial
directed centripetal acceleration (or centrifugal force) such that
the prevailing radial pressure gradient induces an inward fluid
motion F . In order to assure mass conservation, this inward
fluid motion gives in turn rise to an axial outward flow H > 0.
Such a spiralling flow exists near the planar surface, although
more complex variations of the velocity field are seen further
away, but yet before the uniformly rotating flow conditions are
reached for η > 12. This oscillatory nature of the three velocity
components was reported already by Bödewadt [1] and makes
the Bödewadt flow qualitatively different from the Von Karman
flow. However, it is interesting to notice that these oscillations
are damped and even suppressed in presence of a magnetic field
(King and Lewellen [13]), partial slip (Sahoo et al.[14]) or if the
disk is stretched (Turkyilmazoglu [9]). Of particular relevance
for the present study is the effect of surface suction. Nath and
Venkatachala [12] showed that sufficient suction through the
planar surface suppressed the oscillatory nature of the three-
dimensional flow field and, moreover, made the axial flow be
directed in the inward direction rather than outward, as is the
case in the classical Bödewadt flow.

Nath and Venkatachala [12] showed results for two different
values of the suction parameter A(1.0 and 2.0) and compared
these results with the pure Bödewadt case A = 0. Here, we have
revisited the same cases and also included results with modest
suction (A = 0.5) and stronger suction (A = 3). The trends
observed by Nath and Venkatachala [12] are reproduced here.
The radial inflow F in Figure 1 is monotonically reduced with
increasing suction and this is accompanied with a reduction of
the axial flow H in Figure 3. The direction of the axial flow is
inverted when the suction rate A > 1, such that the fluid instead
moves towards the solid surface. With modest suction, how-
ever, the fluid in the vicinity of the surface moves away from
the surface, whereas the fluid further away is directed towards it
such that H changes sign at about η = 1 for A = 0.5. The radial
and tangential shear stresses are proportional with the slopes of
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the respective velocity profiles F ′(0) and G′(0) given in Table 1
and compared with corresponding results reported by Nath and
Venkatachala [12]. Here, we can see that while the tangential
shear stress G′(0) increases with A, the magnitude of the radial
shear stress −F ′(0) decreases with increasing suction.

6.2. Heat Transfer

Figure 4: Variation of temperature Θ(η) for some different val-
ues of suction parameter A and Pr = 1 .

Figure 5: Variation of temperature Θ(η) for some different val-
ues of Pr and A = 1.0.

Figure 6: Variation of temperature Θ(η) for some different val-
ues of Pr and A = 2.0.

While the three-dimensional flow field is a one-parameter
problem determined by the suction parameter A, the accom-
panying thermal problem is a two-parameter problem in A and
Pr. Computed temperature profiles for various values of A and
Prandtl number Pr = 1 are shown in Figure 4. These results

show a remarkable effect of the suction parameter depending
on whether A > 1 or not. The temperature profiles for A = 0
and A = 0.5 show that the temperature is constant from the sur-
face and far beyond η = 12 before the temperature drops to
zero in order to satisfy the outer boundary condition. These
profiles resemble Θ(η) = 1 seen in Figure 3 in Turkyilmazoglu
[9] for zero stretching, i.e. pure Bödewadt flow. Although all
the results in Figure 4 are solutions of the ODE which satisfy
the two thermal boundary conditions, only results for A > 1
are physically plausible in the sense that the heat flux −Θ′ far
away from the surface asymptotes to zero. The auxiliary condi-
tion that Θ′→ 0 as η→∞ is commonly overlooked in analysis
of thermal boundary layers, similarly as the auxiliary condi-
tions F ′→ 0 and G′→ 0 as η → ∞ for the momentum bound-
ary layer; see Andersson [15] and Pantokratoras [16]. Realistic
solutions are therefore obtained only in presence of sufficient
suction.

From Figure 3 we recall that the axial velocity component
H changes sign from positive to negative as the suction pa-
rameter A is gradually increased. Since the only effect of the
fluid flow on the thermal energy problem is through the axial
velocity component H(η), the presence of suction is likely to
have a major impact on the temperature distribution. Indeed,
we showed in Section 4 that if H = H0 the temperature gradi-
ent Θ′(0) = PrH0 becomes negative only provided that H0 < 0.
This explains why we only obtain plausible solutions when suf-
ficiently strong suction is applied, i.e. when the axial veloc-
ity turned negative everywhere. It is therefore remarkable that
Shaoo et al. [8] showed temperature profiles for Pr = 1 in their
Figure 9 which resemble those for A > 1 in our Figure 4. We
believe that these results were obtained due to an unnoticed sign
error in their thermal energy equation.

The slope Θ′ of the four temperature profiles in Figure 4 is
negative. However, the magnitude of the slope of the physically
plausible temperature variations decreases with η , whereas the
unphysical profiles exhibit a gradually increasing |Θ′|. A criti-
cal value Acrit of the dimensionless suction parameter can there-
fore be defined as the A-value that leads to an inflection point
in the temperature profile, i.e. Θ′′ = 0 . The second derivative
of the temperature distribution can readily be obtained from the
exact analytical solution given by equations (15)-(16) as

Θ
′′(η) = Θ

′(0) ·Pr ·H(η) · exp
[

Pr
∫

η

0
Hdη

]
. (19)

The critical A-value accordingly corresponds to the amount of
suction H(0) = −A which is just sufficient to make the axial
velocity component H negative for all values of η . By means of
systematic integrations of the three-dimensional flow problem
we found that Acrit = 0.85.

The realistic solutions in Figure 4 show that the adaption
of the dimensionless temperature from Θ = 1 at the surface to
Θ = 0 far above the surface occurs over a gradually shorter dis-
tance with increasing A. Stronger suction accordingly tends to
make the thermal boundary layer thinner for a given value of
the Prandtl number. Figures 5 and 6 show temperature profiles
for a range of Prandtl numbers for prescribed suction A = 1 and
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A = 2, respectively. For a given flow field, the thermal bound-
ary layer becomes gradually thinner as Pr increases from 0.5 to
7.0. This trend is consistent with the general knowledge that the
importance of thermal conduction, relative to viscous diffusion,
diminishes with increasing Pr. The excess surface tempera-
ture is therefore felt only in the near vicinity of the surface for
Pr >> 1. In-depth discussions on high-Prandtl-number effects
on the thermal boundary layer thickness and the surface heat
transfer can be found in Shevchuk [5, 17].

The Nusselt number Nu is a convenient non-dimensional
measure of the local heat transfer rate at the surface η = 0.
The Nusselt number is usually defined as Nu = q(0)L

k(Tw−T∞)
=

−∂T/∂ z|z=0L
Tw−T∞

. Schevchuk & Buschmann [6] and Shevchuk

[5, 17] took L = r, which gives Nu = −Θ′(0)
√

Ωr2/ν . Here,
however, the length scale L is taken as

√
ν/Ω to give Nu =

−Θ′(0). Nu is proportional with −Θ′(0) tabulated in Table 2
for all values of A and Pr considered herein. Here, we observe
that the heat transfer increases with increasing suction and for
higher Prandtl numbers.

Table 2: Heat transfer rate −Θ′(0) at the surface.

Pr\A 0 0.5 1.0 2.0 3.0

0.5 0.1934 0.9239 1.4736
0.7 0.2984 1.3154 2.0713
1.0 0.4943 1.9114 2.9705
2.0 1.4013 3.9215 5.9743
7.0 6.7857 13.9633 20.9879

7. Concluding Remarks

We have shown that realistic similarity solutions of the ther-
mal energy problem do not exist for Bödewadt flow in absence
of suction (A = 0). The only earlier results for pure Bödewadt
flow by Sahoo et al. [8] and Turkyilmazoglu [9] are there-
fore not physically realistic. This explains why heat transfer
in Bödewadt flow seems to have escaped the attention of the
research community. If sufficient suction is applied, however,
plausible solutions do exist. This phenomenon is explained by
the reversal of the axial velocity component when suction is
imposed. This finding is consistent with the fact that similarity
solutions of the heat transfer problem associated with Von Kar-
man flow do exist. The thermal energy equation in that case is
exactly the same as in the Bödewadt flow, but the sign of the
axial velocity component H is opposite. One can therefore con-
jecture that solutions of the thermal problem of the Von Karman
flow ceases to exist if sufficient blowing through the rotating
disk is applied, so that the axial flow direction is reversed.

It should be noted that our conclusions are valid only for the
actual heat and fluid flow problem studied herein. The pres-
ence of either a magnetic field [12], partial slip [7] or stretching
of the surface [9] will alter the flow field and thereby also the
possible existence of similarity solutions of the thermal field.
Moreover, if, for instance, viscous dissipation or ohmic heating
is included in the thermal energy equation, see e.g. Sahoo [7],

the situation is different and similarity solutions may exist even
in absence of suction.

Similarity solutions of the heat transfer problem associated
with Bödewadt flow subjected to significant suction (A > 1)
have been provided here for the first time. Increasing suction
tends to make the thermal boundary layer gradually thinner and
thereby increases the heat transfer rate through the solid sur-
face. Likewise, as the relative importance of thermal diffusivity
reduces for higher Prandtl numbers, the thermal boundary layer
becomes gradually thinner.
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