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ABSTRACT
Reconfigurable computing systems show great promise for
accelerating streaming HPC applications because of their
low power consumption and high performance. However,
mapping an HPC application to a reconfigurable system is
a challenging task. The challenge is exacerbated by the need
to temporally partition computational kernels when applica-
tion requirements exceed resource availability. In this paper,
we propose a novel design methodology that we call Data-
flow Temporal Partitioning (DTP). The key insight in the
design of DTP was that the application should be repre-
sented as a high-level data flow graph where each node is
a computational kernel and the edges represent inter-node
data flow. DTP also supports parallel instantiation of ker-
nels and multiple kernel implementations at different perfor-
mance/area design points. In contrast to previous proposals,
DTP is able to exhaustively explore the solution space for
practical applications. Our evaluation of DTP shows that it
is able to identify candidate implementations that outper-
form both previously proposed partitioning heuristics and a
direct mapping to the synthesis tool. The temporal configu-
ration selected by DTP can outperform the direct mapping
by up to 3X.

Keywords
High performance computing, Field programmable gate ar-
ray, Data flow graph, Temporal partitioning, Design space
exploration.

1. INTRODUCTION
High Performance Computing (HPC) is characterized by

the desire to achieve maximum performance for important
applications from diverse fields such as climate modelling,
car and aircraft design, energy, material science and drug
design. HPC applications are usually data intensive and
parallel and may run for days and possibly weeks. Further-
more, current and future HPC systems are expected to be

power limited [15]. This, and the Dark Silicon effect [4],
have motivated researchers to explore accelerating HPC ap-
plications on non-conventional architectures [17, 16]. One
promising strategy is to leverage emerging reconfigurable de-
vices to develop High Performance Reconfigurable Comput-
ers (HPRCs). HPRCs consist of a conventional host micro-
processor and one or more Reconfigurable Processing Units
(RPUs) that can be one or multiple FPGAs.

Mapping an HPC application onto an RPU is a challeng-
ing and time-consuming task. This process can be simplified
by adopting a high-level representation of the application.
On possibility is to represent the application as a Directed
Acyclic Graph (DAG) where the nodes represent computa-
tional kernels and the edges represent data flow. This repre-
sentation is especially well suited to HPC applications where
data is streamed through pipelined computations. HPRC
development is further complicated by the observation that
an HPC application often requires more resources than the
RPU can provide. Therefore, many researchers [8, 18, 7]
have tried to exploit Temporal Partitioning (TP). With TP,
the DAG is partitioning into temporally interconnected sub-
graphs and each sub-graph becomes an FPGA configuration.
Unfortunately, applying TP results in a large design space.
It is not feasible for a designer to explore this design space
manually, and there is a need for automated Design Space
Exploration (DSE) methodologies.

Existing TP techniques represent the computational ker-
nels at a low level of abstraction [20, 19, 2]. This choice
significantly increases the size of the design space since it
grows exponentially with the number of nodes in the graph.
Therefore, researchers have proposed heuristics [12, 14] such
as minimum number of FPGA configurations [21], minimum
communication cost [18, 12] and maximum resource utiliza-
tion [2] as a practical means to finding acceptable temporal
partitions. However, these heuristics select partitions based
on local criteria which may not be a good for the complete
application.

In this work, we propose a novel design space exploration
methodology which we call Data-flow Temporal Partitioning
(DTP). The key observation that led us to propose DTP was
that the computational kernels should be represented at a
high abstraction level. This limits the size of the design
space, and results in the DFGs of a real world HPC appli-
cations such as SPH pressure force calculation [12], DAB
receivers [5], 2D FDTD updates [9] and JPEG encoding [1]
containing maximum 20 or 30 nodes. The key advantage is
that DTP is able to exhaustively explore the design space.



However, raising the abstraction level may also potentially
hide interesting configurations. The designer can alleviate
this problem by applying DTP in an iterative fashion. Be-
cause we use commercial HLS tools, defining coarse grained
processing nodes leads to more accurate timing and area es-
timation for a configuration than using many fine grained
PN implementation information for estimation because of
accumulating errors of many small PNs is much more than
a few large PNs. This approach finally reduces the errors of
execution time estimation of the whole application.

To evaluate DTP, we have generated 15 synthetic SD-
FGs with between 10 and 12 processing nodes. We used
Vivado HLS to generate three different implementations of
each node to mimic an implementation library. Our ex-
periments show that DTP improves execution time by up
to 3X compared to a baseline containing a single tempo-
ral partition. We also found that the optimal partitioning
depends on the graph topology, processing node resource
requirements, the throughput of each node, the available
hardware resources, the size of the problem and the avail-
able bandwidth. Consequently, one cannot expect to find
a near-optimal partitioning by using the simple heuristics
proposed in prior work.

2. DATA-FLOW TEMPORAL PARTITION-
ING (DTP)

Figure 1 illustrates the detailed sub modules of DTP. The
letters A, B and C in Figure 1 refers to the three main steps
of DTP that are application-, hardware- and problem size
related, respectively. Step A determines all possible parti-
tionings and their base configurations of the Input SDFG.
In step B, DTP prunes the design space by taking into ac-
count the constraints of the hardware target. Finally, DTP
determines the performance of each partitioning in step C
and presents feasible solutions to the designer. For conve-
nience, Table 1 contains a list of the abbreviations we use
when discussing DTP.

2.1 Application Model
DTP assumes that the application is represented as a Syn-

chronous Data Flow Graph (SDFG). We assume that all
application control flow can be determined at compile time.
This assumption is reasonable for many scientific and high
performance computing applications such as reverse time
migration [6] or N-Body simulations [10]. These applica-
tions essentially stream massive amounts of data through a
computational pipeline, and the application control flow is
given by the path taken by each data element.

In this paper, we assume that the designer defines a Pro-
cessing Node (PN) as a small, meaningful portion of the ap-
plication. For instance, the designer can consider computa-
tional kernels of the application such as spatial convolution,
FFT, noise cancellation filters as PNs. For each processing
node, we require that the designer provides the following in-
puts to DTP: Produced Packet Per Iteration (PPI), Required
Packet Per Iteration (RP) from each input edge, Packet Size
(PS) and Total number of produced packets (TP).

An Application Edge (AE) connects two PNs together.
Since each PN produces only one type of data packet, all
application edges that have a common source node must also
carry same data type. Therefore, if an FPGA configuration
is being feed by multiple AEs with one source node, in the

Table 1: Abbreviations

Description Abbr
Input Model

Processing Node PN
Application Edge AE
Memory Node MN
PN Produced Packet Per Iteration PPI
Packet Per Iteration PI
PN Required Packet Per Iteration RP
PN Total number of Produced Packets TP
Edge Packet Size PS
Source Node of and edge ScN
Sink Node of an edge SnN
Throughput of a PNI NIT

Implementation
Processing Node Implementation NI
clock frequency of a PNI NIC
Iteration interval of a PNI NII
PNI required hardware, item: LUT, FF, ... NIitem

Methodology
Configuration C
Partitioning P
Number of configurations of a partitioning PNC

Processing Node of a Configuration CPN
Configuration of a Partitioning PC
Configuration Implementation CI
Configuration Implementation clock frequency CIC
Configuration Implementation Instance Throughput CIT
number of instances of a Configuration Implementation NCI

Configuration total output bytes CTO

Configuration total input bytes CTI

Configuration Input Bytes Per Cycle CIB

Configuration Output Bytes Per Cycle COB

Execution time of a CI TCI

Execution time of a partitioning TEP

Configuration Implementation required LUT CIL
Configuration Implementation required FF CIF
Configuration Implementation required DSP CID
Configuration Implementation required BRAM CIR
Configuration Best Execution Time TCB

Configuration Output Packet Size CPS

Hardware Resources
Available FF HF

Available LUT HL

Available DSP HD

Available BRAM HR

Host to FPGA Bandwidth BWI

FPGA to Host memory Bandwith BWO



Figure 1: Overview of DTP methodology

performance calculations DTP considers one edge for them
with the maximum sink node data rate. Outgoing edges
from one configuration follows same rule.

2.2 Processing Node Implementation Library
DTP requires that the designer provides a library of dif-

ferent processing node implementations. The designer can
decide to use low level HDL or HLS tools to implement each
PN. For a specific PN, the implementation library has three
classes of properties. The first class of properties are the
timing properties that consist of clock frequency, latency,
iteration interval and throughput. Second, communication
properties are the required input and output bandwidth for
each implementation instance. Finally, the resource require-
ment properties are the number of LUTs, number of flip
flops, DSP modules, BRAMs and SLR registers.

2.3 Configuration and Partitioning Objects
DTP uses the application model to produces two objects

that we refer to as the configuration and the partitioning.
The configuration is a sub-graph of the application SDFG
with all its interior edges. This sub-graph will is a candidate
to be a temporal configuration implemented in the FPGA.
A configuration is valid if there is not any directed path
between any pair of its nodes that passes from a node that
are not part of the current configuration. In other words, a
valid configuration is a part of the application that can be
independently synthesized such that it carries out meaning-
ful work for the application. A feasible configuration is a
valid configuration where the resource requirements can be
satisfied by the target FPGA.

We refer to a set of valid configurations which covers all
PNs of the SDFG and where each node is located in only
one configuration as a partitioning. A valid partitioning is
a partitioning that for each node of its configurations all of
the predecessor nodes have been located in previous config-
urations. In other words, a partitioning is valid when all

Figure 2: SDFG Example

input data needed for a particular configuration has been
produced by previous configurations.

2.4 The Main Steps of DTP
Figure 1 illustrates the different steps of the DTP method-

ology. DTP takes the application model as input and finds
all possible valid partitionings and their base configurations
in Step A. The first task in Step A is to make the SDFG
model of application. Here, we prepare a table of applica-
tion edges properties that contains one row for each edge.
Then, DTP finds all possible valid partitionings by first cat-
egorizing nodes in dependency based groups before it finds
a path from the start node to one of the nodes in the last
group. We refer to this path as the critical path of the
SDFG, and it is not necessarily unique.

Figure 2 contains the SDFG of an application that is our
acceleration target. By applying dependency-based group-
ing on this graph we find that group 0 contains node [n0],
group 1 contains nodes [n1,n2,n3], group 2 contains nodes
[n4,n5] and group 3 contains node [n6]. The critical path of
the SDFG can be [n0, n2, n5, n6] or [n0, n1, n4, n6], and it
does not matter which one is selected. For this example, we
select path [n0, n2, n5, n6]. After finding the critical path of
the input SDFG, DTP uses it as a simple straight directed
graph and makes a list of all its dependent valid partition-
ings. To find the valid partitionings of the complete graph,
DTP adds nodes one by one in grouped order to this list.

An addition of node to a configuration of a partitioning is
valid if following conditions are true. First, all predecessors
of the node should be appeared in the current or previous
configurations. Second, any directed path between current
node and other nodes of the current configuration should be
covered by the current configuration. After finding all valid
partitionings, DTP fills the list of base configurations. In
the SDFG of Figure 2, [n0,n2,n3], [n1,n3] and [n1,n2,n4.n5]
are examples of base configurations.

In step B, DTP finds valid partitionings by considering
the hardware constraints. Task 4 uses the implementation
library and information provided regarding available hard-
ware resources to evaluate the feasibility of the items in the
implementation list of each configuration.

∀items ∈ Hitems

∑
n∈CPNs

NInitem ≤ H.item (1)

Equation 1 formulates the feasibility criteria of a CI. Here,
item is one of hardware resource parameters (i.e, LUT, DSP,
FF or BRAM). DTP removes the configurations that do



not have any feasible implementations from the list of base
configurations. In Step 5, DTP removes all partitionings
that contain completely removed base configurations from
the partitioning list. In the SDFG of Figure 2 the base
configuration [n2,n3,n5] is not feasible if the target hardware
has 600 DSP modules and n2, n3 and n5 require 300, 120 and
270 DSP modules, respectively. Thus, we will not have any
partitioning after Step B that contains this configuration.

In Step C, DTP calculates the execution time of all feasi-
ble configurations and all valid configurations. Step 6 gets
its data from fourth step and can be done in parallel with
fifth step. In this step, DTP calculates the execution time of
each feasible CI of each base configuration by using memory
links and information about amount of data. The following
formulas are used in Step 3 of DTP to estimate the execution
time of CIs.

CTO =
∑

i∈CPNs,j /∈CPNs

PSi,j ∗ TP i,j (2)

CTI =
∑

i/∈CPNs,j∈CPNs

PSi,j ∗ TP i,j (3)

CIT = min(
NIC
NII

)
∀NI∈CI

(4)

NCI = min(
HL

CIL
,
HF

CIF
,
HD

CID
,
HR

CIR
) (5)

CIB =
∑

i∈CIn Edges

SnNi.P I ∗ PSi (6)

COB =
∑

i∈COut Edges

ScNi.P I ∗ PSi (7)

TCB =

min(
CTI

min(NCI ∗ CIT ∗ CIB , BWI)

,
CTO

min(NCI ∗ CIT ∗ COB , BWO)
)

(8)

In task 7, DTP selects the CI with the shortest execution
time for each base configuration, and its execution time is
considered as the configuration execution time. In the task
8, the wall clock time of each partitioning is calculated by
adding the execution time of all its configurations as well
as adding the total configuration time overhead. Finally,
DTP ranks the best performing partitionings and presents
a configurable number of them (e.g. 10) to the developer.
These implementations can either be used directly or studied
in order to find a better SDFG formulation.

For example, DTP may find that the best partitioning
is combined of the configurations [n0,n2,n3], [n1,n5] and
[n4,n6]. From the execution time estimates, the designer
is made aware that execution time of the third configura-
tion is than 50% higher than the average execution time of
the other configurations. In this case, the designer has two
options. First, he can focus on either improving the imple-
mentation of [n4,n6]. Second, he can reformulate n4 and
n6 to use smaller PNs and then run DTP to find the best
partitioning of this new SDFG.

3. EXPERIMENTAL METHOD

We prepared 20 PNs and used these to create 15 syn-
thetic SDFG benchmarks with 10 to 12 PN each. Our set
of benchmarks covers both long pipeline models of applica-
tions as well as applications with parallel nodes. The PNs in
each benchmark were randomly selected from our set of 20
PNs, and each type of PN is used only once in a benchmark
SDFG. For PNs, we used three different types of process-
ing nodes: 3*3 matrix and stencil operations, polynomial
calculations and triangular calculations. The PNs have a
different number of inputs from 1 to 4 and take different
packet sizes as inputs. Each PN has three different PNIs in
the implementation library.

We used Xilinx Vivado to synthesize each PN with three
different options: fast, normal and slow. This gives us a
range of implementations with different performance and
area requirements. We assume that the designer has four
options for hardware resources of the target HPRC (i.e. the
XC7V585T, XC7VX690T, XC7V2000T and two XC7V200Ts).
The baseline for comparison is the execution time of the ap-
plication when using a single configuration.

4. RESULTS
We calculated the execution time of each benchmark when

its SDFG is implemented completely in one configuration on
the XCV2000T. Then, we explored the temporal partition-
ing design space of each benchmark with three sets of NIs
and find the best partitioning for each benchmark. Figure 3
shows the speed up of different sets of NIs and also the par-
titioning that selected with DTP compared with one time
configuration of the FPGA. Series TPI1, TPI2 and TPI3 de-
termines best speed up of temporal partitioning with lever-
aging node parallelism when each node can be implemented
in only one type of implementation library. TPI1 means all
node are implemented based on slow and area efficient set of
NI and TPI3 means that all nodes are implemented based
on fast and high resource required set of NIs.

We also explored the design space of TP with DTP when
it leverages all three NI types. In many of explored bench-
marks, TP lead in better performance than a one time im-
plementation. As seen in Figure 3, the difference between
the speed up gained by DTP over the best performing NI
type is significant. For some benchmarks, such as SDFG8
and SDFG11, this difference is more than 25% compared
to a direct implementation of the SDFG using Vivado. On
average, DTP provides more than 20% speed-up. This is ex-
pected because DTP can combine NIs from different library
sets to achieve a better execution time.

Figure 3 also shows that selecting a set of NIs with higher
performance does not always result in lower execution time
for the complete application. This is shown with SDFG3
and the second and third NI sets. In this benchmark, the
best performance of partitioning with third NI set is lower
than second one. At the same time, the performance of
each implementation in third set is higher than the imple-
mentation of the same PN in the second set. The reason
for this is that DTP uses data parallelism and each con-
figuration may be implemented in several instances on the
FPGA. This provides evidence that defining local criteria to
find temporal partitions may result in sub-optimal applica-
tion performance.

Figure 4 shows the number of FPGA configurations in
the best selected partitioning for each set of NIs. As this



Figure 3: Speedup of selected partitioning by DTP vs one
time configuration

Figure 4: Number of configurations for the best partitioning

figure shows the performance of the applications is not di-
rectly related to the number of FPGA configurations. One
of the reasons is that we assumed our target applications to
be data intensive. The execution time of this type of appli-
cations is so long that the reconfiguration time of FPGAs
is negligible. Figure 6 makes this concept more clear, for
SDFG6 and SDFG15 the speedup of two times configuration
is more than best partitioning with 4 configurations; but for
SDFG11 and SDFG13 the speed up of best partitioning with
3 and 4 configurations is significantly more than best par-
titioning with 2 configurations. Since selecting the number
of configurations as the criteria of temporal partitioning can
mislead the designer.

Figure 5 illustrates the change in the execution time of
5 benchmarks with 4 different hardware resources. In this
experiment, we changed the available hardware resources
and found the best execution time of each benchmark. This
figure shows that DTP can help the designer to make an
informed trade-off between performance and hardware over-
head.

5. RELATED WORK
Many researchers tried to gain higher performance of HPRC

by temporal partitioning. The bandwidth of an FPGA to
external memory is an intrinsic bottleneck. Therefore some
researchers tried to minimize the inter configuration com-
munication cost to achieve better performance. One algo-
rithm to make partitioning with minimum interconnection
under area constraints is proposed in [13]. Authors tried use
network flow-based algorithms for initial partitioning of the
graph to obtain a cut set and reduce maximum communica-
tion cost. Reduced Data Movement Scheduling (RDMS) in
[12] was proposed to reduce the inter-configuration commu-
nication overhead and FPGA configuration overhead. Al-
though RDMS exploits a library of implementations but its
criteria in refining partitioning is the cost of inter- configura-
tion communication. In [19] a Pareto optimal temporal par-
tition methodology based on multi-objective GA proposed

Figure 5: Execution time of the best selected partitioning
for different hardware resource

Figure 6: Best speed up achieved on different number of
FPGA configurations

by authors, the aim of the paper was reducing the commu-
nication cost. This methodology can explore a big design
space compare to DTP, but because of its criteria there is
no guarantee to find the best partitioning.

Another issue in HPRC systems is the time of reconfig-
uration. Some researchers tried to use the device area as
much as possible to reduce the number of configurations. In
[10] authors proposed an approach for task mapping in RC
hardware based on GA that exploits different implementa-
tions of tasks. They used variant implementations but the
difference of their approach to DTP is that tried to use max-
imum utilization of the device so that results in each con-
figuration had has only one instance in the FPGA. In [5]
authors proposes an algorithm for TP that yields a chain
of configurations which are balanced in terms of resources,
while jointly have a minimal data throughput but their ap-
proach did not consider data dependency in a DFG and only
works for straight pipeline chains.

Most close works to this paper have been done by re-
searchers that tried to explore the design space by heuris-
tic methods for different implementations of each PN. In
[3] authors used a library of implementation of tasks and
propose a DSE methodology for TP based on Tabu search
strategy. The criteria of selection was not directly based on
the total application performance since in some cases this
algorithm lost many of fast partitionings. In [11] a genetic
algorithm based methodology proposed for hardware task
mapping that used a library of fixed implementations for
each task. In [14] author proposed a performance oriented
TP approach that exploits data penalization on RC devices
with the assumption that there unlimited resources. In this
research the variant in implementations was not considered
and because of no constraint on resources task duplication
is possible with GA based proposed method.

As mentioned in previous related works DTP is the first
methodology that consider different implementations of pro-
cessing nodes, different problem size, multi-instances of an
FPGA configuration, arbitrary application DFG and focuses



on execution time as the selecting criteria.

6. CONCLUSION
In this work, we proposed the Dataflow Temporal Parti-

tioning (DTP) design methodology. The objective of DTP is
to efficiently map data intensive HPC applications onto re-
configurable platforms while leveraging temporal partition-
ing. DTP consists of 3 independent steps that collectively
help the designer to explore the temporal partitioning de-
sign space more efficiently. DTP considers the performance
effects of problem size and a range of technology-dependent
implementation characteristics. We compared the results of
DTP with results of a standard synthesis tool and found
that the speed up in some cases is significant.
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