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Abstract 

Hierarchical SAPO-34 was produced using the dry gel conversion method,
2
 where an 

amorphous, mesoporous silicoaluminophosphate was subjected to steam treatment with the 

presence of organic template. This resulted in a crystalline, microporous SAPO-34 structure, 

with mesopores present within crystalline particles. The pore system can be classified as 

bimodal or multimodal, and the term hierarchical is also often used.
3, 4

 Several techniques 

were employed in order to determine the presence of mesopores, including thermogravimetric 

analysis coupled with differential scanning calorimetry (TGA-DSC), N2-physisorption (BET) 

and coke deposition with subsequent microanalysis, as well as analysis by the formerly 

mentioned techniques. The material was found to be of moderate mesoporosity with 

mesopores in sizes around 6 nm. The micropore diameter inherent to the SAPO-34 structure is 

0.38 nm.  

Copper was ion-exchanged into the conventional and hierarchical SAPO-34, and an 

incorporated CuSAPO-34 was also synthesized for means of comparison. The three different 

types of samples were tested for activity in the reaction selective catalytic reduction of NO 

with hydrocarbons (SCR-HC),
5
 both in dry and wet feed. The hierarchical SAPO-34 was 

found to be more active than conventional Cu-SAPO-34, and all samples retained good 

activity in wet feed as well. The hierarchical Cu-SAPO-34 was subjected to an in-situ red/ox 

cycling experiment with dry and wet feed during X-ray absorption spectroscopy (XAS). The 

results showed that the copper species alternate freely and reversibly between Cu(II) and 

Cu(I), with changes in gas feed (reducing/oxidizing). These properties were not affected by 

the presence of water vapor in the gas feed, which is a sign of good hydrothermal stability.  
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Sammendrag 

Fotokjemisk smog og dårlig luftkvalitet er et økende problem i mange av verdens byer. Det 

forårsaker alvorlige helseproblemer, sur nedbør og forstyrrer det naturlige nitrogenkretsløpet. 

Nitroogenoksider (NOX) er en klasse gasser som forårsaker smog og kommer hovedsakelig 

fra industri, kull- og gassdrevne kraftverk og kjøretøy.
6
 

Siden 1970-tallet har treveis-katalysatoren jevnlig fått forbedret prestasjon rettet mot 

rensingen av utslipp som nitrogenoksider, karbonmonoksid (CO) og hydrokarboner fra  

bensindrevne kjøretøy. En av de største ulempene med den moderne bilkatalysatoren er 

avhengigheten av edelmetallene platina, palladium og rhodium, som ikke bare er veldig 

kostbare, men også sjeldne ressurser. Rhodium er det dyreste og mest sjeldne av de tre og 

mesteparten av metallet som blir utvunnet årlig går til produksjon av katalysatorer.
7
 

En annen utfordring, av lignende størrelsesorden, er at treveis-katalysatoren ikke er i stand til 

å effektivt redusere nitrogenoksider fra dieselmotorer, på grunn av eksosens lave 

konsentrasjon av karbonmonoksid og hydrokarboner. Paradoksalt nok behøves det to 

forskjellige typer forurensende stoffer, reduktanter og oksidanter, for å rense hverandre. På 

grunn av dette har flere alternative katalysatorsystemer sett dagens lys, ettersom 

utslippskravene fortsetter å bli strengere med få års mellomrom. Tungtransport og andre store 

kjøretøy har begynt å ta i bruk selektiv katalytisk reduksjon med ammoniakk (NH3-SCR). 

Disse systemene tilsetter ammoniakk til eksosstrømmen, og lar den fungere som 

reduksjonsmiddel i stedet for hydrokarboner og CO. Utviklingen av denne teknologien har 

vært et stort gjennombrudd for demping av NOX-utslipp i transportsektoren, men er vanskelig 

å implementere i personbiler.   

Midt på 1990-tallet ble silikoaluminofosfater med kobberinnhold foreslått som en mulig 

katalysator for deNOX-prosessen i dieselbiler.
8
 Mye av potensialet ligger i kobber-metallets 

pris og tilgjengelighet, som er å foretrekke fremfor edelmetaller. Spesielt den mikroporøse 

SAPO-34, en type molekylær-sil, besto kravene om å være både katalytisk aktiv og stabilt 

under de harde betingelsene. Et betydelig problem dukket likevel opp, nemlig begrensningene 

i massetransport gjennom porene i mikroporøse materiale. Denne egenskapen kan begrense 

både katalytisk konversjon og katalysatorens livstid, som begge er ufravikelige krav til et slikt 

system. For å forbedre diffusjonsbegrensningene, ble det eksperimentert med mer komplekse 
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poresystemer på 2000-tallet. Innføringen av sekundære porenettverk av større diametre, inne i 

de mikroporøse partiklene, viste seg å besitte betydelig bedre egenskaper i kobber-

innholdende zeolitt-typer rettet mot deNOX-prosessen.
9
 SAPO-34 har også hatt stor fremgang 

som følge av bimodale poresystemer for industrielle formål.
10

 Bimodale og multimodale 

poresystemer kalles gjerne hierarkiske materialer, på grunn av den stegvise oppbygningen.  

Formålet med denne oppgaven er å syntetisere hierarkisk SAPO-34 og analytisk utforske 

materialet for å oppnå mest mulig kunnskap om poresystemet så vel som andre viktige 

egenskaper ved den. En rekke teknikker har blitt tatt i bruk for å utføre dette, inkludert 

Røntgen-diffraksjon (XRD), termogravimetrisk analyse (TGA) og N2-fysisorpsjon. En mer 

uvanlig metode til dette formålet, deponering av koks på materialene har også blitt studert. 

Deponeringen ble etterfulgt av mikroanalyse av koksmengder og de tidligere nevnte 

teknikker. En vurdering av informasjonen fra de forskjellige teknikkene med hensyn på 

påvisning av hierarisk porøsitet vil også bli diskutert. 

I tillegg har kobber blitt tilsatt til både hierarkisk og konvensjonell SAPO-34 slik at de kan 

sammenlignes i forhold til ytelse mot selektiv katalytisk reduksjon. Dette inkluderer testing av 

egenskaper som aktivitet, temperatur-avhengighet og hydrotermisk stabilitet. For å grundig 

studere tilstandene til det aktive kobberet i reduserende og oksiderende miljø ble Røntgen-

absorpsjonsspektroskopi (XAS) benyttet. Kobberets rolle i den katalytiske reaksjonen er 

avhengig av dens evne til alterner mellom to forskjellige oksidasjonstilstander, som hver 

dekker forskjellige trinn i den katalytiske reaksjonssyklusen. XAS muliggjør observasjonen 

av disse oksidasjonstilstandene, så vel som antallet av og identiteten til de nærmeste nabo-

atomene til Cu, samtidig som redoks-reaksjonene pågår. To faktorer er særlig viktige med 

hensyn på kobberets rolle; reversibelhet av tilstander i en red-oks syklus og grad 

reduserbarhet da Cu(I) ofte blir ansett som særlig aktivt. Disse to faktorene vil bli testet også 

etter tilsats av vanndamp i fødegassen, en parameter har vist seg å være desktruktiv på kobber 

katalysatorers effektivitet. 
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1. Introduction 

 

Photochemical smog and poor air quality is an increasing problem in many of the world’s 

cities. It causes several severe health problems, acid rain, and disturbs the natural nitrogen 

cycle. Nitrogen oxides (NOX) are a class of gases which cause smog formation, and come 

mainly from industry, coal- and gas-fired power plants and road vehicles.
6
  

Since the 1970’s the automotive three-way catalytic converter has become increasingly 

efficient in the cleaning of emissions of nitrogen oxides, carbon monoxide and hydrocarbons 

from vehicles powered by gasoline. One of the major drawbacks concerning the modern 

catalytic converter is the utilization of precious metals platinum, palladium and rhodium, 

which are not only expensive but also scarce resources. Most of the world’s Rh consumption 

is spent in catalyst production.
7
  

Another, equally challenging feature, is that the three-way converter is inefficient for cleaning 

nitrogen oxides from diesel engines, because the exhaust gas contains low concentrations of 

hydrocarbons and CO. As quite the paradox, pollutants of different types, reductants and 

oxidants, are required to clean each other. Therefore, several alternative catalyst systems have 

arisen as a response to increasingly stringent restrictions on emissions. For heavy-duty 

vehicles the ammonia selective catalytic reduction (NH3-SCR) systems have become widely 

available. These systems add ammonia to the exhaust, which acts as a reducing agent to 

compensate for the lack of other reductants. This has been a big breakthrough for NOX-

abatement, but it is difficult to implement in regular-sized cars, calling for other solutions. 

In the mid-1990’s silicoaluminophosphates containing copper was suggested as possible 

catalysts for the deNOX process in diesel cars.
8
 Much of the material’s potential lies in the 

price and availability of copper, which is preferable to the currently applied noble metals. 

Specially, the microporous SAPO-34 type molecular sieve proved to be both active and stable 

under the harsh conditions. One significant problem, however, is mass transfer limitations 

associated with microporous materials. These limitations can have adverse effects on both 

catalytic conversion and catalyst lifetime. To ameliorate the diffusion trouble, research on 

adding meso- and macroporosity to the microporous system began in the 2000’s. Introduction 
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of secondary pore networks of larger sizes within the microporous particles, called bimodal or 

multimodal pore systems, proved effective for other copper containing zeolitic compounds in 

the deNOX process.
9
 SAPO-34 has also seen progress with the utilization of bimodal pore 

systems for industrial purposes.
10

 Such kinds of bimodal and multimodal pore systems are 

called hierarchical materials.  

The purpose with this thesis is to successfully synthesize hierarchical SAPO-34 and 

analytically investigate the material in order to obtain extensive knowledge about the pore 

system as well as other important qualities inherent to it. Several techniques have been 

utilized in order to confirm meso-, and/or macroporosity, including X-ray diffraction, 

thermogravimetric analysis coupled with differential scanning calorimetry, and N2-

physisorption. A less common method which has been applied is coke deposition on the 

material in combination with elemental microanalysis and the above-mentioned techniques.  

In addition, copper has been added to hierarchical and conventional SAPO-34 in order to 

compare the two with respect to performance in selective catalytic reduction using propene as 

a model reductant. This includes activity testing, temperature dependence of activity, and 

hydrothermal stability. In order to closely inspect the states of the active copper species in 

reducing and oxidizing environments, X-ray absorption spectroscopy (XAS) has been applied. 

The role of copper in the catalytic reaction depends on its ability to alternate between two 

different oxidation states reversibly, which are responsible for different steps in the catalytic 

reaction cycle. XAS enables the probing of these oxidation states, as well as the number and 

identity of the nearest neighboring atoms to Cu, during the course of redox reactions.  
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2 Theory 

 

2.1. Air pollution 

The earth’s population is growing, and with it the number of factories, power plants and cars 

on the road. A direct effect of this is the increasing problem of poor air quality in cities around 

the world. The atmospheric pollution is attributed to the emission of several species, among 

them carbon monoxide, hydrocarbons, sulfur dioxide, particles, and most relevant for this 

thesis, NOx.
6
 

NOx is a collective term for the colorless and odorless NO, and the pungent, red-brown NO2. 

Both of the two gases are harmful; however NO2 is by far the most toxic. It causes 

inflammation of lung tissue for weeks and months, and can, depending on exposure time and 

concentration, result in death. NO is not quite as toxic, but will attach to hemoglobin in blood 

in the same manner as CO, and hinder oxygen transport efficiency. NOx is one of the three 

ingredients necessary for the formation of photochemical smog, along with hydrocarbons and 

ultraviolet light. Photochemical smog is indicated by the formation of ozone and other 

oxidants in the air, and is recognized by reduced visibility, eye irritation, cracking of rubber 

and deterioration of materials.
6
 

 

Figure 2.1: Beijing on a smoggy day. Photograph by Feng Li/Getty Images
11

. 
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Several sources contribute to the emission of NOx. According to Roy and Baiker et al. more 

than 30 % comes from road traffic in European countries and roughly 40 % from the 

transportation sector in the USA.
12

 Industry and power production also contribute a great deal. 

The main sub-source of NOx in the road traffic category consists of diesel vehicles which run 

on a lean-burn gas mixture, i.e. a high air/fuel ratio (>14.7). Under these oxidizing conditions 

the traditional three-way catalytic converter is not efficient for NOx reduction. This is not a 

problem with the gasoline engine which runs on a stoichiometric mixture (air/fuel=14.7).  

 

2.2. Catalysis 

2.2.1. Principles of catalysis 

A catalyst is a substance which accelerates a chemical reaction without itself being consumed. 

This field of study can roughly be divided into two different categories; heterogeneous, where 

the reactants and catalyst are in different phases, and homogeneous where they are in the 

same phase. This thesis will only deal with the matters of heterogeneous catalysis, in which 

the catalyst is generally a solid, while the reactants can be either gaseous or liquid.
13

 

 

Figure 2.2: Schematic of general catalytic reaction compared to the same reaction in the gas phase. 

As mentioned, catalysts accelerate chemical reactions, while the thermodynamic conditions 

remain unaltered. Breaking the bonds between atoms in the gas phase is often a process 



 

5 

 

requiring extremely high activation energies. In heterogeneous catalysis gaseous or liquid 

reactants are adsorbed on a surface, providing them with an alternative, more complex route 

to react and become the desired product. The goal of catalysis is for this route to obtain 

activation energies of minimal proportions. In heterogeneous catalysis this route is formed by 

way of adsorption of the reactants on the surface of the catalyst where they may react and 

subsequently desorb (Figure 2.2). Once the product desorbs the catalyst is reactivated and 

again becomes receptible for another reaction.
13

 

Heterogeneous catalysts are tailored specifically for the chemical reaction in question, and 

must fulfill several requirements in order to be deemed economically viable as commercial 

applications in the fields of chemical industry, petroleum refinement, exhaust cleaning, power 

production, etc. The basis for any catalyst is that it must exhibit a high activity of conversion 

of reactants towards the desired product. This factor is also intertwined with the selectivity of 

the reaction. Depending on the number and complexity of different reactants, the resulting 

products can vary between many different compounds. It is also very important that any 

byproducts produced do not deactivate the catalyst in any way, and if this should be the case, 

a simple method of regenerating the catalyst would at the least have to be developed. If the 

probability of catalyst poisoning is high, the lifetime will generally be short, and this is a 

problem with respect to both the price of the catalyst and resulting downtime of the reactor 

while the catalyst is being changed. There must always be a balance between activity, lifetime 

and the cost of the catalyst in order for it to be useful in practical, mass-producible 

applications.
14

 

Since many catalytic reactions take place under conditions of high temperatures and 

pressures, sometimes large pressure drops from one end of the catalyst to the other, it is 

important that the catalyst has high mechanical and thermal stability to avoid crushing, 

attrition, sintering of metals. High chemical and hydrothermal stability is also critical in many 

processes due to the harsh chemical environments and/or presence of high P/T steam.
14

 

Solid catalysts can take many forms and for the sake of simplicity the more elaborate systems 

will not be dealt with here. Typically modern catalysts consist of an active phase where the 

chemical reaction takes place, a support material with high surface area which stabilizes the 

active phase and a promoter for improving catalyst properties such as activity, selectivity, 

resistance to poisoning, etc. The active species in heterogeneous catalysts are in most cases d-
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band metals and metal oxides, while the support is often highly stable metal oxides, such as 

SiO2, Al2O3 or ZrO2. The support material is at the center of this thesis and will be dealt with 

in detail. The promoters however are not of great importance in this work.
14

 

 

2.2.2. The automotive catalyst 

The restrictions on vehicle emissions have become increasingly stringent over the past twenty 

years and in 2014 a new and more ambitious standard, the Euro 6,
15

 is put into effect. The 

new emission restrictions will put even more pressure on automobile manufacturers to better 

their exhaust clean-up systems for removal of CO, NOx, hydrocarbons and particles.  

Most combustion engines carry the same basic exhaust system. After each combustion 

reaction the polluting gases are pushed out of the cylinder, through the exhaust manifold to 

the catalytic converter. Most cars on the road today are also equipped with one or two λ-

probes
7
 which measure the oxygen content after combustion. No further detail will be given to 

the mechanics aspect, as the focus will be on the catalytic converter.  

For gasoline vehicles a “Three-way Catalyst” is installed and generally this is very effective 

for cleaning the pollutants in question. This is partly because the gasoline engine runs on a 

stoichiometric air/fuel ratio of 14.7, which balances the amounts of oxidizing and reducing 

species. The commercial Three-way converter consists of Pt, Pd and Rh (active phase) 

dispersed over an Al2O3 support. It is called a Three-way converter because of the three 

chemical reactions taking place simultaneously on the catalyst, which are listed in Table 2.1. 

Table 2.1: The reactions in a three-way catalyst.
7
  

Reaction Most efficient catalysts 

CO + O2 → CO2 Pt, Pd 

CxHy + O2 → CO2 Pt, Pd 

NO + CO → N2 + CO2 Rh, Pd 

 



 

7 

 

This combination of catalyst species and thermodynamic conditions enables the three-way 

catalyst to effectively clean all pollutant gases even though this is possible only within a very 

narrow operating window. The challenge concerning diesel vehicles (and stationary sources) 

is that the diesel engine runs on a lean mixture, i.e. air/fuel >14.7. As a consequence the 

reducing species (CO and remaining hydrocarbons) are oxidized by O2 before they have a 

chance to reduce NO to N2. Therefore diesel cars are generally equipped with catalysts 

containing only Platinum and Palladium, leaving the NOx issue unaddressed.  

 

2.2.3. Selective catalytic reduction (SCR) 

A major obstacle concerning possible catalysts for diesel-engines is the very wide operational 

range. Exhaust temperatures vary from 100-200 °C during idling to 500 °C or more at full-

throttle.
15

 The oxygen concentration also varies from 3-20% depending on the mode of 

operation, and a SCR-catalyst would have to reduce NO and NO2 selectively to N2 throughout 

this wide parameter window. In addition it would need to withstand the water vapor (2-15%), 

which is inevitably present in all hydrocarbon combustion effluents. It is because of all this 

that a deNOX catalyst with sufficient efficiency and flexibility across the whole operating 

range of the lean-burn engine has not yet been developed.
15

  

The three main technologies for NOX abatement from mobile lean-burn sources being 

performed research on are: direct NO decomposition, NOX storage and/or reduction (NSR) 

and selective catalytic reduction (SCR).
15

 Direct NO decomposition into N2 and O2 does not 

require any additional reducing agents. ZSM-5 ion-exchanged with copper is recognized as 

among the most active for this reaction, but unfortunately also exhibits poor stability in the 

presence of water at high reaction temperatures.
16

 NOX storage reduction is based on 

alternating between lean (oxygen-rich) and rich (fuel rich) conditions. The lean cycles are 

long and allows the hydrocarbons and CO to be oxidized while NO is stored on basic sites on 

the catalyst e.g. barium. Each lean cycle is followed by a short pulse of rich feed containing 

residual fuel species which reduce NO.
15, 17

  

Selective catalytic reduction generally refers to the addition of ammonia (NH3) or urea to the 

exhaust feed from an external tank, which acts as a reductant on NO.
15

 The ammonia-SCR 

technology is practical for stationary NOX sources and implementable on heavy-duty vehicles, 
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however, not very well suited for passenger cars. It requires an additional tank filled with the 

reducing agent, and there’s also a risk of ammonia slip to the environment. This technology 

therefore relies on the driver’s concern for the environment, because the urea/ammonia tank 

also requires frequent refills. NH3-SCR is, however, not the only promising SCR technology. 

Selective catalytic reduction with hydrocarbons (HC-SCR) applies residual hydrocarbons in 

the exhaust as the reductant. HC-SCR has been studied since the mid-1990’s, and copper on 

silicoaluminophosphates was early depicted as a viable possibility.
8, 18, 19

  Cu-ZSM-5 has very 

high potential in terms of catalytic activity, but the material suffers from the same problems in 

SCR, as are present in direct decomposition. Hydrothermal stability is an important factor also 

with this reaction. The deactivation of Cu-ZSM-5 is frequently studied,
5
 but a more stable 

alternative is needed, and silicoaluminophosphates have exhibited good hydrothermal stability 

for other reactions.
20
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2.3 Materials 

Zeolites are defined as crystalline, microporous aluminosilicates, and some types can be 

found in nature, while others are only synthesized in the laboratory.
21

 If a crystalline, 

microporous structure contains other elements than Si, Al and O it is defined as a zeotype. 

The framework structures are built as segments of tetrahedrally coordinated T-atoms, most 

commonly Si, Al and P, each bound to four oxygen atoms. The T-atoms therefore constitute 

the corners of the structures, while O-atoms function as bridges. Notably, these structures are 

defined by the formidable ring sizes which are large enough to be permeable to molecules. 

Even 14—ring (ring consisting of 14 tetrahedra) zeolites have been synthesized making 

possible reactions with large organic molecules.
22

 In synthesis the key to creating a desired 

homogeneous crystalline phase is the choice of template, or organic structure-directing agent 

(OSDA). These are large bulky molecules, often containing amines, which force the 

crystalline structure to form around them. Once the material has solidified, the template 

molecules can be desorbed and combusted in air at high temperatures, leaving only the 

inorganic temperature-stable framework. Due to the large internal surface, many 

zeolites/zeotypes exhibit specific surface areas in the range of 400-600 m
2
/g.  

Within the bounds of the same crystalline structure, the molar composition of T-atoms can be 

varied extensively. The common zeolite ZSM-5 is produced with SiO2:AlO2 ratios from 20 to 

280.
23

 Among other properties, the composition has a profound effect on the acidity of the 

substance. Brønsted acid sites arise from the charge difference between the T-atoms, e.g. 

Al(III) and Si(IV). The resulting negative charge can be neutralized by adding a cation, such 

as the proton displayed in Figure 2.3 (right).   

 

Figure 2.3: Pore system of 8-rings in the zeotype SAPO-34 (left).
1
 The blue atoms indicate T-atoms. A 

Brønsted site is displayed as result of different-charge T-atoms (right). 
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Brønsted acidity is one of the properties (along with shape selectivity) which make zeolites so 

well suited for its many applications, such as catalytic cracking of aromatics 
21

, ion-

exchangers in detergents,
24

 membranes for separation of CO2/CH4,
25

 etc. Ion-exchange will be 

dealt further attention specifically in section 2.3.3 as this is critical for the experimental work 

performed in this thesis.  

 

2.3.1. SAPO-34 

SAPO-34 is a zeotype consisting of Si, Al and P tetrahedral atoms and O as bridge between 

all T-atoms. Several different SAPO structures exist, and SAPO-34 shares topology with the 

mineral chabazite (CHA).
26

 It is deemed a small-pore zeotype, with a micropore diameter of 

0.38 nm ∙ 0.43 nm.
27

 The framework consists of distorted hexagonal prisms connected by 

four-membered rings, resulting in large, oval cavities called cages. Each cage is connected to 

6 other cages through 8-member oxygen rings, and these rings determine the pore diameter. 

The size of the cage is 0.75 nm in diameter and 0.82 nm high.
28

 The pore structure is three-

dimensional.  

 

Figure 2.4: Cage structure (left) and supercell (right) of the chabazite topology. 
29

 

The SAPO-34 material is frequently studied and well-understood, and a multitude of patents 

on the synthesis and application exist.
30-32

 The majority of patents and scientific work on this 

zeotype and the analogous chabazite has been performed with respect to the methanol-to-

olefin (MTO) catalytic reaction. Specifically, SAPO-34 has proven to be an excellent catalyst 

for the conversion to the lighter olefins (oligomers) ethylene, propylene and butylene. In 
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particular the small size of the pores provides a high degree of shape selectivity, excluding the 

release of larger molecules from the cage.
33

  

Wilson et al. has reported that SAPO-34 has moderate acid strength.
28

 Acid site density is not 

universally dependent on Si content, because the Si form varies throughout samples. Within 

the same sample Si might be present both as single sites, which is necessary to retain acid 

sites, and Si island formations. Since Si only produces acid sites in the conjunction with P, the 

matter on the inside of the Si islands will be useless in this respect. For samples low in Si, 

however, the presence of Si is for the most part of the single site type. For this thesis only low 

Si SAPO-34 samples have been produced, and the single site can therefore be assumed.  

 

2.3.2. Hierarchical SAPO-34 

Materials such as zeolites and zeotypes tend to have relatively large surface areas due to their 

porous nature. Most of this surface area is situated on the inside of the structure while a small 

fraction is displayed on the external surface. The pores are categorized by their widths
34

 as 

seen in Table 2.2. Hierarchical materials are structures containing both micropores and 

mesopores,
35

 which could potentially give beneficial diffusion properties.  

Table 2.2: The different pore categories defined by size. 

Type of pore Pore width 

Micropore < 2 nm 

Mesopore 2 - 50 nm 

Macropore > 50 nm 

 

Two of the main problems occurring in microporous materials during catalytic reactions are 

poor diffusion properties hindering over-all conversion, and inter-relatedly the deposition of 

carbonaceous species, or coke, which leads to pore clogging. Especially small-pore zeotypes 

such as SAPO-34 struggles with these challenges,
36, 37

 and since the 1990s several methods 

have been developed in attempts to ameliorate the effects.
4
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If the catalytic activity is of a reasonably high magnitude, mass transfer will usually become 

the limiting factor in microporous catalysts, cancelling out the advantage that comes with high 

specific surface area, and any other efficiency-inducing factors. Diffusion, which is the main 

mechanism of mass transfer, is vital for applications in catalysis as the overall rate of reaction 

is only as fast as its slowest step. Molecule diffusion in intracrystalline pores is inherently 

slow, and consequently only the outer regions of catalyst particles will partake in the 

conversion. The main factors of porous diffusion in particles is explained by the Thiele 

modulus in the equation,
4
 

Φ = (rintrinsic/rdiffusion) = L ∙√(kv/Deff)  , 

where L is the diffusion length, kv is the intrinsic rate coefficient and Deff is effective 

diffusivity. When the Thiele modulus is high much of the catalyst particle is rendered 

unutilized, while at Φ close to 0, the entire particle is made use of. According to this formula 

there are two ways to improve mass transfer, the first is to decrease diffusion length and the 

other is to increase the degree of diffusivity, which most commonly involves modifying the 

pore system.  

In order to decrease the diffusion length, L, one can either decrease the particle size or apply a 

thin layer of microporous material onto a mesoporous or macroporous support.
4
 Nanosized 

SAPO-34 particles have been synthesized with microwaves in colloidal solutions,
38, 39

 and it 

was found that catalyst lifetime was improved as a function of this. Also application of a 

SAPO-34 membrane onto a meso/macroporous support has been performed,
40

 resulting in a 

composite material.  

The intracrystalline molecular diffusion is analogous to the gridlock of traffic in large cities, 

with conflicting paths of vehicles moving towards different directions, in the same manner as 

reactants entering catalyst particles while products are attempting to exit. A solution to the 

traffic diffusion problem, which has been introduced to many cities, the superhighways, might 

also be a suitable method for improving the diffusional properties of zeolites and zeotypes. In 

practice this involves creating internal mesopores in the microporous particles, either during 

or after the crystallization process. The chemical reaction still takes place in the micropores, 

where the active catalyst phase is present, but accessibility of pore area is improved. 

According to Kustova et al.
9
 the introduction of mesopores into Cu-ZSM-5 and Cu-ZSM-11 
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represented a substantial improvement on catalytic activity towards direct NO decomposition, 

which is directly related to this project.  

The two methodical categories are classified as bottom-up and top-down.
4
 The top-down 

approach generally involves performing post-synthesis procedures on zeolites. Desilication is 

a method which uses alkaline solutions to withdraw Si-atoms from the framework, thereby 

creating mesopores within the crystal. With SAPO-34 and other silicoaluminophosphates, 

however, it is a problem which can occur during regeneration conditions, where coke is 

burned in the pores, creating steam from the combustion reaction.
41, 42

 Si islands can be 

formed and the amount of Brønsted acid sited decreases. It has been reported that SAPOs 

react to desilication in different manners than zeolites.
43

 While zeolite stability seems to 

benefit from desilication, it can be detrimental to the stability of SAPO-34.  

Because of the above-mentioned reasons it is desirable to investigate the possibilities of 

producing a hierarchical (bimodal) pore system with well-defined pores through the bottom-

up approach. Synthesis of hierarchical SAPO-34 has been performed using different 

templates. In 2005, cross-linked polyacryliamide (C-PAM) was used as template to produce 

submicron-sized SAPO-34 particles which exhibited porosity in the meso- and macro-

regime.
44

 A template-free synthesis method was reported in 2009 which utilized the natural 

layered material kaolin as supplier of both silica and alumina.
10

 This one-step synthesis could 

have tremendous potential with respect to the economic aspects, considering the simplicity of 

the recipe. The mesopore diameter was found to be in the range 30-40 nm, and the results 

were indicative of slit-shaped pores. The use of microwave technology during synthesis of 

nanosized particles has also been used to reduce crystallization times from several days to 

only a few hours.
3
  

 Hard templates such as carbon nanoparticles and carbon nanotubes have also been added to 

the synthesis mixture in order to create a bimodal pore structure in SAPO-34 crystals.
27

 It was 

found that only the nanotubes caused a mesoporous network which is accessible from the 

outer regions of the particle, resulting in highly improved diffusional properties and 

deactivation rates during MTO reaction. The nanoparticles (d=20 nm) had no effect on the 

catalytic properties, on account of the isolated mesopores only being accessible through 

micropores.  
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Recently Cui et al.
45

 prepared samples with different mesopore volumes correlated to the 

amount of template, in this case polyethylene glycol (PEG, average mol. weight=2000 g/mol). 

This is a one-step procedure, and a supramolecular nanocrystal self-assembly mechanism is 

proposed. In theory the PEG molecules form micelles which the nanocrystals aggregate upon. 

The mean mesopore diameter was found to vary slightly from sample to sample, between 10 

and 25 nm. Crystallinity had been impinged on in hierarchical samples, but they were clearly 

phase-pure, and the effect on acid density seemed to be minimal.   

Dry gel conversion was performed by Yang et al.
2
 in 2010, which might be considered a 

backwards method of producing hierarchical materials. This procedure is more common in 

introducing mesoporosity to Zeolite Beta
46

 and MFI-type zeolites.
47

 In principle, an 

amorphous, meso/macroporous silicoaluminophosphate is initially prepared with the use of 

the template polyethylene oxide (PEO, 1,000,000 average mol. weight) which is essentially 

the same molecule as PEG (mentioned above), except that chain lengths are longer. The 

formation mechanism of the amorphous SAPO is called spinodal decomposition, which is a 

type of phase separation that happens homogeneously throughout the synthesis mixture.
48

 

Parameters such as template/Al ratio are critical for tuning the synthesis so that the phase 

separation happens at the same time as the sol-gel transition. After a gelation period, ambient 

drying and calcination follows, afterwhich the dry, carbon-free gel is impregnated with the 

TEAOH template and subjected to steam treatment. During this step the micropores are 

created. According to the results both mesopores and macropores of sizes ~4 nm and ~6 μm, 

respectively, are present in the samples. In combination with the 0.38 nm micropores inherent 

in the SAPO-34 structure, this synthesis procedure could be considered to produce a 

multimodal pore system, containing pores in the micro-, meso- and macro-regime. Likewise 

to the others, this hierarchical SAPO-34 system showed improved diffusional properties and 

deactivation rates, but a major drawback is the number of steps, and many days, required 

before a complete catalyst is ready. This makes the synthesis, although elegant in its own 

right, quite unsuitable for commercial purposes. Although, the latter argument could be used 

about using noble metals in catalysts too, but the situation still stands.  
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2.3.3. Cu introduction 

There are three main methods of introducing Cu and other cations into zeotypes: ion-

exchange, impregnation and incorporation. Impregnation is not included in this thesis and will 

not be covered here.  

Ion-exchange is a large and well-documented field; however the basic principle is quite 

simple. The Brønsted acidic sites (H
+
) are exchanged for cations, most often in basic solution. 

Several variations of the procedure has been performed, among others solid state ion-

exchange of Cu(II) onto SAPO-34,
49, 50

 and hydrothermal ion-exchange of Cu(II) onto AlPO-

5.
51

  

The possible cation sites in the SAPO-34 structure is displayed in Figure 2.5.
26

 Computational 

chemistry has shown that the adsorptive properties of NO on Cu are strongly dependent on the 

position of Cu in the framework.
52, 53

  Monovalent Cu substitutes one acid site, and divalent 

Cu substitutes two, however, stability of the Cu position is promoted by close proximity to 

framework negative charges.  

 

 

 

Figure 2.5: Cation sites in the SAPO-34 cage. The sites are  denoted by roman numerals.
26

 

Incorporation of cations into the framework of zeotypes is can be performed by adding the 

metal directly into the initial synthesis mixture. Theoretically, the cation would take the place 
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of a tetrahedral atom, bound to four oxygen atoms, also known as an isomorphous 

substitution. Replacing aluminum with a divalent transition cation also yields an acid site. 

However, characterization of the incorporated metals is generally difficult. Martínez-Franco 

et al.
54

 synthesized incorporated Cu-SAPO-34 directly using a Cu-template complex in the 

initial mixture. The synthesis gave good control of the amount of copper in the sample, and 

the material also performed well for NH3-SCR of NOX.  
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2.4. X-ray Absorption Spectroscopy (XAS) 

XAS is an element-specific bulk sampling technique which provides information like valence 

state, site geometry, neighbouring elements, coordination number and shell distances. XAS 

requires an intense and energy-tunable X-ray source,
55

 and is an established synchrotron 

technique. Many scientific fields have seen advances due to the application of this technique, 

and especially catalysis research, has benefited greatly. Party, the reason for this is that XAS 

is able to provide information on structural and electronic properties during reaction 

conditions (in-situ).
56

 While many techniques require ultra-high vacuum, XAS is able to study 

heavy elements, e.g. transition metals in gas and liquid. Another important advantage is that 

no long-range order is required in the samples to be inspected, making it possible to 

investigate amorphous materials, small metal clusters
57

 and even single site metal species 

such as ion-exchanged copper.
51, 58, 59

 These two features in combination make X-ray 

absorption spectroscopy very well-suited for material research towards catalytic applications.  

 

2.4.1. Synchrotron light source 

 

Figure 2.6: Lay-out of a synchrotron, including linear accelerator (linac), booster synchrotron, storage 

ring and beamlines. 

Figure 2.6 displays the vital parts of a synchrotron.
60

 The linear accelerator (linac) within the 

circle produces electrons in the form of bunches, and accelerates them to speeds high enough 

to enter the booster synchrotron, where they are accelerated nearly to the speed of light. A few 

times a day the booster synchrotron opens in order to refill the large storage ring with 

electrons. The storage ring is a large circular vacuum tube for the electrons to travel through, 
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and they can fly around it for hours before refilling is needed. Along the storage ring are 

several magnets with different purposes, but mainly there are three types: focusing magnets, 

bending magnets and undulators (or insertion devices). The focusing magnets keep the 

electrons flying close to their ideal orbit within the ring. The main task of the bending magnet 

is to bend the beam of electrons so that they move around the circle instead of straight 

forward, and this bending produces radiation when electrons are forced to change direction. 

Undulators force the electron to move back and forth laterally to the original trajectory and 

henceforth produce a highly focused and bright beam of X-rays which can be tuned to desired 

energies. The white beam produced from bending magnets and undulators is sent to individual 

beamlines. Before entering the experimental hutch where scientific experiments are 

performed, the “white light” (continuous-spectrum radiation) produced passes through an 

optics hutch. The optics hutch contains a set of slits and monochromators tailored to reduce 

the white light into a beam of light in the X-ray regime with known size and intensity, and 

energy levels which can be controlled continually at the request of the scientist.  
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2.4.2 X-ray absorption  

X-ray absorption relates to the photoelectric effect where a core-level electron is ionized by 

the incoming X-ray exhibiting energy equal to, or higher, than the electron binding energy. 

The resulting drop in transmitted X-ray intensity through the sample due to absorption from 

the atom is detected. Figure 2.7 shows the XAS spectrum divided into the two regions, 

XANES and EXAFS. X-ray absorption near-edge structure (XANES) provides information 

about valence state and local site symmetry of the absorber, while extended X-ray absorption 

fine structure (EXAFS) can yield atomic distances, number of surrounding atoms and identity 

of the nearest atoms.  

 

Figure 2.7: The XAS spectrum is divided into the XANES region, before and around the absorption edge, 

and the EXAFS region, from the edge to the end of the spectrum.
55

 

 

2.4.3 XANES 

The position of the absorption edge, E0, is dependent on the valence state, and increases for 

more positive states. Copper metal (foil) has a K-edge (1s) at 8979 keV, which is within a 

practical energy range because only a small amount of the beam is absorbed by air. Copper 

species have the drawback that the true E0 is often obscured by the pre-edge and/shoulder, 

however, these features can be very useful indeed for detecting the different valence states. 
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Figure 2.8 shows the XANES regions of four of the Cu model compounds most commonly 

used in comparison to synthesized samples.  

Pre-edges are transitions of core-level electrons to bound, unoccupied states. They can be 

observed at lower energies than the absorption energy, and are present in all the models 

compounds shown below. The very characteristic pre-edges of metallic Cu-foil and 

monovalent Cu(I) arises due to a 1s-4p transition. The 3d orbital is completely filled for both 

of these states, and thus the 4p orbital is the lowest unoccupied orbital. Divalent model 

compounds CuO and Cu(OH)2 exhibit pre-edges which are barely visible at 8977 eV.
61

 The 

3d orbital is not completely filled, and a 1s-3d transition is therefore possible. The reason why 

the pre-edge are so small is that they are forbidden by the Laporte selection rule, which states 

that for site symmetries possessing an inversion center (i), electronic transitions must change 

spin states. CuO and Cu(OH)2 are of tetragonally-distorted octahedral geometry, and thus 

centrosymmetric (i), which forbids the transition.
62

 It is the rise of the 1s-4p transition pre-

edge which identifies reduction of Cu(II) to Cu(I), and enables qualitative analysis of the 

fraction of valence states.  

 

Figure 2.8: The XANES spectra of model copper compunds. 
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2.4.4 EXAFS 

Figure 2.9 illustrates the single-scattering events of the photoelectron from the absorber (A) to 

the neighboring atom (B) which backscatters it back again. The photoelectron first moves as a 

spherical wave from the absorber, A (left), and is subsequently backscattered from the 

surrounding atoms (right). This creates an interference pattern with constructive and 

destructive sections, which causes the sinusoidal shape of the absorption curve in the EXAFS 

region.
56

 

   

Figure 2.9: The ejection of the photoelectron and the backscattering process causing EXAFS.  

The fine structure function, χ(E), determines the oscillations in the EXAFS region: 

 

μ(E) is the measured absorption coeffiecient, μ0(E) is a smooth background function, and 

Δμ(E) is the height of the jump. Beacause of the photoelectron wave behavior of the EXAFS 

the X-ray energy is converted to the wave number of the photoelectron, k: 
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E0 is the absorption energy, m is the electron mass, and ћ is the reduced Planck’s constant. 

χ(k) is the sum of all sinusoidal waves with different frequencies due to backscattering from 

several coordination shells. χ(k) is descrbed by the EXAFS equation:
55

 

 

where: 

o j refers to the backscatterer 

o Aj(k) is the total amplitude 

o Nj is the number of atoms in coordination shell j (multiplicity) 

o Rj is the distance from the absorber to the atoms in coordination shell j 

o Fj is the backscattering amplitude from an atom in coordination shell j 

o σj
2
 is the Debye-Waller factor which represents the thermal vibration and static 

disorder for backscatterer j 

o e
(-2R/λ(k))

 is inelastic loss due to the scattering process of neighboring atoms or the 

medium in between. λ is the mean free path of the photoelectron. 

o δj(k) is the phaseshift exhibited on the photoelectron  

 

Before synthesized samples can be refined, model compunds have to be refined in order to 

determine the amplitude and phase shift. These parameters can subsequently be transferred to 

the sample, so that the results, Rj, Nj and σj
2 

can be extracted. The interatomic distance is 

related to the sine wave frequency, while the Debye-Waller factors and multiplicities are 

extracted from the amplitude, Fj.  

The total phase of the backscattered photoelectron wave at the central atom is a product of not 

only the photoelectron travelling the interatomic distance twice, but also of the potentials of 

the absorber combined with that of the scatterer. The potential of the absorber accelerates the 
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photoelectron wave both when leaving and returning, and the backscatterer’s potential also 

accelerates the wave, resulting in a reduced travel time. The time reduction is called the phase 

shift, and the total phase is the kinetic energy of the photoelectron, minus the phase shift.
56

  

The amplitude is only a function of the backscatterer atom, and not of the absorber. It 

generally increases with increasing atomic number, and the position also moves towards 

higher values of k.  
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2.5. Other characterization techniques 

 

2.5.1. X-ray diffraction (XRD) 

X-ray diffraction is a technique most commonly applied to identify bulk crystalline phases. 

The X-rays are emitted from a target which is bombarded with electrons, and they are divided 

into two different categories. When the electrons slow down close to the target a continuous 

background spectrum of Bremsstrahlung is emitted. The other and more interesting category 

consists of narrow lines of monochromatic x-rays. The Cu Kα line has energy of 8.04 keV and 

a wavelength of 0.154 nm, and comes into existence when a primary electron creates a core 

hole which is filled by an electron from the L-shell. When the L-shell electron moves down it 

emits the Kα X-ray.
63

 

 2 sinn d    

X-ray diffraction is based on Braggs law explained by equation 2.X, where n is an integer 

called the order of reflection, λ is the wavelength of the X-rays, d is the distance between the 

lattice planes and θ is the angle between the incoming X-rays and the normal to the reflecting 

lattice plane.  

 

Figure 2.10: Illustration of the elastic scattering of electrons by polycrystalline powder.
63
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The XRD-instrument consists of a stationary X-ray source and a movable detector which 

measures the intensity of diffracted X-rays as a function of 2θ. Figure 2.11 shows the elastic 

scattering of X-ray photons by atoms in a periodic lattice. As seen on the upper right of the 

figure, only a fraction of the particles in a polycrystalline powder will contribute to the 

resulting diffraction pattern. This can be ameliorated by rotating the sample, and thereby 

allowing a larger fraction of particles to contribute and give higher peak intensity.  

XRD is useful as a quick method of fingerprinting crystalline materials due to its deep-

penetrating qualities, but provides little information about the surface, and the presence of 

amorphous phases. 

 

Figure 2.11: Powder XRD pattern of the mineral chabazite as calculated from the Atlas of zeolite 

framework types.
29

 

Figure 2.11 displays the powder diffraction pattern of the zeolite chabazite
29

 which shares 

topology with SAPO-34. The chabazite pattern from a crystallographic database can be used 

in comparison to the diffraction patterns of SAPO-34 samples to establish whether the sample 

is phasepure or not, and also to identify other phases than the desired one.  

XRD cannot be used to distinguish between conventional and hierarchical SAPO-34 since 

they both are defined by the same crystallographic parameters, and exhibit the same peaks in 

the same places.  
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2.5.2. N2 adsorption-desorption isotherms (BET) 

The BET method
64

 named after Brunauer, Emmet and Teller is a well-established means of 

determining the specific surface area of solid materials. The method is based on the principle 

of physisorption of an inert gas onto the surface of the material in question, while measuring 

the pressure. In this thesis only N2 is used as the adsorbate, and the measurements must be 

performed at 77 K which is the liquefaction temperature of N2 at atmospheric pressure. When 

plotting the amount of gas adsorbed and desorbed against the relative pressure (P/P0), where 

P0 is the saturation pressure, an isotherm is observed. According to IUPAC 
34

 the 

physisorption isotherms are divided into six categories of different shapes, and four 

subcategories of hysteresis loops (Figure 2.12) where the gas is desorbed at lower pressures 

than the points of adsorption. 

 

Figure 2.12: The different physisorption isotherms and hysteresis loops.
65

  

From a selection of data points within the linear section of the isotherm, the slope α and 

intersection η are derived by linear regression. These values are inserted into the BET 

equation: 
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where P is the pressure, P0 is the saturation pressure, Va is the total amount of gas adsorbed, 

and V0 is the amount adsorbed in one monolayer. χ is the ratio of desorption rate constants for 

the second and first layer of gas. 

Isotherms of type I and III are unlikely to yield an actual value of the specific surface area, but 

types II and IV are well suited for this purpose. Type I isotherms are most commonly 

associated with microporous structures such as zeolites, while mesoporous structures usually 

exhibit type IV isotherms, where the hysteresis loop is attributed to capillary condensation 

taking place in the mesopores. The shape of the initial part of the isotherm is caused by 

unrestricted monolayer-multilayer adsorption on the external surface or in macropores. 

Hysteresis loops are generally a product mesoporosity, but the difference in shapes 

corresponds to different pore shapes. Figure 2.13 shows that analysis of hysteresis loops are 

not always straight forward with respect to trends in mesoporosity. The calculated mesopore 

volume for PT-0.1 lies between the volumes of PT-0.025 and PT-0.5, even though the 

hysteresis is almost negligible. 

 

Figure 2.13: Hysteresis loops from hierarchical materials with different amounts of template in the 

synthesis mixture, and correspondingly different mesopore volumes. From the work of Cui et al.
45
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The BET theory is based on the following main assumptions:
64

 

 The surface of the material consists of a great number of discrete equivalent adsorption 

sites (a homogeneous surface). 

 At a certain vapor pressure a varying number of molecules are adsorbed on any one 

site. They are stacked on top of each other to form a number of layers. 

 The heat of adsorption and the condensation constant (the fraction of arriving 

molecules per second actually condensing on empty sites) in in all layers above the 

first are the same and equal to those of the bulk liquid.  

 At saturation the number of layers becomes infinite. As a consequence the theory is 

from a theoretical point of view only valid for a non-porous material.  

 A molecule covered by another molecule cannot evaporate.  

 There is no interaction “horizontally” between molecules in different sites. 

 At dynamic equilibrium the number of molecules evaporating from a layer is equal to 

the number condensing on the layer below. 

Physisorption measurements can also be used for determination of pore size distributions, by 

way of the classical pore size model developed by Barret, Joyner and Halenda (BJH).
66

  For 

computation of the pore size distribution, the Kelvin equation is applied. Condensated liquid, 

in this case N2, within the mesopores, will have a meniscus. The curvature of this meniscus is 

directly related to the pore width, and its shape is dependent on the shape of the pore. 

Cylindrical pores will generally cause the meniscus to be hemispherical, while slit-shaped 

pores give rise to a hemicylindrical meniscus.
67

  

One of the most misinterpreted results from N2-physisorption is the tensile strength effect 

(TSE).
35

 It exhibits itself as a narrow peak in the pore size distribution, at 3.8 nm, or roughly 4 

nm for less accurate instruments. The TSE phenomenon is much more common to observe on 

the desorption branch than on the adsorption branch, and is caused by a forced closure of the 

hysteresis loop.   
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2.5.3 TGA-DSC 

Thermogravimetric analysis is a technique which monitors the mass loss of a sample during 

heating in continuous gas flow.
68

 The TGA instrument measures only the mass of the sample, 

however, a mass spectrometer (MS) can offer complementary information by analysis of 

effluent gases. Automatic calculations of the first derivative of mass loss can also be adequate 

to make analysis clearer.  

The differential scanning calorimetry (DSC) which often accompanies the TGA, detects 

whether the reaction taking place in the sample chamber is endothermic or exothermic. 

During endothermic reactions, such as desorption of water, the DSC-peak corresponding to a 

mass loss will point to a more negative value than the normal. Combustion reactions, which 

are exothermic, will show positive peaks.  

Relevant for the project, there are two main categories of measurements depending on what 

type of information is required. Temperature-programmed oxidation (TPO) is performed with 

air- or oxygen-rich flow, to monitor oxidation, e.g. combustion of organic species. TPO can 

be applied to measure coke-deposition or monitor template removal. Temperature-

programmed desorption is performed in an inert gas flow, such as argon, and consequentially 

no combustion will occur. Hence all mass loss happens via desorption of species from the 

surface and pores.  
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3. Experimental 

 

3.1. Synthesis 

3.1.1. SAPO-34 

Conventional SAPO-34 was synthesized by the hydrothermal method. Firstly, all reactants 

were weighed in beakers and immediately covered with parafilm: deionized water (H2O, 

35.50 g), phosphoric acid (H3PO4, 15.42 g), aluminum isopropoxide (Al((CH3)2CHO)3, 

27.210 g), silica (Ludox, 40 wt% suspension in water, 6.00 g) and tetraethylammonium 

hydroxide (TEAOH, 40 wt%, 42.21 g) to yield the theoretical gel composition: 

Al : P : 0.3Si : 0.9TEAOH : 28H2O.  

The phosphoric acid was weighed in a large beaker which was to eventually contain the entire 

synthesis mixture. The beaker was set to stir with a magnetic stirrer and the water was 

carefully added to the acid. The aluminum isopropoxide was added and stirred by hand until 

dissolved enough for the magnetic stirrer to function properly. The mixture was left to stir for 

approximately 1 hour. The silica was then added quickly, and the pH measured to be 3-4. The 

TEAOH was subsequently added and once dissolved the pH was indicated to be 13. The 

mixture was set to stir for 30 minutes whereupon it was divided into two and transferred to 

two stainless steel autoclaves with Teflon liner. Both autoclaves were approximately half full, 

and were heated at 190 °C for 72 hours and 96 hours, respectively. 

The resulting samples were washed with deionized water and centrifuged before being 

transferred to a petri dish and dried overnight at 100 °C. The dry powder was mortared and 

calcined at 550 °C for 17 hours in order to remove the organic species.  

3.1.2. Hierarchical SAPO-34 

Theoretical gel composition: 

Al : P : 0.4Si : 31H2O : 5C2H5OH : 6∙10
-5

PEO : 3PO 

Hierarchical SAPO-34 was synthesized by dry gel conversion of amorphous 

silicoaluminophosphate as described by Yang et al.
2
. Silicoaluminophosphate was prepared 
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by mixing the following substances in the order they are mentioned while stirring with a 

magnetic stirrer: Aluminum chloride hexahydrate (AlCl3 ∙ 6(H2O), 42.70 g), 

tetramethoxysilane (TMOS, 10.00 g), diammonium hydrogen phosphate ((NH4)2HPO4, 23.31 

g), deionized water (H2O, 100.01 g), ethanol (C2H5OH, ~96%, 40.00 g), polyethylene oxide 

(PEO, 1.00 g) and propylene oxide (PO, 26.00 g) to yield the theoretical gel composition: 

Al : P : 0.4Si : 31H2O : 5C2H5OH : 6∙10
-5

PEO : 3PO. 

The resulting gel was transferred to two identical plastic centrifuge tubes and sealed. The 

tubes were left to gelate at 60ºC for 48 h. The caps were subsequently removed from the tubes 

and the wet gel was left to dry at 60ºC in air for 72 h. The samples were then mortared and 

calcined for 8 h at 550ºC.  

The resulting amorphous silicoaluminophosphate powder was impregnated with 

tetraethyleneammonium hydroxide (TEAOH, ~40%) and transferred to stainless steel 

autoclaves with Teflon liner. Within the autoclave the samples were subjected to steam 

treatment at 200ºC for 72 h. The samples were then centrifuged and washed with deionized 

water, and dried in petri dishes covered with foil over night at 100ºC. Calcination followed at 

550 ºC for 8h to remove the organic structure directing agent from the pores. 

 

3.1.3. Ion exchange 

Six conventional and three hierarchical samples of SAPO-34 were ion-exchanged with either 

copper dinitrate (Cu(NO3)2) or copper tetramine ([Cu(NH3)4]
2
). The total number of samples 

ion-exchanged thus amounts to twenty. The different variations are listed in Table 3.1. 
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Table 3.1: Summary of all ion-exchanged conventional and hierarchical samples, including variable parameters: crystallization time, template, Si:Al ratio, Cu 

precursor and Cu concentration. 

Pore system Sample name Crystal-

lization  

time [hrs] 

Template Si:Al 

molar 

ratio 

[ Cu(NO3)2 ] in 

ion-exchange 

[mol/L] 

[ Cu(NH3)4
2+

) ]  

in ion-exchange 

[mol/L] 

Conventional SAPO34-1 96 TEAOH 0.2 0.03 0.03 

Conventional SAPO34-2 192 TEAOH 0.2 0.03 0.03 

Conventional SAPO34-3 48 DEA 0.2 0.03 0.03 

Conventional SAPO34-4 48 DEA 0.2 0.03 0.03 

Conventional SAPO34-5 72 TEAOH 0.3 0.03 0.03 & 0.015 

Conventional SAPO34-6 96 TEAOH 0.3 0.03 0.015 

Hierarchical H-SAPO34-1 72 TEAOH 0.4 0.03 0.03 

Hierarchical H-SAPO34-2 72 TEAOH 0.4 0.03 0.03 & 0.015 

Hierarchical H-SAPO34-3 72 TEAOH 0.4 0.03 0.03 
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A 250 ml solution of Cu(NO3)2 was made in the concentrations listed in Table 3.1 from a 

Cu(NO3)2∙3H2O salt. This solution was distributed into two beakers in equal amounts. One 

beaker was left unchanged for ion-exchange, while the other was set aside for pH adjustment. 

Concentrated ammonia (NH3) was diluted with deionized water to a concentration of 5 M and 

added dropwise and carefully into the second beaker while stirring. Once the light blue liquid 

had turned dark blue the solution was confirmed to be [Cu(NH3)4]
2+

 by measuring the pH, and 

no more ammonia was added. 15 ml of [Cu(NH3)4]
2+

 was added to one beaker and 15 ml of 

Cu(NO3)2 to another. 0.5 g of zeotype sample was added to each beaker and they were set to 

stir at room temperature for 24 hours. The color difference between the two slurries is shown 

in Figure 3.1. After 24 hours they were washed with deionized water and centrifuged 5-8 

times, before being transferred to a petri dish and left to dry overnight at 100 °C. This is a 

general procedure for all ion-exchanges performed.  

 

Figure 3.1:  Samples in solutions of [Cu(NH3)4
2+

 (0,03 M, left) and Cu(NO3)2 (0,03 M, right) after 24 hours 

ion-exchange. 

 

3.1.4. Incorporated Cu-SAPO-34 

Incorporated Cu-SAPO-34 was synthesized directly by the hydrothermal method as described 

by R. Martínez-Franco et al.
54

. Firstly, tetraethylenepentamine (TEPA, ~99%, 3.41 g) was 

introduced to a beaker. Deionized water (H2O, 2.01 g) and copper(II) sulfate monohydrate 
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(CuSO4∙H2O, 4.49 g) was added to the same beaker while stirring by magnetic stirrer. The 

mixture was left to stir for 2 hours until homogeneity was obtained. 

Deionized water (H2O, 24.18 g) and phosphoric acid (H3PO4, 85 wt%, 9.22 g) was then added 

slowly to the mixture and stirred for 5 min, pH resulting in pH~2. Silica (Ludox, 40 wt%, 

5.40 g) and alumina (Pseudoboehmite, 71.8 wt% Al2O3, 7.10 g) were added simultaneously 

while stirring. Lastly, diethylamine (DEA, 99 wt%, 5.27 g) was added quite quickly. The 

mixture, in liquid form, was transferred to an autoclave with a Teflon liner and heated at 

150°C for 168 hours (7 days). This yielded a theoretical gel composition of: 

Al : 0.8P : 0.36Si : 0.18Cu : 0.18TEPA : 0.72DEA : 18 H2O. 

The resulting gel was centrifuged and washed with deionized water and transferred to a 

beaker. The sample was dried overnight at 100°C in the dish covered with foil. The sample, in 

powder form, was mortared and part of it was calcined in air for 17 hours at 550°C to remove 

the template. 

   

Figure 3.2: Different steps of the synthesis; on the left is the Cu-TEPA mixture while stirring, the middle 

shows the gel after hydrothermal treatment and the right is after washing and drying. 

 

3.2. Characterization 

3.2.1. X-ray diffraction (XRD) 

For XRD-measurements a Bruker AXS D8Focus is used. It uses a Cu Kα X-ray tube and solid 

state LynxEye™ detector and scintillation detector. The measurement parameters include 

angles from 5 to 50º 2ϴ with a slit opening of 0.2 mm and a step size of 0.02º. The counting 

time was 0.1 seconds per step. The X-ray diffractograms were used to identify the crystalline 
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phase, and degree of crystallinity. All SAPO-34 samples were compared to the zeolite 

chabazite (CHA), which is found in the database.  

3.2.2. Inductively coupled plasma mass spectrometry (ICP-MS) 

ICP-MS elemental analyses were conducted by Syverin Lierhagen (IKJ) on a High Resolution 

Inductively Coupled Plasma ELEMENT 2, connected to a mass spectrometer. These analyses 

were performed mainly in order to determine the copper loading in weight percent (wt%) in 

the samples, and partly to see if the fractions of Al, Si and P were in correspondence with the 

theoretical composition in the synthesis mixture.  

Between 20 and 45 mg of sample was weighed out, transferred to a Teflon tube (25 ml) and 

decomposed in concentrated nitric acid (HNO3, 1.5 ml) and concentrated hydrofluoric acid 

(HF, 0.5 ml). The resulting solution was transferred to a larger Teflon canister and diluted 

with deionized water until the entire solution weighed 216.6 g. A 16 ml Teflon tube was 

washed and subsequently filled with the sample solution. Three tubes without sample (blanks) 

were also prepared for correction of the samples.  

3.2.3. TGA-DSC 

NTNU: 

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) was 

performed using a Netzsch STA 449C connected to a Netzsch Aërlosqms 403C mass 

spectrometer. 10-20 mg of as-synthesized sample was heated in synthetic air (80 ml/min) and 

argon (25 ml/min) from 30 to 650 °C at a ramping rate of 5 °C/min. Loss of mass from the 

sample was measured in percent of initial sample, and simultaneously DSC was used to 

measure the corresponding difference in heat. The mass spectrometer detected the individual 

masses of the evaporated species.  

University of Glasgow: 

Samples which had undergone coke deposition during MTO reaction were analyzed with a 

TA Instruments Q500 thermogravimetric analyzer. All samples were analyzed using a method 

of temperature-programmed oxidation (TPO). The samples were heated in argon and air at a 

flow rate of 50 ml/min and ramp rate of 10 °C/min from 20 to 800 °C. Typically 8 mg of 

sample was used. 
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Selected samples were also analyzed with a method of temperature-programmed desorption 

(TPD) without oxygen present. The samples were heated in argon only from 20 to 1000 °C at 

a ramp rate of 10 °C/min.  

3.2.4. N2 adsorption-desorption (BET) 

N2 adsorption and desorption was performed with a Micromeritics Tristar 3000 Surface area 

and porosity analyzer. Calcined powder samples between 0.1-1g were weighed in the sample 

tubes which were handled with cotton gloves to avoid grease contamination and static 

charging. All samples were dehydrated in a Micromeritics VacPrep061 for more than 18 

hours before analysis. Dehydration was performed under low vacuum at a temperature of 250 

°C. After dehydration the sample tubes were weighed quickly and the difference was recorded 

before they were mounted to the analyzer.  

All sample tubes were fitted with isothermal jackets which adsorb nitrogen to ensure a stabile 

temperature around the tube. With the same purpose in mind the thermos surrounding the 

sample tubes was filled with liquid nitrogen the day before. As mentioned in the theory 

section it is important that N2-adsorption-desorption is performed at 77 K (-196 °C) which is 

the boiling point of nitrogen at ambient pressure.  

The specific area was calculated by the BET method assuming a cross sectional area of 16.2 

Å
2
 for the nitrogen molecule. The BJH method was used to determine the pore size 

distribution. 

 

3.2.5. Coke deposition during MTO reaction 

In order to obtain information about stability in relation to deactivation involving deposition 

of carbonaceous species, the SAPO-34 samples were tested in the methanol-to-olefin (MTO) 

reaction. The reactions and all subsequent sample analyses were performed at WestCHEM 

School of Chemistry at the University of Glasgow. The MTO reaction was performed in the 

Laboratory of Professor Justin Hargreaves,
69

 with the guidance of PhD student Nicholas 

Spencer.  

A fixed bed micro-reactor was used for the MTO reaction, and the reactor consisted of a 

quartz reactor tube with a sinter in the center. The tube was fixed vertically and the sample 
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was placed on top of the sinter. Due to the difference in density between the samples, sample 

size was measured in volume instead of weight. A bed depth of 2 mm of sample was 

measured out in the reactor tube, with an inner diameter of 8 mm. All samples had previously 

been sieved so that the particle size was in the range of 0.25-0.42 mm.  

The sample was first heated in 40 ml Ar to the reaction temperature of 300 °C, before a flow 

of methanol (0.03 ml/min) was introduced via a Knauer K501 HPLC-pump. The reaction 

proceeded for 5 hours. The gas mixture produced a total Gas Hourly Space Velocity (GHSV) 

of 3088 h
-1

 and a methanol concentration of 32 %.  

The temperature was regulated using a tube furnace with a thermocouple placed in a silica 

thermowell placed <10 mm above the sample. Reaction lines before and after the reactor tube 

were kept at ca. 300 °C. 

 

 

3.3. Catalysis measurements 

 

3.3.1. SCR-HC-deNOx 

 

Figure 3.3 illustrates the set-up for SCR-HC-deNOx measurements. Helium, NO, O2 and C3H6 

was supplied by individual gas cylinders. The following concentrations were applied using 

mass-flow controllers: 0.2 % NO, 2 % O2, and 1.3 % C3H6. Helium was used as a balance gas 

to achieve total flow of 15 ml/min. This renders a weight hourly space velocity (WHSV) of 

700 g gcat
-1

 h
-1

. Manual ball valves are also in place to avoid any possible leakage through the 

MFC reaching the rest of the system.  
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Figure 3.3: Set-up for catalysis measurements. 

Water vapor was added to the feed. Between the ball valves and the reactor is a four-way 

valve. In dry mode the gas will pass straight through this valve towards the reactor. In wet 

mode the gas will be diverted through a water vapor bubbler saturator cooled to give a partial 

pressure of 15 % H2O. The gas is subsequently led back to the four-way valve and towards 

the reactor. 

The porous powder material was pressed into wafers, mortared and sieved to a particle size of 

0.25-0.42 mm. 22-24 mg of sample was placed in the center of a quartz tube reactor (length: 

30 cm, inner diameter: 4 mm) and held in place by quartz wool. The exhaust gas is led into a 

gas chromatograph (Agilent 6890 GC) connected to a mass spectrometer (5979C MDS) using 

a SPB-5 column (60 m, 3 μm film thickness, 0.53 mm i.d.).  

The MS was calibrated for NO and N2 with different concentrations, and temperature 

programmed calibration of the experiment gas mixture was also performed both in dry mode 

and wet mode. GC analysis was performed with an oven temperature of 35 °C.  
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3.4. X-ray absorption spectroscopy (XAS) 

3.4.1. Beamline lay-out 

XAS data was performed at the Swiss-Norwegian Beam Lines (SNBL) B-station at the 

European Synchrotron Radiation Facility (ESRF)
60

 in Grenoble, France. ESRF produces an 

electron beam energy of 6 GeV and maximum current of 200 mA in multi-bunch mode. A 

schematic illustration of the beamline is shown in Figure 3.4. 

 

Figure 3.4: Rough schematic of the experimental set-up at BM01-B. 

This beamline receives electromagnetic radiation from a bending magnet, but the white light, 

which consists of frequencies from the microwave region to the high-energetic X-rays, must 

be fine-tuned before it can be introduced to the sample. SNBL is equipped with a Si(111) 

channel cut monochromator and a double crystal monochromator which select the X-ray 

wavelength, by changing the incident angle at which the radiation hits the monochromator. A 

set of slits and beamstops are also employed both to ensure that the beam spot size is correct 

and for safety reasons. The spot size for BM01-B is 10 mm horizontally and 0.6 mm 

vertically. A spectral range of 4-80 keV can be achieved with the monochromator, but for 

copper samples only the range 8.8-10 keV was measured.
60

 

Measurements on the copper k-edge (8979 eV) were performed in transmission mode with 

ionization chamber detectors. I0 (17cm long) counts incident photons and I1 (31cm long) 

counts the remaining transmitted photons after absorption from the sample. Ionization 

chamber I2 measures the transmitted beam after the copper foil which is always exposed 

simultaneously for calibration purposes. The gas compositions of the ion chambers were 80% 

N2 + 20% Ar for I0 and 75% N2 + 25% Ar for I1.  
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3.4.2. Sample analysis 

Ex situ measurements of samples and analysis of model compounds were performed with the 

sample powder in aluminum sample holders with Kapton® tape on the front and back end to 

hold the powder in place. Model Cu compounds were diluted with boron nitride to ensure a 

suitable level of transmittance.  

In-situ XAS experiments were performed using an in-situ reaction cell designed by Karina 

Mathisen and Magnus Rønning as displayed in Figure 3.5.  

 

Figure 3.5: In-situ reaction cell for XAS measurements. 

The sample powder of was pressed into pellets, ground in a mortar and sieved to a particle 

size of 0.25-0.42mm to prevent diffusion limitations. 45 mg of sample was loaded in the open 

cavity of the cell between two pieces of quartz wool to hold it in place. Graphite windows 

were placed on either side of the cavity to allow beam transmittance. Steel plates were 

screwed on to hold the windows in place and prevent leakage. The thickness of the cell cavity 

is 1.5mm, and the cell is made of stainless steel. Gas inlet and outlet lines were attached to the 

sides of the cell, and connected to mass-flow controllers (MFC) for accurate gas feed 

composition used for deNOx measurements. The temperature was controlled by a voltage 

supplier via two heating cartridges and a thermocouple.  
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The experimental procedure was replicated from a redox experiment in the work of 

Kristiansen et al.
70

 in order to have a means of comparison. After a few measurements at 

room temperature and open atmosphere conditions the sample H-SAPO34-2 was calcined 

within the reaction cell in 15 ml/min 20% O2/80% He. From room temperature the cell was 

heated to 450 °C at a ramping rate of 10 °C/min, followed by a 20 min dwell period. The cell 

was subsequently let cool to 350 °C and for the rest of the experiment this temperature was 

maintained. During the experiment the gas mixture in molar concentrations was as follows: 

0.2 % NO and 2 % O2, or 1.3 % C3H6 in alternating fashion. Helium was used as a carrier gas, 

making up the difference to achieve a weight hourly space velocity (WHSV) of 350 g gcat
-1

 h
-

1
. The vapor bubbler saturator was cooled to give exactly 15% of H2O in molar concentration. 

Regardless of feed composition, the total feed volume was constantly 15ml/min. The 

following experiment consisted of alternating cycles in reducing and oxidizing gas feed 

(C3H6 and NO/O2, respectively) and also in dry and wet feed as displayed in Table 3.2.  At 

the very end only He was fed with water vapor present. 

Table 3.2: Redox experiment divided into alternating cycles. Blue fields indicate wet feed. 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 

C3H6 NO/O2 C3H6 C3H6/H2O NO/O2/H2O C3H6/H2O C3H6 NO/O2 C3H6 H2O 

 

All measurements were performed in Quick-XAS mode, in the range of 8800-10000 eV with 

a 0.5 eV step size and 50 ms counting time. Measurements were being recorded continuously 

throughout the calcination and experiment. The time required for an entire scan including 

resetting the monochromator to the initial energy was just above 2 minutes.  

 

3.4.3. Data reduction 

The Athena software from IFEFFIT
71

 package was used for data reduction. Rebinning was 

performed with respect to Cu atom absorber, resulting in evenly spaced energy points, and 

consequently a higher signal-to-noise ratio. In practice closely spaced energy points are 

averaged to produce one single point. All XAS spectra from Cu samples were calibrated 

against a metallic Cu foil between ion chambers I1 and I2. The Cu K-edge is at 8979 eV. For 
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XANES analysis the spectra were normalized at 30-150 eV, and from 150 eV to the end of 

the spectrum for EXAFS analysis. A spline function in Athena was used to subtract the 

smooth background μ0(E) from the normalized data. Deglitching was used sparingly where 

faults in the monochromator caused glitches. Truncating was performed at the end of the 

spectra where low signal-to-noise ratios dominated. Care was taken to only truncate as much 

as strictly necessary in order to retain good resolution in EXAFS analysis.   

 

3.4.4. XANES region 

The XANES region is used to extract information about valence state of copper and also 

about local site symmetry surrounding it. There are several methods to achieve that, however 

in this context the most useful information which can be retrieved is to which extent the 

divalent Cu species are reduced to monovalent species in a reducing atmosphere, and if the 

process is reversible in an oxidizing atmosphere. The position of the edge and shape of the 

edge region was therefore compared to those of model compounds which are displayed in 

Figure 3.6. These compounds can be considered extremes, and in the synthesized samples 

there will often be composite shapes and positions due to the signal being an average of all Cu 

atoms within the spot size of the X-ray beam.  

The absorption edge E0 was placed at the inflection point of the jump (Δμ0), which is as the 

first peak in the 1. derivative spectrum of Cu foil. However, with the presence of pre-edge or 

shoulders masking first inflection point the E0 would simply be placed as close half height of 

the jump as possible, without being placed on the pre-edge/shoulder. The energy correction, 

i.e. difference between known and measured E0 was transferred to the sample. The absorption 

energy E0 was placed for a large array of measurements from the experiment and compared to 

the model compounds. The practice of this is shown in Figure 3.6 where the black targets 

indicate the E0 position on the normalized XANES and the 1. derivative.  
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Figure 3.6: Normalized XANES and 1. derivative around the absorption edge. The targets mark the 

position of the absorption energy for model compounds. 

In addition to recording the position of E0, the position and height of the pre-edge feature, 

where visible on the normalized XANES, was taken note of. 

 

3.4.5. EXAFS analysis 

For the EXAFS analysis the program DL EXCURV was employed. The program calculated 

the ab initio phaseshifts and backscattering amplitude by defining the atoms present in the 

sample. Least-squares refinements of the theoretical χ(k) to the experimental χ(k) was 

performed using the curved wave theory
56

. A k
3
-weighting was used for all samples, and a k-

range of 2-13. EXAFS analysis of the models were carried with fixed multiplicities, while 

shell distances, Debye-Waller factors 2σ
2
, and EF was refined. Once the parameters remained 

unchanged during refinements, the amplitude reduction factor (AFAC) was refined and 

transferred to the samples with similar oxidation state by comparison with the XANES. For 

most measurements only the nearest shell of neighbors was fitted. For samples, refinements 

executed for individual parameters, i.e. multiplicities N, shell distances R, Debye-Waller 

factors 2σ
2
, and the energy correction to E0, EF. The reduced chi-squared (χ

2
) was calculated 

for EXCURV98 based on the number of data points, weighting and defined free parameters. 

When refining a single shell the number of free parameters is 4, and for two shells it is 7. A 

second shell was only added to a few measurements, when needed.  
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Fourier filtering was performed to investigate the third shell contributing element. This 

involved isolating the shell contribution in R-space in the range 2.5-3.5. This contribution was 

then back-transformed into k-space and refined with the most probable back-scatterer. The 

best quality of fit indicated the most probable back-scattering element.  
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4. Results 

 

4.1. X-ray diffraction (XRD) 

 

4.1.1 Conventional SAPO-34 

The X-ray diffractograms of four calcined SAPO-34 samples are displayed in Figure 4.1 in 

the range 5-50°. With the exception of two extra peaks on SAPO34-2 (20° and 22°) all peaks 

cohere with the chabazite pattern, with high signal-to-noise ratio, showing that the samples 

are phasepure. The extra peaks, denoted in the figure with stars, could just be impurities, or 

might come from a different SAPO phase.  

 

 

Figure 4.1: Powder diffraction patterns of calcined conventional samples SAPO34-(1, 2, 5 and 6). 
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4.1.2. Hierarchical SAPO-34 

Three diffractograms of calcined hierarchical samples are displayed in Figure 4.2. No 

substantial extra peaks are observed, and none are missing, and therefore these samples all 

qualify to be deemed phasepure. This technique is not able to provide additional information 

on the pore system, other than the 0.38 nm pores inherent to the chabazite topology which is 

identified in these three samples. Additional characterization is required to determine other 

structural differences in the material. There is some difference in peak height, which can 

generally be attributed to actual degree of crystallinity. However different sample holders 

with different sample cavities have been used and a direct comparison is therefore not 

applicable.  

 

Figure 4.2: Powder diffraction patterns of the hierarchical samples H-SAPO34-(1-3) after calcining. 
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4.1.3. Ion-exchanged conventional and hierarchical CuSAPO-34 

Figure 4.3 shows X-ray diffractograms of the conventional SAPO34-3 and SAPO34-4 and 

samples after ion exchange with [Cu(NH3)4]
2+

 (0.015 M) and Cu(NO3)2 (0.03 M), 

respectively. The diffractograms show structure collapse, recognized by the low signal-to-

noise ratio and absence of characteristic peaks. Structure collapse following ion-exchange 

procedures has not previously been reported in the literature. The same collapse occurred in 

conventional SAPO34-1 and SAPO34-2.  

 

Figure 4.3: Examples of powder diffraction patterns where the crystalline structure has become 

amorphous during ion-exchange. Si:Al ratios were 0.2 for these samples.  

Eventually, it was found that conventional SAPO34-5 and SAPO34-6 were able to withstand 

being ion-exchanged with lower copper concentrations (0.015 M), with a reasonable uptake of 

copper. The same synthesis procedure had been used for these samples as for conventional 

SAPO34-(1-4), but with much higher Si : Al ratios, 0.3 instead of 0.2. The difference between 

72 and 96 hours crystallization time is apparently negligible, but the increased Si content has 

added sturdiness to the material.  
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After further work had been performed on SAPO34-5 ion-exchanged with 0.015 M tetramine 

copper(II), an attempt was also made at ion-exchanging the sample with 0.03 M solution 

(bottom diffractogram). The results, among others are displayed in Figure 4.4, and shows that 

the aforementioned sample had lost much more crystallinity than the one exchanged at 0.015 

M. Conventional SAPO34-5 was chosen for comparison, and only this sample among the 

conventional samples was performed further experiments on.  

 

Figure 4.4: Examples of powder diffraction patterns where samples have retained their crystallinity 

during ion-exchange. Si:Al ratio was 0.3 for these samples.  

The hierarchical samples all retained their crystallinity through an ion-exchange with 0.03 M 

Cu-tetramine, displaying more stability in the conditions in question than the conventional 

samples. Hierarchical H-SAPO34-2 was chosen among the hierarchical samples for further 

experiments, on account of the yield of material from the synthesis. 
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4.1.4. Incorporated CuSAPO-34 

 

Figure 4.5 show diffractograms for copper-incorporated conventional SAPO-34 Incorp-1 and 

incorp-2. The diffractograms of the incorporated CuSAPO-34 samples show phasepure 

materials, but only the highest peak gives substantial intensity, while the others are quite low.  

 

Figure 4.5: Powder diffraction pattern of calcined incorporated CuSAPO-34 (Incorp-1 and -2) 

Because of the higher crystallinity, the incorporated CuSAPO-34 sample, Incorp-2, was 

chosen for further experiments.  
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4.1.5 Synthesis summary 

A summary of all syntheses including ion-exchanges performed is assembled in Table 4.1. 

The point of this is to make clarifications on the reasons for synthesizing several compounds, 

and the selection of samples for further investigations. As the table shows all syntheses 

displayed good crystallinity after calcination, but only a few maintained crystallinity during 

ion-exchange with tetramine copper(II). The ones which did survive dinitrate copper(II) 

exchange only took up very small amounts of Cu in the structure, observed visually through 

the intensity of the blue color.  

Table 4.1: All syntheses and ion-exchange procedures are summarized. Green checkmarks indicate 

phasepurity, while red crosses indicate collapse of crystalline structure. Low uptake of copper was 

observed visually by the intensity of the blue color. 

Type Sample 
Crystallization  
time [hours] 

After  
calcination 

After ion- 
exchange  
w/ Cu(NO3)2 

Cu 
conc. 
[mol/L] 

After ion- 
exchange  
w/ 
[Cu(NH3)4]

2+
 

Cu 
conc. 
[mol/L] 

Conventional SAPO34-1 96 √ X  0.03 X 0.03 

Conventional SAPO34-2 192 √ X 0.03 X 0.03 

Conventional SAPO34-3 48 √ √ * 0.03 X 0.03 

Conventional SAPO34-4 48 No data X 0.03 X 0.03 

Conventional SAPO34-5 72 √ √ * 0.03 √ 0.015 

Conventional SAPO34-5 72 √ - - √ 0.03 

Conventional SAPO34-6 96 √ √ * 0.03 √ 0.015 

Hierarchical H-SAPO34-1 72 √ √ * 0.03 √ 0.03 

Hierarchical H-SAPO34-2 72 √ No data 0.03 √ 0.03 

Hierarchical H-SAPO34-2 72 √ - - X 0.015 

Hierarchical H-SAPO34-3 72 √ √ * 0.03 √ 0.03 

Incorporated Incorp-1 168 √ 
Not 

performed - 
Not 

performed - 

Incorporated Incorp-2 168 √ 
Not 

performed - 
Not 

performed - 

        
* =  Very low uptake of Cu X = 

Not 
Phasepure √ = Phasepure 
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4.2. ICP-MS 

 

The main objective of ICP-MS analysis in this context is to determine the Cu loading in the 

SAPO-34 samples. This has been essential for the selection of samples for further analysis. As 

Table 4.2 shows that the samples ion-exchanged with Cu(NO3)2 exhibited a very low uptake 

of copper. This was in accordance with the color of the samples, which showed only a faint 

hue of blue, in contrast to the samples ion-exchanged with Cu(NH3)4
2+

 which had a stronger 

color, and the incorporated SAPO-34 samples which were bluer still.  

These results led to the exclusion of Cu(NO3)2 samples from further analyses as it was 

important that the copper content was high enough for catalytic measurements and XAS-

experiments. Thus the candidates for the thesis were chosen to be SAPO-34-5 and H-SAPO-

34-2 ion-exchanged with copper tetramine and Incorp-2. The ion-exchanged samples 

SAPO34-5 and H-SAPO34-2 will from this point be called Cu-SAPO34-5, and Cu-H-

SAPO34-2, while the corresponding samples without copper will retain their initial names, 

SAPO34-5 and H-SAPO34-2.  

Table 4.2: Weight percent compositions of Cu-containing samples. 

   

[wt%] 

  
Sample name 

Cu(II) 
precursor Al Si P Cu 

SAPO-34-5  Cu(NH3)4
2+ 17.9 5.2 15.2 1.4 

SAPO-34-5 Cu(NO3)2  17.6 4.9 15.3 0.5 

H-SAPO-34-2 Cu(NH3)4
2+ 16.1 5.7 14.3 3.9 

H-SAPO-34-2 Cu(NO3)2  18.1 5.6 16.1 0.6 

Incorp-2 Cu-TEPA 20.7 6.0 12.1 6.8 
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4.3. TGA-DSC 

Figure 4.6 shows weight loss and thermal events from TGA-DSC measurements during 

heating in synthetic air to 650 °C of the as-synthesized samples conventional SAPO34-5 and 

hierarchical H-SAPO34-2 without copper. There are two main mass events present, the first, 

at 50-100 °C, is predominately water desorption shown as a ~2% weight loss and as 

endothermal events by DSC. The second event is attributed to the tetraethyl ammonium 

template combustion at 350-470 °C detected by the MS as NH3 and CO2.  

 

 

Figure 4.6: Weight loss (left) and corresponding thermal events (right) during heating in synthetic air of 

the as-synthesized SAPO34-5 and H-SAPO34-2. 

The expectation was that a substantial difference would be seen between the conventional and 

hierarchical samples, with mass losses occurring at lower temperatures in the hierarchical 

sample than for the conventional. The actual results are much more similar than was expected. 

The initial water desorption was a bit higher in magnitude for hierarchical than for 

conventional, and slightly more template was lost. Totally, the mass loss during TGA was 

15.7 wt% (conv.) and 17.1 wt% (hier.), respectively. According to Cui et al.
45

 mass loss 

increases with increasing mesopore volume, but the hierarchical SAPO-34 samples 

investigated in that work range from 22 to 31 wt%, while the conventional lost 14 wt%. 

Considering the degree of mass loss in the samples investigated here, one can argue one of 
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two: 1. The hierarchical sample has a presence of mesopores, or 2. The difference in mass loss 

is too small to call the sample hierarchical.  

There is a possibility that the ramping rate (5°/min) of the experiment was excessively high, 

and that a lower rate would render possible a more discernable difference.  

Figure 4.7 shows weight loss and thermal events from TGA-DSC measurements of the 

conventional SAPO-34 incorporated with copper, Incorp-2. Incorp-2 underwent a higher mass 

loss than the copper-free SAPO-34 samples weight (22.8 wt%) from 25-500 C. DSC shows 

that the weight loss below 200 °C is endothermic, while the weight loss in the range 200-500 

C are exothermal events. The drastic slope on the TGA curve around 350-400 °C corresponds 

to an exothermal event. 

 

Figure 4.7: Weight loss (left) and corresponding thermal events (right) during heating in synthetic air of 

the as-synthesized of the as-synthesized sample Incorp-2. 
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4.4. N2 adsorption-desorption (BET) 

4.4.1. Specific surface area 

Table 4.3 lists the specific surface areas of calcined conventional, hierarchical and 

incorporated Conventional SAPO-34 samples, as well as one ion-exchanged hierarchical 

SAPO-34. Where not specified, the samples do not contain copper.  

Table 4.3: The specific surface areas of several phasepure SAPO-34 samples are listed. The standard 

deviation for these measurements can be up to 16 m
2
/g. 

SAPO-34 Sample name Specific Surface 

Area [m2/g] 

Conventional SAPO34-1 544 

Conventional SAPO34-2 527 

Conventional SAPO34-5 553 

Hierarchical H-SAPO34-1 500 

Hierarchical H-SAPO34-2 571 

Hierarchical H-SAPO34-3 463 

Hierarchical + 

ion-exchange 

H-SAPO34-3 ion-ex. w/ 

0,03M [Cu(NH3)4]
2+

 

221 

Incorporated 

conventional 

Incorp-2 (6.8 wt% Cu) 341 

 

The specific surface (SSA) is slightly higher for the conventional samples than for the 

hierarchical (541 and 511 m
2
/g, respectively), but the span in SSA is much bigger between the 

hierarchical samples, so the difference cannot be considered as significant. These differences 

are quite unexpected as all the hierarchical samples were synthesized at identical conditions 

without variation in parameters, while the conventional samples had different parameters 
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(crystallization time and Al/Si ratio). This might be an indicator that the degree of 

mesoporosity is susceptible to even small variations, and quite difficult to control. This is 

partly based on the similarity in microporosity between SAPO34-5 and H-SAPO34-2.  

The surface areas are similar to what has been reported in the literature; the numbers for both 

conventional and hierarchical range from 450 to 650 m
2
/g. Regarding difference in surface 

area between conventional and hierarchical SAPO-34 it has been reported both that 

hierarchical has lower surface area
45

 and that there is no discernable difference.
2, 3

 

The ion-exchanged H-SAPO34-3 displayed a drastic decline in surface area during ion-

exchange even though the XRD patterns show phasepure SAPO-34.  

Figure 4.8 shows BET surface area, t-plot micropore area and external surface area of samples 

SAPO34-5, H-SAPO34-2 and Incorp-2. The majority of the specific surface area for both 

conventional and hierarchical samples is in the form of micropores, and that the amount of 

micropore area is very similar for the two. A larger external surface area for the hierarchical 

sample is in line with the presence of mesopores and macropores.  

 

 

Figure 4.8: BET surface area, t-plot micropore area and external surface area of samples SAPO34-5, H-

SAPO34-2 (without copper) and copper containing Incorp-2. 
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4.4.2. Hysteresis 

The N2 adsorption-desorption isotherms of calcined samples SAPO34-5 and H-SAPO34-2 are 

shown in Figure 4.9. The conventional SAPO-34 displays almost no hysteresis at all, as 

would be expected from a purely microporous material. The small difference at P/P0=0.8-0.9 

might be explained by interstitial cavities between the particles. In the hierarchical sample a 

clearer hysteresis can be observed at P/P0=0.6-0.8, and also in the steep section approaching 

P/P0=1. Since the hysteresis loop exhibited by H-SAPO34-2 is two-fold in the sense that there 

is one closure in the steep section and one in the more horizontal section, it is difficult to 

explain it with just one category of hysteresis as explained in section 2.5.2. Up to the point of 

P/P0=0.85 the isotherms most resemble a H4 category loop, while between relative pressures 

0.85 and 1 it looks more like an H1 category loop, as explained by IUPAC 
34

. It should be 

noted that these two categories are extremes to each their end of the scale, while H2 and H3 

are considered as intermediates, however, due to the two-fold nature of this hysteresis, a 

combination might be more suitable. The H1 loop is often attributed to porous materials in 

agglomerated state, while H4 can be a sign of slit-like pores.   

 

Figure 4.9: The hysteresis loops of conventional and hierarchical SAPO-34 (SAPO34-5 and H-SAPO34-2, 

respectively) after calcination, without any metal present. 

The hysteresis for H-SAPO34-2 is much less pronounced than reported by Yang et al. 
2
 from 

which the synthesis parameters are extracted.  
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Figure 4.10 shows results from N2-physisorption measurements of incorporated CuSAPO-34 

(Incorp-2), which shows a significant hysteresis loop, similar to the H3-type. This is 

indicative of plate-like particles, giving rise to slit-shaped pores. The low adsorption values at 

relative pressures are linked to a small degree of microporosity. The hysteresis was not 

reported by Martínez-Franco et al.
54

 and is quite surprising. Only a slightly higher micropore 

volume was reported than what was found here (0.14 and 0.10 cm
3
/g, respectively).  

 

Figure 4.10: The hysteresis loop of Incorporated CuSAPO-34 (Incorp-2) after calcination. 

 



 

58 

 

4.4.3. Pore size distribution 

The pore size distribution of samples SAPO-34-5 and H-SAPO34-2 as calculated from the 

BJH method is displayed in Figure 4.11 and Figure 4.12 in the ranges 2-100 nm and 2-20 nm, 

respectively. The wide distribution spectrum shows that these measurements were not able to 

discern any narrow peaks in the samples at pore diameters larger than 20 nm. Yang et al.
2
 

reported macropores present around the size of 6 μm, but such results would not be obtainable 

with N2-physisorption measurements.  

 

Figure 4.11: Pore size distribution of samples SAPO34-5 and H-SAPO34-2, in the range of 2-100 nm. 

 

Figure 4.12: Pore size distributions of SAPO34-5 and H-SAPO34-2 in the range of 2-20 nm. 

The narrower spectrum is quite informative about the porous nature of the two materials. 

They both display the phenomenon of tensile strength effect (TSE)
35

 around 4 nm, which is a 

false contribution explained in 2.5.2. A large, contribution around 6 nm on the hierarchical 

sample can, however, be attributed to real mesopores. It is quite wide, and the tail of the peak 
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stretches to 10 nm. The conventional sample displays a small, broad peak around 11 nm. It is 

very probable that this is due to interstitial cavities between particles.  

The pore size distribution of incorporated CuSAPO-34 (Incorp-2) is displayed in Figure 4.13 

and Figure 4.14. No contributions are observed between 20 and 100 nm. Tensile strength 

effect is also here present and considered to be false. A large, broad peak around 7 nm is 

interpreted as real, but quite unexpected. In the same fashion as the hysteresis loop, this 

mesopore peak has not been reported in the paper where the synthesis procedures are 

retrieved.
54

 The tail of the peak stretches to 20 nm, not dissimilar to hierarchical SAPO-34.  
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Figure 4.13: Pore size distribution of sample Incorp-2 in the range of 2-100 nm. 
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Figure 4.14: Pore size distribution of sample Incorp-2 in the range of 2-20 nm. 
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4.5 Coke deposition 

Elemental CHN analysis of the samples after coke deposition was performed. The results are 

shown in Figure 4.15. 

 

Figure 4.15: CHN analysis of all samples after undergoing coke deposition.  

Two main conclusions can be drawn from this chart:  

The first is that the pore system strongly affects coke deposition. Both hierarchical samples 

accumulate much more coke than the conventional samples. Since conventional SAPO-34 

almost only possesses internal surface area (according to BET measurements), all carbon 

deposited must be on the inside of the micropores. Figure 4.8 also states that both 

conventional and hierarchical SAPO-34 contain very similar amounts of micropore 

area/volume, and therefore it is likely that excess coke on hierarchical samples are present in 

the mesopores. Incorp-2, which should not, but might, possess mesoporosity, is somewhere in 

between the conventional and hierarchical. 

The second conclusion is that copper amount has some effect on coke deposition, but not in 

the same order of magnitude as the nature of the pore system. There is no linear relationship 

through the three samples of widely different Cu amounts, however both ion-exchanged 

samples have incurred a slight increase in coke amount.  
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The N2-physisorption (Figure 4.16) curves corroborate the notion that all micropore volume is 

filled with carbonaceous material after coke deposition.  

 

Figure 4.16: N2-adsorption-desorption isotherms of conventional and hierarchical SAPO-34 without 

copper after coke deposition. BET surface areas of the individual curves are displayed at the arrow ends.  

The specific surface areas have fallen from 553 m
2
/g (conv.) and 571 m

2
/g (hier.) to 27 m

2
/g 

and 35 m
2
/g, respectively. The conventional SAPO-34 displays absolutely no sign of 

mesopore presence, and the remaining surface is exactly equal to the t-plot external surface 

area measured for the same sample without coke (27 m
2
/g), displayed in Figure 4.8.  

Hierarchical SAPO-34 does not show the same degree of exactitude, but after coke deposition 

a clear hysteresis is visible between the adsorption and desorption curves. This, clearly points 

to mesopores being present in the sample.  

After TPD had been performed on three samples, another round of elemental analysis was 

performed. The results (yellow borderline) are listed in Figure 4.17, and compared with the 

results obtained after coke deposition (green borderline). The most interesting feature with 

these results is that hierarchical SAPO-34 has lost a great deal of carbon (7.2 wt%) while 

conventional SAPO-34 has lost almost no carbon at all (0.2 wt%). It must also be taken into 

account the fact that the amount of residual carbon after TPD is very similar between 

conventional and hierarchical SAPO-34, 2.98 wt% and 2.94 wt%, respectively. Both these 

features, combined with similar micropore areas, lead towards the conclusion that 

conventional SAPO-34 contains coke only in the micropores, and the excess coke beyond this 

amount on hierarchical samples is positioned in the mesopores.  
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Figure 4.17: CHN analysis of conventional, hierarchical and incorporated SAPO-34 after TPD procedure. 

They are compared to the post-reaction results displayed earlier. 

One of the samples seems to have gained hydrogen during the TPD reaching 1000 °C. This 

can be attributed to the hydrophilic nature of the zeotype in question, and it is very likely that 

the compound would have attracted water from air after the TPD measurement. TPO 

measurements of SAPO-34 samples which had not undergone coke deposition (Appendix C) 

showed large loss of mass around 100 °C, and this is no doubt water present in the pores. The 

carbon is used as the main measure of coke content, although hydrogen amount can be used as 

supplementary information to identify the deposited carbonaceous species. 
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4.6.  SCR-HC-deNOX 

Figure 4.18 shows the conversion of NO over conventional and hierarchical ion-exchanged 

and conventional incorporated SAPO-34 (Incorp-2). The copper loadings were 1.4, 3.9 and 

6.8 wt%, respectively. The experiment was performed in both dry and wet feed (15% H2O). 

For all temperatures the order in terms of highest to lowest was: incorporated Cu-SAPO-34 > 

hierarchical Cu-H-SAPO-34 > conventional Cu-SAPO-34. In dry feed the incorporated and 

hierarchical Cu-H-SAPO-34 reached a maximum at 450 °C, while conventional Cu-SAPO-34 

was still increasing. In wet feed the point of maximum conversion seems to be shifted towards 

higher temperatures. The water feed has not, however had a negative effect on conversion. At 

350°C the incorporated SAPO-34 actually exhibits higher conversion in wet feed than in dry, 

and at 400°C all samples show improved conversion in wet feed.  

 

Figure 4.18: Temperature programmed selective catalytic reduction in dry feed (left) and wet feed (right). 

Due to problems with the calibration of the mass spectrometer, reliable N2 selectivities could 

not be calculated. The MS intensities for N2 do, however, follow the same patterns as the NO 

conversion, i.e. a fall in NO intensity corresponds to a proportional rise in N2 intensity. The 

MS intensities are shown in Appendix D.  
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4.7. X-ray absorption spectroscopy (XAS) 

4.7.1. XANES 

XANES spectra from selected sections of the redox experiment performed on Cu-H-SAPO-34 

(3.9 wt%) are shown in Figure 4.19. The pre-edge feature rises when the divalent copper is 

reduced to Cu(I). The shape of the XANES does not differ much between dry and wet feed, 

indicating that the copper species are stable on the SAPO-34 support in the presence of water 

at 350 °C. The reversible alternation between the redox pair Cu(I)/Cu(II) also appears to be 

successful.  

 

 

Figure 4.19: XANES spectra showing reduction of Cu(II) by propene (left) and oxidation of Cu(I) by NO 

(right) in dry feed (top) and wet feed (bottom). Initial spectra are black and final spectra are red.   

The absorption energies of selected XANES spectra from each cycle of the in-situ redox 

experiment are presented in Figure 4.20. As described in section 2.4, the positioning of E0 is 

not straight forward due to the pre-edge feature which arises for monovalent copper. The 

feature is normally higher than half height of the jump, and obscures the true value of E0. 
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Figure 4.20: Positions of absorption energy, E0, during in-situ redox experiment with hierarchical H-

SAPO34-2. The marker colors indicate the feed, which is also displayed underneath the timeline: 

green=O2, black=propene, red=NO and purple=He. The blue background indicates wet feed.  

The only conclusion which could be drawn from Figure 4.20 is that the absorption energy is 

not characteristic for measurements of reduction and oxidation of copper species. The shape 

of the XANES region is no doubt a much better indicator for differentiating between Cu(I) 

and Cu(II). Once the XANES spectra have been normalized, the height of the pre-edge 

feature, caused by a 1s-4p transition, relative to the height of the post-edge line is quite 

characteristic, and a good measure of the fraction of monovalent versus divalent Cu atoms 

within the X-ray spot size. Figure 4.21 displays the pre-edge heights for the selected spectra in 

Figure 4.20 which exhibit a pre-edge. When propene feed is applied, the Cu(II) is clearly 

reduced to Cu(I), and when the propene feed is replaced with NO, the pre-edge immediately 

begins to decrease, indicating oxidation from Cu(I) to Cu(II).  
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Figure 4.21: Pre-edge height on normalized XANES features measured during in-situ redox experiment of 

hierarchical H-SAPO34-2. The marker colors indicate the feed: black=propene, red=NO and purple=He. 

The blue background indicates wet feed. The sections between curves are where no pre-edge feature could 

be observed.  

The reduction of Cu(II) by propene is much more rapid than oxidation of Cu(I) by NO. The 

position of the markers along the timeline show that once the propene feed was switched on, 

the pre-edge was very quickly restored, while the final stabilization takes somewhat more 

time. When the feed was switched to NO, the pre-edge decreased much slower before 

stabilizing.  

The presence of water does not seem to have much effect on the redox properties of the 

material. However, the Cu(I) pre-edge height decreased further in wet NO/O2, indicating 

higher amounts of Cu(II) in the Cu(II)/Cu(I) mixture than in dry NO/O2. This effect is 

cancelled in dry feed, meaning that the initial redox behavior is restored in dry feed. The 

Cu(I) pre-edge is similar in dry feed and wet feed, which and the process continues 

unhindered. This is a sign of good hydrothermal stability, which is a very important property 

for SCR catalysts. The reversibility of the different electronic states is also imperative for 

catalytic activity.  
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4.7.2. EXAFS 

Figure 4.22 shows the results of least-squares refinements of the nearest neighboring Cu-O 

shell distance and multiplicity for the redox cycling experiment at 350 °C for the hierarchical 

Cu-H-SAPO-34 (3.9 wt% Cu). The results are compared to those obtained for the Cu-aerogel 

(8 wt% Cu) from the works of Kristiansen et al.
70

 The hierarchical Cu-H-SAPO-34 is 

presented with orange line and diamond markers in the figure, while the blue line/round 

markers represent the Cu-aerogel.  

 

Figure 4.22: Least-squares refinements of nearest Cu-O shell during in-situ redox experiment of sample 

Cu-H-SAPO34-2 (3.9 wt% Cu) and a Cu-Aerogel from the work of Kristiansen et al.
70

 Interatomic 

distances (top) and multiplicities (bottom) during cycling in propene and NO/O2, and dry/wet feed. 

Atmosphere is indicated at the very top and by the color of the marker fill; green=O2, black=propene, 

red=NO/O2 and purple=Helium. The tabular values for all refined samples are shown in Appendix E.  
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The main conclusion to be drawn from these results is that the copper sites are reversibly 

affected by the change of feed. The repeated reductions and oxidations do produce copper 

oxides which are able to reduce back to monovalent copper. Even the introduction of steam at 

high temperatures has no bearing on the material’s durability. 

The multiplicity generally follows the trend of the Cu-aerogel, however some deviations are 

observed in the Cu-O interatomic distances, most notably the first section with propene in wet 

feed. An unusually distance is observed, and whatever the reason, the process is reversible.  
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5. Discussion 

The main purpose of this thesis was two-fold. The first goal was to establish through several 

scientific techniques whether the synthesized, supposedly hierarchical SAPO-34 material 

actually contained mesopores, by comparing it to the conventional SAPO-34. If this could be 

confirmed, then the sample could by right be named hierarchical and further investigations of 

the materials functional properties could proceed.  

Secondly, provided a successful completion of the primary goal, a more practical hypothesis 

could be probed: Is the hierarchical SAPO-34, containing Cu species, more active for the 

selective catalytic reduction of NO with propene than the conventional SAPO-34? Catalysis 

experiments and in-situ X-ray absorption spectroscopy was applied for this objective.  

 

5.1 The porous nature of hierarchical SAPO-34 

The micropores inherent in the SAPO-34 structure are guaranteed once the chabazite topology 

has been confirmed. Therefore no additional methods are required to test for their presence. 

With the exception of ICP-MS, the rest of the general characterization techniques were all 

directed towards the objective of identifying mesopores in the SAPO-34 particles. These 

techniques include thermogravimetric analysis and simultaneous differential scanning 

calorimetry, N2-physisorption, coke deposition and CHN elemental analysis.  

Beginning with the thermogravimetric analysis of as synthesized samples, there is not much 

to compare to in the literature. Cui et al.
45

 reported significant differences in both end mass 

loss and the rates of mass loss before the main event, dependent on mesopore volume. A 

slight difference in end mass loss could be detected between conventional and hierarchical 

SAPO-34 in this project, although, smaller than reported differences. In addition, no 

significant difference in mass loss rate could be observed between water evaporation event 

and the TEAOH template combustion. As mentioned, an excessively high ramping rate could 

possibly be responsible for the lack of obvious difference, but the initial TGA data does not 

point to a sample containing a substantial degree of mesopores in the hierarchical SAPO-34. 

N2-adsorption-desorption isotherms did not show hysteresis loops to such an extreme degree, 

as was observed by Yang et al.,
2
 or by Zhu et al.

10
 However, Yang et al.

3
 and Cui et al.

45
 both 
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report hysteresis plots more in line with the results here obtained. Arguably, the isotherms can 

take many shapes, and the degree of hysteresis is not necessarily in linear proportion with the 

specific volume of mesopores. The pore size distributions point to mesopores present in the 

hierarchical SAPO-34 of sizes around 6 nm. This corresponds to the wide distribution of pore 

sizes exhibited in the literature
2
 of the identical procedure, beginning at 4 nm, with a broad 

tail stretching to 12 nm.  

Following deposition of carbonaceous species onto the sample powders, it was established, 

through elemental analysis, that the hierarchical SAPO-34 accumulated much more coke than 

the conventional. Temperature-programmed desorption and subsequent elemental analysis of 

the coked sample also revealed that the same amount of coke remained on the sample. By 

linking this information to the almost identical micropore volumes between conventional and 

hierarchical SAPO-34, this is a very strong sign that the remaining coke was situated in the 

micropores, and that the excess coke on hierarchical SAPO-34 had been located in the 

mesopores/macropores.   

The post-coke N2-physisorption results also show a clear hysteresis on the hierarchical SAPO-

34 which is not present on the conventional. These results also lead towards mesoporosity in 

the hierarchical SAPO-34, and at the same time shows that the coke had not clogged the 

mesopores.  

 

5.2 Selective catalytic reduction and hydrothermal stability 

Figure 4.18, which shows the NO conversion in dry and wet feed, provides very useful 

information about the samples as SCR-catalysts. This SCR-HC-deNOX experiment was used 

as a test reaction to identify SCR activity, compare activity and probe the effects of water on 

the materials during reaction. However, the results cannot be understood as absolutely 

comparable. The main source of dispute is different copper loadings for the three samples, 

conventional (1.4 wt%), hierarchical (3.9 wt%) and incorporated conventional (6.8 wt%) 

SAPO-34. Due to the increased number of active sites for increases metal loading, the 

conversion often increases too, while the turn-over frequency per active site might not be 

affected. Taking the loading into account it is still reasonable to argue that the difference 

between the conventional and hierarchical SAPO-34 is quite large, and that hierarchical 
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SAPO-34 is active at lower temperatures than conventional SAPO-34. Also noteworthy, is the 

proximity between hierarchical and incorporated conventional for many of the data points, 

still considering the difference in Cu loading. This points towards better properties for the 

hierarchical material, than for the other two samples.  

Interestingly, the water feed does not seem to have a particularly adverse effect on any of the 

samples with respect to NO conversion, or N2 yield. The conversions are quite similar at 400 

and 450 °C, and the minimum temperature for activity is decreased, which is positive.  

The redox cycling experiment at 350 °C in dry and wet feed was also compared to the 

aforementioned study, and the general features were quite similar. The most important 

information which can be extracted is the reversibility of the copper sites, and this is reflected 

both in the EXAFS Cu-O interatomic distances, RCu-O, and first shell multiplicity, NCu-O, as 

well as in the XANES pre-edge height. The copper species alternate freely and reversibly in 

spite of the harsh steaming conditions. The results prove reasonably good hydrothermal 

stability. When using the pre-edge feature as indicator of valence state fractions, it is 

generally considered more accurate to use the peak-fitting function in the Athena software.
71

 

For this purpose, however, which was mainly to corroborate the EXAFS data in analysis of 

the material’s hydrothermal stability and oxidative reversibility, measuring normalized pre-

edge height well-suited. The advantage is that rapid analysis of many spectra is done with 

ease, even for inexperienced users, while peak-fitting is very time consuming and would be 

poorly suited for measuring the forty data points presented in Figure 4.21. It was the large 

amount of data points which made presenting the different reaction times facile, i.e. that the 

initial reduction of copper is much faster than the reverse oxidation.  

The catalytic and spectroscopic experiments from the work of Kristiansen et al.
70

 have been 

replicated in this theses and it is therefore natural to compare the studies at this point. The 

study was focused mainly on Cu-aerogels, which is interesting to compare to hierarchical 

SAPO-34 because they both contain mesopores, in contrast to conventional zeolites. The main 

differences are that aerogels lack acidity, are hydrophobic, and have higher surface areas. 

From the SCR-HC-deNOX experiment it is known that the conversion at 350 °C would be 

13% in dry feed and 15% in wet feed for hierarchical SAPO-34 (3.9 wt%), compared to 15% 

in dry feed and ~30% in wet feed for aerogel of similar copper loading (3.5 wt%).  
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6. Conclusions 

 

The sum of evidence without a doubt identifies the presence of mesopores in the hierarchical 

SAPO-34 material, making it worthy of its sample name. The average mesopore diameter is 6 

nm, although the pore size distribution stretches to around 10 nm. Many of the accumulated 

results point to a moderate amount of mesopores.  

Hierarchical SAPO-34 ion-exchanged with copper is active for selective catalytic reduction 

with propene (HC-SCR) of NOX, both in dry and wet feed. The presence of water at high 

temperatures does not have much of an effect on catalytic activity in either direction. The 

material has exhibited good hydrothermal stability during cycling of reaction feed, and no 

irreversible effects have been observed on the copper content or the pore structure. Reduction 

of Cu(I) to Cu(II) is faster than the corresponding oxidation.  
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7 Further work 

 

The present ideas for further work are directed mainly towards functionalization of the 

materials and also catalytic measurements, with corresponding in-situ XAS analysis.  

Firstly, the copper loading within samples would preferably be tuned so that the catalytic 

measurements and XAS analysis could be compared without having to take into account the 

difference in weight percent. Also, two or more different copper loadings on each sample 

could be prepared in order to optimize the loading with respect to performance versus price. 

In-situ XAS redox cycling, combined with catalytic measurements, of a conventional SAPO-

34 with similar copper loading as the hierarchical Cu-H-SAPO-34 would make a very useful 

comparison.  

Many different catalytic experiments are available in order to push the boundaries of the 

catalyst, and gain knowledge about its nature. Specifically Time-on-stream at operating 

temperature would be interesting, considering the coke deposition results. It is now 

established that the hierarchical samples accumulate more coke within a given time window, 

but the literature states that conventional SAPO-34 cokes much quicker during the MTO 

reaction than hierarchical samples.  

Currently, small amounts of hierarchical H-SAPO34-2, and -3 are being investigated with 

High resolution transmission electron microscopy (HR-TEM) at the University of Glasgow, in 

order to gain information on the mesopores, however, analyses are not yet complete. 

Applying such a technique on zeotypes is quite challenging, and it will be exciting to see if 

the experts are able determine anything new about the pore system.  
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9 Appendices 

 

Appendix A: Risk evaluation 
Enhet:  Inst for kjemi          Dato: 26.8.2012 
Linjeleder: Marie-Laure Olivier 
Deltakere ved risikovurderingen (m/ funksjon): Karina Mathisen (førsteamanuensis), Trygve Jakobsen (Msc kandidat) 
 

 Aktivitet fra 
kartleggings- 

skjemaet 

Mulig uønsket 
hendelse/ 
belastning 

Vurdering  
av sannsyn- 
lighet 

Vurdering av konsekvens: Risiko- 
verdi 

Kommentarer/status 
Forslag til tiltak 

ID 
nr 

 
         (1-5) 

 
Mennesk
e 
(A-E) 

Ytre 
miljø 
(A-E) 

Øk/ 
materiel
l 
(A-E) 

Om- 
dømm
e 
(A-E) 

E2-
117 
- 1 

 
Uorganisk syntese 
 

 
Inhalering/søl/spill av 
organisk amin på hud evt 
øyner 
 
Søl/spill av syre/base på 
hud evt øyner 
 
Inhalering fint silikapulver 
 
 
Overtrykk 

 
  2 
 
 
 
  4 
 
 
  2 
 
 
   

 
 A 
 
 
 
 A 
 
 
A 
 
 
 

 
 A 
 
 
 
A 
 
 
A 
 
 
 

 
 A 
 
 
 
A 
 
 
A 
 
 
 

 
 A 
 
 
 
A 
 
 
A 
 
 
 

 
2A 
 
 
 
4A 
 
 
2A 
 
 
 

 
Hansker, briller, avtrekk 
 
 
 
Hansker og briller. Kun fortynnede 
syrer. 
 
 
Ikke vurdert helsefarlig i små 
mengder v/ sjelden eksponering. 
Ansiktsmasker? 
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høytrykksautoklav kan gi 
eksplosjon 

2 B A A A 2B  
Opplæring gis. Sikkerhetsventil 
innstallert på alle autoklaver. 

E2-
117 
- 2 

 
Arbeid med HF 
 

 
Søl/spill på hud evt øyner 

  
 1 

 
C 

 
B 

 
B 

 
B 

 
1C 

Krever flussyrekurs, godkjent 
beskyttelsesutstyr og følgeperson 

E2-
117 
-  3 

 
Bruk av 
høytemperaturovn 
(inntil 1200 grader) 
 
 

 
Forbrenningsskader, amin 
avgasser, mulig 
produksjon av CO ved 
kalsinering 

  
2 

 
A 

 
A 

 
A 
 

 
A 

 
2A 

Thermoresistente hansker, 
opplæring kreves. Ovn plassert i 
avtrekk. 

 
E2-
117 
- 4 

 
Vask med 
Kongevann 
 

 
Søl/spill på hud evt 
øyner.Utvikling av gass. 

 
2 

 
A 

 
A 

 
A 

 
A 

 
2A 

 
Hansker, briller og avtrekk. 
Vaskeprosedyre gitt i tilfelle søl. 
Krever følgeperson. 

E2-
117 
– 11 

 
Ionebyttingsprosedy
rer 

Søl/spill av syre eller baser 
på hud evt øyner 

 
4 

 
A 

 
A 

 
A 

 
A 

 
4A 

 
Hansker og briller. Fortynnede syrer 
og baser. 

E2-
117 
– 14 

 
Jones reduktor 

Søl/spill av syre på hud evt 
øyner. Utvikling av 
hydrogen gass. 

 
4 

 
A 

 
A 

 
A 

 
A 

 
4A 

 
Hansker, briller og avtrekk. 
Fortynnede syrer og baser. 

E2-
117 
– 16 

 
Arbeid med flytende 
nitrogen 

 
Forfrysningsskader 

 
2 

 
A 

 
A 

 
A 
 

 
A 

 
2A 

 
Ansiktskjerm og hansker 

 
E2-
117 
– 18 

 
Arbeid med 
forskjellige typer 
gass 

 
Gasslekkasje. 
Eksplosjonsfare. Kvelning. 

 
2 

 
C 

 
A 

 
C 

 
C 

 
2C 

 
Gassdetektor for hydrogen, CO og 
hydrokarboner er installert. Jobbe 
alene alarm ved bruk av CO. 
Gassflasker ikke over 10 liter, festet 
på vegg etter forskrifter. Krever 
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opplæring. 
Laben er utstyrt med kortlås for å 
unngå tilgang for uvedkommede. 
 

 
E2-
117 
- 19 

 
Arbeid med syrer og 
baser 

 
Søl/spill av syre på hud evt 
øyner. 

 
4 

 
A 

 
A 

 
A 

 
A 

 
4A 

 
Hansker og briller. Kun bruk av 
fortynnede syrer og baser. Mye til 
vasking.  

E2-
117-
21 

Katalysemålinger i in 
situ celle 

Gasslekkasje, forbrenning 3 B    3B Åpen varmekilde, nytt oppsett 
bestilt (se E2-117-22). For gass se E2-
117-18. 

E2-
117-
22 

Katalysemålinger i 
tubeovn 

Gasslekkasje, forbrenning 1 B    1B Lukket varmesystem. For gass se E2-
117-18. 

KLB
1 

XRD 
instrumentanalyse 

Röntgenstråler 1 C    1C Ingen reell eksponeringsfare 

KLB
2 

XAS dataopptak Elektrisk støt 
Forbrenningsskade 
Eksponering for 
röntgenstråler 
 
Rahmanlaser 

3 
3 
1 
 
 
1 

B 
B 
C 
 
 
B 

   3B 
3B 
1C 
 
 
1B 

24 V spenningskilde 
Åpen varmekilde 
Gjøres alltid under tilsyn. Egne 
strenge sikkerhetstiltak ved ESRF og 
Maxlab 
 Grønn laser, 532 nm. Lav intensitet, 
brukes eget øyevern. 

KLB
3 

TGA 
instrumentanalyse 

Gasslekkasje, forbrenning 1 B    1B Opplæring gis på forhånd 

KLB
4 

ICP-MS 
instrumentanalyse 

Søl/spill av HF og HNO3 på 
hud evt. øyne 

1 C B B B 1C Krever godkjent beskyttelsesutstyr 
og opplæring gis på forhånd 

 
 
 
 

 
 

Konsekvens Risikoverdi (beregnes hver for seg): 
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Sannsynlighet vurderes etter følgende kriterier: 
 

Svært liten 
1 

Liten 
2 

Middels 
3 

Stor 
4 

Svært stor 
5 

 
1 gang pr 50 år eller 
sjeldnere 

 
1 gang pr 10 år eller 
sjeldnere 

 
1 gang pr år eller 
sjeldnere 

 
1 gang pr måned eller 
oftere 

 
Skjer ukentlig 

 
 
 
Konsekvens vurderes etter følgende kriterier: 
 

Gradering 
 

Menneske Ytre miljø 
Vann, jord og luft 

Øk/materiell Omdømme 

E 
Svært Alvorlig 

 

Død  Svært langvarig og ikke 
reversibel skade 

Drifts- eller aktivitetsstans 
>1 år. 
 

Troverdighet og respekt 
betydelig og varig svekket 

D 
Alvorlig 

 

Alvorlig personskade.  
Mulig uførhet. 
 

Langvarig skade. Lang 
restitusjonstid 

Driftsstans > ½ år 
Aktivitetsstans i opp til 1 år 
 

Troverdighet og respekt 
betydelig svekket 

C 
Moderat 

 

Alvorlig personskade. Mindre skade og lang 
restitusjonstid 

Drifts- eller aktivitetsstans 
< 1 mnd 
 

Troverdighet og respekt 
svekket 

B 
Liten 

 

Skade som krever 
medisinsk behandling 
 

Mindre skade og kort 
restitusjonstid 

Drifts- eller aktivitetsstans 
< 1uke 

Negativ påvirkning på 
troverdighet og respekt 

A 
Svært liten 

 

Skade som krever 
førstehjelp 

Ubetydelig skade og kort 
restitusjonstid 

Drifts- eller aktivitetsstans 
< 1dag 
 

Liten påvirkning på 
troverdighet og respekt 

 
Risikoverdi = Sannsynlighet x Konsekvens  
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Beregn risikoverdi for Menneske. Enheten vurderer selv om de i tillegg vil beregne risikoverdi for Ytre miljø, Økonomi/materiell og Omdømme. I 
så fall beregnes disse hver for seg. 
 
Til kolonnen ”Kommentarer/status, forslag til forebyggende og korrigerende tiltak”: 
Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, dvs. sannsynlighetsreduserende 
tiltak foran skjerpet beredskap, dvs. konsekvensreduserende tiltak.  
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Appendix B: Additional diffractograms 

 

Figure 9.1: Powder diffraction patterns of as synthesized conventional samples SAPO34-(1, 2, 5 and 6). 
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Figure 9.2: Powder diffraction patterns of as synthesized hierarchical samples H-SAPO34-(1-3) 
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Figure 9.3: Powder diffraction pattern of as synthesized incorporated CuSAPO-34 (Incorp-2). 

Appendix C: TGA results before and after coke 

deposition 

 

Figure 9.4: TPD profiles of conventional (green), hierarchical (red) and incorporated conventional 

(purple) SAPO-34 after coke deposition. Masses are shown up top, and 1. Derivative of masses at the 

bottom.  
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Figure 9.5: TPO profiles of conventional SAPO-34 with and without copper (top) and hierarchical SAPO-

34 with and without copper (bottom). The red curves represent mass, and the black curves are 1. 

derivative of mass. 

 

Figure 9.6: Conventional SAPO34-5 with (blue) and without (red) copper (1.4 wt%). Mass is shown on the 

left and 1. dreivative on the right. 
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Appendix D: TPR SCR-HC-deNOX 

 

Figure 9.7: Temperature-programmed SCR-HC-deNOx in dry feed. The MS intensities of NO and N2 for 

for conventional, hierarchical and incorporated conventional SAPO-34 are shown in green, red and 

purple, respectively. 

 

Figure 9.8: Temperature-programmed SCR-HC-deNOx in wet feed. The MS intensities of NO and N2 for 

for conventional, hierarchical and incorporated conventional SAPO-34 are shown in green, red and 

purple, respectively. 
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Appendix E: EXAFS refinements 

Table 9.1: Results from EXAFS least-squares refinements collected at the Cu K-edge for the in-situ 

hierarchical H-SAPO34-2 (3.9 wt% Cu). 

Ox.  
State Section 

T 
[°C] Atm. Shell N r [Å] R [%] EF [eV] AFAC 2σ2 [Å2] 

1 Cu₂O 25 Sample holder Cu-O 2 1,858(4) 35,79 -6,8(4) 0,74(3) 0,005(1) 

    
Cu--Cu 12 3,043(6)   

  
0,041(2) 

2 Cu(OH)₂ 25 Sample holder Cu-O 4 1,965 27,54 -5,466 0,7906 0,009(1) 

    
Cu-O 2 *   

 
* 

 

    
Cu---Cu 2 2,957   

  
0,01(1) 

    
Cu---Cu 4 2,799   

  
0,08(1) 

2 1 25 O₂ Cu-O 3,3(1) 1,956(4) 32,22 -6,7(4) 0,7906 0,008(1) 

    
Cu-O 1,1(3) 2,28(3)   

  
0,02(1) 

2 2 450 O₂ Cu-O 2,4(1) 1,930(6) 45,49 -3,5(6) 0,79 0,013(2) 

1 3 350 C₃H₆ Cu-O 1,3(1) 1,912(8) 45,44 -2,0(8) 0,74 0,009(2) 

2 4 350 NO + O₂ Cu-O 2,6(1) 1,937(6) 39,14 -6,2(5) 0,7906 0,012(2) 

1 5 350 C₃H₆ Cu-O 1,1(1) 1,909(7) 45,98 -3,2(8) 0,74 0,002(1) 

1 6 350 C₃H₆ (wet) Cu-O 1,2(1) 1,857(7) 46,9 1(1) 0,74 0,002(1) 

2 7 350 NO + O₂ (wet) Cu-O 2,8(1) 1,946(6) 37,67 -6,2(5) 0,7906 0,015(2) 

1 8 350 C₃H₆ (wet) Cu-O 1,4(1) 1,932(7) 39,75 -4,2(6) 0,74 0,008(2) 

    
Cu--Cu 1,5(1) 2,26(3)   

  
0,04(1) 

1 9 350 C₃H₆ Cu-O 1,8(1) 1,938(8) 43,2 -4,0(7) 0,74 0,012(2) 

2 10 350 NO + O₂ Cu-O 3,2(2) 1,943(9) 53,45 -6,3(6) 0,7906 0,018(3) 

1 11 350 C₃H₆ Cu-O 1,2(1) 1,913(7) 47,86 -4,1(9) 0,74 0,003(1) 

1 12 350 He (Wet) Cu-O 1,5(1) 1,881(8) 46,78 -2,6(8) 0,74 0,006(2) 

 

 

 


