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Sammendrag

Nullpunktsvibrasjonelle korrigeringer er utført ved bruk av analytiske geometri-
og egenskaps-derivater p̊a DFT niv̊a. Korrigeringene er oppn̊add ved bruk av
en variasjon-perturbasjons-tilnærming, og er utført rundt et variasjonsbestemt
ekspansjonspunkt, her benevnet som den effektive geometrien. Dette leder til at
anharmonisiteten av potensialet blir inkludert i korrigeringen. Korrigeringer opp
til den andre perturbasjonsordenen er her evaluert for første gang. Geometrien, de
intermolekylære frekvensene, og de intramolekylære frekvensene, er blitt evaluert
for (H2O)2 og HOH-D2O dimerene ved bruk av det nyimplementerte analytiske
kubiske kraftfeltet p̊a DFT-niv̊a. De implementerte pertubasjonskorreksjonene er
beregnet for dipolmomentet og polariserbarheten til H2O, D2O, NH3, og CH4.
Bruken av DFT, de analytiske geometriderivatene og de analystiske egenskaps-
derivatene har vært velykket. Den ekstra perubasjonskorreksjonen har vist seg å
være signifikant for b̊ade dipolmomentet og polariserbarheten.
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Abstract

Zero-point vibrational corrections are carried out with analytical geometry and
property derivatives at DFT level. This correction is obtained using a variation-
perturbation approach, and is carried out around a variationally determined ex-
pansion point, denoted the effective geometry, leading to the inclusion of the an-
harmonicity of the potential. The corrections up to the second perturbation order
are evaluated for the first time. The effective geometry, intermolecular frequen-
cies, and intramolecular frequencies of the (H2O)2 dimer and the HOH-D2O dimer
are calculated using the newly implemented analytical cubic force field at DFT
level. The perturbation corrections implemented are evaluated for the dipole mo-
ment and polarizability of H2O, D2O, NH3, and CH4. Employing DFT, analytical
geometry derivatives and property derivatives have been successful. The extra
perturbation correction has been deemed significant for both the dipole moment
and polarizability.
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Chapter 1

Introduction

In addition to providing information about molecular structure and functionality,
vibrational spectroscopy has become a valuable tool in assisting the interpretation
and prediction of experimental data [22, 20]. In order to produce sufficiently
accurate predictions of vibrational frequencies, zero point vibrational corrections
must be included. This holds true for spectral information specifically dealing with
vibration, but also for magnetic and electric molecular properties.

The aim of this master thesis is to extend upon the vibrational analysis imple-
mented in the Dalton package[2]. In order to set this thesis in context, the
relevant implementations in Dalton will briefly be reviewed.

The first contribution to what is now the method for vibrational analysis was de-
veloped for the calculating of intermolecular frequencies for bimolecular complexes
by Åstrand et al.[5] in 1994. This approach entails performing the harmonic ex-
pansion around the point which minimizes the sum of the potential energy and the
zero point vibrational energy, instead of the conventional potential energy minima.
This method was later expanded upon to evaluate rovibrational averages of molec-
ular properties in diatomic molecules[6, 71, 7, 8]. Higher order perturbations were
then included for both diatomic molecules[9] in 1999 and polyatomic molecules in
2000[10]. As of today, this approach in Dalton adopts numerical derivatives for
the cubic force field and property derivatives.

Atomic orbial energy based derivative theory was introduced in Dalton[69, 77,
40, 32] in 2008. Using this framework, analytical higher derivatives have been
implemented[70] also with the ability of using DFT functionals[39]. This leads us
to the objectives of this thesis:

The approach for molecular vibrations will be extended in three ways: Carrying out
calculations using DFT, carrying out calculations using analytical property and
geometric derivatives, and carrying out an extra correction to the vibrationally
averaged property.

These extensions will be implemented as an external software, written in Python.
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This software is to extract the required information from Dalton, replicate the
vibrational analysis as already implemented and further carry out additional cor-
rections. The external software will be able to carry out corrections at both the
equilibrium geometry, and the effective geometry.

First the vibrational analysis will be implemented and the portion of the software
that is a replication of Dalton will be validated against the literature. Once
this is done, examples of calculations will be performed at DFT level employing
the analytical geometry and property derivatives, rendering calculation with no
numerical derivatives.

There will be two main types of examples of these extensions: The first system ex-
plored in 1994, namely bimolecular complexes, will be revisited and evaluated with
the new analytical derivatives and DFT functionals. Secondly, the vibrational av-
eraging of molecular properties and the different orders of corrections implemented
will be determined for the polarizability and dipole moment using atomic orbital
energy based derivative theory for several molecules. The scope will only include
ground vibrational and electronic states. Temperature and mass effects will not
be included.
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Chapter 2

Theory

2.1 The Born-Oppenheimer Approximation

When modelling molecules, one has to consider both the nuclei and the electrons
when evaluating the potential energy. As the molecules become large, this quickly
becomes an immense system. An approximation which is nearly always used when
facing such a task is the Born-Oppenheimer approximation [16, 15]. This enables
the separation of the nuclear from the electronic motion. The approximation is
based on the fact that the electronic energy level spacings are much larger than the
spacing between the vibrational levels. These energy levels will therefore not mix
to any significant extent. A more intuitive way of thinking about it, is that nuclei
are much heavier than the electrons. The electrons will rearrange themselves very
fast compared to the nucleus, and will therefore always be in equilibrium. This
approximation lets us leave our picture of the molecule of electrons and nuclei, all
having to be taken into consideration, and lets us focus on only the nuclei. The
Born-Oppenheimer approximation also results in the ability to neglect all spin,
both electric and nuclear, in addition to all relativistic effects[36].

2.2 Rotation and Translation

Translational motion can safely be separated from vibration, as the energy gap
between these two motions is very large. The mixing of these energy levels will
therefore not take place. Rotational motion is more in the grey zone. It is, how-
ever, found that the rotational motions can also be separated from the internal
vibrational motions. For a mathematical proof of this see Ref. [54].

The rotational and translational components will be projected out of the Hessian
using the Eckart conditions [31]. The rotation and vibration may still be coupled,
but the Eckart condition minimizes this coupling.

3



2.3. Normal coordinate basis Chapter 2. Theory

The first step in creating the projection matrix is by setting up the following
matrix:

T =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
−y x 0 · · ·
0 −z y · · ·
z 0 −x · · ·

 (2.1)

Eq (2.1) is only a fragment of the total matrix; three of these fragments are needed
for every atom of the system (the x, y and z component). The full matrix T will
have the dimension 6 × 3N where N is the number of atoms. The upper part of
the matrix is associated with the translation, the lower with the rotation.

This matrix undergoes orthonormalization, and is multiplied by -1.

T = −T ortho (2.2)

The matrix is multiplied with its transpose, and the identity matrix is then sub-
tracted from it to recieve the final projection matrix Trot-trans.

Trot-trans = T × T T − I (2.3)

The projection is carried out by:

V
(2)

vib = Trot-trans ×H × Trot-trans (2.4)

Here we are projecting out translation and rotation from the second derivative of
the potential energy, denoted the Hessian. As the only Hessian used from now
on will be the vibrational Hessian, the subscript vib will be dropped from here on
out.

2.3 Normal coordinate basis

All the derivatives in the equations are in normal coordinates. In order to convert
them, the normal coordinate transformation matrix must be created.

The fundamental frequencies and the normal coordinate transformation matrix
can be extracted from the mass weighted vibrational Hessian matrix, granted the
system is at an energy minimum [30]. Firstly, the vibrational Hessian must be
converted to the force constant matrix in mass weighted coordinates.
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Chapter 2. Theory 2.4. Perturbation Theory

V (2)
m = M− 1

2V (2)(f)M− 1
2 (2.5)

The M matrix is a 3N × 3N matrix containing the atomic masses along the di-
agonal. The next step in attaining the normal frequencies is solving the secular
equations for the force constant matrix, and thereby obtaining the eigenvalues and
eigenvectors. If using cartesian coordinates, six of the eigenvalues should be zero
as they correspond to the translational and vibrational motion of the system, this
can be used as a check to validate the system being at a minimum.

The normal coordinates and the fundamental frequencies are found by diagonaliz-
ing V

(2)
m :

V (2)
m ν = λν (2.6)

The frequencies correspond to the square root of the eigenvalues:

frequencies =
√
|λ| (2.7)

While the transformation matrix, which will be denoted N , corresponds to the the
eigenvectors:

N = ν (2.8)

2.4 Perturbation Theory

We will employ the Hylleraas variational perturbation theory[52]. This method
is based on Rayleigh-Schrödinger perturbation theory. The energy, wavefunction
and Hamiltonian are functions of the order of perturbation, λ:

〈Ψ|H − E|Ψ〉 =
〈
Ψ(0) + λΨ(1) + λ2Ψ(2) + ...|(H(0) − E(0)) + λ(H(1) − E(1))

+λ2(H(2) − E(2)) + ...|Ψ(0) + λΨ(1) + λ2Ψ(2) + ...
〉

(2.9)

Orthonormality is assumed within this approach, ie:

〈
Ψ(0)|Ψ(0)

〉
= 1

〈
Ψ|Ψ(0)

〉
= 1

〈
Ψ(0)|Ψ(i)

〉
= 0, i 6= 0 (2.10)

The equation 2.9 is solved for each order of λ, for example, for λ = 1 : E(1) =〈
Ψ(0)|H(0)|Ψ(0)

〉
. This far, the approach is identical to Rayleigh-Schrödinger per-

turbation approach.
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2.5. The vibrational wavefunction Chapter 2. Theory

For the standard Rayleigh-Schrödinger perturbation approach, the wavefunction
is found by expanding Eq.2.9 to an appropriate order of λ, a series of algebraic
steps is then performed. This leads to the wavefunction being derived with respect
to the energy and the Hamiltonian.

Within the variational perturbation approach, however, the expression for the
wavefunction is found by minimizing with respect to the trial function Ψ(m), this
is where the variational component of the approach comes in.

2.5 The vibrational wavefunction

As we are describing a vibrational system, it is natural to use the harmonic os-
cillator model as a zeroth order approximation. The harmonic oscillator can be
used in systems where the potential energy can be described well by Hooke’s law,
expressed for a diatomic by:

V (q2) =
1

2
kfq

2 (2.11)

V is the potential energy, kf is a force constant and q is the mass weighted normal
coordinate associated with the vibration. Mass weighted normal coordinates are
used as they are found to greatly simplify the procedure of deducing the equations
that will be needed.

The Hamiltonian for a molecule with N vibrational modes using the harmonic
oscillator potential energy becomes:

H(0) =
1

2

N∑
i=1

[
− ∂2

∂2qi
+ kfq

2

]
(2.12)

As both mass weighted coordinates and atomic units are used, both ~ and the mass
m disappear from the first term. The superscript in H(0) refers to the perturbation
order, which in this case is zero. The constant kf is found to minimize the potential
energy, i.e. kf = V

(2)
eq , the second derivative of the potential energy at equilibrium.

As the coordinates used are mass weighted, so is the V
(2)
eq . If no subscript is given,

we will assume to be at the equilibrium, dropping the ’eq’ subscript, H(0) thus
becomes:

H(0) =
1

2

N∑
i=1

[
− ∂2

∂2qi
+ V

(2)
ii q2

i

]
(2.13)

The first term accounts for the kinetic energy, the second for the potential energy.
The kinetic part of the Hamiltonian is the same for all systems as the kinetic

6



Chapter 2. Theory 2.5. The vibrational wavefunction

Figure 2.1: Graphical representation of how the energy changes as a function of the
internuclear distance for a diatomic molecule for the harmonic oscillator.

energy of an atom is not affected by the number or orientation of the other atoms
in the system. The potential energy of a harmonic oscillator, however, will be
different for different vibrational systems. The Hamiltonian’s ability to describe a
system therefore improved by refining the potential energy term. One method of
obtaining an accurate potential energy is by a Taylor expansion of the potential
energy function.

Starting by performing a Taylor expansion on the potential energy:

V (q1, q2, ..., qN) =V (0) +
N∑
i=1

V
(1)
i qi +

1

2

N∑
i=1

V
(2)
ii q2

i

+
1

6

N∑
ijk=1

V
(3)
ijk qiqjqk +

1

24

N∑
ijkl=1

V
(4)
ijklqiqjqkql

+
1

120

N∑
ijklm=1

V
(5)
ijklmqiqjqkqlqm +

1

720

N∑
ijklmn=1

V
(6)
ijklmnqiqjqkqlqmqn + [...]

(2.14)
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2.5. The vibrational wavefunction Chapter 2. Theory

A criterion for using Taylor expansions is that the expansion must converge. The
variable q is defined as the distance from the equilibrium bond length, q = r− re.
In this case, the term with the largest order will become either positive or negative
infinity when r goes towards infinity no matter how many terms the function is
expanded to. This function will therefore diverge. As can be seen from Fig.(2.2),
the function can still be used within a certain range of the equilibrium, and this
range is expanded with an increased number of expansion terms. Care must still
be taken if employing a model based on this Taylor expansion for vibrations at
high temperatures (high energy).

Figure 2.2: A representation of how the Taylor expansion of the potential energy behaves
at large intermolecular distances for a diatomic molecule. The functions V (2), V (4), and
V (6) go towards positive infinity with the last term being of even rank. The functions
V (3), and V (5) have last terms of odd rank and thereby go towards negative infinity. Here
we depict that although the Taylor expansion does not converge it is a good approximation
within a given range of intermolecular distance.

Increasingly accurate Hamiltonians can be created by including higher orders from
the Taylor expansion of the potential energy as perturbations to the Hamiltonian.
The first few order of perturbation of the Hamiltonian are written as:

8



Chapter 2. Theory 2.5. The vibrational wavefunction

H(1) =
1

6

N∑
ijk=1

V
(3)
ijklqiqjqk

The V
(1)
i term is not included as it is zero at the equilibrium geometry.

H(2) =
1

24

N∑
ijkl=1

V
(4)
ijklqiqjqkql

H(3) =
1

120

N∑
ijklm=1

V
(5)
ijklmqiqjqkqlqm

The zeroth order Hamiltonian has eigenvalues, (and thereby energies) on the fol-
lowing form:

E(0)
n =

N∑
i=1

(
1

2
+ n)ωi (2.15)

The n denotes the quantum number, and ωi =

√
V

(2)
ii , where the mass weighted

Hessian is given in Hartrees.

Just as only the zeroth order hamiltonian has known eigenvalues, it also has known
wavefunctions:

ψ(0)
n = NnHne

− 1
2
ωiq

2
i (2.16)

The Nn is the normalization constant, and Hn a hermite polynomial. The e−
1
2
ωq2

i

is characterized as a gaussian function, and all knowledge of gaussian functions
can therefore be extended to the vibrational wavefunction. When inserting the
correct values for the normalization constant and the hermite polynomial, the
wavefunctions for the different quantum numbers become:

ψ
(0)
0 (q) =

(√
ω

π
1
2

) 1
2

e−
ω
2
q2

(2.17)

ψ
(0)
1 (q) =

(√
ω

2π
1
2

) 1
2

2q
√
ωe−

ω
2
q2

(2.18)

ψ
(0)
2 (q) =

(√
ω

8π
1
2

) 1
2

(4q2 − 2)
√
ωe−

ω
2
q2

(2.19)
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2.5. The vibrational wavefunction Chapter 2. Theory

ψ
(0)
3 (q) =

( √
ω

48π
1
2

) 1
2

(8q2 − 12q)
√
ωe−

ω
2
q2

(2.20)

Both the energy terms and the wavefunction for the higher order perturbations
must be found explicitly. The energies will be found through Rayleigh Schrödinger
perturbation[73, 49]. For the wavefunctions we will be using a variational pertur-
bation theory as developed by Åstrand et al. [10, 9, 72] based on an approach by
Kern and Matcha [56].

Any continuous function can be created by a sum of gaussians, as the limit of
gaussians used goes towards infinity. As the harmonic oscillator wavefunction is
on the form of a gaussian function, the perturbed wavefunction can be made up of
a basis of the unperturbed wavefunctions. This ensures that the orthonormality
principle of the wavefunction is conserved. The first order wavefunction is thus
found by expanding in terms of a complete set of harmonic-oscillators:

Ψ(1) =
N∑
i=1

∞∑
r=1

a
(1)
r,i φr,i +

N∑
i,j=1
i 6=j

∞∑
r,s=1

b
(1)
rs,ijφrs,ij

+
N∑

i,j,k=1
i 6=j 6=k

∞∑
rst=1

c
(1)
rst,ijkφrst,ijk

(2.21)

Where a
(1)
r,i , b

(1)
rs,ij, c

(1)
rst,ijk are coefficients. These coefficients need to be chosen so as

to minimize the energy of the system. Note that with this, we are employing the
variational principle. The φr,s,...,t,i,j,..t are defined as a product of the wavefunctions:
ψr,i, ψs,j, ..., ψt,k, i 6= j, 6= k. The i, j, k subscripts denote normal coordinates of the
molecule.

The second order wavefunction is expanded in a similar fashion using the same
notation:

Ψ(2) =
N∑
i=1

∞∑
r=1

a
(2)
r,i φr,i +

N∑
i,j=1
i 6=j

∞∑
r,s=1

b
(2)
rs,ijφrs,ij

+
N∑

ijk=1
i 6=j 6=k

∞∑
rst=1

c
(2)
rst,ijkφrst,ijk

+
N∑

ijkl=1
i 6=j 6=k 6=l

∞∑
rstu=1

d
(2)
rstu,ijklφrstu,ijkl

(2.22)
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Chapter 2. Theory 2.6. Effective geometry

The wavefunctions can be expanded to any amount of expansion coefficients. Only
the amount of expansion coefficients needed for further calculations are included
here.

2.6 Effective geometry

As an alternative to the traditional approach of perturbing the Hamiltonian, fea-
tured in equation 2.23, an approach by Åstrand et al. where the V (1) term is
included in the H(1) expression can also be used[9]:

H(1) =
N∑
i=1

V
(1)
i qi +

1

6

N∑
ijk=1

V
(3)
ijklqiqjqk (2.23)

When performing a perturbation expansion for a potential energy surface, one
traditionally expands about the equilibrium geometry. The equilibrium geometry
is the molecular geometry corresponding to the minimum on the potential energy
surface, [61] the condition V

(1)
e = 0 will therefore apply. The subscript ’e’ will

denote that we are working at the equilibrium geometry. A second expansion
point is additionally considered, this alternative expansion point is referred to as
the effective geometry, and will be denoted with the subscript ’eff’. A comparison
of the geometries and property corrections obtained using either the equilibrium
or the effective geometry will be made.

The motivation for using an alternative effective geometry is to describe the an-
harmonicity of molecular vibration in the zeroth order wave function.

Starting by choosing an arbitrary expansion point rexp, a Taylor expansion is
carried out for the potential energy about rexp. :

V (q) = V (0) + V (1)q +
1

2
V (2)q2 +

1

6
V (3)q3 + ... (2.24)

Where q = r − rexp. The effective geometry is found by performing a harmonic
expansion around the point, minimizing the sum of the potential energy and the
zero point vibrational energy of the stretching vibration, as proposed by Åstrand
et al.[5].

E(0) = V (0) +
〈

Ψ
(0)
0 |H(0)|Ψ(0)

0

〉

E(0) =V (0) +
1

2

N∑
i=1

ωi
−−−−−−−→
minimizing = V

(0)
eff +

1

2

N∑
i=1

ωi,eff (2.25)
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2.6. Effective geometry Chapter 2. Theory

This expansion point leads to fast converging results when calculating energies
and structures for molecules [5]. The method was developed further by including
higher order perurbations for molecular properties, first for diatomic molecules [9],
and later also for polyatomic molecules [10].

If Equation 2.25 is differentiated, ie. minimized, with respect to reff the following
condition is found:

V
(1)

eff +
V

(3)
eff

4ωeff

= 0 (2.26)

for diatomic molecules [9] , and

V
(1)

eff,j +
1

4

N∑
i=1

V
(3)

eff,iij

ωi

= 0 (2.27)

for polyatomic molecules[10]. Only part the semi-diagonal cubic force field is
needed. It is sufficient to calculate the diagonals of the j squares making up
the cubic force field, opening for the possibility of making the calculation less
computationally heavy.

It has been shown that this condition leads to much simpler expressions for averag-
ing of properties, in particular the leading anharmonic correction to the vibrational
ground state vanishes [9, 10]. It was also shown that the effective geometry cor-
responds to the vibrationally averaged molecular geometry to second order in the
order parameter of the perturbation expansion[10].

〈r〉 = reff (2.28)

In order to find the expansion point, one can minimize the energy functional in
Eq.(2.25), this is, however, rather heavy computationally. A second method for
finding the effective geometry can be gleaned by considering how the expansion
point was chosen as the vibrationally averaged geometry[10]. If instead, the vi-
brationally averaged geometry is expressed in terms of the equilibrium it can be
shown that[10]:

〈r〉 = re −
N∑

j,m=1

1

4ω2
j

V
(3)

e,jmm

ωm

(2.29)

Combining Eq.(2.28) and Eq.(2.29) we get the following equality:
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reff = re −
N∑

j,m=1

1

4ω2
j

V
(3)

e,jmm

4ωm

(2.30)

It is now established that in order to find the effective geometry, all that is needed
is the second and part of the third derivative of the potential energy at the equi-
librium geometry, referred to as the Hessian and the cubic force field[10].

2.7 Finding the expression for Ψ(1)

The first order perturbation of the wavefunction will be found by minimizing the
energy. We start by setting up an expression for the energy in terms of the wave-
function, and find the minima of this expression. In this manner, the coefficients
making up the wavefunction will be attained.

2.7.1 The E(1) expression

Starting with the first order perturbation to the energy, this can be written out
as:

E(1) =
〈
Ψ(0)|H(1)|Ψ(0)

〉
(2.31)

Inserting the value of H(1) defined in Eq. 2.23 and employing a more compact
notation where

〈
Ψ(0)|qi|Ψ(0)

〉
= 〈qi〉00:

E(1) =
N∑
i=1

V
(1)
i 〈qi〉00 +

1

6

N∑
i,j,k=1

V
(3)
ijk 〈qiqjqk〉00

This expression will always be zero as both the terms making up E(1) are zero,
according to rules governing which values of gaussian integrals survive.

E(1) = 0 (2.32)

This expression can therefore not be used in attaining an expression for Ψ(1) and
it will neither contribute with any expansion coefficients. We therefore turn to the
next perturbation, namely E(2).

13
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2.7.2 The E(2) expression

In the following section, the work of Åstrand et al.[10] will be followed closely.
The derivation of the expressions will be gone through more thoroughly in order
to make the work accessible to wider audience with less background knowledge in
the field. The expression for E(2) is deduced from a formula giving the expression
for the energy perturbation of an even order of perturbation[56]:

E(2n) = 〈Ψ(0)|H(2n)|Ψ(0)〉+ 2〈Ψ(n)|H(1) − E(1)|Ψ(n−1)〉

+2
n∑

m=2

〈Ψ(n)|H(m) − E(m)|Ψ(n−m)〉+ 〈Ψ(n)|H(0) − E(0)|Ψ(n)〉
(2.33)

Inserting for n = 1 gives:

E(2) = 〈Ψ(0)|H(2)|Ψ(0)〉+ 2〈Ψ(0)|H(1)|Ψ(1)〉
+〈Ψ(1)|H(0) − E(0)|Ψ(1)〉

(2.34)

Before commencing the task of inserting expressions and solving the equation it is
advantageous to find a general expression ”− < H0 − E(0) >rr ”. This expression
will crop up as a denominator for all the expansion coefficients, it is therefore
practical to find an expression for this early on.

− < H0 − E(0) >rr =

∫
ψ∗rE

(0)ψrdτ −
∫
ψ∗rH

(0)ψrdτ

= −rω (2.35)

The values for the wavefunctions, Hamiltonians and energies are now inserted into
the expression for E(2), we also substiitute − < H0 − E(0) >rr with −rω:

E(2) =
1

24

N∑
ijk=1

V
(4)
ijkl < qiqjqkql >00 +

N∑
i=1

∞∑
r=1

[
2V

(1)
i < qi >0r a

(1)
r,i

+
1

3
V

(3)
iii < q3

i >0r a
(1)
r,i +

N∑
m=1;m6=i

[V
(3)
imm < q2

i >00< qi >0r a
(1)
r,i ] + a

(1)
r,i ωia

(1)
r,i

]

+
N∑

ij=1;i 6=j

∞∑
rs=1

b
(1)
rs,ij

[
V

(3)
iij < q2

i >0r< qj >0s +b
(1)
rs,ij(rωi + sωj)

]

+
N∑

ijk=1;i 6=j 6=k

∞∑
rst=1

c
(1)
rst,ijk

[
1

3
V

(3)
ijk < qi >0r< qj >0s< qk >0t +c

(1)
rst,ijk(rωi + sωj + tωj)

]
(2.36)
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Chapter 2. Theory 2.7. Finding the expression for Ψ(1)

Beginning with a
(1)
r,i , Eq.(2.36) is differentiated with respect to this expansion co-

efficient to find the minima:

∂E(2)

∂a
(1)
r

=
N∑
i=1

[
2V

(1)
i < qi >0r +

1

3
V

(3)
iii < q3

i >0r

+
N∑

m=1;m 6=i

[V
(3)
imm < q2

i >00< qi >0r] + 2rω

]
(2.37)

Setting this to zero and solving for a
(1)
r,i gives:

a
(1)
r,i = −

V
(1)
i < qi >0r +1

6
V

(3)
iii < q3

i >0r +1
2

N∑
m=1;m 6=i

V
(3)
imm < q2

m >00< qi >0r

rω
(2.38)

Attention is directed towards the second term in Eq.(2.36). The ability to bring
in extra terms including m arises from the fact that we can create expressions on
the form < qn >00< qm >0r, these would still be under the coefficient a

(1)
r as no

new subscript is introduced. This n can only be ”2” for terms including V 3
iii and

”2” or ”4” for terms including V 4
iiij as a consequence of the symmetry of gaussian

functions.

When inserting the correct values for the wavefunctions, Hamiltonians and ener-
gies, the only expansion coefficients surviving for Ψ(1) are r = 1 and r = 3:

For r = 1:

a
(1)
1,i = −

V
(1)
i < qi >01 +1

6
V

(3)
iii < q3

i >01 +1
2

N∑
m=1;m6=i

V
(3)
imm < q2

m >00< qi >01

ωi

(2.39)

The solutions for the non-zero integrals are found by solving the respective dif-
ferential equation. This is a cumbersome task, so the known solutions will be
employed directly, and can be found in table A.1.

Simplifying this expression gives:

a
(1)
1,i =

V
(1)
i√

2ω
3/2
i

− 1

4
√

2ω
3/2
i

N∑
m=1

V
(3)
imm

ωm

(2.40)
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2.7. Finding the expression for Ψ(1) Chapter 2. Theory

For r = 3:

a
(1)
3,i = −

V
(1)
i < qi >03 +1

6
V

(3)
iii < q3

i >03 +1
2

N∑
m=1;m6=i

V
(3)
imm < q2

m >00< qi >03

3ωi

(2.41)

Simplifying this expression gives:

a
(1)
3,i = −

√
3V

(3)
iii

36ω
5/2
i

(2.42)

Likewise for b
(1)
rs,ij, we obtain:

∂E(2)

∂b
(1)
rs,ij

=
N∑

ij=1;i 6=j

[
V

(3)
iij < q2

i >0r< qj >0s +2b
(1)
rs,ij

(
rω + sω

)]
= 0 (2.43)

Giving:

b
(1)
rs,ij = −

1
2
V

(3)
iij < q2

i >0r< qj >0s

rω + sω
(2.44)

The only non-zero expansion coefficient is b
(1)
21,ij, inserting the values of < q2

i >02

and < qj >01:

b
(1)
21,ij = −

V
(3)
iij

4ωi
√
ωj(2ωi + ωj)

(2.45)

Lastly, for c
(1)
rst,ijk:

∂E(2)

∂c
(1)
rst,ijk

=
N∑

ijk=1;i 6=j 6=k

∞∑
rst=1

[
1

3
V

(3)
ijk < qi >0r< qj >0s< qk >0t

+2c
(1)
rst,ijk(rω + sω + tω)

] (2.46)
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Giving:

c
(1)
rst,ijk = −

1
6
V

(3)
ijk < qi >0r< qj >0s< qk >0t

rω + sω + tω
(2.47)

When inserting the correct values for the wavefunctions, Hamiltonians and ener-
gies, the only expansion coefficient surviving is c

(1)
111,ijk:

c
(1)
111,ijk = −

√
2V

(3)
ijk

4ωi
√
ωiωjωk(ωi + ωj + ωk)

(2.48)

2.7.3 The expression for Ψ(1)

Inserting the coefficients evaluated, the first order perturbation of the wavefunction
Ψ(1) becomes:

Ψ(1) =
N∑
i=1

−
√

3V
(3)
iii

36ω
5/2
i

φ3,i +

(
V

(1)
i√

2ω
3/2
i

− 1

4
√

2ω
3/2
i

N∑
m=1

V
(3)
imm

ωm

)
φ1,i

+
N∑

i,j=1
i 6=j

−
V

(3)
iij

4ωi
√
ωj(2ωi + ωj)

φ21,ij

+
N∑

i,j,k=1
i 6=j 6=k

−
√

2V
(3)
ijk

4ωi
√
ωiωjωk(ωi + ωj + ωk)

φ111,ijk (2.49)

With this, the accuracy of the wavefunction is in line with the one found in Ref
[10]. The wavefunction will now be perturbed one step further in order to include a
higher order of perturbation when finding expressions for the vibrational averaging
of the properties.

2.8 Finding the expression for Ψ(2)

2.8.1 The E(3) expression

Employing the same method as previously, the next energy perturbation serves
as the starting point. The general expression for the energy perturbation of odd
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potential is [56]:

E(2n+1) =
〈
ψ(n)|H(1) − E(1)|ψ(n)〉+ 〈ψ(0)|H(2n+1)|ψ(0)〉

+
n+2∑
m=2

n∑
k=n+1−m

〈ψ(k)|H(m) − E(m)|ψ(2n+1−k−m)〉
(2.50)

Inserting for n = 1:

E(3) =
〈
ψ(1)|H(1) − E(1)|ψ(1)〉+ 〈ψ(0)|H(3)|ψ(0)〉+ 2〈ψ(0)|H(2) − E(2)|ψ(1)〉

+2〈ψ(1)|H(2) − E(2)|ψ(0)〉
(2.51)

The third and fourth term cancel each other out. Recalling that E(1) is zero
gives:

E(3) =
〈
ψ(1)|H(1)|ψ(1)〉+ 〈ψ(0)|H(3)|ψ(0)〉 (2.52)

We insert the appropriate values into the expression:

E(3) =
N∑
i=1

a
(1)
r,i

(
V

(1)
i 〈qi〉11 +

1

6
V

(3)
iii 〈qi〉11 〈qj〉11 〈qk〉11 +

1

120
V

(5)
iiiii < q5

i >00

)

+
1

6

N∑
ij=1

b
(1)
rs,ij

(
V

(3)
iij

〈
q2
i

〉
11
〈qj〉11 +

1

120
V

(5)
iiiij < q4

i >00< qj >00

+
1

120
V

(5)
iiijj < q3

i >00< q2
j >00

)

+
1

6

N∑
i,j,k=1

c
(1)
rst,ijk

(
V

(3)
ijk 〈qi〉11 〈qj〉11 〈qk〉11

+
1

120
V

(5)
iiijk < q3

i >00< qj >00< qk >00

+
1

120
V

(5)
iijjk < q2

i >00< q2
j >00< qk >00

)
(2.53)

Each of these terms have at least one integral which evaluates to zero, there-
fore:
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E(3) = 0 (2.54)

We are not left with any ψ(2) terms, E(3) can therefore not be used to find an
expression for ψ(2), neither does E(3) contribute with any new values to the coef-
ficients of ψ(1). We therefore progress to the fourth energy perturbation, denoted
E(4).

2.8.2 The E(4) expression

The general form of the energy perturbations of an even order was:

E(2n) = 〈Ψ(0)|H(2n)|Ψ(0)〉+ 2〈Ψ(n)|H(1) − E(1)|Ψ(n−1)〉

+2
n∑

m=2

〈Ψ(n)|H(m) − E(m)|Ψ(n−m)〉+ 〈Ψ(n)|H(0) − E(0)|Ψ(n)〉
(2.55)

Inserting for n = 2, results in the following expression:

E(4) = 〈Ψ(0)|H(4)|Ψ(0)〉+ 2〈Ψ(2)|H(1)|Ψ(1)〉
+2〈Ψ(2)|H(2)|Ψ(0)〉+ 〈Ψ(2)|H(0) − E(0)|Ψ(2)〉

(2.56)

We start by filtering out the terms which include a
(2)
s,i i.e. the parts of the E(4)

expression involving Ψ(2) in equation 2.22.

E(4)(a
(2)
s,i ) = 2

N∑
i=1

∞∑
r,s=1

a
(2)
s,i a

(1)
r,i V

(1)
i < qi >sr +

1

3

N∑
i=1

∞∑
r,s=1

a
(2)
s,i a

(1)
r,i V

(3)
iii < q3

i >sr

+
1

12

N∑
ijkl=1

∞∑
s=1

a
(2)
s,i V

(4)
iiii < q4

i >s0 +
N∑
i=1

∞∑
s=1

a
(2)
s,i a

(2)
s,i < H0 − E(0) >ss

(2.57)

We take the first derivative with respect to a
(2)
s,i and set the expression to zero in

order to find the minima for a
(2)
s,i ,

0 = 2
∞∑
r

a
(1)
r,i V

(1)
i < qi >sr +

1

3

∞∑
r

a
(1)
r,i V

(3)
iii < q3

i >sr

+
1

12
V

(4)
iiii < q4

i >s0 +2
∞∑
s=1

a
(2)
s,i < H0 − E(0) >ss

(2.58)
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Only two values of a
(1)
r,i survived: Namely r = 1, see Eq. 2.40 and r = 3, see

Eq.(2.42). Rearranging the equation to obtain an expression for a
(2)
s,1 in addition

to reducing to the correct number of values for r gives:

a
(2)
s,i =− 1

sωi

( ∑
r=1,3

(a
(1)
r,i V

(1)
i < qi >sr +

1

6
a

(1)
r,i V

(3)
iii < q3

i >sr

+
1

2
a

(1)
r,i

N∑
m=1,m 6=i

V
(3)
imm < qi >sr< q2

m >00) +
1

24
V

(4)
iiii < q4

i >s0

+
N∑

m=1,m 6=i

V
(4)
iimm < q2

i >20< q2
m >00

)
(2.59)

The subscripts for s will now be evaluated. The non-zero terms for a
(2)
s,i are: a

(2)
2,i ,

a
(2)
4,i , and a

(2)
6,i . We start by inserting the values of s for a

(2)
2,i . The expression

becomes:

a
(2)
2,i =

1

2ωi

(
− a(1)

1,iV
(1)
i < qi >21 +

1

6
a

(1)
1,iV

(3)
iii < q3

i >21 +
1

2
a

(1)
1,i

N∑
m=1,m 6=i

V
(3)
imm < qi >21< q2

m >00

− a(1)
3,iV

(1)
i < qi >23 +

1

6
a

(1)
3,iV

(3)
iii < q3

i >23 +
1

2

N∑
m=1,m6=i

a
(1)
3,iV

(3)
imm < qi >23< q2

m >00

− 1

24
V

(4)
iiii < q4

i >20 +
N∑

m=1,m 6=i

V
(4)
iimm < q2

i >20< q2
m >00

)
(2.60)

Inserting for the solutions to the hermite polynomial integrals:

a
(2)
2,i =

1

2ω

[
a

(1)
1,i

(
V

(1)
i (

1

ω
)

1
2 +

1

6
V

(3)
iii

3

ω3/2
+

1

2

N∑
m=1,m 6=i

V
(3)
imm(

1

ω
)

1
2

1

2ωm

)

− a(1)
3,i

(
V

(1)
i (

3

2ω
)

1
2 + V

(3)
iii

1

2
(

27

8ω3
)

1
2 +

1

2

N∑
m=1,m 6=i

a
(1)
3,iV

(3)
imm(

3

2ωi

)
1
2

1

2ωm

)

− V (4)
iiii

√
2

16ω2
2ω +

N∑
m=1,m 6=i

V
(4)
iimm

√
2

2ωi

1

2ωm

]
(2.61)

Which is simplified in order to find the final expression. All expressions are sim-
plified using the software Scientific Workplace, MacKichan Software, Inc.:

20



Chapter 2. Theory 2.8. Finding the expression for Ψ(2)

a
(2)
2,i =− a(1)

1,i

(
V

(1)
i

1

2
√
ω3
i

+ V
(3)
iii

1

4ω
3/5
i

+
1

8

N∑
m=1,m 6=i

V
(3)
imm

1

ωm

√
ω3
i

)

− a(1)
3,i

(
V

(1)
i

1

2
(

3

2ω3
i

)
1
2 + V

(3)
iii

1

4
(

27

8ω5
i

)
1
2 +

1

8

N∑
m=1,m 6=i

V
(3)
imm

√
3

ωm

√
2ω3

i

)

− V (4)
iiii

√
2

32ω3
i

+
N∑

m=1,m 6=i

V
(4)
iimm

√
2

8ωmω2
i

(2.62)

Moving onto the expansion coefficient a
(2)
4,i , we again start by replacing s, this time

with 4. In the next step, the values for the hermite polynomials are added, the
expression is then simplified:

a
(2)
4,i =

1

4ωi

(
− 1

6
a

(1)
1,iV

(3)
iii < q3

i >41 +a
(1)
3,iV

(1)
i < qi >43 −

1

6
a

(1)
3,iV

(3)
iii < q3

i >43

+
1

2

N∑
m=1,m 6=i

a
(1)
3,iV

(3)
imm < qi >43< q2

m >00) +
1

24
V

(4)
iiii < q4

i >40

)

=
1

4ωi

(
− 1

6
a

(1)
1,iV

(3)
iii

√
3

ω
3/2
i

+ a
(1)
3,iV

(1)
i (

2

ωi

)
1
2 +

1

6
a

(1)
3,iV

(3)
iii 3(

43

8ω3
i

)
1
2

− 1

2

N∑
m=1,m6=i

a
(1)
3,iV

(3)
imm

√
2

2ωm
√
ωi

+
1

24
V

(4)
iiii

(√
6

2ω2
i

))

=− 1

24
a

(1)
1,iV

(3)
iii

√
3

ω
3/5
i

+ a
(1)
3,i

(
V

(1)
i

√
2

4
√
ω3
i

+ V
(3)
iii

1√
8ω3

i

− 1

8

N∑
m

V
(3)
iii

√
2

2ωm

√
ω3
i

)

+ V
(4)
iiii

√
6

192ω3
i

(2.63)

Lastely, the expression for a
(2)
6,i will be evaluated, the same steps as for the first

two expansion coefficients will be written out:

a
(2)
6,i = −

1
6
a

(1)
3,iV

(3)
iii < q3

i >63

6ωi

= −
1
6
a

(1)
3,iV

(3)
iii ( 120

8ω3
i
)

1
2

6ωi

= −
√

15

36ω
5/2
i

V
(3)
iii a

(1)
3,i (2.64)
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All the non-zero constants a
(2)
s,i have now been found. Next in turn are the b

(2)
rs,ij

expansion coefficients. For the first order wavefunction, there is only one non-
zero b

(1)
rs,ij coefficient, namely b21,ij. This value can be inserted directly into the

expression for b
(2)
rs,ij, with no need for sums and extra subscripts. Just as with a

(2)
s,i ,

we begin by isolating the terms containing b
(2)
rs,ij from the general expression for

E(4):

E(4)(b
(2)
rs,ij) =

1

3

N∑
i,j=1

b
(2)
rs,ijb

(1)
21,ijV

(3)
iij < q2

i >r2< qj >s1

+
1

12

N∑
ij=1

b
(2)
rs,ijV

(4)
iijj < q2

i >s0< q2
j >r0

+
1

12

N∑
ij=1

b
(2)
rs,ijV

(4)
iiij < q3

i >s0< qj >r0

+
N∑

ij=1

b
(2)
rs,ijb

(2)
rs,ij(< H0 − E(0) >rr + < H0 − E(0) >ss) (2.65)

This expression is differentiated with respect to b
(2)
rs,ij for a given ij, giving:

∂E

∂b
(2)
sr,ij

=2b
(1)
21,ijV

(1)
i < qi >sr +

1

3
b

(1)
21,ijV

(3)
iij < q2

i >r2< qj >s1

+
1

12
b

(2)
rs,ijV

(4)
iijj < q2

i >s0< q2
j >r0

+
1

12
b

(2)
rs,ijV

(4)
iiij < q3

i >s0< qj >r0 +2(b
(2)
rs,ijrω + sω) (2.66)

This expression is set to zero, the expression is then rearranged in order to find
the minima for b

(2)
rs,ij:

b
(2)
rs,ij =

1

rωi + sωj

(
− 1

6
b

(1)
21,ijV

(3)
iij < q2

i >2r< qj >s1 +
1

24
V

(4)
iijj < q2

i >r0< q2
j >s0

− 1

24
V

(4)
iiij < q3

i >r0< qj >s0 +
1

8

N∑
m=1,m 6=i

V
(4)
iiij < qi >r0< q2

m >00< qj >s0

)
(2.67)

There is a total of three non-zero values for b
(2)
rs,ij. At first glance there might

seem to be more possibilities, but the fact that terms with different subscripts are
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multiplied together results in only terms where all the hermitian polynomials are
non-zero survive. All possible values for s are: 0, 1, 2 and the possibilities for r are
0, 1, 2, 3. The expansion coefficients b

(2)
10,ij, b

(2)
20,ij. and b

(2)
12,ij become zero, as one of

the values in every term is zero. The remaining expansion coefficients are : b
(2)
11,ij,

b
(2)
22,ij, and b

(2)
31,ij. Starting with the expression for b

(2)
11,ij and following the same steps

as for a
(2)
i we get:

b
(2)
11,ij =

1

ωi + ωj

(
− 1

6
b

(1)
21,ijV

(3)
iij < q2

i >21< qj >11 +
1

24
V

(4)
iijj < q2

i >10< q2
j >10

− 1

24
V

(4)
iiij < q3

i >10< qj >10 +
1

8

N∑
m=1,m 6=i

V
(4)
iiij < qi >10< q2

m >00< qj >10

)
(2.68)

The first terms in this expression vanishes as both < q2
i >21, and < qj >11 evaluates

to zero. Similarily, both values in the second term, namely < q2
i >01 and < q2

j >01

are also zero, this leaves only the third and fourth term intact:

b
(2)
11,ij = −

1
24
V

(4)
iiij < q3

i >10< qj >10 +1
8

N∑
m=1,m 6=i

V
(4)
iiij < qi >10< q2

m >00< qj >10

ωi + ωj

(2.69)

Inserting the appropriate solutions for the integrals and simplifying gives the final
expression:

b
(2)
11,ij = −

1
24
V

(4)
iiij

3

2
√

2ω
3/2
i

1√
2ω

1/2
j

+
N∑

m=1,m 6=i

V
(4)
iiij

1√
2ω

1/2
i

1
2ωm

1√
2ω

1/2
j

ωi + ωj

= −
V

(4)
iiij

32ω
3/2
i ω

1/2
j (ωi + ωj)

+
N∑

m=1,m 6=i

V
(4)
iiij√

2ωm2ω
1/2
i

√
2ω

1/2
j (ωi + ωj)

(2.70)

Setting up the expression for the second expansion coefficient for b(2), namely b
(2)
22,ij,

the equation becomes:

b
(2)
22,ij =−

1
6
b

(1)
21,ijV

(3)
iij < q2

i >22< qj >12 + 1
24
V

(4)
iijj < q2

i >02< q2
j >02

< H0 − E(0) >22 + < H0 − E(0) >22

−
1
24
V

(4)
iiij < q3

i >02< qj >02

< H0 − E(0) >22 + < H0 − E(0) >22

(2.71)
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The third term vanishes as both < q3
i >02 and < qj >02 are zero. Inserting the

values of the remaining integrals, the expression is solved and simplified, yield-
ing:

b
(2)
22,ij = −

1
6
b

(1)
21,ijV

(3)
iij

5
2ωi

1√
ωj

+ 1
24
V

(4)
iijj

√
2

2ωi

√
2

2ωj

2(ωi + ωj)

= −
5b

(1)
21,ijV

(3)
iij

24ωiωj(ωi + ωj)
−

V
(4)
iijj

96ωiωj(ωi + ωj)
(2.72)

The expression for b
(2)
31,ij is:

b
(2)
31,ij = −

1
24
V

(4)
iiij < q3

i >03< qj >01

< H0 − E(0) >11 + < H0 − E(0) >33

(2.73)

= −
1
24
V

(4)
iiij ( 6

8ω3
i
)

1
2

1√
2ω1/2

3ωi + ωj

(2.74)

= −
√

6V 4
iiij

96
√
ω3
i

√
ωj(3ωi + ωj)

(2.75)

The expression for c
(2)
rst,ijk is found in the same manner as before. By setting the

derivative of the expression to zero, these steps will be skipped and the equation
for c

(2)
rst,ijk is plainly written out:

c
(2)
rst,ijk = −

1
6
c

(1)
111,ijkV

(3)
ijk < qi >1r< qj >1s< qj >1t

< H0 − E(0) >rr + < H0 − E(0) >ss + < H0 − E(0) >tt

−
1
24
V

(4)
iijk < q2

i >1r< qj >1s< qj >1t

< H0 − E(0) >rr + < H0 − E(0) >ss + < H0 − E(0) >tt

(2.76)

The possible values for the subscripts of c
(2)
rst,ijk are: r = 0, 1, 2, 3 , s = 0, 2 and

t = 0, 2, and all combinations of these. Some of these values will still disappear
within the expression for c

(2)
rst,ijk, the r can not be 1 or 3. Thus the non-zero terms

become: c
(2)
200,ijk, c

(2)
220,ijk,and c

(2)
222,ijk.
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c
(2)
200,ijk = −

1
6
c

(1)
111,ijkV

(3)
ijk < qi >12< qj >10< qj >10

< H0 − E(0) >00 + < H0 − E(0) >00 + < H0 − E(0) >00

−
1
24
V

(4)
iijk < q2

i >12< qj >10< qj >10

< H0 − E(0) >22 + < H0 − E(0) >00 + < H0 − E(0) >00

(2.77)

The < q2
i >12 integral is zero. The second terms will therefore disappear for all

the values of the superscripts.

c
(2)
200,ijk =

1
6
c

(1)
111,ijkV

(3)
ijk < qi >12< qj >10< qj >10

< H0 − E(0) >22 + < H0 − E(0) >00 + < H0 − E(0) >00

(2.78)

Inserting the correct terms we obtain:

c
(2)
200,ijk =

1
6
c

(1)
111,ijkV

(3)
ijk

1

ω
1/2
i

1√
2ω

1/2
j

1√
2ω

1/2
k

2ωi

=
c

(1)
111,ijkV

(3)
ijk

24(ω
3/2
i )(ωjωk)1/2

(2.79)

The other two terms are found similarly:

c
(2)
220,ijk = −

1
6
c

(1)
111,ijkV

(3)
ijk < qi >12< qj >12< qk >10

< H0 − E(0) >22 + < H0 − E(0) >22 + < H0 − E(0) >00

(2.80)

= −
1
6
c

(1)
111,ijkV

(3)
ijk

1

ω
1/2
i

1

ω
1/2
j

1√
2ω

1/2
k

2(ωi + ωj)
= −

1
6
c

(1)
111,ijkV

(3)
ijk

12
√

2(ωi + ωj)(ωiωjωk)1/2
(2.81)

c
(2)
222,ijk =−

1
6
c

(1)
111,ijkV

(3)
ijk < qi >12< qj >12< qj >12

< H0 − E(0) >22 + < H0 − E(0) >22 + < H0 − E(0) >22

(2.82)

=−
1
6
c

(1)
111,ijkV

(3)
ijk

1

ω
1/2
1

1

ω
1/2
j

1

ω
1/2
k

2(ωi + ωj + ωj)
= −

c
(1)
111,ijkV

(3)
ijk

12(ωi + ωj + ωj)(ωiωjωj)1/2
(2.83)

Finding d
(2)
rstu,ijkl :
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dE

dd
(2)
rstu,ijkl

=
1

12

N∑
ijkl=1

d
(2)
rstu,ijklV

(4)
ijkl < qi >r0< qj >s0< qk >t0< ql >u0

+2
N∑

ijkl=1

d
(2)
rstu,ijkld

(2)
rstu,ijkl < H0 − E(0) >ss

(2.84)

Solving for d
(2)
rstu,ijkl:

d
(2)
rstu,ijkl =

1
24
V

(4)
ijkl < qi >r0< qj >s0< qk >t0< ql >u0

< H0 − E(0) >rr + < H0 − E(0) >ss + < H0 − E(0) >tt + < H0 − E(0) >uu

(2.85)

There is only one non-zero value for d
(2)
rstu,ijkl, namely r = 1, s = 1, t = 1, u =

1.

Inserting the correct values into the subscripts gives:

d
(2)
1111,ijkl = −

1
24
V

(4)
ijkl < qi >10< qj >10< qk >10< ql >10

ωr + ωs + ωt + ωu

(2.86)

The differential equations above have the following solutions:

d
(2)
1111,ijkl = −

√
2V

(4)
ijkl

48(ωrωsωtωu)1/2(ωr + ωs + ωt + ωu)
(2.87)

2.8.3 The expression for Ψ(2)

The whole second order wavefunction has now been found. In all, there are nine
expansion coefficients. These will not be inserted into the equation for Ψ(2), as the
result will appear cluttered, but are summarized in the table 2.1.

2.9 Vibrationally averaged molecular properties

For an introduction to this topic, a review article written by C.J Jameson [53] is
referred to, which gives a clear introductory account of the topic.
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Table 2.1: The expansion coefficients found for the second order wavefunction Ψ(2)

a
(2)
r,i a

(2)
2,i = −(a1,i(

1

4ω
5
2
V 3
i3 + 1

2ω3/2Vi) + a3,i(
√

3
2
√

2ω3/2Vi +
√

27
8
√

2ω5/2V
3
i3) +

√
2

32ω3V
4
i4)

a
(2)
4,i = −( 1

192

√
6

ω3 V
4
i4 + a1,i

1
24

√
3

ω
5
2
V 3
i3 + a3,i(

1
4ωVi

√
2
ω + 1

8ωV
3
i3

√
8
ω3 ))

a
(2)
6,i = −

√
15

36ω5/2V
3
iiia3,i

b
(2)
rs,ij b

(2)
11,ij =

V 4
iiij

32ω
3
2
i
√
ωj(rωi+rωj)

b
(2)
22,ij = − V 4

iijj

96(rω2
i ωj+rωiω2

j )
− b21,ij5V

3
iij

24(rω2
i ωj+rωiω2

j)

b
(2)
31,ij = −

√
6V 4

iiij

96
√
ω3
i
√
ωj(3ωi+ωj)

c
(2)
rst,ijk c

(2)
200,ijk = − c

(1)
111,ijkV

(3)
ijk

24(ω
3/2
i )(ωjωk)1/2

c
(2)
220,ijk = − c111,ijk

√
2V 3

ijk

144(ωi+ωj)
√
ωiωjωk

c
(2)
222,ijk = − c111,ijkV

3
ijk

12(ωi+2ωj)
√
ωiω2

j

d
(2)
rstu,ijkl d

(2)
1111,ijkl = −

√
2V

(4)
ijkl

48(ωrωsωtωu)1/2(ωr+ωs+ωt+ωu)
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The property surface is extended by a Taylor series, analogous to the potential
energy surface:

P = P (0)
exp +

N∑
i

P
(1)
i,expqi +

N∑
ij

1

2!
P

(2)
ij,expqiqj +

N∑
ijk

1

3!
P

(3)
ijk,expqiqjqk + ... (2.88)

The property surface reflects the sensitivity of the electron distribution of the
molecule. The Pij,exp denotes the derivative of the property surface, and can be
thought of as the sensitivity of P to displacements of the nuclei away from the
equilibrium, the ”exp” subscript is referring to being at an arbitrary expansion
point.

The expectation value for a property is found by using the following expres-
sion:

〈P 〉 =
〈Ψ|P |Ψ〉
〈Ψ|Ψ〉

(2.89)

In order to find 〈P 〉, perturbation theory can be used as was first done by M.
Toyama et al. [78]. Another alternative would be to use contact transformations
[1], or Hellmann-Feynman theorem based methods [38]. Due to time constraint,
only the Rayleigh Schrödinger perturbation theory based approach will be ex-
plored.

We start by performing a Taylor expansion of the zeroth order perturbation of the
property, the first few terms are defined:

T (0) = P (0,0)
exp

T (1) =
N∑
i=1

P
(0,1)
i,expqi

T (2) =
1

2

N∑
i,j=1

P
(0,2)
ij,expqiqj

T (3) =
1

6

N∑
i,j,k=1

P
(0,3)
ijk,expqiqjqk (2.90)

Where the first of the superscripts denotes that we are at the zero order per-
turbation of the wavefunction, the second denotes the derivative of the property
surface. Using the notation above, we set up the molecular electronic property
surface, analogous to the to the potential energy surface.

28



Chapter 2. Theory 2.9. Vibrationally averaged molecular properties

P (0)(q1, q2, ..., qN) =
∞∑
n

P (0,n) = T (0) + T (1) + T (2) + T (3) + [...] (2.91)

The property expectation value near equilibrium can be expressed as a multidi-
mensional power series. Both the numerator and the denominator is expanded
about Ψ(0). For the numerator this becomes:

〈
P

(m,n)
numerator

〉
=

[
m∑
k=0

〈
Ψ(k)|T (n)|Ψ(m−k)

〉]
(2.92)

The first value in the subscript denotes perturbation order, while the second de-
notes the derivation order. For the denominator we start by writing out the general
expression:

〈
P

(m,n)
denominator

〉
=

1

〈Ψ(0) + λΨ(1) + λ2Ψ(2) + ...|Ψ(0) + λΨ(1) + λ2Ψ(2) + ...〉
(2.93)

For the zeroth order perturbation, the denominator evaluates to:

〈
P

(0,n)
denominator

〉
=

1

〈Ψ(0)|Ψ(0)〉
= 1 (2.94)

For the first order:

〈
P

(1,n)
denominator

〉
=

1

〈Ψ(0) + Ψ(1)|Ψ(0) + Ψ(1)〉

=
1

〈Ψ(0)|Ψ(0)〉+ 2 〈Ψ(1)|Ψ(0)〉+ 〈Ψ(1)|Ψ(1)〉
(2.95)

The
〈
Ψ(0)|Ψ(0)

〉
equals to 1 and Ψ(0) is orthogonal to Ψ(1), the equation can be

simplified to:

〈
P

(1,n)
denominator

〉
= 1 +

1

〈λΨ(1)|λΨ(1)〉
= 1 +

1

1− x
(2.96)

Taylor expanding 1
1−x gives:
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〈
P

(1,n)
denominator

〉
= 1 + x− (x− 1)

1

(1− x)2
= 1 (2.97)

The denominator for the second perturbation is:

〈
P

(2,n)
denominator

〉
=

1

〈Ψ(0) + λΨ(1) + λ2Ψ(2)|Ψ(0) + λΨ(1) + λ2Ψ(2)〉

=1 +
1

〈λ2Ψ(2)|λ2Ψ(2)〉

=1 +
1

(1− x− x2)2
(2.98)

A Taylor expansion of both the numerator and the denominator of Eq.(2.89) up to
second order has now been made. The zeroth order perturbation will closely follow
the procedure of Åstrand et al. [10], but the perturbation will be taken one step
further so as to utilize the analytical cubic and quartic force field available.

2.9.1 Zeroth order perturbation

The zeroth order perturbation will have the following form:

〈
P (0,n)

〉
=
〈
Ψ(0)|T (n)|Ψ(0)

〉
(2.99)

Expanding this for values of n gives:

∞∑
n=0

〈
P (0,n)

〉
=
〈
T (0)

〉
+
〈
T (1)

〉
+
〈
T (2)

〉
+ ... (2.100)

The term
〈
T (1)

〉
is zero as this evaluates to

〈
∞∑
i=1

P (1)qi

〉
00

= 0. The other terms

have the following values:

∞∑
n=0

〈
P (0,n)

〉
= P (0)

exp +
1

4

N∑
i=1

P
(2)
exp

ωi

+ [...] (2.101)

It is sufficient to expand up to P
(2)
exp, as we shall truncate at this Taylor expansion

of the property.
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2.9.2 First order perturbation

Finding the first order term with use of Eq (2.97):

〈
P (1,n)

〉
=
〈
Ψ(0)|T (n)|Ψ(1)

〉
+
〈
Ψ(1)|T (n)|Ψ(0)

〉
= 2

〈
Ψ(0)|T (n)|Ψ(1)

〉
(2.102)

The terms needed are therefore:

∞∑
n=0

〈
P (1,n)

〉
= 2

〈
T (0)

〉
01

+ 2
〈
T (1)

〉
01

+ 2
〈
T (2)

〉
01

+ 2
〈
T (3)

〉
01

+ ... (2.103)

The first term is evaluated to 2P (0). The third term is evaluated to P
(2)
ii 〈q2

i 〉01

and is thus zero. These two will therefore not be evaluated further. Writing out
2
〈
T (1)

〉
01

gives:

2
〈
T (1)

〉
01

= 2
N∑
i=1

P
(1)
i,exp 〈qi〉01

=
√

2
N∑
i=1

P
(1)
i,expa

(1)
1,i√

ωi

(2.104)

2.9.3 Second order perturbation

Next, the second order contribution will be found. We are able to find up to
the second order contribution as we have expressions for up to the second order
perturbation of the wavefunction.

〈
P (2,n)

〉
=
[〈

Ψ(0)|T (n)|Ψ(2)
〉

+
〈
Ψ(1)|T (n)|Ψ(1)

〉
+
〈
Ψ(2)|T (n)|Ψ(0)

〉]
×

[
1 +

m∑
p=1

m∑
l=0

(−1)n
(〈

Ψ(l)|T (n)|Ψ(l)
〉)n] (2.105)

Expanding the equation:
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〈
P (2,n)

〉
=
[
2
〈
Ψ(0)|T (n)|Ψ(2)

〉
+
〈
Ψ(1)|T (n)|Ψ(1)

〉]
×

[
m∑
p=1

m∑
l=0

(−1)n
(〈

Ψ(l)|T (n)|Ψ(l)
〉)n] (2.106)

Evaluating the normalization factor, P
(2)
m becomes:

〈
P (2)
m

〉
= 2

〈
Ψ(0)|T (n)|Ψ(2)

〉
+
〈
Ψ(1)|T (n)|Ψ(1)

〉
(2.107)

We have access to both the first and the second derivative of P , we therefore want
to find expression for P

(2)
0 , P

(2)
1 and P

(2)
2 . Starting by writing out the expression

for P
(2)
0 :

〈
P

(2)
0

〉
= 2

〈
Ψ(0)|T (0)|Ψ(2)

〉
+
〈
Ψ(1)|T (0)|Ψ(1)

〉
−
〈
Ψ(0)|T (0)|Ψ(0)

〉
(2.108)

As a result of the orthonormality properties of the wavefunction, the first term is
zero. The second and third terms both evaluate to P0×1, and thereby cancel each
other out. As we remain with no non-zero terms we conclude with:

〈
P

(2)
0

〉
= 0 (2.109)

Next, the expression for P
(2)
1 is written out:

〈
P

(2)
1

〉
= 2

〈
Ψ(0)|P1|Ψ(2)

〉
+
〈
Ψ(1)|P1|Ψ(1)

〉
−
〈
Ψ(0)|P1|Ψ(0)

〉
(2.110)

Inserting the expression of P1, found in equation(2.91) gives:

〈
P

(2)
1

〉
= 2

〈
Ψ(0)|

N∑
i=1

P
(1)
i qi|Ψ(2)

〉
+

〈
Ψ(1)|

N∑
i=1

P
(1)
i qi|Ψ(1)

〉

−

〈
Ψ(0)|

N∑
i=1

P
(1)
i qi|Ψ(0)

〉 (2.111)

According to the symmetry rules we see that all three of these terms evaluate to
zero; 〈q〉02 = 0, 〈q〉11 = 0, and 〈q〉00 = 0, therefore concluding with:

〈
P

(2)
1

〉
= 0 (2.112)
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Lastly, writing out the expression for P
(2)
2 :

〈
P

(2)
2

〉
=
〈
Ψ(0)|P2|Ψ(2)

〉
+
〈
Ψ(1)|P2|Ψ(1)

〉
+
〈
Ψ(2)|P2|Ψ(0)

〉
(2.113)

Inserting the value of P
(2)
2 , found in equation(2.91) gives:

〈
P

(2)
2

〉
=

N∑
i,j=1

(〈
Ψ(0)|1

2
P

(2)
ij qiqj|Ψ(2)

〉
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Ψ(1)|1

2
P

(2)
ij qiqj|Ψ(1)

〉
+

〈
Ψ(2)|1

2
P

(2)
ij qiqj|Ψ(0)

〉)
(2.114)

Inserting the value of Ψ(2) in the first of the three terms:

N∑
i,j=1
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Ψ(0)|1

2
P

(2)
ij qiqj|Ψ(2)

〉
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2
i |Ψ(0)

〉

+a
(2)
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i=1

1

2
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(2)
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2
i |Ψ(0)

〉

+b
(2)
11,ij

〈
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1

2
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(2)
ij qiqj|Ψ(0)

〉

+b
(2)
22,ij

〈
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N∑
i,j=1,i 6=j

1

2
P

(2)
ij qiqj|Ψ(0)

〉

+b
(2)
31,ij

〈
Ψ(0)|

N∑
i,j=1,i 6=j

1

2
P

(2)
ij qiqj|Ψ(0)

〉

(2.115)

Pulling out the constants from the integral, the following expression is obtained:
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N∑
i,j=1

〈
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(2.116)

Filling in the values for the integrals the final expression for
〈

Ψ(0)|1
2
P

(2)
ij qiqj|Ψ(2)

〉
becomes:

N∑
i,j=1

〈
Ψ(0)|1

2
P

(2)
ij qiqj|Ψ(2)

〉
=
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i=1
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(2)
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2
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(2)
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√
2

2ωi

+
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b
(2)
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b
(2)
31,ij

1

2
P

(2)
ij

√
2

2ωj

(2.117)

The second term for P (2), namely
〈
Ψ(1)|P2|Ψ(1)

〉
, will now be evaluated:
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N∑
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Pulling out the constants from the integral as previously:
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Evaluating gives:
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〉
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√
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2
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3,i +

2
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3,i
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(2.120)

The third term for P
(2)
2 is −

〈
Ψ(0)|P1|Ψ(0)

〉 〈
Ψ(1)|Ψ(1)

〉
. If the Ψ(1) has been evalu-

ated correctly,
〈
Ψ(1)|Ψ(1)

〉
equals 1.
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−
〈
Ψ(0)|P2|Ψ(0)
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=
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= −
N∑
i=1
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ii
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√
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(2)
ii
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2ωi
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Combining all of the above expressions, we obtain the final expression for P
(2)
2 :

〈
P

(2)
2

〉
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P
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√
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4ωj

(2.123)

2.10 Property corrections at specific geometries

So far, the expressions found are valid for any expansion point, i.e, any geome-
try. We will now see how these expressions are simplified by considering certain
geometries, more concretely, the equilibrium and the effective geometry.

2.10.1 Equilibrium geometry

Recalling that at the equilibrium, V (1) = 0, we will therefore set all the gradients
to zero. We will only consider the expansion coefficients that changes with the
new geometry, i.e. the ones containing V (1). For the first order coefficients there
is one of them a

(1)
1,i , for the second order coefficients there are two, namely a

(2)
2,i and

a
(2)
4,i :

Starting with a
(1)
1,i,, the expression at equilibrium becomes:

a
(1)
1,i,eq = − 1

4
√

2ω
3/2
i

N∑
m=1

V
(3)
imm

ωm

(2.124)
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This will also effect all the second order coefficients that contain a
(1)
1,i,, simplify-

ing them. For the second order coefficients, we obtain the following simplified
coefficients:
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√
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√
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and:
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√
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192ω3
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(2.126)

The expression for the vibrationally averaged properties themselves, however, does
not change and remains identical to the Eq. (2.123).

2.10.2 Effective geometry

At the effective geometry, the criteria V
(1)

eff,j + 1
4

N∑
i=1

V
(3)
eff,iij

ωi
= 0 is valid. With this in

mind a
(1)
1,i can be shown to disappear altogether:

a
(1)
1,i =

1
√

2ω
3/2
i

(
V (1) − 1

4

N∑
m=1

V
(3)
imm

ωm

)
= 0 (2.127)

This also entails that all terms involving a
(1)
1,i are zero for the effective geometry.

The expression for the property correction will therefore also take on a different
form for the effective geometry (beyond only the coefficients changing). For the
second order coefficients, these reduce to far simpler expressions:
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Here we have rearranged the equation to convincingly show that four of the terms
in the above equations become zero, two of them as a consequence of containing
a

(1)
1,i :

a
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Comparing equation Eq.(2.125) and Eq.(2.129), we see that choosing to expand
around the effective geometry greatly reduces the complexity of the equation for the
second order perturbation. The largest four terms are omitted when perturbating
around the effective geometry. For a

(2)
4,i it can also be shown to reduce to a simpler

expression:
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The expression for the property correction at the effective geometry is simplified
to:

〈
P

(2)
2

〉
=
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The effective geometry is clearly an improvement over the equilibrium geometry,
however, the effective geometry does not simplify the terms of higher order than
V (3). This results in a decline of its usefulness as we increase the perturbation
order.

2.11 Analytical derivatives

There are several advantages associated with analytical derivatives compared to
numerical derivation: it increases the efficiency by a factor proportional to the
number of nuclei. In addition, more accurate results are produced[66, 27, 67]. The
largest increase in efficiency is gained from the transition of first order numerical
derivatives to analytical. Efficiency is also gained for higher derivatives in line
with Wigner’s 2n+1 rule [75, 66].

The gradient and Hessian of a Hartree-Fock function can be determined analyti-
cally with general response theory according to the following equations [44]:

dE

dRK

=

〈(
dH

dRK

)〉
(2.133)

d2E

dRKdRL

=

〈(
d2H

dRKdRL

)〉
+

〈(
dH

dRK

;

(
dH

dRL

)T
)〉

(2.134)

The nuclear coordinates are denotes RK. The ”;” indicates a response function[44].
These equations are based on the Hellmann-Feynman theorem[47, 37], stating that
the derivative of the energy with respect to a parameter R is the expectation value
of ∂H/∂R,:

This is considered the simplest expression of analytical derivatives, but leads to
large inaccuracies unless very large basis sets, up to infinite sized, are used.

In order to obtain accurate results without an infinite basis set a force referred to
as the Pulay force is added as a correction to the equation. This correction is the
trace of the derivated overlap integral ∂S/∂R multiplied with the energy weighted
density matrix W [65]. This theory was then generalized to the Lagrangian theo-
rem [45, 46].

The analytical derivatives[70] used in this thesis, are evaluated using atomic or-
bital energy based derivative theory [77], expressed with the Lagrangian formula-
tion.
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2.11.1 Cubic and quartic force field

The geometric derivatives are received as cartesian coordinates and must be trans-
formed into normal coordinates in order to use them in the equations derived.
The transformation from cartesian to normal coordinates is done by executing the
following equation[64]:

V
(3)
ijk =

3N∑
I=1

3N∑
J=1

3N∑
K=1

V
(3)
IJKNiINjJNkK ∀i, j, k (2.135)

The N being the transformation matrix found in equation 2.8. The transformation
for the quartic force field is similarly:

V
(4)
ijkl =

3N∑
I=1

3N∑
J=1

3N∑
K=1

3N∑
L=1

V
(4)
IJKLNiINjJNkKNlL ∀i, j, k, l (2.136)

2.11.2 First and second property derivatives

Also the derivative of the electric field has been implemented analytically using
atomic orbital energy based derivative theory [77]. With the ability of derivat-
ing geometrically and electronically one can acquire the derivatives of the dipole
moment and the polarizability[39].

When the properties are differentiated, the output obtained is in cartesian coordi-
nates. Generally, for the first derivative, the conversion to normal coordinates is
given by:

P
(1)
i =

3N∑
I=1

P
(1)
I NiI ∀i (2.137)

For the second derivative:

P
(2)
ij =

3N∑
I=1

3N∑
J=1

P
(2)
IJ NiINjJ ∀i, j (2.138)

As the properties we work with are first and second tensor properties, one needs
to add an additional loop so as to cover all the elements in the tensor, rendering
the transformation equations into:

P
(1)
ij,1 tensor =

3N∑
I=1

P
(1)
Ij NiI ∀i, j = {1, 2, 3} (2.139)
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and:

P
(1)
ijk,2 tensor =

3N∑
I=1

P
(1)
IjkNiI ∀i, j, k = {1, 2, 3} (2.140)

The same applies for the second derivatives:

P
(2)
ijk,1 tensor =

3N∑
I=1

3N∑
J=1

P
(2)
IJkNiINjJ ∀i, j, k = {1, 2, 3} (2.141)

and:

P
(2)
ijkl,2 tensor =

3N∑
I=1

3N∑
J=1

P
(2)
IJklNiINjJ ∀i, j k, l = {1, 2, 3} (2.142)

2.12 The properties to be investigated

2.12.1 First tensor properties

The only first tensor property that will be investigated is the dipole moment.

The dipole moment denoted µ, can be obtained by taking the first derivative of
the electric field, this can be done as V = -~µ · ~E. The dipole moment is a first
tensor property, therefore, it is usually reported by its magnitude:

µ =
√
µ2
x + µ2

y + µ2
z (2.143)

2.12.2 Second tensor properties

The polarizabilty denoted α is the second order derivative of the energy of the
electric field, and will be calculated analytically. Two other second order properties
will used for validation, nuclear magnetic shielding constant and and the molecular
quadrupole moment as defined by Buckingham[19].

For water, three components of the second order tensors will be reported, for
a generic property p, these components are reported as pxx, pyy, pzz, the other
components will be zero. In the literature it is common to report the mean value
(Eq. (2.144)) and the anisotropy of the second order tensors (Eq. (2.145)) instead
of reporting component wise.
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p̄ =
1

3
(pxx + pyy + pzz) (2.144)

∆p = p33 −
1

2
(p11 + p22) (2.145)

where p33 ≥ p22 ≥ p11.

In order to use these equations, care must be taken to orient the molecule in
such a way that only the diagonal elements of the second tensor property are
non-zero.
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Chapter 3

Implementation

The structure of the program will be presented and justified by means of a class
UML diagram. The code implementing the equations derived in the Theory chap-
ter will be presented if it has noteworthy attributes, but the helping functions and
methods such as those found in read.input and the testing classes will not. The
program was written in Python, due to an extensive use of the NumPy and SciPy
packages proving advantageous, in addition to being able to write object oriented.
As a reference, A Primer on Scientific Programming with Python[59] has been
used throughout the whole process.

3.1 Overview

The code was written in an object oriented manner. This makes the code readable
and more maintainable. The code that is implemented also had obvious candidates
for objects, making object oriented code a natural choice. The class UML diagram,
fig.3.1, depicts the structure of the program.

There were several reason for choosing to implement a molecule class. Firstly, it
makes sense to create a molecule class to enhance the understanding of the code,
as molecules are thought of as objects in the real world. One of the advantages
with respect to coding is the increased simplicity: When calculating properties the
molecule object is sent as a parameter to the function. The function will then have
access to all the properties of the molecule. The alternative would be to send along
all the properties of the molecule, one would then typically have to send in four
parameters to each function. This is more cluttered and it gives a less intuitive
understanding of where the parameters come from, and what they mean.
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Figure 3.1: The UML diagram of the program

The different properties are also implemented as classes. A super class ”Property”
has been implemented, which defines what functions are found in the subclasses,
and the parameters all properties share. The superclass also includes an initializing
method, which initializes a pointer to the molecule object, and also the name of the
property. The writet to file method is also implemented here. It contains empty
callable functions, indicating that the Property class’s role is as a template super
class and should therefore never be called.

There are three subclasses of Property. These are: ”Property 1 Tensor”, ”Prop-
erty 2 Tensor”, and ”Property 2 Tensor atom”. Every property we evaluate falls
into one of these subclasses. The subclasses each have a call method which then
calculates the property, and writes the results to file. The subclasses also have
each their initialization method which inherits from the superclass in addition to
initialization the attributes unique to said subclass. In addition to this, there are
various helping methods in each subclass. Making properties into objects might
be less intuitive then making molecule into objects, yet structuring the program
this way makes for several advantages. Much of the code is the same for the three
subclasses, and if we did not have a superclass to inherit from, there would be du-
plication of code. Secondly, having a template superclass imposes certain features
on the subclasses, this generally has a stabilizing effect on the program. Intro-
ducing property classes also makes the code more readable, as the attributes and
methods belonging to the property calculations are grouped within a class.
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A read input Dalton module and a read input test module have also been imple-
mented. The reason for making these modules is that if one wants to use data from
another source it is easy to swap the modules as their code is not entangled with
the rest of the program. Lastly, the abavib.py file is there to run the program.
A simple command line input is chosen, but this is also simple to switch out or
expand on if desired.

3.2 Converting to a normal coordinate basis

3.2.1 Evaluating the normal coordinates basis and the fun-
damental frequencies

In order to calculate the normal coordinates and fundamental frequencies, the
Hessian and the equilibrium position of the molecule in Cartesian coordinates are
needed, in addition to the masses of all the atoms involved. The Hessian must
first be 1. projected, it must then be 2. mass weighted and 3. diagonalized.
The code for projecting is found in appendix B code. B.1. The method employs
NumPy functions including linalg.qr which transforms the input array into a upper
quadratic matrix.

The eigenvectors and eigenvalues are found by mass weighting and diagonalizing,
executed in the program as seen in Appendix B code B.2. The NumPy function
dot is responsible for matrix multiplication and linalg.eig is used to decompose the
matrix into the eigenvectors and eigenvalues.

Because we are at the energy minima, six of the eigenvectors (5 if linear) should
be zero. These must be removed, along with their respective eigenvectors. We are,
however, not truly at the energy minimum. The six eigenvectors will therefore
not be zero, but will be the order of magnitude 10−19 or less. Conveniently, the
linalg.eig function automatically sorts the eigenvalues by magnitude, it is simply
just a matter of removing the last six values of the eigenvalues and eigenvectors.
Next, the argsort function is employed; the argsort function is used in order to sort
the eigenvalues and the eigenvectors so that they correspond to each other. The
eigenvalues now correspond to the fundamental frequencies, and mass weighting
the eigenvectors gives the normal coordinates basis.

3.2.2 Converting the cubic and quartic force field

The cubic force field is recieved from Dalton in cartesian coordinates. It must be
converted into normal coordinates before it can be used to calculate the effective
geometry. The transformation of the cubic force field from Cartesian to normal
coordinates is defined in equation 2.136. The equation is rewritten in order to
produce code with fewer nested loops:
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V
(3)
ijk =

3N∑
I=1

3N∑
J=1

3N∑
K=1

V
(3)
IJK ×

3N∑
I=1

3N∑
J=1

3N∑
K=1

V
(3)
IJKNjJ

×
3N∑
I=1

3N∑
J=1

3N∑
K=1

V
(3)
IJKNkK ∀i, j, k (3.1)

This can be implemented directly as seen in code B.3, and this is how the conver-
sion from cartesian to normal coordinates is implemented in Dalton.

By observing the code corresponding to the nested loops, they appear to be do-
ing the same job as the matrix operation of multiplication. It turns out that
by transposing the matrices and multiplying the cubic force field with the nor-
mal coordinate basis in a certain order, albeit somewhat arbitrarily, it is possible
to transpose the cubic force field using matrix multiplication. The sequence of
transposing and multiplying is found in Appendix B, code B.4.

The conversion of the quartic force field is handled likewise.

3.2.3 Converting the first and second derivative of the
property surface

The equations to be implemented are the equations: 2.139, 2.140, 2.141, and
2.142.

These can be implemented directly, by substituting the sums for for-loops. The
matrix operations corresponding to these sums have been deduced, and are re-
ported in code B.5 and B.6. Only the methods for converting the first tensor
gradient and first tensor Hessian are reported, as the there isn’t any significant
task to add the extra sum for the second tensor.

For the conversion of the Hessian, both the whole property Hessian and the diago-
nal of said array are returned. The diagonal components are used when evaluating
the zeroth order corrections, and using NumPy’s diagonal function is faster than
using a for-loop for this purpose.

3.3 Effective Geometry

The method for calculating the effective geometry has been rewritten in terms
of matrix operations B.7, the output of this method is the effective geometry in
normal coordinates. From here, the effective geometry must therefore be converted
to cartesian coordinates. This is done in the method B.10.
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3.4 Property Correction

The property correction methods are as following: The zeroth order correction, the
first order correction for molecules at the equilibrium geometry, the second order
correction for molecules at the effective geometry, and the second order correction
for molecules at the equilibrium geometry. Recalling that the corrections at the
effective geometry are just simpler expression for the corrections at the equilibrium
geometry, only the implementation at the equilibrium geometry will be discussed,
we shall also limit ourselves to corrections to first tensor properties.

On the topic of structure, these correction methods are implemented in their re-
spective Property subclasses. The correct method is automatically chosen for the
property of choice, but whether calculations should be done at the effective or
equilibrium geometry must be specified. A molecule can have pointers to as many
properties and corrections as is desired. The property class gets a pointer to the
molecule object and therefore has free access to all the properties of the molecule
needed.

The zeroth order correction can be viewed in code B.9, the first order corrections
in code B.10; note that the first order correction applies only to the equilibrium
geometry. These corrections have been implemented using only matrix operations
leading to fast, non-error prone code.

The second order corrections has been by far the hardest part of the program
to implement in a reasonable manner, this as a result of operations not having
a matrix operation counterpart. The second order correction has therefore been
implemented as a combination of for-loops and matrix operations and measures
have been taken to produce readable code, as seen in B.11.

The use of for-loops increases the chances of mistakes. This is because certain
values must be set to zero, indentation faults can occur, and there is generally a
greater number of lines mistakes can crop up in. As opposed to NumPy functions,
which have been extensively tested for all types of edge cases, the for-loop can
malfunction. There are no values the second order corrections can be compared
to. Great care has been taken to make sure this code in in fact on par.

3.5 Version control system

A version control system had been used throughout the project. There are many
version control systems to choose from; but the choice ultimately fell on Git [25]
as it is open source, free, and already installed on most Linux distributions.

A version control system allows for changes to be archived, so one can go back to
older versions if needed. The entire project, including the history, is saved both
locally and in cloud storage. The project can thereby be accessed for viewing
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through the git repository on the candidates GitHub account. To prevent bloating
of the thesis, a restricted amount of code documentation is found here, if more
extensive viewing is desired, referral is made to said GitHub account.

A useful aspect of the git software is the branching function; in order to try out
new features of your program without risking your original program, a branch can
be created where new feature may be tried out. If this feature is deemed successful,
the branch can then by merged back into the original branch. The main branch
is traditionally named master. Ideally, this branch should always be operating
correctly. It is good practice to always develop code in a different branch, then
merge it with master when finished developing. Two examples of branching is
displayed over two different time periods in figure 3.2 and figure 3.3.

Figure 3.2: An example of the branch history of the project. Here unit testing was
developed parallel with generallizing the project in order to take input of any molecule.
The second test molecule was water, hence the name of the branch, the first was hydrogen
peroxide.

Figure 3.3: In this stage of the program, the structure was rewritten to conform to the
object oriented nature of Python, a copy of the original structure (master copy) was kept
for a duration of time in case needed.
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3.6 Testing

There were three types of testing done for the program. Firstly, identical input was
run through the program in addition to DALTON, and the values were compared.
This was always the first step in testing. Secondly, the values produced by the
program were compared to the literature. This comparison will be explained in
detail in the Validation chapter. Lastly, an attempt has been made in employing
unit testing.

Unit testing makes bugs very easy to catch as the program is expanded. It is
also used to test edge cases making sure the program does not produce strange
results for certain input, for example input with a large amount of zeros. It is
good practice to write extensive testing classes, as maintenance generally renders
more time demanding than writing the initial code.

The python package unittest has been employed, and each method has its own test
class. The class accommodates a setup method, where the functions and variables
that are to be tested are set up. Various tests are then written and run for each
class. The unit tester should ideally be developed before the code is written, and
then also appended to as the code is written to meet the unit test requirements.
Testing as been done extensively, but not completely.
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Chapter 4

Validation

This chapter aims to validate the implementation of the program code as described
in the former sections. The effective geometry and zeroth order corrections have
been implemented here as well as in Dalton. It is therefore possible to validate
against the results obtained with Dalton.

Within this section, the basis sets and electron correlation will be exactly the same
as used in the literature[72] in order to show that the program does in fact operate
correctly in line with Dalton.

Generally speaking, only calculations at the SCF level with small basis sets have
been performed. This is because the purpose of this section is to validate the
program against the literature, and as the wavefunctions and optimizations them-
selves are not part of the program, they do not need to be validated. It is therefore
practical to use non-expensive parameters. We will not discuss to what extent the
corrected property is a good fit with experimental and other literature in this sec-
tion. This is because we have used HF without including electron correlation. The
discussion of whether or not our calculations are accurate compared to experimen-
tal values will therefore be dealt with in the next chapter.

Deviations between the values reported here and in Dalton are to some extent ex-
pected. There are several reasons for this: Most importantly, analytical derivatives
are employed here, while the values we compare to are obtained using numerical
derivatives. Numerical derivatives are not as accurate as analytical, and depend
on the step length. The analytical value should fall between the range of values
obtained using different step lengths but might not be the exact values reported
in the literature. A less important factor contributing to deviations is that certain
numerical routines are carried out by NumPy in my program, while Dalton is
written in Fortran, this can lead to small differences in the output as a result of
round-off error.
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4.1 Step lengths

Before embarking on the task of validating the analytical derivatives with the
numerical ones, an analysis of the step lengths versus the property correction
will be performed. This will give an indication of what variation we can expect
to see between the analytical and numerical derivatives. If the correction is very
sensitive to the step length we can accept a larger deviation than if the correction is
insensitive. The properties which will undergo step length analysis are: The dipole
moment, the polarizabilities, and the nuclear shieldings. The reason for the prior
two properties is that these are the ones that can be calculated both analytically
and numerically. The nuclear shieldings are included as they are known to be very
sensitive to the step length, we may therefore expect a deviation from the literature
even while using numerical derivatives with a carefully chosen step length. The
results for are displayed in table 4.1. The coordinate system chosen is one where
the molecule lies in the xy-plane with the x-axis lying along the dipole axis. This
leads to only the x-component of the dipole moment being non-zero.

Table 4.1: Variation of the dipole moment and polarizability correction,
〈
P

(0)
2

〉
eff

for

water with respect to step length.

Step length /a.u. 0.001 0.0025 0.0075 0.05

µx /a.u. -0.0017 -0.0019 -0.0019 -0.0011
αxx /a.u. 0.1512 0.1514 0.1515 0.1433
αyy /a.u. 0.0967 0.0972 0.0971 0.0821
αzz /a.u. 0.0200 0.0217 0.0220 0.0145

For the dipole moment we can expect the corrections to be accurate to the sec-
ond significant figure. The dipole moment appears not to be sensitive to the step
length, and it is expected that that the analytical and numerically obtained dipole
moments are quite close. For the polarizability there seems to be a larger depen-
dency on the step lengths, especially for αyy, a larger difference can be tolerated
for this property.

Table 4.2: Variation of the isotropy and anisotropy of the chemical shielding correction,〈
P

(0)
2

〉
eff

for methane with respect to step length. The step lengths reported are taken

around the step length found to produce the most accurate values (step length = 0.06).

Step length 0.025 0.05 0.06 0.07

σC /ppm -0.47 -0.80 -0.56 -0.85
σH /ppm -0.18 -0.20 -0.18 -0.16
∆σH /ppm -0.18 -0.16 -0.15 -0.16
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The chemical shielding’s sensitivity with regard to the step length is confirmed in
table 4.2, care must be taken in choosing a step length.

4.2 Property corrections for diatomic molecules

Both a numerical and an analytical approach for the derivatives will be taken for a
diatomic molecule. Regarding the numerical approach, the same variables will be
used as in the article we are validating against [72]. The purpose being to confirm
that the Python program produces the correct effective geometry and vibrational
corrections. Secondly, we will calculate the cubic force field, Hessian and dipole
derivatives analytically in order to validate for the analytical input.

The diatomic molecule chosen is the HF molecule; for all calculations the atomic
natural basis set ANO [80, 81] was used with the contraction [6s5p4d3p] for fluoride
and [5s4p3d] for hydrogen in line with the publication.

Numerical parameters: For the geometry optimization, a first order optimization
was used, the starting point for the Hessian was a model Hessian developed by
Pulay and Fogarasi[68], the step length was set to 0.001 a0. For the effective
geometry, only the part of the cubic force field needed, ie. the Vijj values were
calculated. This was done by taking the second derivative of the Hessian in normal
coordinates using a step length of 0.05 bohr.

Analytical parameters: The analytical Hessian, full analytical cubic force field,
and analytical property derivatives were calculated. There are therefore no step
lengths to report for the effective geometry or property derivative step.

Table 4.3: Geometry information for HF with a step length of 0.05 bohr

Property Analytical Numerical Literature [72]

re /Å 0.8972 0.8972 0.8972
reff /Å 0.911 0.911 0.911
ωe /cm−1 4474 4474 4474

In order to gain control and validate all the steps of the property corrections, the
optimization step and the calculations of the effective geometry are compared in
Table 4.3. We can validate that both the optimization step and the step of finding
the effective geometry function correctly, both with regards to using analytical
derivatives and to using the python program.

The vibrational averaging is carried out at the effective geometry. The step length
is set to 0.05 bohr when finding the second derivatives of the property with numeri-
cal derivatives. For the dipole moment and the polarizability analytical derivatives
will be used and compared to the numerical ones. For these two properties, a purely
analytical approach is taken.

53



4.3. Property corrections for polyatomic molecules Chapter 4. Validation

There are three separate methods implemented to carry out the vibrational aver-
aging: One for rank 1 tensors, one for rank 2 tensors, and one for rank 2 tensors
where every atom of the molecule has its own tensor. All three of these methods
should be validated, thus at least one property of each tensor is reported. The
ones chosen are:

Rank 1 tensor: Dipole moment
Rank 2 tensor: Molecular quadrupole moment and polarizability
Rank 2 tensor, values per atom: Nuclear shielding.

The results for these three properties are given in table 4.4.

Table 4.4: Property corrections for HF with a step length of 0.05 bohr.

Property 〈P 〉eff − 〈P 〉
a
e Literature [72]

〈
P

(0)
2

〉
eff

b Literature [72]

µz,numerical /a.u. 0.7427 0.7412 -0.0008 -0.0008
µz,analytical /a.u. 0.7427 0.7412 -0.0008 -0.0008
αnumerical /a.u. 0.0671 0.0671 0.0181 0.0181
αanalytical /a.u. 0.0671 0.0671 0.0172 0.0181
Θzz /a.u. 0.0454 0.0454 0.0080 0.0084
σF /ppm -5.75 -5.75 -2.82 -2.91
∆σF /ppm 8.54 8.54 4.44 4.43
σH /ppm 0.64 0.64 0.28 0.29
∆σH /ppm 0.81 0.81 0.22 0.23
aSee equation 2.123
bSee equation 2.123

The molecular quadrupole moments is dependent on the origin of the molecule for
polar molecules. Both in the literature[72] and for our calculations the origin is
set to the fluorine atom’s coordinates.

The second order corrections are close to the literature[72]. The analytical and
numerical dipole moments are the same; this is in line with our expectations as the
dipole moment was not found to change much with the step length. The difference
between the analytical and numerical polarizability is larger with a difference of
0.0009, this is reasonable as was establised with table 4.2.

4.3 Property corrections for polyatomic molecules

The polyatomic molecules to be explored are water, ammonia, and methane, as
these are the molecules reported in the literature we validate with[72]. When
working with polyatomic molecules, more care must be taken to get the correct
symmetry for the coordinate system; this greatly simplifies calculating the tensors
that are to be reported. The geometry for water has already been established, for
ammonia and methane their geometry are chosen so the center of mass is at origo
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and at least one of the hydrogen atoms are in the xy-plane with with the hydrogen
atom along the x-axis.

Also for the polyatomic molecules the atomic natural basis set ANO [80, 81] is used
with the contraction [6s5p4d3p] for the second row atoms and [5s4p3d] for hydro-
gen. For the polyatomic molecules only analytical derivatives will be used when
finding the effective geometries. The geometries are reported in table 4.5.

Table 4.5: Geometry information for water, ammonia, and methane with analytical
derivatives, only the frequency associated with totally symmetric modes are included as
this is what is reported in the literature.

Water Literature [72]

re /Å 0.9398 0.9398
anglee /◦ 106.3 106.3
reff /Å 0.9530 0.9528
angleeff/◦ 106.4 106.4
ωi,e /cm−1 4130 4130
ωj,e /cm−1 1748 1748
Property Ammonia Literature [72]

re /Å 0.9978 0.9978
anglee/

◦ 180.2 180.2
reff /Å 1.0086 1.0086
angleeff/◦ 108.6 108.6
ωi,e /cm−1 3690.8 3691.0

Methane Literature [72]

re /Å 1.0814 1.0814
reff /Å 1.0938 1.0936
ωi,e /cm−1 3149.4 3149.5

Based on calculations where known input from Dalton is inserted with a known
effective geometry, the difference between the effective geometry calculated by the
program and Dalton are the same to three significant figures. Any deviation from
the literature in the reported results are therefore not affected by the difference in
the way python calculates and rounds off.

Table 4.6 depicts the property corrections for water. Again, we see that the dipole
moment for both calculated analytically and numerically are in agreement with
the literature. The polarizabilities are also within the range of what we expect, as
well as the results for molecular quadrupole moment and nuclear shieldings.

From table 4.7 and table 4.8 we can observe that similar results are found for
ammonia and methane as for the water molecule. The results for the dipole mo-
ment and molecular quadrupole moment are close to the literature, while there
are deviations for the polarizablity and the nuclear shielding. For ammonia and
methane, the numerical property correction error is larger than the analytical cor-
rection for polarizability, illuminating the dependency of the step length. In this
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Table 4.6: Property corrections for water with a step length of 0.0075 bohr for the prop-
erties with numerical derivatives.

Property Peff − Pe Literature [72]
〈
P

(0)
2

〉
eff

a Literature [72]

µx,numerical /a.u. -0.0039 -0.0039 0.0019 0.0019
µx,analytical /a.u. -0.0039 -0.0039 0.0019 0.0019
αxx,numerical /a.u. -0.0039 -0.0039 0.0971 0.0971
αyy,numerical /a.u. -0.0039 -0.0039 0.1515 0.1514
αzz,numerical /a.u. -0.0039 -0.0039 0.0220 0.0220
αxx,analytical /a.u. 0.0627 0.0627 0.0960 0.0971
αyy,analytical /a.u. 0.0627 0.0627 0.1481 0.1514
αzz,analytical /a.u. 0.0627 0.0627 0.0220 0.0220
Θxx /a.u. -0.0064 -0.0064 0.0047 0.0046
Θyy /a.u. 0.0386 0.0386 0.0067 0.0068
Θzz /a.u. -0.0322 -0.0322 -0.0114 -0.0114
σO /ppm 0.78 0.80 -4.45 -4.54
∆σO /ppm 0.78 0.80 -1.46 -1.66
σH /ppm -0.69 -0.70 0.06 0.06
∆σH /ppm -0.69 -0.70 -0.21 -0.22
aSee equation 2.123

Table 4.7: Property corrections for ammonia with a step length of 0.001 bohr for the
properties with numerical derivatives. The origin is set to the center of mass.

Property Peff − Pe Literature [72]
〈
P

(0)
2

〉
eff

b Literature [72]

µz,numerical /a.u. 0.0107 0.0107 0.0097 0.0097
µz,analytical /a.u. 0.0107 0.0107 0.0095 0.0097
ᾱnumerical /a.u. 0.2350 0.2351 0.2391 0.2591
ᾱanalytical /a.u 0.2350 0.2351 0.2586 0.2591
Θzz /a.u. -0.0322 -0.0322 -0.0114 -0.0114
aSee equation 2.123

Table 4.8: Property corrections for methane with a step length of 0.06 bohr.

Property Peff − Pe Literature [72]
〈
P

(0)
2

〉
eff

a Literature [72]

ᾱnumerical /a.u. 0.3757 0.3754 0.5076 0.5257
ᾱanalytical /a.u. 0.3757 0.3754 0.5241 0.5257
σC /ppm 2.55 2.55 -0.56 -0.53
σH /ppm -0.42 -0.42 -0.18 -0.18
∆σH /ppm -0.21 -0.22 -0.15 -0.15
aSee equation 2.123
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regard, the polarizability is a good candidate for the analytical method, as there
is a significant uncertainty associated with the numerical derivation.
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Chapter 5

Examples

5.1 Calculations up to second order corrections

The dipole moment and polarizability will be calculated and corrected up the
second order perturbation of the property surface. The corrections in question
are: P

(0)
2eff

and P
(2)
2eff

defined in Eq.(2.101) and Eq.(2.123) respectively, recalling that
we have truncated at the second derivative of the property.

Calculations will be carried out at DFT level, the basis set aug-cc-pVTZ [55, 82, 83]
will be used for calculations of the dipole moment, as this is found to be the basis
set limit for these calculations [28].

The aug-cc-pVNZ basis sets are some of the most widely used. The cc-p stands for
correlation-consistent polarized [60]. This is important as the charge distribution
about an atom perturbs when bonded to an atom with a different electronegativ-
ity. The lowest energies cannot be reached without polarization functions. The
polarization functions become more important the larger the electronegativity of
the bonded atoms in molecule is. It is also of utmost importance when determin-
ing dipole moment and the polarizabity. The N in aug-cc-pVNZ is referred to as
double-zeta, triple-zeta, etc. As the N becomes larger, successively larger shells of
polarization are added. The aug signifies the the presence of diffuse components of
the basis sets. These are shallow Gaussian basis functions, improving the tail por-
tion of the atomic orbitals, and are especially important if atoms in the molecule
has a significant amount of electron density. The aug-cc-pVNZ basis sets should
only be used for first and second order elements, additional functions must be
added for third period elements. In this thesis, only second order elements will be
used, rendering the aug-cc-pVNZ basis sets a good choice. For the polarizability,
the basis set aug-cc-pVDZ has been found to be sufficient [42].

As we are operating with DFT, an exchange-correlation energy functional is needed,
this functional will account for electron correlation and exchange interaction[60].
The functional that has been found to give the most accurate results are the hybrid
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functionals B3LYP[13, 76] and B3PW91. Hybrid functionals are created by both
the exact exchange from Hartree-Fock theory and correlation from empirical or ab
initio data. Only B3LYP will be used as B3PW91 is not implemented in Dalton
for all the required routines, fortunately, this functional was found to be best for
property calculations with DFT for OpenRSP[4].

We will continue with the molecules used for the validation; H2O, NH3, and CH4,
in addition the molecule D2O will also be used in order to demonstrate the isotope
functionality of the program.

The basis set and functional stated above will be used in the geometry optimization
step, the effective geometry step, and when executing the zeroth and second order
property correction. All parts of the calculations will be executed with analytical
derivatives.

5.1.1 Effective geometry

Table 5.1: Geometry information for H2O, D2O, NH3, and CH4, at DFT level with
analytical derivatives, only the frequency associated with totally symmetric modes are
included.

H2O D2O NH3 CH4

re /Å 0.9621 0.9621 1.0134 1.0886
reff /Å 0.9769 0.9727 1.0255 1.1012
Experiment re /Å 0.959a 0.956c 1.0124c 1.087c

anglee/
◦ 105.1 105.1 107.2 109.5

angleeff/◦ 104.9 105.1 107.6 109.5
Experiment /◦ 105.0a 105.2c 106.6c 109.4c

ωi,e /cm−1 3896.1 2855.9 3466.6 3025.9
ωj,e /cm−1 1626.5 1190.9 - -
Experiment ωi,/cm−1 3943b 2888b 3444c 2917c

Experiment ωi, /cm−1 1648b 1206b - -

aFrom spectra, see Ref[51]
bFrom spectra, see Ref[14]
cFrom the Computational Chemistry Comparison and Benchmark Database, see Ref[21].

The equilibrium and effective geometries are reported in Table 5.1. If compared
with the geometries reported in table 4.5 in the validation section, the bond lengths
have increased, while the fundamental frequencies have decreased. The reason
for this difference is mainly that electron correlation was not included for the
Hartree-Fock calculations, the energy is therefore lower for the DFT calculations,
as electron correlation is accounted for. The values reported here are therefore
closer to the experimental values than those in table 4.5.

Comparing the H2O and D2O molecule, where there has been an isotopic substi-
tution, this has not resulted in a difference in the equilibrium bond length. It is as-
sumed that the potential energy function is not changed by isotopic substitution[48],
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so this is as expected. The vibrational frequencies are different for the two molecules,
this as a result of the change in mass changes the frequencies of vibration. This
effect is especially significant for the substitution of hydrogen with deuterium. The
change in the frequency also causes a change in the bond length at the effective
geometry, the dipole moment and polarizability as the frequency takes part in
evaluating these.

Table 5.2: Property corrections for H2O at the effective geometry

Property Pe - Peff < P
(0)
2 >eff < P

(2)
2 >eff

µx /a.u. -0.0033 0.0025 0.0012
αxx /a.u. 0.3064 0.1395 -0.0698
αyy /a.u. 0.1999 0.0802 -0.0404
αzz /a.u. 0.0902 0.0093 -0.0048
ᾱ /a.u. 0.1988 0.0763 -0.0383

Table 5.3: Property corrections for D2O at the effective geometry

Property Pe - Peff < P
(0)
2 >eff < P

(2)
2 >eff

µx /a.u. -0.0023 -0.0019 0.0009
αxx /a.u. 0.0650 0.1021 -0.0510
αyy /a.u. -0.3055 0.0580 -0.0290
αzz /a.u. -0.4632 0.0069 -0.0035
ᾱ /a.u. -0.2345 0.0557 0.0278

The property corrections for water are reported in Table 5.2. The corrections
obtained by using the effective geometry is the largest, the zeroth order correction
is larger than the second order correction. Mathematically, this is as expected, as
the second order correction is further out in the Taylor expansion. The further
out in the expansion, the smaller the corrections.

The corrections for the polarizability is larger than for the dipole moment, also
with respect to % correction. This holds true both for the zeroth order and second
order corrections. The corrections cause the value of the proprty to fluctuate
around the true value: the zeroth order correction is positive, and over-corrects
the property. The second order correction is negative and brings the value of the
property closer to the true value. For the dipole moment, however, calculating the
dipole moment at the effective geometry initially results in a less accurate value.
This has been observed also in previous studies [72], and the error is attributed to
the overestimation of the initial dipole moment.

The correction of D2O are for the most part smaller in magnitide than the correc-

tions for H2O. Looking to the equation governing the corrections at the
〈
P

(0)
2

〉
eff

level:

〈
P

(0)
2

〉
=

N∑
i

P
(2)
ii

4ωi

(5.1)
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Both the frequencies and the P
(2)
ii for H2O and D2O are the same if calculating

in the same geometry, i.e. in re. However, reff is different for the two molecules,
resulting in different frequencies and different P

(2)
ii .

From Eq. (5.1) it is seen that the correction is divided by the frequencies. The
frequencies of H2O are larger than those of D2O, thereby H2O should be attaining
smaller corrections. The smaller magnitude of the D2O must therefore be a result
of a smaller value of P

(2)
ii .

Table 5.4: Property corrections for NH3 at the effective geometry

Property Peff - Pe < P
(0)
2 >eff < P

(2)
2 >eff

µz /a.u. 0.0246 0.0103 0.0001
ᾱ /a.u. -0.3600 0.2430 -0.1224
∆α /a.u 0.0248 0.0485 0.0420

Table 5.5: Property corrections for CH4 at the effective geometry

Property Pe − Peff < P
(0)
2 >eff < P

(2)
2 >eff

ᾱ /a.u. 0.403 0.552 -0.262

For NH3 in table 5.8 and CH4 in table 5.9, the second order corrections are smaller
than the zeroth order corrections, as was the case for H2O and D2O. For NH3, the
dipole moment is corrected by a very small amount in the second order correction,

and only correcting to the
〈
P

(0)
2

〉
eff

can be justified. For the polarizability the

second order corrections are substantial.

Table 5.6: Cumulative property corrections for H2O at the effective geometry

Property Pe Peff < P
(0)
2 >eff < P

(2)
2 >eff Experimental

µx /a.u. -0.7266 -0.7299 -0.7274 -0.7286 -0.7186a

αxx /a.u. 10.1356 10.596 10.736 10.6673 10.314b

αyy /a.u. 9.3162 9.963 10.043 10.003 9.906b

αzz /a.u. 8.9070 9.523 9.532 9.527 9.546b

ᾱ /a.u. 9.4529 10.027 10.103 10.065 9.922b

a Molecular beam electric resonance experiment [62]
b Rotational Raman spectrum of water vapor [63]

The corrections are added to the original property cumulatively and the resulting
values are reported in Table 5.6, 5.7 5.8, and 5.9 for the four molecules. For H2O,
we observe a steady increase in accuracy as we add increasingly higher orders
of corrections for the polarizability, although there seems to be an overcorrec-
tion.

There aren’t any experimental values to compare with regarding the polarizabiliy
values of D2O. The final isotropic polarizability is smaller than the anisotropic
polarizability of H2O. This appears to be as expected when comparing values from
similar studies done in the literature [12].
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Table 5.7: Cumulative property corrections for D2O at the effective geometry

Property Pe Peff < P
(0)
2 >eff < P

(2)
2 >eff Experimental

µx /a.u. -0.7266 -0.7290 -0.7271 -0.7280 -0.7283a

αxx /a.u. 10.286 10.351 10.454 10.403
αyy /a.u. 9.763 9.457 9.515 9.486
αzz /a.u. 9.434 8.971 8.978 8.974
ᾱ /a.u. 9.828 9.593 9.649 9.621

a Molecular beam electric resonance experiment [26]

Table 5.8: Cumulative property corrections for NH3 at the effective geometry

Property Pe Peff < P
(0)
2 >eff < P

(2)
2 >eff Experimental

µz /a.u. -0.5867 -0.5780 -0.5677 -0.5729 -0.5791a

ᾱ /a.u. 14.597 14.957 14.549 14.795 14.673 14.573b

∆α /a.u 1.1176 1.1424 1.0538 1.0215

a Laser-microwave double resonance measurements [62]
b Quadratic extrapolation of refractive data [85]

5.1.2 Equilibrium geometry

The corrections will now be calculated at the equilibrium geometry. We will there-
fore employ the corrections P

(1)
1e

and P
(2)
2e,

defined for the equilibrium geometry in

Eq. 2.104 and Eq. 2.123. For the P
(0)
2 correction,s defined in Eq. 2.101, the same

method is used both for the effective and the equilibrium geometry as this method
remains unaltered.

The gain in accuracy acquired from carrying out calculations at the effective
goemetry is partly compensated through the non-zero first order corrections at
the equilibrium geometry as can be seen in table 5.10. The second order cor-
rection for the effective and the equilibrium geometry are of similar magnitude
although the expression for the second order correction at the effective geometry
is much simpler, this speaking in favor for carrying out calculations at the effective
geometry.

In table 5.11 one observes the increase of accuracy by including increasing numbers
of corrections. We observe that as we add corrections to both the effective and
equilibrium corrections, the property values become similar. This as a result of
more terms being included in the correction for the equilibrium geometry.

Corrections at the equilibrium geometry produces better results than the correc-

Table 5.9: Cumulative property corrections for CH4 at the effective geometry

Property Pe Peff < P
(0)
2 >eff < P

(2)
2 >eff Experimental

ᾱ /a.u. 16.042 16.445 16.967 16.705 17.258a

a Quadratic extrapolations from refractive data [50]
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Table 5.10: Comparisson of the property corrections for water between the effective and

equilibrium geometry, as Peff encompasses the
〈
P

(1)
1

〉
e

corrections, it is natural to com-

pare these.

Property < P
(1)
1 >e Peff − Pe < P

(2)
2 >e < P

(2)
2 >eff

µx /a.u. 0.0009 -0.0033 0.0012 0.0012
αxx /a.u. 0.0744 0.3064 -0.0682 -0.0698
αyy /a.u. 0.0517 0.1999 -0.0403 -0.0404
αzz /a.u. 0.0231 0.0902 -0.0048 -0.0048
ᾱ /a.u. 0.0497 0.1988 -0.0378 -0.0383

Table 5.11: The cumulative of the property corrections for water at the equilibrium
geometry.

Property Pe < P
(0)
2 >e < P

(1)
1 >e < P

(2)
2 >e < P

(2)
2 >eff Experimental

µx /a.u. -0.7266 -0.72921 -0.73006 -0.7306 -0.7305 -0.7186a

αxx /a.u. 10.136 10.275 10.349 10.451 10.667 10.314b

αyy /a.u. 9.316 9.396 9.448 9.854 10.003 9.906b

αzz /a.u. 8.907 8.916 8.940 9.462 9.527 9.546b

ᾱ /a.u. 9.828 9.529 9.579 9.921 10.039 9.922b

a Molecular beam electric resonance experiment [62]
b Rotational Raman spectrum of water vapor [63]

tions at the effective geometry. This as a result of the effective geometry appearing
to over-correct, at least for water. The larger correction obtained at the effective
geometry can also be viewed as faster convergence. As the perturbation approach
is mathematically sound, the non-corrected properties may be too high, as has
also been brought up in [72]. If this is the case, the effective geometry produces
better results with fewer corrections.

5.2 Water dimer

The equilibrium and effective geometry will be calculated employing DFT and an-
alytical geometric derivatives. The geometries and frequencies will be compared
to both the previous work this work is build on [5], and with experimental mea-
surements.

These calculations demonstrate the methods used to find the effective geometry
as well as the harmonic frequencies; by doing calculations on the deuterium water
dimer we also get to demonstrate the program’s ability to work with isotopes. The
values that will be reported with respect to the geometry is the equilibrium bond
length of the oxygens of the water molecule making up the dimer, the effective bond
length between the oxygen atoms, and the two angles denotes α and β depicted
in figure 5.1.
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The intial configuration for all the dimers was found in Avogadro[43] using a Merck
molecular force field [41], and a conjugate gradient algorithm as a starting point.
For all parts of the calculations, the B3LYP functional will be employed, this
has been found to be an adequate functional, producing values with an error
within 0.005 Å for the geometry and frequency calculations for the water monomer,
reasonable results are also found for the water dimer[84]. Three basis set were used
both for the optimization and for calculating the effective geometry: aug-cc-pVDZ,
aug-cc-pVTZ, and aug-cc-pVQZ.

Figure 5.1: From Ref [5], the water molecule underneath the ”1” will be referred to as
Molecule 1, the other as Molecule 2. The dimer bonding is taking place between the
hydrogen of Molecule 1 and the oxygen of Molecule 2.

5.2.1 The (H2O)2 dimer

The geometry specifications of the water dimer are reported in table 5.12. The
equilibrium and effective geometries evaluated at the three successively larger basis
sets are compared.

Table 5.12: The structure of the water dimer at the effective geometry vs at the equilib-
rium geometry

Req O-O /Å Reff O-O/Å αeff /deg βeff /deg

aug-cc-pVDZ 2.914 2.928 53.5 5.9
aug-cc-pVTZ 2.920 2.986 57.6 3.8
aug-cc-pVQZ 2.921 2.986 57.5 3.9

Literaturea 2.851 2.982 64 10.1
Spectrab 2.946 ± 0.006 55.2 ± 2.0 5.3± 2.0
Spectrac 2.976 57 ± 10 -1 ± 10

aÅstrand et al. Ref.[5]
bInfrared spectra Ref.[79]
cMicrowave spectra Ref.[58]

For the equilibrium bond lengths, we see that as the size of the basis set increases
from aug-cc-pVDZ to aug-cc-pVTZ to aug-cc-pVQZ, the bond length increases,
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and is thereby more in agreement with the literature. The bond lengths of the
effective geometry can be concluded to be in decent agreement with the literature.
The geometry appears to have converged with respect to the basis set for the bond
length at the effective geometry. The difference obtained from changing the basis
set is small compared to the difference between the frequencies obtained using the
equilibrium and effective geometry, illuminating that the method of employing a
variationally determined expansions point is efficient.

Table 5.13: The intermolecular frequencies for the (H2O)2 dimer reported in cm−1 for
successively larger basis sets. The subscript found on the basis set marks at which ge-
ometry the frequencies are evaluated at. The ”eq” subscript stands for the equilibrium
geometry, ”eff” for the effective geometry.

Intermolecular frequencies /cm−1

ν1 ν2 ν3 ν4 ν5 ν6

aug-cc-pVDZeq 632.4 358.9 180.6 158.1 152.9 130.1
aug-cc-pVTZeq 623.7 361.4 184.0 155.2 153.6 129.7
aug-cc-pVQZeq 622.4 359.5 186.3 157.2 155.1 128.4
Literaturea 662.1 419.2 222.6 176.3 146.5 120.6
aug-cc-pVDZeff 521.3 510.8 272.2 180.0 123.0 121.8
aug-cc-pVTZeff 534.2 408.7 239.2 176.4 119.8 111.2
aug-cc-pVQZeff 530.6 410.6 238.1 178.8 119.9 113.4
Literaturea 548.0 301.3 177.1 137.3 76.3i 84.4i
Spectrab 522.4 372.6 173.0 150.6 122.2 116.0

aÅstrand et al. See Ref.[11]
bMatrix isolation using Argon Ref.[24]

There are (3N - 6) 12 non-zero normal mode frequencies. Six of these are of a
value higher than 1000 cm−1, the other six are smaller than 1000 cm−1. The six
large frequencies are attributed to intramolecular vibrational modes. The six small
frequencies are intermolecular modes, three modes per water molecule comprising
the water dimer.
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Figure 5.2: The motions of the six intermolecular normal mode frequencies: 1. out of
plane shear, 2. in plane shear, 3. out of plane bend, 4. stretch, 5. in plane bend, and 6.
torsion, the figure is from Ref.[11]

The intermolecular frequencies are reported in figure 5.13. The vibrational fre-
quencies determined at the equilibrium geometry are all overestimated. This is a
common problem with using the harmonic oscillator approximation[29]. There are
two main solutions to this problem, the first is to find the anharmonic component
by means of perturbation theory, as will be done here. The second is by using a
scaling factor[24].

In contrast to the bond lengths and bond angles, the results obtained using aug-
cc-pVTZ and aug-cc-pVQZ are not obviously more similar than the frequencies
between aug-cc-pVDZ and aug-cc-pVTZ. This holds true both with respect to the
equilibrium and the effective frequencies. Yet, there seems to be better agreement
with the literature for the largest basis sets. The difference obtained through
increasing the size of the basis set is small compared to the difference between the
equilibrium and effective energy, as was also the case for the bond lengths. There
seems to be good agreement between the frequencies at the effective geometry
and the data obtained from the spectra, but there is still some overestimation.
This may be a result of basis set superposition error (BSSE) [74]. BSSE leads to
frequencies appearing larger than they are. This can be corrected with for example
a counterpoise correction, or by using a larger basis set.

All experimental frequencies we compare with were obtained from infrared matrix
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isolation experiments. However, caution must be made when comparing to these
as the matrix is found to perturb the intermolecular frequencies from their gas
phase by up to 20% [17]. This is referred to as the matrix effect.

Table 5.14: The intramolecular frequency shift from the monomer water dimer reported
in cm−1 for both water molecules constituting the dimer at different basis sets

Intramolecular frequencies /cm−1

2ν1 1ν1 2ν2 1ν2 2ν3 1ν3

aug-cc-pVDZeq 3892 3871 3786 3670 1636 1616
aug-cc-pVTZeq 3887 3867 3788 3673 1646 1627
aug-cc-pVQZeq 3894 3875 3796 3684 1648 1629
H2Oeq monomer 3896 3896 3794 3794 1627 1627

Intramolecular frequencies /cm−1

2ν1 1ν1 2ν2 1ν2 2ν3 1ν3

aug-cc-pVDZeff 3767 3754 3643 3641 1614 1603
aug-cc-pVTZeff 3730 3715 3645 3625 1599 1598
aug-cc-pVQZeff 3698 3633 3638 3527 1584 1583
H2Oeff monomer 3710 3710 3605 3605 1659 1659
Spectraa 3754 3735 3660 3601 1616 1599

aMatrix isolation using Argon Ref.[18]

The intramolecular frequencies are reported in table 5.14. There are six unique
intramolecular frequencies calculated for the water dimer. With this we can can
conclude that the dimerization of two water molecules is not symmetric with re-
spect to the two water atoms, i.e. the two water atoms are experiencing different
potential fields. The smaller vibrational frequencies are attributed to molecule
1, as one of the hydrogen atom in this molecule is intermolecularly bonded to
the neighboring water molecule. The pull from the intermolecular bond will then
weaken the intramolecular bonds, resulting in a lowering of the frequency. The
frequency denoted ν1 is the asymmetric stretch, ν2 the symmetric stretch, and ν3

the bend.

The intramolecular frequencies are compared to the monomer water molecules.
Molecule 1 has a large negative shift compared to the water monomer. The largest
shift is the one for the symmetric strech, the asymmetric stretch mode and bend
mode have comparable shift values of a small magnitude. For Molecule 2, the
shifts appear not to be as as large, the largest shift being for the bend, this shift
is positive. This is not surprising, as it is Molecule 1 which is affected most by the
dimerization. The fact that the hydrogen atom on Molecule 1 has a dimer bond
will alter how it moves.

The intermolecular frequencies are known to have a larger anharmonic part than
the intramolecular frequencies[24]. The deviation between the frequencies obtained
with the equilibrium and the effective geometry is therefore expected to be smaller
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for the intramolecular frequencies, and this seems to hold true: The intramolecular
frequencies evaluated at the equilibrium geometry are in better agreement with
the literature and closer to the values at the effective geometry than that of the
intermolecular frequencies.

5.2.2 The HOH-D2O dimer

The effect of isotopic substitution will now be briefly explored in this section, there
has been a great deal of literature of on this subject [11, 23, 33, 35, 57], and will
be touched upon here.

Table 5.15: The structure of the HOH-D2O dimer at the effective geometry vs at the
equilibrium geometry

Req O-O /Å Reff O-O/Å αeff /deg βeff /deg

aug-cc-pVTZ 2.920 2.949 29.6 9.3
aug-cc-pVQZ 2.920 2.949 29.6 9.3
Literaturea - 2.972 29.9 9.2

aSee Ref.[11]

Table 5.15 contains the geometric information for HOH-D2O. The two basis sets,
aug-cc-pVTZ and aug-cc-pVQZ give the same results. Because of the convergence
of the aug-cc-pVTZ basis set, this will be the only one employed further for the
The HOH-D2O dimer.

The O-O bond length is shorter for the deuterium dimer than for the (H2O)2

dimer, indicating that the deuterium dimer is more strongly bonded.

Table 5.16: The intermolecular frequencies for HOH-D2O reported in cm−1 for different
basis sets

Intermolecular frequencies /cm−1

ν1 ν2 ν3 ν4 ν5 ν6

aug-cc-pVTZeq 623.7 361.1 183.7 155.0 153.1 128.5
Literaturea

eq 639.8 391.6 125.9 150.6 94.3 205.9
aug-cc-pVTZeff 520.5 304.7 143.7 114.0 60.4 73.5
Literaturea

eff 543.6 305.2 148.0 138.4 49.7 58.8
Spectrab 519.4 306.6 167.1 100.2 70.6 77.5

aÅstrand et al. Ref.[11]
bSpectra from krypton matrix isolation Ref.[33]

The intermolecular frequencies are presented in table 5.16. The vibrational fre-
quencies are smaller for the HOH-D2O dimer than the (H2O)2. This a a result of
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the larger mass of the deuterium atom. The frequencies calculated at the effec-
tive geometry seem to be in significantly better agreement with the spectra[33],
reflecting the large anharmonic part of the intermolecular frequencies.

Table 5.17: The intramolecular frequencies for HOH-OD2 reported in cm−1 for both
water molecules constituting the dimer.

Intramolecular frequencies /cm−1 (H2O)
ν1 ν2 ν3

aug-cc-pVTZeq 3866 3659 1640
aug-cc-pVTZeff 3798 3743 1601
Spectraa 3761 3665 1596

Intramolecular frequencies /cm−1 (D2O)
ν1 ν2 ν3

aug-cc-pVTZeq 2816 2606 1185
aug-cc-pVTZeff 2792 2603 1175
Spectraa 2712 2672 1179

aSpectra from argon matrix isolation Ref.[34]

Lastly, the intramolecular frequencies in table 5.17 will be discussed. The shifts
display the same trends as the (H2O)2 dimer. For Molecule 1, here being the H2O
molecule, exhibits a negative shift compared to the water monomer molecule. The
largest shift is experienced for the symmetric stretch mode.

For the intramolecular frequencies, the H2O are larger than the D2O, this by a
factor of approximately

√
2. The reason for this can be found by gleaning Eq.5.2.

The ν is the wavenumber, k can be thought of as the bond enthalpy, and µ is the
reduced mass of the dimer. The mass of deuterium is double that of hydrogen,
the reduced mass of O-D will therefore be half of the reduced mass of the O-H
bond. As the bond enthalpy(k) of H2O and D2O are the same, we expect the O-D
vibrations to be 1√

2
smaller than the O-H.

ν =
1

2πc

√
k

µ
(5.2)

To illustrate this the intramolecular frequencies of D2O are multiplied with
√

2
and the results are presented in table 5.18. The results are quite similar, albeit
with slightly higher values than the ones corresponding to the H2O frequencies.
The reason for the higher values are the negative shift experienced by the HOH
species in HOH-OD2.

There are no experimental data found on the intramolecular frequencies of the
HOH-D2O dimer, but there is nothing to suggest it doesn’t follow the same trends
as of the (H2O)2 dimer.
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Table 5.18: The intramolecular frequencies for D2O multiplied with
√

2 to illustrate the
mass dependence of frequencies

Intramolecular frequencies /cm−1 (D2O)
ν1 ν2 ν3

aug-cc-pVTZeq 3982 3685 1671
aug-cc-pVTZeff 3823 3670 1656

aSpectra from argon matrix isolation Ref.[34]
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Chapter 6

Conclusion

6.1 Evaluation

In principal, there are no limits on how much time and effort which can be dedi-
cated to the subject of this thesis. Further questions and potential research areas
came up nearly exponentially as the work was conducted. There are, however,
time constraints, and not all parts of the field was, or can, be explored in equal
depth. The aspiration for this project is that it can stand its ground indepen-
dently: The equations governing the vibrational motions were derived, they were
then implemented and validated, and examples of the program were given.

The objectives were to: include an extra correction to the vibrational property
corrections, carry out calculations using DFT, and carry out calculations using
analytical property and geometric derivatives. All these objectives have been met
with promising results, although the property correction evaluated with DFT lead
to over-corrections of the properties for some of the molecules. The extra property
correction produced results in better agreement with the literature than with the
zeroth order correction alone. The calculation with analytical derivatives have
produced results in line with the literature, and proved to be virtually identical to
the numerical derivatives.

6.2 Further work

There is much to extend on, some of the possible work that cropped up when
working on the thesis will be described.

With respect to the derivation of the vibrational correction, extensions to these
can be made in two dimensions, either by means of higher orders of perturbation,
or by including higher orders of derivations to each perturbation. In this work, the

order of perturbation has been increased from
〈
P

(0)
2

〉
to
〈
P

(2)
2

〉
, the derivations
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have only been included up to P2. Including higher orders of property derivations
could therefore be informative. The amount of property derivatives included could
be extending to P3. This is now possible as the OpenRSP contribution to Dalton
can evaluate analytical derivative of the property derivatives recursively, ie to any

desired order. The correction
〈
P

(0)
3

〉
evaluates to zero, so the

〈
P

(1)
3

〉
correction

would be the logical next correction to implement:

〈
P

(1)
3

〉
=

1

6

√
3

2

N∑
i=1

P
(3)
iii

ω
3/2
i
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√
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1,i +

√
2a

(1)
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+
1

4
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1,i + 2b

(1)
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√
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ijk c
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111,ijk√
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(6.1)

The other dimension it would be possible to extend, is the order of perturbation.
This would, however, require the evaluation of the quintic force field V (5), which
is very computationally heavy. Expanding for the derivative of the property is
therefore the first extension one should attempt.

With respect to the implementation, more testing could definitely be conducted.
Edge cases could be checked, and a better system for catching and raising errors
should be put in place.

Another area to look into is including the post Born-Oppenheimer correction[3, 4]
that has been developed with the purpose of improving the vibrational analysis in
Dalton. Just as the corrections in this thesis has, this post Born-Oppenheimer
correction could be added in addition to the P

(2)
2 corrections introduced here.

One of the largest hurdles to future work is that the variationally determined
expansion point rexp leads to much faster converging correction for the couple first
orders of expansion, especially the P (1) term disappearing makes stopping at P (0)

of high returns. The P (2) have shown to be important, however, but the same
savings are not made, as P (3) is not zero at the effective geometry. This is proven
in the appendix C.

The terms which disappear at the effective geometry are those of V (1) and V (3).
At higher perturbations, higher order potential force fields are included, the use
of rexp therefore gives diminishing returns. Finding some method of increasing the
rate of convergence for higher orders of the potential force field would therefore be
highly advantageous.
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Appendix A

Solutions for Hermitian
Integrals

Table A.1: The solutions for the integrals occurring for the calculations of the fourth
order energy perturbation.

< q >10= 1√
2ω1/2

< q >12= 1√
ω

< q >21= ( 1
ω

)
1
2

< q >32= ( 3
2ω

)
1
2

< q >34= ( 2
ω

)
1
2

< q2 >02=
√

2
2ω

< q2 >22= 5
2ω

< q2 >13=
√

3
2ω

< q3 >10= 3
2
√

2ω3/2

< q3 >21= 3
ω3/2
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< q3 >30= ( 6
8ω3 )

1
2

< q3 >32= 3( 27
8ω3 )

1
2

< q3 >34= 3( 43

8ω3 )
1
2

< q3 >36= ( 120
8ω3 )

1
2

< q3 >41=
√

3
ω3/2

< q4 >00= 3
4a2

< q4 >02= 3
√

2
2ω2

< q4 >04= (
√

6
2ω2 )
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Appendix B

Python functions

trans1 = [1,0,0]

trans2 = [0,1,0]

trans3 = [0,0,1]

trans_rot = zeros((3* n_atoms, 6))

for atom in range(n_atoms):

ij = atom*3

trans_rot[ij, 0] = 1.0

trans_rot[ij + 1, 1] = 1.0

trans_rot[ij + 2, 2] = 1.0

trans_rot[ij, 3] = -1* cart_coord[atom, 1]

trans_rot[ij + 1, 3] = cart_coord[atom, 0]

trans_rot[ij + 1, 4] = -1* cart_coord[atom, 2]

trans_rot[ij + 2, 4] = cart_coord[atom, 1]

trans_rot[ij, 5] = cart_coord[atom, 2]

trans_rot[ij + 2, 5] = -1* cart_coord[atom, 0]

ij = ij + 3

trans_rot = linalg.qr(mat(trans_rot), mode = ’economic’) [0:1]

trans_rot = -1* mat(trans_rot[0])

trans_rot_proj = -(trans_rot * (trans_rot.T) \

- mat(identity(3*n_atoms)))

trans_rot_proj = mat(trans_rot_proj)

hess_proj = (trans_rot_proj * mat(Hessian)) * trans_rot_proj

Code B.1: Projecting the Hessian

hess_proj = self.Hessian_trans_rot(Hessian, coordinates,

self.number_of_normal_modes, n_atoms)

Hessian_proj = dot(M_I.transpose(), hess_proj)

Hessian_proj = dot(Hessian_proj, M_I)
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v, La = linalg.eig(Hessian_proj)

v_reduced = v[:self.number_of_normal_modes]

v_args = v_reduced.argsort()[::-1]

v_reduced = array(v_reduced, double)

v_reduced = v_reduced[v_args]

La = dot(M_I, array(La, double))

La_reduced = La[:,:self.number_of_normal_modes]

La_reduced = La_reduced[:,v_args]

Code B.2: Mass weighting and diagonalizing the projected Hessian

for i in range(self.n_coordinates):

for j in range(self.n_coordinates):

for k in range(self.n_coordinates):

temp = 0

for kp in range(self.n_coordinates):

temp = temp + cubic_force_field_clone[kp,j,i]*

self.eigenvectors_full[kp,k]

cff_norm[k,j,i]= temp

for i in range(self.n_coordinates):

for j in range(self.n_coordinates):

for k in range(self.n_coordinates):

temp = 0

for jp in range(self.n_coordinates):

temp = temp + cff_norm[k,jp,i]*

self.eigenvectors_full[jp,j]

cubic_force_field_clone[k,j,i]= temp

for i in range(self.number_of_normal_modes):

for j in range(self.number_of_normal_modes):

for k in range(self.number_of_normal_modes):

temp = 0

for ip in range(self.n_coordinates):

temp = temp + cubic_force_field_clone[k,j,ip]*

self.eigenvectors_full[ip, i]

cff_norm[k,j,i]= temp

Code B.3: Conversion of the cubic force field to normal coordinates as corresponding to
the transformation equation

cubic_force_field = transpose(cubic_force_field)

cubic_force_field = dot(cubic_force_field, self.eigenvectors_full)

cubic_force_field = transpose(cubic_force_field, (0,2,1))
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cubic_force_field = dot(cubic_force_field,self.eigenvectors_full)

cubic_force_field = transpose(cubic_force_field, (2,1,0))

eigenvectors_full = self.eigenvectors_full[:,:number_of_normal_modes]

cubic_force_field =

cubic_force_field[:number_of_normal_modes,:number_of_normal_modes,:]

cubic_force_field = dot(cubic_force_field, eigenvectors_full)

cff_norm = transpose(cubic_force_field, (1,0,2))

Code B.4: Conversion of the cubic force field to normal coordinates using matrix
mechanics

conversion_factor = -1822.8884796 #(a.u to a.m.u)

grad_norm = zeros((self.molecule.n_coordinates,3))

grad_norm[:,0] += dot(grad[:,0],self.molecule.eigenvectors_full)

grad_norm[:,1] += dot(grad[:,1],self.molecule.eigenvectors_full)

grad_norm[:,2] += dot(grad[:,2],self.molecule.eigenvectors_full)

grad_norm =

grad_norm[:self.molecule.number_of_normal_modes,:]*conversion_factor

Code B.5: Conversion of the dipole gradient to normal coordinates using matrix
mechanics

conversion_factor = -1822.8884796 #(a.u to a.m.u)

hess_norm = zeros((n_coordinates,n_coordinates,3))

for i in range(3):

hess_norm[:,:,i] =

dot(dipole_Hessian[:,:,i],self.molecule.eigenvectors_full)

hess_norm[:,:,i] =

dot(transpose(hess_norm[:,:,i]),self.molecule.eigenvectors_full)

hess_norm =

hess_norm[:number_of_normal_modes,:number_of_normal_modes,:]

hess_norm = transpose(hess_norm,(1,0,2))

hess_diag = hess_norm.diagonal(0,0,1)*conversion_factor

Code B.6: Conversion of the dipole Hessian to normal coordinates using matrix
mechanics

prefix = -1/(4*sqrt(1822.8884796)*self.frequencies**2)

molecular_geometry = np.sum(divide(cff_norm.diagonal(0,0,1)\
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[:self.number_of_normal_modes,:self.number_of_normal_modes]\

,self.frequencies), axis=1)

molecular_geometry = molecular_geometry*prefix

Code B.7: Evaluating the effecitve geometry in normal coordinates

factor = sqrt(1822.8884796)

cff_norm, cff_norm_reduced = self.to_normal_coordinates_3D\

(ri.read_cubic_force_field(self.get_cubic_force_field_name(),

self.n_coordinates))

effective_geometry_norm = self.effective_geometry_norm(cff_norm_reduced)

cartessian_coordinates =

np.sum(factor*effective_geometry_norm*self.eigenvectors, 1)

#instead of reshape() this will fail if it cannot be done efficiently:

cartessian_coordinates.shape = (self.n_atoms, 3)

Code B.8: Converting the effective geometry from normal to cartessian coordinates

import Molecule as mol

from numpy import array, zeros, absolute, add, sqrt

correction_property = zeros((self.molecule.n_atoms,3,3))

sproperty_derivative = self.get_property_derivative()

self.uncorrected_property = self.get_uncorrected_property()

eigenvalues = self.molecule.eigenvalues

for nm in range(self.molecule.n_atoms):

factor = 1/(sqrt(eigenvalues[nm]))

for i in range(3):

correction_property[atm,j,i] += pre_property[nm,i]*factor

self.correction_property = correction_property*self.prefactor

self.corrected_property = self.correction_property +

self.uncorrected_property

Code B.9: The zeroth order corrections for both the effective and equilibrium geometry

factor = np.sum(divide(cff_norm.diagonal(0,0,1)\

[:self.number_of_normal_modes,:self.number_of_normal_modes],self.freq),

axis=1)

first_a1 = -1.0/(4*sqrt(2)*self.freq**(3.0/2))*factor
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for a in range(3):

first_order_correction[a] = np.sum((sqrt(2)* prop_deriv[:,a]\

* first_a1)/sqrt(self.freq), axis=0)

Code B.10: The first order corrections for the equilibrium geometry

first_a1_factor = np.sum(divide(cff_norm.diagonal(0,0,1)\

[:self.number_of_normal_modes,:self.number_of_normal_modes],self.freq),

axis=1)

first_a1 = -1.0/(4*sqrt(2)*self.freq**(3.0/2))*first_a1_factor

first_a3 = (sqrt(3.0)*cff.diagonal(0,0,1).diagonal())/36**(5.0/2)

term_11 =

-1.0*first_a1*cff.diagonal(0,0,1).diagonal()/(4*self.freq**(3.0/5))

term_12 =

-1.0*first_a1*np.sum(divide(cff_norm.diagonal(0,0,1),(8*self.freq)),axis=1)/

self.freq**(3.0/2)

term_13 = -1.0*first_a3*sqrt(27)*cff_norm.diagonal(0,0,1).diagonal()/

(sqrt(32)*self.freq**(5.0/2))

term_14 = -1*first_a3*sqrt(3)*np.sum(divide(cff_norm.diagonal(0,0,1),

(8*sqrt(2)*self.freq)), axis=1) /(self.freq**(3.0/2))

term_15 =

-1*sqrt(2)*qff_norm.diagonal(0,0,1).diagonal(0,0,1).diagonal()/

(32.0*self.freq**3)

term_16 = sqrt(2)*np.sum(qff_norm.diagonal(0,0,1).diagonal(0,0,1)/

(8*self.freq),axis= 1)/self.freq**2.0

second_a2 = term_11 + term_12 + term_13 + term_14 + term_15 + term_16

for a in range(3):

second_b11 = zeros((self.molecule.number_of_normal_modes,

self.molecule.number_of_normal_modes))

second_b31 = zeros((self.molecule.number_of_normal_modes,

self.molecule.number_of_normal_modes))

for i in range(self.molecule.number_of_normal_modes):

quartic_correction[a] +=

second_a2[i]*sqrt(2.0)*prop_deriv[i][i][a]/(4*self.freq[i]) \

+ (first_a3[i]**2 + first_a1[i]**2 +

first_a3[i]*first_a1[i])*prop_deriv[i][i][a]/(3*self.freq[i])\

-prop_deriv[i][i][a]/(2*self.freq[i])

for i in range(self.molecule.number_of_normal_modes):

for j in range(self.molecule.number_of_normal_modes):
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prefix_1 = 1/(32*self.freq[i]**(3.0/2) *

self.freq[j]**0.5*(self.freq[i] + self.freq[j]))

second_b11[i][j] += prefix_1*qff_norm[i][i][i][j]

prefix_1= sqrt(6.0)/(96*self.freq[i]**(3/2) *

self.freq[j]**0.5*(3*self.freq[i] + self.freq[j]))

second_b31[i][j] += prefix_1*qff_norm[i][i][i][j]

for m in range(self.molecule.number_of_normal_modes):

prefix_2 = 1/sqrt(2.0)*self.freq[m]*2

*self.freq[i]**(1.0/2)*sqr(2.0)*self.freq[j]**(1.0/2)

*(self.freq[i]+self.freq[j])

second_b11[i][j] += prefix_2*qff_norm[i][i][i][j]

quartic_correction[a] +=

second_b11[i][j]*prop_deriv[i][j][a]/(4*self.freq[i]**(1.0/2)\

*self.freq[j]**(1.0/2)) \

+second_b31[i][j]*sqrt(2.0)*prop_deriv[i][j][a]/(4*self.freq[j])

quartic_correction = quartic_correction*self.prefactor

Code B.11: The second order corrections for the dipole equilibrium geometry
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Appendix C

Showing that P (3) is non-zero

To show that P (3) is non-zero, it is enough to show that the numerator is non-
zero, as the denominator can never be zero. The expression for P (3) is found by
the equation:

〈
P

(m,n)
numerator

〉
=

[
m∑
k=0

〈
Ψ(k)|T (n)|Ψ(m−k)

〉]
(C.1)

Inserting for n = 3 and gives:

〈
P

(3,n)
numerator

〉
= 2

〈
Ψ(0)|T (n)|Ψ(3)

〉
+ 2

〈
Ψ(1)|T (n)|Ψ(2)

〉
(C.2)

The expression for Ψ(1) and Ψ(2) are already known, we will therefore work with
the second term of Eq C.2.

Considering only the expression with T (2), the second term becomes:

〈
a

(1)
1,i + a

(1)
3,i + b

(1)
11,ij|P (2)qiqj|a(2)

2,i + a
(2)
4,i + a

(2)
6,i + b

(2)
11,ij + b

(2)
22,ij + b

(2)
13,ij

〉
(C.3)

Expanding this we embarked on a non-zero term:

= b
(1)
11,ijb

(2)
22,ijP

(2) 〈qi〉12 〈qj〉12 (C.4)

And we have now shown that P (3) is non-zero.
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[11] P.-O. Åstrand, A. Wallqvist, and G. Karlström. Nonempirical intermolecular
potentials for urea-water systems. J. Chem. Phys., 100:1262–1273, 1994.

[12] G. Avila. Ab initio dipole polarizability surfaces of water molecule: Static
and dynamic at 514.5 nm. J. Chem. Phys., 122:144310, 2005.

[13] A.D Becke. J. Chem. Phys., 98:5648–5625, 1993.

[14] W. S. Benedict, N. Gailar, and E. K. Plyler. Rotationvibration spectra of
deuterated water vapor. J. Chem. Phys., 24:1139 –1165, 1956.

[15] M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Clarendon
Press, Oxford, 1954.

[16] M. Born and J. R. Oppenheimer. Ann. Phys., 84:457, 1927.

[17] Y. Bouteillera and J.P. Perchard. The vibrational spectrum of (H2O)2: com-
parison between anharmonic ab initio calculations and neon matrix infrared
data between 9000 and 90 cm1. Chem. Phys., 305:1–12, 2004.

[18] U. Buck and F. Huisken. Infrared spectroscopy of size-selected water and
methanol clusters. Chem. Rev., 10:3863–90, 2000.

[19] A. D. Buckingham. Permanent and induced molecular moments and long-
range intermolecular forces. Adv. Chem. Phys., 12:107–142, 1967.

[20] Edited by M. Quack and F. Merkt. Handbook of high-resolution spectroscopy.
Wiley, page 2182, 2011.

[21] Edited by Russell D. Johnson III. NIST Standard Reference Database Number
101. 2013.

[22] Edited by V. Barone. Computational strategies for spectroscopy: From small
molecules to nano systems. Wiley, 2011.

[23] J. Ceponkus, P. Uvdal, and B. Nelander. Far-infrared band strengths in the
water dimer: Experiments and calculations. J. Chem. Phys., 112:3921–3926,
2008.

[24] J. Ceponkus, P. Uvdal, and B. Nelander. Intermolecular vibrations of different
isotopologs of the water dimer: Experiments and density functional theory
calculations. J. Chem. Phys., 129:194306, 2008.

[25] S. Chacon. Pro Git. 2009.

86



Bibliography Bibliography

[26] S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman. Dipole moment of
water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys.,
59:2254–2259, 1973.

[27] A. G. Császár. Anharmonic molecular force fields. WIREs Comput Mol Sci,
2:273289, 2012.

[28] F. De Proft, F. Tielens, and P. Geerlings. Performance and basis set depen-
dence of density functional theory dipole and quadrupole moments. J. Mol.
Struct. (THEOCHEM), 506:1–8, 2000.

[29] M. E. Dunn, T. M. Evans, K. N. Kirschner, and G. C Shields. Prediction of
accurate anharmonic experimental vibrational frequencies for water clusters,
(H2O)n, n=2-5. J. Phys. Chem. A, 110:303–9, 2006.

[30] Jr E. Bright Wilson, J.C Decius, and Paul C. Cross. Molecular Vibrations:
The Theory of Infrared and Raman Vibrational Spectra. Courier Dover Pub-
lications, 1955.

[31] C. Eckart. Some studies concerning rotating axes and polyatomic molecules.
Phys. Rev., 47:552, 1935.

[32] U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud. J. Chem.
Theory Comput., 6:1971, 2010.

[33] A. Engdahl and B. Nelander. On the relative stability of H- and D-bonded
water dimers. J. Chem. Phys., 86:1819–1823, 1987.

[34] A. Engdahl and B. Nelander. The intramolecular vibrations of the ammonia
water complex. A matrix isolation study. J. Chem. Phys., 91:6604, 1989.
Erratum in J. Chem. Phys. 92, 6336, 1990.

[35] A. Engdahl and B. Nelander. IR induced isomerisation of HDO complexes: a
method for the observation of FIR spectra of matrix isolated water complexes.
Chem. Phys., 213:333–339, 1996.

[36] S. T. Epstein. The Variation Method in Quantum Chemistry, volume 33 of
Physical Chemistry. Academic Press, 1974.

[37] R. P. Feynman. Forces in molecules. Phys. Rev., 56:340–343, 1939.

[38] P.W. Fowler. Vibration-rotation effects on properties of symmetric tops and
linear molecules. Mol. Phys., 43:591, 1981.

[39] B. Gao, M. Ringholm, R. Bast, K. Ruud, A. J. Thorvaldsen, and M. Jaszuński.
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[80] P.-O. Widmark, P.-Å. Malmqvist, and B. O. Roos. Density matrix averaged
atomic natural orbital (ano) basis sets for correlated molecular wave functions.
Theor. Chim. Acta, 77:291–306, 1990.

[81] P.-O. Widmark, B. J. Persson, and B. O. Roos. Density matrix averaged
atomic natural orbital (ANO) basis sets for correlated molecular wave func-
tions. II. Second row atoms. Theor. Chim. Acta, 79:419–432, 1991.

[82] D. E. Woon and T. H. Dunning Jr. Gaussian basis sets for use in correlated
molecular molecular calculations. IV. Calculation of static electrical response
properties. J. Chem. Phys., 100:2975–2988, 1994.

[83] D. E. Woon and T. H. Dunning Jr. Gaussian basis sets for use in correlated
molecular calculations. V. Core-valence basis sets for boron through neon. J.
Chem. Phys., 103:4572–4585, 1995.

90



Bibliography Bibliography

[84] X. Xu and W. A. Goddard. Bonding properties of the water dimer: A com-
parative study of density functional theories. J. Chem. Phys., 108:2305–2313,
2004.

[85] G.D Zeiss, W.J Meath, J.C.F MacDonald, and D.J Dawson. Dipole oscillator
strength distributions, sums, and some related properties for Li, N, O, H2,
N2, O2, NH3, H2O, NO, and N2O. Can. J. Phys., 55:2080–2100, 1977.

91


