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Summary Regional frequency analysis based on the method of L-moments is performed from 

annual maximum series of extreme precipitation intensity to update Intensity-Duration-

Frequency (IDF) curves for the city of Trondheim. The main problems addressed are (1) 

reduction of uncertainties of different sources for reliable estimation of quantiles: (i) testing of 

trend patterns and stationarity of the data series from the target site and demonstrating the 

dependency of results on the data used; (ii) testing regional homogeneity of extreme 

precipitation events for the climate regime in the study area and “pooling” of regional data for 

data augmentation and reduction of uncertainty due to short length of data series; and (iii) 

selection of distributions for extreme precipitation events of different durations to reduce the 

uncertainty due to choice of distributions; and (2) assessment and quantification of sampling 

uncertainty in terms of interval estimates (confidence bounds) of quantiles. Trend patterns and 

check for stationarity have been demonstrated for a data from a target site based on both non-

parametric Mann-Kendall and parametric regression tests. Selection of distributions has been 

done based on Z-statistics and L-moment ratio diagrams. Non-parametric balanced bootstrap 

resampling has been used to quantify the sampling uncertainty. For extreme precipitation 

events of shorter durations (5 min. to 30 min.) there are statistically significant increasing 

trend patterns for the data series with start years of 1992 to 1998 while there are no significant 

trend patterns for recent extremes and there are no statistically significant trend patterns for 

longer durations (45 min. to 180 min.). The results of the analyses indicate that: (1) 

significance tests for trend patterns and stationarity are dependent on the data series used but 

the stationarity assumption is valid for the data series used from the target site. (2) the extreme 

precipitation events from four sites in Trondheim are homogeneous and can be “pooled” for 

regional analysis; (3) different types of distributions fit to extreme precipitation events of 

different durations which shows that thorough selection of distributions is indispensable rather 

than fitting a single distribution for the whole durations; (4) interval estimates from balanced 

bootstrap resampling indicated that there is huge sampling uncertainty in quantile estimation 

that needs to be addressed in any frequency analysis; and (5) large differences are observed 

between the IDF curves from this study and the existing IDF curves (i.e. Imetno). The IDF 
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curves from this study are from data augmented through regional analysis, based on thorough 

procedures for selection of distributions and also include uncertainty bounds and hence are 

more reliable than the existing one. Hence, the methods and procedures followed in this study 

are expected to contribute to endeavors for estimating reliable IDF curves. 
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1. Introduction 26 

Frequency analysis of extreme precipitation events of different durations have long been 27 

used for the estimation of extreme quantiles corresponding to return periods of interest. 28 

Estimated quantiles are summarized in the form of IDF curves from which design storm 29 

hyetographs can be derived. The information is then useful for the design and management of 30 

urban drainage infrastructure, bridges, spillways, risk analysis for landslide hazards, etc. 31 

However, due to the prevalence of extreme precipitation events and vulnerability of urban 32 

environments, urban floods have resulted in catastrophic damages in the recent years for 33 

instance flooding in the city of Trondheim in August, 2007 (Thorolfsson et al., 2008). There is 34 

growing interest from different stakeholders such as municipalities, companies, engineers, etc. 35 

for reliable analysis of extreme precipitation events with uncertainty bounds and procedures 36 

for routine updating. Therefore, reliable estimation of quantiles and derivation of design storm 37 

hyetograph are required to reduce prediction uncertainty and hence to reduce the costs 38 

associated with either spillover or over design.  39 

For sites with sufficient record length as compared to the return period of the extreme 40 

precipitation quantile of interest, at-site frequency analysis can be employed. But some sites 41 

are not gaged at all or long historical records are not usually available to be able to make 42 

reliable prediction of extreme quantiles for larger return periods. Hence data augmentation 43 

from the regional observations is performed by utilizing extreme precipitation intensity 44 

records in a region. This regional frequency analysis is based on delineation of hydrologically 45 

homogeneous sites in the region and can also be useful to characterize the spatial relationships 46 

of extreme precipitation events and to study the regional patterns of climatic variability or 47 

change besides its main purpose of data augmentation. 48 

Several studies (Adamowski et al., 1996; Gellens et al., 2002; Nguyen et al., 2002; 49 

Fowler et al., 2003; Lee et al, 2003; Trefry et al., 2005; Wallis et al, 2007 and Norbiato et al., 50 

2007) have been done on regional frequency analysis of extreme precipitation or rainfall 51 

events based on L-moments or updating of IDF curves for different parts of the world. Gaál et 52 

al. (2008) applied region of influence (ROI) approach and L-moment based “index storm” 53 

procedure for frequency analysis of heavy precipitation in Slovakia. Kyselý et al. (2007) have 54 

derived the regional growth curves from regional frequency analysis based on L-moments for 55 

improved estimates of design values and they have concluded that the regional approach is 56 

most advantageous for variables such as precipitation that exhibit high random spatial 57 
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variability. Yang et al (2010) have analyzed rainfall extremes in the Pearl River basin in 58 

China using L-moments augmented by tests for stationarity and correlation. Data pooling and 59 

regionalization procedures which are based on the method of L-moments is widely employed 60 

due to its rigorous statistical tests rather than simple approaches such as based on averaging 61 

(for instance, Bengtsson and Milloti, 2010) of storm depths from at-site quantile estimations 62 

from the stations in the region.  63 

However, regional frequency analysis of extreme precipitation events and hence 64 

derivation of IDF curves is subject to the major uncertainties of different sources which are 65 

not addressed in the previous studies (see also Hailegeorgis and Burn, 2009): 66 

a. Data series used: data quality, which is related to questions like is the data series 67 

stationary and independent; and sampling of data, which are related to the time period and 68 

length of data series and the sampling type (i.e. annual maximum series or partial duration 69 

series which is peaks over thresholds);  70 

b. Selection of frequency distribution;  71 

c. Parameter estimation; and 72 

d. Regionalization and quantile estimation 73 

One of the main assumptions in the statistical frequency analysis from historical 74 

(observed) data series is the stationarity assumption. However, there may be observed trends 75 

in extreme precipitation events mainly due to anticipated climate change and hence there is 76 

uncertainty involved with the stationarity assumption. The presence of significant non-77 

stationarity in hydrologic time series cannot be ignored when estimating design values for 78 

future time horizons (Cunderlik and Burn, 2003). Bradley (1998) found that there is strong 79 

evidence for climate-related non-randomness in extreme precipitation in the Southern plains 80 

of the United States. Adamowski et al. (2003) detected significant trends in annual maxima 81 

rainfall data for durations ranging from 5 minute to 12 hour for Ontario (Canada) using the 82 

regional average Mann-Kendall. Crisci et al. (2002) have studied the uncertainties due to 83 

trends connected with the estimation of the design storms for Tuscany (Italy) by Pearson 84 

linear correlation coefficient and the Mann-Kendall tests. They have demonstrated that the 85 

hydrological consequences of this kind of climate variability have a major impact on the 86 

design of hydraulic works in the basin. However, there are still limitations in the commonly 87 

used trend test procedures due to the dependency of their results on the data series used.  88 

Long time series data is required for reliable analysis of trend and to substantiate whether 89 

there is really a change or not for the long-term planning purposes. Therefore, analysis of such 90 
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type of trends is not an objective in here. But, an insight in to the patterns of trend and check 91 

for stationarity of the historical data can also be pursued from the available relatively short 92 

records in this type of analysis. Zhang et al. (2010) analyzed the pattern of trends of 93 

streamflow based on different start and end years with a length of records from 10 years to 80 94 

years. Bengtsson and Milloti (2010) have analyzed trends in hourly and sub-hourly annual 95 

maximum precipitation of events of 25 years to 27 years long. Being data dependent analysis, 96 

estimation of extreme events need to be updated regularly when new extremes data are 97 

recorded in the region as regular update is indispensable for management and evaluation of 98 

the performances of water infrastructure, for vulnerability and risk analysis, etc.  99 

Annual maximum series rather than partial duration series (peaks over thresholds) method 100 

of sampling of extreme precipitation have been used in this study. This avoids the uncertainty 101 

related to subjective choice of the threshold values above which the extreme events are 102 

included in the analysis. One may opt for comparing the results of regional frequency analysis 103 

based on the L-moment from sampling based on annual maximum series vs. the peaks over 104 

threshold type of sampling. But this task is not an objective of the present study. 105 

Independence (i.e. no correlation) in the data series is also a main assumption in 106 

frequency analysis. Correlation can be spatial correlation or serial correlation. Hosking and 107 

Wallis (1997) noted that a small amount of serial dependence in annual data series has little 108 

effect on the quality of quantile estimates. Data sampling based on the annual maximum 109 

series which provides an additional advantage of avoiding the problem of serial correlation in 110 

the data. Spatial correlation in data series as demonstrated by Hosking and Wallis (1988; 111 

1997), Mikkelsen et al. (1996), Martins and Stedinger (2002), Madsen et al. (2002), Bayazit et 112 

al. (2004), and  Castellarin et al. (2008) can have an effect on the homogeneity test statistics 113 

in regional frequency analysis. The effect of intersite dependence on the regional L-moment 114 

algorithm is to increase the variability of the regional averages and this increases the 115 

variability of estimated growth curve (Hosking and Wallis, 1997). Madsen et al. (2002), based 116 

on partial duration series (PDS) of extreme rainfall analysis for Denmark, found that in 117 

general the correlation is a decreasing function of distance and the correlation being larger for 118 

larger durations. Also higher intersite correlation may be expected for low intensity (longer 119 

duration) frontal storms which covers large areas than high intensity (shorter duration) 120 

localized convective storms. The data used in this study from different sites in the region have 121 

short concurrent records. Hence, intersite correlation in the data series is not a focus in this 122 

study.  123 
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An additional challenge is that the results of frequency analysis from historical data are 124 

dependent on the data series used. The length of the sample data may not be sufficient to 125 

represent the underlying population especially for longer return periods, and there is no 126 

general consensus on the guidelines regarding the required length of data series. For instance, 127 

Jacob et al. (1999) suggested a 5T guideline that states “pooling” group should contain at least 128 

5T station-years of data so as to obtain reasonably accurate estimates of the T-year quantile 129 

while Mamen and Iden (2009), stated that one needs a series of at least 25 years to calculate 130 

values for return period of 100 years. Hence, in general there is always uncertainty due to 131 

sampling as different data series may result in different quantile estimates. 132 

Selection of frequency distribution is also a major source of uncertainty in the estimation 133 

of extreme quantiles as the sample data may reasonably fit to two or more distributions but 134 

with significant differences in quantile values. 135 

There are different methods of parameter estimation in frequency analysis which results 136 

in different quantile estimates. The method of L-moments is used for parameter estimation in 137 

this study due to its advantages mentioned by Hosking, 1990 such as L-moments being linear 138 

functions of the data are less sensitive than are conventional moments to sampling variability 139 

or measurement errors in the extreme data values and L-moment ratio estimators have small 140 

bias and variance in comparison with the conventional moments. Hence uncertainty due to 141 

parameter estimation is not dealt with in this study.  142 

Also there is always uncertainty pertinent to delineation of homogeneous regions. Different 143 

homogeneous regions can be delineated based on the criteria presented by Hoskings and 144 

Wallis (1997) but may result in different estimated quantiles. Uncertainty due to 145 

regionalization is not addressed in this study since it is not possible to form a big region for 146 

the target site due to the availability of extreme precipitation data only at municipality level 147 

which are many hundreds of kilometers apart and hence with a potentially heterogeneous 148 

climate regime. 149 

Furthermore, there is also uncertainty related to quantile estimation based on the “index 150 

storm” procedure as use of different index values for instance the mean vs. the median values 151 

may result in different quantile values. A middle-sized storm such as the mean or the median 152 

can be used as an “index storm”. The difference between the mean and the median depends on 153 

the skewness of the data fitted to a particular distribution. For instance, for a normal 154 

distribution (i.e. zero skewness) the mean is equal to the median and both corresponds to the 155 

50% probability of exceedence. Grover et al. (2002) have tested median flood as “index 156 
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flood”. Also someone may be interested to test percentiles other than the mean and the 157 

median. Nevertheless, investigation of the effect of choosing different “index storms” and its 158 

pertinent uncertainty in the regional frequency analysis of extreme precipitation is not the 159 

scope (objective) of this work. Plots of the “index storms” which are the mean of the annual 160 

maximum series used in the present study are given in Fig. 5 while plots of the annual 161 

maximum series are given in Fig. 6 to Fig. 9 for different durations of extreme precipitation 162 

events for different sites considered in this study. 163 

Therefore, the existing wide practice of frequency analysis and derivation of IDF curves 164 

entails the following major limitations:  165 

i. Only at-site frequency analysis based on short record length is widely applied which 166 

makes quantile estimates of large return values less reliable; 167 

ii. A single statistical distribution is fitted to extreme precipitations of different durations 168 

without any thorough choice of the “best-fit” distribution which increases the uncertainty due 169 

to the choice of distributions; 170 

iii. There is no improved uncertainty bounds associated with the estimated quantiles hence 171 

the end users are not able to propagate the uncertainty due to the IDF curves to the derivation 172 

of IDF based design storm hyetographs and in the simulation of urban runoff (floods); and 173 

iv. Lack of tests for trend patterns and stationarity in data series and lack of comprehensive 174 

procedures which helps routine updating of the IDF curves. 175 

1.1. Objectives of the study 176 

The limitations which are stated above need to be addressed for improved predictions to 177 

minimize the risks pertinent to the uncertainty in predictions. Hence the main objectives of 178 

this study geared towards: 179 

i. Application of procedures for trend patterns and stationarity tests in extreme precipitation 180 

events of different durations for a target site to demonstrate the limitations in the existing 181 

trend and stationarity test procedures due to their dependency on the data series used and 182 

hence to assess the uncertainty pertinent to stationarity assumption; 183 

ii. Detailed review of the derivations and procedures of regional frequency analysis of 184 

extreme precipitation events based on the method of L-moments for better understanding of 185 

the method. Estimation of L-moments directly from ordered observations and their 186 

corresponding weights have been presented as a rather handy approach for implementation of 187 
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the method of L-moments and extension of the procedures and tools presented by Hosking 188 

and Wallis (1997); 189 

iii. Fitting the “best-fit” statistical distributions for each duration of extreme precipitation 190 

events to reduce the uncertainty due to the choice of statistical distributions;  191 

iv. Quantification of uncertainty in quantile estimation due to sampling of data series; and 192 

v. Application of the methods to the climate regime in central Norway (i.e. city of 193 

Trondheim) and updating of the IDF curves based on the regional analysis for the city.   194 

 195 

2. Study region and data  196 

The study site is the city of Trondheim, Norway. The city of Trondheim is chosen for the 197 

study due to recent prevalence of extreme precipitation events (Thorolfsson et al., 2008), 198 

growing interest by different stakeholders for better analysis of extreme precipitation events, 199 

and relatively good records of regional data. Moreover, the availability of urban storm runoff 200 

research catchment at Risvollan in the city gives the opportunity for further research related to 201 

propagation of the uncertainties due to the IDF curves to design flood values. There is also a 202 

plan to expand the regional methodology pertinent to data augmentation and prediction for 203 

ungaged sites for other regions in Norway. But the importance of this work is not site and 204 

problem specific that the methodologies and procedures developed or followed in this study 205 

can be utilized elsewhere for similar objectives of analyzing extreme hydro-meteorological 206 

events such as storms, floods, lowflows, wind speed, etc.  207 

Extreme precipitation data is available for the period 1967 to 2009. Extreme precipitation 208 

intensity data from four stations are “pooled” for regional analysis for this study (Table 1). 209 

The mean annual precipitation from the existing metrological stations in the city ranges from 210 

740 mm to 900 mm. Trondheim experiences extreme rainfalls during summer. It also 211 

experiences precipitation in the form of snowfall during winter (from November to March). 212 

The target site of Risvollan is located about 4 km southeast of the center of city of Trondheim 213 

and have been an active urban research catchment since 1987 with separate storm sewer 214 

networks of about 20 ha residential area. The site is equipped with instruments for measuring 215 

precipitation, temperature, short wave solar radiation, wind velocity, relative humidity, snow 216 

melt and storm water runoff (Matheussen, 2004). Owing to the availability of several 217 

measurements, it is possible to execute further research for instance propagation of the 218 

uncertainty in IDF curves to urban runoff simulation and analysis of flooding risks. 219 
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 220 

3. Methodology 221 

3.1. Trend pattern and stationarity 222 

Significance tests for trends are commonly used to detect the steady change (a trend) in 223 

hydrologic time series before use for statistical analysis. Both non-parametric and parametric 224 

methods are used to detect the significance of trends. The non-parametric test has made no 225 

assumption about the statistical distributions of the data and hence they are not subject to the 226 

uncertainty in the assumptions of the types of distributions. The parametric tests assume that 227 

the time series data follows some particular distribution.  228 

Non-parametric test: Mann-Kendall test  229 

The non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) is commonly used 230 

for detection of direction of trend patterns in hydrological variables. The test procedures for 231 

Mann-Kendall test have been described by many researchers for instance by Adamowski et al. 232 

(2003) and McBean et al. (2008). For a time series of n data points where Xi and Xj are a 233 

member of the data series where i = 1,2,….,n-1 and j = i+1, i+2, i+3,……,n; each data point 234 

Xi is compared with all corresponding Xj data points to compute the sign (i.e. direction of 235 

trends). The Kendall’s S-statistics is computed from the sum of the signs and the variance of 236 

the S-statistics is computed. The null hypothesis to test (H0) is there is no monotonic trend in 237 

the data and the alternative hypothesis (H1) is there is monotonic trend in the data. The test is 238 

based on the Z-test. If |Zs| > (Zobs = Zα/2), we have an evidence to reject the null hypothesis 239 

and hence that there is significant trend in the data where α is significance level. A 240 

significance level of 5% i.e. a confidence level of 95% is used in this study.  241 

Parametric test: linear regression test 242 

In order to detect the trend, linear regression can be fitted between a response variable 243 

which is the annual maximum series of precipitation intensity with the independent variable 244 

which is the time (i.e. year) for different durations. The significance test is done for the slope 245 

parameter of the linear regression model. Then from the statistical significance of the slope 246 

parameter it can be inferred that there are trends in the annual time series data. The Null 247 

hypothesis for trend test (H0) is there is no significant trend and the alternative hypothesis 248 

(H1) is there is significant trend. The test is based on the t-test (see Rawlings et al, page 122). 249 
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The critical t-value is / 2 ,c r it n pt t  . If | tobs | < tcrit, we fail to reject the null hypothesis 250 

(i.e.  no significant trend). 251 

3.2. Regional frequency analysis based on L-moments 252 

Frequency analysis of extreme precipitation events requires the availability of sufficient 253 

extreme precipitation data especially for reliable estimation of rare events (i.e. quantiles with 254 

large return periods). In regional frequency analysis, additional information from 255 

homogeneous sites within the region is utilized to improve the at-site estimates. Hosking and 256 

Wallis (1990; 1993; 1997), Burn (1988; 1990; 2003) and Martins and Stedinger (2002) 257 

demonstrated the importance of using regional information for frequency analysis of extreme 258 

hydrological events.  259 

L-moments and L-moment ratios 260 

Let X be a real-valued random variable with cumulative distribution F(x), quantile 261 

function x(F) and probability distribution function f(x) or dF(x). For a set of ordered data by 262 

x1: n ≤ x2: n ≤,……, ≤ xn:n, certain linear combinations of the elements of an ordered sample 263 

contain information about the location, scale and shape of the distribution from which the 264 

sample is drawn hence L-moments are defined to be the expected values of these linear 265 

combinations, multiplied for numerical convenience by scalar constants (Hosking and Wallis, 266 

1997). The L-moments of a probability distribution are defined by (Hosking, 1990; Hosking 267 

and Wallis, 1997; Serfling and Xiao 2006, 2007)   268 
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Where, 
( )

:

k

r nw  are the weights and r = 1,..., n are the ranks of the observations in ascending 271 

order. Hence the weights, which are the relative contributions of each observation to the first 272 

four L-moments for a sample size n are computed as: 273 
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L-moment ratios are independent of units of measurement and are given by Hosking and 278 

Wallis (1997) as follows:  279 

2

1 2

,  ;  3k
k k

 
 

                                                                                                           (4)  280 

Where, λ1 is the L-location or the mean, λ2 is the L-scale, τ is the L-CV, τ3 is the L-skewness 281 

and τ4 is the L-kurtosis. 282 

Estimators of L-moments and L-moment ratios 283 

Estimators of L-moments are obtained from finite sample. Hosking and Wallis (1997) 284 

(see formula 2.59 and Fig 2.6) have derived an expression for the sample L-moments (lk) 285 

which are unbiased estimators of λk in terms of the ordered observations and their 286 

corresponding weights for the first four L-moments for a sample size of nineteen. 287 
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288 

Where wr:n
(k)

 are the weights as defined in eqns. (2 and 3), xr:n  are the ordered observations 289 

and r = 1, 2, 3,…, n are the ranks of observations in ascending order. The first L-moment (λ1) 290 

is the expectation or the mean of the distribution for a probability distribution and its 291 

estimator (l1) is a sample mean and hence all the observations have equal weightages which 292 

are equal to one. Regional average L-moments are estimated from 293 
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Where, N is the total number of sites in the region, ni is the number of records for each site 295 

and R denotes regional. Sample L-moment ratios t and tk are natural estimators of τ and τk 296 

respectively and are not unbiased but their biases are very small in moderate or large samples 297 

(Hosking and Wallis, 1997) and are defined as 2

1 2

, ;  k 3k
kt
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t

l l
                                     (7) 298 

Implementation of eqns. (3 to 7) is not difficult. It can even be implemented as 299 

spreadsheet calculations so that it avoids relying mainly on previous work to apply the 300 

method of regional frequency analyses and also it encourages further extension or upgrading 301 

of the method with additional performances. 302 

Similarity measures and delineation of homogeneous regions 303 

Similar and homogeneous regions are identified and delineated based on specific 304 

similarity measures and homogeneity criterion respectively as proper delineation of 305 

homogeneous region is crucial for reliable quantile estimation. The region of influence 306 

approach (Burn, 1990, Zrinji and Burn, 1994) is used to identify similar sites and rank them 307 

based on their proximity to the target site as shown in Table 1. The attributes used for the 308 

similarity distance metrics have equal weights and include 309 

a. Altitude of the stations; 310 

b. Locations (X and Y co-ordinates of the stations); and  311 

c. Mean annual precipitation at the stations 312 

Hosking and Wallis (1997) presented the regional homogeneity based on the theory of L-313 

moments which compares the regional dispersion of L-moment ratios with the average 314 

dispersion of the L-moment ratios determined from NS simulations of homogeneous groups 315 

from a four parameter Kappa distribution influenced only by sampling variability. Three 316 

heterogeneity measures are used to test the variability of three different H-statistics namely H1 317 

for “coefficient of L-variation” (L-CV), H2 for the combination of L-CV and L-skewness (L-318 

SK) and H3 for the combination of L-skewness (L-CS) and L-kurtosis (L-CK). Heterogeneity 319 

measures (H-statistics) are calculated as 320 
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Where Vsimulated
i

 and Vsimulated i
  are the means and standard deviations of the simulated 322 

values of dispersions (Vi) while observed i
V are the regional dispersions calculated from the 323 

observations. The dispersions (V-statistics) are defined as 324 
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Where, V1 is the standard deviation of the at-site sample L-CVs weighted based on record 329 

length. V2 and V3 are the weighted average distance from the site to the group weighted mean 330 

on graphs of t versus t3 and of t3 versus t4 respectively, tR, t3
R and t4

R are the regional average 331 

L-CV, L-SK, and L-CK respectively weighted proportionally to the sites’ record length (ni) 332 

and i represents the sites 1,2,…,N.  Hosking and Wallis (1997) suggested that region can be 333 

regarded as “acceptably homogeneous” if H < 1, “possibly heterogeneous” if 1 ≤ H < 2, and 334 

“definitely heterogeneous” if H ≥ 2.  335 
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Discordancy measure 336 

A measure of discordancy between the L-moment ratios of a site and the average L-337 

moment ratios of a group of similar sites identifies those sites that are discordant with the 338 

group as a whole and the procedures for discordancy measure as explained by Hosking and 339 

Wallis (1997) is as follows: Suppose there are N sites in the group, let ui = [t(i) t3
(i) t4

(i)]T

 
be a 340 

vector containing the L-moment ratios t, t3 and t4 values for site i and the superscript T 341 

denotes transpose of a vector matrix, the group average ū and sample covariance matrix S are 342 

defined as 343 
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Then the discordancy measure Di for a site is given by equation  345 

   11

3

T

i i iD N u u S u u                                                                                                  (12)  346 

A site should be declared discordant if Di ≥ 3.0.  347 

Selection of a regional frequency distribution (goodness-of-fit measure) 348 

The choice of frequency distributions is determined based on the goodness-of-fit 349 

measures which indicate how much the considered distributions fit the available data. It 350 

entails hypothesis tests to reject the null hypothesis which says a certain distribution fits to the 351 

data better than the other candidate distributions. If we fail to provide evidence to reject the 352 

null hypothesis the distribution is said to be the “best-fit”. Hosking and Wallis (1997) tested 353 

several distributions for the regional analysis and found that the two parameter distributions 354 

are not robust and vulnerable to “misspecification” and suggested that they are not 355 

recommended for regional or at-site analyses. Therefore, in the present study we considered 356 

the three parameter distributions which have also the shape parameters in addition to the scale 357 

and location parameters for the regional analyses. The analysis in the present study is based 358 

on historical records for which the stationarity assumption is tested to be valid. So, the 359 

methodology in the present study is different from the non-stationary extreme value analysis 360 

(such as Hundecha et al., 2008; Mudersbach and Jensen, 2010, etc.) which considers an 361 

assumed time dependent patterns for some of the distribution parameters and also it is 362 

different from frequency analysis based on projected scenarios of extreme precipitation events 363 
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(such as Monette et.al., 2012, etc.). Therefore, when new extreme events are added to the 364 

analysis, the “best-fit” distribution, distribution parameters and also the quantile estimates and 365 

recurrence intervals may change which is the main limitation of any data dependent or data 366 

driven models.   367 

However, the ultimate objective is estimation of more reliable and robust quantile values 368 

with uncertainty bounds from historical records (observations) which is expected to be a more 369 

reliable approach than the analyses based on the projected scenarios and non-stationary 370 

analysis. Quantile estimates from distributions which have shape parameters are expected to 371 

be robust and not highly sensitive to some new extreme precipitation events which are not 372 

included in the regional analysis. Therefore, selection of distributions also comply with the 373 

main essence of the regional analysis which include as much as possible extreme records in 374 

the region in to the data by “trading space for time” for data length augmentation and robust/ 375 

reliable predictions at both gaged and ungaged sites. As it can be observed from Table 1, the 376 

regional extreme precipitation data is increased from 23 to 71 through pooling by the regional 377 

analysis based on the method of L-moments for the target site, Risvollan. When several 378 

distributions fit the data adequately, any of them is a reasonable choice for use in the final 379 

analysis, and the best choice from among them will be the distribution that is most robust 380 

(Hosking and Wallis, 1997). They proposed the five poarameter Wakeby distribution as a 381 

default regional distribution if none of the considered candidate distributions fulfills the 382 

requirements of goodness-of-fit statistics.  383 

The goodness-of-fit criterions defined in terms of L-moments for each of various 384 

candidate distributions are the Z-statistics and L-moment ratio diagram: 385 

a. The Z- statistic 386 

Fit a four parameter Kappa distribution to the regional average L-moment ratios l1
R, tR, t3

R, 387 

and t4
R. Simulate a large number, Nsim, of realizations of a region with N sites, each from a 388 

four parameter Kappa distribution. For the mth simulated region, calculate the regional 389 

average L-kurtosis t4
[m] , the bias and standard deviation of t4

R 390 
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And, for each candidate distribution, the goodness-of-fit measure is given by 393 

44 4

4

DIST

DIST

Rt
Z

 



 


                                                                                                         (14) 
394 

Where, DIST refers to a particular distribution, β4 and σ4 are the bias and standard deviation 395 

of t4
R respectively, Nsim is the number of simulated regional data sets in a similar way as for 396 

the heterogeneity statistics. The superscript m denotes the mth simulated region. The fit is 397 

declared adequate if ZDIST is sufficiently close to zero, a reasonable criterion being ׀ ZDIST 398 ≥ ׀ 

1.64. 399 

b.     L-moment ratio diagram 400 

Selection of the “best-fit” regional distribution using L-moment ratio diagrams involves 401 

plotting of the regional sample L-moment ratios (L-skewness vs. L-kurtosis) as a scatter plot 402 

and comparing them with theoretical L-moment ratio curves, which are given by Hosking and 403 

Wallis, 1997, of the candidate distributions. The distribution to which the regional L-moment 404 

ratios computed from the sample are closer to the theoretical curve is selected as the “best-405 

fit”. 406 

 407 

Estimation of parameters and quantiles  408 

The main objective of frequency analysis is estimation of quantiles corresponding to a 409 

return period of interest. The parameters of distributions given in Appendix B are estimated 410 

from their relationship with L-moments and L-moment ratios as given by Hosking and Wallis 411 

(1997). Then the quantiles are estimated from quantile functions which are given in Appendix 412 

A. The “index storm” approach which is a similar approach to the index flood (Dalrymple, 413 

1960) is used for quantile estimation of extreme precipitation events. The main assumption of 414 

an “index storm” procedure is that the sites forming a homogeneous region have identical 415 

frequency distribution called the regional growth curve but a site-specific scaling factor, the 416 

“index storm”. Let x(F), 0 < F < 1, be the quantile function of the frequency distribution of 417 

extreme precipitation intensity at site i, for a homogeneous region  418 

( ) ( )i ix F q F                                                                                                                       (15) 419 

Where i = 1, 2,…, N and µi is the site-dependent scale factor which is called the “index storm” 420 

and q(F) is the regional growth curve which is a dimensionless quantile function common to 421 

every site in a homogeneous region. 422 
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 Following previous work (Hosking and Wallis, 1997, Nguyen et al., 2002, Gaál et al., 423 

2008, etc.), the location estimator (i.e. the sample mean) of annual maximum series of 424 

extreme precipitation intensity is used as an “index storm” in this study. More detailed 425 

references on regional frequency analysis based on L-moments can be obtained from Hosking 426 

and Wallis (1997).                                      427 

3.3.  Balanced bootstrap resampling                                                                            428 

Quantile estimate from a single data set in regional frequency analysis provides only a 429 

point estimate. Therefore, non-parametric balanced bootstrap resampling, which involves 430 

random sampling with replacement, is employed to quantify sampling uncertainty in terms of 431 

interval estimates (i.e. confidence intervals of quantile estimates). In bootstrap (Efron 1979; 432 

1982), the samples are drawn with replacement from the original sample. Davison et al. 433 

(1986) presented balanced bootstrap resampling which reuses each of the observations equal 434 

number of times. In balanced bootstrap resampling, the total number of occurrences of each 435 

sample point in the whole resamples is the same and is equal to the number of resampling 436 

(Nresampling). Faulkner et al. (1999) derived confidence limits for growth curves of rainfall data 437 

by bootstrapping. Burn (2003) applied bootstrap resampling for flood frequency analysis and 438 

presented the main advantages of bootstrap resampling for constructing confidence intervals. 439 

Also the initial spatial correlation of the data from different sites is not affected in bootstrap 440 

resampling approach (Pujol et al., 2007). 441 

 In bootstrap, let the original sample data is X = {X1, X2 ,…, Xn} and the bootstrap 442 

resample of X is X* = {X1
*, X2

*,..., Xn
*}, the estimators such as confidence intervals can then 443 

be estimated from the resamples (X*)(1), (X*)(2) ,…, (X*)(Nresampling) of size Nresampling. The 444 

background and method of estimating the confidence intervals as presented by Faulkner and 445 

Jones (1999) and Carpenter (1999) is as follows: let Qi is the estimate from the bootstrap 446 

sample i, Qsam is the estimate from sample data and Qtrue is the unknown true quantity, 447 

bootstrap residuals sami ie  = Q - Q and the actual unknown residual sam truee = Q - Q . 448 

Assuming that bootstrap residuals (ei) to be representative of values drawn from the same 449 

distribution as the actual unknown residual (e), sam sam trueiQ - Q Q - Q . If el and eu are 450 

appropriate lower and upper percentage points of the unknown distribution of the residuals, 451 

such that the probability 452 
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Then,    lsam u samLCL,UCL Q - e ,Q - e                                                                          (16)                        454 

e is equally likely to appear at any point in the ordered set of ei’s, i.e. each has a probability of 455 

 
1

N + 1resampling

.  456 

Then,  u = α N + 1resampling  and 457 

   l = 1-α × N + 1resampling                                                                                                      (17) 458 

Where, α = ½ of the significance level. 459 

The procedures for balanced bootstrap resampling based on regional L-moment parameter 460 

estimation algorithm to construct 100(1-2α) % confidence intervals of quantile estimates, 461 

following Faulkner and Jones (1999), Burn (2003) and Hailegeorgis and Burn (2009) is given 462 

as below: 463 

i. Prepare original sample “pooled” from homogeneous region; 464 

ii. By repeating each year of data Nresampling times we would get a matrix of 465 

(Nyears*Nresampling) rows by Nsites columns, where Nyears is the number of years for which data 466 

is available at one or more data stations and Nsites is the number of homogeneous sites for 467 

regional analysis; 468 

iii. Balanced bootstrap resamples are then obtained from random permutation of Nyears rows 469 

of data from which L-moments, L-moment ratios, parameters and quantiles corresponding to a 470 

return period of interest can be estimated for the selected “best-fit” distributions given in 471 

Table 2. This process is then repeated Nresampling times; 472 

iv. Calculate bootstrapped residuals (ei), which are the deviations of each quantile estimates 473 

from the quantile estimate of the original sample. ei = Qi  - Qsam , where Qi is quantiles 474 

estimated from bootstrapped samples and Qsam is quantile estimated from the original sample;  475 
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v. Rank these deviations in ascending order to find eu and el for 95% confidence interval 476 

where u and l are defined as above and correspond to the upper and the lower confidence 477 

levels respectively. For Nresampling = 999 used in this study, u corresponds to 25th and l 478 

corresponds to 975th bootstrap residuals; and 479 

vi. Finally, the confidence intervals for the estimated quantiles are computed from (16). 480 

   481 

4. Results  482 

Since the annual maximum precipitation intensity data series from the other sites 483 

considered are short and/or don’t include recent extremes (Table 1), only the data series for 484 

the target site of Risvollan has been tested for trend patterns and stationarity to check the 485 

validity of stationarity assumption and to demonstrate the dependency of trend patterns on the 486 

data series used. In this study, the method by Zhang et al. (2010) is adopted and a trend test 487 

based on varying starting period and fixed end period is used. Both the parametric Mann-488 

Kendall and the non-parametric regression tests have produced similar results for trend 489 

patterns. For the target site, the data used for the analysis of extreme precipitation can be said 490 

to be stationary (Fig. 2 and 3) and hence stationary frequency analysis is valid. 491 

For this study, no site has appeared to be discordant based on the discordancy measure 492 

explained earlier. Results of homomgenity tests based on H-statistics (Table 2) indicated that 493 

H-values range from -1.75 to 1.22. 494 

Results for the selection of statistical distribution are given in Table 2 and Fig. 4. Four 495 

different types of three parameter distributions, the Generalised extreme value (GEV), 496 

Generalised logistic (GLO), Pearson Type III (PIII) and Generalized Pareto (GPAR) are 497 

tested. Different types of statistical distributions appeared to be the “best-fit” for extreme 498 

precipitation of different durations. The “best-fit” distribution for precipitation durations of 5 499 

min., 45min. and 120 min. is the Pearson Type III; Generalised Pareto distribution is the 500 

“best-fit” and also the only fit for extreme precipitation of 10 min., 20 min. and 30 min. 501 

durations. Generalised logistic distribution is the “best-fit” distribution for extreme 502 

precipitations of 60 min., 90 min. and 180 min. durations. Identification of distribution based 503 

on a regional L-moment ratio diagram (Fig. 4) also resulted in similar “best-fit” distributions 504 

as that of the Z-statistics for all durations of extreme precipitation events. IDF curves with 505 

uncertainty bounds (95 % confidence intervals) for the target site are given in Fig. 10 and 11. 506 
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Percentage differences of the 95% lower and upper confidence levels of quantiles (which are 507 

estimated based on bootstrap resampling) and the existing IDF curve (i.e. estimated from at-508 

site analysis for the target site of Risvollan by the Metrological Institute of Norway: 509 

www.eklima.no and labeled as Imetno in Fig. 10 and 11), from the quantiles estimated from 510 

regional analysis in this study are given in Table 3. The differences in quantile estimates from 511 

this study as revealed from the 95% confidence bounds range from -32.9 % to +25.1 % for a 512 

return period of 2 years and rises to -43 % to +31% for a return period of 100 years. The 513 

percentage differences in the existing IDF quantiles and the quantiles estimated from this 514 

regional analysis ranges from +25.8 % for a return period of 2 years to - 40 % for a return 515 

period of 100 years. 516 

 517 

5. Discussion 518 

Trend pattern and stationarity 519 

The varying starting periods used for trend tests help to identify the start year of 520 

significant trend patterns. The fixed end period is used since the objective is to assess the 521 

patterns of the trend for recent extremes to detect the recent trends and to utilize the updated 522 

information for design and management. It can be indicated that different results for 523 

significant test for trends are obtained from data set from varying starting years until recent 524 

extremes. But the extreme precipitation data set used for the target site for regional frequency 525 

analysis covers from 1987 to 2009 and trend patterns vanish for the data series containing 526 

recent extremes (Fig. 2 and 3). Therefore, based on the analysis of data series from the target 527 

site, stationarity assumption is valid and L-moments based frequency analysis can reasonably 528 

be applied. 529 

Discordancy test and homogeneity tests based on H-statistics   530 

All the H-values are less than one for durations of 5 min. to 120 min. which shows that 531 

the region is “acceptably homogeneous” and the H-value is slightly greater than one and less 532 

than two (H1 = 1.22) for duration of 180 min. which shows that the region is “ possibly 533 

heterogeneous”. Therefore, the data used from the study region can be ”pooled” based on the 534 

criterion presented by Hosking and Wallis (1997) for data augementation and hence reliable 535 

estimation of quantiles. This study subsatntiates that it is worth testing the homogenity of 536 

extreme precipitation from a further wide spatial extent for the climate regime in Norway for 537 

reliable estimation of quantiles of high return periods and also for estimation of regional IDF 538 
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curves or regional quantile maps to be able to estimate the design values at ungaged locations 539 

in the region. 540 

Selection of distributions based on Z-statistics and L-moment diagram                                 541 

It can be indicated that two or more distributions (Z ≤ 1.64) may fit the extreme 542 

precipitation data but the “best-fit” distribution for which the quantile is estimated is the one 543 

with Z-value closer to Zero. Therefore, it is indicated that it is very important to follow 544 

thorough statistical distributions selection procedures rather than fitting a single distribution 545 

for all extreme precipitations of different durations in order to reduce the uncertainty in 546 

quantile estimation pertinent to the selection of the “best-fit” statistical distribution for the 547 

extreme data considered.  548 

Quantile estimations and uncertainty bounds 549 

From the confidence bounds of estimated quantiles, it can be observed that there is large 550 

sampling uncertainty which increases with the return period. These uncertainty ranges have 551 

inevitable impact on the design magnitudes of urban drainage infrastructure. The existing IDF 552 

curves for the city of Trondheim is based on at-site fitting of the two parameter extreme value 553 

Type I (EV1) or Gumbel distribution for the whole durations of extreme precipitation events. 554 

The EV1 (Gumbel) distribution is the special case of the Generalised extreme value (GEV) 555 

distribution when the shape parameter is zero (‘k’ = 0). But the tail behavior of a distribution 556 

is largely influenced by its shape parameter(s). In the contrary reliable prediction of the rare 557 

extreme quantiles of higher recurrence intervals, which are located at the tails of a distribution 558 

are of main interest to minimize the risks pertinent to the occurrence of extreme events. 559 

Despite its drawbacks, the Gumbel distribution is usually appealing to hydrology practitioners 560 

and for teaching purposes due to its simplicity in parameter estimation by the method of 561 

moments, method of maximum likelihood, and L-moments.  562 

The same at-site data for Risvollan as the present study was used by the Norwegian 563 

Meteorological Institute to develop the existing IDF curves. The improvement obtained from 564 

the present work is due to the regional analysis based on the use of regional records rather 565 

than the at-site estimation from records of short length (i.e. at-site analysis). Plots of the 566 

existing IDF curves (Fig. 10 and 11) reveal that there is a sharp bend in the IDF curves above 567 

duration of 20 minutes which indicates that the statistical distribution fitted to the extreme 568 

precipitation of above 20 min. durations may not represent the parent distribution (i.e. there is 569 

“misspecification” of statistical distribution). In addition, the fitted two parameter distribution 570 
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which has no shape parameter lacks robustness and hence “misspecification” of distribution 571 

affects the quantile estimation to a larger extent.                                                         572 

6. Conclusions 573 

Regional frequency analysis of extreme precipitation events based on the method of L-574 

moments has been reviewed and applied for the city of Trondheim for data augmentation and 575 

reliable estimation of quantiles. Extreme precipitation intensities of durations 5 min. to 180 576 

min., which can be relevant for design and management of urban water infrastructure, are 577 

“pooled” from four gaging stations in the city of Trondheim for regional frequency analysis 578 

and estimation of quantiles corresponding to 2 to 100 years return period. L-moments are 579 

estimated directly from ranked and weighted ordered sample data series which is a 580 

contribution towards further understanding of the L-moment procedures of regional frequency 581 

analysis. The approach is not difficult and it helps for easy implementation of the L-moment 582 

procedures especially for extension with additional developments such as assessment of 583 

uncertainty as demonstrated in this study.                                                         584 

Check for stationarity of data and the dependency of the commonly used trend test procedures 585 

on the sample data used has been demonstrated and thorough trend pattern tests based on data 586 

from varying start years and also that include recent extremes should be followed and general 587 

conclusion on the stationarity of the data need to be drawn with caution.  588 

It can be indicated that different statistical distributions fit to extreme precipitation events 589 

of different durations and hence careful choice of “best-fit” and robust statistical distributions 590 

for different durations is indispensable to reduce the uncertainty pertinent to selection of 591 

distributions.  592 

The sampling uncertainty associated with the frequency analysis of extreme precipitation 593 

events is assessed and quantified in terms of interval estimate (i.e. 95% confidence bounds) 594 

based on non-parametric bootstrap resampling. The interval estimate showed that there is 595 

huge uncertainty in quantile estimation due to sampling of data which needs to be 596 

incorporated in any frequency analysis from historical data. The updated estimated quantiles 597 

and IDF curves with uncertainty bounds obtained from this study are found to be more 598 

reliable as compared to the existing IDF curves for Trondheim.  599 

The methods and procedures followed in this study are expected to contribute to 600 

endeavors for estimating reliable quantiles and reducing the uncertainties associated with IDF 601 
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curves. IDF curves with quantified uncertainty bounds would help the end users to be able to 602 

recognize the uncertainties behind the IDF curves and propagate the uncertainties pertinent to 603 

IDF curves for reliable derivation of IDF curves based design storm hyetographs and 604 

simulation of urban runoff in the design and management of urban drainage infrastructure or 605 

in any flood risk assessment tasks.  606 

This study focuses on the assessment and quantification of sampling uncertainty pertinent 607 

to IDF curves and hence it can’t be considered as a comprehensive uncertainty assessment. 608 

Also propagation of this uncertainty to simulation of urban runoff is not studied. This task is 609 

planned for future research. 610 
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Appendices 775 

 776 

Figure captions 777 

Fig. 1. Locations of precipitation stations used for regional analysis 778 

Fig. 2. Results of Mann-Kendal and regression methods for trend pattern at 95 % confidence 779 

intervals and check for stationarity for extreme precipitation of 5 min. to 30 min. durations at 780 

Risvollan site (Trondheim) for different data start years to data end year of 2009 781 

Fig. 3. Results of Mann-Kendal and regression methods for trend pattern at 95 % confidence 782 

intervals and check for stationarity for extreme precipitation of 45 min. to 180 min. durations 783 

at Risvollan site (Trondheim) for different data start years to data end year of 2009 784 

Fig. 4. Regional L-Moment ratio diagram  for identification of “best-fit” regional distributions 785 

Fig. 5. Mean of annual maximum precipitation intensity or “index storm” used (1 l/s.ha or 1 786 

liter/second.hectar = 0.36 mm/hr or 0.36 millimeter/hour  787 

Fig. 6. Annual maximum precipitation series for different durations at Risvollan site 788 

Fig. 7. Annual maximum precipitation series for different durations at Moholt-Voll site 789 

(jumped years are missing data) 790 

Fig. 8. Annual maximum precipitation series for different durations at Blakli site 791 

Fig. 9. Annual maximum precipitation series for different durations at Tyholt site 792 

Fig. 10. IDF curves and 95 % confidence intervals for Risvollan site (Trondheim) for quantile 793 

estimates of 2, 5 and 10 years return periods from regional frequency analysis of annual 794 

maximum extreme precipitation events of 5 min. to 180 min. durations 795 
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Fig. 11. IDF curves and 95 % confidence intervals for Risvollan site (Trondheim) for quantile 796 

estimates of 20, 50 and 100 years return periods from regional frequency analysis of annual 797 

maximum extreme precipitation events of 5 min. to 180 min. durations 798 

 799 



Table 1: Climate stations (sites) and annual maximum extreme precipitation intensity used for 

regional analysis. 

No. Sites 
Altitude, 
m amsl 

Latitude 
(degree) 

Longitude 
(degree) 

Data 
range 

No. of  
available 

data 
(years) 

Mean 
annual total 
precipitatio

n (mm) 

Remarks 

1 Risvo 

llan 
84 63.3987 10.4228 

1987-
2009 

23 881 
Target site 

(operational) 

2 Moholt-
Voll 

127 63.4107 10.4535 
1995-
2009 

13 
855 Operational 

3 
Tyholt 113 63.4225 10.4303 

1965-
1993 

25 
740 Closed 

4 
Blakli 138 63.3960 10.4258 

1974-
1985 

10 
900 Closed 

Total data used for regional analysis 71   

 

 

 

 

 

 

 

 

 

 



Table 2: Summary results for heterogeneity measures and goodness-of-fit measures (Z-statistics) 

 
Heterogeneity measures  Z-statistics  “Best-fit” 

distribution 

Durations (min.) H1 H2 H3    GLO   GEV    PIII    GPAR   

5    -1    -0.45 
 

0.15  1.33 0.69 -0.04 -0.87  PIII 

10    0.21    0.17 -0.58  3.26 2.33 1.88 0.28  GPAR 

15 -0.17 -0.07 -0.39  4.31 3.31 2.96 1.17  GPAR 

20 0.11 -0.04 0.23  4.2 3.26 2.83 1.2  GPAR 

30 0.37 -1.18 -0.74  3.37 2.48 1.95 0.5  GPAR 

45 -0.83 -1.3 -0.39  1.6 0.82 0.28 -0.95  PIII 

60 -1.75 -1.44 -0.75  0.24 -0.48 -0.9 -2.09  GLO 

90 -0.61 -1.81 -1.57  0.26 -0.47 -0.89 -2.1  GLO 

120 0.31 -1.51 -0.29  2.01 1.08 0.73 -0.93  PIII 

180 1.22 -1.25 -1.29  0.06 -0.73 -1 -2.44  GLO 

         
 



Table 3:  Differences in percentages (%) for the lower and upper confidence levels estimated 

quantiles and the existing IDF curves from the estimated precipitation intensity quantiles from 

regional frequency analysis for a target site (Risvollan). 

Return 
period 
(years) 

Quantiles 
Durations (min.) 

5 10 15 20 30 45 60 90 120 180 

2 

95% LCL -29.1 -28.1 -32.9 -31.4 -27.8 -30.7 -27.8 -26.3 -24.2 -25.1

95% UCL +25.1 +23.2 +23.0 +21.7 +19.7 +14.7 +9.6 +6.3 +6.9 0.0 

Existing IDF +25.8 +23.4 +12.8 +16.4 +16.6 +9.1 +1.9 +8.7 +8.2 +12.0

5 

95% LCL -23.1 -21.0 -20.8 -22.1 -20.3 -19.4 -20.7 -17.1 -16.5 -17.8

95% UCL +24.7 +23.6 +23.3 +21.8 +21.7 +19.1 +15.3 +14.9 +12.2 +6.3 

Existing IDF -1.1 -3.6 -4.9 +0.2 +7.0 -13.3 -16.7 -11.9 -11.0 +0.4 

10 

95% LCL -28.7 -19.6 -17.1 -18.5 -18.0 -18.1 -18.1 -12.5 -17.5 -13.7

95% UCL +25.0 +22.2 +21.3 +19.9 +21.2 +20.2 +18.3 +19.0 +12.8 +10.6

Existing IDF -6.4 -8.5 -6.5 -1.6 +6.9 -20.4 -25.5 -20.8 -15.2 -6.0 

20 

95% LCL -35.8 -21.0 -16.7 -16.9 -19.9 -19.0 -17.1 -11.3 -19.4 -11.6

95% UCL +24.5 +24.4 +20.1 +19.8 +23.4 +21.1 +20.5 +21.3 +13.3 +14.8

Existing IDF -8.9 -9.0 -4.4 +0.2 +9.7 -24.1 -31.4 -26.9 -17.9 -10.4

50 

95% LCL -42.4 -27.5 -21.4 -21.5 -26.7 -23.9 -23.0 -16.6 -21.9 -14.7

95% UCL +27.5 +27.2 +22.7 +23.6 +26.6 +20.4 +21.9 +22.8 +15.9 +19.7

Existing IDF -12.9 -6.1 +1.3 +5.6 +16.2 -25.9 -37.0 -32.0 -22.0 -15.0

100 

95% LCL -43.0 -36.5 -27.7 -26.7 -34.8 -30.3 -31.8 -24.3 -21.1 -19.3

95% UCL +31.1 +29.3 +24.0 +25.7 +29.3 +19.6 +23.4 +22.6 +19.6 +22.2

Existing IDF -18.3 -2.4 +7.1 +11.0 +22.4 -26.0 -40.0 -34.6 -26.0 -17.4
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Appendix A: Probability density functions (PDF), cumulative distribution functions (CDF) 

and quantile functions (QF) for some statistical distributions (Hosking & Wallis, 1997). 
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Appendix B: Parameters for the statistical distributions in Appendix A (Hosking & Wallis, 
1997). 

Distributions Parameters  
Location Scale Shape   

GEV ξ α k   

Pearson Type III ξ β α  
Kappa ξ  α &k h   

Wakeby ξ    α, β, γ & δ 

GLOG ξ α k   

GPAR  ξ α k   
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