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Abstract

This paper concerns operational planning of door-to-door transportation systems for the elderly and/or
disabled, who often need a more flexible transportation system than the rest of the population. Highly
flexible, but very costly direct transportation is often offered as a complement to standard fixed route public
transport service. In the integrated dial-a-ride problem (IDARP), these modes of transport are combined
and certain legs of the passengers journeys may be performed with the fixed route public transport system.
We extend the IDARP and include timetables for the fixed route services, forcing the fleet of vehicles to
schedule the arrival at transfer locations with care. Two mixed integer linear programming formulations
of the integrated dial-a-ride problem with timetables (IDARP-TT) are presented and analyzed. The key
modeling challenge is that of the transfers between the fleet of vehicles and the fixed route public transport
system. The formulations differ in how the transfers are modeled and the differences are thoroughly
discussed. The computational study compares the formulations in terms of network size, computational
time and memory usage and conclusions about their performances are drawn.

1. Introduction

The elderly and/or persons with disabilities often need a more flexible transportation system than
the rest of the population, due to problems using, or getting to and from, the fixed route public
transport systems. Therefore, highly flexible door-to-door transport is offered as a complement
to standard fixed route public transport to the elderly and/or the disabled in many parts of the
world. Such systems are often called special transport systems or paratransit systems. These
transport systems are often very costly and the fleets under-utilized. This paper concerns the
operational planning of systems where door-to-door transport and fixed route public transport
are integrated.

The dial-a-ride problem (DARP) concerns transportation of people and is an instance of the
pickup and delivery problem (PDP). The DARP is to design vehicle routes and schedules to meet
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a number of requests for door-to-door transport under a number of side constraints, typically
concerning trip duration, time windows, and vehicle capacity. This kind of service is demand
responsive, in contrast to the fixed route public service. Vehicle routes are designed based on a set
of origins, destinations, vehicle fleet information, and desired departure/arrival times. Commonly,
the objective of this operational planning is to reduce the operating costs of the vehicles while
keeping the level of service acceptable. The DARP, the PDP and other vehicle routing problems
are further described in e.g. Toth and Vigo (2014). A review of the scientific literature on both
exact and heuristic solution methods for the DARP is given in Cordeau and Laporte (2007).

The integrated dial-a-ride problem (IDARP) is an extension of the DARP in which certain legs
of the passengers’ journeys may be performed with a fixed route public transport system. Since
demand responsive services are very costly compared with fixed route public transport, operators
of demand responsive transport could possibly reduce their operating costs by using existing fixed
route services. The IDARP is in many aspects similar to the pickup and delivery problem with
transshipments (PTPT) and the dial-a-ride problem with transfers (DARPT). These problems are
discussed in Section 3.

Figure 1 shows an example of when the integration of a demand responsive system and fixed
route transport could be beneficial. A request is made for transportation from node a to node b.
In a (non-integrated) dial-a-ride system, one of many possible solutions could be driving directly
from the pick-up location to the drop-off location, this is represented by the two parallel lines.
The solid curves represent a possible solution in an integrated system. Here, the request is picked
up at a by a demand responsive vehicle, and driven to a transfer location (i.e. a fixed route stop
where transfers between the demand responsive vehicles and the fixed route transport system is
allowed). The request then travels by the public transport system to another transfer location and
is there picked up by a different demand responsive vehicle and driven the final leg of the trip to b.
It is clear that the distance traveled by demand responsive vehicles is shorter in the latter solution.
It is therefore a cheaper solution and most likely preferable from an operational point of view.
On the other hand, the service level of the trip is diminished since two transfers have to be made
between different travel modes. Note that the first (non-integrated) solution is a possible solution
also in an IDARP model. Also note that it is not predetermined which transfer locations, if any, to
use for each request. Which requests that are served by which combination of the two transport
modes and which transfer nodes each of these requests will use is determined by minimizing the
overall cost (e.g. operating cost of the demand responsive fleet and/or generalized cost of the
passengers).

The purpose of this paper is to present a richer version of the IDARP than previous versions,
significantly more applicable to real-world planning situations. Firstly, the new problem, called
the integrated dial-a-ride problem with timetables (IDARP-TT) include timetables for the fixed
route service. Secondly, each request is described through different resources, such as the number
of passengers and the number of wheelchairs. Thirdly, a fleet of heterogeneous vehicles, where
the capacity regarding the different resources may differ is used for the demand responsive
service. Fourthly, the speed of the demand responsive vehicles, as well as the vehicles on the
fixed route lines may differ. Finally, not all pick-up and drop-off locations have to be visited by
demand responsive vehicles, but a request can start or end with a fixed route transport. The key
modeling challenge is that of the transfers between the demand responsive vehicles and the fixed
route public transport system. We present two mixed integer linear programming models for the
IDARP-TT that differ with regard to how the transfers are modeled.

The paper is organized as follows. In Section 2 some of the practical implementation issues
of an integrated dial-a-ride-system are discussed. Section 3 provides a brief literature review
of previous work on the IDARP and other relevant problems. The two formulations presented
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Figure 1: This is an example of a scenario when integrating demand responsive and fixed route systems could be
beneficial. A request has been made for transportation from a to b. The dots represent nodes belonging to
requests (could be either pick-up or drop-off). The straight line represents a fixed route public transport
system (e.g. a bus or tram line) with transfer locations at the squares. Both the dashed and parallel lines
represent demand responsive vehicle routes.

are given in Section 4 together with a small illustrative example. Methods to strengthen these
formulations are described in Section 5. The rest of the paper concerns comparisons of the two
models. Section 6 provides a theoretical comparison of the two formulations. Section 7 describes
the specific evaluation scenario used and details some computational results. Conclusions and
suggestions for future research are accounted for in Section 8.

2. Practical implementation issues

There are several possible practical issues associated with integrating public transportation lines
into a demand responsive service, especially when the service is aimed at the elderly and/or
disabled. In this section we discuss three of these issues which we consider to be especially
relevant: lower levels of service due to transfers, delays, and adaptation costs.

There is discomfort associated with transfers. This diminishes the level of service of the special
service passengers whose trips are integrated with the public transport system. How great this
reduction in level of service is has not been studied and falls outside the scope of the current
paper. In a practical implementation of integrated special services, the passengers whose trips can
be made more efficient by integrating a public transport leg could be given the choice of which
variant of their trip they wish to take. Most likely the integrated trip would be offered at a lower
price. Not all special service passengers can be offered integrated trips, due to very special needs
regarding equipment or levels-of-service. This is not an issue in the planning process, but affects
the size of the system-wide improvements possible when implementing an integrated system.

The public transport vehicles (buses, trams, etc) could be delayed due to late demand responsive
vehicles. One way of dealing with this would be to design the system so that the fixed route
public transport never waits for delayed demand responsive vehicles. Another, similar, issue
is that delayed public transport vehicles could affect the operational planning of the demand
responsive vehicles. Delays in the schedule of a demand responsive vehicle could propagate to
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other vehicles, since the passengers can make use of several vehicles in an integrated trip. Thus,
in cases with large headways in the public transport timetable, it might be preferable for the
dial-a-ride service to plan robustly. Although delays for the public transport passengers due to the
additional passengers from the demand responsive service are to be expected, there is little reason
to expect longer delays than those caused by, for example, strollers, other elderly passengers or
school classes.

There is a cost associated with adapting the public transport vehicles (and possibly transfer
points) to make them accessible to users of special services. The cost of this adaptation will of
course vary. The greater the level of adaptation in the public transport system, the larger the
share of the special service passengers who can use integrated trips is likely to be. In Sweden,
for example, already 75 % of public transit buses are equipped with both lifts/ramps, space for
wheelchairs and audiovisual information systems (The Swedish Bus and Coach Federation, 2015).

Fixed costs and lowered level-of-service due to issues such as these have to be weighed against
the possible lower operational costs of an integrated demand responsive system, but this analysis
falls outside the scope of the current paper.

3. Literature review

The problem of combining demand responsive systems with fixed route public transport modes
was first introduced in Wilson et al (1976), a paper focusing on maximizing passenger utility
rather than explicitly minimizing the operating costs. Another early paper is Potter (1976) which
describes an integrated transport system in Ann Arbor, Michigan. Forty-five demand responsive
vehicles serve as feeders to 36 express buses. In this system, connections between different demand
responsive vehicles are allowed, in contrast with the system which is described in this paper. Both
exact and heuristic methods have been presented since then, for static as well as dynamic versions
of the problem. In static versions of the problem, all requests are known in advance, prior to
the planning process, while in dynamic versions of the problem new requests are included in
the solution as they come in, in real time. Whether static or dynamic versions of the problem
are most useful in practice depends on the rules applied for how long in advance a request for
transportation has to be made. These rules vary between different nations and different dial-a-ride
systems. There are also methods that combine static and dynamic solution techniques. Liaw
et al (1996) formulate an optimization model and heuristic scheduling method for a dial-a-ride
system with two transportation modes. Hickman and Blume (2001) present a two-stage scheduling
heuristic for a similar problem. Another major contribution is made in Aldaihani and Dessouky
(2003). The authors do not provide another model for the problem but present an insertion
heuristic that builds on the work of Liaw et al (1996) and Hickman and Blume (2001). All these
heuristics are tested on case studies with real data. More recently, a Network Inspired Framework
for Integrated Transport Systems (NITS) has been presented in Edwards et al (2011). The NITS
routes passengers through a transportation network in a manner inspired by the way in which
data packets are routed through telecommunications networks. In this analogy, passengers are the
data packets and the demand responsive service areas are subnetworks, for example. The NITS
uses demand responsive vehicles in the last or first part of each trip if it is optimal. This system
is then tested using simulation in Edwards et al (2012) with promising results regarding quality
of service and operating costs in low density urban areas. It can be noted that the focus of these
two articles is that of transit in general low density urban areas, rather than transportation for the
elderly and/or disabled passengers.

Other similar systems which integrate demand responsive and fixed route transport systems
are described in for example Uchimura et al (2002) and Crainic et al (2001). Uchimura et al (2002)
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develop a three level hierarchical public transport system. The first two levels are defined as
regional lines and express bus services. The third level of the system is a dial-a-ride system
which is integrated with the higher levels of the system by providing both intracommunity
transportation and a feeder system to regional transit. They solve the planning problem using a
genetic algorithm. Crainic et al (2001) analyze a transportation system where timetabled fixed
route lines are integrated with lines with flexible itineraries and timetables. The aim of the system
is to create a transportation system that provides a higher level of personalized service than a
conventional transit line to a larger set of customers without the need for the large overhead
required by door-to-door systems. Horn (2004) describes planning procedures designed for use in
a real-time traveler information system in an urban environment where both demand responsive
(taxi) and public transport modes are available. A simulation study shows the viability of the
proposed framework. The public transport modeling system LITRES-2 described in Horn (2002)
is used in Häll et al (2008) to simulate and evaluate an integrated public transportation system.
The results of the simulation study show that the attractiveness of an integrated system is greatly
dependent on the pricing policy and the number of transfer nodes.

The IDARP is closely related to the pickup and delivery problem with transfers (PDPT), which
is described in e.g. Cortés et al (2010). In the PDPT and the similar dial-a-ride problem with
transfers (DARPT), users may change vehicles during the trip. Cortés et al (2010) give an arc-flow
formulation of the problem and describe an exact solution method based on a branch-and-cut
algorithm. The method used to model the transfer locations in Cortés et al (2010) is conceptually
quite similar to one of the formulations in this paper. The main difference between the IDARP
and DARPT is that the users change mode at the transfer points in the IDARP, and then travel
a specified distance with the PT. In Masson et al (2014), an adaptive large neighborhood search
method is used for solving the DARPT. It also describes the problem of how to check if a solution
is feasible or not, and how this differs from how the feasibility is checked for a dial-a-ride service
without transfers. Experiments with real-life data show savings of up to 8 %, though the authors
note that the passengers most likely experience a lowered level of service due to the transfers,
which is not taken into account in the solution method. Deleplanque and Quilliot (2013) propose
an algorithm for the DARPT which uses insertion heuristics and constraint propagation. In
contrast with the fixed transfer points in e.g. Masson et al (2014), the transfers in Deleplanque and
Quilliot (2013) can occur anywhere. A problem similar to the DARPT is the pickup-and-delivery
problem with transshipments (PDPT). A model for the PDPT is given in Rais et al (2014) together
with a small computational example using problem instances from Li and Lim (2003) and a review
of the PDPT literature.

The Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL)
is examined in Ghilas et al (2016). The PDPTW-SL concerns integrating short-haul passenger
and freight transportation using public transport and thus has many similarities with the IDARP.
Ghilas et al (2016) present an Adaptive Large Neighborhood Search metaheuristic to efficiently
solve the PDPTW-SL. They test the metaheuristic on generated instances with up to 100 freight
requests.

Based on an arc-flow formulation of the DARP from Cordeau (2006), a mathematical program-
ming formulation of the IDARP is given in Häll et al (2009). Using this formulation the problem is
solved exactly for small instances, up to 10 requests. Finding an optimal feasible solution to the
IDARP is an NP-hard problem, since it generalizes the DARP, which in turn is a generalization of
the traveling salesman problem with time windows (see e.g. Cordeau (2006)). Due to the design
of the network, the size of the problem increases very quickly with both the number of requested
trips and the number of transfer locations included. To counteract this rapid increase in problem
size, the model is strengthened using arc elimination rules, variable substitutions and subtour
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elimination constraints. Some of these rules are specific to the IDARP while some are also used
for the dial-a-ride, pick-up and delivery, vehicle routing, and travelling salesman problems.

Häll et al (2009) assume that the frequency on the fixed route lines is so high that customer
waiting times at transfer locations can be disregarded. As the real-world environments where
an integrated demand responsive service for the elderly and/or disabled could be useful are
likely to be low density urban areas and more rural areas, this assumption could well limit
the practical applicability of the model. In Ronald et al (2015) this lack of synchronization on
timetables is pointed out as an issue with the model. Also, the fixed route lines that have the
largest potential for lowering operational costs are lines covering large distances, making the
assumption of short waiting times possibly unrealistic. Additionally, the travel times of all vehicles,
both demand responsive and fixed route, are assumed to be the same in the model presented in
Häll et al (2009). This is quite a rigid framework that does not allow for the introduction of, for
example, commuter trains (possibly a lot faster than demand responsive vehicles) or bus lines
with convoluted, non-direct, paths (possibly a lot slower than demand responsive vehicles taking
the shortest path).

4. Formulations of the IDARP-TT

We extend the previous problem descriptions of the IDARP with the aim of addressing the issues
described at the end of Section 3. With this aim in mind, timetables for the fixed route system
are introduced. This is a very reasonable addition to the problem description since disregarding
timetables could severely diminish the applicability of the model. We also introduce a fleet of
heterogeneous demand responsive vehicles with different speeds, operational costs, and capacities.

Another feature of the new formulations is that the fixed route vehicles do not need to have the
same speeds as the demand responsive vehicles. This is reasonable and extends the applicability
of the model but makes some of the arc elimination rules for the DARP and IDARP introduced
in Cordeau (2006) and Häll et al (2009) invalid, since the triangle inequality for the demand
responsive and fixed route vehicles is no longer true in all cases.

In previous DARP and IDARP models, all pick-up and drop-off nodes must be visited to serve
a request. This is a sensible constraint for the DARP. However, in many practical cases that the
IDARP describes, scenarios can be found where it is useful and reasonable to allow a request to
end its trip at a transfer node that lies close to its drop-off node, without having to take a demand
responsive vehicle the last leg of the trip. Similarly, cases can be found where it makes sense
from both a cost minimizing and user-inconvenience standpoint to let the trips begin at transfer
nodes instead of at the original pick-up nodes. Previous IDARP models do not allow this and,
similarly to the DARP, require every pick-up and drop-off node to be visited. These restrictions
have been relaxed in the two models presented in this paper. In these models, requests can under
certain circumstances begin or end their journeys at transfer nodes that lie sufficiently close to
their pick-up or drop-off nodes without involving demand responsive vehicles in the first or last
leg of the journey.

4.1. Problem description

The IDARP-TT concerns the routing and scheduling of a fleet of demand responsive vehicles to
serve a set of transport requests. Each request has a given origin, destination and demand for a
set of resources, such as regular seats, places for wheelchairs and luggage. Time windows for the
departure from the origin and the arrival at the destination as well as a maximum travel time are
also defined for each request. A request can be transported from the origin to the destination by a
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single demand responsive vehicle or it can be transferred between a demand responsive vehicle
and a fixed route transport system. A request may not be split between several vehicles, even
though it may comprise several people. The fixed route system is defined over a set of transfer
locations, and timetables dictate when it is possible to travel between the transfer locations. A
heterogeneous fleet of vehicles with different speeds, operation costs, and capacities is located at a
depot and used to transport the requests. The fleet is divided into different vehicle classes. The
vehicles within each class are homogeneous. A route for a specific demand responsive vehicle is
feasible if it begins and ends at the depot and if all requests which are picked up are also dropped
off, either at their respective drop-off nodes or at a transfer node, while the capacity of the vehicle
is not exceeded. For the set of all vehicle routes to be feasible, we require that each request leaves
its origin and arrives at its destination inside the specified time windows. The objective is to find
vehicle routes which minimize the operational cost of the demand responsive service and the
usage cost of the fixed route transport system.

4.2. Two models

Studying the problem structure of the IDARP-TT through explicit modeling, and solving it to
optimality, is of value since having an understanding of the problem facilitates the successful
designing of heuristic solution methods. A heuristic solution method is needed to solve larger
problem instances since the IDARP-TT is NP-hard. Thus, the usefulness of any explicit model
solved to optimality is low in the sense that the solution time for any problem instance of realistic
size will be prohibitively long.

In the model presented in Häll et al (2009), each transfer location is modeled by one node
for each request. Thus, each request adds 2 + g nodes to the network, where g is the number
of physical transfer locations. This model design results in a large number of nodes to model
all possible visits to every transfer location, making the network too large for the problem to be
solved in a reasonable time for problem sizes above a few requests and a few transfer locations.
One way of studying the properties and complexities of the problem is to change the way the
transfer locations are modeled. Therefore, this paper presents two alternative formulations of the
IDARP-TT, the first of which retains the basic structure of the model presented in Häll et al (2009)
in order to facilitate a comparison between the two ways of modeling the transfer locations. The
second model, however, has a different transfer node structure. This node structure is similar to
the one used in the model presented in Stålhane et al (2014) describing a routing and scheduling
problem faced by tramp shipping companies. In that model each node has two indices, the first
represents the physical location and the second the visit number. This opens up for a location being
visited multiple times. Applying the same basic node structure to the IDARP-TT significantly
reduces the number of binary variables needed, as is shown in Section 6. The first model is
presented in Section 4.3 and the second model is presented in Section 4.4.

4.3. Mathematical formulation of Model 1

The IDARP-TT is formulated over a directed graph G = (N , A) whereN is the set of all nodes and
A is the set of arcs connecting those nodes. The node set includes the vehicle depot, pick-up nodes,
drop-off nodes, and transfer nodes. The depot is modeled as two nodes, a start node 0 and an end
node 2r̄ + 1 where r̄ is the number of requests. The pick-up nodes are denoted N P = {1, . . . , r̄}
which is identical to the set of requests R. The drop-off nodes are denoted N D = {r̄ + 1, . . . , 2r̄}.
Thus each pick-up node i ∈ N P is associated with a drop-off node i + r̄ ∈ N D. The transfer nodes
are modeled in the same way as in Häll et al (2009); for each physical transfer location (e.g. a
bus stop) r̄ artificial transfer nodes are created. The set of artificial transfer nodes is denoted
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N G = {2r̄ + 2, . . . , 2r̄ + 1 + r̄g} where g is the number of transfer locations in the fixed route
transportation system. The sets N G

r ⊆ N G contain the transfer nodes corresponding to request r.
The set of arcs connecting artificial transfer nodes is denoted AG. The set of timetabled departures
between the nodes i and j connected by arcs in AG is denoted Dij. Thus there are no departures
between transfer nodes that are not connected in the fixed route transportation system or that
correspond to different requests.

As mentioned before, one extension introduced in this model is the possibility of allowing
requests to end or begin their trip at a fixed route stop. A natural example is at a hospital where
the distance from the bus stop to the main entrance is short. These special cases are handled
by introducing the appropriate pick-up or drop-off nodes to the set of artificial transfer nodes.
The set N G

PD constitutes a set of pick-up and drop-off nodes which are associated with a public
transport stop. That is, these nodes comprise the pick-up and drop-off nodes of the request that
are allowed to begin or end their trip at a specific fixed route stop. Overlap between N P ∪N D

and N G is solved by removing certain elements of the latter set.
The heterogeneous vehicle fleet is divided into homogeneous vehicle classes. The set of vehicle

classes is denoted V and the set of vehicles of class v ∈ V is denoted Kv. A set of resources is
defined as S . Each vehicle class v has a capacity Qvs of resource s ∈ S and each request r has a
demand Lrs of resource s.

Sets:
R set of requests
N set of all nodes, including pick-up nodes, drop-off nodes, depot nodes, and transfer nodes
A set of arcs connecting the nodes
AG set of arcs connecting transfer nodes
N P set of pick-up nodes
N D set of drop-off nodes
N G set of transfer nodes
N G

PD subset of pick-up and drop-off nodes which are directly associated with a transfer node
N G

r subset of the transfer nodes that are associated with request r
V set of demand responsive vehicle classes
Kv set of vehicles of class v
S set of resources
Dij set of departures between transfer node i and j

Variables:

xijvk =

{
1, if vehicle k of class v traverses arc (i, j)
0, otherwise

yijr =


1, if request r travels by a demand responsive vehicle from node i

to node j
0, otherwise

zijd =

{
1, if the fixed route from node i to node j using departure d is used
0, otherwise

ti time service at node i starts

Parameters:
Ti earliest start of service at node i ∈ N P ∪N D

Ti latest service time at node i ∈ N P ∪N D

Bi maximum travel time of request i
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Cijv travel cost associated with arc (i, j) and vehicle class v
Tijv travel time associated with arc (i, j) and vehicle class v
Lrs demand for resource s of request r
Qvs capacity of vehicle class v regarding resource s
TD

ijd departure time of departure d from node i to node j
TA

ijd arrival time at node j corresponding to departure d from node i
Cijd cost associated with departure d between transfer nodes i and j

Fir =


1, if node i is the pick-up node of request r
−1, if node i is the drop-off node of request r
0, otherwise

M large positive number

Formulation:

min ∑
(i,j)∈A

∑
v∈V

∑
k∈Kv

Cijvxijvk + ∑
(i,j)∈AG

∑
d∈Dij

Cijdzijd (1)

Subject to:

∑
j∈N

∑
v∈V

∑
k∈Kv

xijvk = 1, i ∈ N P ∪N D \ {N G
PD} (2)

∑
j∈N

x0jvk = 1, v ∈ V , k ∈ Kv (3)

∑
j∈N

xijvk − ∑
j∈N

xjivk = 0, i ∈ N P ∪N D ∪N G, v ∈ V , k ∈ Kv (4)

∑
i∈N

xi,2r̄+1,vk = 1, v ∈ V , k ∈ Kv (5)

∑
j∈N

yijr − ∑
j∈N

yjir + ∑
j∈N G

r

∑
d∈Dij

zijd − ∑
j∈N G

r

∑
d∈Dji

zjid = Fir,

r ∈ R, i ∈ N G
r

(6)

∑
j∈N\{0,2r̄+1}

yijr − ∑
j∈N\{0,2r̄+1}

yjir = Fir, r ∈ R, i ∈ N \N G
r (7)

∑
r∈R

Lrsyijr ≤ ∑
v∈V

∑
K∈Kv

Qvsxijvk, (i, j) ∈ A, s ∈ S (8)

tj ≥ T0jv ∑
kin+Kv

x0jvk, j ∈ N , v ∈ V (9)

tj − ti − Tijv + M(1− ∑
kinKv

xijvk) ≥ 0, (i, j) ∈ A, v ∈ V (10)

M(1− ∑
i∈N G

∑
d∈Dij

zijd) + ∑
i∈N G

∑
d∈Dij

TD
ijdzijd − ti ≥ 0, j ∈ N G (11)

tj − ∑
i∈N G

∑
d∈Dij

TA
ijdzijd ≥ 0, j ∈ N G (12)

Ti ≤ ti ≤ Ti, i ∈ N P ∪N D (13)

tr̄+i − ti ≤ Bi, i ∈ N P (14)

xijvk ∈ {0, 1}, (i, j) ∈ A, v ∈ V , k ∈ Kv (15)

yijr ∈ {0, 1}, r ∈ R, (i, j) ∈ A (16)
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zijd ∈ {0, 1}, (i, j) ∈ AG, d ∈ Dij (17)

ti ≥ 0, i ∈ N (18)

The objective function (1) minimizes the combined operational costs of the transportation
service, both for the demand responsive vehicles and the fixed route service. The total vehicle
distance is used as a proxy for the operational costs of the demand responsive vehicles. No extra
components are added to the objective for the customer level of service since it is assumed that all
feasible solutions have an acceptable level of service. The expansion of the objective function to
include various measures of levels of service, such as the number of transfers or deviation from
minimum possible travel time, is straightforward. Note that the set of requests is heterogeneous
and therefore the fixed route costs are unique to the requests. Constraints (2)–(5) are typical DARP
vehicle constraints. Constraint (2) says that every pick-up and drop-off node has to be visited by
one vehicle, with the exception of the special cases where the requests are allowed to reach their
final destinations or begin their journeys using public transport. Constraints (3) and (5) force the
vehicles to begin and end their routes at the depots while (4) makes sure that each vehicle that
visits a node also leaves it. Constraint (6) is a node balancing constraint for the transfer nodes.
Constraint (7) is a node balancing constraints for the rest of the nodes. Constraint (8) guarantees
that the vehicle capacities are not exceeded. Constraints (9) and (10) ensure that the travel times of
the demand responsive vehicles are consistent. Both constraints (11) and (12) connect the demand
responsive vehicles with the fixed route time tables. Constraint (11) ensures that the departure
with the public transport vehicle occurs after the start of service at the transfer node. Constraint
(12) serves the same purpose, but for arriving public transport vehicles. Constraint (13) guarantees
that the service times at pick-up and drop-off nodes are within the defined time windows and
constraint (14) makes sure that the maximum travel times of the requests are not exceeded. The
final group of constraints, (15)–(18), defines the binary variables and the continuous time variables.

4.4. Mathematical formulation of Model 2

In Model 1 the problem size grows very quickly as a function of the number of requests. One way
to diminish this effect is to create a model without request-specific nodes at the transfer locations.

Instead of allowing each request to have a specific node at each transfer location, this model
has nodes representing every visit to that specific transfer location, regardless of which request or
vehicle that makes the visit. Thus several requests can use the same transfer node and all transfer
nodes can be used by all requests. This diminishes the total number of nodes and we now know
the order in which those nodes may be active, which decreases the number of arcs in the network.
The magnitude of this decrease is described in Section 6.

This difference in the node structure leads to some differences in how the nodes are represented
in Model 2 compared with Model 1. Each node is denoted (i, m) where i represents the physical
location and m is the visit number. For example, the node (16, 3) represents the third visit to
location 16. Observe that for the pick-up or drop-off nodes only one visit is possible and thus they
are denoted (i, 1).

In Model 2 we define the problem on a directed graph G = (N ,A) where N is the set of nodes
and A is the set of arcs. Each node in N is denoted (i, m) where i ∈ {0, . . . , 2r̄ + 1 + g} is the
physical locations and m ∈ Mi = {1, ..., Mi} the visit number, where Mi is an upper bound on the
number of visits to location i. The depot is modeled as two nodes, a start node (0, 1) and an end
node (2r̄ + 1, 1). The pick-up nodes are denoted N P = {(1, 1), ...(r̄, 1)} and the drop-off nodes
are denoted N D = {(r̄ + 1, 1), ...(2r̄, 1)}. The set of nodes representing the transfer location g is
denoted N G

g = {(g, 1), ..., (g, Mg)}.
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The special cases where a request is allowed to begin or end its trip at a transfer location are
modeled by introducing a variable wimjnr which is activated if the request walks the first or last
leg of its trip. One extra set of variables, aim, is needed to indicate if an artificial transfer node
(i, m) is visited or not. This is necessary to make sure that the transfer nodes are visited in the
correct order.

Sets:

G set of transfer locations

N set of all nodes

A set of arcs connecting the nodes

N P set of pick-up nodes

N D set of drop-off nodes

N G set of transfer nodes

N P
g subset of pick-up nodes directly connected to transfer location g

N D
g subset of drop-off nodes directly connected to transfer location g

R set of requests

V set of demand responsive vehicle classes

Kv set of vehicles of class v

S set of resources

Dij set of departures between the transfer locations i and j

Variables:

ximjnvk =

{
1, if vehicle k of class v travels from node (i, m) to node (j, n)
0, otherwise

yimjnr =


1, if request r travels by a demand responsive vehicle from node (i, m)

to node (j, n)
0, otherwise

zimjndr =


1, if the fixed route departure d from node (i, m) to node (j, n) is used

by request r
0, otherwise

wimjnr =

{
1, if request r walks from node (i, m) to node (j, n)
0, otherwise

aim =

{
1, if artificial transfer node (i, m) is visited
0, otherwise

tim time service at node (i, m) starts

11
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Parameters:

Ti earliest start of service at location i ∈ N P ∪N D

Ti latest start of service at location i ∈ N P ∪N D

Br maximum travel time of request r

Cijv travel cost associated with travelling between locations i and j with vehicle class v

Tijv travel time between location i and j with vehicle class v

Lrs load of request r regarding resource s

Qvs capacity of vehicle class v regarding resource s

TD
ijd departure time of departure d from location i to location j

TA
ijd arrival time at location j corresponding to departure d from location i

Cijdr cost associated with departure d between locations i and j for request r

Fir =


1, if node (i, 1) is the pick-up node of request r
−1, if node (i, 1) is the drop-off node of request r
0, otherwise

M large positive number

Formulation:

min ∑
(i,m)∈N

∑
(j,n)∈N

∑
v∈V

∑
k∈Kv

Cijvximjnvk + ∑
(i,m)∈N G

∑
(j,n)∈N G

∑
d∈Dij

∑
r∈R

Cijdrzimjndr (19)

Subject to:

∑
(j,n)∈N

∑
v∈V

∑
k∈Kv

xi1jnvk = 1, (i, 1) ∈ N P ∪N D \ N P
g ∪N D

g : g ∈ G (20)

∑
(j,n)∈N

x01jnvk = 1, v ∈ V , k ∈ Kv (21)

∑
(j,n)∈N

xjnimvk − ∑
(j,n)∈N

ximjnvk = 0,

(i, m) ∈ N P ∪N D ∪N G, v ∈ V , k ∈ Kv

(22)

∑
(i,m)∈N

xim2r̄+1,1vk = 1, v ∈ V , k ∈ Kv (23)

∑
(j,n)∈N G

wi1jnr − ∑
(j,n)∈N G

wjni1r + ∑
(j,n)∈N

yi1jnr − ∑
(j,n)∈N

yjni1r = Fir,

(i, 1) ∈ N P ∪N D, r ∈ R
(24)

∑
(j,1)∈N D

i

wimj1r − ∑
(j,1)∈N P

i

wj1imr + ∑
(j,n)∈N G

∑
d∈Dij

zimjndr

− ∑
(j,n)∈N G

∑
d∈Dij

zjnimdr + ∑
(j,n)∈N

yimjnr − ∑
(j,n)∈N

yjnimr = 0,

(i, m) ∈ N G, r ∈ R

(25)
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wi1jni − ∑
(k,m)∈N G

∑
d∈Dij

zjnkmdi = 0, (j, n) ∈ N G, (i, 1) ∈ N P
j (26)

∑
r∈R

Lrsyimjnr − ∑
v∈V

∑
k∈Kv

Qvsximjnvk ≤ 0, (i, m) ∈ N , (j, n) ∈ N , s ∈ S (27)

tjn − T0jv + M(1− ∑
k∈Kv

x01jnvk) ≥ 0, (j, n) ∈ N , v ∈ V (28)

tjn − tim − Tijv + M(1− ∑
k∈Kv

ximjnvk) ≥ 0, (i, m) ∈ N , (j, n) ∈ N , v ∈ V (29)

tj1 − tim + M(1− wimj1,j−r̄) ≥ 0, (i, m) ∈ N G, (j, 1) ∈ N D
i (30)

tjn − ti1 + M(1− wi1jni) ≥ 0, (j, n) ∈ N G, (i, 1) ∈ N P
j (31)

M + ∑
(j,n)∈N G

∑
d∈Dij

(TD
ijd −M)zimjndr − tim ≥ 0, (i, m) ∈ N G, r ∈ R (32)

tjn − ∑
(i,m)∈N G

∑
d∈Dij

TA
ijdzimjnd ≥ 0, (j, n) ∈ N G, r ∈ R (33)

tim − ti,m+1 ≤ 0, i ∈ G, (i, m) ∈ N G
i (34)

Ti ≤ ti1 ≤ Ti, (i, 1) ∈ N P ∪N D (35)

tr̄+i,1 − ti1 ≤ Bi, (i, 1),∈ N P (36)

Maim ≥ ∑
(j,n)∈N G

∑
d∈Dij

zimjndr + ∑
(j,n)∈N G

∑
d∈Dij

zjnimdr, (i, m) ∈ N G, r ∈ R (37)

aim ≤ ∑
(j,n)∈N G

∑
d∈Dij

zimjndr + ∑
(j,n)∈N G

∑
d∈Dij

zjnimdr, (i, m) ∈ N G, r ∈ R (38)

ai,m+1 − ai,m ≤ 0, i ∈ G, (i, m) ∈ N G
i (39)

ximjnvk ∈ [0, 1], (i, m) ∈ N , (j, n) ∈ N , v ∈ V , k ∈ Kv (40)

yimjnr ∈ [0, 1], (i, m) ∈ N , (j, n) ∈ N , r ∈ R (41)

wi1jnr ∈ [0, 1], j ∈ G, (i, 1) ∈ N P
j , (j, n) ∈ N G

j , r ∈ R (42)

wimj1r ∈ [0, 1], i ∈ G, (j, 1) ∈ N D
i , (i, m) ∈ N G

i , r ∈ R (43)

zimjndr ∈ [0, 1], i, j ∈ G, (i, m) ∈ N G
i , (j, n) ∈ N G

j , d ∈ Dij (44)

aim ∈ [0, 1], i ∈ G, (i, m) ∈ N G
i (45)

tim ≥ 0, (i, m) ∈ N (46)

Most of the constraints in Model 2 serve the same purpose as their corresponding constraints in
Model 1 although there are some groups of constraints which are needed here but not in Model 1,
due to the changes in transfer node structure. These are (30), (31), (34) and (37) – (39). Constraints
(30) and (31) ensure that service times at drop-off and pick-up nodes which are being walked to
are consistent with the service times of the involved transfer nodes. Constraint (34) makes sure
the service times of the transfer nodes are consistent with the ordering. The final group of new
constraints, (37) – (39), defines the variable, aim that governs that transfer nodes are visited in
correct order.

4.5. Illustrative example of the two models

Assume an instance with six requests. The example shows how the same transfer location is
represented in Models 1 and 2, respectively, in the same solution. Vehicle 1 arrives at the transfer
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location at 10.30 to drop off requests 2 and 3 and pick up requests 1 and 5. Vehicle 2 arrives at
the transfer location at 10.40 to pick up request 4. Request 4 arrives to the transfer location with
fixed route transport at 10.40 while requests 5 and 1 arrive at 10.50. Both requests 2 and 3 use the
same departure from the transfer node, at 10.50. The same solution is presented for both models
in Figure 2.

Model 1 Model 2

Vehicle 1

Vehicle 1

Vehicle 2

Vehicle 2

Figure 2: A comparison of the node structures of the two models for an instance where there are six requests. Model 1
is shown on the left, Model 2 on the right. In Model 1 the node corresponding to request 1 is on the top and
the node corresponding to request 6 is at the bottom. In Model 2 the nodes are ordered such that the topmost
node corresponds to the first visit and the bottom node to the last visit.

Note that

• With six requests, six transfer nodes are needed at the transfer location. Assume that
precalculations gave that only four transfer nodes are needed in Model 2. Note that the
number of nodes at the transfer location increases linearly with the number of requests in
Model 1, while the number of nodes in Model 2 also depends on the number of fixed route
transportation departures/arrivals.

• The order of the drop-offs can be interchanged for vehicle 1 in Model 1, the same goes
for the pick-ups. This gives four mathematically different solutions that are the same in
practice (and that have the same objective function value). Due to the node structure in
Model 2 this symmetry problem has been eliminated. Since the arrival time of the fixed
route transportation carrying request 4 arrives earlier than the fixed route transportation
carrying requests 1 and 5, but later than the departure time of requests 2 and 3, vehicle 2
visits node number 2 and vehicle 1 visits nodes 1 and 3 in Model 2.

• In Model 1, seven variables corresponding to demand responsive vehicles, x-variables, and
five variables corresponding to fixed route transportation, z-variables, are non-zero. There
are six nodes corresponding to the same transfer location. For Model 2, five x-variables, five
z-variables and four nodes are needed.
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5. Strengthening the models

To evaluate the performance of the two models, they are compared as both unstrengthened and
after some strengthening has been applied. The strengthening of the models is done by arc
elimination and by adding some additional sets of constraints. In short, the arc elimination rules
used eliminates all arcs that go:

• from - to the same node
• to the node representing the start depot
• from the node representing the end depot
• from start depot to any drop-off node
• from any pick-up node to end depot
• from a drop-off node to the pick-up node for the same request.

These elimination rules makes it possible to eliminate all x-variables (and y-variables) that uses
any arc (i, j) fulfilling the above statements. There are also some arcs (i, j) that can be used by
some vehicles but not by others, meaning that some x-variables can be fixed to 0. These rules are
that:

• if: Qvs < Lrs, then xrjvk = 0 and xjrvk = 0, j ∈ N, k ∈ Kv, v ∈ V , s ∈ S
• if: Qvs < Lis + Ljs, then xijvk = 0, xi,j+r̄,vk = 0, xi+r̄,j+r̄,vk = 0, k ∈ Kv, s ∈ S
• if: Ti + Tijv > T j then xijvk = 0, i ∈ N P ∪N D, j ∈ N P ∪N D, k ∈ Kv, v ∈ V .

The first rule says that if the capacity of vehicle class v regarding resource s is less than the
demand that request r has of resource s, then no vehicle belonging to vehicle class v can be used
to visit the pick-up or drop-off node belonging to request r (and in Model 1 nor to/from any
transfer nodes of request r). This means, for example, that since a request requiring wheelchair
transportation must be served by a vehicle with such capacity, arcs going to or from a pick-up or
drop-off node belonging to such a request can be eliminated for all other vehicles.

The second rule says that if the capacity of a vehicle of class v is less than the demand of request
i and j (for any specific resource s) then arc (i, j), (i, j + r̄) and (i + r̄, j + r̄) can be eliminated for
all vehicles of class v.

The third rule says that if a vehicle of class v cannot travel from node i to node j and meet the
requirements of time windows of both nodes, then arc (i, j) can be eliminated for all vehicles of
class v.

After the arc elimination rules have been applied the models are further strengthened by
adding subtour elimination constraints. By finding, and eliminating, subtours in the LP-relaxation
of the problem the lower bound of the original (MILP-formulation) is strengthened. The subtour
elimination constraints added are based on the identification of clusters of nodes including at
least one pick-up or drop-off node that must be visited by a vehicle. This means that at least one
vehicle has to enter each such cluster. Based on the formulation of Model 1, the following set of
constraints can be added:

∑
i∈ϕ

∑
j∈N\ϕ

∑
v∈V

∑
k∈Kv

xijvk ≥ 1 ϕ ∈ Φ (47)

where Φ is the set of all identified clusters and ϕ is one such cluster.
In the same way, constraints can be added saying that if a pick-up node or a drop-off node,

belonging to a customer that requires wheelchair transportation is part of a cluster ϕ, at least one
vehicle that can perform such a transportation must enter the cluster. So, if v̂ is the only class
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of vehicles that can transport passengers in wheelchairs, the constraints for such clusters can be
strengthened to:

∑
i∈ϕ

∑
j∈N\ϕ

∑
k∈Kv̂

xijv̂k ≥ 1 ϕ ∈ Φ. (48)

Since there is no reason for vehicles to travel in both directions between any pair of nodes we
can also add the set of constraints:

∑
v∈V

∑
k∈Kv

(xijvk + xjivk) ≤ 1 (i, j) ∈ A. (49)

The fact that there is no reason for a demand responsive vehicle to visit a transfer node from/to
which no fixed route service is used makes it possible to add the following set of constraints:

∑
j∈N

∑
v∈V

∑
k∈Kv

xijvk ≤ ∑
j∈N G

∑
d∈Dij

(zijd + zjid) i ∈ N G\N G
PD. (50)

Since a route performed by a vehicle of class v can be performed by any other vehicle of that
class, symmetry breaking constraints can be added to strengthen the formulation. One way of
doing this is by adding the following set of constraints saying that the total travel time of a lower
numbered vehicle of a specific class must be higher than a vehicle with a higher number.

∑
(i,j)∈A

Tijvxijvk ≥ ∑
(i,j)∈A

Tijvxijv,k+1 v ∈ V , k ∈ Kv (51)

Even though constraints (47) – (51) are described based on the formulation of Model 1, they
can just as well be formulated in accordance with Model 2. However, the next set of constraints
is based on the fact that it is known what nodes belong to a request in Model 1. This makes it
possible to add:

∑
i∈N G

r

∑
j∈N

∑
v∈V

∑
k∈Kv

xijvk ≤ 2 r ∈ R. (52)

This set of constraints can be added since no request needs to visit more than two of its own
transfer nodes. However, this is not applicable in Model 2, since in that model any transfer node
can be used by any request.

Several of the above presented strengthening methods were previously described for the
IDARP in Häll et al (2009) and have in this section been reformulated to fit the formulations of the
IDARP-TT. For further details regarding these strengthening methods readers are referred to Häll
et al (2009).

6. A theoretical comparison

The idea behind the transfer node structure introduced in Model 2 was to reduce the number of
binary variables created in Model 1, since the computational times and use of memory increase
rapidly with the number of binary variables. The number of nodes in Model 1 is |N1| = 2r̄ + 2+ gr̄
and the number of arcs is |A1| ∝ |N1| (|N1| − 1). Using this, the numbers of binary variables in
Model 1 are:

∣∣∣xijvk

∣∣∣ ∝ K̄ |A1| ∈ O(r̄2) (53)
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∣∣yijr
∣∣ ∝ r̄ |A1| ∈ O(r̄3) (54)∣∣∣zijd

∣∣∣ ∝ d(g− 1)r̄ ∈ O(r̄) (55)

where K̄ is the total number of vehicles, regardless of class, d is the number of departures with the

public transport, and
∣∣∣xijvk

∣∣∣ , ∣∣yijr
∣∣ and

∣∣∣zijd

∣∣∣ denote the number of binary variables of each kind.
For Model 2, the number of nodes instead becomes |N2| = 2r̄ + 2 + g min(d, r̄), from which |A2|
can be calculated in the same way as for Model 1. The numbers of binary variables are:∣∣∣ximjnvk

∣∣∣ ∝ K̄ |A2| ∈ O(r̄2) (56)∣∣yimjnr
∣∣ ∝ r̄ |A2| ∈ O(r̄3) (57)∣∣∣zimjndr

∣∣∣ ∝ d(g− 1)min(d, r̄)2 ∈ O(r̄). (58)

In Model 2, there are two more sets of variables: wimjnr and aim. These are both constants (O(r̄0))
as soon as min(d, r̄) = d and can therefore be excluded from the total number of binary variables
as r̄ grows. Figure 3 shows the total number of binary variables in the two model formulations as
functions of the number of requests when there are three available demand responsive vehicles,
four transfer locations, and two public transport departures between each of the transfer locations
during the relevant time interval. The figure shows the number of variables in the original models,
without the strengthening techniques described in Section 5.
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Figure 3: The number of binary variables in the two models as functions of the number of requests, r̄, in the case when
there are three demand responsive vehicles, eight transfer locations and two fixed route departures from each
transfer location. The blue solid line corresponds to Model 1 and the red dotted line to Model 2.

It can be seen that even though the asymptotical behavior of the numbers of binary variables
in the two models is the same as a function of the number of requests, the results for small to
medium sized problem instances are very different. Model 2 has a much lower rate of growth
than Model 1 from the point where min(d, r̄) = d and onward, as expected. This is due to the
sizes of the constants corresponding to the cubic and quadratic terms in expressions (53) – (55)
and (56) – (58).
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7. Results in an evaluation scenario

This section provides a small evaluation scenario with one public transport line (following a
timetable generated to fit the travel times of the demand responsive vehicles). Further details
regarding the example are given in Section 7.1 and computational results are given in Section 7.2.

7.1. Evaluation scenario

Figure 4 shows the evaluation scenario used. Six requests for demand responsive transport
are placed in a geographical area (the town of Norrköping, Sweden) together with four public
transport transfer locations. The locations shown in the figure are numbered so that the pick-up
locations are 1–6 and their corresponding drop-off locations are 7–12. Five of the requests included
in this example are special cases in the sense that they are allowed to begin or end their trip with
public transport. In the case of request 1, the corresponding pick-up location is situated very close
to the leftmost transfer location and the request may therefore perform the first leg of the trip
with public transport. For requests 2, 3, 5 and 6, all of their drop-off locations are situated close to
transfer locations and they are allowed to perform the last legs of their respective trips with public
transport.

Figure 4: The evaluation scenario with all included requests. The geography is from the town of Norrköping, Sweden.

This example is used in Section 7.2 to illustrate the differences between the two models. The
costs and travel times used in the numerical calculations come from the geography of the example
town. Note that this is a small example, and in a real world instance, it is likely that an integrated
DAR service would have greater benefits in a rural or inter-city setting where the distances are
larger.
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7.2. Computational results

Table 1 shows the computational time required to solve the evaluation scenario described in
Section 7.1 to optimality1. Tests have been performed on both models and on both original and
strengthened versions. Another comparison that can be made is the memory usage of the two
models. This is summarized in Table 2.

Table 1: Computational times (wall-clock time) needed to solve the evaluation scenario to optimality. Cells with an
asterisk were aborted before optimality could be proven.

Computational time

Number of requests Model 1 Model 1 - strengthened Model 2 Model 2 - strengthened

1 0.15 s 0.01 s 0.75 s 0.1 s
2 0.7 s 0.1 s 3.3 s 0.8 s
3 550 s 4 s 100 s 12 s
4 * 260 s 30 min 300 s
5 * 5 h 30 min
6 * *

The computational times quickly become very long, regardless of which model is used and
whether or not it is strengthened. Note that the computational time and memory usage grows
very quickly as a function of the number of included requests. Also, note that the memory needed
for solving Model 2 is substantially less than the memory needed for Model 1.

Two values were used as cut-off points for breaking calculations before they have proved
optimality of the solution. The calculations were interrupted if optimality was not proven when
either 1) 48 h CPU time (∼ 7 h wall-clock time) had passed, or 2) when the memory usage
exceeded 24 GB. Both versions of Model 1 were aborted due to memory use before optimality was
proven, for r̄ = 4 and 5, respectively. Both versions of Model 2 were aborted at r̄ = 6 due to the
computational time cut-off.

Table 2: The memory usage as a function of the number of included requests for both models and both original and
strengthened versions. Only cases where the memory usage exceeded 10 MB are included, this is indicated by
a dash in the table. Cells with an asterisk were aborted before optimality could be proven.

Memory usage (MB)

Number of requests Model 1 Model 1 - strengthened Model 2 Model 2 - strengthened

3 117 - - -
4 * 760 170 82
5 * 2000 345
6 * *

1The computations were performed using CPLEX 12.5 on a virtual machine with four CPU’s (Intel E5-2650) that have
two cores each and 24 GB internal memory.
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8. Conclusions and future research

In this paper we have introduced an extension of the integrated dial-a-ride problem that better
reflects a real planning situation. The new version of the problem, called the integrated dial-a-ride
problem with timetables (IDARP-TT) includes timetabled public transport, allows travel times to
differ between different classes of demand responsive vehicles as well as the fixed route transport,
and allows certain requests to begin or end their trips using the fixed route public transport. Two
different arc-flow formulations which differ in the way they model transfer points are presented.
Ways of strengthening the models through valid inequalities have also been presented. The two
models are compared with respect to both the number of binary variables introduced and the
computational time and memory usage needed to solve a specific evaluation scenario to optimality.
Both models were proven to work as intended and provide the same solutions.

One conclusion that can be drawn from the comparison performed in this paper is that the
choices made in the modeling stage can have a great impact on the difficulty of solving the
problem. Both theoretical calculations and computational experiments indicate that Model 2
outperforms Model 1, but it is still clear that solving a MILP formulation of the IDARP-TT to
optimality is extremely hard for real world sized instances. To solve larger problem instances
a heuristic method will have to be developed. A heuristic solver is also necessary to be able to
handle dynamic problem instances, which is a requisite feature in many real world applications.

One important branch of future research is the quality of service of demand responsive
transport, such as e.g. Paquette et al (2009) and Knutsson (2003). Recently, a literature review
covering psychological, operational, and policy perspectives on commuters’ willingness to use
an integrated public transport system was presented in Chowdhury and Ceder (2016). To our
knowledge, no studies have been performed on the level of service impacts of offering integrated
trips to special transport service users.

Another important point is the extended understanding of the problem structure that the
modeling presented in this paper has given. This can be of use in developing future solution
methods. Future research could include studies of stronger valid inequalities, better suited
branching techniques, and different modeling techniques.

Acknowledgements

This research is part of a project financed by the Swedish Governmental Agency for Innovation
Systems (VINNOVA). The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions.

References

Aldaihani M, Dessouky MM (2003) Hybrid scheduling methods for paratransit operations. Com-
puters & Industrial Engineering 45(1):75–96
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