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Abstract— Disturbances originating in one control loop of a
large industrial plant can propagate far from the source, giving
rise to plant-wide oscillations. The underlying interactions
among the different control loops make it hard to identify
the origin of such large scale disturbances. This paper studies
the application of the convergent cross mapping (CCM) based
technique to isolate the source of a plant-wide disturbance.
The proposed scheme exploits the cause and effect relationships
among the affected variables to find the source of disturbance.
The states of the causative factors are estimated from the effect
variable and the directionality of information flow is established
using the correlation between the original and estimated signal.
The method is applied to the industrial case study and is shown
to be effective in isolating the disturbance origin.

I. INTRODUCTION

In an industrial control system plant-wide disturbances
can result in product variability and excessive use of pre-
cious resources, with both economically and environmentally
detrimental consequences. Thus there is clear motivation
to look for the root cause/source of these disturbances, so
that targeted remedial action can be taken. Disturbances in
a large scale plant may arise due to number of reasons
such as a) poor controller tuning b) process degradation,
and c) equipment wear and failure, etc. Once started these
disturbances travel away from their origin due to mass and
energy flows as well as control loop interactions, thus giving
rise to plant wide disturbances [7],[20]. In such a scenario,
the early and accurate identification of the origin of the
disturbance is a key to reduce maintenance and shut down
time and thus improving the overall economics.

In order to find the source of plant wide oscillations differ-
ent approaches, both model based and data driven, have been
considered by researchers over the past decade or so. The
data driven methods are more popular owing to the fact that
model based methods rely on process information/model,
expert knowledge and analysis of P&IDs that may not be
available or lack desired level of accuracy [8]. whereas data
driven methods are based on the historical data alone and are
quite flexible to use. The detailed description of both these
approaches can be found in [8].

The data driven approaches are mostly based on the anal-
ysis of cause and effect relationship, the so called causality
analysis. The causality is defined as: if prediction of time
series y is improved by using the knowledge of other time
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series x, then x has a causal influence on y [8]. This defi-
nition of causality is taken up by Granger [10] who argued
that x ”Granger causes (G-Causes)” y if removing x from
the universe of all possible causative variables U decreases
the predictability of y i.e σ2(y|U) < σ2(y|(U − x)). The
key assumptions in Granger Causality (GC) paradigm are
a) The cause occurs prior to effect and b) The causative
information of a cause variable is independently unique to
that variable, the so called ”separability” assumption i.e if
x G-causes y then information about x is uniquely present
in x only and can be removed from the system . The later
assumption may be difficult to ensure as in dynamic systems
the information about x may be redundantly present in effect
variable y and impossible to separate [17]. The GC has been
applied for diagnosis of plant wide oscillations by Yuan et.
al[22]. Moreover, though GC is a powerful concept and has
both time and frequency domain variants, it is originally
applicable to purely linear stochastic systems only, although
extensions to nonlinear systems have been proposed [4].

Bauer et. al [2] have studied the determination of dis-
turbance propagation path in process systems by employing
the ”Transfer Entropy” (TE) methodology to measure the
extent of information transfer from one variable to other. The
method requires tuning of certain parameters like prediction
horizon, time interval and embedding dimensions that can
significantly effect the results [8]. Moreover, estimation of
joint and conditional probability density functions (pdfs) is
computationally intensive and needs sufficiently large data
sets.

Phase space reconstruction of the attractor manifold based
on time delayed embedding is an important and popular
concept for analysis of nonlinear dynamical systems. The
time series x(t) from a dynamical system is used for recon-
struction of the attractor manifold, with embedding dimen-
sion m , using the time lagged vectors x = [x(t) x(t −
τ) x(t − 2τ) . . . (t − (m − 1)τ); where τ is the time lag
[11], [18], [16] and [12]. Interdependence between two time
series x(t) and y(t) using the ”nearest neighbors” (NN) from
their respective attractor manifolds has been used in number
of studies for example [14], [6],and [1]. The similar approach
has been adopted by Bauer et. al [3] for diagnosis of plant
wide disturbances. This method is also sensitive to tuning
parameters like embedding dimension, prediction horizon
and number of nearest neighbors.

In this paper we use a relatively new method called
Convergent Cross Mapping or CCM [17], to locate the
source of plant wide disturbances. The method is also based
on the nearest neighbor concept but it runs counter to



the popular notion of causality. The method exploits the
fact that if x(t) drives y(t) then the effect variable y(t)
will contain signatures of x(t), rather than the other way
around. The procedure is rather simple and is claimed to
work well with the short time series data as well [17]. The
extent of the causal influence is determined by estimating
the states x̂ from near neighbors of y and vice versa. The
correlation between estimated and original time series then
gives the directionality of information flow. Moreover, the
proposed method is augmented with automatic determination
of embedding dimension to make it more robust and reliable.
The proposed method is applied to an industrial data set
suffering from plant wide oscillations and is able to identify
the source of disturbance.

The paper is organized as follows. Section II gives the
detailed description of the proposed CCM based source
detection method and Section III outlines the statistical
test to check the significance of the correlation between
estimated and original time series. Automatic determination
of embedding dimensions is presented in Section IV. Section
V describes the steps involved in the proposed method for
identifying the root source followed by an industrial case
study and conclusions in Sections VI and VII respectively.

II. CONVERGENT CROSS MAPPING (CCM)

Convergent Cross Mapping (CCM) is recently developed
by Sugihara et. al [17] for the causality analysis of ecological
time series. The method make use of the fact that time series
from the same dynamical system share a common attractor
manifold and hence can be used to estimate the state of each
other. In CCM causal relationship x → y is established by
looking at the signatures of causative factor x in the effect
variable y and in case of x→ y, y can give reliable estimates
of x. In this way it runs counter to the general notion of
causality where the estimation is other way around.

In order to explain the CCM consider two time series x(t)
and y(t), each with N samples, from a dynamical system that
share a common attractor manifold M. Making use of the
time delayed embedding (Takens [18]) shadow attractor man-
ifolds Mx and My, with embedding dimension m, can be
constructed from the time series x(t) and y(t) respectively.
The time delayed embedding for manifold Mx is represented
as xi = [x(i) x(i − τ) x(i − 2τ) . . . x(i − (m − 1)τ)
∀i = (m−1)τ+1, (m−1)τ+2, . . . N ; Construction of My

follows the same procedure.
CCM looks for how well the local neighborhood of Mx

maps to the local neighborhood of My. In order to determine
the causative influence of x(t) on y(t), for each vector i
in My, m + 1 nearest neighbors are identified and their
corresponding entries are marked in x(t). The weighted mean
of these these m+ 1 values in x(t) are used to estimate the
state of xi(t) given be x̂i(t)|My; given by

x̂i =

m+1∑
j=1

wjxj (1)

The estimate of ŷ|Mx can be calculated in an analogous
way to infer the causative influence of y(t) on x(t). The root
mean square error(ex̂|My

) and correlation (ρx̂|My
), given in

(2), can then be used to determine the extent of causative
influence of x→ y.

ρx̂|My
=

∑
x̂ixi −N∗x̄i ¯̂xi√

(
∑
x2i −N∗x̄2)

√
(
∑
x̂2i −N∗ ¯̂x2)

ex̂|My
=

1

N∗
(

k=N∗∑
k=1

x̂k|My − xk)2

(2)

where N∗ is the number of embedded vectors. The greater
the correlation ρx̂|My

(lower rms error), the greater is the
causative influence of x on y and vice versa. The extent of
causative influence of y on x can be determined similarly. In
the case of unidirectional causality from x to y, x(t) contains
no information about y(t) and thus cannot reliably estimate
the states of y(t) giving lower values of correlation and
higher rms error. The correlation coefficient, as calculated
in (2), is used in this work to determine the direction of
information flow. The correlation coefficient is the preferred
choice as it can be transformed to normally distributed z-
scores using Fisher’s z-transformation ([9], [15]) and can
thus be checked for significance against some null hypoth-
esis. The significance test will be explained later in section
III.

A. Convergence in CCM

Another important aspect of CCM is the convergence of
ρ and rms error with increase in length of time series N . By
convergence we mean that ρ increases (erms decreases) as
length increases. This is so because with increased informa-
tion the trajectories forming the attractor fill in, thus giving
closer neighbors and higher correlation (lower rmse error)
[17]. The convergence will be limited by observational error,
noise and time series length 1. Nevertheless the convergence
of the estimates is a key to establish the directionality of
information flow. In case of bidirectional coupling, apart
from the absolute value of the correlation ρ, its convergence
rate can also be used to judge the extent of causation.
The greater the causality effect the greater will be the
convergence rate and vice versa. This can be explained from
the following illustrative example of CCM.

B. Illustrative Example

The interpretation of results from CCM analysis can be
explained using the following example from [17]. Consider
two interacting time series given by

x(k + 1) = x(k)[3.8− 3.5x(k)− βxyy(k)]

y(k + 1) = y(k)[3.8− 3.8y(k)− βyxx(k)]
(3)

where βxy (βyx) controls the contribution of y(k) (x(k)) on
x(k) (y(k)).

1In perfect deterministic and noise free settings ρ→ 0 as length L→ ∞
[17]
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Fig. 1. Time series x and y for CCM illustrative example, βyx =
0.1, βxy = 0.02
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Fig. 2. CCM results (illustrative example)

Time series and results of CCM analysis for the case
βyx > βxy are shown in Figure 1 and Figure 2 respectively.
It has been shown by Sugihara et. al [17] that the causal
relationship in this example cannot be captured by Granger
causality as the ”separability” assumption cannot be fulfilled.
The estimated state of x has greater correlation with the
original time series and x̂|My converges faster than ŷ|Mx

thus confirming that x has larger influence on y.

C. Convergent Cross Mapping Algorithm

The causation detection from x → y using the CCM
method is summarized in the following steps [17]

1) Consider two time series x(t) and y(t) of length N
2) Construct time delayed embedding vectors Yi(t), the

shadow manifold My , for time series y(t) with given
embedding dimension m and time delay τ using

Yi = [y(i), y(i− τ), y(i− 2τ), . . . y(i− (m− 1)τ)]
(4)

where i = (m− 1)τ + 1, (m− 1)τ + 2, . . . N
3) For each vector Yi find the m+ 1 nearest neighbors on

the manifold My denoted by nj ∀j = 1, . . . (m+ 1)
4) Using the nearest neighbors nj ∀j = 1, . . . (m+1) from

My manifold locate the corresponding values in x(t)
and mark them xj , xj+1, . . . xm+1

5) Generate cross mapped estimate of x(t) given by x̂|My

from weighted mean of xjs using

x̂i =

m+1∑
j=1

wjxj

wj =
wj∑
wk

k = 1, . . .m+ 1

wj = exp(
−||Yi − Yj ||
||Yi − Yn1

||
)

(5)

where ||Yi − Yj || and ||Yi − Yn1 || are the Euclidean
distance in My between ith and jth vector and nearest
neighbor respectively. In case distance to nearest neigh-
bor is zero then w1 = 1 and wj = 0 ∀j = 2 : m+ 1

6) Calculate the correlation coefficient ρx̂|My
using Equa-

tion 2.
7) Repeat Steps 1-6 for different time series length N to

check for convergence of ρx̂|My
as a function of time

series length.
The cross mapping from x to y can be evaluated similarly.
the directionality or the strength of causality can be deter-
mined from the difference in ρx̂|My

and ρŷ|Mx
. If ρx̂|My

>
ρŷ|Mx

=⇒ x→ y and vice versa.

III. SIGNIFICANCE TEST

It is discussed in the preceding section that the directional-
ity or the extent of causative effects can be determined from
the relative value of correlation (ρ) between the original and
estimated time series. However, one should question whether
the difference between ρx̂|My

and ρŷ|Mx
is significant to reli-

ably infer the causal relationship and direction of information
flow. The same is true for inferring the convergence of the
ρx̂|My

and ρŷ|Mx
. To this end, it is necessary to test the null

hypothesis
H0 :: There is no significant difference in correlations i.e.

ρx̂|My
= ρŷ|Mx

The sample correlation doesn’t follow the normal distribu-
tion so in order to test the null hypothesis, i.e, the significance
between the relative correlation, Fisher’s z− transformation
is used. Fisher’s z− transformation maps the correlation
coefficient, to normally distributed z-scores by the relation.

zx̂|My
= 0.5 ∗ ln

[1 + ρx̂|My

1− ρx̂|My

]
(6)

where ln is the natural logarithm. Similarly zŷ|Mx
can be cal-

culated from ρŷ|Mx
The difference between z− transformed

correlation coefficients can be given by

Z∗ =
zŷ|Mx

− zŷ|Mx√
1

N1−3 +
√

1
N2−3

(7)

where N1 and N2 are sample sizes for two correlations. In
this case we have N1 = N2 = N∗. The NULL hypothesis
is rejected at the confidence level α, for a two tailed-test, if
|Z∗| > Zα/2. A confidence level of α = 0.01 is used in this
work, which gives Zα/2 = 2.58.



A. Significance of Convergence

In order to test convergence of the correlation, between
original and estimated time series, the CCM is performed
for increasing lengths of time series Nmin to Nmax. The
convergence is inferred if difference between ρNmin

and
ρNmax

, using Equations (6) and (7), is found to be significant.
The only difference would be to plug in ρNmin

and ρNmax
to

calculate z−scores in Equation (6) and finding whether the
corresponding Z∗ gives |Z∗| > Zα/2 for confidence level α.

IV. DETERMINING EMBEDDING DIMENSION

The approach used in this work is based on the phase
space reconstruction of attractor manifolds Mx and Mx via
delayed embedding. An important parameter in this approach
the embedding dimension of the attractor. The embedding
dimension is to be chosen such that the attractor unfolds
enough to describe the dynamic behavior of the underlying
dynamical system. Moreover, if the embedding dimension m
is less than the required minimum m0 i.e m < m0, then the
points appearing as near neighbor of a point in state space
may not be true neighbors in actual state space [13]. They
only appear near neighbors in low dimensional phase space
because the attractor may not have unfolded fully.

Therefore any analysis based on the nearest neighbor
approach is prone to error. This is true for the work presented
here and other related methods such as given in [3]. The
adverse impact of choosing a larger embedding dimension
than required is the increased computational effort without
improving the result much. Thus, it is quite essential to
have an automatic way of determining the minimum embed-
ding dimension to make any method based on phase space
reconstruction reliable with minimum computational effort.
In order to address this concern an automatic method for
determining the minimum embedding dimensions based on
false near neighbors is incorporated with the CCM based
method to make it robust and effective.

The minimum embedding dimensions needed to for phase
space reconstruction are calculated using the method of false
nearest neighbors proposed by Cao [5]. The method relies
on the fact that if m is the true embedding dimension of the
phase space, then points near in m− dimensional space will
be still be close in m + 1 dimensional space. Consider and
time series z(t) = z1, z2, . . . zN of N samples. Then delayed
vectors, with embedding dimension m and time delay τ are
given by

Zi = (zi, zi+τ , . . . zi+(m−1)τ ) ∀i = 1, 2, . . . (N −m)τ
(8)

For ith vector Zi distance measure a(i,m) is defined as

a(i,m) =
‖Zi(m+ 1)− Zn(i,m)(m+ 1)‖
‖Zi(m)− Zn(i,m)(m)‖

i = 1, 2, . . . , N −mτ
(9)

where ‖.‖ represents vector norm operation; Zi(m+ 1) and
Zi(m) are ith delay vectors in m and m + 1 dimensional
space. Zn(m) is the nearest neighbor of Zi(m) in the m
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Fig. 3. Automatic determination of embedding dimension (m) using false
near neighbour methods

dimensional space, where n(i,m) is integer in set (1 ≥ n ≥
N −mτ).

The value of a(i,m) is calculated for all the delay vectors
and its mean E(m) is given by

E(m) =
1

N −mτ

N−mτ∑
i=1

a(i,m) (10)

The variation in E for the increase in embedding dimension
to m+ 1 is given by the quantity E1 defined as

E1(m) =
E(m+ 1)

E(m)
(11)

The quantity E1(m) in (11) approaches unity and stops
changing for some m > m0 when the near neighbors in
m dimensions stay near in m+ 1 dimension as well. If this
is the case then the minimum embedding dimension is given
by m0 + 1.

In order to illustrate the procedure described above for
determination, the E1(m) quantity for one of the data sets
is plotted in Figure 3. It can be seen that E1 approaches
unity and stops changing for m > 8, thus giving m =
9 as the minimum embedding dimension for phase space
reconstruction.

V. PROPOSED METHOD

The method proposed looks for the causal relationship and
direction of information flow between two time series x(k)
and y(k) each of length N . Both time series are recorded
from a dynamical system and share a common manifold
M in phase space. The procedure involves cross mapping
/estimation of one time series from the other thereby giving
the direction of maximum influence or information flow. The
main steps involved in the proposed method are as follows:

1) Mean center and normalize both time series to unit
standard deviation.
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2) Determine the minimum embedding dimension for both
time series using method given in section IV. The two
time series can have different embedding dimension.2.

3) Compute ρx̂|My
and ρŷ|Mx

using CCM method de-
scribed in section II.

4) Test the NULL hypothesis using significance test given
in section III.

5) Repeat steps 1-4 for increasing length of time series
starting from Nmin to Nmax. Variables passing the
convergence test, given in Section III-A, are considered
for analysis.

6) In case the the NULL hypothesis is rejected and there
is significant difference in ρNMax

and ρNMin
then

ρx̂|My
> ρŷ|Mx

gives x→ y otherwise y → x
7) Repeat steps 1-6 for all pairs of variables affected by

the plant-wide disturbance
8) Variables influencing all the affected variables is desig-

nated as the source of disturbance.
9) Alternatively, an information flow graphs can be con-

structed with variables as nodes and arrows directing
the flow of information as determined in step 6. This is
the same concept as is employed in [8].

VI. INDUSTRIAL CASE STUDY

The proposed CCM based method is applied to indus-
trial from South East Asian refinery. The same data set
has been used previously for the detection of plant-wide
oscillations([21],[19]) and root cause analysis ([20], [?], and
[23]). The data consists of 37 different tags each having N =
512 samples at sampling rate of 1min. It has been reported
that the plant suffers from a plant wide oscillation, due to
valve nonlinearity, with oscillation period of 16.7 min−1.
Nine tags are identified to be affected by this oscillation
([21]) (shown in Figure 5). The nonlinearity signatures are
found to be present in 4 tags, namely 11, 13, 33 and 34 [20].
Tag 34 is found to be the most nonlinear and is designated
as the source of this plant wide oscillation. The non-linearity
indices calculated by Thornhill [20] are also shown in the
Figure 5.

2But for the sake of simplicity in this work same embedding dimensions
are used for both time series
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Fig. 5. Time trends and nonlinearity indices for SEA refinery data (Case
study)

The same data set is studied using the proposed CCM
method to analyzed how well it can identify the origin of
the plant wide disturbance. Two scenarios are considered
here a) In first scenario the known reason for disturbance
is taken into account and tags showing non-linearity only
are analyzed with the proposed method to identify the origin
of the nonlinearity. b) The second scenario assumes that the
cause is not known in advance and all 9 tags affected by
plant-wide oscillation are analyzed. This scenario will test
the broader scope of the proposed method.

A. Parameter Settings

The following parameters settings are used to analyze the
industrial data.
• The analysis is started with sample size of Nmin = 100

samples that is increased in steps of 100. The maximum
number of samples used are Nmax = 500

• Minimum embedding dimensions are computed using
the method given in section IV and it is found that
m = 20 fits well for all the time series. One may choose
different m for different tags, but same m is used for
all the loops.

B. Analysis with Known Root Cause

As discussed the plant wide oscillations in the industrial
data under study are due to valve non-linearity. Only four
tags are identified as the ones with signatures of nonlinearity.
These four tags 11, 13, 33 and 34 are analyzed using the
proposed CCM based method and results are summarized in
the following.

It can be seen from the correlation plots for the CCM
analysis in Figure 6 that Tag 34 has greater influence on
all the other loops. The same effect is shown in the form
of information flow graph in Figure 7. The information
flow graph shows only those connections that fulfill the
significance criteria given in section III and show ∆ρ > 0.02.
Thus the proposed method has been successful in designating
the origin of plant wide disturbance.
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Fig. 6. CCM results Industrial case study (with known root cause)

C. Analysis with Unknown Root Cause

In this scenario it is assumed that the root cause is not
known and all the loops affected by plant-wide oscillation are
analyzed using proposed method. The results are summarized
in Table I. Here again Tag 34 is found to be influencing all
the other variables and thus designated as the source of plant-
wide disturbance. It in interesting to note that the Tag25 has
been influenced by tags other than Tag34. It might be so
because the Tag 25 is recycled waste gas from another unit
and the disturbance propagated through that unit [20].

Fig. 7. CCM results (Information flow graph): industrial case study (known
root cause)

TABLE I
CCM RESULTS FOR ALL LOOPS SUFFERING FROM PLANT-WIDE

OSCILLATION (INDUSTRIAL CASE STUDY)

Cause Influenced Loops
Tag 34 All
Tag 33 –
Tag 25 –
Tag 20 3
Tag 19 –
Tag 13 –
Tag 11 25
Tag 3 25
Tag 2 25

VII. CONCLUSIONS

In this paper convergent cross mapping based approach for
isolating the source of plant wide disturbance is presented.
The method is simple and effective and requires tuning of
embedding dimension only. The proposed method is made
reliable by appending it with automatic determination of
embedding dimension. Moreover, the application of the pro-
posed approach to an industrial case study gives promising
results in identifying the origin of disturbance.
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