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Abstract

An existing co-rotated formulation is presented, and a consistent nonlinear 3D
beam element, based on 2nd order theory, and with internal geometric stiffness,
is developed for implementation in the formulation. The element proves con-
siderably more accurate with respect to predicting buckling loads in linearized
buckling analyses, than the beam elements regularly used in co-rotated formu-
lations. This is also true for nonlinear analysis.

The computer program Cfem, which is based on the co-rotated formulation, is
used to study several aspects of buckling, mainly lateral torsional buckling, in
timber structures. Linearized buckling analyses are used for obtaining simpli-
fied or approximate formulas, and nonlinear analyses are used in order to verify
these. The problems studied include lateral torsional buckling for beams with
eccentricly applied loading and for tapered beams, bracing against lateral tor-
sional buckling, and interaction between flexural and lateral torsional buckling.
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Notation

Main symbols

R - rotation matrix
n - unit vector representing the orientation of the rotation axis
θ - rotation angle
θ - rotation pseudo-vector
C - configuration
T - transformation matrix
r - position vector with respect to global origin
x - position vector with respect to local origin
e - eccentricity vector
u - displacement vector
v - nodal displacement vector
δ - variation operator
∂ - partial differentiation operator
ω - instantaneous rotation axis (chapter 3)
P - projector matrix or part of projector matrix
δab - Kronecker delta
I - identity matrix
0 - matrix containing only zeros
G - matrix relating the variation of rigid body rotation with the vari-

ation of the degrees of freedom
H - deformational rotation pseudo-vector Jacobian
E - eccentricity matrix
P - point load
q - distributed load
N - axial force
M - bending moment
Π - potential energy
U - strain energy
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H - load potential
V - volume of body
σ - stress vector

- strain vector
B - strain displacement matrix
f - force vector
k - stiffness matrix
K - stiffness matrix
E - Young’s modulus
I - 2nd moment of area
p - external force vector
r - residual vector
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Superscripts

n - time step identifier
T - transposed

Accents

˜ - measured with respect to local coordinate system
´ - eccentricity point
¯ - measured in the cross section coordinate system
()R - measured in co-rotated frame





Chapter 1

Introduction

1.1 Motivation

The history of structural accidents and catastrophies shows that buckling or
instability have played an important role in a large number of these accidents.
The reason for this, often dramatical behaviour of structures has been a topic
of much speculation through centuries [1]1.

In structural engineering, two types of structural instability usually have to be
considered. For slender, axially compressed members, flexural buckling may be
an issue, and for transversly loaded slender beams with high depth to width ra-
tios, lateral torsional buckling may cause problems. In timber design codes, like
the Norwegian NS3470[2] and the emerging European code, Eurocode 5[3] or
EC5 for short, especially lateral torsional buckling is handled in a rather vague
manner, emphasizing the difficulty this topic is associated with. Comparing
NS3470 and EC5, several questions and inconsistencies are encountered, one of
which is the handling of interaction between lateral torsional buckling and flex-
ural buckling. EC5 seems to imply that the lateral torsional buckling capacity
of beams are not influenced by axial loading, whereas NS3470 recognizes such
an interaction. Which assumption is correct? With respect to bracing against
lateral torsional buckling, both EC5 and NS3470 seem to imply that only brac-
ing placed on the compression side of the influenced beam is effective. In all
fairness, neither design code explicitly states that bracing located other than on
the compression side should be disregarded, but no help is offered for determi-
nation of the effect of such bracing. In the section dealing with tapered beams,

1Author’s translation

1



2 CHAPTER 1. INTRODUCTION

NS3470 states that “lateral torsional buckling shall be considered”2. However,
no rules or guidelines are stated as to how the engineer can take due care of this
problem.

The design codes provide simplified methods for handling structural instability,
usually methods based on solutions of differential equations with respect to
stability for simplified systems. The structure has to be simplified into a series
of simple systems that can be solved by the differential equation approach, and
since these cases are relatively few, the approach result in approximate, normally
conservative, results. However, similar solutions for whole systems or parts of
structures can be found numerically by applying a linearized buckling analysis
on a computer. Thus, a computer based finite element method can be used to
aid in assessing structural instability in a simplified design procedure. Through
a curve fitting procedure, tabulated values for simplified systems not readily
solvable by the differential equation approach can be obtained.

But why stop at this? An approach based on a linearized buckling type analysis
or a solution of differential equations is a mathematical approach that focuses
only on the critical load (causing indeterminate displacement). The design
strength of the material(s) as well as the imperfections of the system being con-
sidered are accounted for by additional considerations, leading to a coefficient
based simplified design. A structural member is, however, never mathematically
straight (certainly not timber members), and stability problems are therefore
in reality displacement problems governed by geometric imperfections, and sub-
sequently stress or strength problems. By including geometric imperfections,
an incremental nonlinear analysis, combined with material failure tests at each
increment, will yield a design load for the structure that also accounts for any
stability problems.

When this work was initiated, the main objective was to use standard, state-
of-the-art nonlinear finite element method programs to investigate structural
stability, and particularly lateral torsional buckling in typical timber structures.
This objective has been maintained, but as the work evolved, other interesting
issues arose. It became apparent that there was room for some improvement
in beam element behaviour with respect to stability calculations. This led to a
fairly extensive investigation into pure finite element technology.

For this reason the work splits in two distinct parts. In the first part, the
theoretical foundation for a fully consistent nonlinear co-rotated element for-
mulation for implementation in a computer code is described, and a 3D finite
beam element based on second order theory is developed for use in the co-rotated
formulation. In the second part, a computer program based on the finite ele-
ment formulation presented in the first part is used to obtain results for a series

2Author’s translation



1.2. BACKGROUND 3

of stability problems. In the latter part topics concerned with both linearized
buckling analyses and full nonlinear analyses are adressed.

The computer program used is based on a program made by Haugen [4], and
goes by the name of Cfem. A good many changes have been made in order to
facilitate solution of the problems at hand. Among other things, a linearized
buckling analysis capability had to be implemented.

With this approach to the problem, the work is presented for two audiences:
Those mainly concerned with FEM technology and those mainly concerned with
timber design. An attempt has been made to keep the two main parts separated
so that no deeper insight in one part is necessary to understand the other. Thus,
if the element formulation is taken at face value, it should not be necessary for
those mainly concerned with timber design to thoroughly read (and understand)
the first part in order to appreciate the second part.

1.2 Background

Co-rotated formulation as a concept was introduced by Wempner[5] in 1969 for
use in static nonlinear analysis of shell structures. The idea of a shadow config-
uration was first proposed by Fraeijs de Veubeke[6], but then for the complete
structure. Bergan and Horrigmoe[7, 8] used the concept of rotating Cartesian
frames attached to elements, whereas Bergan and Nyg̊ard[9, 10] used shadow
configurations on the element level. A significant contribution towards the con-
sistent treatment of co-rotated coordinates and large rotations was made by
Argyris et al.[11, 12], while Crisfield[13], through his work concerning a three
dimensional nonlinear beam element, introduced the concept of a consistent
co-rotational formulation in 1990. Rankin and Brogan[14] introduced the idea
of an element independent co-rotated formulation in 1986. This was later re-
fined by Nour-Omid and Rankin[15]. In his co-rotational formulation for 3D
beams from 1994, Teigen[16] accounted for the effects of eccentricity, but did
this inconsistently. In 1994 Haugen[4] presented a co-rotated element formu-
lation influenced mainly by Bergan and colleagues[7, 8, 9, 10] and their idea
of element shadow configurations, and by Rankin and colleauges[14, 15] and
their emphasis on element independency and consistency demands. Haugen
and Felippa[17, 18] have later extended the formulation in order to consistently
handle rigid eccentricities.

Much work has been done developing beam elements, see for instance [19, 20, 21],
but usually the emphasis has been on developing standalone beam elements for
nonlinear analysis that account for large displacements as part of the formula-
tion.
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One of the main advantages of the co-rotated element formulation is the idea
of reuse of existing, and possibly linear elements, as these can be put in co-
rotated frames handling the possibly large rigid body displacement. Thus, the
beam elements usually implemented in corotated formulations, see [4, 13, 16],
are linear elements based on Euler-Bernoulli or Mindlin-Reissner theory [22].
But any displacement-based beam element may in principle be implemented.

For solution of the nonlinear problem an incremental solution algorithm is usu-
ally applied. In a purely incremental algorithm, a systematic drift-off error ac-
cumulates, causing the computed results to deviate from the equilibrium path
(see for instance [23]). In large displacement analyses, this is usually reme-
died by introducing Newton-Raphson equilibrium iterative methods (see [24]).
These methods do, however, require that the tangent stiffness is consistent with
respect to the force vector, in order to consistently yield a good rate of con-
vergence towards the equilibrium path. This means that for the elements used
in such analyses, the tangent stiffness should reflect the variation of the force
vector.

Elements based on second order theory for displacements can be made to account
for stability problems by including internal geometric stiffness accounting for
the loss/gain of stiffness in the element due to existing stress. This has for
instance been shown for two-dimensional elements by Bergan and Syvertsen[1].
However, usually only geometric stiffness due to axial loading is included, and
even Vašek[25], who puts a large effort into including geometric stiffness due to
shear, does not seem to include the geometric stiffness effect of bending. Thus,
geometric stiffness that accounts for lateral torsional buckling is omitted in these
element formulations.

Beam elements based on second order theory can be used in the co-rotated for-
mulation. However, as purely incremental methods are usually used as solution
procedures in second order finite element formulation codes, it does not appear
that much emphasis has been put into finding consistent beam elements based
on this theory. Thus, existing beam elements based on second order theory
would have to undergo rather extensive modification in order to be candidates
for use in fully nonlinear analyses.

Whereas Euler presented the first solution of the differential equation for a
column with respect to stability in 1744 [26], it was not until 1899 that the
first case of lateral torsional buckling was solved by Prandtl[27] and Michell[28],
according to Timoshenko and Gere [29]. A number of other cases of beams and
columns solved with respect to stability, by use of differential equations, are
given and summarized in Timoshenko and Gere[29, 30]. More work has been
done by, for instance, Flint[31, 32], which was used by Hooley and Madsen[33]
for comparison when doing experiments on timber beams with respect to lateral
torsional buckling.
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Van der Put[34] used differential equations to study (timber) beams subjected
to bending about two axes and axial compression, with respect to stability, in
an effort to obtain a more general and consistent stability design for Eurocode 5.
Burgess[35, 36, 37] and Brüninghoff[38] study the effect of bracing on columns
and deep beams, with the ultimate goal of obtaining design code rules for use in
Eurocode 5. A number of other papers concerning flexural and lateral torsional
buckling of timber structures have been presented at various CIB-conferences,
see for instance Burgess[39, 40], Blaß[41], Johansson[42] and Larsen[43, 44].

1.3 Current timber design codes

Of the many different timber design codes, only two are considered in this work:
the existing Norwegian code, NS3470 [2]3, and Eurocode 5 or EC5[3]. The basics
of these two design codes are the same. They are both based on the concept
of partial coefficients, and the different code checks are performed in the stress
space. However, Eurocode 5 offers less in terms of guidelines and help practical
design work.

With respect to stability, the main difference between the two design codes, is
the handling of flexural buckling. Eurocode 5 bases the code check on buckling
curves obtained from statistical simulations. By measuring geometric imper-
fections and material properties of a large number of beams, the statistical
distributions of these properties for the beams were established. In turn, these
were used in Monte Carlo type analyses of buckling of simple columns to obtain
buckling factors for the columns. In these analyses, a nonlinear stress-strain
curve for the material was chosen. For more information, see [45]. In NS3470,
a more theoretical approach was applied. According to this design code, the
maximum allowed geometrical imperfection for a member is a given fraction of
the length of the member. Imposing a sinusoidal imperfection, with amplitude
equal to the maximum allowed geometric imperfection, on a simply supported
column subjected to axial loading and applying a simple strength criterion, an
expression for the buckling load is obtained, which in turn can be used to find
the buckling factor for a column with a given buckling length. A linear stress-
strain relationship was used in the derivation of the buckling factor. This topic
is described in [46].

One other major difference between EC5 and NS3470, of interest for this work,
is the handling of combined bending and axial loading. This issue is adressed
more extensively in chapter 8.

3The latest revision, NS3470-1 of 1999, has not been considered in this work.
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1.4 The organization of this thesis

This work is conveniently divided into two main parts.

In the first part, consisting of chapters 3, 4 and 5, a general co-rotated for-
mulation is described (chapter 3) and a new consistent 3D beam element with
internal geometric stiffness is presented(chapter 4). The element formulation is
assessed through analyses presented in chapter 5.

The second part consists of chapters 6, 7, and 8, and presents results and dis-
cussion of results from linearized buckling analyses and nonlinear analysis of
timber structures.



Chapter 2

Basic concepts and
assumptions

2.1 Types of analysis

The various types of finite element analyses for static problems referred in this
work are briefly summarized below.

2.1.1 Linear analysis

Linear analysis is based on the assumption that the material is linearly elastic
and that all displacements are small such that both equilibrium and kinematic
relations refer to the undeformed geometry.

Superposition applies and the solution of a linear problem is unique.

2.1.2 Linearized buckling analysis

When establishing differential equations for solution of structural stability prob-
lems, equilibrium of the structure is studied in a deformed state, where the dis-
placements are assumed to be small (infinitesimal), see for instance [30]. After
the differential equation is established, the critical load is found by solving the
equation with respect to the lowest value of the load that leaves the magnitude

7
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of the displacement indetermined. The problem with this method lies not nec-
essarily in establishing the differential equations, but rather in the solution of
the equations.

The finite element equivalent to the differential equation approach is the lin-
earized buckling analysis. This type of analysis is based on the displacement
being small, and it leads to the eigenvalue problem

(k1 − λkG)v = 0 (2.1)

This equation is solved with respect to the load factor λ (eigenvalue), and the
displacement vector v (eigenvector) whose amplitude is indeterminate. Tradi-
tionally, k1 is the so-called material stiffness which is the stiffness independent
on the stress state of the structure, whereas kG is dependent on the stress in the
structure and is called geometric stiffness. Note, however, that a linearized buck-
ling analysis can be applied about any given configuration, even a prestressed
one.

A variation of the linearized buckling analysis is the secant linearized buckling
analysis, where instead of a linearization about a given configuration, lineariza-
tion is applied between two configurations, and beyond.

Both the linearized buckling analysis and the secant linearized buckling analysis
are useful for obtaining estimates of the buckling load for a structure. However,
since the basic assumption is small displacements, the accuracy of these esti-
mates is dependent on the flexibility of the structure in the interval between
the configuration at which the linearization is applied and the configuration for
which the structure actually buckles.

In addition to the estimate of the buckling load, the linearized buckling analysis
also gives an estimate of the buckling shape of the structure. A scaled version
of this shape has in many cases proved to be a good choice for the geometric
imperfection in nonlinear analyses.

As will be seen in section 2.1.4, the secant linearized buckling analysis has
another important application.

2.1.3 2nd order analysis

This type of analysis is often (erroneously) referred to as nonlinear analysis.
Allthough it allows for nonlinear effects in both geometry and material proper-
ties, this method of analysis is based on the assumption of small displacements,
but equilibrium is required with respect to deformed geometry. Usually iterative
methods have to be applied in order to obtain results from a 2nd order analysis,
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as the stress distribution in the structure for this kind of analysis is dependent
on the displacements.

2nd order analysis can be used to obtain estimates of the buckling loads, since
the displacement increases rapidly and approaches infinity when the load level
approaches the buckling load. However, since the displacements are assumed
small, the accuracy of the buckling load estimation is highly dependent on the
flexibility of the structure.

2.1.4 Nonlinear analysis

As the name indicates, a nonlinear analysis is capable of accounting for non-
linear effects. Both geometric and material nonlinearities can be handled. The
basic assumptions are that the deformation is finite, but not necessarily small,
and equilibrium is required with respect to the deformed geometry. Thus, the
nonlinear analysis is applicable to both rigid and flexible systems.

Nonlinear analyses of static problems are usually performed by some incremen-
tal approach. This may introduce an (increasing) error in the solution as the
analysis proceeds, and equilibrium corrections are therefore usually applied. The
actual process depends on the type of solution procedure being used, and on
the relative size of the increments.

Buckling is detected in a nonlinear analysis by an indefinite system of equations
governing the analysis. In a second order analysis, the buckling load is associated
with indeterminate displacements. In a complete nonlinear analysis, however,
buckling is really a point; a socalled bifurcation point, at which two equilibrium
paths crosses. In order to detect the bifurcation point and traversing it correctly,
a secant linearized buckling analysis between one configuration before and one
after instability is applied.

Through a so-called nonlinear bifurcation analysis, it is thus possible to follow
the equilibrium path of the structure through buckling and beyond.

2.2 Computational models

2.2.1 Two-dimensional (2D) models

The most common computational model used by the structural engineer, is the
two-dimensional model. In such a model, all points have only three possible
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displacement components, two translations and one rotation. Most structures
can be simplified into a set of substructures, each of which can be presented in
a two-dimensional plane. One of the main advantages of this kind of model is
the relative ease with which a graphical computer user interface can be made
in which it is easy to model the structure and represent computed data.

The obvious disadvantage of this approach is its inability to capture out-of-the-
plane action. This makes it impossible (or at least very difficult) to correctly
account for interaction between the different substructures.

2.2.2 Three-dimensional (3D) models

All structures are three-dimensional, and a complete solution can only be ob-
tained by a 3D-model. The step up from 2D is, however, a major one. Not
only is the formulation more complex, mainly due to the difficulties associated
with rotations in three dimensions, and the computational costs much higher,
the modelling as well as the representation and interpretation of the results are
also much more challenging in 3D than in 2D.

2.2.3 2 1/2D models

A fairly new concept, the 2 1/2D model seeks to combine the relatively easy
modelling procedure of the 2D model with the computational versatility of the
3D model(see for instance [47]). In this approach the model and the loading
is 2D, but it has 3D degrees of freedom, and it is therefore analyzed as a 3D
structure. All out-of-the-plane non-fixed boundary conditions are accounted for
by use of springs.

The major disadvantage of this approach is that the adjoining members has to
be replaced by fictitious springs. For complex systems it may be difficult to
assign properties to these springs. However, in connection with buckling, the
bracing effect of adjoining structural members seems to be quite insensitive to
the bracing stiffness of the members, providing they have sufficient stiffness.
Thus, for some kinds of problems the 2 1/2D models may represent a useful
extension to the 2D model.
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2.3 Material

The material considered is timber. Being a natural material, timber has a wide
variation in its material properties. Even two specimens out of the same tree
may be considerably different. In this work, the usual assumption of linear
elastic behaviour is made throughout.

However, for generality, the element formulation established in chapter 3 and 4
is developed for hyperelastic material; this is a material that follow the same,
not necessarily linear, stress-strain curve in unloading as in loading.

The material properties used in the numerical part of the work are taken from
NS3470[2].

NS3470 provides two sets of elastic stiffness parameters. The 5-percentile values
are to be used for stability calculations, whereas the mean values should be
used in deformational calculations. However, NS3470 does not provide any
guidelines as to which set is to be used in computer analyses. At first glance,
this may not seem to represent any problems. For linearized buckling analyses,
which undoubtedly are stability type analyses, the 5-percentile values should
be used. Likewise, in analyses, be they linear or nonlinear, aiming to find
displacements, at least for the servicibility limit state, the mean values should be
used. However, a problem arises when considering nonlinear analysis of members
prone to buckling. In a nonlinear analysis, buckling is an integral part of the
analysis, and not a special phenomenon. So, which set of material properties
should be used in such analyses? This is actually a problem concerning all
nonlinear analyses, as the stiffness will, to a certain degree, affect the results
obtained from these analyses.

Eurocode 5 provides some guidelines for the use of 2nd order theory analysis. It
states that the stiffness moduli to be used are the 5-percentile values, reduced
by the kmod factor (accounting for moisture and load-duration effects), as well
as by the material factor.

In appendix D, results from some analyses of simple beams are presented. There
is one case of flexural buckling, and two cases of lateral torsional buckling. For
each of these cases, and for each design code, four analyses are performed, each
with its own set of material properties. In addition, the design load as found
from using the simplified methods in the design code is included.

The results consistently show that nonlinear analysis using the mean values of
the stiffness parameters resulted in a much too high design load compared to the
simplified methods. As for the results for the other sets of material properties,
that all include some form of the 5-percentile values of the stiffness moduli, no
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conclusion can be drawn with respect to what set of material properties should
be used.

In the nonlinear analyses presented in this thesis, the unreduced 5-percentile
values of the stiffness moduli are used, unless otherwise stated.

As indicated earlier, the unreduced 5-percentile values of the stiffness moduli
are also used in the linearized buckling analyses.

2.4 Cross section

Allthough various cross sections are used in timber structures, by far the most
common is the rectangular section. Therefore, only rectangular cross sections
are considered in this study.

For rectangular cross-sections, the warping stiffness is negligible compared to
the St.Venant torsional stiffnes, and it is therefore omitted from all calculations
in this work.

It should be noted, however, that the element formulation presented in chapters
3 and 4 is applicable to all kinds of cross sections, as long as the warping stiffness
is negigible compared to the St.Venant torsional stiffness.
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Chapter 3

Co-rotated formulation

Three different schools of finite element formulation exist for solving static prob-
lems involving large displacements.

The total-lagrangian school seeks to formulate elements based on expressions
for total displacements, which include both rigid-body displacements and de-
formational displacements, resulting in rather complex element formulations.
However, if performed successfully, the resulting elements are able to represent
large displacement and large deformations. In this formulation, strain and stress
is usually measured with respect to the base configuration.

If the updated lagrangian school is followed, the elements are still based on large
displacements, that still may include both rigid-body displacements and defor-
mational displacements. But as a target configuration is reached, it becomes the
new reference configuration. Strains and stresses are redefined as soon as the
reference configuration is updated [23]. According to Felippa[23], the updated
lagrange formulation is of diminishing interest, as it is gradually being replaced
by the co-rotated formulation.

In a co-rotated formulation, the rigid body displacements and the deformational
displacements are treated seperately. In most problems, deformations are rather
small, although the displacements may be large. Herein lies the key to the
advantage of the co-rotated element formulation: Since the deformation of each
element is small, linear elements may be used to represent the deformation
of the element, since the possibly large rigid body displacements are handled
seperately.

In this chapter, a co-rotated formulation is presented. The approach is an

15
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adaptation of Haugen’s work[4, 17].

3.1 Deformational displacement

The first need is to establish relationships between displacement, deformational
displacement, rotation and deformational rotation for an element experiencing
large displacement/rotation, but small deformation.

3.1.1 Rotations in three-dimensional space

The main reason why operating in three dimensional space (3D) is considered
more complicated than operating in two dimensional space(2D), is the treatment
of large rotations. In 2D, only rotation about an axis normal to the plane is
possible, and thus rotations may be added as scalars. Hence, rotation can be
treated in the same manner as translations.

In 3D space, however, three independent rotation components are possible for
any given point. Furthermore, the order in which the rotations about the differ-
ent axes take place is of significance1. Due to this property of rotations in three
dimensional space, they may not be added as vectors. It is important, however,
to recognize that for small rotations (that is small enough for linearization to
be a sufficiently accurate approximation), rotations may be added as vectors.

A number of different ways of treating large rotations in three dimensional space
have been examined, including rotation vector parameterization and orthogonal
matrix parameterization (see for instance [48]). For the algorithms described in
this section, the Rodriguez representation of the rotation tensor is used. This
is an orthogonal matrix parametrization, in which derivation is based on one
rotation about a particular rotation axis. As shown by Argyris [12], Rodriguez
formula can be obtained from purely geometric considerations, and it is also
consistent with an exponential mapping of rotations [12, 15, 49].

The Rodriguez representation of the rotation tensor for a rotation θ about an
axis defined by the unit vector nT = n1 n2 n3 is, in [17], given in the
form:

R(n, θ) = I+N sin θ +N2 (1− cos θ) (3.1)

1This is for instance apparent in the Euler angle representation of rotations.
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where

N = Spin (n) =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 (3.2)

and I is the 3 by 3 identity matrix. A geometrical interpretation of the Rodriguez
representation of the rotation tensor is given in appendix A.

In equation (3.2), the spin matrix representation of a vector was introduced.
Spin of a 3D vector a is defined from

a× b = Spin (a)b = −Spin (b)a (3.3)

where b is another 3D vector.

Rotation of a vector r0 into r by rotating an angle θ about an axis defined by
the unit vector n is now performed by premultiplication by R:

r = Rr0 (3.4)

Substitution of equation (3.2) into (3.1) yields the explicit form of the rotation
matrix, in terms of the rotation axis and angle

R(n, θ) =

 1+(1−c)(n21−1) (1−c)n1n2−n3s (1−c)n1n3+n2s
(1−c)n2n1+n3s 1+(1−c)(n22−1) (1−c)n2n3−n1s
(1−c)n3n1−n2s (1−c)n3n2+n1s 1+(1−c)(n23−1)

 (3.5)

where c = cos θ and s = sin θ. For a given R(n, θ), the rotation axis n and the
rotation angle θ may be found from the following, in which indices (i, j, k) take
on the cyclic permutations of ( 1, 2, 3 ):

di = ni sin θ =
1

2
(Rkj −Rjk) (3.6)

Exploiting the fact that n is a unit vector, that is n21 + n
2
2 + n

2
3 = 1, the

rotation angle can be found from sin θ = d21 + d
2
2 + d

2
3. Next, the rotation

axis is found from ni = di/ sin θ. Thus the rotation pseudo-vector associated
with the rotation tensor is

θ = θn =
θ

sin θ

 d1d2
d3

 (3.7)

θ is called a pseudo-vector because, although it “looks” like a vector it does not
have vector properties in the algebraic sense.

Examining (3.7) we find that θ → d as θ → 0. In order to avoid numerical
difficulties related to (3.7), the fraction θ/ sin θ should, for small angles, be
evaluated from a truncated Taylor series about θ = 0.



18 CHAPTER 3. CO-ROTATED FORMULATION

If Cayley-Hamilton’s theorem2 is applied to Spin (θ), a comparison between a
series representation of the exponential function and R(θ) yields the following
equation:

R(θ) = eSpin(θ) (3.8)

Inversely, the rotation pseudo-vector θ is given by

θ = Axial (Spin (θ)) =Axial (ln (R)) (3.9)

When it comes to differentiation, equation (3.8) has obvious advantages over
equation (3.1).

3.1.2 Configurations and coordinate systems

I1

I2

I3 C0n

c

C0

c
Cni1

0

i2
0

i3
0

i1
n

i2
n

i3
n

Figure 3.1: The different configurations and coordinate systems.

Figure 3.1 shows the different configurations used in this work. The base con-
figuration of a body, is its configuration at the start of the analysis, denoted
C0. Later, the body has been deformed and moved/rotated into another con-
figuration, Cn. Superposed on the body in configuration Cn is the reference
configuration C0n. The C0n-configuration is the same as the base configura-
tion C0, except that it has undergone the same rigid body displacements and
rotations as the body when moving from configuration C0 to Cn. The C0n
configuration is frequently also referred to as the shadow configuration. In the
formulation discussed in this thesis, the shadow configuration is positioned so
that it shares area center with configuration Cn.

2Cayley-Hamilton’s theorem: Every square matrix satisfies its own characteristic
polynomial[50]. See appendix A.
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The deformed configuration Cn and the shadow configuration C0n share a com-
mon coordinate system represented by the orthogonal unit vectors in1 , i

n
2 and i

n
3 .

This is the local coordinate system of the body, and rotates with the shadow
configuration throughout deformation. The fixed global coordinate system is
represented by unit vectors I1, I2 and I3.

Subscript n will later be identified with the solution step number in the iterative
solution procedure. Vectors given in the local coordinate system are marked
with a tilde(˜).

A vector x in global coordinates is transformed into a vector x̃ in a local coor-
dinate system by

x̃ = Tx (3.10)

where

T =

 iT1iT2
iT3

 (3.11)

and i1, i2 and i3 are the three orthonormal vectors defining the local coordinate
system. T is orthonormal, that is T−1 = TT , and thus the inverse transforma-
tion may be written as

x = TT x̃ (3.12)

Now, consider two local coordinate systems, the first defined by i01, i
0
2 and i

0
3

and associated with configuration C0, and the second given by i
n
1 , i

n
2 and i

n
3 and

associated with configuration C0n. A vector, ã, is attached to a local coordinate
system as it rigidly moves from configuration C0 to configuration C0n. In global
coordinates, the vector is a0 = TT0 ã in configuration C0, and a

n = TTn ã in
configuration C0n. The rotation of a0 into an is given by

an = R0na
0 (3.13)

where R0n is the rigid body rotation tensor from configuration C0 to configu-
ration C0n.

Writing an and a0 as transformations of ã into global coordinates, the following
expression for the rotation tensor may be obtained

an = R0na
0

TTn ã = R0nT
T
0 ã

TTnT0 = R0nT
T
0T0

R0n = TTnT0

(3.14)
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Since the transformation matrices are orthogonal, it follows that the rotation
matrix is also orthogonal. Thus, the inverse of equation (3.13) is given by

a0 =RT
0na

n (3.15)

3.1.3 Translation of a point from configuration C0 to con-
figuration Cn.

C C0 n

ra
0 ra

n

ra
n

ra
0

ea
n

ea
0a a

Figure 3.2: Translation of a point from configuration C0 to configuration Cn.

Consider a body as it moves from its initial configuration C0 to another config-
uration Cn. During the movement a point identified by subscript a is followed.
The point is rigidly attached to another point through the eccentricity vector
ea. The two configurations are shown in figure 3.2, where the different vectors
are denoted by

r0a,r
n
a - position vector for point a in configurations C0 and Cn, re-

spectively
ŕ0a,ŕ

n
a - position vector for eccentricity point in configurations C0 and

Cn, respectively
e0a, e

n
a - eccentricity vectors in configurations C0 and Cn, respectively.

To avoid confusing subscript notation, the a indicating the point is omitted in
most of the remaining equations of this chapter.

Handling of rigid eccentricities is included in this formulation because they make
a powerful tool for modelling of structures. By using the rigid eccentricities
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to model members that are much stiffer than the rest of the members in the
structure, these can be handled in a cost-efficient manner without having to
worry about the rigid members causing numerical problems. A related area of
application is the use of rigid eccentricities for modelling eccentric loading.

Relationships

The relationships between the vectors listed above are as follows:

r0 = ŕ0 + e0

rn = ŕn + en

= ŕn +Re0

(3.16)

R is the rotation tensor accounting for the rotation of point a between the C0
configuration and the Cn configuration. This rotation tensor is the subject of
the next section.

Displacement vector

The displacement vector is given as the difference between the position vector
in configuration C0 and the position vector in configuration Cn.

u = rn − r0 = ŕn +Re0 − ŕ0 − e0 = ú+ (R− I) e0
ú = ŕn − ŕ0

(3.17)

Figure 3.3 shows how the displacement vector can be separated into a rigid body
displacement vector and a (small) deformational displacement vector. Extract-
ing this field of small deformational displacements is the key to re-using linear
finite elements within the co-rotational formulation.

u = ur + ud (3.18)

ur - rigid body displacement vector given as the difference between the
position vector in initial configuration C0 and the position vector
in shadow configuration C0n.

ud - deformational displacement vector given as the difference between
the position vector in shadow configuration C0n and the position
vector in configuration Cn.
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Figure 3.3: The displacement vector u consists of a rigid body part, ur, and a
deformational part, ud.

Thus, ur and ud may be expressed as:

ur = r0n − r0 (3.19)

ud = rn − r0n (3.20)

Introducing subscript c for the arithmetic mean of the coordinates of all the
points in the body3, the position vectors in initial and shadow element config-
urations of point a may be written as:

r0 = r0c + x
0 (3.21)

r0n = r0nc + x0n

= r0c + uc +R0nx
0 (3.22)

where x0 and x0n are the vectors from the centroid of the body to the point
being considered in the C0 configuration and the C0n configuration respectively.

Substitution of the expressions above into equations (3.18) yields:

ud = u− ur = u− (r0n − r0)
= u− (r0c + uc +R0nx0 − r0c − x0)
= u− uc − (R0n − I)x0

(3.23)

u is found from equation (3.17).

3Thus the centroid in discussion is not necessarily the mass center of the body, although
these may (and often do) coincide.



3.1. DEFORMATIONAL DISPLACEMENT 23

3.1.4 Rotation of a point from configuration C0 to config-
uration Cn

The rotation of a point as the body moves from the initial configuration C0 to
the deformed configuration Cn is described by the rotation tensor R. Analogous
with the way displacement was treated, the rotation tensor may also be divided
into a rigid body rotation tensor R0n and a deformational rotation tensor Rd.
The proper way to “add” rotations, however, is to multiply the rotation tensors.
In this multiplication the order is of significance: RdR0n = R0nRd. Haugen[4]
has selected the former multiplication order claiming consistency with “that
employed by Bergan, Rankin and their colleagues.”[10, 14, 9, 51]

R = RdR0n (3.24)

Introducing equation (3.14) from page 19 into (3.24), an expression for the
deformational rotation tensor is found:

R = RdR0n = RdT
T
nT0

Rd = RRT0n = RT
T
0Tn

(3.25)

The deformational rotation tensor may be transformed into the local coordinate
system shared by configurations C0n and Cn through pre-multiplication by Tn
and post-multiplication by TTn :

R̃d = TnRdT
T
n = TnRT

T
0TnT

T
n

= TnRT
T
0

(3.26)

3.1.5 Element deformational displacement vector

The deformational displacement field ud over an element can be obtained from
interpolation of displacements at the element nodes.

The position of an element node a with initial coordinates r0a, is defined by the
translational displacement ua and the rotational orientation represented by the
pseudo-vector θa. Together, the set (ua,θa) for a = 1, ..N is the nodal displace-
ment vector v “visible” to the other elements. It should be stressed that v is
not a true vector, because the components of θa do not transform and add as
vectors.“The interpretation of v as an array of numbers that defines the position
of the deformed element is more appropriate.”[4]
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In order to establish the strain energy, and hence the force vector and tangent
stiffness for an element, the deformational displacement vector for the element
needs to be established. This vector is denoted ṽd and contains translational
and rotational degrees of freedom for each element node ordered as

ṽTd = ũTd1θ̃
T

d1 . . . ũ
T
dN θ̃

T

dN (3.27)

N is the number of element nodes for the element being considered. As the tilde
indicates, ṽd is expressed in local coordinates.

Given ŕ0a, e
0
a, úa and Ra, ṽd is found by application of the following algorithm:

1. Establish the initial local coordinate system T0 from the initial nodal
coordinates, r0a = ŕ

0
a + e

0
a , a = 1 . . . N , and form the nodal coordinates

in the local coordinate system:

x̃0a = T0 r
0
a − r0c where r0c =

1

N

N

a=1

r0a (3.28)

2. Establish the deformed local coordinate system Tn from the deformed
nodal coordinates,rna = ŕ

0
a + úa +Rae

0
a , a = 1 . . .N and form the nodal

coordinates in the local system:

x̃na = Tn (r
n
a − rnc ) where rnc =

1

N

N

a=1

rna (3.29)

3. Compute deformational translations:

ũda = x̃
n
a − x̃0a (3.30)

4. Establish deformational rotation tensor in local coordinates:

R̃da = TnRaT
T
0 (3.31)

5. Find local deformational rotation pseudo-vector from rotation tensor in
local coordinate system:

θ̃da = Axial ln(R̃d) (3.32)

6. Collect ũda and θ̃da in the element deformational displacement vector:

ṽTd = ũTd1θ̃
T

d1 . . . ũ
T
dN θ̃

T

dN (3.33)
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3.2 Variation of the deformational displacement

The force vector and the tangent stiffness matrix of an element will be estab-
lished from the first and second variation of the strain energy of the element,
respectively (see section 3.3).

It is rather straightforward to establish the strain energy using the deforma-
tional displacements directly. However, in the derivation of the force vector, the
variation of the deformational displacement vector with respect to the element
visible degrees of freedom is required. The deformational displacement vector
is measured continuously in the local co-rotated frame, whereas the visible de-
grees of freedom are measured in the global inertial4 frame. Thus, the relevant
variation is a variation of a vector measured in a rotating frame with respect to
a variation in another vector measured in an inertial frame. Variation of vector
vd is, by definition

(δvd)R =
(∂vd)R
∂v

δv (3.34)

The subscript R is used to indicate that the variation/differential is measured
in the co-rotated frame.

In order to obtain the variation of the deformational displacement vector, vari-
ation of parts of the deformational displacement are studied one by one, and
reassembled after variation.

3.2.1 Degrees of freedom

In the inertial global coordinate system, the degrees of freedom at each node are
vT = uT θT , where θ is the pseudo-vector that holds information about
the orientation of the node, while u contains the translations of the node. When
taking the variation of v, the variation of the orientation is in the infinitesimal
linear domain. Hence, the rotations that the variation is performed with respect
to, can be represented by an infinitesimal rotation vector, δω. The variatonal
degrees of freedom are therefore δvT = δuT δωT .

Some of the variations are carried out with respect to the rigid body rotations of
the element. These rotations are represented by the orientation of the element

shadow configuration, defined by R0n = e
Spin(θr). The variation of the shadow

configuration orientation is taken with respect to δωr, the instantaneous rota-
tion axis at the coordinate system defined by R0n. The subscript r in θr and

4An inertial coordinate system is a coordinate system that has constant velocity and no
rotation throughout the variation.
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δωr is used to indicate that these are representations of the orientation of the
element shadow configuration.

3.2.2 Variation of the transformation matrix Tn and the
rotation matrix R0n

Since the transformation matrix Tn transforms a vector from being measured
in a global coordinate system to being measured in a local coordinate system,
and thus only “changes” the orientation of the vector, it is independent of the
translation of the element. Hence, Tn only has a non-zero variation with respect
to the rotation of the element. The translation and rotation considered apply
to the centre of the element.

δTn =
∂Tn
∂ω̃r

δω̃r

=

 0T

in3
T

−in2T

 δω̃rx +
 −in3T0T

in1
T

 δω̃ry +
 in2

T

−in1T
0T

 δω̃rz
=

 0 δω̃rz −δω̃ry
−δω̃rz 0 δω̃rx
δω̃ry −δω̃rx 0

 inT1inT2
inT3


= −Spin (δω̃r)Tn

(3.35)

Geometrically, this variation is carried out by applying infinitesimally small
rotations δω̃r and study the effect this has on the unit vectors defining Tn.

Transformation of Spin (δω̃r), expressed in local coordinates, into Spin (δωr),
expressed in global coordinates, is accomplished by pre-multiplication by Tn
and postmultiplication by TTn . Utilizing the orthogonality of Tn, variation of
the transformation matrix may be written as

δTn = −Spin (δω̃r)Tn = −TnSpin (δωr)TTnTn = −TnSpin (δωr) (3.36)

Spin (δωr) is anti-symmetric, and the variation of the transposed transforma-
tion matrix may therefore be written as

δTTn = T
T
nSpin (δω̃r) = Spin (δωr)T

T
n (3.37)

The rotation tensor R0n rotates a vector from the initial configuration to the
shadow configuration. Equation (3.14) from page 19 states that this rotation
tensor may be written as

R0n = T
T
nT0 (3.38)
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from which the variation of the rotation tensor is found to be

δR0n = δTTnT0 +T
T
nδT0 = δTTnT0 = Spin (δωr)T

T
nT0

= Spin (δωr)R0n

(3.39)

3.2.3 Variation of ud with respect to v

Haugen[4] expresses the variation of a vector represented in an inertial frame as

δx = (δx)R + δω × x = (δx)R + Spin (δω)x (3.40)

where
(δx)R - variation of the vector measured in the co-rotated frame.
δω - variation of the orientation of the frame (measured in the inertial

frame).

Equation (3.40) may be used to obtain the variation of co-rotated ud with
respect to inertial v.

Variation of inertial ud with respect to inertial v

Equation (3.23) from page 22 states that the deformational displacement of an
element node a is

uda = ua − uc − (R0n − I)x0a (3.41)

where uc is the displacement vector of the centroid of the element. As shown
previously, it can be replaced by

uc =
N

b=1

1

N
ub (3.42)

To simplify the resulting equation, we now introduce for ua

ua =
N

b=1

δabub (3.43)

where δab is the Kronecker delta, which has the value 1 for a = b and 0 for
a = b. Substitution of equations (3.42) and (3.43) into (3.41) yields

uda =
N

b=1

δab − 1
N ub − (R0n − I) x0a

=
N

b=1

Pabub − (R0n − I)x0a where Pab = δab − 1
N I

(3.44)
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The variation of inertial uda with respect to inertial v may now be found as

δuda =
N

b=1

(δPabub −Pabδub)− (δR0n − δI)x0a − (R0n − I) δx0a

=
N

b=1

Pabδub − δR0nx0a

(3.45)

since δPab = 0, δI = 0 and δx0a = 0. Using equation (3.39) as a substitute for
δR0n, the last term in (3.45) may be written as

δR0nx0a = Spin (δωr)R0nx0a = Spin (δωr)x
0n
a

= −Spin x0na δωr

= −Spin x0na Gδv

(3.46)

The matrix G connects the variation of the rigid body rotation to the variation
of the visible node displacements:

δωr =
∂ωr
∂vi

δvi =Gδv =
N

b=1

Gbδvb (3.47)

The matrix Gb is an element-type dependent matrix. That is, it is the same for
all three-noded shell elements with six dofs at each node, while it is for instance
different for three-noded shell elements and two-noded beam elements, although
the dofs at the nodes are the same. As indicated by equation (3.47), G may be
split into its nodal submatrices Ga. In appendix B, G is derived for a beam
element with two nodes and six degrees of freedom at each node.

Substitution of (3.46) into (3.45) yields the expression for the variation of inertial
ud with respect to inertial v

δuda =
N

b=1

Pab 0 + Spin x0na Gb δvb (3.48)

δvb is the vector of inertial degrees of freedom vector for node b. That is:
δvTb = δuTb δωTb .

Variation of co-rotated ud with respect to inertial v

The relationship defining the variation of inertial deformational displacement
with respect to inertial degrees of freedom is now established. Recalling the
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relationship uda = xna − x0na , we find that the variation of the deformational
displacement vector measured in the co-rotated frame, with respect to inertial
degrees of freedom is given by

(δuda)R = (δx
n
a)R − (δx0na )R = (δxna )R (3.49)

since (δx0na )R = 0.

Since xna = R0nx
0
a + uda, the variation of inertial x

n
a with respect to inertial

degrees of freedom is given by

δxna = δR0nx
0
a +R0nδx

0
a + δuda

= δR0nx
0
a + δuda

= Spin (δωr)R0nx0a +
N

b=1

Pabδub − Spin (δωr)x0na

= Spin (δωr)x0na − Spin (δωr)x0na +
N

b=1

Pabδub

=
N

b=1

Pabδub

(3.50)

Substituting xna for x in equation (3.40) from page 27 and solving with respect
to (δxna )R, the following expression for (δx

n
a)R is obtained:

(δxna )R =
N

b=1

Pabδub − Spin (δωr)xna

=
N

b=1

Pabδub + Spin (xna ) δωr

=
N

b=1
Pab 0 + Spin (xna)Gb δvb

(3.51)

Since, according to equation (3.49), (δuda)R = (δxna )R, the variation of the co-
rotated deformational displacement vector, with respect to inertial degrees of
freedom, may now be expressed as

(δuda)R =
N

b=1

Pab 0 + Spin (xna )Gb δvb (3.52)

If equations (3.48) and (3.52) are compared, it is seen that they differ in the argu-
ment to the Spin ()-term only. The variation in inertial system has Spin x0na ,
whereas the variation in the co-rotated system involves Spin (xna ).
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3.2.4 Variation of co-rotated θd with respect to inertial v

As was the case for co-rotated deformational displacement, the variation of the
co-rotated deformational rotations with respect to inertial degrees of freedom
can not be found directly. However, the variation of the co-rotated deformational
(finite) rotations with respect to the co-rotated (infinitesimal) rotations was
investigated by Nour-Omid and Rankin [15] based on a relationship established
by Simo [49] and Szwabowicz [52].

(δθda)R =
∂θda
∂ωda

(δωda)R =
∂ (Axial (ln(Rda)))

∂ωda
(δωda)R = Ha(δωda)R (3.53)

The matrix Ha is in [15] defined as

Ha =
∂θa
∂ω

= I− 1
2
Spin (θa) + ηSpin (θa)

2
(3.54)

where

η =
sin(12θa)− 1

2θa cos(
1
2θa)

θ2a sin(
1
2θa)

and θa = θTa θa = θa (3.55)

As θa → 0, η → 0/0 which may cause numerical problems for small rotation
angles. To avoid these problems, η should be computed from a truncated power
series for small values of θa:

η ≈ 1

12
+

1

720
θ2a +

1

30240
θ4a for θa < 0.05radians (3.56)

The variation of the co-rotated deformational rotation (δωda)R, with respect to
inertial degrees of freedom, is the difference between variation of nodal rotation
δωa and of rigid body rotation δωr, both varied with respect to inertial degrees
of freedom.

(δωda)R = δωr − δωa = δωa − ∂ωr
∂vi

δvi = δωa −Gδv (3.57)

G is defined in equation (3.47). δωda can now be written as

(δωda)R =
N

b=1

δab 0 I −Gb δvb (3.58)

since δvTb = δuTb δωTb . Introducing (3.58) into equation (3.53) yields
the final expression for the variation of co-rotated deformational rotation with
respect to inertial degrees of freedom.

(δθda)R =Ha

N

b=1

δab 0 I −Gb δvb (3.59)
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3.2.5 Variation of inertial v with respect to inertial v́

If degrees of freedom are located at eccentric nodes, the nodal degrees of freedom
are defined as

vTa = uTa θTa Element domain (dummy) dofs

v́Ta = úTa θ́
T

a
Eccentrically located (visible) dofs

(3.60)

which in variational form are reduced to

δvTa = δuTa δωTa

δv́Ta = δúTa δώTa

(3.61)

The relationships connecting the two sets of degrees of freedom are

ua = úa + (Ra − I) e0a
θa = θ́a

(3.62)

The variation of these relationships with respect to inertial degrees of freedom
can be expressed as

δua = δúa + δRae0a = δúa + Spin (δωa)Rae0a

= δúa + Spin (δωa) ena = δúa − Spin (ena) δωa
δωa = δώa

(3.63)

For a more compact form, equation (3.63) may be rewritten as

δva = Eaδv́a where Ea =
I −Spin (ena )
0 I

(3.64)

3.2.6 The variation of co-rotated vd with respect to iner-
tial v́ - putting it all together

For an element with N nodes, the nodal degrees of freedom within v are ordered
as follows

vT = uT1 θT1 . . . uTN θTN (3.65)
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If equations (3.52) and (3.59) are ordered accordingly, the result is
(δud1)R

(δθd1)R

.

.

.

(δudN )R

(δθdN )R

 =


I 0 . . . 0 0

0 H1 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . I 0

0 0 . . . 0 HN

·



P11 0 . . . P1N 0

0 I . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

PN1 0 . . . PNN 0

0 0 . . . 0 I



+


Spin (xn1 )G1 . . . Spin (xn1 )GN

−G1 . . . −GN

.

.

.
. . .

.

.

.

Spin (xnN )G1 . . . Spin (xnN)GN

−G1 . . . −GN






δu1

δθ1

.

.

.

δuN

δθN


(3.66)

Where Pab is defined in equation (3.44) to be:

Pab = δab − 1

N
I =

I− 1
N
I for a = b

− 1
N
I for a = b

(3.67)

With further simplification, (δvd)R may be written as

(δvd)R =

 H11 . . . 0

.

.

.
. . .

.

.

.

0 . . . HNN

·

 I . . . 0

.

.

.
. . .

.

.

.

0 . . . I



−

 PT11
. . . PT1N

.

.

.
. . .

.

.

.

PTN1
. . . PTNN

 −


S1

I

.

.

.

SN

I


 GT

1

.

.

.

GT
N


T

 δv

= H (I−PT −PR) δv = HPδv

(3.68)

Where

PTab =
1
N I 0
0 0

and Haa =
I 0
0 Ha

(3.69)

while

Sa =
−Spin (xna)

I
(3.70)

Finally I−PT −PR is abbreviated into P. Matrix P is a nonlinear projector
operator, shown by Haugen[4] to satisfy P2 = P, which is a necessary charac-
teristic of a projector matrix.
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In order to accommodate nodal eccentricities, the eccentrically located degrees
of freedom v́a are used instead of the element degrees of freedom va. The
relationship between the variation of eccentric degrees of freedom δv́a and the
variation of dummy degrees of fredom δva was previously found to be

δva = Eaδv́a where Ea =
I −Spin (ena )
0 I

(3.71)

Observe that for all nodes with eccentricity vector ena = 0, Ea reduces to the
identity matrix, thus leaving the dummy degrees of freedom unchanged for that
node. For an element with N nodes, (3.71) expands to

δv =


E1 0 . . . 0
0 E2 . . . 0
...

...
. . .

...
0 0 . . . EN

 δv́ = Eδv́ (3.72)

Introduction of equation (3.72) into equation (3.68), finally yields the expression
for the variation of co-rotated deformational displacement vector with respect
to inertial, eccentric, degrees of freedom for an element with N nodes:

(δvd)R = HPEδv́ (3.73)

The variation of the co-rotated deformational displacement vector has now been
found with respect to a set of inertial degrees of freedom. The choice of inertial
system has, however, not been specified. To enable use of already existing linear
elements in the rotating frame, the inertial system is chosen to be that of the
shadow element configuration. Thus, equation (3.68) may be rewritten as

(δṽd)R = H̃P̃δṽ (3.74)

Since the visible degrees of freedom are defined in the global coordinate system,
the variation needed is (δvd)R with respect to δv. Taking advantage of the
transformation between local and global coordinate systems, and expressing
the eccentricity matrix E in global coordinates, equation (3.73) may finally be
written as

(δṽd)R = H̃P̃Tnδv = H̃P̃TEδv́ (3.75)

3.3 Potential energy

In this section the potential energy of a displacement based co-rotated element
is established. From the strain energy, the internal force vector of the element
is derived by means of variation. Finally, the tangent stiffness is found through
variation of the force vector.
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3.3.1 Minimum potential energy

The potential energy, Π, of a system is defined as the systems ability to do
work.

Consider a body subjected to a pointload P at point S and distributed loading
τ over the area Aτ (fig. 3.4). The volume of the body is V . P and τ are conser-
vative, that is they are independent of the displacement history, and thus only
functions of the final displacement state and not on the path to this state. The
material of the body is hyperelastic, that is: The same stress-strain relationship
applies both in loading and in unloading.

Figure 3.4: Body subjected to point load and distributed load.

The load potential of the forces acting on the body is:

H =
Aτ

τudA+ Pu (3.76)

where u = u v w
T
is the displacement vector of the point at which the

load acts.

The strain energy of the system is given by

U =
V
0

σTd dV (3.77)

Thus, the total potential energy of the body is given by

Π = U −H (3.78)



3.3. POTENTIAL ENERGY 35

According to the principle of stationary energy, the prerequisite for static equi-
librium of the body is

δΠ = δU − δH = 0 (3.79)

3.3.2 Consistent element formulation

An element formulation is said to be consistent if the force vector is found
through variation of the strain energy of the element and the tangent stiffness
matrix is found through variation of the force vector. A consistent formulation
ensures that all the phenomena included when establishing the strain energy
will also be accounted for in the force vector and the stiffness matrix.

Thus, for an element with strain energy U , the consistent force vector, f, is
found from

δU =
∂U

∂vi
δvi = δvT f (3.80)

whereas the consistent tangent stiffness matrix, kT , is found from the relation-
ship

δ2U =
∂

∂vj

∂U

∂vi
δvi δvj =

∂2U

∂vi∂vj
δviδvj = δvTkT δv (3.81)

When Newton’s method is used for the correctional steps in an iterative nonlin-
ear analysis procedure (see section 3.4.1), the best rate of convergence towards
the correct solution is in general obtained by using a tangent stiffness matrix
that is consistent with the internal force vector used.

3.3.3 Strain energy of a displacement based co-rotated el-
ement

For the local coordinate system, the relationship between strain ˜ and deforma-
tional displacement ṽd is expressed as

˜ = B̃ṽd (3.82)

The strain displacement matrix B̃ is by choice expressed with respect to the
shadow element configuration C0n in order to use engineering strains. This
approach is consistent with that employed by Nour-Omid and Rankin [15].

The stress vector is in general σ̃(˜). As defined above, the strain energy of the
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element is now written as

U =
V
0

σ̃Td˜dV (3.83)

3.3.4 Consistent internal force vector

The force vector of the element in local coordinates is by definition given by the
first variation of U :

δU =
V

σ̃δ˜dV =
V

σ̃B̃(δṽd)R = (δṽ
T
d )R

V

B̃
T
σ̃ = (δṽTd )Rf̃e (3.84)

where

f̃e =
V

B̃
T
σ̃ (3.85)

f̃e is the internal force vector of the element, expressed in local coordinates.
However, since the system equations are assembled in the global coordinate
system, it is necessary to also find the internal force vector in global coordinates.
By substituting the transposed of equation (3.75) from page 33 for (δṽTd )R
into equation (3.84), the internal force vector expressed in global coordinates is
obtained:

δU = (δṽTd )R f̃e = H̃P̃TEδv́
T

f̃e = δv́TETTT P̃
T
H̃
T
f̃e = δv́T f (3.86)

Where f is the internal force vector expressed in the global coordinate system.

f = ETTT P̃
T
H̃
T
f̃e (3.87)

3.3.5 Consistent tangent stiffness

In addition to ensuring a good rate of convergence for the correctional steps in an
iterative nonlinear analysis procedure, the use of a consistent tangent stiffness
in a linearized buckling type analysis guarantees that all the effects accounted
for in the internal force vector are also considered in the buckling analysis.

Consistent tangent stiffness is defined by the variation of the internal force vector
f with respect to the visible degrees of freedom, v́:

δf =
∂f

∂v́
δv́ = KT δv́ (3.88)
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Applying (3.88) to (3.87) yields:

δf = δETTT P̃
T
H̃
T
f̃e +E

T δTT P̃
T
H̃
T
f̃e +E

TTT δP̃
T
H̃
T
f̃e

+ ETTT P̃
T
δH̃

T
f̃e +E

TTT P̃
T
H̃
T
δf̃e

= (KGE +KGR +KGP +KGM +KMG) δv́ = KT δv́

(3.89)

The different terms of the tangent stiffness5 are as follows
KGE - eccentricity geometric stiffness
KGR - rotational geometric stiffness
KGP - projection geometric stiffness
KGM - moment correction geometric stiffness
KMG - material and internal geometric stiffness

In the following, each of the contributions to the tangent stiffness will be ex-
plained in detail.

Eccentricity geometric stiffness

The eccentricity geometric stiffness arises from variation of the eccentricity ma-
trix E, and relates the changes in the internal force vector due to changes in the
eccentrically located degrees of freedom. In linearized buckling analysis, this
stiffness term enables the model to account for the effect of nodal eccentricity
on the buckling load.

Example: If the eccentricity geometric stiffness is omitted in linearized buckling
analyses of the two cantilever beams shown in figure 3.5, the two analyses will
be yielding the exact same buckling load, as long as the eccentricity is modelled
by use of the mathematical approach presented in this chapter.

P

PEI

EI Rigid

Figure 3.5: Cantilevers subjected to axial loading at the free end.

5The tangent stiffness is divided into material stiffness and geometric stiffness. Material
stiffness is independent of the state of stress in the element. Geometric stiffness on the other
hand, depends on the state of stress in the element, and more specifically, it is zero for a zero
stress state.
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If the eccentricity geometric stiffness is included, the linearized buckling analy-
sis will yield a buckling load for the cantilever subjected to the eccentrically
positioned load that is less than that for the cantilever without the rigid eccen-
tricity.

For an N -noded element, the transposed of the eccentricity matrix E is defined
in equation (3.72) on page 33. Variation of ET is given by:

δET =

 δET1 0 . . . 0

0 δET2 . . . 0
...

...
. . . δETN

 (3.90)

Variation of the nodal eccentricity matrix Ea is given by

δETa =
δI 0

−δSpin (ena ) δI
=

0 0
−Spin (δena ) 0

(3.91)

Contracted with a nodal force vector

fa = T
T
a P̃

T

a H̃
T

a f̃ea = nTa mT
a

T
(3.92)

where na is a vector containing the internal forces corresponding to the trans-
lational degrees of freedom and ma is a vector containing internal moments
corresponding to the rotational degrees of freedom, the variation of the trans-
posed of the nodal eccentricity matrix may be rewritten as:

δETa fa =

 0 0

−Spin (δena) 0

 na

ma

 =
 0

−Spin (δena )na



=

 0

Spin (na) δena

 =
 0

−Spin (na)Spin (δωa) ena



=

 0

Spin (na)Spin (e
n
a ) δωa



=

 0 0

0 Spin (na)Spin (ena)

 δua

δωa

 = Naδv́a

(3.93)

The eccentricity geometric stiffness for the element is therefore:

δETTT P̃
T
H̃
T
f̃e = δET f =

N

a=1

δETa fa =
N

a=1

Naδv́a = KGEδv́ (3.94)
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Where

KGE = N =


N1 0 . . . 0
0 N2 . . . 0
...

...
. . .

...
0 0 . . . NN

 (3.95)

and

Na =
0 0
0 Spin (na)Spin (ena)

(3.96)

Rotational geometric stiffness

The rotational geometric stiffness arises from the variation of the transformation
matrix between initial configuration C0 and shadow configuration C0n, and
reflects the variation in the force vector with respect to the rigid body rotation
of the element. A rigid rotation of a stressed element obviously rotates the
stresses, which in turn causes the internal forces to change direction in order to
preserve equilibrium.

Again, contracted with the local projected internal force vector f̃ = P̃
T
H̃
T
f̃e,

where f̃ contains pairs of internal forces and moments for each node, the rota-
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tional geometric stiffness can be found from:

ET δTT P̃
T
H̃
T
f̃e = ET δTT f̃

= ET


δTT

n 0 . . . 0 0

0 δTT
n . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . δTT
n 0

0 0 . . . 0 δTT
n




ñ1

m̃1

.

.

.

ñN

m̃N



= ET


δTT

n ñ1

δTT
nm̃1

.

.

.

δTT
n ñN

δTT
nm̃N

 = ET


TT
nSpin (δω̃r) ñ1

TT
nSpin (δω̃r) m̃1

.

.

.

TT
nSpin (δω̃r) ñN

TT
nSpin (δω̃r) m̃N



= ET


−TT

nSpin (ñ1) δω̃r

−TT
nSpin (m̃1) δω̃r

.

.

.

−TT
nSpin (ñN ) δω̃r

−TT
nSpin (m̃N ) δω̃r



= −ETTT


Spin (ñ1)

Spin (m̃1)

.

.

.

Spin (ñN)

Spin (m̃N )

 δω̃r

= −ETTT F̃nmδω̃r = −ETTT F̃nmG̃TEδv́
= KGRδv́

(3.97)

This derivation makes use of the following relationships:

δTTn = TTnSpin (δω̃r) Spin (δω̃r) ña = −Spin (ña) δω̃r
δω̃r = G̃δṽ

(3.98)

Thus, the rotational geometric stiffness for an element with N nodes is given
by:

KGR = −ETTTn F̃nmG̃TE (3.99)
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where

F̃nm =


Spin (ñ1)
Spin (m̃1)

...
Spin (ñN )
Spin (m̃N)

 and f̃ =


ñ1
m̃1

...
ñN
m̃N

 = P̃
T
H̃
T
f̃e (3.100)

Equilibrium projection geometric stiffness

The equilibrium projection geometric stiffness arises from the variation of the

projector matrix P̃
T
, and reflects the variation of the force vector due to varia-

tions in the element geometry.

By decomposing the force vector H̃
T
f̃e into unbalanced element forces f̃u =

(I−P̃T )H̃T
f̃e and balanced element forces f̃b = P̃

T
H̃
T
f̃e (that is H̃

T
f̃e = f̃u+f̃b),

the equilibrium projection geometric term in equation (3.89) may be rewritten
as follows:

ETTT δP̃
T
H̃
T
f̃e = ETTT δI− δP̃TT − δP̃

T

R H̃
T
f̃e

= ETTT (−δP̃TR)H̃
T
f̃e

= −ETTT (δG̃T
S̃
T
+ G̃

T
δS̃

T
)H̃

T
f̃e

= −ETTT (δG̃T
S̃
T
+ G̃

T
δS̃

T
)(̃fb + f̃u)

= −ETTT ((δG̃T
S̃
T
+ G̃

T
δS̃

T
)̃fb

+ (δG̃
T
S̃
T
+ G̃

T
δS̃

T
)̃fu)

= −ETTT (G̃T
δS̃

T
f̃b + δP̃

T
f̃u)

(3.101)

S̃
T
represents the rigid body rotation vectors for the element. Hence, S̃

T
f̃b = 0,

since the balanced forces do not produce any work on a structure during rigid

body displacement or rotation. Furthermore, δP̃
T
f̃u can be neglected because

it will be very small when C0n and Cn are close. It can also be shown that the
term is identically zero if G̃ so simple that it can be written as G̃ = X̃A, where
X is an invertible 3x3 matrix and A is a constant matrix (see [17]). Equation
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(3.101) therefore reduces to

ETTT δP̃
T
H̃
T
f̃e = −ETTT G̃T

δS̃
T
f̃b

= −ETTT G̃T N

a=1
Spin((δx̃na)R) 0

 ña

m̃a


= −ETTT G̃T N

a=1
Spin ((δx̃na )R) ña

= ETTT G̃
T N

a=1
Spin (ña) (δx̃

n
a)R

= ETTT ˜G
T

N

a=1

Spin(ña) 0

 (δũda)R

(δω̃da)R


= −ETTT G̃T

F̃
T

n (δṽd)R

= −ETTT G̃T
F̃
T

nH̃P̃TEδv́

= −ETTT G̃T
F̃
T

n P̃TEδv́

= KGP δv́

(3.102)

where the relationship F̃
T

n · H̃ = F̃
T

n has been used. Hence

KGP = −ETTT G̃T
F̃
T

n P̃TE (3.103)

where

F̃n =


Spin (ñ1)

0
...

Spin (ñN)
0

 and f̃b =


ñ1
m̃1

...
ñN
m̃N

 = P̃
T
H̃
T
f̃e (3.104)

Moment correction geometric stiffness

The moment correction geometric stiffness stems from variation of the defor-
mational rotation pseudo-vector Jacobian H̃. Splitting the internal force vector
into translational internal forces ñ and rotational internal moments m̃, the mo-
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ment correction term in (3.89) from page 37 may be written as:

ETTT P̃
T
(δH̃

T
)R f̃e = ETTT P̃

T


0 0 . . . 0 0

0 (δH̃
T
1 )R . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . 0 0

0 0 . . . 0 (δH̃
T
N)R




ñ1

m̃1

.

.

.

ñN

m̃N



= ETTT P̃
T


0

(δH̃
T
1 )Rm̃1

.

.

.

0

(δH̃
T
N)Rm̃N



= ETTT P̃
T


0

M̃1(δω̃d1)R

.

.

.

0

M̃N(δω̃dN)R



= ETTT P̃
T
M̃P̃TEδv́ = KGMδv́

(3.105)
where

M̃ =


0 0 . . . 0 0

0 M̃1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

0 0 . . . 0 M̃N

 (3.106)

In [4], M̃a is defined from the relationship

δH̃
T

a m̃a =
∂H̃

T

a

∂ω̃a
m̃aδω̃a = M̃aδω̃a. (3.107)

According to Haugen[4], Nour-Omid and Rankin[15] established this relation-
ship on the form

M̃a = −12Spin (m̃a) + η (m̃T
a θ̃a)I+ θ̃am̃

T
a − 2m̃θ̃

T

+ νSpin θ̃a
2

m̃aθ̃
T

a H̃
(3.108)
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η is defined in equation (3.55) on page 30, whereas ν is found from the following
expression:

η =
θ̃a(θ̃a + sin θa)− 8 sin2(12 θ̃a)

4θ̃4a sin
2(12 θ̃a)

(3.109)

Since ν → 0/0 as θ̃a → 0, ν should be computed from the truncated power
series

ν ≈ 1

360
+

1

7560
θ̃2a +

1

201600
θ̃a for θ̃a < 0.05 radians (3.110)

in order to avoid numerical problems for small angles.

Material stiffness and internal geometric stiffness

Variation of the local internal force vector f̃e yields material stiffness and, in
some cases, internal geometric stiffness:

δf̃e =
∂f

(∂ṽ)R
(δṽ)R = K̃e(δṽ)R (3.111)

Thus, the material and internal geometric stiffness is

KMG = E
TTT P̃

T
H̃
T
K̃eH̃P̃TE (3.112)

Complete form of the consistent tangent matrix

Introducing equations (3.94), (3.99), (3.103), (3.105) and (3.112) into equation
(3.89) from page 37, the following expression for the consistent tangent stiffness
is found:

KT = KGE +E
TTT K̃MG + K̃GR + K̃GM + K̃GP TE

= N+ETTT P̃
T
H̃
T
K̃eH̃P̃+ P̃

T
M̃P̃− F̃nmG̃

− G̃
T
F̃
T

n P̃ TE

(3.113)

where
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F̃nm =


Spin (ñ1)
Spin (m̃1)

.

.

.
Spin (ñN )
Spin (m̃N )

 F̃n =


Spin (ñ1)

0

.

.

.
Spin (ñN )

0



f̃ =


ñ1
m̃1

.

.

.
ñN
m̃N

= P̃T H̃T
f̃e

N =

 N1 0 . . . 0
0 N1 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . NN

 Na =
0 0
0 Spin (na)Spin (e

n
a)

f =


n1
m1

.

.

.
nN
mN

 = TT P̃T H̃T
f̃e

(3.114)
K̃e is found from the relationship

δf̃e = K̃e(δṽd)R (3.115)

3.4 Governing equations for non-linear analysis

In this section the governing equations for non-linear finite element analysis is
presented.

3.4.1 Residual equation

Consider a structure with internal forces f and external forces p. The residual r
of the structure is defined as the difference between internal and external forces:

r = f− p (3.116)

If the structure is in equlibrium, the residual is 0.

f, p and r are functions of the displacement state v and the load level represented
by λ. The magnitude of all external loads are thus assumed to be uniquely
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defined by the load parameter λ. In linear analysis, the internal force vector is
given as f = Klv where Kl is a constant matrix, and the external force vector
is also constant. Thus, equation (3.116) may be solved directly, to find the
unknown displacement state as v = K−1l p. However, in non-linear analysis,
where the internal force vector is non-linearly dependent on the displacement
state, the solution procedure is not quite as simple. The internal force vector
is now written as f = f(v) and equation (3.116) can genereally not be solved
directly. We may however solve the residual equation in increments, starting at
a known equilibrium position and solving for small increments of external load.
Depending on the size of the increments and the nonlinearity of the system, this
will in general cause an inaccuracy or a so-called “drift” from the equilibrium
path. This may however be remedied by introducing iterative correctional steps.

The incremental form of the equilibrium equation (3.116) is found by variation:

δr(v,λ) = δf(v)− δp(λ) = ∂f

∂v
δv− ∂p

∂λ

=
∂f

∂v
δv− ∂p

∂λ
δλ = 0 (3.117)

Introducing K = ∂f
∂v and q =

∂p
∂λ , the incremental residual equation reduces to:

δr = Kδv− qδλ = 0
0 = K

δv

δλ
− q

0 = Kv − q
v = K−1q where v =

δv

δλ
(3.118)

Equation (3.118) is a first order differential equation, and it can be solved using
the (forward) Euler method (see for instance [53]).

Over each increment, v and λ experience finite changes ∆v and ∆λ:

vi+1 = vi +∆vi
∆v

∆λ
≈ δv

δλ
= K−1q

∆vi ≈ K−1i qi∆λi

vi+1 = vi +K
−1
i qi∆λi = vi +wi∆λi (3.119)

where wi = K−1i qi is called the incremental velocity vector at increment i.
Thus, the displacment at step i+ 1 is found by adding the displacement incre-
ment, ∆v, to the displacement vector at step i, vi. ∆v is found by extrapolating
along the tangent of the equlibrium path with load increment ∆λ, and solving
with respect to ∆v.
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Figure 3.6: Incremental displacement and load magnitude at step i.

The size of the load factor increment may be determined by several different
methods. In a “load-control” algorithm the total load λtot is divided into a
number of increments that are applied to the structure until λ = λtot. This
algorithm has one obvious flaw: Since λ always increases, the algorithm is not
able to follow parts of the equilibrium path where the load is decreasing. In
“arc-length” type algorithms, first proposed by Riks [54] and Wempner [55],
the load increment is determined by use of a restraining criterion limiting the
length of the combination of ∆vi and ∆λi. These types of algorithms are able
to traverse all kinds of single (as opposed to multiple) limit points. The basics
of the different methods are shown in figures 3.7 and 3.8.

∆vi ∆vi+1

∆λi

∆λ i+1

Figure 3.7: Load control algorithm.

As already pointed out, the use of a pure incremental solution of the differ-
ential equation (3.118) causes an inaccuracy or drift that tends to increase as
the analysis proceeds. However, since the equilibrium path of the structure is
defined by the residual equation, it is possible to perform iterative correctional
steps to obtain accurate results. Furthermore, as long as the correctional iter-



48 CHAPTER 3. CO-ROTATED FORMULATION

∆vi ∆vi+1

∆λi

∆λ i+1

Figure 3.8: Arc-length control algorithm.

ations converge towards the correct solution at each step, drift is eliminated,
forcing the solution to be correct after each increment. The correctional strat-
egy used when obtaining the results from nonlinear analyses in this work, is the
orthogonal-trajectory corrector proposed by Fried [56] combined with Newton’s
method for sets of equations (see for instance [24]).

Newton’s method converges quadratically as it approaches the correct solution if

the tangent stiffness K = ∂f
∂v is used. If the correct tangent stiffness is not used,

the method may still converge quadratically, but most likely it will converge
considerably slower, if at all.

3.4.2 Linearized buckling analysis

The basic concept of the linearized buckling analysis is that the tangent stiffness
varies linearly with respect to the loading parameter λ. This gives rise to an
eigenvalue problem, which can be expressed as:

(K0 + λKG)vλ = 0 (3.120)

where K0 is the initial stiffness of the structure and KG is the rate of change of
the stiffness about the initial configuration with respect to the load parameter
λ.

Usually the linearized buckling analysis is performed with reference to the un-
loaded initial state, for which K0 is the material stiffness and KG is the geo-
metric stiffness for a load of unity. However, for some problems it may be of
interest to split the load into a constant part (independent of λ and a variable
part. For such problems, the initial state of the structure is an already loaded
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state. Hence, K0 is a mix of material stiffness and geometric stiffness corre-
sponding to the constant load, whereas KG is the geometric stiffness for the
variable load with a load parameter of unity. The algorithm for analysing such
a problem is given below.

1. Establish material stiffness for the system, KM

2. If any external loads are to be held constant, build external load vector
q0 based on these loads. If not, set K0 = KM and proceed to step 5.

3. Solve r0 = K
−1
M q0.

4. Build K0 as the tangent stiffness corresponding to the initial geometry,
and internal forces corresponding to displacements r0.

5. Set λ = 1.0 and build external load vector q1. Obtain displacements as
r1 = K

−1
0 q1.

6. Build K1 as the tangent stiffness corresponding to the initial geometry,
and internal forces corresponding to displacements r1. SetKG = K1−K0.

7. Solve the generalized eigenvalue problem, (K0 + λKG)r = 0 to obtain
critical buckling loads and buckling modes for the system.

The linearized buckling analysis most often yield the same critical buckling load
as a solution of the system’s differential equation with respect to stability.



50 CHAPTER 3. CO-ROTATED FORMULATION



Chapter 4

A consistent 3D beam
element with internal
geometric stiffness

In the previous chapter, the co-rotated finite element formulation was presented,
following the approach of Haugen[4, 17] and Rankin et al.[14, 15]. It was based
on the assumption that deformation of each element is small, while permitting
large displacements. Furthermore, the degrees of freedom used in the formula-
tion were displacements (including rotations) and the material of the element
was assumed to be elastic, although not necessarily linearly elastic.

As mentioned in section 1.2, the beam elements usually implemented in co-
rotated formulations, are simple linear beam elements. These elements, which
are based on a linear relationship between strain and displacement, are well
tested for linear problems, and they are easily implemented into the co-rotated
formulation. However, they often require quite refined element meshes in order
to produce the desired degree of accuracy.

For some structural models, refined element meshes may be necessary also for
other purposes, such as modelling geometric imperfections with sufficient accu-
racy, or in codes using lumped loading. In general, however, it is desirable to
keep the number of elements at a minimum in order to reduce the computational
cost.

If fewer elements of a complex kind is needed to obtain a certain degree of
accuracy than what is the case for a less complex element, the complex element

51
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will always be more efficient for large models.

In this chapter a consistent beam element is developed based on a nonlinear
strain/displacement relationship, resulting in a beam element with internal geo-
metric stiffness. Geometric stiffness from axial stress is included, enabling the
element to account for flexural buckling in linearized buckling analysis, and in-
creasing its accuracy when used in nonlinear analysis of structures with axial
forces. In order to enable the element to account for lateral torsional buckling,
geometric stiffness from bending stress is also included. This also enhances the
accuracy of the element when used in nonlinear analysis of structures subjected
to transverse loading. Although assuming a nonlinear strain/displacement re-
lationship, the assumption of small displacements is maintained.

The two parts of the internal geometric stiffness can be implemented indepen-
dently, and when using the formulation in a linearized buckling analysis, the
geometric stiffness can be separated from the material stiffness. When imple-
menting the element in the co-rotated formulation presented in chapter 3, the
verification (chapter 5) shows that the resulting beam element has superior ac-
curacy compared with the standard Euler-Bernoulli element implemented in the
same co-rotated formulation.

4.1 Basics and assumptions

4.1.1 Coordinate systems

ix

iy

jx

jy

jz iz

Figure 4.1: Beam element coordinate systems in 3D space.

Two different coordinate systems are used in the development of the new beam
element.

The element coordinate system is defined by the three orthogonal axes x, y and
z, with corresponding orthonormal vectors ix, iy and iz. The axes are oriented
such that the x-axis coincides with the initial shape of the beam axis. Thus,
for elements that are not initially straight, the element coordinate system may
vary depending on the position along the beam axis. The y and z axes are the
principal axes of the cross section of the undeformed element.
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For an initially straight, two-noded beam element, the element coordinate sys-
tem will correspond to the local coordinate system when implementing the ele-
ment in the co-rotated formulation described in chapter 3.

Each cross section of the beam element has its own coordinate system, called
the cross-section coordinate system, identified by the triad jx jy jz . An
entity given in cross-section coordinate system is identified by a bar (¯). For
the undeformed element, the cross-section coordinate system and the element
coordinate system coincide.

4.1.2 Discretization

In finite element methods, a continuum is discretized into a number of finite
elements. Within each element, the displacement and rotation components are
assumed to be unique functions of a finite number of degrees of freedom. For
beam elements, the obvious discretization is to express the element displace-
ments in terms of the translations and rotations at the element ends.

Consider a beam element in 3D space with a coordinate system identified by
the orthogonal axes x, y and z. An arbitrary displacement at a point on the
element axis is described by the three independent displacement components u,
v and w in the x, y and z direction, respectively. The degrees of freedom (dofs)
of the element are listed in the column matrix v, while the shape functions for
the displacements in the three directions are listed in the row-matrices Nu, Nv

and Nw, respectively.

u =Nuv v = Nvv w = Nwv (4.1)

For simplicity, Nv and Nw are combined into Nvw:

v
w

=
Nv

Nw
v = Nvwv (4.2)

Nu, Nv and Nw are functions of the position along the beam axis, whereas
v is independent of the coordinates. Thus, differentiation of the displacement
components with respect to x gives

u,x = Nu,xv v,x = Nv,xv w,x =Nw,xv (4.3)

and the second derivatives of the displacement components are:

u,xx = Nu,xxv v,xx = Nv,xxv w,xx =Nw,xxv (4.4)
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The rotation of a point on the beam element axis is defined by the rotation
vector ω:

ω =

 ωx
ωy
ωz

 =
 Nωx

Nωy

Nωz

v = Nωv (4.5)

ωx, ωy and ωz are the rotation components about the x-, y- and z-axis, respec-
tively.

Similarly, the curvature at a point on the beam element axis is given by:

κ =

 κx
κy
κz

 =
 Nκx

Nκy

Nκz

v = Nκv (4.6)

κx, κy and κz are the curvature components about the x-, y- and z-axis, respec-
tively.

As for the displacements, the shape functions listed inNω andNκ are dependent
only on the position along the beam element axis. Hence, differentiation of the
rotation vector and the vector of curvature with respect to the position along
the beam axis can be expressed as

ω,x = Nω,xv and κ,x = Nκ,xv (4.7)

respectively.

4.1.3 Separation of axial strain

Axial strain in a beam is induced either by axial loading or bending. Depending
on the material properties and the boundary conditions of the element, bending
introduces axial strain that is not necessarily zero at the center of the cross-
section, but the total axial strain can always be separated into center line strain
and bending strain. As the name indicates, center line strain is the magnitude
of the axial strain at the center line of the beam, and it is constant throughout
the cross-section. The bending strain varies linearly over the cross section, as
long as Naviers’ hypothesis1 is valid.

Hence, the total axial strain, , may be expressed as

= c + ȳy + z̄z (4.8)

where c is the center line axial strain, and ȳy and z̄z are axial strain from
bending about the y- and z-axis, respectively. As the bar indicates, ȳy and z̄z

are measured in the cross-section coordinate system.
1Navier’s hypothesis: Plane sections through a beam taken normal to its axis remain plane

and normal to the axis after the beam is subjected to bending [57]. This assumption is widely
used as long as shear deformations are small.
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Figure 4.2: Separation of axial strain into center line axial strain and bending
strain.

4.1.4 Hyperelastic material

The material is assumed to be hyperelastic, that is a material for which stress
is uniquely defined by the strain. Thus, axial stress σ is given by:

σ = σ ( ) with variation δσ =
∂σ

∂
δ = E ( ) δ (4.9)

Similarly, shear stress is given by

τ = τ (γ) with variation δτ =
∂τ

∂γ
δγ = G (γ) δγ (4.10)

where γ is the shear strain.

4.2 Geometric relationships

In order to establish the non-linear relationship between strain and displace-
ment, the geometry of an element in a deformed state need to be studied.

4.2.1 Axial strain due to transverse displacement

Consider a beam element that after an axial elongation u is fixed axially at both
ends and subjected to transverse displacements. Since the ends are constrained,
this obviously causes the element to alter its length, thereby introducing axial
strain.

Figure 4.3 shows an infinitesimal segment of the beam element. The original
length of this segment is dx, and it is given a net transverse displacement causing
the segment to rotate through an angle φ. As a minor simplification, the element
segment is considered to be straight. The elongation of the segment along its
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φ
φ dx

dx

dx

dL1

dL2

Figure 4.3: Elongation of an infinitesimal part of an element due to transversal
displacement.

axis is dL1, whereas dL2 is the projection of the elongation onto its initial
(undeformed) position. Due to the fact that the difference between dL1 and
dL2 is very small, and dL2 is easier to adapt for use in the element formulation,
dL2 is used for the elongation of the beam. dL2 can be written as

dL2 = (1− cos(φ))dx (4.11)

Exploiting the assumption that φ is small, the cosine term in equation (4.11)
may be replaced by its power series representation about φ = 0:

cos(φ) ≈ 1− 1
2
φ2 (4.12)

dL2 ≈ (1− (1− 1
2
φ2))dx =

1

2
φ2dx (4.13)

The total elongation of the element is now found as the sum of the axial dis-
placement, du, and the elongation due to transverse displacement, dL2. The
corresponding strain is

c =
dL2 + du

dx
=

1
2φ

2dx+ du

dx
=
1

2
φ2 + u,x (4.14)

For small φ superposition may be used, such that

φ2 = v2,x +w
2
,x (4.15)

Equation (4.14) becomes

c = u,x +
1

2
v2,x +

1

2
w2,x = Nu,xv+

1

2
vTNT

vw,xNvw,xv (4.16)
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where Nvw is defined in equation (4.2) from page 53. The variation of c with
respect to deformational displacement v can then be written as

δ c = Nu,xδv+
1
2
δvTNT

vw,xNvw,xv+
1
2
vTNT

vw,xNvw,xδv

= Nu,xδv+ v
TNT

vw,xNvw,xδv
(4.17)

4.2.2 Rotation of internal bending moment

When a cross section of a beam element is subjected to rotation, the orientation
of the internal bending moments acting on the section changes. This gives rise
to geometric terms in the internal force vector and thus geometric stiffness.

In order to obtain the correct expressions for the stiffness terms due to the
translational and the rotational dofs, the beam element in a deflected state is
studied. Assuming that all deformations are small, the rotation of the element

Figure 4.4: Deformed beam element. Shown from three perspectives.

coordinate axes into their cross-sectional counterparts is found by considering
a coordinate system with axes of unit length, and using the Pytagorean rule in
the cross-section plane.
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Rotation of x−axis into x−axis

1 1

dw dv

x

x x

x

dv

dw

ds

dw = −ωy dv = ωz (4.18)

ds = dv2 + dw2 ⇒ Rot. of x-axis: α =
ds

1
= ω2z + ω2y (4.19)

The local x-axis, x, is given by x = 1 dv dw
T
. Provided that the de-

formations are small, the assumption that |x| = |x| = 1 is sufficiently accurate,
and the unit vector along the local x-axis is given as

jx = x̄ = 1 ωz −ωy T
(4.20)

Rotation of y−axis into y−axis

1

1

-du

y y

y

y

du

ds

dw
ωx dw

ωz

du = −ωz dw = ωx ds = du2 + dw2 (4.21)

The rotation of the y-axis is thus given by:

β =
ds

1
= ω2y + ω2z (4.22)

Analogous with the unit vector along the x̄-axis, the unit vector along the local
y-axis, ȳ is given by

jy = ȳ = du 1 dw
T
= −ωz 1 ωx

T
(4.23)
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Rotation of z−axis into z−axis

1 1

z z z z

du ds

dv

ωx
dv

du

  ωy

du = ωy dv = ωx ds = du2 + dv2 (4.24)

Thus, the rotation of the z-axis is given by:

=
ds

1
= ω2y + ω2x (4.25)

Along the local z̄-axis, the unit vector is found in the same manner as for the
local x̄- and ȳ-axes.

jz = z̄ = du −dv 1
T
= ωy −ωx 1

T
(4.26)

Transformation matrix from element coordinate system to cross-section
coordinate system

By gathering the unit vectors from equations (4.20) through (4.26), the trans-
formation matrix from element coordinate system to cross-sectional coordinate
system is obtained.

T =

 jTxjTy
jTz

 =
 1 ωz −ωy
−ωz 1 ωx
ωy −ωx 1

 (4.27)

Observe that when introducing the vector of rotation ω from equation (4.5) on
page 54, the transformation matrix (4.27) can be written as T = I− Spin (ω),
where I is the 3x3 unit matrix. Hence, the variation of T is

δT = δI− δSpin (ω) = −Spin (δω) (4.28)

4.2.3 Transformation of the vector of curvature

Equation (4.6) from page 54 defines the vector of curvature.
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Premultiplication of κ with the transformation matrix T of equation (4.27),
gives the vector of curvature in the cross-section coordinate system:

κ̄ = Tκ = TNκv

=

 κ̄x
κ̄y
κ̄z

 =
 1 ωz −ωy
−ωz 1 ωx
ωy −ωx 1

 κx
κy
κz



=

 κx + ωzκy − ωyκz
−ωzκx + κy + ωxκz
ωyκx − ωxκy + κz


(4.29)

From equation (4.29), the variation of the cross-section vector of curvature can
be expressed as

δκ̄ = δTNκv+TNκδv = −Spin (δω)Nκv+TNκδv

= TNκδv+ Spin (Nκv)Nωδv
(4.30)

where the relationship δω = Nωv has been used.

4.2.4 Strain

The cross-section coordinate system is defined such that y and z are the cross
section axes, see figure 4.1 on page 52. Making use of Navier’s hypothesis, the
axial strain may therefore be written as

= c + zκ̄y + yκ̄z (4.31)

with variation
δ = δ c + zδκ̄y + yδκ̄z (4.32)

Similarly, the torsional shear strain is given by

γ = y2 + z2 κ̄x (4.33)

with variation
δγ = y2 + z2 δκ̄x (4.34)

Strictly speaking, the latter two equations are only valid for circular cross-
sections. However, as will be seen in section 4.5.3, the element formulation can
be changed in order to accommodate other types of cross-sections by introducing
the St.Venant torsional constant It.
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4.3 Variation of the strain energy - Force vector

The strain energy of the beam element is given by

U =
V

γ

0

τ dγ dV +
V
0

σ d dV (4.35)

Where

τ and γ are shear stress and strain, respectively,
σ and are axial stress and strain, respectively, and
V is the volume of the element.

Since one of the basic assumptions is that Navier’s hypothesis is valid, deforma-
tion due to shear is not included in this element formulation, and thus τ and γ
are due to torsion only.

The internal force vector of the element is found from variation of equation
(4.35):

δU =
∂U

∂v
δv = δvT f (4.36)

Introducing equations (4.35), (4.32) and (4.34) into equation (4.36), the follow-
ing expression for the variation of the strain energy is found:

δU =
V

τ δγ dV +
V

σ δ dV

=
V

τ y2 + z2 δκ̄+
V

σ (zδκ̄y + yδκ̄z + δ c) dV

=
V

τ y2 + z2 zσ yσ δκ̄ dV +
V

σ δ cdV

(4.37)

Introducing
DT = y2 + z2 τ z σ y σ (4.38)

and making use of (4.30) and (4.17) from page 60 and 57, respectively, δU can
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be expressed as

δU =
V

DT δκ̄ dV +
V

σ δ c dV

=
V

DT (TNκδv+ Spin (Nκv)Nωδv) dV

+
V

σ Nu,xδv+ v
TNT

vw,xNvw,xδv dV

=
V

DTTNκδv+D
TSpin (Nκv)Nωδv dV

+
V

σNu,xδv+ σ vTNT
vw,xNvw,xδv dV

= δvT

V

NT
κT

TD−NT
ωSpin (Nκv)D dV

+ δvT

V

σNT
u,x + σNT

vw,xNvw,xv dV

(4.39)

Thus, the internal force vector of the element is

f =
V

NT
κT

TD−NT
ωSpin (Nκv)D dV

+
V

NT
u,xσ + σNT

vw,xNvw,xv dV
(4.40)

4.4 Variation of the force vector - tangent stiff-
ness

In order to establish the variation of the force vector, and thereby the tangent
stiffness of the element, the variation of the vector D and the variation of the
axial stress σ need to be established.
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Variation of D

The following material assumptions apply:

δτ = G(γ)δγ = G(γ) y2 + z2δκ̄x

δσ = E( )δ = E( ) (zδκ̄y + yδκ̄z + δ c)

G(γ) =
∂τ

∂γ
E( ) =

∂σ

∂

(4.41)

δD =

 y2 + z2 δτ
z δσ
y δσ

 =
 y2 + z2 G(γ) y2 + z2 δκ̄x

z E( ) (zδκ̄y + yδκ̄z + δ c)
y E( ) (zδκ̄y + yδκ̄z + δ c)



=

 y2 + z2 G(γ) δκ̄x
z2E( )δκ̄y + zyE( )δκ̄z
zyE( )δκ̄y + y

2E( )δκ̄z

+
 0
zE( )δ c

yE( )δ c



=

 y2 + z2 G(γ) 0 0
0 z2E( ) zyE( )
0 zyE( ) y2E( )

 δκ̄x
δκ̄y
δκ̄z



+

 0
zE( )
yE( )

 δ c

(4.42)

Making use of (4.30) and (4.17) from page 60 and 57, respectively, this becomes

δD = C1δκ̄+C2δ c

= C1 (TNκδv+ Spin (Nκv)Nωδv)

+ C2 Nu,xδv+ vTN
T
vw,xNvw,xδv

= C1TNκδv+C1Spin (Nκv)Nωδv

+ C2Nu,xδv+C2v
TNT

vw,xNvw,xδv

(4.43)

Where

C1 =

 y2 + z2 G(γ) 0 0
0 z2E( ) zyE( )
0 zyE( ) y2E( )

 and C2 =

 0
zE( )
yE( )

 (4.44)
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Variation of axial stress σ

From (4.41), (4.44), (4.30) and (4.17) it follows that

δσ =
∂σ

∂
δ = E( ) (zδκ̄y + yδκ̄z + δ c)

= 0 zE( ) yE( ) δκ̄+ E( )δ c

= CT2 (TNκδv+ Spin (Nκv)Nωδv)

+ E( )(Nu,xδv+ v
TNT

vw,xNvw,xδv)

= CT2TNκδv+C
T
2 Spin (Nκv)Nωδv+ E( )Nu,xδv

+ E( )vTNT
vw,xNvw,xδv

(4.45)

Variation of internal force vector f

From equation (4.40):

δf =
V

I

NT
κ δT

TD+

II

NT
κT

T δD−
III

NT
ωSpin (Nκδv)D

−
IV

NT
ωSpin (Nκv) δD dV

+
V

V

NT
u,xδσ+

V I

δσNT
vw,xNvw,xv+

V II

σNT
vw,xNvw,xδv dV

(4.46)

The different terms in this equation are evaluated separately.

Term I

Using equation (4.28) from page 59, this term may be expressed as

NT
κ δT

TD = NT
κ (−Spin (Nωδv))

T D = −NT
κSpin (D)Nωδv (4.47)
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Term II

NT
κT

T δD = NT
κT

T (C1TNκδv+C1Spin (Nκv)Nωδv

+ C2Nu,xδv+C2v
TNT

vw,xNvw,xδv)

= NT
κT

TC1TNκδv+N
T
κT

TC1Spin (Nκv)Nωδv

+ NT
κT

TC2Nu,xδv+N
T
κT

TC2v
TNT

vw,xNvw,xδv

(4.48)

In the evaluation of this term, equation (4.43) was used.

Term III

NT
ωSpin (Nκδv)D = −NT

ωSpin (D)Nκδv (4.49)

Term IV

Making use of (4.43), this term evaluates to

NT
ωSpin (Nκv) δD = NT

ωSpin (Nκv) (C1TNκδv

+ C1Spin (Nκv)Nωδv

+ C2Nu,xδv+C2vTN
T
vw,xNvw,xδv)

= NT
ωSpin (Nκv)C1TNκδv

+ NT
ωSpin (Nκv)C1Spin (Nκv)Nωδv

+ NT
ωSpin (Nκv)C2Nu,xδv

+ NT
ωSpin (Nκv)C2vTN

T
vw,xNvw,xδv

(4.50)

Term V

By utilizing equation (4.45) for δσ, the fifth term can be expressed as

Nu,xδσ = NT
u,xC

T
2TNκδv+N

T
u,xC

T
2 Spin (Nκv)Nωδv

+ NT
u,xE( )Nu,xδv+N

T
u,xE( )v

TNT
vw,xNvw,xδv

(4.51)
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Term V I

δσNT
vw,xNvw,xv = NT

vw,xNvw,xvC
T
2 TNκδv

+ NT
vw,xNvw,xvC

T
2 Spin (Nκv)Nωδv

+ NT
vw,xNvw,xvE( )Nu,xδv

+ NT
vw,xNvw,xvE( )v

TNT
vw,xNvw,xδv

(4.52)

This term was evaluated by using (4.45) for δσ.

Term V II

σNT
vw,xNvw,xδv = σNT

vw,xNvw,xδv (4.53)

Tangent stiffness kT

The tangent stiffness matrix, kT , of the element is defined from the variation of
the force vector:

δf = kT δv (4.54)

Hence, the tangent stiffness of this element is found by reassembly of terms I
through V II above:

kT =
V

NT
κT

TC1TNκ +E( )N
T
u,xNu,x + σNT

vw,xNvw,x

+ E( )NT
vw,xNvw,xvvTN

T
vw,xNvw,x

− NT
ωSpin (Nκv)C1Spin (Nκv)Nω

+ NT
κT

TC1Spin (Nκv)Nω −NT
ωSpin (Nκv)C1TNκ

+ NκT
TC2Nu,x +N

T
u,xC

T
2 TNκ

+ NT
κT

TC2vTN
T
vw,xNvw,x +N

T
vw,xNvw,xvC

T
2 TNκ

+ NT
u,xC

T
2 Spin (Nκv)Nω −NT

ωSpin (Nκv)C2Nu,x

+ NT
vw,xNvw,xvC

T
2 Spin (Nκv)Nω

− NT
ωSpin (Nκv)C2v

TNT
vw,xNvw,x

+ E( )NT
u,xv

TNT
vw,xNvw,x + E( )N

T
vw,xNvw,xvNu,x

+ NT
ωSpin (D)Nκ −NT

κSpin (D)Nω dV

(4.55)

In (4.55) the terms are ordered in such a fashion that each line forms a symmetric
contribution to the tangent stiffness matrix. The only exception is the terms in
line eight and nine, which together form a symmetric contribution to kT .
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4.5 Beam element with internal geometric stiff-
ness - implementation

To assess the element formulation presented above, it has been implemented in
the co-rotated finite element method program Cfem, developed by Haugen[4].

Only linear elastic material is considered in the implementation.

4.5.1 Element basics

Figure 4.5: Beam element with two nodes and twelve degrees of freedom.

The linear element chosen as basis for this implementation is a two-noded beam
element with six degrees of freedom at each node, see figure 4.5.

For the axial displacement and the angle of twist, linear interpolation is used,
whereas the standard cubic beam functions are used in the bending degrees of
freedom. Hence, the following shape functions are used for interpolation of the
displacements:

N1: N2:1 1

1 1

1

N3:

N5:

N4:

N6: 1

The mathematical representation of the shape functions is:

N1 = 1− x
L N2 = x

L

N3 = 1− 3x2

L2 +
2x3

L3 N4 = x− 2x2

L + x3

L2

N5 = 3x2

L2
− 2x3

L3
N6 = −x2

L
+ x3

L2

(4.56)
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The displacement components can now be expressed as

u = N1 0 0 0 0 0 N2 0 0 0 0 0 v = Nuv

v = 0 N3 0 0 0 N4 0 N5 0 0 0 N6 v = Nvv

w = 0 0 N3 0 −N4 0 0 0 N5 0 −N6 0 v

= Nwv

(4.57)

where v = v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
T
.

Interpolation of the angle of twist of the element is the same as for the axial
displacement:

θ = 0 0 0 N1 0 0 0 0 0 N2 0 0 v =Nθv (4.58)

θ is the rotation of a point about the element x-axis, whereas the rotation about
the cross-section y- and z-axes can be found from differentiation of the transverse
displacements. Thus, the rotation vector for the element is

ω =

 ωx
ωy
ωz

 =
 θ
−w,x
v,x

 =
 Nθ

−Nw,x

Nv,x

v = Nωv (4.59)

Similarly, the curvature of the element axis can be found from differentiation of
the rotation vector:

κ =

 κx
κy
κz

 = ∂

∂x

 ωx
ωy
ωz

 =
 Nθ,x

−Nw,xx

Nv,xx

v =Nκv (4.60)

4.5.2 Axial locking

Since the shape functions of the axial displacement and the transverse displace-
ments are of different order (or rather that the first derivative of the axial
displacement is of different order than the square of the first derivative of the
transverse displacements), the formulation results in an element much too stiff
when experiencing transverse deformation. The reason for this can be found by
studying equation (4.16) in page 56. u,x is always constant along the element
axis, whereas 1

2v
2
,x +

1
2w

2
,x is not. Therefore all transverse displacements will

be associated with centerline axial strain in parts of the element, in turn giv-
ing rise to “unphysical” strain energy. This phenomenon may be called axial
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locking, and is analogous with the more commonly known term shear locking.
To remedy this problem, the terms involving transversal displacement in the
axial strain expression are replaced by the mean of these terms. Thus, the axial
strain given by equation (4.16) reduces to

c = u,x +
1

2
v2,x +

1

2
w2,x (4.61)

where

v2,x =
1

L

L

0

vTNT
v,xNv,xvdx and w2,x =

1

L

L

0

vTNT
w,xNw,xvdx (4.62)

Observe that
NT
v,xNv,x +N

T
w,xNw,x = N

T
vw,xNvw,x (4.63)

causing the centerline axial strain in equation (4.61) to become

c = u,x +
1
2
v2,x +

1
2
w2,x =Nu,xv+ v

T 1
2L

L

0

NT
vw,xNvw,xdx v

= Nu,xv+
1
2Lv

Tkgv

(4.64)

where

kg =

L

0

NT
vw,xNvw,xdx (4.65)

The effect of the substitution introduced in equation (4.61) is that all instances
ofNT

vw,xNvw,x in the force vector and the tangent stiffness are replaced by
1
L
kg.

4.5.3 f and kT for a linear elastic material

The one-dimensional linear elastic material model is characterized by the rela-
tionships

σ = E δσ = Eδ
τ = Gγ δτ = Gδγ

(4.66)

where the constantsE andG are the modulus of elasticity and the shear modulus
for torsion, respectively.

Since all terms in (4.55) from page 66 need to be integrated over the cross-
section area of the element, (A), it is of interest to study this integral for some
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of the matrices in the case of linear elastic material model.

A

C1dA =
A

 (y2 + z2)G 0 0
0 z2E zyE
0 zyE y2E

 dA

=

 GIt 0 0
0 EIyy 0
0 0 EIzz

 = E
(4.67)

A

C2dA =
A

 0
zE
yE

dA = 0 (4.68)

Here, it has been taken advantage of the fact that the y and z-axes are the
principal axes of the cross-section. In equation (4.67), the polar moment of
inertia,

A
y2 + z2 dA, which is applicable only for circular sections, is replaced

by St. Venant torsion It.

The vector D and the stress σ also need to be established. By introducing
(4.31) from page 60, (4.64) and (4.66) into (4.38) from page 61, vector D can
be expressed as

D =

 y2 + z2τ
zσ
yσ

 =
 y2 + z2G y2 + z2κ̄x

zE(zκ̄y + yκ̄z + c)
yE(zκ̄y + yκ̄z + c)



=

 (y2 + z2)G 0 0
0 z2E zyE
0 zyE y2E

 κ̄x
κ̄y
κ̄z

+
 0
zE
yE


c

= C1TNκv+C2 Nu,xv+
1
Lv

Tkgv

(4.69)

whereas σ is found from (4.66) and (4.31):

σ = E = E(zκ̄y + yκ̄z + c)

= C2TNκv+E Nu,xv+
1
2Lv

Tkgv
(4.70)
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Force vector

For a linear elastic material, the force vector of the element is now found from
equation (4.40) on page 62.

f =

L

0
A

NT
κT

TD−NT
ωSpin (Nκv)D dA dx

+

L

0
A

NT
u,xσ + σ 1Lkgv dA dx

=

L

0
A

NT
κT

T C1TNκv+C2 Nu,xv+
1
Lv

Tkgv

− NT
ωSpin (Nκv) C1TNκv+C2 Nu,xv+

1
Lv

Tkgv

+ NT
u,x C2TNκv+E Nu,xv+

1
2Lv

Tkgv

+ C2TNκv+E Nu,xv+
1
2L
vTkgv

1
L
kgv dA dx

(4.71)

Hence

f =

L

0

NT
κT

TETNκv−NT
ωSpin (Nκv)ETNκv dx

+ 1
2LEAkgvv

Tkgv+EALN
T
u,xNu,xv+

1
2EAN

T
u,xv

Tkgv

+ EANu,xvkgv

(4.72)

Tangent stiffness matrix

The tangent stiffness matrix of the element evaluates to

kT =

L

0

NT
κT

TETNκ −NT
ωSpin (Nκv)ESpin (Nκv)Nω

+ NT
κT

TESpin (Nκv)Nω −NT
ωSpin (Nκv)ETNκ

+ NT
ωSpin (ETNκv)Nκ −NT

κSpin (ETNκv)Nω dx

+ 1
LEAkgvv

Tkg +
1
2LEAv

Tkgvkg + EALN
T
u,xNu,x

+ EANu,xvkg +EAN
T
u,xv

Tkg + EAkgvNu,x

(4.73)
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4.5.4 Beam element with internal torsional dof

With only two degrees of freedom available for the angle of twist, it is limited
to a linear variation along the element. A single beam element is therefore
unable to describe lateral torsional buckling, since the element clearly can not
describe a torsional rotation of the mid-section of the element if the end points
are constrained against torsional rotation. Even two elements will give a very
crude representation of the angle of twist along the beam. The more elements
used to model the beam, the more accurate the results will be.

An attempt was made to improve the element’s torsional behaviour through
incorporation of an additional internal torsional rotation degree of freedom in
the formulation. The additional dof was made hierarcical, meaning that the
displacement field associated with the internal dof was superimposed on the ex-
isting linear field. This modification, however, did not improve the performance
of the element considerably, and the idea was therefore not pursued, and the
modification is omitted in this dissertation.

4.5.5 The element formulation used in linearized buckling
analyses

In linearized buckling analyses, an initial state of stress is found using the initial
stiffness of the model. This state of stress is superimposed on the model in its
initial state. Thus, all terms in the expressions of the force vector and the
stiffness matrix that indicate that the element is in a deformed state (or rather
only exist in a deformed state) should be omitted in linearized buckling analysis.
For this type of analysis, the following expressions should therefore be used for
the force vector:

flin =

L

0

NT
κT

TETNκvdx+EALN
T
u,xNu,xv+EANu,xvkgv (4.74)

and the stiffness matrix:

klin =

L

0

NT
κT

TETNκ

+ NT
κT

TESpin (Nκv)Nω −NT
ωSpin (Nκv)ETNκ

+ NT
ωSpin (ETNκv)Nκ −NT

κSpin (ETNκv)Nω dx

+ EALNT
u,xNu,x +EANu,xvkg

(4.75)
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4.5.6 Loss of energy

A finite element formulation derived from the strain energy for use in static
structural analyses, usually produces results that converge towards the correct
solution from the “stiff side” when refining the element mesh.

The element described in this chapter, however, gives results that sometimes
converge towards the correct solution from the flexible side. This seems to
indicate that there is a loss of energy somewhere in the element formulation.

MM

L = 10.0m

b = 0.2 m

h = 1.0 m

E = 6250 MPa

G = 390 MPa

b

h

Figure 4.6: A simply supported beam subjected to constant bending moment
about the strong axis.

In order to illustrate the problem, a simply supported beam with a high depth
to width ratio is analyzed through lateral torsional buckling and beyond. The
beam is subjected to a constant bending moment about the strong axis, see
figure 4.6.
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Figure 4.7: Simply supported beam subjected to constant moment about the
strong axis. Bending moment as function of vertical displacement of mid-point.

Results from the analyses are shown in figure 4.7. The graph shows the bend-
ing moment about the initially horisontal strong axis as a function of the ver-
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tial displacement of the beam mid-point. Three different element meshes have
been studied. First, the results presented as the “correct” solution have been
found by using 200 Euler-Bernoulli beam elements to model the beam. For
reference, results from an analysis where the beam has been modelled using 4
Euler-Bernoulli elements have been included. The final curve shows bending
moment/displacement curve for an element mesh consisting of 4 elements of the
type developed in this chapter, presented simply as the “new element”.

It is seen that the curve for the new element lies slightly under the “correct”
solution. This indicates that the new element is slightly too flexible. Observe,
however, that the accuracy obtained with the new element is far better than
that obtained with the standard Euler-Bernoulli elements.

A definitive explanation for why the element looses energy has not been found.
However, the most likely explanation probably lies in the simplification intro-
duced in equation (4.61) on page 69 in order to prevent axial locking. This
simplification is comparable to an under-integration of the affected parts of the
force vector and stiffness matrix, which could explain the loss of energy.

It will be shown in the next chapter, that convergence from the “soft” side is
also found in linearized buckling analysis.

4.6 Shear stiffness

Since one of the basic assumptions for the new element was that Navier’s hy-
pothesis was valid, shear deformation is not included in the formulation. The
effect of shear deformation may, however, be added a posteriori based on the
mean shear strain angle in the element. The method for doing this can be found
in, for instance, [58].

The following dimensionless constants are conveniently introduced:

αy =
12EIzz
GyAsyL2

and αz =
12EIyy
GzAszL2

(4.76)

Gy and Gz are the shear moduli for shear in the y and z-direction, respectively.
Correspondingly Asy and Asz are the shear areas for shear in the y- and z-
direction, respectively.

The shear stiffness is incorporated into the stiffness matrix and the force vector
in two steps:

• All terms involving displacement in the y-direction are divided by (1+αy),



4.6. SHEAR STIFFNESS 75

and all the terms involving displacement in the z-direction are divided by
(1 + αz). The easiest way to incorporate this is to build the force vector
and stiffness matrix using the following adjusted values for the 2nd area
moments:

I∗yy =
Iyy
1 + αz

and I∗zz =
Izz

1 + αy
(4.77)

• Add the matrix ks to the tangent stiffness matrix and ksv to the force
vector. ks are

ks = T
T
s k
∗
sTs (4.78)

where Ts and k
∗
s are given as

Ts =


0 − 1

L 0 0 0 1 0 1
L 0 0 0 0

0 0 − 1
L 0 1 0 0 0 1

L 0 0 0
0 − 1

L 0 0 0 0 0 1
L 0 0 0 1

0 0 − 1
L 0 0 0 0 0 1

L 0 1 0

 (4.79)

and

k∗s =


αy 0 −αy 0
0 αz 0 −αz
−αy 0 αy 0
0 αz 0 −αz

 (4.80)

respectively.
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Chapter 5

Numerical verification

In order to assess the element formulation described in the previous two chap-
ters, a series of test analyses have been performed. The results are compared
with analytical solutions when available. In some cases, where no theoretical
solutions are found, the results are compared to numerical results, obtained by
use of other analysis tools.

The element presented as “standard elem.” in the following is a standard (lin-
ear) Euler-Bernoulli type element implemented in the co-rotated formulation
described in chapter 3, whereas the “new elem.” is the element described in
section 4.5. Unless otherwise stated, eccentricities are, if present, modelled us-
ing rigid eccentricities.

In most of the cases studied in this chapter, the results are given in tabular
form. However, in some cases the results are presented as graphs, since this is
the form used by referenced studies.

5.1 Linearized buckling analyses

The linearized buckling type analysis is based on the same assumptions usually
adopted by the classical (differential equation) treatment of the problem. The
results from a linearized buckling analysis of a system should therefore approx-
imate the corresponding solution of the differential equation for the problem
(where available).

The formulation presented in the previous chapters includes a consistent tangent

77
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stiffness. Thus, all the phenomena reflected in the force vector are also contained
in the tangent stiffness, and hence in the geometric stiffness of the element. This
formulation should therefore be able to predict all kinds of global structural
instability for beam elements.

5.1.1 Flexural buckling of column

N

L = 10.0m

b = 0.2 m

h = 1.0 m

E = 6250 MPa

G = 390 MPa

Nb

h

Figure 5.1: Simply supported beam subjected to axial compression force.

In the infancy of structural stability, Euler studied lateral buckling of a simply
supported column subjected to an axial compression force at one end, as shown
in figure 5.1. By solving the differential equation, Euler found that the critical
axial load for this beam was

Ncr =
π2EI

L2
= 411233.5 N (5.1)

where I is the second moment of area about the weak axis of the cross section.
Linearized buckling analyses by Cfem, for different element meshes, gave the
following estimates of the buckling load

No. of elem. Standard elem. Error New elem. Error
1 – – 500000.0 N 21.6 %
2 500000.0 N 21.6 % 414327.0 N 0.75 %
3 449955.3 N 9.4 % 411882.5 N 0.16 %
4 432776.8 N 5.2 % 411444.1 N 0.05 %
8 416545.0 N 1.3 % 411247.0 N 0.003 %

The error is measured with respect to the buckling load predicted by Euler,
equation (5.1).
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5.1.2 Lateral torsional buckling of simply supported beam

MM

L = 10.0m

b = 0.2 m

h = 1.0 m

E = 6250 MPa

G = 390 MPa

b

h

Figure 5.2: Simply supported beam subjected to constant moment.

The classic case of lateral torsional buckling is the simply supported beam sub-
jected to constant moment, as shown in figure 5.2. The moment acts about the
strong axis of the cross-section. Simply supported in this context also means
that the cross section of the beam is prevented from rotation about the longi-
tudinal axis at the supports.

Solution of the differential equation, see for instance [30], gives the following
buckling load for this problem

Mcr =
π

L
EIyyGIt = 611387.6 Nm (5.2)

Linearized buckling analyses by Cfem:

No. of elements Standard elem. Error New elem. Error
2 747903.7 Nm 22.3 % 595197.4 Nm 2.65 %
3 664970.1 Nm 8.8 % 606119.6 Nm 0.86 %
4 640321.9 Nm 4.7 % 608389.1 Nm 0.42 %
8 618349.1 Nm 1.1 % 610840.9 Nm 0.09 %

The error is measured with respect to the buckling load defined by the analytical
solution in equation (5.2).

5.1.3 Flexural buckling of eccentrically loaded cantilever

No references have been found in which problems involving loads applied through
rigid eccentricities are studied by use of differential equations. One exception is
lateral torsional buckling of simple beams subjected to eccentricly applied con-
centrated forces, studied, for instance, by Timoshenko and Gere [30]. However,
in these cases the differential equations are based on severe simplifications, and
the results obtained are therefore not particularly well suited for verificational
purposes. However, the simplified procedure adopted in this test, and described
below, is believed to give a strong indication of the usefulness of the formulation
with respect to rigid eccentricities.
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PEI
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10.0m

8.0m 2.0m E = 6250 MPa
b = 0.2 m

h = 1.0 m

b

b 100 EI

Figure 5.3: Cantilever beam subjected to axial compression, applied through
a) rigid eccentricity, b) very stiff end section

The geometry of first problem is shown in figure 5.3. The buckling loads ob-
tained for the two systems are not expected to coincide completely, but they
should be quite close if the rigid eccentricity is handled correctly. The buckling
load of the system with the rigid eccentricity is expected to be the higher, since
this system is slightly stiffer. Using 16 elements to model the flexible part of
the cantilever and, where needed, 4 elements to model the stiff part, analyses
from Cfem and ABAQUS[59] yield:

New elem. (Cfem) ABAQUS
Stiff Rigid Stiff Rigid

Buckling load 104.10 kN 104.11 kN 104.15 kN 160.73 kN
Deviation 0.0 % 0.01 % 0.05 % 54.4 %

The new element seems to handle the eccentricity correctly, whereas this version
of ABAQUS seems to have a problem with the geometric stiffness in case of rigid
eccentricities.

5.1.4 Simply supported beam with eccentric loading

L = 12.0m

b = 0.2 m

h = 1.2 m

E = 2.1e5 MPa

G = 0.808e5 MPa

P

L
2

b

h

Figure 5.4: Simply supported beam subjected to point load at upper edge.

In [30], Timoshenko and Gere solve the differential equation for the system
shown in figure 5.4 with respect to stability, but simplifications made restrict
their solution to small eccentricties. It is therefore not particularly suited for
comparison. Instead, the results from a beam model of the system in figure 5.4
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are compared with the same type of results from a shell model of the beam. In
the beam model, a rigid eccentricity is used to model the position of the load,
whereas in the shell model the load is applied directly in a node at the edge of
the model.

The shell analyses are performed by ABAQUS, with 1200 shell elements of type
S4R. For the beam element analyses, 24 beam elements were used.

ABAQUS Cfem Analytical
Load position Shell Beam New elem. Timoshenko
Upper edge 21498 kN 23098 kN 21361 kN 21459 kN
Centroid 23424 kN 23098 kN 23189 kN 23177 kN
Lower edge 25176 kN 23098 kN 25093 kN 24895 kN

These results show good agreement between the analysis of the shell element
model in ABAQUS and the beam element model in Cfem. Observe that for load-
ing with no eccentricity, the beam model in ABAQUS also yields good results.
Load eccentricity seems to be disregarded in the ABAQUS beam analysis.

5.2 Nonlinear analysis

5.2.1 Cantilever subjected to point load at end point

L = 5.0 m

E = 2.1e5 MPa
G = 8.0775e4 MPa

P = 600 kN
A = 4.8e-3 m 2

I = 4.45e-5 m 4

Figure 5.5: Cantilever beam subjected to transverse point load at free end.

The beam in figure 5.5 was studied by both Cardona [60] and by Crivelli [21]
for different element meshes. In both studies, the effect of shear was included.
Therefore the approach to shear stiffness discussed in section 4.6 was used in
these Cfem analyses. The cross section area of the beam was taken as shear
area. The vertical tip deflection and tip rotation of the cantilever compare wih
Cardona’s results as follows:



82 CHAPTER 5. NUMERICAL VERIFICATION

Number of Tip deflection Tip rotation
elements Cardona New elem. Cardona New elem.

1 1.833 2.142 0.747 0.669
2 2.078 2.156 0.688 0.672
4 2.139 2.158 0.676 0.672
8 2.154 2.158 0.676 0.672
16 2.157 2.158 0.672 0.672

5.2.2 Cantilever subjected to two point loads

102.75

G = 1.15e7

A = 0.2

EI = 5.0e6

P1 = 850 P2 = 1350

52.03

Figure 5.6: Cantilever beam subjected to two transverse point loads. One at
the free end and the other at about the midpoint.

According to [21], an analytical solution to this problem has been found by
Ebner and Ucciferro[61]. In addition, both Cardona [60] and Crivelli [21] have
studied it using the finite element method. In the following table results from
analyses using the new element are compared with corresponding results from
Crivelli as well as with the analytical solution, for three different element meshes.
Longitudal and transverse displacement as well as rotation of the free end are
tabulated.

Number of elements 2 4 8
Longitudal disp. 28.99 30.26 30.62

Crivelli Transverse disp. 65.86 66.63 66.87
Rotation 1.1 1.06 1.05
Longitudal disp. 30.65 30.75 30.76

New elem. Transverse disp. 66.80 66.98 67.00
Rotation 1.04 1.04 1.04
Longitudal disp. 30.75 30.75 30.75

Analytic solution Transverse disp. 66.96 66.96 66.96
Rotation - - -

For these analyses also, the cross section area was taken as shear area.
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5.2.3 Curved cantilever subjected to transverse point load

x

yy

z

P = 600

R = 100

Cross-section: b = h = 1

E = 1.0e7

G = 5.0e6

45o

Figure 5.7: Curved cantilever with rectangular cross-section subjected to trans-
verse point load at the free end.

Figure 5.7 shows a problem that has been studied by Bathe and Bolourchi [62].
It was also used by Crivelli [21] for verification of his beam element. Eight
straight elements are used for modelling the cantilever.

The final position of the cantilever tip as found in the different studies, is:

Load Measured Bathe et. al. Crivelli New elem.
x-position 22.33 22.31 22.27

300 y-position 58.84 58.85 58.78
z-position 40.08 40.08 40.16
x-position 18.62 18.59 18.55

450 y-position 53.32 53.34 52.24
z-position 48.39 48.39 48.47
x-position 15.79 15.75 15.73

600 y-position 47.23 47.25 47.15
z-position 53.37 53.37 53.44

For the quadratic cross section of this cantilever beam, the shear area was set
to (b× h)/1.2 = 0.833.

As shown in the table, the results found in this study agree quite well with those
found by both Bathe and Bolourchi and Crivelli.
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5.2.4 William’s toggle beam

P

12.936 12.936

0.386

EA = 1.855e6 EI = 9.27e3

Figure 5.8:William’s toggle beam; two beams rigidly jointed together and
clamped at both ends, and subjected to load P at the apex.

An analytical solution for this problem was found by Williams [63], who also
did experiments to verify his analytical approach.

The analyses in Cfem were performed using the new beam element. Two differ-
ent element meshes were employed, the first using one element to model each
half of the beam, and the second using four elements per half. The results are

0
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4 elements/half

Analytical
Experiments

Figure 5.9:Williams toggle beam; comparison between analyses using 1 and 4
elements per half beam, and experimental and analytical results.

presented as solid and slashed lines in figure 5.9, and they show good agreement
with the results obtained by Williams.
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5.2.5 M.I.T. Dome

P

24

24

1.75

0.7

0.7

Cross -section

It = 0.02961
Iy = 0.0208

E = 439.8e3
G = 159.0e3

A = 0.049

Iz = 0.0208

Figure 5.10: M.I.T. Dome; dome structure in plexi-glass.

This problem consists of twelve members forming a three dimensional dome
structure with rigid joints, and with a hexagonal base. The dome is simply
supported at each of the six vertices of the hexagonal base, and these supports
are allowed to move in the plane perpendicular to the load. A point load is
applied vertically at the apex of the dome. In order to make it stable, the apex
node is restricted to movement in the loading direction, and it is prevented from
rotation about the vertical axis. As the results in figure 5.11 show, the analyses
using the new element places themselves neatly among the results obtained by
Nee [64], Crivelli [21] and Meek [65].

5.3 Conclusion

The new element developed in chapter 4 has been tested for a number of prob-
lems both in two and three dimensions, and it has been found to yield satisfac-
tory results for both linearized buckling analysis and nonlinear analysis.



86 CHAPTER 5. NUMERICAL VERIFICATION

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Lo
ad

 fa
ct

or

Vertical displacement

Mesh 1
Mesh 2

Nee
Crivelli
Meek

Figure 5.11: Results from analyses of MIT Dome; Mesh 1 uses 2 elements for
each diagonal member and 1 element per horizontal member. Corresponding
numbers for mesh 2 are 4 and 2 elements, respectively.



Part II

Numerical studies

87





Chapter 6

Linearized buckling

Most design codes account for stability problems in a simplified manner. Stresses
computed by ordinary linear analysis are adjusted by correction factors which
depend on the slenderness ratio of the members.

Strictly speaking, correct use of this procedure requires a total system analy-
sis with respect to buckling to be made. However, most structures can, with
adequate accuracy, be simplified into a series of simple beams and columns,
requiring only that the buckling loads for these individual members are known.
By providing tabulated data for the buckling loads of a relatively limited num-
ber of beam and column configurations, design codes can therefore enable the
engineer to account for stability problems even in quite complex structures.

Although buckling loads for a large number of simple beams and columns have
been found analytically by solving differential equations, this approach is not
always possible. Therefore numerical methods, such as the linearized buckling
analysis, often has to be applied. Although such methods only yield numerical
values for the buckling loads, curve fitting can be used to obtain approximate,
parameterized formulas.

In this chapter a number of simple beam configurations are studied using the
linearized buckling analysis feature of Cfem. The emphasis is on problems in-
volving lateral torsional buckling, as this seems to be the area most in need of
more and better information.

89



90 CHAPTER 6. LINEARIZED BUCKLING

6.1 Test beams

6.1.1 Geometry

For the most part, two sets of beams with constant rectangular cross-sections
are used in this chapter. Each set consists of three different beams. Given the
same load and boundary conditions, the beams have different slenderness ratios,
for both flexural and lateral torsional buckling.

Beam B b x h = 0.200 x 1.500 m

14.0 m

Beam A b x h = 0.100 x 1.000 m

16.0 m

Beam C b x h = 0.100 x 1.900 m

16.0 m

The first set of test beams, labeled A, B and C, is used for deriving formulas,
based on curve fitting.

9.0 m

8.0 m

12.0 m

b x h = 0.140 x 0.600 m

b x h = 0.190 x 1.266 m

b x h = 0.100 x 1.000 m

Beam 1

Beam 2

Beam 3

Consisting of the beams labeled 1,2 and 3, the second set of test beams is used
for testing and verification of the derived formulas.

In addition to the two sets of beams with constant rectangular cross-sections,
a number of tapered beams with rectangular cross-sections, the geometry of
which will be commented on in due course, are used.

6.1.2 Material

All beams have the same material properties, corresponding to glulam with
all lamellas of strength class T30 according to NS3470 [2]. Only characteristic
values, including the lamination factor, are referred and used in the analyses.
No notice is taken to service class or load duration classes.
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Parameter Symbol Value

Char. bending strength fmk 39.0 MPa
Char. tensile strength ft0k 23.4 MPa
Char. compression strength fc0k 35.1 MPa

For stability calculations
Modulus of elasticity E0k 10062.5 MPa
Shear modulus Gk 632.5 MPa

For deformation calculations
Modulus of elasticity E0 14145.0 MPa
Shear modulus G 885.5 MPa

Consistent with the discussion in section 2.3, the 5-percentile values of the stiff-
ness parameters, E0k and Gk, are used for all analyses referred in this chapter.

6.1.3 Boundary conditions and loading

A beam prone to lateral torsional buckling, must, at least, be partially restrained
against torsional rotation at one point along the beam axis, in order to prevent
it from tipping over. In the following, when a beam point is said to be simply
supported, it means that it is prevented from all three translations and also
prevented from torsional rotation. On the other hand, if a beam point is said
to be built-in, all translations and rotations are suppressed at that point.

6.1.4 Discretization

The analyses have been performed using the new beam element described in
section 4.5(page 67) and implemented in the corotated formulation described in
chapter 3. The number of elements used in each analysis vary from case to case,
but is held constant within each test series.

In the modelling of eccentricities, the rigid eccentricities described in chapter 3
were used in order to avoid possible numerical problems associated with the use
of very short and stiff beam elements.

All distributed loading is lumped to the element nodes.
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6.2 Effect of eccentric loading

Timoshenko and Gere [30] study lateral torsional buckling of simple beams for
a number of different of boundary conditions and load configurations. For the
most part, however, the loading is applied at the centroid of the beam cross
section.

The topic of this section is beams subjected to eccentric loading. A couple of dif-
ferent load and boundary condition configurations are studied, and approximate
expressions for the lateral torsional buckling loads of the beams are established.

6.2.1 Simply supported beam with distributed loading

q

e

L
Figure 6.1: Simply supported beam with eccentrically applied uniformly dis-
tributed load q

Figure 6.1 shows a simply supported beam of length L with uniformly distrib-
uted loading q applied at a distance e from the centroid. The eccentricity e
is positive above the centroid, and both positive and negative values of e are
considered.

For the case of no eccentricity, that is e = 0, Timoshenko and Gere [30] find the
lateral torsional buckling load to be:

q0 =
28.3
√
EIzzGIt
L3

(6.1)

Timoshenko and Gere do not, however, provide a formula for lateral torsional
buckling of simply supported beams with eccentrically applied uniformly dis-
tributed loading. Strømmen [66] did, however, find an approximate formula for
this problem, but his formula was based on an energy approach with an assumed
sinusoidal displacement field between the supports. This approach yielded a for-
mula that gives relatively inaccurate results for zero eccentricity, and will not
be commented on further in this work.

As an approximation to the buckling load for the system in figure 6.1, the
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following expression is proposed:

qcr =
28.3
√
EIzzGIt
L3

− k1 e

L

EIzz
L3

+ k2
e

L

2 EIzz
L3

E

G
= q0 − q1(e) (6.2)

Since equation (6.2) is to be fitted to computed results, a method of calibration
must be chosen. A natural choice would be a nonlinear least square method.
These methods do ensure the total deviation of (6.2) from the computed results
to be minimized. This is, however, not necessarily the best fitting criterion. For
timber beams, and indeed for all other kinds of beams, the most likely eccentric
loading is applied some place within the cross section, or in the vicinity of the
cross section boundaries. Thus, it is more important for equation (6.2) to be
accurate for small values of the eccentricity than for larger values. Therefore
a simple curve fitting method is used for calibration of (6.2), using only two
points to determine the two arbitrary constants k1 and k2. (Actually, a third
point has, in some respect, already been used, as the constant part of equation
(6.2) is determined from the differential equation solution for zero eccentricity.)

The eccentricities used in the calibration are e = ±0.5 h, which yielded k1 =
40.2 and k2 = 14.0 as reasonable values for the coefficients. This suggests the
following approximate formula for the lateral torsional buckling load of a simply
supported beam with eccentrictally applied uniformly distributed loading:

qcr =
28.3
√
EIzzGIt
L3

− 40.2 e

L

EIzz
L3

+ 14.0
e

L

2 EIzz
L3

E

G
(6.3)

Since formula (6.3) was established for beams A, B and C, it also has to be
verified for other beam geometries. Therefore, some analyses have been carried
out using test beams 1, 2 and 3. 40 elements were used to model each beam,
for both the calibration and the verification analyses.

Dependency on eccentricity

Computations have been performed with eccentricity ranging from −1.0 h to
1.0 h.

The results are presented in figures 6.2 through 6.4. In each of these figures,
a curve has been included relating the deviation of equation (6.3) from the
computed results. These curves relate to the right ordinate axis of the figures.
Ideally, the deviation should be zero for zero eccentricity. The reason why this is
not the case (about 0.1% off), is probably that the first term in equation (6.3),
denoted by q0 and taken from [30], is exact within 3 digits only.
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Figure 6.2: Effect of eccentricity for beam 1. b x h = 0.14m x 0.6m. L = 8.0m.
Uniformly distributed loading.
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Figure 6.3: Effect of eccentricity for beam 2. b x h = 0.19m x 1.266m. L =
12.0m. Uniformly distributed loading.
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Figure 6.4: Effect of eccentricity for beam 3. b x h = 0.1m x 1.0m. L = 9.0m.
Uniformly distributed loading.

Figures 6.2, 6.3 and 6.4 clearly indicate that formula (6.3) predicts the lateral
torsional buckling load with good accuracy, at least for eccentricities ranging
from −h to h. The deviation from the computed results does not exceed 0.3%
for any of the analyzed test beams.

Dependency on strength class and E
G

So far, all the beams used for both calibration and verification of the proposed
approximate formula had the same material properties, corresponding to glued
laminated timber with all T30 lamellas. In order to check the validity of the
approximate formula for beams with other material properties, two series of
analyses were performed. Beams 1-3 were used for both series, and the eccen-
tricity was set to e = 0.5 h.

In the first series of analyses, the beams were given material properties corre-
sponding to the strength classes T18 through T40 described in NS3470[2].

In the second series, the beams were assigned a wide variety of stiffness para-
meters and E/G-ratios.

The results from these computations are given in appendix C, section C.1, and
they indicate that the approximate formula shows good agreement with the
analyses for all sets of stiffness moduli.
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6.2.2 Simply supported beam with point load

e

L
2
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Figure 6.5: Simply supported beam with eccentrically applied point load at
mid-span.

Figure 6.5 shows a simply supported beam with a vertical point load applied
eccentrically at mid-span. Timoshenko and Gere [29] study this problem an-
alytically, and find the following approximate lateral torsional buckling load,
under the condition that the eccentricity is small:

Pcr =
16.93

√
EIzzGIt
L2

− 29.46 e
L

EIzz
L2

(6.4)

How good is this formula, particularly for the size of eccentricities found in
timber structures? In order to answer this question computations were carried
out with the aim of determining the factors k1 and k2 in the somewhat more
elaborate formula:

Pcr =
16.93

√
EIzzGIt
L2

− k1 e
L

EIzz
L2

+ k2
e

L

2 EIzz
L2

E

G
(6.5)

For calibration, beams A, B and C were used, and, as was the case for the simply
supported beam with uniformly distributed loading, the calibration was carried
out for e = ±0.5h. Suitable values for the coefficients of (6.5) were found to be:

k1 = 31.5 k2 = 1.9 (6.6)

The actual computed buckling loads are included in appendix C, section C.1.2.
This suggests the following formula

Pcr =
16.93

√
EIzzGIt
L2

− 31.5 e
L

EIzz
L2

+ 1.9
e

L

2 EIzz
L2

E

G
(6.7)

For verification, a number of computations were carried out using test beams 1,
2 and 3. In all computations, 40 elements were used to model the beam.
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Dependency on eccentricity

Computations were performed with eccentricities ranging from −1.0 h to 1.0 h.
Figures 6.6 through 6.8 contain the results from the verification analyses.
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Figure 6.6: Effect of eccentricity for beam 1. b x h = 0.14m x 0.6m. L = 8.0m.
Point load at mid-span.
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Figure 6.7: Effect of eccentricity for beam 2. b x h = 0.19m x 1.266m. L =
12.0m. Point load at mid-span.
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Figure 6.8: Effect of eccentricity for beam 3. b x h = 0.1m x 1.0m. L = 9.0m.
Point load at mid-span.

Although the approximate formula yields results that are somewhat inaccurate
for large eccentricities, figures 6.6, 6.7 and 6.8 seem to indicate that it predicts
the buckling load within 1% for ratios of eccentricity to beam depth of about
±0.7. However, for ratios in this range, Timoshenko’s formula also yields quite
accurate results, at least for positive values of e/h. For negative values of e/h,
on the other hand, Timoshenko’s approximation gives less accurate results than
equation (6.7).

Dependency on strength class and E
G

As for the uniformly loaded beam, analyses aimed at testing the sensitivity with
respect to the material parameters were carried out also for the point loading.
Beams 1, 2 and 3 were used for the testing, and the eccentricity was set to
e = 0.5h. The results, shown in appendix C, section C.1.2, show that the
approximate formula is quite insensitive to the stiffness parameters.
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6.3 Combined flexural and lateral torsional buck-
ling

As a simplification, lateral torsional buckling of a beam is often considered as
flexural buckling of the compression side of the beam. This is a somewhat crude
simplification, it clearly indicates that there is a connection between the lateral
torsional buckling load and any axial compression (or indeed tension).

q

L2 L2

P
N

Figure 6.9: System used to establish interaction curves. Only one of the point
load P and the distributed loading q is present at a given time

In order to establish the degree of interaction, analyses have been performed
using test beams 1, 2 and 3 (see section 6.1, page 90). The system being
analysed is shown in figure 6.9. It consists of a beam which is either simply
supported or built-in at both ends, and which is subjected to either a uniformly
distributed load (q) or a point load (P ) at mid-span. In addition, it is subjected
to an axial compression load (N).

Linearized buckling analyses were performed with one type of loading (trans-
verse or axial) held constant throughout each analysis. The other load, which
was allowed to vary, represents the buckling load for that level of constant load-
ing. By performing such analyses for different levels of constant loading, and
recording the corresponding buckling loads, interaction curves were established.
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Figure 6.10: Simply supported
beam subjected to point load at mid-
span
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Figure 6.11: Simply supported
beam subjected to distributed load
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Figure 6.12: Built-in beam sub-
jected to point load at mid-span
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Figure 6.13: Built-in beam sub-
jected to distributed load
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Figure 6.14: Simply supported
beam subjected to point load at mid-
span
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Figure 6.15: Simply supported
beam subjected to distributed load
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Figure 6.16: Built-in beam sub-
jected to point load at mid-span
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Figure 6.17: Built-in beam sub-
jected to distributed load
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Figure 6.18: Simply supported
beam subjected to point load at mid-
span
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Figure 6.19: Simply supported
beam subjected to distributed load
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Figure 6.20: Built-in beam sub-
jected to point load at mid-span
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Figure 6.21: Built-in beam sub-
jected to distributed load

Figures 6.10 through 6.21 clearly indicates an interaction between flexural buck-
ling and lateral torsional buckling. It should be noted that the axes are scaled
with respect to the buckling load, Nmax, and the critical bending moment,
Mmax. Nmax is the critical load for the beam with no transverse loading, and
Mmax is the critical moment dut to q or P , with N = 0. It follows from this
that even though a smaller value of M/Mmax is permitted for one beam than
for another, for a particular value of N/Nmax, the actual magnitude of the per-
missible bending moment can be larger, sinceMmax can be different for the two
beams.
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The results suggest an interaction curve defined by

N

Nmax
+

M

Mmax

3
2

= 1.0 (6.8)

This curve is also included in the figures. It clearly represents a conservative
approximation, particularly for transverse loading applied at the upper edge of
the beam.

6.4 Effective (buckling) lengths

The lateral torsional buckling moment of a simply supported beam of length L
subjected to uniform bending moment is:

Mcr =
π

L
EIzzGIt (6.9)

Equation (6.9) can be used to tabulate buckling loads for beams with other
loading and/or boundary conditions. A particular beam that buckles for a
maximum bending moment of M has the same buckling moment as a beam of
length L and with uniform bending moment Mcr = m ·M . Thus, the buckling
load of the given beam is given by either:

Mcr = m ·M =
π

L
EIzzGIt (6.10)

or
M =

π

m ·L EIzzGIt (6.11)

where m can be called equivalent uniform bending moment factor in the first
case and buckling length factor in the second. Lk = m ·L is the effective length
or buckling length of the beam. For easy access to buckling loads of different
configurations of the beams, m can be tabulated for a number of load- and
boundary configurations. Such tables may, for instance, be found in [2] and
[45].

The table in [2] has some inconsistencies which were corrected by the author in
[67]. The corrected table, which was found by numerical computations with the
element formulation presented in the theoretical part of this thesis, is included
here as table 6.1 for reference.

In addition to the cases presented in [67] and table 6.1, a few other cases have
also been studied. The computations are reported more thoroughly in appendix
C, section C.2; here the essence is shown in table 6.2, which is an extension of
table 6.1.
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Load, bending moment and bound-
ary conditions about horizontal axis

Boundary conditions
about vertical axis Factor m

M µM

0.60+0.40µ≥0.40
M µM 0.30+0.20µ≥0.20

q
0.90

0.55

q
0.80

0.70

q
0.80

0.75

F F
1.00

L
4

L
4

L
2

0.55

F
0.56+0.74c(1−c)

cL 0.28+0.80c(1−c)
0.49+0.60c−0.85c2≥0.35

F
0.47+0.50c(1−c)

cL 0.39+0.58c(1−c)

0.47+0.41c−0.49c2

FL
2

L
2

0.70

0.65

M

2.00

q

0.50

F

0.80

Table 6.1: Table of buckling lengths/equivalent moment factors for a number
of beam configurations.
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Load, bending moment and bound-
ary conditions about horizontal axis

Boundary conditions
about vertical axis Factor m

q
qL2

2 0.80

0.65

q
qL2

6
0.60

Table 6.2: Table of buckling lengths/equivalent moment factors for a number
of beam configurations. Note that the factor m in the last case is not based on
the largest bending moment in the beam, but rather the bending moment at
the hinged end.

6.5 Tapered beams

Tapered glulam beams are frequently used to support roofs of medium sized
buildings. Typical span lengths are 15-25 meters. According to reference [68],
the current Norwegian practice is a roof angle below 4 degrees.

A large number of analyses have been carried out in order to establish guidelines
for a simplified treatment of lateral torsional buckling of tapered beams.

Only simply supported beams subjected to uniformly distributed loading is stud-
ied, but loading applied at both the centroid and the upper edge is considered.
In addition, analyses have been performed on double tapered beams braced at
mid-span, but then only for loading applied at the centroid.

Due to an almost infinite number of possible variations of beam geometry, a
dimension selector provided by Moelven Limtre AS is used as basis for the
analyses. However, the dimension selector is based on a roof angle of 2 degrees,
which does not comply with a desired angle span from 0 to 4 degrees. Therefore,
only the width, the depth at the lowest end and the beam length is taken from
the dimension selector. The apex depth of the double tapered beams and the
depth at the deepest end of the single tapered beam are varied between the
depth at the shallowest end to a depth resulting in a roof angle of 4 degrees.

Each beam is modelled using 40 elements, and the material properties described
in section 6.1.2 (page 90) are used. The boundary constraints at both ends are
applied at the center of the cross-section.
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By comparing the lateral torsional buckling load from each computation with the
lateral torsional buckling load of a beam of constant depth, heqv, but otherwise
having the same geometrical specifications, load configuration, material and
boundary conditions, and solving for heqv, an equivalent depth is found.

The expression used for the lateral torsional buckling load of a simply sup-
ported beam subjected to uniformly distributed loading applied at the centroid
is equation (6.1), that is

qcr =
28.3
√
EIzzGIt
L3

(6.12)

and for the load applied at the upper edge, equation (6.2) with e = h/2 is used.

qcr =
28.3
√
EIzzGIt
L3

− 40.2 h

2L

EIzz
L3

+ 14.0
h2

4L2
EIzz
L3

E

G
(6.13)

The buckling load of a beam braced at mid-span can be found as

qcr =
π
√
EIzzGIt

0.763 L
2

3 =
8π
√
EIzzGIt

0.763L3
(6.14)

corresponding to the first case of table 6.21 with beam length L/2. Each geome-
try set will form one curve in a diagram depicting equivalent depth as a function
of roof angle. Due to the vast number of analyses carried out (each of the four
analysis series consists of 1298 individual analyses), only the enveloping curves
of the curve cascades resulting from the analyses are shown in the figures. The
other curves position themselves in the grey area between the enveloping curves.

6.5.1 Symmetric double tapered beams

hapexhend

L
2

L
2

Figure 6.22: Double tapered beam.

L, b and hend = h1 are taken from diagram C.4 of appendix C (page 180),
where each cell provides the geometry for one set of double tapered beams. The
parameters are held constant for each geometry set, whereas hapex is varied
from hapex = h1 to hapex = h2, causing the roof angle to vary between 0 and 4
degrees.

1Note that the more accurate m-factor, m = 0763, from appendix C is used rather than
m = 0.8 as suggested by table 6.2 on page 105
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Figure 6.23: Equivalent beam depths for symmetric double tapered beams
with uniformly distributed loading at the centroid.

Figure 6.23 shows the equivalent beam depths for simply supported symmetric
double tapered beams with uniformly distributed loading applied at the cen-
troid. Included is also a curve representing the approximate expression:

heqv − hend
1
2
L

= 0.4 · heqv − hend1
2
L

(6.15)

which may be rewritten as

heqv = 0.6 · hend + 0.4 · hapex (6.16)

A conservative approximation to the buckling load of a simply supported sym-
metric double tapered beam with distributed loading, and with depth varying
from hend at the ends to hapex at the apex, can be found as the buckling load of
an equivalent beam of uniform depth heqv determined by equation (6.16). For
this load configuration, the approximate approach underestimates the buckling
load by at most 3% for the geometry sets studied.

Loading applied at the upper edge

Figure 6.24 shows the equivalent beam depths for simply supported symmetric
double tapered beams subjected to distributed loading applied at the upper
edge.
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Figure 6.24: Equivalent beam depths for double tapered beams with evenly
distributed loading at the upper edge. Axis scaled as in figure 6.23.

A curve representing the approximate formula

heqv = 0.68 · hend + 0.32 · hapex (6.17)

is also shown in the figure. Application of this approximate formula yields lateral
torsional buckling loads that are up to 6% lower than the one found from an
analysis of a double tapered beam, for the tested geometry sets.

Figure 6.25 shows the same data as figure 6.24, but the axes are scaled in order
to reduce the spread of the data. The new approximate expression for the
equivalent beam depth, which is also included in figure 6.25, is:

heqv = hapex · 0.19 · hend
L

−0.2
+ hend · 1− 0.19 · hend

L

−0.2
(6.18)

With this formula, the maximum error will be lower than 2.5% for the geometry
sets used in the analyses.
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Figure 6.25: Equivalent beam depths for double tapered beams with evenly
distributed loading at the upper edge.

Braced at mid-span
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Figure 6.26: Equivalent beam depths for double tapered beams with uniformly
distributed loading at the centroid and braced at mid-span. Axes scaled as in
figure 6.23.
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Figure 6.26 shows equivalent beam depths for the simply supported symmet-
ric double tapered beams that are subjected to uniformly distributed loading
applied at the centroid, and that are braced at mid-span. The bracing was
performed by restraining against both transverse displacement and torsional
rotation. Included is also the approximate expression:

heqv = 0.44hend + 0.56hapex (6.19)

6.5.2 Single tapered beams

hend2hend1

L

Figure 6.27: Single tapered beam

Each cell in diagram C.4(page 180)(appendix C, section C.3) provides geometry
data for one set of single tapered beams. The width b and the length L is taken
directly from the diagram, as is hend1 = h1. hend2 is varied between hend2 = h1
and hend2 = h1 + L tan 4◦.
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Figure 6.28: Equivalent beam depths for single tapered beams with uniformly
distributed loading at the centroid.

Figure 6.28 relates equivalent beam depth to the end depths of single tapered
beams subjected to uniformly distributed loading applied at the centroid. A
conservative approximation to the equaivalent beam depth is:

heqv − hend1
L

= 0.43
hend2 − hend1

L

heqv = 0.43hend2 + 0.57hend1

(6.20)

This is depicted by the lower straight line in figure 6.28. Use of this approxi-
mation gives a critical load which is at most 3.5% lower than the one found by
the finite element computations.
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Loading applied at the upper edge
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Figure 6.29: Equivalent beam depths for single tapered beams with uniformly
distributed loading at the upper edge.

Figure 6.29 shows the equivalent beam depths for single tapered beams with
uniformly distributed loading applied at the upper edge. As figure 6.29 shows
practically the same picture as figure 6.28, it may be concluded that equation
(6.20) also applies to this case, with about the same accuracy.

6.6 Braced beams

The load bearing capacity of a beam prone to lateral torsional buckling may
be considerably increased by bracing the beam against lateral displacements, or
indeed against both lateral displacement and torsional rotation. The bracing
can be placed at one or several discrete points, or along a portion of the length
of the beam.

For simply supported beams, it will be shown that by linearized buckling analy-
sis, there is only one single point in the cross-sectional plane where a lateral
brace does not increase the lateral torsional buckling load of the beam. The
position of this point is established for a few simple cases.
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The effect of bracing on the lateral torsional buckling load of beams is also,
to some extent, studied, as is the bracing stiffness necessary to prevent lateral
displacement of the braced point.

This study only considers lateral bracing that is applied at the mid-span of the
beams.

6.6.1 Simply supported beam with constant moment

Center of rotation

In [30], Timoshenko and Gere establish a differential equation for a simply
supported beam subjected to constant bending moment, for use in stability
calculations. The derivation was based on the assumption that the lateral and
vertical displacement of the cross section were uniquely defined by the torsional
rotation of the cross section. See figure 6.30.

y

z

β

dv

w

z0

dβ 

Figure 6.30: Lateral and vertical displacement of a cross section in a buckling
beam. Basis for establishment of differential equation.

Timoshenko and Gere arrived at three differential equations, one being:

GIt
dβ

dx
= −dv

dx
M

dv

dβ
= −GIt

M

(6.21)
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Studying figure 6.30, dv
dβ
is recognized as the distance z0 from the centroid of

the cross section to the center of rotation. In [30], the buckling moment was
found to be

Mcr =
π

L
GItEIzz (6.22)

Subsituting Mcr for M in equation (6.21), an expression for z0 is found:

z0 =
dv

dβ
= −L

π

GIt
EIzz

(6.23)

Assuming that the theory is correct, that is, the cross section has a fixed center
of rotation, equation (6.21) implies that a bracing at any point but the center of
rotation represents a restriction on the beam rotation, and therefore increases
the buckling load. However, nothing can be concluded as to the magnitude of
this increase.

Position of bracing

M

M

z

x

y

z

Figure 6.31: Simply supported beam subjected to constant bending moment.
Bracing at mid-span, eccentrically applied at a distance z from the centroid.

In order to investigate how the buckling load varies as the brace is placed at
different locations in the cross sectional plane, the beam in figure 6.31 is studied.
Using 20 of the beam elements described in section 4.5(page 67) to model the
beam, and assuming the bracing to be infinitely stiff, the position of the bracing
is varied and the lateral torsional buckling load of the beam, as determined
from a linearized buckling analysis, is recorded. This type of study is carried
out for test beams 1, 2 and 3 described in section 6.1, and for a range of bracing
positions of −1.5z0 to 0.5z0.

Figure 6.32 shows the results of this study. The buckling loads are scaled with
respect to the second buckling load of the beams, determined with no bracing



6.6. BRACED BEAMS 115

0.5

0.6

0.7

0.8

0.9

1

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25

M M
2

z
|z0|

Beam 1
Beam 2
Beam 3

Figure 6.32: Buckling loads for simply supported beams 1-3 subjected to con-
stant bending moment, and with a rigid bracing at mid-span at a distance z
from the centroid.

present, whereas the position is scaled with respect to the distance from the
centroid to the center of rotation, given by equation (6.23). This format causes
the curves for the three different beams to coincide.

These results confirm that if the bracing is positioned in the center of rotation,
where z/|z0| = −1, it has no effect on the buckling load. For all other positions
it increases the buckling load.

If the brace is positioned above the point for which z/|z0| ≈ −0.250, the beam is
forced to buckle in two half-waves, and the buckling load of the beam is doubled.
The point at which this occurs can be found from:

z∞ ≈ 0.250z0 = −0.250L
π

GIt
EIzz

= −0.080 L GIt
EIzz

(6.24)

The following points are worth noting:

• The limit bracing position z∞ is valid only for an infinitely stiff bracing.

• No additional capacity is gained if the brace is positioned above z∞.
• If the brace is positioned below z∞, it cannot force the beam to buckle in
two half waves no matter how stiff the brace is.
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Stiffness of bracing at mid-span
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Figure 6.33: Simply supported beam subjected to constant moment. Neces-
sary stiffness of bracing for varying bracing eccentricities.

The assumption of the bracing being infinitely stiff, is of course not a realistic
one. However, analyses show that for more realistic values of the bracing stiffness
the buckling load/bracing position diagram maintains its shape, but that the
limit position, shown by the sharp knee in figure 6.32 is moved in the positive
direction along the bracing position axis. Therefore, analyses were performed
to establish the bracing stiffness necessary to force the beam to buckle in two
half waves (as opposed to one) for varying bracing eccentricity. A large number
of analyses underly these results, since the bracing stiffness had to be found
iteratively (each iteration involved one analysis). Thus, about 2000 analyses
had to be performed in order to arrive at the results shown in figure 6.33.

By scaling the bracing eccentricity by |z0| and the bracing stiffness by a factor,
EIzz
L3 , representing the bending stiffness about the weak axis, the results from
the three different beams are made to coincide.

Since bracing applied lower than z∞ is not able to force a beam to buckle in
two halves, only bracing application points above the point identified by z∞ is
examined.

Figure 6.33 also includes the curve for an approximate analytical expression for
the required stiffness. This expression has been found by assuming that the
necessary bracing stiffness for bracing eccentricity z∞ is infinity (assymptote at
z/|z0| = −0.25), and fitting the results to a suitable and simple expression. The
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result is:

kbr =
1

0.0253
z

|z0| + 0.00633
EIzz
L3

> 0 (6.25)

6.6.2 Simply supported beam with point load applied at
mid-span

P

z

x

y

z

Figure 6.34: Simply supported beam subjected to point load at mid-span.
Bracing at mid-span, at eccentrically applied at a distance z from the cen-
troid.

Center of rotation

Assuming that a center of rotation, like the one found for the beam subjected
to constant bending moment, can also be found for the beam in figure 6.34, an
effort was made to compute the distance z0 from the centroid of the mid-span
cross section to the center of rotation. The expression for z0 was assumed to
have the form

z0 = −L
a

GIt
EIzz

(6.26)

and an iterative algorithm was applied to determine the unknown a. Similar
analyses were performed for the three test beams 1, 2 and 3 of section 6.1, with
the following results:
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Beam z0 a
1 -1.10613 m 3.349
2 -1.70945 m 3.349
3 -1.30422 m 3.349

In addition, one set of analyses was performed using the geometry of beam 3,
but with the material properties of steel. For this beam the value of a was also
found to be 3.349.

Thus, the center of rotation for the mid-span cross-section of a simply supported
beam with a point load applied at mid-span can be expressed as:

z0 = − L

3.35

GIt
EIzz

(6.27)

Position of bracing
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Figure 6.35: Buckling loads for simply supported beams 1-3 subjected to a
point load at mid-point, and with a rigid bracing at mid-point at a distance z
from the centroid.

Inspired by the simple formula obtained for the effective bracing position for
the simply supported beam with constant bending moment, it was decided to
perform similar analyses for the simply supported beam with a point load at
mid-span. The results, which are scaled similarly to those in figure 6.32, are
presented in figure 6.35. Note that this figure is correct only when the stiffness
of the bracing is infinitely large.
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According to figure 6.35, the lowest point at which the beam is forced to buckle
in two half-waves is given by z/|z0| ≈ −0.107 (this has actually been found
using a separate iterative algorithm). Hence, the bracing can be positioned at
a distance z∞ below the centroid, and still effectively force the beam to buckle
in two half-waves. z∞ is given by:

z∞ ≈ −0.107 L

3.349

GIt
EI

= −0.032 L GIt
EIzz

(6.28)

Stiffness of bracing at mid-span
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Figure 6.36: Necessary bracing stiffness as a function of bracing position for
simply supported beams with a point load in the centroid position at mid-span.

Figure 6.36 relates the bracing stiffness necessary to force the beam to buckle in
two half-waves, as a function of the bracing position. The following approximate
expression is also included in the figure:

kbr =
1

0.0195
z

|z0| + 0.00209
EIzz
L3

> 0 (6.29)
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6.6.3 Simply supported beam with distributed loading

z

x

y

z

q

Figure 6.37: Simply supported beam subjected to uniformly distributed load-
ing applied at the centroid. Bracing at mid-span, eccentrically applied at a
distance z from the centroid.

Center of rotation

The point load on the simply supported beam is now replaced by a uniformly
distributed load applied at the centroid. Again, the center of rotation is deter-
mined numerically through an iterative procedure. As before, the distance from
the centroid to the center of rotation is assumed to be of the form:

z0 = −L
a

GIt
EIzz

(6.30)

A large number of computations gave the following values of a for the different
beams:

Beam z0 a
1 -1.14519 m 3.235
2 -1.76971 m 3.235
3 -1.35010 m 3.235

Hence,

z0 =
L

3.235

GIt
EIzz

(6.31)
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Position of bracing
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Figure 6.38: Buckling loads for simply supported beams 1, 2 and 3 subjected
to uniformly distributed loading at the centroid , and with a rigid bracing at
mid-span at a distance z from the centroid.

Figure 6.38 shows the buckling load of the beams as functions of the bracing
position. The position is scaled by |z0| and the buckling load is scaled by the
buckling load corresponding to the second buckling mode of the unconstrained
beam.

The lowest point at which the bracing forces the beam to buckle in two half-
waves is given by the sharp bend in the curves. From iterative analyses, it
was found that this bend is located at z/|z0| ≈ −0.197. Thus, the maximum
distance z from the centroid at which the bracing can be placed and still force
the beam to buckle in two half-waves is determined by:

z∞ ≈ 0.197z0 = −0.197 L

3.235

GIt
EIzz

= −0.061L GIt
EIzz

(6.32)

Stiffness of bracing at mid-span

Figure 6.39 shows the stiffness necessary to force the beam to buckle in two
half-waves for varying bracing eccentricities. The same scaling is applied as for
the previous beams. Included is also a hyperbolic approximate formula, with
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Figure 6.39: Stiffness necessary to force the beam to buckle in two half-waves
for varying bracing eccentricities.

the mathematical representation:

kbr =
1

0.221
z

z0
+ 0.0435

EIzz
L3

> 0 (6.33)



Chapter 7

Nonlinear analysis results

Linearized buckling analysis is a useful tool for deriving simplified methods for
buckling problems. Such methods should by their very nature provide conserv-
ative results.

A more versatile method of analysis is a complete, finite element based non-
linear analysis. Such an analysis is capable of quite accurate representation of
both loading, including eccentric application, and boundary conditions, includ-
ing bracing and its exact point of application. Geometric imperfections can
also be accounted for, providing their size and shape are known, and it is, in
principle, possible to also handle quite complex material properties.

In this chapter, some topics related to nonlinear analysis of timber structures
are adressed.

7.1 Test beams

Test beams 1, 2 and 3, defined in section 6.1 (page 90) are used also in this
chapter.

A simple stress utilization factor, given by the linear interpolation

s =
σb
fmd

+
σa
fc0d

(7.1)

where σb and σa are the design bending stress and axial stress, respectively, is
defined. fmd and fc0d are the design bending and axial strength, respectively. If

123
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no material factors or factors accounting for moisture content or load duration
is included, the design strength equals the characteristic strengths.

The following simple failure criterion

s > 1.0 (7.2)

is adopted in this study. This is consistent with NS3470 [2].

7.2 Torsional geometric imperfection

In most FEM-analysis tools, beam elements are only visualized by the beam axis.
This is usually sufficient for a 2D analysis, but in the 3D case, the orientation of
the cross section may vary along the beam axis, a variation that can not easily
be presented in a model where the beam elements are shown as mere lines.
Consequently, the geometric imperfection imposed on beam elements usually
consists of mere translations of the beam axis, and not rotations about the axis.

In this section some simple analyses have been performed in order to investigate
the importance of torsional imperfections relative to transverse imperfections.
By transverse imperfection is meant the deviation of the beam axis from the
intended shape, whereas torsional imperfection represents a twist of the cross-
sections.

7.2.1 Geometric imperfection

Section 5.4 in Eurocode 5 [3] provides some guidelines to nonlinear analysis of
plane frames. It is required that “the imperfect shape of the structure should
be assumed to correspond to an initial deformation which is in approximate
affinity to the relevant deformation figure, and found by applying an angle φ of
inclination to the structure or relevant parts, together with an initial sinusoidal
curvature between the nodes of the structure corresponding to a minimum ec-
centricity e.” “The value of e should as a minimum be taken as 0.003 · L.”
However, no guidelines are provided for 3D structures.

NS3470 provides no guidelines whatsoever for nonlinear analysis of timber struc-
tures. In section 7.2.3 it does, however, state that the maximum deviation from
straightness for columns and beams prone to buckling should not exceed 1/300
of the length for structural timber and 1/450 for glued laminated timber. These
fractions may be used as basis for modelling of geometric imperfection.
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In this study, the shape of the geometric imperfection is assumed to coincide with
the shape of the first buckling mode of the beam, as obtained from a linearized
buckling analysis. Only transverse loading is active in the buckling. Three types
of geometrical imperfection are studied. First, the imperfection consists only of
the transverse part of the buckling shape. Second, the imperfection consists only
of the torsional part of the buckling shape. Finally, an imperfection consisting
of the total buckling shape is studied. In all three cases the maximum deviation
from the intended geometry is set to 1/450 of the length of the beam.

The results from the nonlinear analyses are presented as curves relating the
loading to the vertical displacement at mid-span, for each of the three different
assumptions for the imperfection. In addition, a similar load-displacement curve
is included for a bifurcation type analysis (see section 2.1.4, page 9).

For each load-displacement curve presented, a point is included indicating the
load bearing capacity of the beam, defined by the failure criterion (7.2).

The beam geometry is that of beam 2 in section 6.1(page 90), and the material is
as presented in section 6.1.2(page 90). Consistent with the discussion in section
2.3 (page 11), the characteristic values of the stiffness moduli are used. Since the
purpose of the analyses is the relative behaviour, no material factors or other
factors accounting for environment or load duration are used.

20 elements of the new element presented in section 4.5 (page 67) are used to
model each beam.

7.2.2 Simply supported beam subjected to distributed load-
ing

Figures 7.1, 7.2 and 7.3 show results from analyses of a simply supported beam
subjected to a uniformly distributed load at the upper edge, the centroid and at
the lower edge, respectively. Of the three kinds of geometric imperfection, the
purely torsional one is clearly the most critical. However, since this form (and
size) of imperfection is extremely unlikely to occur in a real beam, it is not very
interesting.

More interesting is it that all analyses predict that the combined transverse and
torsional imperfection results in lower load capacity than the purely transverse
imperfection.
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Figure 7.1: Load-displacement curves for a simply supported beam subjected
to distributed loading at the upper edge. Various types of geometrical imper-
fections.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 -0.15 -0.1 -0.05 0

Lo
ad

 [1
.0

e5
 N

/m
]

Vertical displacement [m]

Transverse
Torsional
Transverse+Torsional
Bifurcation

Figure 7.2: Load-displacement curves for a simply supported beam subjected
to distributed loading at the centroid. Various types of geometrical imperfec-
tions.
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Figure 7.3: Load-displacement curves for a simply supported beam subjected
to distributed loading at the lower edge. Various types of geometrical imperfec-
tions.

Load capacity

Load position
Transverse
imperfection

Combined
imperfection

Decrease

Upper edge 47.90 kN/m 46.84 kN/m 2.2 %
Centroid 55.24 kN/m 54.07 kN/m 2.1 %
Lower edge 63.56 kN/m 62.34 kN/m 1.9 %

This table shows that there is a small, yet consistent, decrease in the load
bearing capacity of the beam when subjecting it to a combined imperfection as
compared to a pure transverse imperfection.

A couple of beams with other sets of loading and boundary conditions have been
studied. The results showed the same tendencies as those presented above, and
they are therefore not discussed further.

7.3 Combined flexural and lateral torsional buck-
ling

In section 6.3(page 99), interaction curves were found by means of linearized
buckling analysis for the test beams 1, 2 and 3 of section 6.1(page 90).
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In this section, some of the configurations that were analyzed in 6.3 are rean-
alyzed, but this time by a complete nonlinear analysis. Comparison of these
results with the results from the linearized buckling analyses, will give an indi-
cation of the applicability of the linearized buckling results.

This study is limited to six of the beam configurations studied in section 6.3.
The geometric imperfection imposed in each case is a scaled version of the
shape of the first buckling mode, found from a linearized buckling analysis of
the beam subjected to the bending inducing loading only. Both the transverse
and the torsional part of the imperfection is included, and maximum amplitude
of the imperfection is set to L/450. The material properties are those presented
in section 6.1.2 (page 90, and the 5-percentile stiffness moduli are used. No
material factors or other correction factors accounting for moisture content or
load durability are applied.

The loading is divided into two categories, one designated by M or M -type
loading which is the type of loading that causes bending ( e.g. transverse loading
and applied moments). The other type is designated by N or N -type loading
which is loading that causes axial forces only (in the linear case).

The resulting interaction curves are presented twice, with different scaling:

• Scaling 1: The vertical and horizontal axes are scaled by the maximum
designM -type loading acting alone and the maximum designN -type load-
ing acting alone, respectively, as found from nonlinear analyses.

• Scaling 2: The vertical and horizontal axes are scaled by the buckling
load forM -type loading acting alone, and buckling load forN -type loading
acting alone, respectively, as found from linearized buckling analyses.

The reason for this, will become apparent in the discussion of the results.

For reasons of comparison, the interaction curves found by the linearized buck-
ling analyses are also included.

Each beam is modelled by 20 elements.

7.3.1 Analysis procedure

The analyses were carried out using the nonlinear analysis facilities of Cfem.

In this program, a common virtual time variable λ is used for defining the
load history. The two types of loading, M and N are each assigned a function
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dependent on λ so that for a given λ, the load combination is:

qcomb = f1(λ) ·N + f2(λ) ·M (7.3)

By defining f1(λ) and f2(λ) such that only one of them varies at a given “time”
λ, the load bearing capacity for one of the loads, at a given level of the other
load, can be found. Thus, f1(λ) and f2(λ) were defined as:

1 2
λ

f1(λ)

f2(λ)

f0

1 2
λ

For a particular axial load level f0, the utilization factor s exceeds 1 for a virtual
time λu. The corresponding M -type load level is then found as:

Mu = f2(λu − 1.0) ·M (7.4)

It may be argued that equation (7.3) isincorrect, since superposition is invalid
in nonlinear analysis. However, analyses using the reverse definition for qcomb,
namely qcomb = f2(λ) ·N + f1(λ) ·M resulted in the same interaction curves as
those using equation (7.3).

Through a series of analyses, where, for each series, the load types and boundary
conditions are held constant, while f0 is varied, interaction curves between N -
and M -type loading are found.



130 CHAPTER 7. NONLINEAR ANALYSIS RESULTS

7.3.2 Interaction curves
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Figure 7.4: Simply supported beam
with constant bending moment.
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Figure 7.5: Simply supported beam
with uniformly distributed loading
at the upper edge.
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Figure 7.6: Simply supported beam
with point load at mid-span, at the
lower edge.
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Figure 7.7: Beam built in at both
ends and subjected to uniformly dis-
tributed loading at the upper edge.
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Beam 3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

M
/M

m
ax

N/Nmax

Nonlinear analysis. Scaling 1
Nonlinear analysis. Scaling 2
Linearized buckling analysis

Figure 7.8: Beam built in at both
ends and subjected to uniformly dis-
tributed loading at the upper edge.
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Figure 7.9: Simply supported beam
subjected to a point load at mid-
span, at the upper edge.

In figure 7.4 through 7.9 all interaction curves using scaling 1 lie fairly close
to their linearized buckling counterpart, indicating that the linearized buckling
analyses can be used to obtain a good estimate of the interaction curves. Ob-
serve, however, that for the cases, save one, the interaction curves obtained by
nonlinear analysis lie below those found by linearized buckling analysis. Thus,
care should be taken before using the interaction curves obtained from the lin-
earized buckling analysis, as they tend to be slightly non-conservative. This can
be accounted for in the suggested interaction formula, (6.8) from section 6.3, by
changing the factor 3/2 in the M -type term to a smaller value.

The curves obtained by scaling 2 are scaled with respect to the buckling and
lateral torsional buckling load of the linearized buckling analysis. An interaction
curve obtained by nonlinear analysis that is positioned below the corresponding
interaction curve from a linearized buckling analysis, indicates that the non-
linear analysis predicts less M -type loading than the corresponding linearized
buckling analysis. This is consistent with the expectation that a beam with an
imposed geometric imperfection can take less loading than that predicted by the
differential equation for the same, but mathematically straigth beam. Indeed,
for zeroM -type loading, all the beams show that the nonlinear analysis predicts
a critical load that is lower than the linearized buckling load. However, figure
7.8 shows that for this configuration the critical bending moment predicted by
a nonlinear analysis actually exceeds the corresponding moment predicted by
the linearized buckling analysis, by as much as 20%. This phenomenon can be
explained by studying the load-displacement curves for the different configura-
tions.
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Consider the simply supported version of beam 1, subjected to a uniformly dis-
tributed loading q at the upper edge. The interaction curve for this beam is
given in figure 7.5. In figure 7.10, the loading q is plotted as a function of the
vertical displacement at mid-span. The square boxes indicate the ultimate load
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Figure 7.10: Load-displacement diagram for a simply supported beam 1 sub-
jected to uniformly distributed loading q at the upper edge.

for the beam defined by the failure criterion of equation (7.2). The load level at
the branching point on the load-displacement curve from the bifurcation analy-
sis, is approximately the same as a linearized buckling analysis would yield. The
bifurcation curve shows a very low stiffness after the bifurcation point is reached
(the curve is practically horizontal beyond this point). The curve obtained by
nonlinear analysis with geometrical imperfection can be viewed as an “imperfect
version” of the load-displacement curve from the bifurcation analysis, and the
same behaviour is reflected in this curve (although the bifurction point is never
actually reached). Thus, since the ultimate load is reached at a fairly moderate
displacement, the “nonlinear ultimate load” is in this case lower than the one
predicted by the linearized buckling analysis.

Figure 7.11 shows the same load displacement diagram for beam 3 with built in
ends and subjected to a uniformly distributed loading at the upper edge.

Again, the bifurcation point is a good representation of the result obtained by a
linearized buckling analysis. In this case both curves show that the beam retains
stiffness beyond the bifurcation point, and the ultimate load is significally higher
than the bifurcation load and thus the linearized buckling load.
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Figure 7.11: Load-displacement diagram for beam 3, with built in ends, sub-
jected to uniformly distributed loading at the upper edge.

7.4 Double tapered beam

1.391 m0.867 m

15.0 m

q

x

Figure 7.12: Simply supported beam subjected to uniformly distributed load-
ing at the upper edge.

In order to assess the validity of the simplified handling of lateral torsional
buckling of double tapered beams arrived at in section 6.5.1, an analysis have
been carried out for the system shown in figure 7.12. First, the system is
analyzed according to the rules of NS3470 [2] with the use of the expressions
found in section 6.5.1 for the lateral torsional buckling factor. The second
approach is to make use of the nonlinear facility of Cfem.

The beam is made of glued laminated timber with properties as described in
section 6.1.2. No material factor or other factors accounting for environment
and load duration are used. Consistent with the discussion in section 2.3(page
11), the 5-percentile values of the stiffness parameters are used in the nonlinear
analysis.
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7.4.1 Simplified analysis

Equation (6.18) on page 108 is used to find the equivalent beam depth of the
double tapered beam:

heqv = 1.391 · 0.19 · 0.867

15

−0.2
+ 0.867 · 1− 0.19 · 0.867

15

−0.2
= 1.043m

(7.5)
According to equation (6.13) (page 106), the critical flexural buckling load found
from a linearized buckling analysis for this beam is approximately

qcr = 14.1kN/m (7.6)

Now that qcr has been found, the equivalent beam is abandoned. In order
to find the slenderness ratio for lateral torsional buckling, the critical bending
stress σcr, which is the maximum bending stress in the beam when subjected to
the critical load, needs to be found. The location of the cross section at which
σcr occurs, is in a tapered beam found by seeking the maximum bending stress.
Aune [46] finds that the maximum bending stress occurs at

x =
Lhend
2hapex

= 4.67m (7.7)

The corresponding beam depth is

hcr = hend +
hapex − hend

L/2
x = 1.193m (7.8)

The bending moment at the distance x from the left end is Mcr =
1
2qcrLx −

1
2
qcrx

2 = 340.1kNm, and thus, the critical bending stress is

σcr =
Mcr
1
6
bh2cr

= 8.7MPa (7.9)

According to section 12.1.7 in NS3470, the slenderness ratio and the lateral
torsional buckling factor can be found from

λm =
fmk
σcr

= 2.11 kvipp =
1

λ2m
= 0.223 (7.10)

For the code checking expressions, reference is made to section 12.1.12 in NS3470.
Note that in the code checking, the computed bending stress must be multiplied
by the amplification factor 1/kvipp. The factor kfa is found to be kfa = 0.871
for α = 4◦.
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The code checks should be applied at the critical section and also at the apex.
For the unknown load q, the bending moment at the critical section is Mγ =
24.1q, whereas it is Mγ,apex = 28.1q at the apex. Thus, the load capacity of the
double tapered beam is the lowest value of q obtained from

Mγ = 24.1q = min
kvipp·fmd· 16 bh2c
1+3.7 tan2 α

kvipp·kfa·fmd· 16 bh2c
1−4.4 tan2 α

(7.11)

and

Mγ,apex = 28.1q = min
kvipp·fmd· 16 bh2apex

1+1.4 tanα +5.4 tan2 α
ft90d· 16 bh2apex
0.2 tanα

(7.12)

This simplified analysis gives a load bearing capacity of the double tapered beam
of q = 12.6kN/m (from (7.11)).

7.4.2 Nonlinear analysis

A scaled version of the first buckling shape of the double tapered beam is taken
to be its geometrical imperfection. The buckling shape is found from a linearized
buckling analysis, and is scaled such that the maximum deviation from the
intended shape is L/450 = 0.033m. Both translation and rotation is included
in the imperfection.

30 elements are used in the modelling of the beam. The formulation used
is described in section 4.5 (see page 67). A code check according to section
12.1.12 in NS3470 is performed for the ends of each element at each load step.
A linear interpolation is performed with respect to the utilization about the
strong axis and utilization about the weak axis. Figure 7.13 shows the load
as a function of the vertical displacement at mid-span for both nonlinear and
bifurcation analysis. In both cases the ultimate load is marked by a box. The
ultimate load predicted by nonlinear analysis was found to be 14.7 kN/m, which
is about 17% higher than that predicted by the simplified analysis, and about
4% higher than qcr. The explanation for the latter finding is found in the
behavious described above in section 7.3.2 (page 130). The simplified method
should always yield a load capacity less than or equal to the critical load found
from a linearized buckling analysis. On this background, the load found from
the simplified analysis in this case seems to be a reasonable approximation.

Studying the load-displacement curve in figure 7.13, it is seen that the ultimate
load is reached for a relatively large vertical displacement, about 0.39 m. The
horizontal displacement at the apex was actually about 1.2 m. This seems to
indicate that for this particular beam a displacement based failure criteron is
appropriate.
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Figure 7.13: Load as a function of vertical displacement for a simply supported
beam subjected to uniformly distributed loading at the upper edge.

7.5 A case study

In this section, a roof and wall “shelter” structure is designed, first by use of
a simplified design based on the existing Norwegian design code NS3470, and
then by a design based on nonlinear analysis in combination with the rules of
NS3470.

7.5.1 Problem identification

An extension to an existing factory building, intended for storage purposes, is
to be built with glulam in the supporting structure. The indoor height of the
new storage room should be at least 10 meters, and the length of the structure
is set to 32 meters. A large gate is positioned in one of the gables may stay
open in all kinds of weather. The other gable is closed. The existing building is
considered strong enough as support for the extension. The structural system
of the storage extension is shown in figure 7.14. The cross-sectional properties
of the different members of the structure are as follows:

• Rafters: Rectangular with b× h = 0.17 m× 1.12 m
• Column: Rectangular with b× h = 0.17 m× 0.84 m
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Figure 7.14: Sketch of a lean-to shelter structure in three different perpendic-
ular planes.
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• Bracing: Quadratic with sides b = h = 0.16 m
• Wind crosses: Circular. Diameter d = 32 mm.

The uniformly distributed design load on the roof is q1 = 6.3 kN/m
2, whereas

the net design wind pressure on the external wall is q2 = 1.3 kN/m
2
. Both

loads are assumed to act on the edges of their respective members. Hence, q1 is
acting on the top of the roof beams, while q2 is acting as pressure on the outer
wall surface1. For the roof, only loading positioned in the free span between the
walls is included in the calculations (that is, no load on the overhang).

All bracing is applied at the center lines of the main structure components.

The glulam members of the structure are considered to be made from lamellas
satisfying the T30 strength class in NS3470[2]. Multiplied with the lamination
factor, the characteristic material properties are as given in the table below. In
addition, the design properties adjusted for moisture and load duration effects,
are given in the same table. The material factor is set to γm = 1.21, whereas
the factor accounting for load duration and moisture effect is kr = 0.9.

Property Characteristic Design
Bending strength fmk 39.0 MPa fmd 29.0 MPa
Compression strength fc0k 35.1 MPa fc0d 26.1 MPa
Tension strength ft0k 23.4 MPa ft0d 17.4 MPa
Modulus of elasticity
Mean value E0 14145.0 MPa
5-percentile value E0k 10062.5 MPa E0d 7484.5 MPa

Shear modulus
Mean value G 885.5 MPa
5-percentile value Gk 632.5 MPa Gd 470.5 MPa

The purpose of this study is the structural behaviour of the glulam members.
No attention is paid to problems related to connections. Furthermore, only
loading in two planes are considered, namely loading perpendicular to the roof
plane and perpendicular to the longitudinal wall plane (no loading on the gable
planes), and only ultimate limit state is considered.

1Since the wind pressure consists of both pressure on the outer side of the wall and suction
on the inner side, this may be a somewhat questionable assumption. However, it is conservative
as well as convenient.
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7.5.2 Simplified design according to NS3470

The loading is lumped, so that each rafter and column experience the loading
from half their adjacent spans. Thus, the loading on the most critical rafter is:

qrafter = 4.0 m · 6.3 kN/m2 = 25.2 kN/m (7.13)

whereas the transverse (wind) design load and the axial design load on the most
critical column becomes

qcolumn = 5.2 kN/m and Ncolumn = 189.0 kN (7.14)

respectively. Axial force in the roof beams is disregarded in these calculations.

Rafter

Strict interpretation of NS3470, recognizes lateral torsional bracing only when
applied on the compression side of the rafters. For the present structure the
bracing is located at the centroid of the rafter. Nevertheless, in this design the
bracing is considered to have full effect.

Under the influence of bending, each rafter is assumed to buckle in two half
waves due to the bracing. NS3470 provides a table of buckling lengths (similar
to table 6.1 on page 104), but required configuration, which is

is not included. However, a combination of two cases in the table is used to find
an estimate of the buckling length. Both are subcases of the first entry in table
6.1. µ = 0.0 is unconservative, yielding a buckling length on the low side, while
on the other hand, µ = 1.0 yields too large a buckling length. The mean value,
that is µ = 0.5 is used in these calculations, resulting in a buckling length of 0.8
times half the rafter length. This is in good agreement with the result presented
in table 6.2 (page 105). Also, due consideration must be taken to the application
of the loading. Since the load is applied at the upper side of the beam, NS3470
suggests that the buckling length is increased by adding two times the beam
depth. Given that the span of the beam is L = 15.0 m/ cos 7.5◦ = 15.1 m, the
buckling length is then found to be:

Leffective = 0.8 ·
15.1m

2
+ 2 · 1.12m = 8.28m (7.15)



140 CHAPTER 7. NONLINEAR ANALYSIS RESULTS

According to section 12.1.7 in NS3470, the slenderness ratio for lateral torsional
buckling can be found from the formula

λm =
0.065

b
Leffective · h =

0.065

0.17 m

√
8.28 m · 1.12 m = 1.16 (7.16)

resulting in a design factor accounting for lateral torsional buckling:

kvipp = 1.56− 0.75 · 1.16 = 0.69 (7.17)

The maximum bending stress in the rafter is

σmγ =
1
8 · qrafter · L20

1
6 · b · h2

=
1
8 · 25.2 kN/m · (15.0 m)2
1
6 · 0.17 m · (1.12 m)2

= 19.9 MPa (7.18)

This gives a utilization of the rafter of

σmγ
kvipp · fmd =

19.9 MPa

0.69 · 29.0 MPa = 0.99 (7.19)

Column

Any one of the columns not connected to the wind bracing system may be
considered a simply supported beam with an axial loading of Ncolumn and a
uniformly distributed loading of qcolumn acting at the upper side of the beam.
Thus, the buckling length for flexural buckling is Lk = L = 10.0 m, whereas
the buckling length for lateral torsional buckling is Leffective = 0.9 · 10.0 m+2 ·
0.88 m = 11.76 m.

The slenderness ratio and the design factor for lateral torsional buckling for this
member is:

λm =
0.065

b
Leffective · h =

0.065

0.17m

√
11.76 m · 0.84 m = 1.20 (7.20)

and
keffective = 1.56− 0.75 · λm = 1.56− 0.75 · 1.20 = 0.66 (7.21)

respectively.

Using the formula provided in appendix B in NS3470, the design factor due to
flexural buckling is found to be kλ = 0.065 (slenderness ratio λ = 203.8).

The design bending stress and axial compression stress are:

σc0γ =
Ncolumn
A

= 1.32 MPa and σmγ =
Mmax

W
= 3.25 MPa (7.22)
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In addition, Appendix B in NS3470 defines a factor based on the Euler load
of the column being considered, keu = 0.068. The utilization of the column is,
according to section 12.1.11 in NS3470, found to be

σc0γ
kλ · fc0d +

σmγ
kmboxeffective · fmd ·

1

1− kλ
keu

· σc0γ
fc0d

= 0.96 (7.23)

7.5.3 Nonlinear analysis

For simplicity, only half the structure is modeled for use in the nonlinear analy-
ses.

In order to properly account for buckling, some kind of geometric imperfection
need to be imposed on the structure. The rafters are assigned imperfections that
roughly reflect a lateral torsional buckling mode with two half-waves, whereas
the imperfection of the columns reflected lateral torsional buckling in one half
wave. The shape of the geometric imperfections were found using the linearized
buckling facility of Cfem. Figure 7.15 shows a greatly exaggerated version of
the geometric imperfection. This shape is scaled such that the amplitude of
the deviation from the intended member plane is 1

450 of the half-wave length.
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Figure 7.15: Shape of imperfection used in nonlinear analyses.

It should be emphasized that while this kind of imperfection is believed to be
well suited for finding the load bearing capacity of the rafters and columns, it
does not provide much information/imperfection for the bracing system.

In the model, the rafters are assumed to be simply supported at the end con-
nected to the existing structure and at the top0 of the columns, which also
implies that the rafters are restrained from rotating about their axes at these
points. The connection between rafters and columns is modelled by a linear
coupling between the lower edge of the rafter and the top of the column. All
translations are synchronized, as are the rotational dofs about the column axis
(the vertical axis). The free ends of the bracing system indicating the symme-
try plane, were simply supported but were allowed to move in the longitudinal
direction of the structure.

Four nonlinear analyses were performed, each with a different version of the
material properties. The simple failure criterion from section 7.1 (page 123)
was used for to determine the ultimate design load of the structure. q1 and
q2 were lumped and used as reference loading, and they were imposed on the
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structure simultaneously and proportionally with a factor λ. λ = 1.0 at the
time of failure would indicate that the combination of q1 and q2 represents the
ultimate design load from the analysis.

Stiffness parameters Strength parameters λ
Mean characteristic values Design values 1.30

5-percentile characteristic values Design values 1.18
5-percentile design values Design values 0.99
5-percentile design values Characterstic values 1.05

In the table above, the results from the analyses are presented in terms of the
value of λ at the time of failure.

Figure 7.16: Utilization plot for an analysis at failure.

Figure 7.16 shows a utilization plot of the structure at the time of failure for
the last of the analyses presented in the table. The plots in figure 7.15 and 7.16
were obtained using the visualization program GLview [69].

All, save one, of the nonlinear analysis predict an ultimate load that was 5-
30% higher than the load imposed on the structure. In one case the ultimate
load is predicted to be 1% lower than the applied loading (suggests failure). In
contrast, the simplified design predicted an ultimate load which is 1% higher
than the combination of q1 and q2.

Since the results from the last three nonlinear analyses all lie close to the result
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obtained by the simplified analysis, nothing can be concluded as to what set of
material properties should be used in the nonliear analyses. However, since there
is no reason to believe that the simplified analysis (in this case) should yield non-
conservative results, it seems unecessary harsh having to use material properties
that result in a lower ultimate load predicted by the nonlinear analysis, which,
after all, is a more accurate method of analysis. This emphasizes the importance
of establishing good, realistic values of the stiffness parameters for practical
design by use of nonlinear computations.



Chapter 8

Simplified design rules

Both timber design codes considered in this study, the Norwegian NS3470 [2]
and the European EC5 [3], rely heavily on simplified methods for the handling of
structural stability, allthough EC5 also offers a procedure for numerical analysis
of plane systems.

In this section some aspects of the simplified methods described in the two
timber codes mentioned, will be commented upon, with basis in the results
found in chapter 6 and 7. In spite of a limited number of results, suggested
changes are put forward.

8.1 Combined flexural and lateral torsional buck-
ling

According to Eurocode 5, members subjected to loading causing both bending
and axial compression, should satisfy the following conditions:

σc0d
fc0d

2

+
σmzd
fmzd

+ km
σmyd
fmyd

≤ 1

σc0d
fc0d

2

+ km
σmzd
fmzd

+
σmyd
fmyd

≤ 1

σc0d
kczfc0d

+
σmzd
fmzd

+ km
σmyd
fmyd

≤ 1

σc0d
kcyfc0d

+ km
σmzd
fmzd

+
σmyd
fmyd

≤ 1

(8.1)
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where
σc0d, fc0d - design compression stress and strength, respectively
σmyd,σmzd - design bending stress about local y- and z-axis, respectively
fmyd, fmzd - design bending strength about local y- and z-axis, respec-

tively
kcy, kcz - buckling factor for flexural buckling about local y- and z-

axis, respectively
km - cross-section factor; 0.7 for rectangular cross-sections

In addition, the bending stress about the strong beam axis should satisfy:

σmd ≤ kcritfmd (8.2)

where kcrit is the lateral torsional buckling factor.

In NS3470, members subjected to both bending and axial compression is re-
quired to satisfy an interaction formula in which both flexural and lateral tor-
sional buckling is accounted for.

In section 6.3 (page 99), a simplified view of lateral torsional buckling was
outlined, the essence of which is that lateral torsional buckling may be viewed
as flexural buckling of the compression zone of the beam. Crude as this may be,
it clearly indicates that any axial compression (or indeed tension) must affect
the lateral torsional buckling load. The requirements of EC5 (equations (8.1)
and (8.2)) do not seem to recognize this connection, whereas NS3470 does. The
study presented in section 6.3 indicated that axial compression had indeed a
considerable effect on the lateral torsional buckling load.
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Figure 8.1: Interaction curves for simply supported beam subjected to constant
bending and axial compression.

Figure 8.1 shows the interaction curves implied by the two design codes for
a simply supported beam subjected to constant bending moment M about the
strong axis and axial compressionN . The geometry of the beam has been chosen
to be those of beam 2 in section 6.1, and the material properties are described
in section 6.1.2. The interaction curve obtained by numerical computations
presented in section 6.3 is also included.

The curves in figure 8.1 clearly indicates that the interaction assumptions, or
rather lack of such, in EC5 are non-conservative for axial compression up to
approximately 2/3 of the ideal buckling load of the beam(-column). NS3470,
on the other hand, seems to be unduly conservative.

A fairly obvious suggestion for EC5, which would ensure stability to be treated
conservatively, is to introduce a linear interaction between flexural buckling and
lateral torsional buckling. This can be achieved by replacing the two last lines
in equation (8.1) by

σc0d
kczfc0d

+
σmzd
fmzd

+ km
σmyd

kcrityfmyd
≤ 1

σc0d
kcyfc0d

+ km
σmzd
fmzd

+
σmyd

kcrityfmyd
≤ 1

(8.3)

where kcrity is the factors accounting for lateral torsional buckling, assuming y
to be the strong axis.
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The Norwegian code (NS3470) should also be modified to account for linear
interaction. This is not only an improvement, but also a simplification.

A less conservative approach is to use a nonlinear ineraction form, for instance
in the form

M

Mbuckl

n

+
N

Nbuckl
≤ 1.0 (8.4)

where M and N are the bending moment and axial load acting on a particular
cross-section, respectively. Mbuckl is the lateral torsional buckling moment for
zero N , and Nbuckl is the flexural buckling load for zero M . The value of n
should be ∼ 1.0−1.5, but more computations are required before this parameter
can be fixed.

8.2 Tapered beams

With regards to tapered beams, NS3470 [2] states that due care should be
taken with respect to lateral torsional buckling1. However, the code offers no
guidelines as to how this should be done.

In section 6.5, lateral torsional buckling of single and double tapered beams was
adressed. The results from this study were used to derive equivalent uniform
depths for such beams, enabling the designer to find the lateral torsional buck-
ling factor for a tapered beam by applying the rules for a beam of equivalent,
constant depth. However, this equivalent beam depth is dependent on both
boundary and loading conditions. Only a few of the simplest sets of boundary
and loading conditions were considered, and they do not form a base for general
guidelines to the problem of torsional buckling of tapered beams.

However, for simply supported tapered beams with uniformly distributed load-
ing, either at the centroid or at the upper edge, formulas (6.16), (6.17), (6.19)
and (6.20) provide useful information. More work is obviously needed, and per-
haps the best way to go is to derive similar formulas for a certain number of
boundary and loading conditions for single beams. the formulas already de-
rived seem to indicate that it may not be possible to find one or a few formulas
covering a wide range of beam configurations.

1Author’s translation
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8.3 Bracing

Both NS3470 [2] and EC5 [3] seem to acknowledge bracing to prevent lateral
torsional buckling only if it is applied to the compression flanges. Paragraf
5.4.5.2(4) in Eurocode 5 states that The design stabilising force Fd for the
compression flange of a rectangular beam should be.., whereas paragraf 12.4.5.1
in NS3470 states that ..Discrete bracing should restrict lateral displacement of
cross section or part of cross section that is under compression..2

The analyses presented in section 6.6 show that, for all combinations of bound-
ary and loading conditions considered, bracing located at other parts of the
cross sections is also be effective, provided the bracing is stiff enough. Specifi-
cally, all cases studied showed that bracing located at the centroid can be just
as effective as bracing positioned at the compression flange, as long as it has
adequate stiffness.

The results from section 6.6 do not provide sufficient information for deriving
general design rules, but they clearly indicate that current codes take a con-
servative view on this problem. By studying some more beam configurations
it should be possible to formulate improved guidelines for bracing individual
beams. However, the analyses also demonstrate that this problem can be very
adequately handled by numerical, finite element methods.

2Author’s translation
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Chapter 9

Conclusions and further
work

The main objective of this work is to study instability of timber structures
through numerical, finite element based methods. Both linearized buckling
analyses and nonlinear static analyses need to be performed, and a formulation
must be chosen. When subdividing each member of the structure into elements,
it becomes apparant, that for practical purposes, each element only has to be
able to represent small deformation, allthough the rigid body displacements may
be large. The co-rotated formulation meets these demands quite well, and is
therefore used in this work.

The first preliminary analyses carried out, revealed that while simple, linear
beam elements can be used, high accuracy may require the use of many such
elements. In an attempt to reduce the computational effort it was therefore de-
cided to develop a consistent 3D beam element with internal geometric stiffness,
based on 2nd order theory, for implementation in a co-rotated formulation.

9.1 Conclusions

In the first part of the work, the co-rotated formulation developed by Haugen
[4, 17] and Rankin et al. [14, 15] is presented. One of the advantages of this type
of finite element formulation, is the option to implement elements based on small
displacements. These are usually well tested linear elements, but they can also
be nonlinear elements based on 2nd order theory. Thus, the possibly large rigid

151
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body displacements and rotations are handled by the co-rotated framework,
whereas the relatively small deformation is accounted for by the elements put
into the co-rotated frame. The beam elements usually implemented in co-rotated
formulation are linear elements based on Euler-Bernoulli and Mindlin-Reissner
theory.

A consistent 3D beam element, based on 2nd order theory, is developed for
implementation in the co-rotated formulation. This element includes geometric
terms accounting for the reorientation of the axial stresses during deformation.
A version of the element, in which only linear elastic material is considered,
is described and implemented in the co-rotated formulation. Tests (chapter 5)
show that this element is considerably more accurate in its prediction of both
flexural and lateral torsional buckling in linearized buckling analysis than the
Euler-Bernoulli or Mindlin-Reissner based co-rotated elements. It also produces
very accurate results for course element meshes when used in nonlinear analysis.
The computations reported in chapter 5 indicate (at least for linearized buckling
analyses) that as much as 3 to 4 times as many standard elements are required
in order to obtain the same accuracy as the new element.

In some cases the implemented element converges towards the correct solution
from the soft side, when the element mesh is refined. This is true both for
linearized buckling analysis and nonlinear analysis. As a sign of energy loss, this
is probably the effect of an underintegration performed in the implementation.

An attempt, in which an extra, hierarcical, torsional degree of freedom is in-
cluded in the element, in order to enable single elements to account for lateral
torsional buckling, is reported. However, this did not lead to any significant
improvement of the element behaviour.

The second part of the work is concerned with computer simulations of struc-
tural timber members with respect to instability. Results from a vast number
of individual analyses (of the order of 10 thousand), each representing a “nu-
merical lab test”, are presented. An attempt has been made to obtain insight
and improve the understanding of most aspects of the problem, rather than
concentrate on just a few. Thus, the work presented is in some cases not com-
plete enough to form the basis for definite conclusions. For most of the analyses
presented, the new beam element, implemented in the co-rotated formulation,
has been used. For individual beam problems, quite fine element meshes have
been used, so fine in fact that simpler elements would probably have given sim-
ilar results. With the new element, the results would probably not have been
much different for a coarser mesh, but since the computational effort for these
problems are small in any case, a fine element has been used.

Simply supported beams subjected to eccentrically applied loading is studied by
use of linearized buckling analysis, both for uniformly distributed loading and
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for point loads applied at mid-span. By use of curve-fitting, formulas, in the
form of second order polynomials are found for the buckling loads. For uniform
loading, the approximate formula give very accurate predictions, at least for an
eccentricity to depth ratio of ±1. For point loads, the corresponding domain is
±0.7.

Since EC5 [3] does not seem to recognize the effect of axial loading on the lat-
eral torsional buckling load, analyses are performed in order to investigate this
interaction. Both simply supported and built-in beams are studied, and both
uniformly distributed loading and point loading applied at mid-span are consid-
ered. Transverse loading is positioned in turn at the upper edge, at the centroid
and at the lower edge of the beam. Considerable interaction is found, and a
conservative (at least for the cases studied) interaction formula is suggested.
The interaction curves resulting from the analyses are for some cases verified by
nonlinear analyses, which in most cases show good agreement with the results
from the linearized buckling analyses.

A table relating lateral torsional buckling lengths for simple beams in NS3470
[2] is controlled using linearized buckling analysis, and a new and more accurate
table is suggested. Two additional cases are also studied and reported.

An approach to approximate calculation of the lateral torsional buckling loads
for tapered beams is presented. Only simly supported beams are tested, and
only uniformly distributed loading is studied. However, both loading at the
upper edge and the centroid is considered, for single and double tapered beams.
Double tapered beams braced at mid-spand are also studied. The approach is
assessed by a single nonlinear analysis.

Beams braced at mid-span are studied using linearized buckling analysis. For
each of the cases studied, a point is found at which the bracing has no effect,
as well as the limit point at which only rigid bracing is able to force the beam
to buckle in two half-waves. For bracing posistioned above the limit point, the
bracing stiffness neccessary to force the beam to buckle in two half-waves is
computed, and approximate formulas for this stiffness is established. Only sim-
ply supported beams are considered, and the load cases are uniform bending,
uniformly distributed loading and point load at mid-span. The loading is ap-
plied at the centroid. The results show that for all cases considered, a bracing
positioned well beneath the centroid can still force the beam to buckle in two
half-waves, and they clearly indicate that the bracing may still be effective even
if it is not able to force the beam into a higher buckling mode.

For a few simple cases, the importance of including the torsional part of the
geometrical imperfection, for beams prone to lateral torsional buckling, is stud-
ied. This is achieved by nonlinear analysis of beams with imperfections. It
is found that the effect of using an imperfection consisting of both transverse
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displacement and torsional rotation is small, and differs by no more than 2%
compared to using only transverse imperfection.

A lean-to shelter structure is studied by both the simplified methods in NS3470
[2] and nonlinear analysis. The nonlinear analysis, which is performed using
four different versions of the material properties, indicates the capabilities of
this computational tool, and it is an example of the type of analysis future
timber structures should be subjected to.

9.2 Suggestions for further work

The matrix expressions for the internal force vector and the tangent stiffness
matrix that were derived for the new beam element (see sections 4.3 and 4.4)
are rather complex, involving terms that have need to be integrated. Allthough
somewhat simpler, this is also the case for the element presented for imple-
mentation. In the implementation, the matrix expressions are evaluated using
matrix multiplication and numerical integration by Gauss’ quadrature (see for
instance [53]). However, since the computation time of the expressions is of im-
portance for the overall performance of the element, some effort should be made
to simplify the expressions in order to make the element more time-efficient. For
large systems, it will always be more time-efficient to substitute a fine element
mesh of simple elements with a coarser mesh of more complex and accurate
elements, provided that the two meshes yield about the same degree of accu-
racy. A reduction of the computational cost of the new element means that the
size of the system, at which the coarser mesh of complex elements becomes the
more time-efficient, is reduced. It should, however, be kept in mind that for
some problems a fine element mesh is needed for other purposes, and for such
problems the new element is not needed.

The new beam element is only tested in the co-rotated formulation, but it is
also believed to be well suited for use in ordinary linearized buckling analysis
and 2nd order analysis. This should, however, be verified.

In appendix D and section 7.5 nonlinear analyses are presented, obtained by
different material properties. NS3470 [2] does not specify the material properties
for use in nonlinear analysis. EC5 [3] states that the 5-percentile values of the
stiffness parameters should be used for 2nd order analysis of plane structures.
The characteristic values should be reduced by factors accounting for moisture
content and load duration effects and by a material factor. In addition, the
design stresses should be used in the failure criterion. The material properties
suggested by EC5 were amongst those tested, and the results showed that the
nonlinear analyses yielded design loads that were consistently equal to or lower
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than those predicted by simplified methods. Nonlinear analysis is undoubtedly
a more accurate method of analysis than the simplified methods provided in the
design codes, and having to use material properties that lead to results more
conservative than those obtained by simplified means, seems to be a rather
harsh punsihment for undertaking the extra work. It is therefore important to
undertake an investigation of appropriate material properties for use in nonlinear
analysis

A linear interaction formula for flexural and lateral torsional buckling loads may
provide a sufficient estimate for use in design codes, and the results presented in
this work suggest that this is conservative. A more accurate interaction curve
will require some more studies. These apply mainly to beams with different sets
of boundary conditions at the two ends, but also the effect of the application
point of the transverse loading needs to be studied further.

Tables of lateral torsional buckling lengths represent useful information for the
designer using simplified methods for beams. The table in NS3470 (revised
through this work), is probably sufficient in most cases, but it is based on
transverse loading being applied at the centroid. Even though NS3470 provides
some vague guidelines as to how eccentric loading can be accounted for, these
are crude and in some cases probably non-conservative. Some effort should
therefore be put into obtaining better guidelines, for instance as to how the
buckling lengths should be adjusted in order to account for loading at the upper
and lower edge of the beams.

All the cases studied for braced beams involve simply supported beams. The
natural extension of this work is to also study beams with other boundary
conditions.

Finally, geometrical imperfections represent a problem that needs further inves-
tigation. In order to make nonlinear analyses a viable proporsition for practical
design, it is neccessary to provide the engineer with guidelines for types and sizes
of geometrical imperfections, preferably based on automatic and semi-automatic
generation of the imperfections (in the shape of buckling modes).
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Appendix A

The Rodrigues rotation
matrix - a geometric
approach

When dealing with finite rotations, one cannot simply add two rotation vectors,
since the order in which the roations are added is of significance. A remedy for
this problem, namely Rodrigues’ representation of the rotation tensor, is pre-
sented below. A similiar geometric approach to the Rodrigues rotation matrix
was shown by Argyris [12].

A.1 Rotation about an axis - the Rodrigues ro-
tation matrix

Consider an arbitrary vector in space, e0 = e1 e2 e3 . e0 is to be rotated

an angle θ about an axis represented by the unit vector n = n1 n2 n3 .
Introduce a local orthogonal coordinate system with one axis that coincides with
n, and in which the rotation of e0 may be represented by its projection into the
plane orthogonal to the rotation axis. The axes of this local coordinate system
are

j1 = n× e0 = Spin (n) e0 = Ne0
j2 = n× j1 = Spin (n) j1 =N2e0

j3 = n

(A.1)
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where
N = Spin (n) (A.2)

The lengths of the axes are

|j1| = |n||e0| sin(n,e0) = |e0| sin(n,e0) = e0,n
|j2| = |n||j1| sin(n, j1) = |j1| sin(90◦) = e0,n
|j3| = |n| = 1

(A.3)

I1

I2

I3

j1

j2

n
e0

j2

j1

e0,n

∆e
b

a

θ

n

j3

θ

Figure A.1: Local rotation coordinate system shown both in 3D and as pro-
jected into the plane defined by j1 and j2.

Figure A.1 shows the local coordinate system established for the rotation oper-
ation. The vector difference between the initial vector e0 and the rotated vector
en is ∆e.

∆e = a+ b

a = j1 sin θ

b = j2(1− cos θ)
(A.4)

Hence, the rotated vector en is given by:

en = e0 +∆e

= e0 + j1 sin θ + j2(1− cos θ)
= e0 +Ne0 sin θ +N

2e0(1− cos θ)
= I+N sin θ +N2(1− cos θ) e0
= Re0

(A.5)
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Where
R = I+N sin θ +N2(1− cos θ) (A.6)

is Rodrigues’ representation of the rotation tensor.

A.2 The rotation matrix as an exponential func-
tion

The rotation matrix R may be written as the exponential of Spin (θ), where
θ = θn is the rotation pseudo-vector. This has obvious advantages concern-
ing differentiation of R. Cayley Hamilton’s theorem, which states that “every
square matrix satisfies its own characteristic polynomial”[50], is used as basis
for this derivation.

A.2.1 Some useful relationships

If A is given by:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (A.7)

then

trA = a11 + a22 + a33

trA2 = a211 + a
2
22 + a

2
33 + 2 (a12a21 + a13a31 + a23a32)

(trA)2 = a211 + a
2
22 + a

2
33 + 2 (a11a22 + a11a33 + a22a33)

detA = a11(a22a33 − a32a23)− a21(a12a33 − a32a13)
+a31(a12a23 − a22a13)

(A.8)

A.2.2 Characteristic equation

The characteristic equation of A is defined by:

det(A− Iλ) = 0 (A.9)
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This may be expressed as

a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

= 0 (A.10)

or, in view of (A.8),

det(A− Iλ) = (a11 − λ [(a22 − λ)(a33 − λ)− a32a23]
−a21(a12(a33 − λ)− a32a13) + a31(a12a23
−(a22 − λ)a13)

= a11(a22a33 − a32a23)− a21(a12a33 − a32a12)
+a31(a12a23 − a22a13) + (−a11a22 − a11a33
−a22a33 + a32a23 + a12a21 + a31a13)λ
+ (a11 + a22 + a33)λ2 − λ3

= detA+ 1
2 trA

2 − 1
2 (trA)

2 λ+ trAλ2 − λ3

(A.11)

Thus, the characteristic equation for a 3x3 matrix may generally be written as:

λ3 − trAλ2 + 1
2
(trA)2 − trA2 λ− detA = 0 (A.12)

Spin of the rotation pseudo-vector θ, S = Spin (θ), is now introduced in place
of A. In addition we recognize that Spin (θ) may be written as θN , where
N = Spin (n) and n is a unit vector representing the rotation axis.

S = Spin (θ) =

 0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

 = θ

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 = θN

(A.13)
Thus

trS = 0 + 0 + 0 = 0

(trS)2 = (0 + 0 + 0)2 = 0

detS = 0(0 + θ21)− θ3(0− θ1θ2)− θ2(θ3θ1 − 0) = 0
trS2 = 02 + 02 + 02 + 2(−θ23 − θ22 − θ21) = −2θ2

(A.14)

According to Cayley-Hamilton’s theorem, a square matrix satisfies its own char-
acteristic equation. Thus, by substituting S for λ in equation (A.12) the char-



A.2. THE ROTATION MATRIX AS AN EXPONENTIAL FUNCTION 167

acteristic equation may be written as:

S3 + 1
2
2θ2S = 0

S3 = −θ2S
(A.15)

A.2.3 Exponential function of a matrix

Since we do not know how to deal with exponential functions of matrices directly,
we use Taylor series to represent the exponential function:

expA =
∞

n=1

An

n!
= I+A+

A2

2!
+
A3

3!
+
A4

4!
+
A5

5!
+ . . . (A.16)

When substituting S = Spin (θ) for A, equation (A.14) may be used in order
to simplify the Taylor series:

expS = I+
∞

n=1

(−θ2)n−1
(2n− 1)! S+

∞

n=1

(−θ2)n−1
(2n)!

S2 (A.17)

Now, S = θN is introduced:

expS = I+
∞

n=1

(−θ2)n−1
(2n−1)! θN+

∞

n=1

(−θ)n−1
(2n)! θ2N2

= I+ θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . .

sin θ

N

+
θ2

2!
− θ4

4!
+
θ6

6!
− . . .

(1−cos θ)

N2

(A.18)

Hence
exp (Spin (θ)) = I+N sin θ +N2(1− cos θ) = R(θ) (A.19)
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Appendix B

Two-noded beam elements

Equation (3.47), in section 3.2.3, defines the variation of the rigid body rotations
of an element with respect to the degrees of freedom as:

δω̃r = G̃δṽ (B.1)

The matrix G̃ is element type dependent. Hence, it will be the same for all
displacement based beam elements with two nodes, each having 6 degrees of
freedom, and it is the objective of this appendix to derive this matrix for such
an element. This was also done by Haugen[4].

Initially, the orientation of the element is defined by the unit vector along the
initial local z-axis of the element, i03.

n1 n2
nm

~
~

~

~

~
~

~

~ ~

~

~ ~
~

~~

Figure B.1: Beam element with twelve degrees of freedom.

For the element shown in figure B.1, a particular configuration, Cn, is given by
the rotation tensors Rn

1 and R
n
2 , for node 1 and 2, respectively. The position

of the nodes is defined by the vectors x1 and x2.

The local coordinate system of the element is in1 in2 in3 , with the local
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x-axis defined by the straight line through node 1 and node 2:

in1 =
1

|x2 − x1|(x2 − x1) (B.2)

Since the orientation of the nodes in configuration Cn is defined by R
n
1 and R

n
2 ,

the unit orientation vectors n1 and n2 are:

n1 = R
n
1 i
0
3 n2 = R

n
2 i
0
3 (B.3)

Defining the orientation of the beam in such a way that the local z-axis lies in
the plane defined by in1 and nm = n1+n2, the unit vector along the local y-axis,
in2 , is found from:

in2 = −
1

|in1 × nm|
(in1 × nm) (B.4)

Finally, the unit vector along the local z-axis is determined by:

in3 = i
n
1 × in2 (B.5)

The triad defined by in1 in2 in3 also defines the transformation matrix be-
tween the global coordinate system and the local coordinate system for the
element:

Tn =

 inT1inT2
inT3

 (B.6)

Thus, the orientation vectors in the local coordinate system are:

ñ1 = Tnn1 ñ2 = Tnn2 ñm = Tnnm (B.7)

Observe that, in general, the orientation vector ñm has a length that differs
from unity, it may have a component in the local x-direction, it always has a
component in the local z-direction, but it never has a component in the local
y-direction.

The G̃-matrix is now found by studying the effect on the orientation of the
element by a small pertrubation δṽi of each degree of freedom ṽi. Since, in
principle, there is no difference between the two nodes, the variation is only
shown for the degrees of freedom associated with node 1, that is ṽ1 through ṽ6.
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Pertrubation δṽ2:

n1

n2

n1
δv2

nm

nm

θ
Equivalent:

θnmx

θnmx

nmz

~
~

~
~

~

~
~

~
~

The application of the small pertubation δṽ2 results in the following changes to
the rigid body orientation:

δω̃1,2 = − 1
L

nmx
nmz

δṽ2

δω̃2,2 = 0

δω̃3,2 = − 1
L
δṽ2

(B.8)

Pertrubation δṽ3:

n1 n2

n1

δv3 nm

nm

~

~

~~~~

The rigid body rotation of ñm as a result of δṽ3 being applied to the element is:

δω̃1,3 = 0

δω̃2,3 =
1

L
δṽ3

δω̃3,3 = 0

(B.9)
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Pertrubation δṽ4:

n1z δv4

nmz

~ ~

~

δω̃1,4 = n1z
nmz δṽ4

δω̃2,4 = 0

δω̃3,4 = 0

(B.10)

Pertrubation δṽ6:

n1x δv6

δv6

n1x δv6

nmz

~ ~
~ ~

~

~

δω̃1,6 = − ñ1xñmz
δω̃2,6 = 0

δω̃3,6 = 0

(B.11)

Small pertrubations δṽ1 and δṽ5 does not cause any change in the rigid body
orientation of the element.

Applying the same kind of procedure to the degrees of freedom at the second
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node, the following expression for G̃ can be found:

G̃
T
=



0 0 0

− 1
L

ñmx
ñmz

0 − 1
L

0
1

L
0

ñ1z
ñmz

0 0

0 0 0

− ñ1x
ñmz

0 0

0 0 0

1

L

ñmx
ñmz

0
1

L

0 − 1
L

0

ñ2z
ñmz

0 0

0 0 0

− ñ2x
ñmz

0 0



(B.12)
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Appendix C

Results from linearized
buckling analyses

C.1 Effect of eccentric loading

C.1.1 Simply supported beam with distributed loading

Calibration analyses (section 6.2.1)

Beam A Beam B Beam C
e/h qcr [N/m] q0(e) qcr [N/m] q0(e) qcr [N/m] q0(eks)

-1.00 3374.43 -559.62 67967.32 -18114.99 7581.52 -2148.91
-0.75 3226.40 -411.60 63033.17 -13180.83 6993.61 -1561.01
-0.50 3083.69 -268.89 58356.70 -8504.36 6437.69 -1005.09
-0.25 2946.45 -131.65 53958.10 -4105.76 5916.64 -484.04
0.00 2814.80 0.00 49852.33 0.00 5432.60 0.00
0.25 2688.82 125.98 46048.06 3804.26 4986.78 445.82
0.50 2568.55 246.25 42547.13 7305.19 4579.40 853.20
0.75 2453.97 360.83 39344.73 10507.60 4209.70 1222.90
1.00 2345.04 469.75 36430.15 13422.18 3876.08 1556.51
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Dependency on eccentricity (section 6.2.1)

Beam 1 Beam 2 Beam 3
e/h qcr [N/m] eqn.[N/m] qcr [N/m] eqn. [N/m] qcr [N/m] eqn. [N/m]

-1.00 44392.72 44316.04 77427.88 77388.76 21725.27 21730.95
-0.80 42454.46 42385.18 72946.70 72871.69 20429.04 20417.91
-0.60 40581.24 40522.08 68647.66 68564.13 19186.46 19168.30
-0.40 38775.56 38726.74 64542.93 64466.10 18001.36 17982.14
-0.20 37039.47 36999.15 60642.59 60577.58 16876.90 16859.41
0.00 35374.52 35339.32 56954.10 56898.58 15815.42 15800.13
0.20 33781.70 33747.25 53481.98 53429.10 14818.33 14804.28
0.40 32261.48 32222.94 50227.70 50169.13 13886.07 13871.87
0.60 30813.76 30766.38 47189.65 47118.68 13018.10 13002.89
0.80 29437.91 29377.58 44363.37 44277.76 12212.97 12197.36
1.00 28132.79 28056.53 41741.97 41646.34 11468.47 11455.27

Dependency on strength class (section 6.2.1)

The loading is positioned at the upper edge of the beam. That is: e = 0.3 m
for beam 1, 0.633m for beam 2 and 0.5 m for beam 3.

Beam 1 Beam 2 Beam 3

Strength class qcr[N/m] eqn.[N/m] qcr [N/m] eqn. [N/m] qcr[N/m] eqn. [N/m]

T18 19503.45 19477.16 30109.85 30070.08 8315.06 8305.98
T24 23459.85 23428.27 36221.02 36173.25 10002.82 9991.90
T30 27416.17 27379.30 42332.06 42276.28 11690.55 11677.79
T40 31093.80 31051.80 47996.90 47933.37 13254.45 13239.97

Dependency on E/G-ratio (section 6.2.1)

The same eccentricities are used as for the study of strength class sensitivity.

Beam 1 Beam 2 Beam 3

E[MPa] G [MPa] qcr [N/m] eqn.[N/m] qcr [N/m] eqn. [N/m] qcr[N/m] eqn. [N/m]

2.1e5 0.80e5 1734357.65 1732602.75 2745072.27 2742364.90 760556.98 759836.63
2.1e5 0.42e5 1234518.10 1233201.25 1941321.95 1939307.80 537408.44 536889.18
6250.0 632.5 25460.37 25430.17 39658.73 39612.80 10964.87 10953.69
7500.0 470.0 23459.85 23428.27 36221.02 36173.25 10002.82 9991.90
10062.5 632.5 31528.59 31486.19 48681.87 48617.72 13444.13 13429.45
10062.5 390.0 23993.48 23954.61 36635.06 36577.21 10102.51 10090.43

C.1.2 Simply supported beam with point load

Calibration (section 6.2.2)

Beam A Beam B Beam C
e/h Pcr [N] P0(e) Pcr [N] P0(e) Pcr [N] P0(e)

-1.00 33691.25 -6765.43 596556.15 -179288.84 75923.86 -23956.76
-0.75 31989.08 -5063.26 553300.13 -136032.82 70209.44 -18242.35
-0.50 30281.44 -3355.61 508096.14 -90828.82 64176.26 -12209.16
-0.25 28587.38 -1661.55 462248.37 -44981.05 58017.63 -6050.53
0.00 26925.82 0.00 417267.31 0.00 51967.09 0.00
0.25 25314.33 1611.49 374599.31 42667.99 46251.16 5715.93
0.50 23768.01 3157.81 335361.89 81905.41 41041.45 10925.64
0.75 22298.74 4627.08 300197.19 117070.12 36429.33 15537.76
1.00 20914.82 6010.99 269280.80 147986.50 32430.14 19536.95
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Dependency on eccentricity (section 6.2.2)

Beam 1 Beam 2 Beam 3
e/h Pcr [N] eqn.[N] Pcr [N] eqn. [N] Pcr[N] eqn. [N]

-1.00 222573.93 224093.72 582595.05 594633.86 122527.92 125407.07
-0.80 211966.29 212512.31 549150.73 554670.06 115371.82 116719.66
-0.60 201206.79 201225.17 514386.78 516071.13 107905.30 108342.20
-0.40 190410.26 190232.28 478896.84 478837.05 100261.41 100274.68
-0.20 179698.58 179533.65 443388.02 442967.83 92601.71 92517.10
0.00 169192.89 169129.28 408608.27 408463.47 85098.89 85069.46
0.20 159005.60 159019.17 375256.95 375323.97 77914.78 77931.76
0.40 149233.34 149203.32 343903.42 343549.33 71180.19 71104.01
0.60 139951.98 139681.72 314936.25 313139.55 64982.53 64586.20
0.80 131214.27 130454.39 288552.53 284094.63 59363.67 58378.33
1.00 123050.14 121521.31 264781.11 256414.56 54326.20 52480.40

Dependency on strength class (section 6.2.2)

The eccentricities used for these analyses are half of the beam depths, and are
positioned above the centroid.

Beam 1 Beam 2 Beam 3
Strength class Pcr [N] eqn.[N] Pcr [N] eqn. [N] Pcr [N] eqn. [N]

T18 89389.08 89413.35 203504.45 203253.60 42053.67 41997.39
T24 107532.76 107561.18 244841.77 244538.20 50596.76 50528.63
T30 125676.05 125708.62 286178.15 285821.89 59139.65 59059.68
T40 142489.40 142529.67 324330.99 323934.84 67020.47 66931.66

Dependency on E/G-ratio (section 6.2.2)

The same eccentricities are used as for the strength class test.

Beam 1 Beam 2 Beam 3

E [MPa] G [MPa] Pcr[N] eqn.[N] Pcr [N] eqn. [N] Pcr[N] eqn. [N]

2.1e5 0.80e5 8161211.45 8160782.65 19253757.51 19246914.04 3997486.14 3995880.24
2.1e5 0.42e5 5771068.61 5770305.33 13490865.43 13480032.84 2797586.43 2795078.55
6250.0 632.5 117835.76 117819.39 271742.18 271367.91 56249.74 56164.16
7500.0 470.0 107532.76 107561.18 244841.77 244538.20 50596.76 50528.63
10062.5 632.5 144527.46 144564.91 329104.88 328695.17 68010.60 67918.64
10062.5 390.0 108602.27 108812.74 243339.31 243617.80 50181.64 50249.60

C.2 Buckling lengths

In table 6.2 in section 6.4, buckling lengths was presented for two beam config-
urations not covered in [67]. Here, the numerical data from the analyses that
formed the basis for these buckling lengths is presented.
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C.2.1 The tested beams

The beams that are tested, have the geometry of beams A, B and C (section
6.1). However, to ensure compatibility with different types of material, they are
given the following stiffness parameter in the analyses:

Parameter Beam A Beam B Beam C
Depth (h) 1.0 m 1.5 m 1.9 m
width (b) 0.1 m 0.2 m 0.1 m
Length (L) 16.0 m 14.0 m 16.0 m

Youngs modulus (E) 10062.5 MPa 6250.0 MPa 10062.5 MPa
Shear modulus (G) 632.5 MPa 390.0 MPa 390.0 MPa

20 elements of the kind presented in section 4.5 were used to model each beam.

C.2.2 Case one

q qL2

2

Figure C.1: Simply supported beam subjected to uniformly distributed loading

q and bending moment M = qL2

2
about the strong axis. Both ends are simply

supported about the weak axis.

The results from the analyses are given in the table below, as is the computed
factor m.

Beam A Beam B Beam C

Load qcr 818.7 N/m 8973.76 N/m 1240.77 N/m
Moment M : cr 104796.2 Nm 879422.6 Nm 158818.6 Nm

m 0.763 0.763 0.763
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C.2.3 Case two

q qL2

2

Figure C.2: Simply supported beam subjected to uniformly distributed loading

q and bending moment M = qL2

2 about the strong axis. Left end is built in
about the weak axis.

Results:

Beam A Beam B Beam C
Load qcr 993.6 N/m 10890.3 N/m 1505.7 N/m

Moment M : cr 127180.8 Nm 1067249.4 Nm 192729.6 Nm
m 0.628 0.628 0.628

C.2.4 Case three

q qL2

6

Figure C.3: Beam built in at the left end. The right end is left free to move
vertically, while restrained against other translation and against rotation about
the beam axis. The beam is subjected to a uniformly distributed load q and a

bending moment M = qL2

6 about the strong axis, at the right end.

Results:

Beam A Beam B Beam C

Load qcr 3147.4 N/m 34499.2 N/m 4769.6 N/m
Moment M : cr 134289.1 Nm 1126973.9 Nm 203502.9 Nm

m 0.595 0.595 0.595
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C.3 Tapered beams

The geometry used for the tapered beams in section 6.5 was based on a di-
mension selector provided by Moelven limtre A/S. The following figure shows a
version of this dimension selector modified for use in this work.

Figure C.4: Dimensions used for the analyses of the double tapered beams. L
= length of beam in meters, b = width of beam in mm, h1, h2 are depths of
beam in mm.



Appendix D

Nonlinear analysis and
buckling

In this appendix, one case of flexural and two cases of lateral torsional buckling
are studied, first by use of the simplified methods provided by NS3470 [2] and
EC5 [3], and then by nonlinear analysis. In the nonlinear analyses, the beams
are studied for different material properties. Common for the different sets of
material properties is that they all are based on material properties provided by
NS3470 for T24. The results from this study is discussed briefly in section 2.3.

D.1 Material definition

The material of the beam is T24 as defined in NS3470. The properties are

Property Symbol Value
Bending strength fmk 24.0 MPa
Compression strength fc0k 21.5 MPa
Young’s modulus (5-percentile) E0k 7500.0 MPa
Shear modulus (5-percentile) Gk 470.0 MPa
Young’s modulus (mean) E0 11000.0 MPa
Shear modulus (mean) G 690.0 MPa

The beam is situated in an environment where the relative humidity is 70%.
The axial load has a duration of 3 months. Thus, the modification factors and
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design strength values according to the two different design codes are:

NS3470 Eurocode 5
Property Symbol Value Symbol Value
Service class 2 2
Load-duration class B med.-term
Modification factor kr 0.90 kmod 0.80
Material factor γm 1.1 γm 1.3
Height factor kh 1.0 kh 1.0
Design bending strength fmd 19.6 MPa fm,d 14.8 MPa
Design compr. strength fc0d 17.6 MPa fc,d 13.2 MPa
Design Young’s modulus E0d 6136.4 MPa E0,d 4615.4 MPa
Design shear modulus Gd 384.5 MPa G0,d 289.2 MPa

The parameters presented as E0d andGd, are found fromE0k andGd in the same
manner as the design strength properties are found from their characteristic
counterparts.

D.2 Flexural buckling

N

L = 2.0m

b =   48 mm

h = 198 mm

Nb

h

Figure D.1: Euler-beam. Simply supported beam subjected to axial compres-
sion.

The geometry of the beam is shown in figure D.1.

D.2.1 Simplified analysis

NS3470

The slenderness ratio of the beam is λ = 144.3, which according to “Tillegg B”
causes the slenderness correction factor to become kλ = 0.144. Section 12.1.10
then yields the maximum design load of the beam:

NNS3470 = σc0γ ·A = kλ · fc0d ·A = 24.087kN (D.1)
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Eurocode 5

The slenderness ratio of the beam is λy = 144.3, which corresponds to a relative
slenderness ratio of λrel,y = 2.46 (EC5, section 5.2.1). Based on the relative
slenderness ratio, the slenderness correction factor becomes kc,y = 0.154. Thus,
the maximum design load of the beam according to Eurocode 5 is:

NEC5 = σc,0,d ·A = kc,y · fc,0,d ·A = 19.320kN (D.2)

D.2.2 Nonlinear analysis

Now, the beam is analyzed using the full nonlinear analysis capability of Cfem.
The geometric imperfection imposed on the beam has the shape of the first
buckling mode as found from a linearized buckling analysis. The failure criterion
used is σc

fc0d
+

σm
fmd

≥ 1.0 (D.3)

for the NS3470 analyses, and

σc
fc,0,d

+
σm
fm,d

≥ 1.0 (D.4)

for the Eurocode 5 analyses. σc and σm are the axial compression stress and
bending stress, respectively.

Four analyses with three different sets of stiffness moduli are performed for
each design code. First, the mean values are used, then the 5-percentile values,
and finally the modified 5-percentile values. For the three first analyses, the
design strengths are used in the failure criterion, but in the fourth analysis the
characteristic strengths are used. 20 beam elements of the new kind described
in section 4.5 is used in modelling each beam.

NS3470

The imperfection is scaled so that the amplitude is L
300 = 6.7mm, which is the

maximum allowable deviation from the straight line according to section 7.2.3
in NS3470.

Stiffness parameters Strength parameters Design load
Mean values Design values 38.4 kN

5-percentile characteristic values Design values 28.6 kN
5-percentile design values Design values 24.1 kN
5-percentile design values Characteristic values 24.8 kN
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Eurocode 5

The imperfection is scaled so that the maximum imperfection is 0.003·L = 6mm,
which is consistent with section 5.4.4 in Eurocode 5.

Stiffness parameters Strength parameters Design load
Mean values Design values 36.3 kN

5-percentile characteristic values Design values 27.5 kN
Mod. 5-percentile design values Design values 18.4 kN
Mod. 5-percentile design values Characteristic values 19.4 kN

D.3 Lateral torsional buckling

L = 3.5 m

b =   48 mm

h = 198 mm
M

b

h
M

Figure D.2: Simply supported beam subjected to constant bending moment
about the strong axis.

D.3.1 Simplified analysis

The effective buckling length of the beam is the same as the length of the beam,
as this beam represents the reference case.

NS3470

According to section 12.1.7, the slenderness ratio with respect to lateral torsional
buckling is

λm =
fmk
σcr

=
0.065

b

√
L · h = 1.127 (D.5)

The lateral torsional buckling factor then becomes kvipp = 1.56−0.75·λm = 0.71
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Section 12.1.7 in NS3470 yields the maximum design load for the beam:

MNS3470 = kvipp · fmd · 1
6
bh2 = 4.36kNm (D.6)

Eurocode 5

Eurocode 5 has the same rules for establishing the lateral torsional buckling
factor (called kcrit in EC5) as NS3470. Thus, kcrit = 0.71. The maximum
design load is given by section 5.2.2 in EC5:

MEC5 = kcrit · fm,d · 1
6
bh2 = 3.30kNm (D.7)

D.3.2 Nonlinear analysis

The failure criterion used for the axially loaded beam is also used for these
analyses. As geometrical imperfection, the shape of the first buckling mode is
used, including both translation and rotation.

NS3470

The geometrical imperfection is scaled so that the maximum deviation from the
intended shape is L/300 = 0.012m.

Stiffness parameters Strength parameters Design load
Mean values Design values 5.14 kNm

5-percentile characteristic values Design values 4.54 kNm
5-percentile design values Design values 4.06 kNm
5-percentile design values Characteristic values 4.30 kNm

Eurocode 5

For the analyses based on the Eurocode 5 design code, the geometrical imper-
fection is scaled so that the maximum imperfection is 0.003 · L = 0.011m



186 APPENDIX D. NONLINEAR ANALYSIS AND BUCKLING

Stiffness parameters Strength parameters Design load
Mean values Design values 4.10 kNm

5-percentile characteristic values Design values 3.84 kNm
5-percentile design values Design values 3.10 kNm
5-percentile design values Characteristic values 3.45 kNm

D.4 Lateral torsional buckling 2

L = 3.5 m

b =   48 mm

h = 198 mm

b

h

q

Figure D.3: Simply supported beam subjected to uniformly distributed loading
at the upper edge.

D.4.1 Simplified analysis

The slenderness ratio of the beam is found by use of equation (6.3) from page
93, which gives the critical value of the uniformly distributed loading:

qcr = 3.814kN/m (D.8)

The critical bending stress can then be found:

σcr =
qcrL

2

8
1
6bh

2
= 18.623MPa (D.9)

According to both design codes, the slenderness ratio and lateral torsional buck-
ling factor are then found as:

λm =
fmk

σcr
= 1.135 kvipp = kcrit = 1.56− 0.75λm = 0.71 (D.10)
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NS3470

According to section 12.1.7, the maximum design load for the beam can be
found from

qNS3470 =
8

L2
· kvippfmd 1

6
bh2 = 2.85kN/m (D.11)

Eurocode 5

Section 5.2.2 yields the following maximum design load:

qEC5 =
8

L2
· kcritfm,d 1

6
bh2 = 2.15kN/m (D.12)

D.4.2 Nonlinear analysis

The shape of the first buckling mode is used as geometrical imperfection.

NS3470

The buckling shape is scaled so that the maximum deviation from the straight
beam was L/300 = 0.012m.

Stiffness parameters Strength parameters Design load
Mean values Design values 3.34 kN/m

5-percentile characteristic values Design values 2.97 kN/m
5-percentile design values Design values 2.68 kN/m
5-percentile design values Characteristic values 2.86 kN/m

Eurocode 5

0.003 · L = 0.011m is the maximum geometric imperfection.

Stiffness parameters Strength parameters Design load
Mean values Design values 2.65 kN/m

5-percentile characteristic values Design values 2.50 kN/m
5-percentile design values Design values 2.04 kN/m
5-percentile design values Characteristic values 2.31 kN/m
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D.5 Conclusion

The third set of material properties used in the nonlinear analyses, are those
prescribed by Eurocode 5 for use in 2nd order analysis of plane structures. The
analyses show, that use of this material property set consistently yields design
loads that are lower than or equal to those predicted by the simplified methods.

All the sets of material properties studied, save the first one, yields design loads
that are fairly close to those predicted by the simplified methods.


