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Abstract

Non-linearity induced oscillations in control loops are characterized by the

presence of higher order harmonics. In this paper the dyadic filter bank

property of the Multivariate Empirical Mode Decomposition (MEMD) is10

exploited to reveal the harmonic content of the oscillatory signal to indicate

the presence of non-linearity. Once the harmonics are identified the extent of

non-linearity is evaluated automatically using Degree of non-linearity mea-

sure (DNL) introduced in our previous work (Aftab et al., 2016). Although

detection of non-linearity via harmonics is an old concept; any automatic15

method has still not been reported. Moreover, the existing methods suf-

fer from the restrictive assumption of signal stationarity. The proposed

method is more robust in identifying the non-linearity induced oscillations

and is adaptive and data driven in nature and thus requires no a priori

assumption about the underlying process dynamics. The proposed method20

can also differentiate among the different sources of multiple oscillations, for

example combinations of nonlinearity and linear sources or two nonlinear

sources. Apart from detecting the non-linearities the proposed method can

also contribute in locating the source of non-linearity, thereby reducing the

maintenance time to a considerable extent. The robustness and effective-25

ness of the proposed method is established using industrial case studies and

results are compared with existing methods based on higher order statistics

(Choudhury et al., 2008) and surrogate based methods (Thornhill, 2005).

Keywords: Non-linearity induced oscillations, harmonic content, dyadic
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filter bank property, empirical mode decomposition, intra wave frequency30

modulation

1. Introduction

Oscillations are one of the major causes of degraded control performance

in industrial control systems. Product variability, equipment wear, and

reduced profitability are the major aftereffects associated with oscillatory35

control loops. Oscillations can be due to multiple causes like poor controller

tuning, disturbances and non-linearities. Non-linearities, ranging from in-

herent non-linearities in the process itself to ones associated with sensor

and actuator faults, are among the major causes of oscillation in industrial

control systems. The high complexity and large size of modern industrial40

processes necessitate the early and correct diagnosis of the oscillation source

for timely maintenance and reduced shut down time.

Detection of non-linearity induced oscillations has attracted considerable

attention from the research community for more than a decade. Detailed

literature reviews can be found in [(Thornhill and Horch, 2007) and (di Ca-45

paci and Scali, 2015)], while only a brief overview of some procedures is

provided here.

Horch (1999) proposed that an odd correlation between manipulated

and process variable indicates the presence of valve non-linearities in non-

integrating plants. Other methods based on shape analysis formalisms for50

detecting valve non-linearities are put forth by Srinivasan et al. (2005),

Hägglund (2011) and Yamashita (2005).

Methods pertaining to non-linear time series analysis are also being used

by some authors to detect oscillations caused by non-linearities in control

loops. One such method, based on higher order statistics (HOS), is put55

forward by Choudhury et al. (2008). The bi-spectrum of the nonlinearity

induced oscillations shows peaks at the corresponding bi-frequencies. Two
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indices, termed the Non-Gaussianity Index (NGI) and the Non-Linearity

Index (NLI), are used to detect the presence of non-linearity. The signal

is classified as the output of a linear Gaussian process if NGI ≤ 0.0001;60

whereas NLI≥ 0.01 classifies the signal to be outcome of a non-linear pro-

cess. Both the NGI and the NLI need to be above their respective thresholds

for the signal to be identified as non-linear. In addition, a total non-linearity

index (TNLI) is defined to calculate the total non-linearity in the signal.

An important limitation for this method is that symmetric waveforms (like65

square or triangular) exhibiting odd harmonics, cannot be captured [Thorn-

hill (2005) and Zang and Howell (2003)].

Another important method is that of surrogate testing proposed by

Thornhill (2005). Surrogates are time series which have exactly the same

power spectrum as original time series, but phase is randomized to remove70

any kind of phase coupling. The algorithm makes use of the fact that the

time series from the non-linear source depicts phase coupling and hence is

more predictable than its surrogate counterpart. A non-linearity measure

called N-measure is defined to accept or reject the null hypothesis that the

signal is outcome of a linear Gaussian process. Different parameters like75

embedding dimensions, the number of nearest neighbors and number of

oscillation cycles 1 need to be tuned in order to obtain reliable results.

Non-linearity detection methods based on the Hilbert Huang Transform

(HHT) and intra-wave frequency modulation, that are applicable to non-

stationary time series, are proposed by Babji et al. (2009) and Aftab et al.80

(2016). The former gives only the qualitative picture while the latter pro-

vides a measure to quantify the severity of non-linearity. The method by

Aftab et al. (2016) provides an automatic way to detect non-linearities but it

suffers from the inherent mode mixing limitation of Empirical mode decom-

position (EMD), the first step in obtaining to the HHT. The mode mixing85

problem may result in false reporting of the non-linearity in presence of

noise and multiple oscillations.

The idea that the oscillations caused by non-linearities contain higher or-

der harmonics is explored by Thornhill et al. (2001). A measure called the

1See the original reference for details
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distortion factor D is introduced that measures the energy spread among the90

fundamental frequency and harmonics to detect the extent of non-linearity.

This method has certain limitations, the foremost being the manual detec-

tion of harmonics and the requirement of stationary data. It is also prone

to report inaccurate results in the presence of noise and multiple oscilla-

tions due to other causes. This paper is aimed at addressing the limitation95

of the previous work (Aftab et al., 2016), where the mode mixing problem

can result in false detection of non-linearity. In the method proposed here,

instead of relying on the intra-wave frequency modulation to classify the

time series data, the harmonic content is analyzed using the noise assisted

multivariate EMD (MEMD). The presence of harmonics is taken as an in-100

dication of non-linearity and then intra-wave frequency modulation is used

to measure the extent of non-linearity in the signal.

The advantages offered by the proposed method are threefold. First it

removes the mode mixing problem associated with non-linearity detection

method given in(Aftab et al., 2016) while retaining the data driven ability of105

the EMD process. Second, the proposed method is automatic, can sift out

the harmonic content adaptively, and can work in the presence of noise and

oscillations caused by multiple sources. Third, the extent of non-linearity

using intra-wave frequency modulation can help in isolating the source loop

of non-linearity.110

The paper is organized as follows: Section 2 gives an overview of the EMD,

Multivariate EMD and the associated dyadic filter bank property. Section

3 outlines the steps involved in harmonic extraction. The degree of non-

linearity and criterion to isolate the non-linearity are discussed in Section 4

and Section 5 respectively. Section 6 gives the detailed algorithm, followed115

by simulation and industrial case studies in section 7 and 8 respectively,

followed by conclusions.

2. Empirical mode Decomposition (EMD) and Variants

2.1. Standard EMD

Standard EMD is also referred to as univariate EMD, as it caters only for120

one dimensional signals. EMD is a data driven procedure that adaptively
4



sifts out different components, called Intrinsic Mode Functions (IMFs), from

the signal. An IMF is defined as a function that has zero mean and the num-

ber of extrema and zero crossings at most differ by one. The method sifts

out fast components from the slower ones through an iterative procedure125

that involves identification of local extrema and fitting an envelope through

them using cubic splines. The low frequency components are local means

m(t) of the envelope and the local fast component d(t) is then given by

[Rilling et al. (2003)]

d(t) = x(t)−m(t) (1)

The sifting process is repeated until d(t) fulfills the criteria to be an IMF.130

The IMF is then subtracted from the original signal and the sifting proce-

dure is started again on the residue and continues till no more IMFs are left

to be extracted. The signal can then be expressed as the sum of IMFs and

residue as

x(t) =
N∑
i=1

ci(t) + b(t) (2)

where x(t) is the input time series, ci(t) is the ith IMF, b(t) is the residue,135

and N is the total number of IMFs. The details of the procedure can be

found in Huang et al. (1998) and Rilling et al. (2003).

2.2. Multivariate EMD (MEMD)

Given the data driven nature and distinct properties of EMD, efforts were

made to extend its applicability to multivariate signals, with the major ob-140

stacle to such an extension being the generation of envelope and its mean in

the higher dimensions. Rilling et al. (2007) proposed that the envelopes in

the 2-dimensional space can be generated by extrema sampling of multiple

signal projections in a complex plane. The mean is then calculated by aver-

aging the envelopes from these projections. The projections are calculated145

using uniformly spaced direction vectors on the unit circle.

Rehman and Mandic (2009) generalized the same concept to n-

dimensional signals, the so called Multivariate EMD (MEMD), by gener-

ating envelopes in n-dimensional space. The multiple directions are repre-

sented by vectors from the center of the unit n-dimensional sphere to the150
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uniformly distributed points on its surface. The points are generated using

uniform sampling by means of Hammersley and Halton sequences.

2.2.1. Hammersley and Halton Sequences

Hammersley and Halton sequences are used to generate low discrepancy

sequences for uniform sampling. The kth sample of a one dimensional Hal-155

ton sequence φp(k) is written as

Φp(k) =
a0
p

+
a1
p2

+
a2
p3
. . .

ar
pr+1

(3)

where prime base-p representation of k can be expressed as Wong et al.

(1997)

k = a0 + a1p+ a2p
2 . . . arp

r (4)

where each ai is an integer in [0, p − 1]. Starting from k = 0 and with

p1, p2 . . . pd as d prime numbers, the kth sample of the d-dimensional, Halton160

sequence then becomes (
Φp1 ,Φp2 , . . .Φpd

)
(5)

A Hammersley sequence can be used when the total number of points (n)

are known in advance, thus the kth sample of d-dimensional Hammersley

sequence is given by(
k
n
,Φp1 ,Φp2 , . . .Φpd−1

)
k = 0, 1 . . . n− 1 (6)

The Hammersley sequence given by (6) can be used to generate uniform165

sampling on the unit sphere for envelope generation. The accuracy of the

Hammersley sequence may decrease for higher dimensions. This may be

improved by using (t,m, s)-nets and (t, s)-sequences (Niederreiter, 1992).

2.3. Envelope and Mean in n-dimensions

The next step is to generate the envelope of all the projection curves, using170

cubic splines which are in turn averaged to calculate the mean envelope

m(t). Fast modes are extracted, in an analogy to the univariate case, by
6



d(t) = x(t)−m(t) and the procedure is iterated in a similar fashion till there

are no more IMFs to extract. The IMFs so generated are also n-dimensional

signals, with each dimension corresponding to the corresponding component175

in the input signal. The detailed algorithm is given in Table 1.

Table 1: Multivariate Empirical Mode Decomposition (MEMD) Algorithm

Algorithm Multivariate EMD

1. Set up K direction vectors (K = 64 is used here) uk with k = 1 . . . K
by choosing uniformly spaced points on the n dimensional sphere.

2. Find the projections pk(t) of the input signal x(t) along the direction
vectors uk for k = 1 . . . K.

3. Identify the maxima of projections pk(t) and corresponding time in-
stants tk.

4. Generate a multi-variable envelope curve ek(t) by interpolating
[tk, x(tk)].

5. The mean of the envelope curve is then given by

m(t) =
1

K

K∑
k=1

ek(t) (7)

6. Similar to the univariate EMD, extract local fast mode d(t) from d(t) =
x(t)−m(t).

7. Iterate the steps 1− 5 on d(t) till it qualifies to be an IMF.

8. Find residue r(t) = x(t)− d(t) and repeat same procedure on the r(t)
till all IMFs are extracted.

The uniformly sampled envelope on a three dimensional unit sphere, using

the Hammersley points is given in Figure 1.

2.4. Dyadic Filter Bank Property of the MEMD

An important consequence of the MEMD is that it acts like a series of180

band pass filters in the presence of white noise, analogous to the wavelet
7
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Figure 1: Random sampling with uniform distribution on the unit sphere using the
Hammersley sequence

decomposition [Rehman and Mandic (2011)]. This property is referred to as

the dyadic filter bank property of MEMD. In order to elaborate this concept

an average frequency spectrum of IMFs from 1000 different realizations of

three-channel white Gaussian noise is shown in Figure 2. The IMFs can be185

seen as the output of a series of band pass filters, with the frequency of each

band decreasing with the IMF index.

3. Extraction of Harmonics in Univariate Signals

The dyadic filter bank property of MEMD can be enforced on the uni-

variate signals using the so called noise assisted MEMD (NA-MEMD). To190

achieve this the univariate signal is appended with two or more noise chan-

nels to make a multivariate signal which is then processed using the MEMD

algorithm. The details of the procedure are discussed next.

3.1. Enforcing the Dyadic Filter Bank Property

The harmonics exhibited by the non-linearity induced oscillations can195

be extracted by virtue of the dyadic filter bank property of Multivariate

EMD. In order to enforce the dyadic filter bank property of MEMD, the
8
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Figure 2: Dyadic Filter Bank property of Multivariate EMD (MEMD),

univariate input signal is appended with two or more noise channels to

generate a multivariate signal and thereafter is processed using MEMD

algorithm (the detailed steps are described in Table 2) (Rehman et al.,200

2013). The retained IMFs are univariate (noise channels are discarded) and

are aligned according to the filter bank structure. These IMFs are ready to

be tested for the presence of harmonics, but first non-significant and noisy

IMFs have to be discarded.

3.2. Discarding Spurious and Noisy IMFs205

3.2.1. Discarding Pseudo IMFs

The EMD process is prone to produce pseudo IMFs that are poorly cor-

related with the input signal due to spline fitting issues [Peng et al. (2005),

Srinivasan and Rengaswamy (2012) and Aftab et al. (2016)]. The MEMD

is also no exception. Therefore in oder to get the significant IMFs, the cor-210

relation index of each IMF with original signal is calculated using relation

ρi =
Cov(ci, x)

σxσci
, i = 1, 2, 3 . . . n (8)

where Cov denotes the covariance; σx and σci are the standard deviations

of the signal and the IMF, respectively, and n is the total number of IMFs.
9



Table 2: Enforcing dyadic filter bank property

Step 1 Generate two uncorrelated white Gaussian noise sequences with
length same as that of the original signal

Step 2 Append the two noise sequences to the original signal to make 3-
channel signal, with one channel of original data and two channels of
noise

Step 3 Process the signal using Multivariate EMD. The resulting IMFs
will have three channels.

Step 4 Retain the IMFs in the channel corresponding to the original signal,
and discard the IMF components corresponding to noise channels

The normalized correlation coefficient λi is calculated for each IMF215

λi =
ρi

max(ρi)
, i = 1, 2, 3 . . . n (9)

Only the IMFs with (λ > η) are retained, where the value of threshold η is

discussed in Section 3.4.

3.2.2. Discarding Noisy IMFs

It may happen that, in case of signals with large noise levels, IMFs with

large noise content and little information are retained in the previous step.220

Therefore these noisy IMFs need to be discarded as the objective is to

identify the harmonics in the IMFs and these harmonics will have distinct

peaks in the frequency spectrum.

To get rid of IMFs consisting mainly of noise, a method based on the

sparseness index[Hoyer (2004) and Srinivasan and Rengaswamy (2012)] is225

used. The frequency spectrum of noise dominated IMFs will be spread

across a broad frequency range whereas for oscillatory IMFs it will exhibit

distinct peaks. The sparseness index SI of frequency spectrum X(f) of
10



signal x(t), given by (10) will be almost zero for a noisy signal whereas it

will attain a value near one for the oscillatory ones:230

SI(x) =

√
N −

(∑N
1=1 |Xi|/

√∑N
1=1 |Xi|2

)
√
N − 1

(10)

Here X is the frequency response and N is total number of frequency chan-

nels up to the Nyquist frequency. The IMFs with SI > SThresh, containing

distinct peaks, are retained for further analysis. The default value of SThresh
is discussed in Section 3.4.

3.3. Extracting Harmonics235

Once the significant and oscillatory IMFs are obtained using the pro-

cedure laid down in Section 3.2, the next step is to assess the IMFs for

presence of harmonics. The presence of oscillations in retained IMFs and

the corresponding time period is determined using the Auto Covariance

Function (ACF) method proposed by Thornhill et al. (2003). This is due240

to the fact that the ACF of an oscillatory signal oscillates with the same

frequency with noise confined to zero lag only. The IMFs are converted to

the corresponding ACF and zero crossings are evaluated.

If ∆t is the time interval between two successive zero crossings, then the

average time period T̄p for n such intervals will be given by [Thornhill et al.245

(2003) and Srinivasan and Rengaswamy (2012)]

T̄p =
2

n

n∑
i=1

(∆ti) (11)

The regularity of the oscillation is determined from the r statistics calculated

using the relation

r =
1

3

T̄p
σTp

(12)

where σTp is the standard deviation of the the time intervals between zero

crossings. The oscillation is detected if r > 1 and the mean time period T̄p250

is reported.
11



3.4. Default Parameter Settings

The default settings of different parameters used in this work are outlined

in Table 4. The discussion about these default settings, for each parameter,

are discussed next.255

3.4.1. Number of Zero Crossings

The presence or absence of harmonics is ascertained from the zero cross-

ings of ACF using (11) and (12). Thornhill et al. (2003) recommended to

use the first eleven zero crossings for the detection of oscillation. This is so

because in the absence of persistent oscillation the auto covariance function260

decays as a function of lags and may contain spurious zero crossings at large

lags. A smaller number of zero crossings tend to make the estimates of T̄p
and σp unreliable. Using eleven zero crossings balances these concerns.

3.4.2. Correlation Threshold η

In order to discard the spurious IMFs generated in MEMD process, the265

normalized correlation coefficient, λ, given in (9), is used. Only the IMFs

with (λ > η) are retained with the threshold η set to 0.25 in this work. This

value is chosen such that the IMFs representing significant harmonics can be

captured while discarding most pseudo components. The threshold is lower

than the value of 0.5 used by Srinivasan and Rengaswamy (2012) because270

the objective in this work is to capture both the fundamental oscillation as

well as the associated harmonics, if they are present.

To elaborate this further consider the example of a square wave with

added white noise (shown in the bottom row of Figure 4) which is character-

ized by the presence of odd harmonics. The average correlation coefficients275

λ̄ of extracted IMFs, for 1000 different noise realizations are summarized

in Table 3. It is clear that selecting the threshold of 0.25 will enable the

proposed method to identify third and fifth harmonics which is sufficient for

the purpose of detecting the non-linearity. The chosen threshold is a com-

promise between the number of higher order harmonics that are discarded280

and avoiding spurious IMFs that may corrupt the analysis.
12



Table 3: Correlation coefficient of different IMFs for square wave

IMF λ̄ Harmonic
1 0.09 Thirteenth
2 0.14 Eleventh
3 0.16 Ninth
4 0.22 Seventh
5 0.28 Fifth
6 0.33 Third
7 1.00 Fundamental

3.4.3. Sparseness Threshold (SThresh)

In order to extract harmonics, IMFs with sparseness index near to one

are retained. In order to get an idea about the value of sparseness index,

the spectra of four signals (from industrial data) with different sparseness285

are shown in Figure 3. The corresponding SI values are given on y-axis.

The first row shows the spectrum with harmonic content and has sparseness

of 0.67. It can be seen (bottom three spectra) that sparseness index up-to

0.54 may contain spectrum spread across broad frequency range. As we

are looking for distinct peaks corresponding to harmonics, the threshold290

(SThresh) used in this paper to select the oscillatory IMF can be set as 0.58.

The threshold is based on the authors’ experience and can be lowered but it

will increase the risk of spurious harmonic detection. The effects of changing

this threshold on the industrial case study are given in Section 8.

Table 4: Default Parameters Setting

Parameter Default value
Zero Crossings (n) 11

Correlation Threshold (η) 0.25
Sparseness Threshold (SThresh) 0.58

13
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Figure 3: Frequency spectra with sparseness index 0.67(1st row), 0.54 (2nd row), 0.52
(3rd row) and 0.51 (bottom row)
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3.5. Automatic Detection of Harmonics295

The presence of harmonics is established if there exists mean time periods

of IMFs (with r > 1) that are integral multiples. The automatic detection

of harmonics, the core element of this work, is carried out via following steps

1. Calculate the mean frequency Ω̄ and maximum(minimum) frequency

Ωmax (Ωmin) of oscillation, for each IMF with r > 1, using300

Ω̄ =
1

T̄p

Ωmax =
1

T̄p − σTp

Ωmin =
1

T̄p + σTp

(13)

2. Identify the most correlated IMF i.e with λ = 1 and corresponding

frequency Ω̄λmax .

3. The presence of harmonics is confirmed if oscillations are found at in-

teger multiples of the base frequency; i.e. if for IMF i, i ∈ Z+ (different

from the fundamental component)305

Ωmaxi ≤ kΩ̄λmax ≤ Ωmini
k > 1 (14)

4. In case no harmonics are detected for the most correlated IMF; the

steps 2 − 3 can be repeated for the next most correlated IMF and so

on.

5. The condition that the IMF containing the fundamental frequency of

oscillation has higher correlation with the actual signal than its har-310

monics must be fulfilled, to declare two IMFs as a harmonic fundamen-

tal pair i.e.

λf > λhi i ∈ Z+ (15)

where λf and λhi are the normalized correlation coefficient of funda-

mental and ithharmonic IMF respectively.

6. Similarly the relation in (15) shall also hold for different harmonics if315

they arise from the same non-linearity induced oscillation; that is for
15



kth harmonic.

λhk > λhk+1
k ∈ Z+ (16)

If two IMFs fulfil (14) ; but not (16), they are considered two different

oscillations and not harmonics. This is important to avoid spurious

harmonic detection when a signal is affected by multiple sources of320

oscillation.

The signals whose IMFs exhibit harmonics are then classified as the ones

oscillating due to non-linearity. The extent of non-linearity can then be

evaluated using the Degree of Non-Linearity (DNL) measure as given in our

previous work [Aftab et al. (2016)]. The DNL is based on the concept of325

intra-wave frequency modulation and instantaneous frequency (IF); a brief

overview of these concepts is provided later in section 4.

3.6. Illustrative Example

The rules for harmonic detection outlined in the preceding section can be

explained by considering the following illustrative example. Two cases are330

considered here.

3.6.1. Multiple Oscillations Case

Consider time series data from a closed loop system suffering oscilla-

tions due to a combination of a stiction non-linearity and an external si-

nusoidal disturbance. The fundamental frequency of the stiction nonlin-335

earity is 0.0134sec−1 whereas the sinusoidal disturbance has frequency of

0.0067sec−1. The simulation model is explained in detail in Section 7 . The

oscillatory response of the system is shown in the first row of Figure 4. In

total 3 oscillatory modes are identified. The details of these modes are given

in Table 5.340

It can be seen that first two IMFs form a fundamental harmonic pair with

IMF 2 designated as fundamental and IMF 1 as 3rd harmonic according to

the rules given in (14-16). It is to be highlighted that the stiction oscillation,

in this case, is characterized by the presence of odd harmonics that can

not captured by the bi-spectrum (higher order statistics) based method as345

discussed by Thornhill (2005) and Zang and Howell (2003).
16
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Figure 4: Harmonic detection illustrative example: Stiction plus sinusoidal disturbance
(1st row); Square wave (2nd row )

It is to be noted that the 3rd IMF represents the external sinusoidal

disturbance, which is regarded as an oscillation separate from the stiction

induced oscillation by virtue of the rule given in (16). Thus the proposed

algorithm can identify multiple oscillation caused by different sources. Os-350

cillations caused by two different non-linear sources can be detected in a

similar fashion.

3.6.2. Symmetric Waves with Odd Harmonics

In order to further establish the fact that the proposed scheme can cor-

rectly identify the harmonics in the symmetric waveforms exhibiting odd355

harmonics the square wave corrupted by white noise of variance 0.1 is con-

sidered. The square wave can be seen in the second row of Figure 4. The

results summarized in Table 5 show that the proposed method can identify

the presence of odd harmonics (3rd and 5th) in the first and second IMFs
17



with the fundamental frequency residing in the third IMF. The same signal360

is declared linear by the bi-spectrum based method (NGI=-0.0087).

Table 5: Harmonic detection illustrative example

Dist IMF λ Ω̄ Ωmin Ωmax Harmonics Type

Ext Dist 1 0.53 0.0348 0.0278 0.0466 Yes
Plus 2 1.0 0.0134 0.0132 0.0137 (3rd)

Non-Linear

Stiction 3 0.30 0.0067 0.0062 0.0072 No Linear

Square 1 0.29 0.0399 0.378 0.0422 Yes
Wave 2 0.32 0.0239 0.0236 0.0243 (3rd) Non-Linear

3 1.0 0.0079 0.0079 0.0080 (5th)

4. Intra-wave Frequency Modulations and Degree of Non-linearity

4.1. Instantaneous Frequency (IF)

The first step in the computation of the Instantaneous frequency (IF) of

the signal is the creation of an analytic signal using the Hilbert transform.365

The Hilbert transform Y (t) of a signal X(t), also regarded as convolution

of x(t) and 1/πt, is given by

Y (t) =
1

π
P

∫ ∞
−∞

X(τ)

t− τ
dτ =

1

π
P

∫ ∞
−∞

X(t− τ)

τ
dτ (17)

where P indicates Cauchy’s principal value of the integral. The analytic

signal Z(t) is then given by

Z(t) = X(t) + jY (t) = a(t)ejθt

a(t) =
√
X2(t) + Y 2(t), θ(t) = arctan Y (t)

X(t)

(18)

Here the amplitude and phase are functions of time and the instantaneous370

frequency (IF) is defined as the time derivative of the phase function θ(t);
18



given by (Huang et al. (2009))

ω(t) =
dθ(t)

dt
=

1

A2
[XẎ − Y Ẋ] (19)

The analytical signal formed in (18) can give the correct IF only if the

original signal X(t) fulfills the properties of an IMF. Therefore the IMF

generation via EMD is the first step in calculating the IF and this combined375

procedure of applying EMD and Hilbert transform to arrive at the analytical

signal is termed the Hilbert Huang Transform (HHT); further details can

be seen in Huang et al. (1998).

4.2. Intra-Wave Frequency Modulation

The non-linearity induced oscillations give rise to intra-wave frequency380

modulation i.e fluctuation of the IF within one period of oscillation [Huang

et al. (1998),Babji et al. (2009),Wang et al. (2012) and Aftab et al. (2016)],

and the extent of this modulation can be used to detect and quantify the

extent of non-linearity.

A closer look at the filter bank characteristics (Figure 2) reveals an over-385

lapping region among the spectra of adjacent IMFs. This overlapping allows

the presence of more than one harmonic within an IMF and hence gives rise

to intra-wave frequency modulation.

In order to elaborate this further, consider a signal from industrial data

oscillating due to the non-linearity. The power spectrum of the signal is390

shown in row 1 of Figure 5 with fundamental frequency at 0.06min−1 and

higher harmonics (peaks are shown with red circles). The spectra of ex-

tracted IMFs are shown in row 2 of Figure. The fundamental harmonic is

shown by the black curve (third IMF). There is some contribution from the

second harmonic while there is negligible energy in higher harmonics. The395

second harmonic (blue curve) primarily rests in the second IMF with some

signatures of the fundamental and third harmonics. The third harmonic

(red curve) resides in the first IMF, with significant contribution also from

the second, fourth and fifth harmonics. Therefore intra wave frequency

modulation and hence non-linearity will be highest in the first IMF and400

lowest in the third IMF. This is quite evident from the IF plots of IMFs
19
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Figure 5: Harmonic content of input signal and corresponding IMFs

in Figure 6. The signal having a higher level of harmonic content will thus

have a higher level of non-linearity. The quantification of the extent of non-

linearity is given by the degree of non-linearity measure which is explained

next.405

4.3. Degree of Non-Linearity (DNL) Index

The Degree of Non-Linearity (DNL) [Huang et al. (2014) and Aftab

et al. (2016)] is the quantification of an extent of non-linearity and is judged

by the variation of the IF from its mean value i.e we can write

DNL ∝ var(IF )

DNL ∝

〈{
IF−IFz

IFz

}2
〉1/2

(20)

where IF is the instantaneous frequency and IFz is the full wave zero cross-410

ing frequency. The DNL, weighted by the amplitude,for an ith IMF can be
20
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Figure 6: Instantaneous frequency plot for IMFs in Figure 5

defined as [Huang et al. (2014) and Aftab et al. (2016)]

DNLi = std

〈{
IFi − IFzi

IFzi

}
.
azi
āzi

〉
(21)

where az is the zero crossing amplitude; defined as the absolute value of

the extrema between successive zero crossings, āz is the mean of az and std

is the standard deviation. Equation (21) gives the extent of Non-Linearity415

in individual IMF; but the Total Degree of Non-linearity (TDNL) for

the complete signal consisting of N IMFs can be given as sum of individual

DNLs weighted by the energy of each IMF. The TDNL is given by [Huang

et al. (2014) and Aftab et al. (2016)].

TDNL =
N∑
j=1

〈
DNLj

|cj|2∑N
k=1 |ck|2

〉
(22)

Here |cj|2 is the 2-norm of the jth IMF.420

5. Isolating the Source of Non-Linearity

Once the control loops suffering from the non-linearity induced oscilla-

tions are identified, the next step is to isolate the source for targeted main-
21



tenance and remedial actions. In a multi loop environment non-linearity

induced oscillations at one point may propagate to other variables so the425

correct diagnosis will reduce the shut down time and cost of repair. Thorn-

hill (2005) pointed out that the different parts of a plant tends to behave as

low pass mechanical filters and thus filter out the higher harmonics as we

move away from the source of non-linearity.

The TDNL measure discussed in section 4.3 can be used to compare430

the extent of non-linearity in different variables. The loop with maximum

TDNL value is taken to be the source of non-linearity. In section 8, the

proposed method is illustrated using the industrial data and results are

compared with the existing methods.

6. Proposed Method435

The detailed steps for the proposed method for the identification and

isolation of the non-linearity induced oscillations are listed below.

1. Follow steps 1-4 (Table 2) to enforce the dyadic filter bank property.

2. Retain the IMFs that are correlated to the original signal and are sparse

as per the criterion in Section 3.2.440

3. Calculate the ACF of the retained IMFs

4. Identify the zero crossings of individual ACFs and calculate the mean

time period T̄p and regularity statistics r

5. Report the T̄p of all the IMFs with r > 1.

6. Check for the presence of harmonics using the steps described in Section445

3.5

7. Report non-linearity if harmonics are present.

8. Compute the DNL and TDNL measures of the IMFs representing fun-

damental and harmonics

9. The loop with maximum TDNL value is taken as the source of non-450

linearity induced oscillation.

10. In case of multiple sources of non-linearity induced oscillations, steps 7

to 9 are repeated for each fundamental/ harmonics pair.
22



Figure 7: Closed loop system (simulation example)

7. Simulation Example

The simulation example is taken form our recent work Aftab et al. (2016);455

where oscillations from different sources in a SISO feedback system are

analyzed using the proposed method to look for signatures of harmonics or

non-linearities. The feedback system is shown in Figure 7. The non-linearity

is modeled by stiction using the two parameter model by Choudhury et al.

(2008) with S = 7 and J = 5. The plant dynamics are given by460

G(s) =
2.25

4.54s+ 1
e−3s (23)

Nominal PI controller gains are Kc = 0.1 and Ki = 0.05. Noise with

variance 0.1 is added to test the robustness of the proposed scheme.

In total five test cases, using plant output or process variable (pv) data,

are considered for analysis and the results are explained next. It is to

be highlighted that the transient effects are included in the analysis that465

induces non-stationarity. Moreover, a special test case with time varying

drift is also introduced to test the robustness of the proposed scheme against

stronger non-stationarity. The results for all test case are summarized in

Table 6. The DNL and TDNL measures for the simulation example are

given in Table 7.470

7.1. External Disturbance

In this case the feedback system is subjected to an external sinusoidal

disturbance. The system response is shown in the first row of Figure 8.
23



The results show absence of harmonics thereby attributing the oscillations

to a linear cause.475

7.2. External Disturbance and Poor Tuning

In this scenario the oscillations resulting from the combination of poor

controller tuning and external sinusoidal disturbance are analyzed. The

time trend for this case is shown in the second row of Figure 8. The results

show absence of any harmonics thus concluding that oscillation are caused480

by linear source.

7.3. Non-linearity/Stiction

In this case oscillations induced due to non-linearity effects, modeled by

stiction in the control valve, are analyzed. The time trend for this scenario

is shown in the third row of Figure 8. The results clearly indicate presence of485

harmonics in the oscillatory signal. It is to be noted that the oscillations are

characterized by odd harmonics as third (3rd) harmonic is identified along

with the fundamental. This case of stiction induced oscillation cannot be

captured by the HOS based non-linearity detection method. The value of

Non Gaussianity Index NGI = −0.01 confirms this fact.490

7.4. Stiction and External Sinusoidal Disturbance

In this case an external sinusoidal disturbance is added to the system with

stiction non-linearity. The same case is reported in the illustrative example

of Section 3.5. The results clearly show that the proposed method has

been able to separate the external sinusoidal disturbance from the stiction495

induced oscillation. Moreover the proposed rules make it possible to treat

the sinusoidal disturbance as separate oscillation from the stiction.

7.5. Sinusoidal Disturbance with Time Varying Set Point

In order to test the robustness of the proposed scheme against non sta-

tionary effects, the system is subjected to a time varying set point in the500

form of ramp signal and an external sinusoidal disturbance. The system

response, given in the last row of Figure 8, clearly shows the non-stationary

effects. The proposed scheme separates out the sinusoidal disturbance from
24



the time varying component, with the latter extracted in the residue b(t)

(2). The results for this case show the presence of only one oscillatory505

component void of any harmonics.

Table 6: Nonlinearity detection simulation example

Case IMF λ Ω̄ Ωmin Ωmax Harmonics Type
1 1.0 0.0159 0.0156 0.0163

Ext Dist
2 0.35 0.010 0.0085 0.013 No Linear

Ext Dist + 1 1.0 0.083 0.083 0.083
Poor Tuning 2 0.5 0.0159 0.0157 0.0162

No Linear

1 0.54 0.0353 0.027 0.0506 Yes Non-
Stiction

2 1.0 0.0135 0.0134 0.0137 (3rd) Linear

Ext Dist 1 0.53 0.0348 0.0278 0.0466 Yes Non-
Plus 2 1.0 0.0134 0.0132 0.0137 (3rd)

Linear

Stiction 3 0.30 0.0067 0.0062 0.0072 No Linear

Ext Dist +
Time Varying 1 1.0 0.0159 0.0156 0.0161 No Linear

Set Point

Table 7: DNL and TDNL for simulation example

Case Type IMF DNL TDNL
Ext Dist Linear(no harmonics) – – –

Ext Dist Linear
Poor Tuning (no harmonics)

– – –

1 0.29
Stiction Non-Linear

2 0.1
0.11

Stiction + 1 0.33
Ext Dist

Non-Linear
2 0.1

0.11

Ext Dist +
Time Varying Set Point

Linear(no harmonics) – – –
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Figure 8: Time trends for simulation example
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7.6. Robustness with Increasing Noise Variance

The robustness of the proposed method against noise levels is studied

by varying the noise variance for the five simulation test cases. The noise

variance σ2
v is varied from σ2

v = 0.2 to σ2
v = 1.0 in steps of 0.2. A graphical510

representation of the results are provided in Figure 9. It can be seen that

proposed method is quite robust and can work well even with increased

noise variance. In only two cases the reported results are erroneous, both

occurring at a large noise variance of σ2
v = 1.0 with SNR of around 2dB.

8. Industrial Case Study515

The case study is taken from Thornhill (2005) and Zang and Howell

(2005), where a group of variables from a South East Asian refinery are

found to be oscillating with the same fundamental frequency of 0.06min−1.

It has been reported that the plant-wide oscillation stems from the the

sticking valve in one of the control loops. Thus the aim is to find the520

variables that exhibit non-linearity induced oscillations and hence can be

regarded as the source of oscillations. The results of the proposed method

are compared with those obtained by the HOS based method and surrogate

based methods for the same case study. The time trends (plotted in Figure

10) of the process variables (pv), recorded at 1 minute sample rate, are used525

for the analysis.

8.1. Non-linearity Detection in Individual Loops

The group consisting of 12 variables (shown in first column of Table 8

is analyzed using the proposed method and the results are summarized in

Table 8 ; whereas comparison with HOS based method ((Choudhury et al.,530

2008),(Choudhury, 2006)) and surrogate based method (Thornhill, 2005)

are given in Table 9.

The proposed method has identified four loops containing the signatures

of non-linearity, namely Tags 11, 24, 33 and 34. In addition to the iden-

tification of harmonics the proposed method has been able to identify the535

presence of multiple oscillations in different tags. For instance low frequency

oscillations, other than plant wide oscillation, in Tags 11, 19 and 25 are also

detected.
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Figure 9: Performance of proposed method for increasing noise levels
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Table 8: Non-Linearity detection industrial case study

Tag IMF λ Ω̄ Ωmin Ωmax Harmonics Type
2 1 1.0 0.0604 0.0572 0.0641 No Linear

3 1 1.0 0.0604 0.0572 0.0641 No Linear

1 0.49 0.0696 0.0548 0.0954
2 1.0 0.0604 0.0572 0.0641 no Linear4
3 0.32 0.0201 0.0181 0.0226

10 1 1.0 0.0604 0.0572 0.0641 no Linear

1 0.30 0.1833 0.1565 0.2212
2 0.47 0.1222 0.0993 0.1589

11 3 1.0 0.0604 0.0572 0.0641 Yes Non-Linear
4 0.59 0.0120 0.0104 0.0142

1 0.66 0.2750 0.2250 0.3537
13

2 1.0 0.0604 0.0572 0.0641
No Linear

1 1.0 0.0604 0.0572 0.0641
19

2 0.49 0.0163 0.0129 0.0219
No Linear

3 0.41 0.0121 0.0111 0.0132

20 1 1.0 0.0604 0.0572 0.0641 No Linear

1 0.80 0.1122 0.1005 0.1272
24

2 1.0 0.0604 0.0572 0.0641
Yes Non-Linear

1 1.0 0.0604 0.0572 0.0641
25 2 0.32 0.0275 0.0264 0.0287 No Linear

3 0.29 0.0168 0.0139 0.0212

1 0.75 0.122 0.1138 0.131933
2 1.0 0.0604 0.0572 0.0641

Yes Non-Linear

1 0.42 0.2895 0.2279 0.3968
2 0.52 0.1222 0.1080 0.140834
3 1.0 0.0604 0.0572 0.0641

Yes Non-Linear
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Table 9: Comparison of proposed and existing non-linearity measures

Proposed Method HOS N
Tag

IMF DNL TDNL NGI NLI TNLI (surrogate)

Tag 2 – – – 0.15 0.99 2.71 –

Tag 3 – – – 0.14 0.94 2.65 –

Tag 4 – – – 0.06 0.81 0.81 –

Tag 10 – – – 0.04 0.79 0.79 –

1 0.32
Tag 11 2 0.22 0.09 0.20 0.96 2.84 2.74

3 0.06

Tag 13 – – – 0.15 0.96 1.80 2.64

Tag 19 – – – 0.13 0.88 0.88 –

Tag 20 – – – 0.13 0.94 1.76 –

1 0.197
Tag 24

2 0.099
0.12 0.01 0.76 0.76

–

Tag 25 – – – 0.0 0.0 0.0 –

1 0.23
Tag 33

2 0.09
0.13 0.080 0.87 3.32 2.57

1 0.53
Tag 34 2 0.27 0.31 0.20 0.99 7.63 4.91

3 0.27
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Figure 10: Time trends for the group of variables oscillating with frequency 0.06min−1

for SEA refinery
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8.2. Isolating the Source of Non-Linearity

Once the variables oscillating due to a non-linear cause are identified540

the next logical step is to isolate the non-linearity to reduce the critical

maintenance and shut down time. As discussed in section 5 the non-linearity

signature diminishes as we move away from the source of the non-linearity

due to mechanical filtering of the higher order harmonics. Therefore the

loop with the highest value of the non-linearity measure is candidate for the545

source of non-linearity.

The TDNL measure given in Table 9 shows that Tag 34 exhibits greatest

non-linearity and hence is the most probable candidate for the root cause.

Similar results are reported by both HOS based method Choudhury (2006)

and surrogate method Thornhill (2005). The proposed method places Tag550

33 as the second most non-linear one due to greater energy of higher order

harmonics (same as in HOS based method); whereas the surrogate analysis

ranks it lower than Tag 11 and Tag 13.

The provision of flow diagrams and P&IDs can make the analysis more

accurate by taking considerations based on the physical structure of the555

plant into account. However, some companies may be reluctant to make

such documentation available to external consultants, and the aim of this

work has been to develop an analysis technique based on the on-line mea-

surements alone.

8.3. Effect of Changing Correlation and Sparseness Thresholds560

The effect of changing the thresholds both for normalized correlation

coefficient η and sparseness index SThresh are analyzed and the results for

both cases are given in Figures 11 and 12 respectively. The correlation

threshold is varied from 0.15-0.35 whereas the sparseness threshold is varied

from 0.55-0.62. It can be seen that the results are mostly stable with respect565

to these variations. The only exception are Tags 11 and 24 whose harmonic

content is lost if the sparseness threshold increases beyond 0.60.

8.4. Comparison with other Methods

The results are quite comparable with the surrogate based non-linearity

detection method with the exception of only Tags 13 and 24. Tag 13 comes570
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Figure 11: Effect of changing correlation threshold (η) for industrial case study ; vertical
dashed line shows default value

out to be linear in the proposed method because the oscillations in the IMF

representing the second harmonic were not regular; giving the regularity

index r = 0.7. The reason is the presence of some other oscillations with

the second harmonic in that frequency range. Tag 24, because of presence of

harmonics, is declared non-linear, similar to the results of the HOS method575

which reports it to have quite significant non-linearity with NLI= 0.76. The

amplitude of Tag 24 is very small and both Tag 13 and Tag 24 are considered

ambiguous in the analysis by Zang and Howell (2005) as well.

The HOS based method declares all the loops with the exception of Tag 25

as non-linear. This finding is substantiated by neither the method proposed580
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Figure 12: Effect of changing sparseness index threshold (SThresh) for industrial case
study ; vertical dashed line shows default value.

in this paper nor the surrogate analysis. Thus apart from not being able to

capture the nonlinearities characterized by odd harmonics, the HOS based

method appears to classify too many signals as non-linear.

As far as the comparison with harmonic distortion factor by Thornhill

et al. (2001) is concerned, it was pointed out by the authors themselves585

that the method is based on manual detection of harmonics and can be

misleading in presence of noise and multiple oscillations. Tag 25 is shown

to have high distortion factor owing to the presence of noise. This shortcom-

ing is totally removed in the proposed method where automatic harmonic
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detection is performed and Tag 25 is correctly diagnosed as not containing590

any nonlinearity signatures.

9. Conclusions

This paper presents a method, based on noise assisted MEMD, to iden-

tify the harmonics and hence non-linearity in control loops. The method

is adaptive in nature with no a priori assumptions about the underlying595

signal or the process itself. The method can extract harmonics in the pres-

ence of noise and multiple oscillations and hence identify the presence of

non-linearity. The extent of non-linearity is then calculated via intra-wave

frequency modulation and quantified using the total degree of non-linearity

measure (TDNL). Results of the proposed method are compared with the600

HOS and surrogate based methods and are comparable with the surrogate

analysis method both in terms of detection and isolation of non-linearity.
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