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Problem Description

The Single Trade Routing Problem for RoRo shipping set out to plan routes for several

voyages over a planning horizon, as well as plan for which contracts to service and

which quantities to load and unload at scheduled port visits. The purpose of this

thesis is to further develop a mathematical formulation of The Single Trade Routing

Problem by presenting comprehensive extensions, and to experiment with the resulting

mixed integer programming model to gain insights for decision makers. The aim of the

work will be to create a model which reflects the real problem. Therefore, the model

will take into account variable vessel speeds, a heterogeneous fleet where vessels have

different capacities and fuel usage, available stowage space estimation, fairly evenly

spread requirements, transit time requirements, and differences in capacity and space

utilization ability for different decks within a single vessel. According to the best of

our knowledge, little previous research has been done on this problem, and some of

our formulations contributes to existing literature by presenting new ways to model

several issues.
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Abstract

Roll-on/Roll-off shipping is the primary method for transporting vehicles and other

types of material which can be rolled onto vessels, over long distances. Low demand

and excess capacity have caused global shipping margins to fall to a historic low.

However, comparatively little operational research has been done on RoRo shipping,

suggesting there is room for improvement. The research done in this thesis is mo-

tivated by the conviction that a good decision support system has the potential for

significant benefits to RoRo providers in maritime transportation.

In this thesis, we focus on operational decisions related to planning routes for several

voyages over a single trade route, as well as plan for which contracts to service and

which quantities to load and unload at scheduled port visits. Solving this problem

for a single trade route will be an essential building block in solving the problem for

several trade routes with dependencies between them.

The objective of this thesis is to gain insights that can help decision makers to reduce

and minimize costs. Hence, the aim of the work will be to create a model which reflects

the real problem. A mathematical formulation of The Single Trade Routing Problem

has been further developed, by introducing new and comprehensive extensions. The

model will take into account variable vessel speeds, a heterogeneous fleet where vessels

have different capacities and fuel usage, available stowage space estimation, fairly

evenly spread requirements, transit time requirements, and differences in capacity

and space utilization for different decks within a single vessel.

Computational results show that the mixed integer programming (MIP) model is

able to solve small instances within a reasonable time limit. In addition, the results

show promising results for using the model as a decision support system, facilitating

decision makers to reducing shipping costs.
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Sammendrag

Roll-on/Roll-off shipping er den primære metoden for transport av kjøretøy og andre

typer objekter som kan rulles p̊a skipet, over lange avstander. Lav etterspørsel og

overflødig kapasitet har ført til at globale fraktmarginer faller til et historisk lavt

niv̊a. Det har imidlertid blitt gjort relativt lite forskning innen optimering av RoRo-

shipping, noe som tyder p̊a at det er rom for forbedring. Forskningen i denne oppgaven

er motivert av overbevisningen om at et godt beslutningsstøttesystem har potensial

for store fordeler for RoRo-leverandører i maritim transport.

I denne masteroppgaven fokuserer vi p̊a operasjonelle beslutninger knyttet til det å

planlegge flere reiser over en enkelt handelsrute, samt en plan for hvilke kontrakter

som skal betjenes og hvilke mengder som skal lastes og losses ved planlagte portbesøk.

Å løse dette problemet for en enkelt handelsrute vil være en viktig byggestein for å

løse problemet for flere handelsruter med avhengigheter mellom hverandre.

Målet med arbeidet er å f̊a innsikt som kan hjelpe beslutningstakere å redusere og

minimere kostnadene. Derfor vil målet med arbeidet være å skape en modell som

gjenspeiler det virkelige problemet. En matematisk formulering av The Single Trade

Routing Problem er videreutviklet ved å introdusere nye og omfattende utvidelser.

Modellen vil ta hensyn til variabel hastighet p̊a skip, en heterogen fl̊ate hvor fartøy

har forskjellig kapasitet og drivstofforbruk, tilgjengelig estimat av størelse p̊a lasterom,

forholdsvis jevn spredning av kontrakter, transittidskrav og forskjeller i kapasitet og

lastutnyttelse for forskjellige dekk i et enkelt fartøy .

Beregningsresultater viser at MIP-modellen (Mixed Integer Programming) kan løse

små instanser innen rimelig tid. I tillegg viser resultatene at det er lovende resultater

for å bruke modellen som et beslutningsstøttesystem, slik at beslutningstakere kan

redusere fraktkostnadene.
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Chapter 1

Introduction

In this chapter, relevant background information and an overview of maritime trans-

portation are given. We also provide purpose and motivation for studying the problem

presented. The first section, Section 1.1, a short background is given of the shipping

industry with different shipping categories, modes of operation, and levels of planing,

as well as some common shipping terminology. Section 1.2 contains motivation for

researching the given problem. A short description of the problem is given in Section

1.3 while Section 1.4 gives an outline for the thesis.

1.1 The shipping industry

Maritime transportation

Maritime transportation is a combination of shipping and port facilities. There are

many different modes of shipping, where each mode differs. Maritime transportation

is the obvious choice when transporting heavy industrial machinery, especially when

large volumes are transported over vast distances. This is because maritime trans-

portation has the lowest per unit cost of all modes of transportation (Christiansen,

Fagerholt, Nygreen, and Ronen, 2013). Ships operate between ports used to load

and unload cargo. The ports are also used to restock supplies the vessels might need.

Without this way of transportation, the necessary intercontinental scale of trade would

not be possible. As International Chamber of Shipping (2016) states: ”Without ship-

ping, the import/export of affordable food and goods would not be possible - half

the world would starve, and the other half would freeze!” In other words, maritime

transportation is the backbone of globalization and enables international trade. Inter-

national Chamber of Shipping (2016) also state that maritime transportation is the

1



Chapter 1. Introduction

least environmentally damaging form of commercial transport.

Maritime transportation is the largest mean of international trade with an estimated

range of 65% to 85% of total weight transported (Christiansen, Fagerholt, Nygreen,

and Ronen, 2007). IMO (2016) estimates that maritime transportation now covers

over 90% of the world’s trade.

According to UNCTAD (2016), the world fleet grew by 3.5% in 2015. This is a higher

growth than the 2.1% growth seen in demand for the same year. A higher growth in

capacity than demand leads to a global overcapacity. UNCTAD (2016) shows that

most shipping segments suffered historic low levels of freight rates and weak earnings

in 2015. Carriers continued in 2015 to look for measures to improve efficiency and

optimize operations. This is one reason why the field of maritime transportation is

being studied by operations research.

Categories of the shipping market

Different vessels can carry various types of products. Everything from high volume

liquid and dry bulk to cargo that is rolled or lifted on the vessel. UNCTAD (2016)

categorize the different segments into the categories of Oil tanker, Bulk carriers, Gen-

eral cargo ships and Container ships as the four main categories. Table 1.1 shows

the world fleet by the different types of vessels. Dry bulk carriers take up the biggest

share of the world fleet. Another interesting observation is that the number of general

cargo ships have steadily decreased at the same rate as container ships have increased.

1980 1990 2000 2010 2015 2016
Other 4.5 7.5 9.4 7.2 11.1 11.3
Container ship 1.6 3.9 8.0 13.3 13.1 13.5
General cargo ship 17.0 15.6 12.7 8.5 4.2 4.2
Dry bulk carrier 27.2 35.6 34.6 35.8 43.6 43.1
Oil tanker 49.7 37.4 35.4 35.3 28.0 27.9

Table 1.1: The world fleet by principal vessel type, 1980–2016 (Percentage share of
carrying capacity of a ship in tonnage). Source: UNCTAD (2016)

From Table 1.2, we can see that containers and dry cargo accounts for 70.7% of the

total volume transported by sea. The amount of oil and gas traded the last decade has

more or less stayed the same. What takes up most of the increase in total seaborne

trade, is the increase in dry cargo and containers.

2



Chapter 1. Introduction

1980 1990 2000 2010 2015
Containers 102 234 598 1280 1687
Dry cargo* 1123 1031 1928 2022 2463
Main bulk commodities 608 988 1295 2335 2951
Oil and gas 1871 1755 2163 2772 2947

Table 1.2: International seaborne trade for selected years. Values are in millions of
tons loaded. Source: UNCTAD (2016). *Dry cargo other than main bulk commodi-
ties.

Modes of operation

One common way of structuring maritime transportation is to divide it into three

modes of operation; Industrial, Tramp, and Liner (Lawrence, 1972). Industrial oper-

ators are usually the owners of the cargo they transport and control the vessels used

(Christiansen et al., 2007). These companies perform more of the supply chain and

can transport the necessary goods between ports depending on supply and demand

at a given time with the objective to minimize costs. Liquid and dry bulk are most

transported in industrial shipping.

In Tramp and Liner shipping, the sole purpose is to maximize the profit of trans-

portation of goods, not production. Tramp shipping has its similarities to industrial

shipping since supply and demand will dictate where ships sail and when. A Tramp

shipping company has no set route or schedule and is usually available on short no-

tice. Maritime transportation using tramp shipping is often compared to taxi service

(Christiansen et al., 2007). There is also large flexibility when it comes to what ports

can be handled since there are no fixed port calls.

Liner shipping, on the other hand, structure maritime transportation in a different

way. Liner shipping has a given trade route with a fixed itinerary and schedule an-

nounced in advance. The comparison used for liner shipping is usually a bus line

service (Christiansen et al., 2007). Liner shipping companies provide valuable pre-

dictability and structure to customers. Since trade routes are performed after a given

schedule, it makes it convenient to plan after.

Trade routes and voyages are a big part of liner shipping. What follows is a brief

explanation some central elements within maritime transportation and Roll-on Roll-

off shipping.
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Chapter 1. Introduction

Figure 1.1: Two different voyages in a trade route

Levels of planning

Making decisions is an important part of planning in maritime transportation. These

decisions are usually divided into three planning levels depending on the complexity

and time horizon they have. The different planning levels are Strategic (long-term),

Tactical, and Operational (short-term) with planning horizons of years, months, and

weeks or days respectively.

A strategic decision is a base on which tactical and operational decisions are built

upon according to Christiansen et al. (2007). Strategic decisions are not easy to

change, and implementing changes takes a lot of time. Examples of decisions to be

made on the strategic level are optimal fleet sizing, optimal fleet composition, and

route network design.

At the tactical planning level, the planning horizon is usually in months but can be as

long as up to a year. Typical problems that are being solved the tactical level are fleet

deployment, transshipment, and routing and scheduling (Christiansen et al., 2007).

In a dynamic setting with high uncertainty when decisions only have a short-term

impact, operational planning is useful (Christiansen et al., 2007). Examples for the

operational level of decisions are sailing speed and stowage.

Christiansen et al. (2007) states that it is not always easy to differentiate between the

planning levels. The long-term decisions are the building blocks for a good short-term
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decision, while one usually needs detailed information about the short-term decisions

in order to make good long-term decisions.

Roll-on roll-off vessels

Roll-on Roll-off (RoRo) vessels are part of the general cargo ships category, and they

usually operate in the liner shipping mode of transportation (UNCTAD, 2015). There

are different types of RoRo ships, including, but not limited to, RoRo passenger, Pure

car and truck (PCTC) carrier and RoRo vessels.

We are focusing on RoRo vessels in this report. RoRo vessels have ramps for cargo

with wheels to be rolled on and off the vessel. While cargo on container vessels are

limited by the size of the container, RoRo vessels are capable of carrying cars, trucks

and large construction and agricultural machinery to airplane wings, generators, and

locomotives (Logistics, 2016b).

Figure 1.2: An example of a RoRo vessel. Source: Logistics (2016b)

The inside of a RoRo vessel works like a parking garage (Logistics, 2016a), as shown

in Figure 1.2. There are upper decks that are designed to store cars, main decks in the

middle to transport heavy, long and wide products, and lower decks to transport break

bulk and rolling equipment. Vessels in RoRo shipping typically come with hoistable

decks to accommodate for differences in product sizes. Hence vessel capacity, both in

area and volume, can be adjusted to accommodate different needs.
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Terminology

Trade route

A trade route connects two geographical regions together. In maritime transportation,

the geographical regions are usually continents. Each region contains a selection of

ports. Figure 1.1 illustrates an example of a trade route between North America and

Europe. All the blue ports in North America and Europe are part of the trade route.

Deep sea leg

Trade routes that connects continents, typically will have what is called a deep sea

leg. A deep sea leg is the section of the trade route over the ocean separating two

continents. In normal mode of operation, vessels will only cross the deep sea leg once

per voyage. In Figure 1.3, the deep sea leg of that particular trade route has been

marked with a blue line.

Figure 1.3: A deep sea leg is the section of the trade route over the ocean separating
two continents. The deep sea leg portion is marked with a blue line.

Contracts

There are three different type of contracts: Tonnage driving contracts are longer run-

ning contracts which drives the need to deploy vessels on given trade routes. If a trade

route has a deep sea leg section, tonnage driving contracts are typically loaded before

it, and unloaded after sailing it. Way cargo contracts are contracts for transporting

goods between two ports that a vessel is already scheduled to visits. These can also

be longer running contracts. Spot cargo contracts are one off loads that requires to

be transported which can be serviced if a vessel already stops by the corresponding

port and has available capacity.

Voyage

Each time a trade route is serviced it is called a voyage. It consists of a sequence of
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port calls within a trade route. Figure 1.1 shows an example of different voyages in

a trade route, indicated by a red and yellow line. Some of the ports in a trade route

may have visit restrictions connected to them, while others are free to be visited as

seen fit. This means that not all ports in a trade route have to be visited on each

voyage.

Figure 1.4: (A) Obstruction in vessel holds such as ladders, stanchions or the contours
might make it difficult to use space optimally. (B) Cars might be stowed very effi-
ciently with little broken space, because most cars are similar in shape and size. (C)
Various heavy construction equipment, in this case excavators, might be irregularly
and variably shaped preventing a compact and uniform stow.

Broken space

Broken space is space on a shipping vessel that is lost during stowage of goods. Rea-

sons for broken space might be attributes of the vessel or the shape of the goods to

be transported. As an example, see Figure 1.4 below.

1.2 Motivation

This Thesis is a collaboration with one of the world’s largest RoRo liner shipping

companies, operating a fleet of more than 60 state-of-the-art vessels, capable of car-

rying a mix of products, from auto and large construction and agriculture machines

to various breakbulk products (Logistics, 2016a).

Low demand and excess capacity have caused global shipping rates to fall to a historic

low as seen from UNCTAD (2016). Lower margins make it attractive for shipping

companies to look for ways to reduce cost. Comparatively little operational research

has been done on RoRo shipping, suggesting there is room for improvement. Chris-
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tiansen, Fagerholt, and Ronen (2004) argue that a good decision support system has

the potential for significant benefits to RoRo providers in maritime transportation.

UNCTAD (2016) shows how general cargo ships have steadily decreased over the last

40 years. This emphasizes how important improvements are for a RoRo shipping

companies competitiveness.

One of the largest contributors to shipping costs is visiting ports, both in regards to

time and money. Optimize route planning and keeping port visits to a minimum while

fulfilling all contracts within each contract’s specification can help to reduce costs.

Another aspect where there is room for improvement and cost reduction is in capacity

estimation. The cause of costs can be either underestimation of capacity, too much

idle space on a vessel which could be used to transport products, or overestimation of

capacity, part of the product load left at port causing a breach of contract or delay

fees.

1.3 The problem

The Single Trade Routing Problem (STRP) in RoRo shipping is to plan routes for

several voyages over a planning horizon, as well as determine which products at which

quantities to load and unload at scheduled port visits. The objective is to minimize

cost while fulfilling all contracts. The purpose of the work presented in this thesis is

to model a version of the STRP with focus on the two causes of cost outline in Section

1.2 to serve as a realistic solution to the problem. The complete solution could help

limiting costs as well as serve as a useful decision support tool for a RoRo-shipping

company.

1.4 Project outline

This thesis is organized in the following way. In Chapter 2, we review relevant lit-

erature. We focus on literature from within the last decade. We give a detailed

description of the problem in Chapter 3. Chapter 4 contains the proposed mathe-

matical model for solving the STRP. This chapter includes model assumptions, and

representation of the different attributes in the model. The instance generation pro-

cess is explained in depth in Chapter 5. In Chapter 6, we present results from the

computational study. After the computational study, we present an example solution

in Chapter 7 where the results of an instance is analyzed in depth. Chapter 8 con-

tains an analysis with the purpose of exploring practical applications of the model.
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We conclude the project in Chapter 9 before we make suggestions for future research

in Chapter 10.
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Chapter 2

Literature Review

In this chapter relevant literature to the Single Trade Routing Problem (STRP) in

Roll-on Roll-off liner shipping is presented. The STRP focuses on the tactical level

of decisions. The relevant literature presented in this chapter reflects this. Most liner

shipping use containers to transport products according to Meng, Wang, Andersson,

and Thun (2013). Because of this, much of the literature concerning container shipping

is presented to illustrate similar aspects in RoRo shipping.

Even though we aim to present a good overview, the literature review is not an

exhaustive and comprehensive presentation of all relevant literature.

Section 2.1 contains general theory and literature about maritime transportation. In

Section 2.2, we present the literature and theory on network design, network design

options, and examples from the literature on the different network designs. We present

literature relevant to cargo routing and scheduling in Section 2.3. Section 2.4 contains

literature related to time-dependent attributes, while Section 2.5 presents literature

regarding stowage in maritime transportation. In Section 2.6, literature regarding

Operations Research in Roll-on Roll-off shipping is presented.

2.1 Maritime transportation

Transportation planning has been widely discussed in the literature, according to

Christiansen and Nygreen (1998). Even though transportation has attracted focus

from Operations Research (OR), maritime transportation is not the most researched

transportation field. Christiansen et al. (2007) gives several explanations for the low

attention drawn to the literature by maritime transportation. Low visibility in the

global modes of transportation, less structure, and uncertainty regarding weather
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conditions and mechanical problems as some of these explanations. Even though

maritime transportation has been behind in OR, Christiansen et al. (2007) mentions

that there has been an increase in research within the field. This is confirmed by the

trend Meng et al. (2013) identifies when they present 70 papers that use OR methods

to examine containership routing and scheduling problems. 42 of the 70 papers date

to 2010 and later.

2.2 Liner network design

Liner shipping, as described above, operates along a given route with a published

itinerary in advance. The frequency of each trip might change, but the routes them-

selves stay the same for years. Because of this, the route network design is an impor-

tant strategic decision, according to Christiansen et al. (2013). Deciding which ports

to visit, in what order and how often, and what type of ship to use at what speed,

are all major decisions to make when making the routes (Christiansen et al., 2013).

This is the network design problem, deciding the routes and which ports to serve.

The difficulty of solving a network design problem (NDP) was shown by Johnson,

Lenstra, and Kan (1978). They proved that solving an NDP is NP-complete, even

in the simple case where all arc weights are equal, and the choice is restricted to

spanning trees. This was done by reducing an NP-complete 0−1 knapsack problem to

an NPD. NP-complete means the problem is not possible to solve in polynomial time.

A spanning tree is a sub-graph of an undirected graph connecting all nodes without

any cycles in the graph. The same type of proof was performed by Agarwal and Ergun

(2008) when they reduced the the 0−1 knapsack problem into a simultaneous ship

scheduling and cargo routing problem. Again NP-completeness was shown for the

NDP. The complexity of the NDP limits the size of the problems that can be solved

using a deterministic model. The typical number of ports in a problem being solved

are 10 to 20, as in the Takano and Arai (2011) model, which uses 11 ports and in

the Shintani, Imai, Nishimura, and Papadimitriou (2007) problem, which contains 20

ports. They both use a genetic algorithm to solve their NDP.

Different categories of network designs

According to Meng et al. (2013), research on network design can be classified into

the four different categories of feeder network, ship routes without transshipment, a

hub-and-spoke network, and a general liner shipping network.
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Ship routes without transshipment can have pendular routes, where the route goes

from one end port to the other end port and back again, or with circular routes. Lu

(2002) presented a network design model that is a blend of a circular and a pendular

route. Some ports have visiting restrictions on them, forcing them to be visited more

than once. The model presented also forces routes to take an integer number of

weeks to serve. Chu, Kuo, and Shieh (2003) presented a model for a pendular liner

network. This network had weekly departures with an upper limit on the sailing time

for a route. Ting and Tzeng (2003) scheduled a circular network. They did this

by looking at information regarding time and cost. Shintani et al. (2007) present a

model for a pendular line. Speed is one of the aspects that affects the cost in this

model. Chuang, Lin, Kung, and Lin (2010) showed how their fuzzy genetic algorithm

can generate a good liner route illustrated by a five-port example. Their example

also included uncertain demand. Chen and Zeng (2010) researched a network design

problem where demand was varying. For their test, they used real geography and

artificially created demand. Meng and Wang (2011b) researched a problem where

demand was uncertain for the fixed routes.

A general liner shipping network with transshipment is the last classification of con-

tainer shipping according to Meng et al. (2013). Agarwal and Ergun (2008) presented

a model for a liner network design problem with transshipment. The transshipment

cost was not taken into account when generating the network. Alvarez (2009) con-

tinued on the model proposed by Agarwal and Ergun (2008). They incorporated

transshipment cost in the network design. Reinhardt and Pisinger (2012) formulated

a model that allowed for transshipment in a specific port. They incorporated trans-

shipment cost in their model.

Even though our problem is not a network design problem, many of the components

in modeling the different networks can be used in our STRP. Components that are rel-

evant include visiting restrictions, sailing time limits, and departure restrictions. The

network design problem Chen and Zeng (2010) presented contains varying demand

and artificially created demand which also is relevant for our problem.

2.3 Cargo routing and scheduling

Cargo routing regards the planning of routing a fleet of vessels. The fleet of vessels is

to serve specified cargoes. Scheduling is used when time is included in the planning

of the routing. These are usually tactical planning problems.

Jetlund and Karimi (2004) studied a tramp routing and scheduling problem where

they obtained the fleet schedule by repeatedly solving for a single vessel. Lin and Liu
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(2011) looked into a real tramp ship routing and scheduling problem. The problem

contained various types of dry cargo.

It is not always important in long-term contracts to pick up a set amount of cargo each

visit. Normally, there is a targeted cargo size with some flexibility. The flexibility can,

for example, be ±10% of the targeted amount. G Brønmo, Christiansen, and Nygreen

(2007) and Geir Brønmo, Nygreen, and Lysgaard (2010) studied a problem that also

includes the need to determine the optimal size of cargo to transport. Korsvik and

Fagerholt (2010) also considered a similar problem. Both studies show the improved

profit that can come from having the flexibility of cargo to pick up. Hwang, Visol-

dilokpun, and Rosenberger (2008) reviewed a cargo routing and scheduling problem.

All cargo in this issue is assumed to utilize the capacity of a given vessel completely.

Kobayashi and Kubo (2010) studied a routing and scheduling problem where ports

are closed for service during nights. This can be viewed as multiple time windows

when the planning horizon spans several days. Li and Pang (2011) and Pang, Xu,

and Li (2011) studied a problem where ports can only handle one vessel at a time.

Another routing and scheduling problem presents itself when the stowage of cargo

also must be considered. Fagerholt, Hvattum, Johnsen, and Korsvik (2013) studied a

problem related to this in which they took stowage into account, as well as cargo cou-

pling constraints. Andersson, Duesund, and Fagerholt (2011b) presented a problem

where they considered synchronization of the delivery of some cargoes.

One constraint in most of the ship routing and scheduling problems is that cargo being

picked up cannot be serviced by more than one vessel. Andersson, Christiansen, and

Fagerholt (2011a) and Korsvik, Fagerholt, and Laporte (2011) studied a problem

where cargo can be split between multiple vessels. Both papers show that by splitting

cargo, utilization of the fleet can be improved, thus improving the profit as well.

Hennig, Nygreen, Furman, Song, and Kocis (2011) proposed a formulation for routing

and scheduling, where one of the aspects differed from the two studies mentioned

before. They proposed a quantity requirement for loading and unloading ports within

a certain time window. The quantity can be split between multiple vessels.

Cargo routing and scheduling literature focus on cargo, which is relevant for us. Rel-

evant aspects include the flexibility in how much cargo each vessel has to pick up at

each visit, optimal cargo to transport, visiting restrictions in the form of time and

handling, synchronization of some cargo, and splitting of cargo between vessels.
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2.4 Time-dependent attributes

Speed

One trend that has brought emphasis on speed optimization in recent years is the

steep increase in bunker fuel price (Christiansen et al., 2013). According to Papadakis

and Perakis (1989), 50% of total operating costs come from fuel consumption. This

makes speed important when trying to minimize operation cost. With an increase in

speed, time spent sailing will go down at the same time as bunker fuel consumption

increases. The opposite happens with a decrease in speed. To keep cost down at

the same time as fulfilled contracts according to transit time restrictions requires a

certain speed. Bunker consumption changes depending on speed as shown by A.

Perakis and Jaramillo (1991). There are different takes on what the relationship

between bunker consumption and vessel speed is. Ronen (2011) and Yao, Ng, and

Lee (2012) use a cubic convex function while Fagerholt, Laporte, and Norstad (2010)

use a quadratic convex function. Regardless of the relationship between speed and

bunker consumption, it is a non-linear function.

Norstad, Fagerholt, and Laporte (2011) present a model where speed optimization is

incorporated by having an upper and lower bound for speed. This makes a non-linear

factor in the objective function as well as in time-related restrictions. Andersson,

Fagerholt, and Hobbesland (2015) propose a new linearized modeling approach for

integrating a speed optimization when planning ship routes. They use a linear com-

bination of predefined discrete speed alternatives in order to provide desired speed.

We will use Andersson et al. (2015) approach of using a linear combination of prede-

fined speed alternatives in order to incorporate speed optimization and use Yao et al.

(2012) take on bunker fuel consumption to calculate operating cost for vessels.

Evenly spread

Evenly spread restrictions can be implemented as both hard and soft constraints.

A hard constraint set conditions for the variables that are required to be satisfied.

With a soft constraint, variables are penalized in the objective function for not being

satisfied.

Belanger, Desaulniers, Soumis, and Desrosiers (2006) study a periodic airline fleet

deployment problem. The goal in this problem is to generate a schedule that can be

repeated. When the departure of two flights with the same route is scheduled too

closely, a penalty cost is added to the objective function. This is a good example of

a soft constraint.

Sigurd, Ulstein, Nygreen, and Ryan (2005) include time separation requirements on
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recurring visits to the same port in their general pickup and delivery problem. They

are doing this by generating predefined patterns with time separation requirements

included. The mathematical model is restricted to only choose one of these patterns for

each customer. Halvorsen-Weare, Fagerholt, Non̊as, and Asbjørnslett (2012) include

spread of departures by the same principle as Sigurd et al. (2005) in their supply vessel

planning problem. They do not make patterns in advance but include one restriction

for each group of number-of-visits-in-a-week. Both of these examples with evenly

spread restrictions requires that the number of ports to visit during the planning

horizon is known in advance.

Norstad, Fagerholt, Hvattum, Arnulf, and Bjørkli (2015) have another take on evenly

spread where they include a parameter that determines the minimum accepted time

between two consecutive voyages on a trade route. Again the number of voyages that

have to be performed on the trade route is known in advance.

The problem we are trying to solve does not operate with a fixed number of voyages.

Transit time

Transit time restrictions make sure products being transported have a lower transship-

ment time than the maximum transit time set. Implementing transit time restrictions

in a maritime transportation problem is important to mimic real world problems.

Gelareh, Nickel, and Pisinger (2010) presents a model for a hub and spoke network

where the demand between two ports are dependent on the transit time, as well as

the price of shipping.

Álvarez (2012) and S. Wang and Meng (2011) use transit time for cargo that is

transported to deal with level of service. Álvarez (2012) claims that the level of

service is not properly addressed by cost minimization. He use a linear function of

the cargoes transit time through the liner shipping network in order to address the

level of service. S. Wang and Meng (2011) are also looking at the transit time of cargo

that is being transported in order to explain the level of service.

2.5 Stowage in maritime transportation

From Table 1.2, we saw that container ships take up a larger share than RoRo vessels,

which is a subset of general cargo ships, of the world fleet. This helps explain why

the majority of research done on stowage in maritime transportation is on container

ships. In container stowage, the objective is to minimize the time it takes to load and

unload, (Ambrosino, Sciomachen, and Tanfani, 2004). It can also be to minimize the

number of container movements, (Avriel, Penn, Shpirer, and Witteboon, 1998).
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Øvstebø, Hvattum, and Fagerholt (2011a) analyzed stowage plans for RoRo ships

with hoistable decks. They used vehicle transportation vessels as examples. Later

Øvstebø, Hvattum, and Fagerholt (2011b) extends their problem from stowage on a

fixed route to a routing problem with stowage constraints. The routing problem they

solved was to find a pickup and delivery route for one vessel. The problem included

mandatory ports and optional ports for the vessel to visit. We have not found any

other papers dealing with stowage on RoRo vessels.

2.6 Use of operations research in roll-on roll-off

shipping

Roll-on Roll-off (RoRo) shipping is not as well discussed in the literature as in other

segments. This is because RoRo shipping is a minor section of liner shipping. What

follows is a selection of Operations Research done in RoRo shipping the last decade.

Sigurd et al. (2005) presented a network design problem for a set of routes between

several ports. The vessels that were serving the network were fast RoRo vessels.

Fagerholt, Johnsen, and Lindstad (2009) looked into the fleet deployment problem in

RoRo shipping. They modeled voyages on a liner route with starting time windows.

Andersson et al. (2015) proposed a new model for planning shipping routes in which

optimization of ship speed along the routes was integrated into the model. It is com-

mon to use a sequential approach where speed first is given, and then later optimize

it. This deployment and routing problem is studied using RoRo shipping.

Kang, Choi, Kim, and Park (2012) and Jung et al. (2011) presented a decision support

system for a car carrier with the objective to determine the number of cars each vessel

should pick up on each route, all while minimizing cost. Cars not serviced in one plan-

ning horizon adds an extra cost to the objective function. Lindstad, Asbjørnslett, and

Strømman (2011) analyze carbon dioxide (CO2) emissions based on, among others,

the RoRo segment in the world fleet.

Patricksson, Fagerholt, and Rakke (2015) proposed a model of the maritime fleet

renewal problem, which also included emission regulations as a limitation. They used

RoRo shipping as their case study.

Fischer et al. (2016) presented different strategies to include robustness, as well as dif-

ferent strategies for handling disruption when assigning a fleet of vessels to predefined

voyages while trying to minimize cost in RoRo liner shipping.

The STRP in RoRo shipping has not yet been researched, to the best of our knowledge.
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Fagerholt et al. (2009) looked into the fleet deployment problem, and Sigurd et al.

(2005) present a network design problem. We plan routes for several voyages over a

planning horizon, as well as which products at which quantity to load and unload at

scheduled port visits. One important, and to the best of our knowledge, new aspect

of this problem is estimating how much space products will actually use when stored,

including broken space.
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Problem Description

In this chapter, the Single Trade Routing Problem (STRP) in RoRo shipping is pre-

sented. After the STRP is presented, a small example of the problem is given.

The central components of the STRP are: The planning horizon, trade routes, voy-

ages, ports, vessels, and contracts. The planning horizon is the overall time window

for the problem. A typical length of the planning horizon is one to two months. A

trade route is a logistical network identified as a set of pathways and stoppages for

commercial transport. Stoppages are typically ports, and will be referred to as such

from now on. A vessels transit from one origin port to a destination port is called a

voyage. A voyage over a trade route may include stops at other ports between origin

and destination. Vessels are the means of transportation used on voyages.

Vessels may have different stowage capacities, both in area and volume. Vessels in

RoRo shipping typically come with hoistable decks to accommodate for differences

in product sizes. Hence vessel capacity, both in area and volume, can be adjusted to

accommodate different needs. The different decks may have different weight restric-

tions, limiting what can be stowed there, as a function of the quantity and weight of

products. The vessels can travel at different speeds depending on scheduling needs.

Speed variations affect the fuel consumption of vessels, and thus also affect the cost.

The speeds at which a vessel can travel may also vary with vessel type.

Which ports to visit and what should be transported during a voyage are determined

by which contracts will be handled during the planning horizon. A contract defines

demand for products, that is, which products to be transported at which quantities.

Limits on inventory capacity and production rates impose limits on the quantity of

products, which can be available for transport at given times. Hence, a contract may

require pickups to be fairly evenly spread in time across the planning horizon. A

contract may have pickup frequency restrictions, that is, it may require that the total
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quantities to be transported be divided over several or all voyages during the planning

horizon. A contract may also define an upper and lower bound on the quantities which

have to be transported during the voyage the contract is handled. A contract defines

at what port to pick up the products, and which port to transport them to, as well

as restrictions on transit time. The transit time restrictions dictate within what time

interval a contract has to be fulfilled.

Products are grouped into product types. A Product type is a class of products that

have some attributes that are similar, such as size or functionality. An example of

two different product types are cars and heavy construction equipment. Different

product types may need to be stowed in different ways. Large and heavy product

types, like heavy construction equipment, may need to be securely tethered, which

creates broken space around it. Hence, different product types might have different

degrees of space utilization, that is, have a different typical broken space to stowage

space ratio. This makes it difficult to decide product type mix and quantities that

can be stowed during a port visit.

The objective of the STRP is to find routes for all planned voyages during a planning

horizon that minimizes costs while fulfilling all contracts. The decisions to be made

are which ports to visit during a given voyage, and what quantities of the different

product types should be loaded and unloaded at each of these port visits.

3.1 Example

The following is a simplified example of the STRP. We are continuing the same ex-

ample as used in Vallestad and Weggersen (2016). New considerations are taken into

account. The input for this example is as follows: A trade route consisting of three

ports, two vessels with different capacities, four contracts, and two different types of

products.

The assumptions are that it is only possible to make two voyages. Each contract only

asks for one product type, time is measured in days, and all ports have equal visiting

cost. The only attribute differentiating the vessels is capacity. It is also assumed that

both vessels have an equal bunker fuel consumption to sail speed ratio.

There are two different product types as stated above. Product type one (P1) and

Product type two (P2). All products of the same type have the same need for area

and volume. P2 has a bigger need for area and volume than P1. There are different

decks on the vessels that accommodate for the various product types. Deck attributes
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Figure 3.1: The different vessels with corresponding capacities

can limit what kind of product type can be placed on it. Decks set up for P1 can only

have P1 since it has the lowest need of area and volume. Decks set up for P2, on the

other hand, can also stow P1.

Figure 3.1 shows the vessels used in this example and their capacities. Vessel one

(K1) and Vessel two (K2). The capacity of K1 is 100 of P1 and 50 of P2. For K2, the

capacity is 75 of P1 and 30 of P2.

Figure 3.2: The trade route with all contracts

There are four contracts used in this example. These contracts are seen in Figure

3.2. The color of the contracts matches the type of product since they can only hold

one type. The table in the bottom right corner shows each contract demand, as well

as transit time restrictions. Transit time restrictions are being explained in more

depth later in the example. Contracts A (CA) and D (CD) have demand for P1, while

contracts B (CB) and C (CC) have demand for P2.
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The objective in this example is to fulfill all contract demands using two voyages. The

cost of visiting a port and the distance between ports are the only two elements that

affect the objective.

Figure 3.3: A solution of the example problem using two voyages

Figure 3.3 shows a solution to this example. One voyage is sailed by V1 from port 1

to 3, through 2, to handle CB, CC, and CD. The demand of P2 in CB is less than V1’s

capacity of the same product type so the demand of CB can fit on V1 without any

problems. When V1 arrives at port 2, it unloads P2 from CB before loading on the P1

and P2 from CD and CC respectively. P2 from CC has no problem being placed at its

allocated space on the vessel. The amount of P2 from CC is less than V1’s capacity

for that of P2. CD demands an amount of P1 that exceeds the vessels capacity for

that product type. Since V1 only loaded 30 of its capacity of P2 and can load 50 of

it, it has 20 extra spaces that P1 can use. The combined capacity of P1 and what is

left of P2 on V1 is enough to accommodate for CD.

V2 sails the second voyage directly from 1 to 3 to hand CA and has no problem loading

the demand of P1 from CA on board. V2 saves the cost of visiting port 2 and the time

it takes to do so.

Figure 3.4: Distances and bunker fuel consumption dependent on vessel speed
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The contracts that are being handled in this example also contains transit time re-

strictions as seen in Figure 3.2. CA is handled by V2 when being sailed directly from

port one to port three and has a transit time of four days. Figure 3.4 shows that it

takes four days to sail between the two ports with a speed of 16 knots. 18 knots and

20 knots would also satisfy the transit time constraint. V2 sails at 16 knots in order

to minimize fuel consumption and cost.

V1 sails between port one and two with a speed of 18 knots. If it had sailed at 16

knots, the transit time restriction would not be satisfied of CB. When V1 sails between

port two and three, CC and CD are loaded on board. This last route can not be sailed

with anything less than 20 knots, even though CD allows V1 to sail the route with 18

knots. This is because of the transit time restriction in CC.

Evenly spread

Now lets assumed that CC has a product demand of P2 equal to 60 instead of 30 as

shown in Figure 3.5, and everything else stay the same as over.

Figure 3.5: Distances and bunker fuel consumption dependent on vessel speed for
evenly spread

This would mean that one vessel could not handle CC on its own due to the capacity

restrictions of each vessel. K1 sail the same route as before, picking up CB from port

one, and from port two, CD and half of CC. Since K1 can not handle CC on its own,

K2 has to visit port two as well to pick up half of P2 demand of CC.

To satisfy the evenly spread requirements of contract CC, the two voyages can not

start at the same time. To simplify the example, the planning horizon is six days.

One solution is to let K1 start at day zero and let V2 start on day two. This makes
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the first visit in port two to handle CC at day two and the second visit at day four. If

the route to K1 and K2 had not been the same, the starting time could be different.

It is not when a vessel starts a voyage that is important, but that certain contracts

are handled according to spread restrictions.

In order to further show the depth of evenly spread, just one port with four contracts

that have to be handled at this port is looked at. This can be seen in Figure 3.6. The

contracts have a different number of times they have to be visited, as well as when

each visit should be made. It is very unlikely that all contracts can be handled at

their desired service times. By minimizing the sum of all delays, a good spread can

still be found.

Figure 3.6: Four contracts that have to be handled in one port where visits have been
done, so that an even spread can be fulfilled

Figure 3.6, conveys that Voyage one is handling Contracts one, two, and three. Even

though Contract one is the only one on Voyage one being handled at its desired time,

the two other contracts are being handled shortly after their desired times. The same

can be seen in Voyage two, three, and four. The result of doing it this way is that an

even spread is achieved.
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Mathematical Model

In this chapter we propose a base model for solving the STRP. Section 4.1 contains

our modeling assumptions regarding demand and supply, transportation, the fleet,

load planning, and time. In Section 4.2, the trade route network representation is

described as well as the connection between the networks and contracts, along with

bunker fuel consumption, contract representation, stowage capacity constraints on

vessels, space utilization of different product types, and evenly spread of contracts. In

the final section, Section 4.3, a presentation of the mathematical model for the STRP

is given.

4.1 Model assumptions and limitations

Demand and supply

All contractual demands are known with certainty in advance of the planning horizon.

Supply is constant and the quantities to be transported are always available when

needed at all ports during the entire planning horizon. Partial satisfaction of demand

is not allowed.

Transport

Vessels moves unidirectionally through the trade route, from lower indexed ports

to higher indexed ports. Transshipment of demand is not accommodated, and the

operating costs at port are known and fixed. The cost of sailing is determined by

bunker fuel consumption. The fuel price is fixed while bunker fuel consumption vary

from vessel to vessel.
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Fleet

The fleet composition in this problem is heterogeneous with a finite number of different

types of vessels.

Transport logistics

The problem involves stowing quantities of products of different product types on

vessels. Each product has a base area. We assume a linear relationship between the

products base area, and the area that product will use of vessel capacity when stowed

on board. That is, its base area plus any broken space created by stowing the product.

We further assume that the broken space to base area ratio is approximately equal for

products of same product type, at least on average. In summation, we assume given

the total base area xp of all products of each product type p, total real space use S

can be predicted with a tolerable error from Equation 8.1,

S = F1x1 + ...+ Fpxp, (4.1)

and that the space utilization factors F1, ..., Fp can be estimated. In this project we do

not take weights or volume into account, nor varying ship capacity caused by hoistable

decks.

4.2 Model description

4.2.1 Trade route network

We use network representation for our single trade routes. Origin, destination and

contract ports are collectively termed nodes, and the transportation links, or routes,

between two ports are termed arcs. The weight of the arc between two given nodes is

the distance which needs to be traveled in order to get from one node to the other.

In the example in Figure 4.1, it is assumed that our vessel begins its voyage in node

one. This simplification makes formulating a model and generating data simpler,

but at the same time it makes the model much less useful. Artificial origin and

destination nodes are added to our network to include information about the origin

and destination points of each vessel. One origin node o(k) and one destination node

d(k) is added for each vessel. This can be seen in Figure 4.2. For each origin node,

arcs between it and every other node except other origin nodes are included in the

network. For each destination node, arcs between it and its corresponding origin node

and every port node, except other destination nodes, are included in the network. All

arcs are assigned weights corresponding to the direct travel distance between the two
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Figure 4.1: Illustrates a network representation of a trade route with four ports. Note
that the arcs in this example network is unidirectional, limiting a vessel to only move
forward during its voyage. In this example, it is assumed that the vessels starts in
node one.

ports which the arc belong to. Figure 4.2 shows an updated version of the network

in Figure 4.1, with origin and destination nodes. Vessels are still limited to travel

unidirectional through the network, but they are no longer limited to start in a port

of the trade route. This allows us to modell a larger set of problem instances. For

example, some vessels may now start in a destination port from its previous voyage,

which is not necessarily a part of the trade route for its next voyage.

Figure 4.2: The same network as in Figure 4.1, with artificial origin and destination
nodes.

4.2.2 Bunker fuel consumption

Bunker consumption is a major part of shipping costs. If a vessel sails at a low speed,

the fuel consumption is low and as such, cost will be low as well. If a vessel sails
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at a high speed, the argument is the opposite. The function representing the speed

against bunker consumption is convex function as seen in Section 2.4.

To linearize bunker consumption in our model, we use a piece-wise linear approxima-

tion of the sailing cost function as presented in Andersson et al. (2015). The speed

is found by using a linear combination, as shown in Equation 4.2, of two different

consecutive speed alternatives, si. The linear combination can describe any speed

alternative V between the two speed alternatives used. To find the bunker fuel con-

suption corresponding to a specific speed, the corresponding values of w are used to

calculate bunker cost from Equation 4.3.

V = wijvks · si + (1− wijvks) · si+1, wijvks ∈ [0, 1], i ∈ {1, 2, ..., n− 1} (4.2)

FV = wijvks · fi + (1− wijvks) · fi+1, wijvks ∈ [0, 1], i ∈ {1, 2, ..., n− 1} (4.3)

4.2.3 Contract

A contract is a binding agreement between a shipping company and a client who

requires goods to be transported between a loading port and an unloading port. The

contract stipulates a demand, a quantity of goods to be transported which might be

of different product types. The contract must also stipulate pickup frequency bounds,

that is the minimum and maximum number of voyages the contractual demand could

be divided over. For example, if both minimum value and maximum value is set to

two, the contractual demand should be divided over exactly two voyages. In addition,

the contract must also stipulate minimum and maximum quantity which can be loaded

during a given pickup. For example, the lower load quantity bound can be set to zero,

and the upper load quantity bound can be set to the total demand, which would

put no restrictions on how the total demand should be divided up over the required

amount of voyages. A contract must also stipulate a transit time requirement, which

ensures that the contract will be completed within a given time from pickup, and

might require that the pickups for one contract should be fairly evenly spread in time.

Similar to the load quantity bounds, the transit time might be defined to put no

completion time restrictions on a contract.

Connecting contracts and networks

Each port node in a trade route network has two sets assign to it, one set for collecting

contracts to be loaded at that port, the loading set, and one set for collecting contracts

which should be unloaded at that port, the unloading set. These can be seen visualized

in 4.3. Each contract is placed in the loading set corresponding to its loading port
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and in the unloading set corresponding to its unloading port. The index functions l(c)

and u(c) returns loading port and unloading port respectively for a given contract c.

An example of this can be seen in Figure 4.3, where a small instance with four ports

and three contracts has been illustrated.

Figure 4.3: Loading contracts and unloading contracts for a small instance with four
ports and three contracts.

4.2.4 Stowage capacity

As outlined in the problem in Chapter 3, a vessel may have different types of decks with

differences in capacity attributes. Any good to be transported may be limited by its

size attributes to only fit on a subset of these decks on a given vessel. As an example,

consider a vessel with three different decks with different storage capacity attributes,

height, weight and base area. The vessel transports goods which can roughly be

divided into three product types by its height, weight and base area, product types

A, B, and C. Goods of product type A are low and light, relative to decks capacity

attributes, and may be stored on all decks. Product type B are higher and heavier,

and may only be stored on two of the decks. Product type C are higher and very

heavy, and may only be stored on one of the decks. This is illustrated in Figure 4.4

below.

The important thing to note in the Figure 4.4 is that the vessels storage capacity is

not the sum of the height of the three columns. Rather, it is the sum of the height

of the three thin lines to the left in the figure. Each column is the maximum storage

capacity for a given product type, and does not necessarily represent a fixed space
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Figure 4.4: Different product types.

available only for that product type.

Figure 4.5: Different product type sets.

Each product type X has a set assigned to it, an overlap set P S
p , containing the

product types which storage space could also be used to store product type X. In

our example above, for A, this set would be B, C. The rest of the overlap sets from

this example is shown in Figure 4.5. In Figure 4.6, is an example of a inventory

instance during a voyage, while transporting goods between port nodes one and two.

Product type A could be cars, B could be trucks, and C could be heavy construction

equipment. All storage capacity on the deck available for storing cars has been used.

The storage capacity on deck two has been used for storing both cars and trucks. The

storage capacity for deck three has been used to store heavy construction equipment.

Both deck two and three has open, unused space. To find the actual space available

for stowing cars in this instance, you would have to subtract the stowed amount of

trucks and the stowed amount of heavy construction equipment from that maximum

storage capacity for cars.
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Figure 4.6: Products transported between ports.

4.2.5 Space utilization

Each deck type might store goods with different degree of space utilization, that is,

typical broken space to stowed space ratio. As an example, let us consider a deck

type which typically stores excavators. This has been illustrated in Figure 4.7. An

excavator has a square base, but because of the boom, dipperstick and bucket they

use space less efficiently than for example a typical car. A model which does not take

this into account, but calculates required storage space from the square base of the

excavators will underestimate the required space. By calculating the ratio between

the total area actually used to store the excavators and the total base area of the

excavators we have a space utilization factor (SUF) which can be used to estimate

required space.

A deck type is typically not limited to store a specific kind of good, like an excavator,

but to product types which are similar in spatial attributes. Rather than calculating

an exact SUF, and average SUF for specific product types can be estimated from

historical data. The SUF can then be used to adjust the space requirement of a

demanded quantity to reflect the actual space needed to stowage the quantity, based

on which product type it belongs to. The estimation of these factors are beyond this

study, but a possible method would be multiple linear regression, or relying on the

subjective estimates of people with experience.
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Figure 4.7: By calculating the ratio between the total area actually used to store
the excavators and the total base area of the excavators we can calculate the space
utilization factor for the stowage configuration in the figure. In this case the space
utilization factor is 1.67.

4.2.6 Fairly even spread

As mentioned in Section 4.2.3, a contract might require its pickups to be fairly evenly

spread throughout the planning horizon. A commonly used method to ensure fairly

even spread is to define time window for each pickup, which the pickup should occur

during. This requires that the contract requires an exact number of pickups for a

planning horizon in advance. If the number of pickups can be chosen from an interval

however we cannot with certainty know in advance how many pickups a given contracts

demand will be divided over. This makes it difficult to use time windows for this case

while keeping the model linear.

Instead of using time windows, we have implemented fairly even spread by using

separation requirements. Each contract which require fairly evenly spread are required

to spread it pickups with a separation time which falls within an interval calculated

with Equation 4.4,

T h

bc
± sc (4.4)

where TH is the planning horizon length, bc is the number of pickups chosen by the

model, and sc is acceptable slack. The model allows deviations from this requirement
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by adding a penalty cost in the objective function that depends on the contract and

the size of the deviation.

As an example, if a contract is serviced two times and planning horizon window is

28 days, the optimal spread between the two pick is 14 days. Let us assume the first

pickup is done at day 3 while the second pickup is done at day 13 with a spread of

10 days. With a slack of ±2 days the maximum spread is 16 days and the minimum

spread is 12 days, which makes this pickup 2 days to early. This contract would now

increase the total cost by the contract penalty cost multiplied by 2. However, if the

second pickup is done at time 16, making the spread 13 days, this would be within

our acceptance interval.
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4.3 The mathematical model

The model presented in this chapter is based on the work done by Vallestad and

Weggersen (2016). The model has been extended in several ways: we have added

time constraints, constraints to spread contract pickups fairly evenly in time and

enforce transit time requirements for contracts, and added constraints which allows

for variable vessel speed. In addition, we have extended the capacity constraints from

a simple fixed capacity for each deck type, which can store a specific product type, to

allow loading of a product type on any deck type which has the appropriate attributes.

The given problem can be formulated on a directed graph G = (N ′,A) where the

set N ′ contains all nodes, and A is the set of arcs. The set N contains the nodes

representing ports. Let K denote the set of all vessels in the fleet of the shipping

company. Each k ∈ K has an node o(k) ∈ N ′ representing the initial position for k,

and an artificial node d(k) ∈ N ′ representing its final destination. The set N ′ is as

such, N ′ ⊆ N ∪ {o(k), d(k)}. Each vessel k is available at its initial position o(k) at

time TAk . The set V contains the different voyages v of the given planning horizon. A

voyage v for a vessel k corresponds to a path from o(k) to d(k) in G.

Let Nk ⊆ N ∪ {o(k), d(k)} be the subset of nodes, where each vessel k is compatible

with nodes Nk. Let Ak ⊂ Nk × Nk be the set of arcs (i, j) such that the vessel can

sail directly from the port associated with node i to the port associated with node j.

Sailing from node i to node j using vessel k at speed s incurs a variable cost CS
ijks and

total sailing time T Sijks. Each k visiting port i incurs a cost CV
i and time T Pik .

The set P contains the different product types p that can be handled by vessels, while

the set PSp contains the different product types that can be stowed on the same deck

as product type p. The maximum capacity of a given product p on vessel k is given

by KCAP
kp , and each vessel k has a space utilization factor Ukp for each product type

p.

Let C denote the set of all contracts. Each contract c ∈ C is associated with a loading

node l(c) and an unloading node u(c) as well as a maximum transit time T Tc . The set

of contracts with products to be loaded in a port i is denoted by CLi , while the set of

contracts with products that should be unloaded in port i is denoted by CUi .

Each contract c has a minimum and a maximum number of times the contract has

to be serviced given by [P
¯ c
, P̄c]. Each contract c has a minimum and maximum load

quantity for each product type p, [Q
¯ cp

, Q̄cp] on each visit. The quantity loaded of

product type p during one port visit to partly or fully meet a contract demand has

to be within these bounds. The total demand of each product p for a contract c is

denoted by Dcp.
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A contract c that has its pickup node CL
i before the deep sea leg, is confined by

the evenly spread restriction. The cost of breaking the evenly spread restriction for

contract c is given by CP
c .

The continuous time variable tiv represents the time at which a port visit begins at

node i if served on voyage v. The time a vessel k is available is given by TAk , while T Pik
describes the time spent in port i for vessel k. The total length of planning horizon

is given by TH .

The binary variable δcvk is equal to 1 iff products for contract c is being loaded on a

voyage v with a vessel k. Continuous variables lijvp indicate the total load on board

vessel k after completing service at node i during voyage v, and the variables qcpvk

indicate the loaded quantity of product type p from contract c on vessel k sailing

voyage v.

Several networks are implemented with binary flow variable, xijvk, which is equal to 1

iff a vessel k on a voyage v sails directly between the nodes i and j, and 0 otherwise.

The set S contain the discrete speed alternatives s ordered from low to high. The

variable wijvks takes values between [0, 1] depending on what linear combination of

the speed alternatives s vessel k on voyage v has between node i and j. The sum of

all wijvks for each arc in use is 1.

The variables βc give the number of times contract c is serviced during a planning

horizon, while φnc is equal to 1 iff contract c is visited n times. φnc is defined for the

interval [P
¯ c
, P̄c]. The binary variable zcvw is 1 iff voyage v and w are evenly spread for

contract c when w > v. When contract c is not evenly spread between two voyages,

the continues variables sc give the number of days the evenly spread restriction is

violated.

The problem can then be formulated as follows:

Sets and indices

N ′ Set of all nodes, i

N Set of all ports, i

V Set of voyages, v

A Set of all arcs

Ak Set of arcs ,(i, j), for vessel k

K Set of vessels, k

C Set of all contracts, c

CLi Subset containing loading contracts in a given port i
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CUi Subset containing unloading contracts in a given port i

P Set of product types, p

PSp Set of product types which can be stored in the same spaces as

product type p

S Set of speed alternatives s, ordered from low to high

Parameters

CS
ijks Cost of sailing for vessel k from node i to j at speed s

CV
i Cost of visiting port i

CP
c The penalty cost of deviating one day from evenly spread on

contract c

Dcp Total demand of product type p in contract c

KCAP
kp Capacity of product type p on vessel k

Ukp Space utilization factor of product p on vessel k

Q
¯ cp

Minimum quantity to load from contract c of product p

Q̄cp Maximum quantity to load from contract c of product p

P
¯c

Minimum number of times contract c has to be serviced

P̄c Maximum number of times contract c has to be serviced

T Sijks Time spent sailing with vessel k at speed s from node i to j

T Tc Maximum transit time for contract c

TAk Time vessel k is available at origin node

T Pik Time vessel k spends in port i

TH Length of planning horizon

Variables

xijvk

1, if voyage v use vessel k to sails from node i to j

0, otherwise

δcvk

1, if contract c is handled by vessel k on voyage v

0, otherwise

zcvw

1, if voyage v and w are evenly spread for contract c, w > v

0, otherwise
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φnc

1, if contract c is visited n times. Defined for P
¯ c
≤ n ≤ P̄c

0, otherwise

lijvp Quantity of product type p stored on the vessel chosen for voyage

v when the vessel departs from node i to sail for node j

qcvpk Quantity of product p loaded on vessel k used on voyage v for

contract c

tiv Time starting service at node i on voyage v

wijvks The weight of speed alternative s when sailing from node i to

node j with vessel k on voyage v

βc Number of times contract c is serviced during a planning horizon

sc The number of days of slack needed to service contract c with

evenly spread restrictions

Objective function

min z =
∑
k∈K

∑
(i,j)∈Ak

∑
v∈V

∑
s∈S

CS
ijkswijvks+∑

k∈K

∑
(i,j)∈Ak

∑
v∈V

CV
i xijvk +

∑
c∈C

CD
c sc

(4.5)

The objective function (4.5) sum all variable costs associated with sailing the fleet

and visiting ports, in addition to adding a penalty cost for violating the evenly spread

constraints.

Network constraints

∑
k∈K

∑
j∈N∪d(k)

xo(k)jvk = 1, v ∈ V (4.6)

∑
i∈N

xijvk −
∑
i∈N

xjivk = 0, k ∈ K, v ∈ V , j ∈ N ′ (4.7)∑
k∈K

∑
i∈N∪o(k)

xid(k)vk = 1 v ∈ V (4.8)

∑
i∈N ′

xijvk ≤ 1 k ∈ K, v ∈ V , j ∈ N ′ (4.9)
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Constraints (4.6) - (4.8) are flow constraints. They ensure that each voyage starts in

a origin node, that every visited node is also exited, and that each voyage ends up

in a destination node. Constraints (4.9) make sure each port can only be visited at

most once each voyage.

Speed constraints

xijvk =
∑
s∈S

wijvks, k ∈ K, (i, j) ∈ Ak, v ∈ V (4.10)

Constraints (4.10) describe the relationship between the flow variables and the speed-

dependent variables, such that the weights of the speed alternatives add up to 1 if the

vessel k sails between node i and j, 0 otherwise.

Vessel constraints

∑
j∈N

∑
v∈V

xo(k)jvk ≤ 1, k ∈ K (4.11)

Constraints (4.11) make sure that each vessel is only able to be used once for each

planning horizon.

Capacity constraints

∑
j∈N

ljivp +
∑
k∈K

∑
c∈CL

i

Ukpqcvpk −
∑
k∈K

∑
c∈CU

i

Ukpqcvpk −
∑
j∈N

lijvp = 0,

i ∈ N , v ∈ V , p ∈ P
(4.12)

0 ≤ lijvp ≤
∑
k∈K

KCAP
kp xijvk −

∑
p′∈PS

p

lijvp′ ,

(i, j) ∈ A, v ∈ V , p ∈ P
(4.13)

∑
j∈N

lo(k)jvp = 0, k ∈ K, v ∈ V , p ∈ P (4.14)

Constraints (4.12) require that for each product, vessel class, and voyage, the sum
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of product quantity entering a node plus loaded product quantity and minus the un-

loaded product quantity must be equal to the product quantity leaving the node.

Constraints (4.13) state that the quantity of product type p, carried on voyage v, by

vessel k, over an arc from node i to node j must not be greater than the total vessel

capacity for that product, subtracting space which could be used for this product

type, but has already been used by goods of other product types which can use the

same space. In addition, it states that if an arc is not in use, vessel capacity is equal

to zero. Constraints (4.14) ensure that each voyage starts with an empty vessel.

Pickup constraints

P
¯ c
≤
∑
v∈V

∑
k∈K

δcvk ≤ P̄c, c ∈ C (4.15)

δcvk ≤
∑

i∈N∪o(k)

xil(c)vk, k ∈ K, c ∈ C, v ∈ V (4.16)

δcvk ≤
∑

i∈N∪o(k)

xiu(c)vk, k ∈ K, c ∈ C, v ∈ V (4.17)

Constraints (4.15) ensure that upper and lower bound for contract pick frequency c

is respected. Constraints (4.16) and (4.17) state that for a contract c to be handled

on a voyage v, the vessel for that voyage has to visit both the loading and unloading

port for that contract.

Loading constraints

Q
¯ cp

δcvk ≤ qcvpk ≤ Q̄cpδcvk, k ∈ K, c ∈ C, v ∈ V , p ∈ P (4.18)∑
k∈K

∑
v∈V

qcvpk = Dcp, c ∈ C, p ∈ P (4.19)

Constraints (4.18) ensure that upper and lower bound for loading for each contract

and product type is respected, and forces loading to be equal to zero if a contract

is not handled on a voyage v. Constraints (4.19) ensure that the demand for each

product type p required by each contract c is satisfied during the planning horizon.
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Time constraints

to(k)v ≥ TAk k ∈ K, v ∈ V (4.20)

xijvk(tiv +
∑
s∈S

T Sijkswijvks + T Pik − tjv) ≤ 0 k ∈ K, (i, j) ∈ Ak, v ∈ V (4.21)∑
k∈K

δcvk(tl(c)v + T Tc − tu(c)v) ≥ 0 v ∈ V , c ∈ C (4.22)

tiv +
∑
j∈N

∑
s∈S

T Sijkswijvks ≤ TH , v ∈ V , i ∈ NO (4.23)

Constraints (4.20) ensure that a voyage v to be sailed with a vessel k cannot begin

before that vessel is made available at its origin node. Constraints (4.21) describe the

compatibility between routes and schedules. The time for start of service in port j

cannot be less than the sum of the start time of service in port i, the service time

for loading and unloading, and the sailing time from port i to port j with vessel k,

if vessel k is really sailing between port i and j. Constraints (4.22) ensure that if a

contract is being handled on a voyage by a vessel, δcvk equal to 1, the time it takes

to sail from the loading port to the unloading port on that voyage is less than the

transit time restriction T Tc . Constraints (4.23) ensure that no voyage is startet after

the defined planning horizon.

Evenly spread constraints

βc =
∑
v∈V

∑
k∈K

δcvk, c ∈ C (4.24)

zcvw[
TH

βc
− sc − (tl(c)v − tl(c)w)] ≤ 0, c ∈ C, v ∈ V , w ∈ V|w > v (4.25)

zcvw[
TH

βc
+ sc − (tl(c)v − tl(c)w)] ≥ 0, c ∈ C, v ∈ V , w ∈ V|w > v (4.26)∑

v∈V

∑
w∈V|w>v

zcvw ≥ βc − 1, c ∈ C (4.27)

∑
w∈V|w>v

zc1w ≤ 1, c ∈ C (4.28)

∑
w∈V|w>v

zcw|V| ≤ 1, c ∈ C (4.29)

∑
w∈V|w>v

zcvw =
∑

w∈V|w>v

zcwv, c ∈ C, v ∈ V|v 6= 1, v 6= |V| (4.30)
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Constraints (4.24) sets the value of he variable βc equal to the amount of pick ups

during the entire planning horizon for that contract. Constraints (4.25), (4.26) and

(4.27) forces contract pickups on different voyages to be spread with a time difference,

or spread value, equal to the planning horizon divided by the amount of pick ups

that contract has during the planning horizon, plus the value of the slack variable sc,

which can be increased at a penalty cost. Constraints (4.28) and (4.29) forces the

first and last voyage to be, respectively, the first and last voyage in time. Constraints

(4.30) ensure that contracts on voyages are compared with the same contract on the

next voyage in time, ensuring that two or more voyages cannot be compared to to the

same voyage.

Binary and non negativity constraints

xijvk ∈ {0, 1}, k ∈ K, (i, j) ∈ Ak, v ∈ V (4.31)

δcvk ∈ {0, 1}, k ∈ K, c ∈ C, v ∈ V (4.32)

zcvw ∈ {0, 1}, c ∈ C, v ∈ V , w ∈ V|w > v (4.33)

lijvp ≥ 0, i ∈ N , j ∈ N , v ∈ V , p ∈ P (4.34)

qcvpk ≥ 0, k ∈ K, c ∈ C, v ∈ V , p ∈ P (4.35)

tiv ≥ 0, i ∈ N , v ∈ V (4.36)

βc ≥ 0, c ∈ C (4.37)

sc ≥ 0, c ∈ C (4.38)

0 ≤ wijvks ≤ 1, k ∈ K, (i, j) ∈ Ak, v ∈ V , s ∈ S (4.39)

(4.31) - (4.33) are binary constraints for xijvk, δcvk and zcvw while (4.34) - (4.38) are

non negativity constraints for lijvp, qcvpk, tjv, βc and sc. Constraints (4.39) make sure

wijvks only can take values between 0 and 1.

Linearization of Constraints (4.21) and (4.22)

tiv +
∑
s∈S

T Sijkswijvks + T Pjk ≤ tjv +MT
ijv(1− xijvk),

k ∈ K, (i, j) ∈ Ak, v ∈ V
(4.40)

tl(c)v + TGc +MC
c (1− δcvk) ≥ tu(c)v,

v ∈ V , c ∈ C
(4.41)
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The value of MT
ijv is set to the maximum time it takes to sail between port i and j on

voyage v. The maximum time includes sailing time between the two ports sailing at

the lowest speed and port visit times. If the ports to visit do not have consecutive port

numbers, every port is being visited and visiting times at all the ports are included

in the maximum time, while sailing at the lowest speed. This is lower than what the

value would have been if there was only one M . The value of M would have been set

to TH . This is because (tiv+
∑

s∈S T
S
ijkswijvks+T Pjk−tjv) will never be larger than TH .

The lowest M could be set to is TH−min(Tijks). If M was set to anything lower than

TH −min(Tijks), it would be possible for a voyage to include port visits even though

the voyage might not be needed. Since voyages might have different min(Tijks), it

would not be possible to set one value that would fit every case.

Mc is set to the time it takes to sail from l(c) to u(c) including visiting every port in

between using the lowest speed possible, and subtracting T Tc of contract c.

Linearization of Constraints (4.25) and (4.26)

∑
i∈V

iφic =
∑
v∈V

∑
k∈K

δcvk, c ∈ C (4.42)∑
i∈V

φic = 1, c ∈ C (4.43)

∑
i∈V

TH

i
φic − sc − TH(1− zcvw) ≤ tl(c)v − tl(c)w,

c ∈ C, v ∈ V , w ∈ V|w > v

(4.44)

∑
i∈V

TH

i
φic + sc + TH(1− zcvw) ≥ tl(c)v − tl(c)w,

c ∈ C, v ∈ V , w ∈ V|w > v

(4.45)

φnc ∈ {0, 1}, c ∈ C, n ∈ N (4.46)

Constraints (4.42) and (4.43) ensure that a binary variable φic with the index i equal

to the value of βc is equal to 1 while φic for index i not equal to the value of βc is

equal to zero, for each contract. φic is then used in constraints (4.44) and (4.45) to

get the correct spread value without having to divide TH over the variable βc, which

makes the model non-linear. (4.46) are binary constraints for φnc.
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Instance Generation

In this chapter we describe our instance generator in detail, outlining which choices

were made and why. The aim is to create instances describes realistic enough ap-

proximations of real planning horizons to make the computational study in Chapter

6 meaningful. In chapter 4, we outlined a mathematical approximation of the Sin-

gle Trade Routing Problem. Understanding the instance generating process will be

helpful when analyzing our solutions to see how well the problem relates to our model.

In Section 5.1, the input data is presented. Section 5.2 contains a detailed description

of the instance generator, and how it uses the input data to generate the remaining

necessary data. In section 5.3 we present a reference scheme for the test instances,

while the last section, Section 5.4, contains an overview over all test instances used

throughout the computational study.

5.1 Generator input data

In this section we present the input data, which are trade routes used to generate

distance data and network topology, maximum port pickup frequencies, which sets

upper and lower bounds on the random generation of contract pickup frequency, and

bunker fuel consumption rates and capacity ratios, which are used to generate vessels.

Some of the data provided by the company is proprietary, and in those cases the

example data shown has been fabricated.

Trade routes

A trade route is a logistical network of stoppages and pathways used for the com-

mercial transport of goods. A trade route is represented here by a distance matrix,

which contains all distances between all stoppages, here ports, which it is possible to
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sail directly between. We chose three trade routes sailed by the case company, with

different level of ports, and created distance matrices for them by using an online tool

for calculating sailing distances between the ports (Sea-Distance, 2017.)

An illustration of the trade routes with the corresponding port distance matrix rep-

resentation can be seen below. Figure 5.1 illustrates a trade route with five ports,

with America as its origin and Asia as its destination. Figure 5.2 illustrates a trade

route with ten ports, with Asia as its origin and Europe as its destination. Figure

5.2 illustrates a trade route with 15 ports, with Europe as its origin and America as

its destination. The corresponding port distance matrices can be seen in Table 5.1,

Table 5.2 and Table 5.3.
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Figure 5.1: The America to Asia trade route
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Baltimore 0 1904 4926 5968 9634
Manzanilo 0 3022 4064 7730
Port Hueneme 0 1069 4770
Tacoma 0 4268
Yokohama 0

Table 5.1: Distances between ports in the America to Asia trade route. All distances
are in nautical mile (nm)
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Figure 5.2: The Asia to Europe trade route
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Yokohama 0 353 1036 2932 2892 8062 8499 10960 11185 11385
Kobe 0 783 2733 2691 7861 8298 10759 10984 11184
Shanghai 0 2204 2237 7407 7844 10305 10530 10730
Laem Chabang 0 784 5954 6391 8852 9077 9277
Singapore 0 5170 5607 8068 8293 8493
Alexandria 0 512 2939 3164 3364
Piraeus 0 2622 2847 3047
Southampton 0 257 457
Antwerp 0 357
Bremerhaven 0

Table 5.2: Distances between ports in the Asia to Europe trade route. All distances
are in nautical mile (nm)
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Figure 5.3: The Europe to America trade route
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Gothenburg 0 373 544 696 1192 2923 3568 3855 3999 4157 5167 5262 5037 7988 9101
Bremerhaven 0 292 457 953 2938 3583 3870 4014 4172 5182 5277 5006 7957 9070
Zeebrugge 0 186 682 2716 3317 3604 3748 3949 4943 5038 4735 7686 8799
Southamton 0 528 2555 3156 3443 3587 3788 4782 4877 4574 7525 8638
Santander 0 2545 3109 3396 3558 3711 4705 4800 4466 7379 8492
Halifax 0 593 899 1077 1240 2303 2399 2298 5249 6362
New York 0 410 629 791 1862 1958 1972 4923 6036
Baltimore 0 552 715 1785 1880 1904 4855 5968
Charleston 0 199 1336 1430 1560 4511 5624
Brunswick 0 1226 1321 1505 4456 5569
Galveston 0 622 1485 4436 5549
VeraCruz 0 1410 4361 5474
Manzanillo 0 2951 4064
Port Hueneme 0 1165
Tacoma 0

Table 5.3: Distances between ports in the Europe to America trade route. All dis-
tances are in nautical mile (nm)
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Maximum port pickup frequencies

Experimenting with contract generation, we learned that the method used for gener-

ating contract pickup frequencies has a large effect on model solutions. For example,

let us consider randomly generating upper and lower bounds for contract pickup fre-

quencies from an interval between and including zero and the number of voyages for a

planning horizon. If the number of contracts is larger enough, there is a high proba-

bility this would lead to there being at least one contract for each port with a contract

pickup frequency of four. Using this method would lead to almost all solutions having

the vessel visit every port on every voyage, and because of this, we chose to go for a

method which gave to more realistic results. When an instance is created with a given

trade route, maximum port pickup frequencies for that trade route is also provided.

For example, the maximum port pickup frequencies for a trade route with ten ports,

used for creating a planning horizon with four voyages might look something like this,

4, 3, 4, 3, 2, 2, 3, 4, 4, 3

In this case, contracts generated with port five as a loading port, can at most have

a contract pickup frequency upper bound of two. These maximum contract pickup

frequencies were created using port visit data from our case company. These were

used to rank ports based on importance.

Bunker fuel consumption rates

The bunker fuel consumption rate for a given speed alternative is looked up in tables

similar to Table 5.4. These tables contain the bunker fuel consumption rate for all

speed alternatives. We have chosen to use $300 per ton as the bunker fuel consumption

cost, since this was the price of bunker fuel at the moment the Thesis was written,

Bunker (2017). This might not reflect the bunker fuel cost in the future.

RoRo vessel
Speed 12 12.5 13 13.5 14 14.5 15 15.5 16

Fuel
ton/nm 0.100 0.105 0.109 0.114 0.119 0.124 0.129 0.134 0.140
ton/day 28.898 31.386 34.033 36.849 39.843 43.025 46.406 49.997 53.811
Speed 16.5 17 17.5 18 18.5 19 19.5 20 20.5

Fuel
ton/nm 0.146 0.152 0.159 0.166 0.173 0.180 0.188 0.196 0.204
ton/day 57.858 62.153 66.709 71.540 76.662 82.090 87.843 93.936 100.390

Table 5.4: Fabricated fuel consumption rates for different speed alternatives for one
RoRo vessel
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Capacity Ratios

Our case company has contracts with clients which produce goods with different height

and weight capacity requirements. An example of this is cars and heavy construction

equipment. To accommodate these clients, our case company has vessels with different

decks designated for different product types. The demand for some product types may

be larger than for others, so total capacity might be divided unevenly among these

decks. In addition, some product types might be stored on deck types designated for

other product types. When generating vessels for our test instances, we use capacity

ratios together with a vessels total capacity to find the available capacity for product

types. For example, a vessel has decks designated for product types A, B, and C. The

capacity ratio for product type A is 100% as goods of this product type can be stored

anywhere on the ship. Goods of product types B and C can only be stored on subsets

of the decks, and has a capacity ratio of 70% and 20% respectively.

5.2 Instance generator

In this Section we describe the three conceptual modules which together make up

the instance generator. In the first Section, Section 5.2.1, we describe the Vessel pool

module that generates a fleet of vessels from which we sample vessels when generating

instances. In Section 5.2.2, all network related data is generated. In the last Section

5.2.3 we describe the Contract module, which generates contracts for instances. Unless

stated otherwise, all random values are sampled from a uniform distribution.

5.2.1 Vessel pool module

The case company has a fleet of vessels which belongs to a relatively small set of vessel

types. This fleet has a fixed number of vessels and composition over small periods of

time. To simulate this, the module generates a pool of vessels, belonging to a small

number of vessel classes, which are then used as a common set of vessels to sample

from when generating instances. The module takes as input:

• The number of vessels to be generated

• The number of deck types each vessel will have

• The number of distinct vessel classes

• The bunker fuel consumption rates for each distinct vessel class

• The capacity ratios for each distinct vessel class
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The module divides the number of vessels to be created over the number of classes

specified in the input. For example, if the module is tasked with creating eight vessels

and four different vessel classes, each class will have two vessels. Each class is assigned

a set of bunker fuel consumption rates as well as a set of capacity ratios. The module

divides the interval of possible vessel sizes into smaller, equal sub intervals, one for

each class. The class with the lowest bunker fuel consumption rates gets its size

randomly chosen from the first sub interval, the class with the second lowest bunker

fuel consumption rates gets its size randomly chosen from the second size sub interval,

and so on. This is illustrated in Figure 5.4. Once a vessel has been provided with a

total quantity, the module calculates how much of this area should be used for the

specific deck types using the provided capacity ratios.

Figure 5.4: Four classes of vessels are created, provided with four different sets of
bunker fuel consumption rates. Each class has two vessels, creating a total of eight
vessels.

This module also randomly creates space utilization factor (SUF) for each deck type

on each vessel. To simulate that larger, heavier goods usually creates more broken

space, the module generates increasing SUFs for each deck type, with the first deck

type starting with a SUF of 1.0, and then increasing for each additional deck type,

using Algorithm 1. The algorithm works as follows: the first product type for each

vessel always has an SUF equal to one. The remaining product types draw their SUF

from a moving interval, to make sure that the SUF is larger than the last product

types SUF. The α-variable can be adjusted to increase or limit the spread between

the SUFs. For our vessel pool α is set to 1.3.
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Algorithm 1 generateSpaceUtilizationFactors()

1: V essels← All vessels
2: ProductTypes← All contracts
3: SpaceUtilizationFactors← empty dictionary
4:

5: for k ∈ V essels do
6: for p ∈ ProductTypes do
7: if p == 1 then
8: SpaceUtilizationFactors(k, p)← 1.0
9: else

10: SpaceUtilizationFactors(k, p)← 1.0 + Uniform(
p− 1

10
,
p

10
)α

11: return SpaceUtilizationFactors

Figure 5.5: The Algorithm for randomly creating space utilization factors (SUFs) for
each product type, and therefore also for the corresponding deck type, for every vessel.

5.2.2 Trade route module

This module generates all network related parameters, such as sailing costs, sailing

time, and available ves sels. The module takes as input:

• A trade route

• A vessel pool

• The number of vessels K available for the planning horizon

• The maximum number of voyages V which will be performed during the planning

horizon

Vessels that are available for a given trade route will differ for different planning

horizon. To simulate this, the module samples K vessels from the vessel pool.

The given trade route is represented by a port distance matrix, which contains the

distances between all ports which it is possible to sail directly between, as detailed in

Section 5.1. For each possible combination of ports i and j, and vessel k and speed

alternative s the module calculates a sailing cost and sailing time. Sailing cost is

calculated by multiplying the bunker fuel cost rate corresponding to speed alternative

s with the distance between ports i and j. The bunker fuel cost rate is found in the

bunker fuel cost rates array corresponding to vessel k. Sailing time is calculated by

Equation 5.1, by dividing the distance between port i and j over speed alternative s.
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T Sijks = dij/vks, (5.1)

5.2.3 Contract module

This module generates contracts, and takes as input:

• The number of contracts to be serviced during the planning horizon

• The maximum contract pickup frequencies

The module generates two different types of contract: tonnage driving contracts, and

way cargo contracts. Tonnage driving contracts are longer running contracts which

drives the need to deploy vessels to given trade routes. Way cargo contracts are

contracts for transporting goods between two ports that the we are already planning

to visit. Our instance generator approximates these two types of contracts by only

applying fairly evenly spreading requirements to the tonnage driving contracts. In

addition, tonnage driving contracts are generated to be loaded before the deep sea

leg of a voyage and unloaded afterwards, while way cargo contracts has no such

restrictions. A contract is designated to be tonnage driving with a probability of γ,

and waywards with a probability of 1− γ. After instance feasibility evaluation, γ was

set to 70%. A loading port and an unloading port are randomly selected and assigned

to each generated contract from a set of possible port combination, which depends on

contract type. In addition the set of possible combinations is limited further by the

restrictions that loading ports are to precede unloading ports, and that the last port

can not be a loading port.

The maximum port pickup frequencies are used to randomly generate maximum and

minimum pickup frequencies for each contract, with the restriction that minimum

pickup frequency should be less than or equal to maximum pickup frequency, and

that the maximum pickup frequency should be less than or equal to the maximum

port pickup frequency for the contracts loading port.

A contract between a client and the shipping company specifies the quantity of goods,

the contract demand, that the shipping company is required to transport. The module

generates the total demand for the planning horizon, by calculating the average of all

available vessels capacities and multiplying it by the number of voyages that will be

performed during the planning horizon. This is again multiplied with a factor rCD, the

demand to capacity ratio, which can be adjusted to increase or decrease the demand.

Contracts have different loading and unloading ports, meaning that all contracts are
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not necessarily serviced at the same time. This allows for the total demand to be

adjusted above approximate total vessel capacity without causing infeasibility issues.

According to the case company, a typical rCD value would be around 95%. In our test

instances, we therefore used the rCD values 85%, 95% and 105%. Average capacity is

dependent on which vessels are sampled for the planning horizon. If the number of

sampled vessels exactly equal the number of voyages to be performed, an rCD-value of

105% would make the total demand exactly 5% larger than total available capacity.

When sampling a number of vessels larger than the number of voyages this number is

more of an indication, and the real rCD-value depends on which vessels are actually

used for the planning horizon.

To vary the size of contract demand, the total demand is divided unevenly over

all contracts based on contract pickup frequencies. Contracts which can have more

pickups will have a larger proportion of the total demand. Each contract c will have

a demand for each product type p called the contract product type demand, or DC
cp.

The total contract demand is divided over the different product types p based on the

average proportion designated for that product type on all available vessels.

The model has restrictions for maximum and minimum load quantity for a contract

during a single pickup. The module calculate these bounds for each product type

with Equation 5.2 and 5.3. The load quantity lower bound Q
cp

for a product type p is

calculated by dividing the contract product type demand over the maximum number

of pickups. The load quantity upper bound Qcp for a product type p is calculated

by dividing the contract product type demand over the minimum number of pickups.

The β value is varied to change the level of variation allowed in load quantity for

pickups. For our test instances β was set to 10%.

Q
cp

= (1− β) ·
DC
cp

Pc
(5.2)

Qcp = (1 + β) ·
DC
cp

Pc
(5.3)

A contract can be defined with restrictions on transit times, which requires unloading

to take place within less than or equal time to the specified transit time after loading.

These transit times are generated by finding the minimum sailing time T ij and maxi-

mum sailing time T ij between the loading port i and unloading port j as in Equation

5.4,
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T Tc = T ij + (T ij − T ij) · Uniform(0, 1) + T Sc (5.4)

where T Sc is an accepted contract specific slack time. For our test instances T Sc was

set to four.

A contract can require that its pickups should be fairly evenly spread in time. Rather

then randomly assigning this requirement to contracts, the module assigns it to con-

tracts with loading ports before the deep sea leg of the trade route require that

pickups are fairly evenly spread. Contracts after the deep sea leg of the trade route

are way-wards contracts, which usually does not require fairly evenly spread.

We have learned that contracts with larger demand are usually considered more im-

portant. Hence, if the model has to chose between prioritizing a small contract and

a large contract, it should prioritize the large contract. In addition, some clients

might pay more for having their pickups evenly spread, regardless of the order size.

To simulate this, the cost for deviating from the fairly evenly spread requirement is

calculated by multiplying the total demand of the contract by two factors: a quantity

unit penalty cost, ĈP
c , and a random prioritization factor, F P . The unit penalty cost is

constant for all contracts, and affects how an instance should prioritize evenly spread

requirements relative to the objective of minimizing sailing and port visits costs. The

factor F P is 1 with a probability of 75%, 2 with a probability of 20%, and 3 with

a probability of 5%. In most cases the contracts with larger demand will be consid-

ered more important and are prioritized for evenly spread when there is a scheduling

conflict, unless a smaller contract has randomly been assigned higher priority by F P .

The calculation of penalty cost for deviation, CP
c , for a contract c is summarized in

Equation 5.5.

CP
c = F P · ĈP ·

∑
p∈P Dcp (5.5)
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5.3 Instance reference scheme

In order to clearly differentiate between instances, they are named according to the

seven dimensions that varies:

1. The trade route

2. The number of ports

3. The number of contracts

4. The number of voyages

5. The number of available vessels

6. The demand to capacity ratio

7. The unit penalty cost for evenly spread deviation

An instance group is named by concatenating the dimensions listed above, and sep-

arating them by underscores. Trade routes are abbreviated in the following way:

America to Asia (AmAs), Asia to Europe (AsE), and Europe to America (EAm).

Table 5.5 shows the reference scheme as well as the domain of the dimensions.

As an example, a test instance with the following dimension values, Asia to Europe

with 10 ports, 100 contracts, 4 voyages, 8 available vessels, a demand to capacity ratio

equal to 95% belong to the group AsE 10 100 4 8 95.

Instance reference scheme

Group of instances TR P C V K DCR
Single instance TR P C V K DCR I

Where Trade route (TR) ∈ {AmAs,AsE,EAm}
Number of Ports (P) ∈ [5, 15]
Number of Contracts (C) ∈ [50, 300]
Number of Voyages (V) ∈ [4, 8]
Number of Available Vessels (K) ∈ [3, 20]
Demand to Capacity Ratio (DCR) ∈ {85, 95, 105}
Instance Number (I) ∈ [1, 5]

Table 5.5: In order to clearly differentiate between instances a instance reference
scheme were created, naming instances according to the seven dimensions that varies.
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5.4 Test instances

The generator outlined above has several random components. To ensure consistency

and comparability, we create a finite number of test instances. To mitigate the ef-

fects randomness can have on test results, we generate a minimum of five instance

for each combination of dimension values. Table 5.6 shows an overview of all test

instance groups used throughout this thesis, with their reference name and all of their

dimension values.

All test instances has a planning horizon length of four weeks, independent of how

many voyages are being tested. The reason for this is that our case company usually

have even larger number of voyages than we use for planning horizon’s of the same

length.

# Instance group name Port Contract Voyage Vessel DpC Count
1 AmAs 5 C 4 4 95 5 C∈ { 10, 20, 30, 50, 100, 150 } 4 4 95% 30
1 AsE 10 C 3 3 95 10 C∈ { 10, 20, 30, 50, 100, 150 } 3 3 95% 30
1 AsE 10 C 4 4 95 10 C∈ { 10, 20, 30, 50, 100, 150 } 4 4 95% 30
1 AsE 10 C 5 5 95 10 C∈ { 10, 20, 30, 50, 100, 150 } 5 5 95% 30
1 AsE 10 C 6 6 95 10 C∈ { 10, 20, 30, 50, 100, 150 } 6 6 95% 30
1 EAm 15 C 4 4 95 15 C∈ { 10, 20, 30, 50, 100, 150 } 4 4 95% 30
1 AsE 10 100 3 3 DcR 10 100 3 3 DcR ∈

[
94%,126%

]
140

1 AsE 10 C 3 3 DcR 10 C ∈
[

100, 180
]

3 3 dependent on C 205

Table 5.6: The different groups of test instances that are being used throughout the
computational study.

AsE 10 C 3 3 95, AsE 10 C 4 4 95, AsE 10 C 5 5 95, AsE 10 C 6 6 95,with

C ∈ {10, 20, 30, 50, 100, 150}.

5.5 Summary

In Section 5.1 to 5.2 we outline how instances are generated using input data and

randomly generated values. We show how the generator creates a fleet using real

data, which is then used by the generator to sample vessel for instances. In addition,

we described how our networks are generated with real data to simulate real trade

routes, and how our contract generator uses domain knowledge to create realistic

contracts. In order to clearly differentiate between instances, a reference scheme was

developed with reference names based on the seven dimensions that can vary from

instance to instance. The reference scheme is outlined in Section 5.3, while a list of

all test instance groups used in this thesis can be seen in Section 5.4.
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Computational Study

This Chapter contains results from the performance analysis of the model presented

in Chapter 4. The goal of this analysis is to examine if the model can be solved in

reasonable time when model instances are scaled up to the size of realistic problem

cases. In the first section, 6.1 we evaluate how the model performance is affected by

including transit time and evenly spread restrictions. In Section 6.2, we examine the

model performance in terms of run time when systematically varying the number of

ports and the number of contracts. In the next Section, 6.3, we will evaluate the model

performance when systematically varying the number of maximum voyages and the

number of contracts. In Section 6.5, we examine the model performance is affected

when varying penalty unit cost of deviating from evenly spread restrictions. In the

last Section, 6.6, we present our conclusion of the performance analysis.

All test instances used in the mathematical programming model have been generated

using a Python version 3.5.2 script, which is detailed in Section 5. All test instance are

solved using a Java 1.8 program which uses the Mosel Xpress API, or with the Mosel

Xpress program. Each model run is terminated after 1800 seconds unless specified

otherwise. The model has been run on a Windows 10 computer with an Intel i5 Quad

Core, 3.3 GHz processor, 8 GB DDR3 1600 MHz PC3-12800 RAM, and an S-ATA

6Gb/s SSD disk.

6.1 Transit time and evenly spread requirements

effect on run time

In this section, we examine how performance in terms of run time is affected when we

add transit time and evenly spread constraints to the model. We run relaxed versions
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of the complete model with a set of test instances, and compare the results with runs

of the complete model with the same instances. The instances used for this analysis

are generated from three different trade routes, the America to Asia trade route with

five ports, the Asia to Europe trade route with ten ports, and the Europe to America

trade route with 15 ports. Each of the instances generated take on a contract number

value from the set {10, 20, 30, 50}. We generated five instances for each combination

of ports number and contracts number. The specific instances used are AmAs 5 C -

4 4 95, AsE 10 C 4 4 95, EAm 15 C 4 4 95 where C ∈ {10, 20, 30, 50}. Results from

running the model without transit time and evenly spread constraints are aggregated

and summarized in Table 6.1 and Table 6.2 respectively; the results for running the

complete model are aggregated and summarized in Table 6.3, for comparison. All

tables show the number of ports, the number of contracts, average run time, average

optimality gap and the number of instances which solves to optimality within the run

time limit. The run time limit for this analysis is 1800 seconds.

5 ports 10 ports
Cont Run time Gap Optimal Run time Gap Optimal

10 2.6 s 0.0% 5/5 4.4 s 0.0% 5/5
20 1.4 s 0.0% 5/5 3.0 s 0.0% 5/5
30 10.0 s 0.0% 5/5 8.2 s 0.0% 5/5
50 16.0 s 0.0% 5/5 15.5 s 0.0% 5/5

15 ports
Cont Run time Gap Optimal

10 2.6 s 0.0% 5/5
20 0.8 s 0.0% 5/5
30 9.4 s 0.0% 5/5
50 30.4 s 0.0% 5/5

Table 6.1: Results from running instance groups AmAs 5 C 4 4 95, AsE 10 C 4 4 -
95, EAm 15 C 4 4 95 where C ∈ {10, 20, 30, 50, 100, 150}, without transit time con-
straints.

From Table 6.1 we can see that removing transit time constraints drastically reduces

average run time compared to the results in 6.3, indicating that the transit time

constraints adds significant complexity to our model.

From Table 6.2 we can see that removing evenly spread constraints significantly in-

creases average run time compared to the results in 6.3, in contrast to the effect of

removing transit time constraints. Our hypothesis for explaining these results is that

the evenly spread constraints limit the search space for the t-variable, as well as the
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5 ports 10 ports
Cont Run time Gap Optimal Run time Gap Optimal

10 9.2 s 0.0% 5/5 278.4 s 0.0% 5/5
20 36.0 s 0.0% 5/5 583.2 s 0.0% 5/5
30 37.6 s 0.0% 5/5 867.6 s 0.0% 5/5
50 136.4 s 0.0% 5/5 1049.8 s 0.0% 5/5

15 ports
Cont Run time Gap Optimal

10 53.8 s 0.0% 5/5
20 >1505.2 s 2.9% 5/5
30 >1284.4 s 2.5% 5/5
50 >1549.2 s 2.5% 5/5

Table 6.2: Results from running instance groups AmAs 5 C 4 4 95, AsE 10 C 4 -
4 95, EAm 15 C 4 4 95 where C ∈ {10, 20, 30, 50, 100, 150}, without evenly spread
constraints.

5 ports 10 ports
Cont Run time Gap Optimal Run time Gap Optimal

10 4.4 s 0.0% 5/5 12.4 s 0.0% 5/5
20 12.6 s 0.0% 5/5 26.8 s 0.0% 5/5
30 21.2 s 0.0% 5/5 53.0 s 0.0% 5/5
50 481.8 s 0.0% 5/5 78.6 s 0.0% 5/5

15 ports
Cont Run time Gap Optimal

10 12.6 s 0.0% 5/5
20 29.2 s 0.0% 5/5
30 41.2 s 0.0% 5/5
50 345.2 s 0.0% 5/5

Table 6.3: Results from running instances AmAs 5 C 4 4 95, AsE 10 C 4 4 95,
EAm 15 C 4 4 95 where C ∈ {10, 20, 30, 50, 100, 150}.
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delta-variable and other voyage dependent variables indirectly. Consider a contract

for a given port that requires more than one pickup. When the model selects a pickup

for that contract for a given voyage, it indirectly and strictly limits which other voy-

ages and at which times the other pickups must happen. In our model pickups for

contracts with evenly spread requirements are restricted to happen after a certain

time period from the last pickup plus an acceptable slack, which in our case is plus or

minus three days. The limiting effect grows for each contract pickup that is selected,

continuously and increasingly reducing the search space for each pickup.

6.2 Varying the number of contracts and ports

In this section, we examine how performance in terms of run time is affected by

systematically increasing the number of contracts and the number of ports. The

instances used for this analysis are generated from three different trade routes, the

America to Asia trade route with five ports, the Asia to Europe trade route with ten

ports, and the Europe to America trade route with 15 ports. Each of the instances

generated take on a contract number value from the set {10, 20, 30, 50, 100, 150}. We

generated five instances for each combination of ports number and contracts number.

The specific instances used are AmAs 5 C 4 4 95, AsE 10 C 4 4 95, EAm 15 C 4 -

4 95 with C ∈ {10, 20, 30, 50, 100, 150}. Results are aggregated and summarized in

Table 6.4, which shows the number of ports, the number of contracts, average run

time, average optimality gap and the number of instances which solves to optimality

within the run time limit. The run time limit for this analysis is 1800 seconds.

The results in 6.4 are slightly distorted by outlier instances, which are easier or more

difficult to solve than the average instance in its group. For example, the average run

time for the instances with five ports and 50 contracts is much larger than what would

be expected when considering the entire table and is the result of one extreme outlier

instance. The same is true for the instances with 15 ports and 50 contracts, which

also has one extreme outlier instance. If we remove both these outlier instances, the

adjust average run time for the instances with five ports and 50 contracts are 53.0

seconds, while it is 154.8 for the instances with 15 ports and 50 contracts. These

results seem more reasonable in the context of the entire table. If we ran a much

larger set of test instances, the effect of outliers would be averaged out.

From the results in 6.4 we can see that increasing the number of contracts will increase

the run time non linearly. This is true for all possible port number values. The

relationship between the number of ports and run time is not as clear. For a number

of contracts between 10 and 30, there is a clear increase between five ports and 10
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5 ports 10 ports
Cont Run time Gap Optimal Run time Gap Optimal

10 4.4 s 0.0% 5/5 12.4 s 0.0% 5/5
20 12.6 s 0.0% 5/5 26.8 s 0.0% 5/5
30 21.2 s 0.0% 5/5 53.0 s 0.0% 5/5
50 481.8 s 0.0% 5/5 78.6 s 0.0% 5/5
100 >665.8 s 0.01% 4/5 >531.8 s 0.2% 4/5
150 >1799.2 s 2.0% 0/5 125.2 s 0.0% 5/5

15 ports
Cont Run time Gap Optimal

10 12.6 s 0.0% 5/5
20 29.2 s 0.0% 5/5
30 41.2 s 0.0% 5/5
50 345.2 s 0.0% 5/5
100 >483.6 s 0.2% 4/5
150 >868.0 s 0.02% 3/5

Table 6.4: Results from running instances AmAs 5 C 4 4 95, AsE 10 C 4 4 95,
EAm 15 C 4 4 95 where C ∈ {10, 20, 30, 50, 100, 150}.

ports, at least if you adjust for outliers. However, the same increase can not be seen

between 10 ports and 15 ports. In fact, the change in run time does not seem to

be statistically significant. This is true for 50 contracts as well, when you adjust for

outliers. For a number of contracts above 50, this relationship becomes less clear.

The instances with five ports solve to optimality less often and have larger optimality

gaps on average than instances with 15 ports. From the presented results, one might

expect that instances with fewer ports should be less complex and solve faster. In

our analysis, instances with five ports are compared to instances with 10 and 15 ports

using the same number of contracts. That is, run time for instances with five ports and

30 contracts are compared with run time for instances with 15 ports and 30 contracts.

Our hypothesize to explain these results is that when the number of contracts per

port increases, the difficulty of finding a solution satisfying contract evenly spread

requirements increases as well. When there are more contracts per port, there are

more evenly spread requirements per port, and more possible ways to choose a set of

contracts to deviate from when the requirements are non compatible. This creates a

larger search space when the model has to select a port visit time to limit the deviation

from evenly spread requirements.
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6.3 Varying the number of contracts and maxi-

mum voyages

In this section, we examine how performance in terms of run time is affected by

systematically increasing the number of contracts and the maximum number of voy-

ages. The instances used for this analysis are generated from the Asia to Europe

trade route with ten ports. Each of the instances generated take on a contract num-

ber value from the set {10, 20, 30, 50, 100, 150}, and a maximum number of voyages

value from the set {3, 4, 5, 6}. We generated five instances for each combination of

maximum number of voyages and contracts number. The reference names for the

instances used are AsE 10 C 3 3 95, AsE 10 C 4 4 95, AsE 10 C 5 5 95, AsE 10 C -

6 6 95,with C ∈ {10, 20, 30, 50, 100, 150}. Results are aggregated and summarized in

Table 6.5, which shows the number of ports, the number of contracts, average run

time, average optimality gap and the number of instances which solves to optimality

within the run time limit. The run time limit for this analysis is 1800 seconds.

3 voyages 4 voyages
Cont Run time Gap Optimal Run time Gap Optimal

10 3.2 s 0.0% 5/5 12.4 s 0.0% 5/5
20 2.4 s 0.0% 5/5 26.8 s 0.0% 5/5
30 7.2 s 0.0% 5/5 53.0 s 0.0% 5/5
50 15.8 s 0.0% 5/5 78.6 0.0% 5/5
100 37.4 s 0.0% 5/5 531.8 s 0.2% 4/5
150 51.8 s 0.0% 5/5 125.2 0.0% 5/5

5 voyages 6 voyages
Cont Run time Gap Optimal Run time Gap Optimal

10 >729.4 s 0.1% 3/5 >773.6 s 0.3% 4/5
20 300.8 s 0.0% 5/5 >1799.4 s 0.5% 0/5
30 >645.2 s 0.4% 4/5 >1799.4 s 0.5% 0/5
100 567.4 s 0.0% 5/5 >1799.6 s 0.9% 0/5
150 1465.6 s 3.7% 2/5 >1799.4 s 14.3% 0/5

Table 6.5: Results from running instances AsE 10 C 3 3 95, AsE 10 C 4 4 95, AsE -
10 C 5 5 95, AsE 10 C 6 6 95,where C ∈ {10, 20, 30, 50, 100, 150}

From the results in 6.5 we can see that the average run time value for instances with 10

contracts and five voyages are are larger than you would expect when considering the

entire table, and is caused by one extreme outlier. If we remove the outlier instance,

the adjusted average run time for 10 contracts and five voyages becomes 81.0 seconds,
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which seems more reasonable in when compared with of the rest of the results. In

addition, we would expect the average run time for 100 contracts and four voyages to

be higher, which again shows how large differences can be in run times for instances

with the same configuration.

However, if we take the entire table into consideration there is a clear trend. We

can see that increasing the maximum number of voyages increases the run time non

linearly. Observe that increasing the number of contracts for instances with a given

maximum voyage number will also increase the run time. Instances with three, or four

voyages as maximum voyage number are all solved to optimality within the run time

limit, with only one exception for one of the instances with 100 contracts and four as

maximum voyage number. For instances with five as maximum voyage number, six

of 25 cannot be solved to optimality within the run time limit. Of instances with six

as a maximum voyage number, only four instances of 25 solve to optimality and they

all belong to the instance group with 10 contracts. For those instances which cannot

be solved, the average optimality gap increases as the number of contracts increases.

6.4 Varying the number of contracts and vessels

In this section, we examine how performance in terms of run time is affected by

systematically increasing the number of contracts and the number of available vessels.

The instances used for this analysis are generated from the Asia to Europe trade

route with ten ports. Each of the instances generated take on a contract number

value from the set {10, 20, 30, 50}, and a number of available vessels value from the set

{8, 12, 16}. We generated five instances for each combination available vessels number

and number of contracts number. The reference names for the instances used are

AsE 10 C 4 8 95, AsE 10 C 4 12 95, AsE 10 C 4 16 95, with C ∈ {10, 20, 30, 50}.
Results are aggregated and summarized in Table 6.6, which shows the number of

ports, the number of contracts, average run time, average optimality gap and the

number of instances which solves to optimality within the run time limit. The run

time limit for this analysis is 1800 seconds.

From the results in 6.6 we can see that increasing the number of available vessels

increases the run time non linearly, and run time increases as a function of the number

of contracts as well. The model is able to solve instances up to 12 available vessels

within run time, with exception of those instances that have contract number of 50.

Instances with 16 available vessels are less likely to be solved within the run time

limit, and the optimality gap for those that are not solved increases as a function of

the number of contracts.
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8 vessels 12 vessels
Cont Run time Gap Optimal Run time Gap Optimal

10 15.0 s 0.0% 5/5 67.6 s 0.0% 5/5
20 139.6 s 0.0% 5/5 140.2 s 0.0% 5/5
30 146.4 s 0.0% 5/5 480.0 s 0.0% 5/5
50 298.2 s 0.0% 5/5 1765.6 s 1.3% 1/5
100 1358.2 s 3.9% 3/5 1799.4 s 6.2% 0/5
150 1755.0 s 2.1% 1/5 1799.4 s 9.6% 0/5

16 vessels
Cont Run time Gap Optimal

10 >743.6 s 0.1% 3/5
20 >631.0 s 0.1% 4/5
30 >937.2 s 0.2% 4/5
50 >1799.4 s 1.3% 0/5
100 >1800.0 s 13.1% 0/5
150 >1799.6 s 11.3% 0/5

Table 6.6: Results from running instances AsE 10 C 4 8 95, AsE 10 C 4 12 95,
AsE 10 C 4 16 95, with C ∈ {10, 20, 30, 50, 100, 150}.

6.5 Varying evenly spread penalty cost

In this section, we evaluate how performance in terms of run time is affected by varying

penalty costs on deviation from the evenly spread restrictions. Figure 6.1 shows the

results of an example instance that is run with different levels of unit penalty cost

(UPC), represented with a histogram. The horizontal axis shows UPC values. The

left vertical axis shows run time in percentage increase from the lowest run time, while

the right axis and the red graph line, which is superimposed over the histogram, shows

increases in operational costs as a function of UPC.

The results seem to show a pattern of variation in run time as UPC is increased.

Run times are lower when there are no penalty costs and operational costs dominate.

As UPC is increased and the model has to start making trade offs between adhering

to evenly spread restrictions and minimizing operational costs, run time increases.

When penalty costs increase to a point where it dominates operational costs by a

large factor, limiting the search space, the run times decreases again. Observe that

this decrease coincides with the point where operational costs reach its highest level

and stabilize. From this point on, penalty costs start to dominate operational costs,

and there is little to no change in the solution. In Figure 6.2 we can see the average run
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Figure 6.1: Instance AsE 10 100 4 4 95 3, run with different levels of unit penalty
cost. The horizontal axis shows unit penalty cost values. The left vertical axis shows
run time in percentage increase from the lowest run time, while right axis and the red
graph line shows increases in operational costs as a function of unit penalty costs.

time for four instances from the group AmAs 5 100 4 4 0.95 as a function of UPC.

Observe that the trend in run time is the same here, as in the example.

Figure 6.2: the average run time for four instances from the group AmAs 5 100 4 4 -
0.95 as a function of UPC.
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6.6 Summary

In this chapter, we have analyzed how performance in terms of run time is affected by

varying the five instance dimensions: number of ports, number of contracts, number

of maximum voyages, number of available vessels, and unit penalty costs. The results

show that run time increase non linearly for all dimensions, and that solving instances

larger than relatively small test instances used in this thesis within a reasonable time

limit is not possible.
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Example solution analysis

In this chapter we will analyze one instance solution in depth, to see if the results

are as we would expect from our model formulation and the solutions are reasonable

when related to the real problem. The specific instance used is AsE 10 150 4 4 95 1,

which we ran both with low and high penalty costs for deviating from evenly spread

restrictions. In the first section, Section 7.1, we will examine the behavior of the

evenly spread constraints and introduce a diagram representation for visualizing the

logistics of the resulting planning horizon, including which ports are visited, at what

times they are visited, and which speeds were used by the selected vessels during

its corresponding voyage. Section 7.2 contains an analysis of the behavior of the

transit time constraint. In Section 7.3 we will study the behavior of the loading

constraints and introduce a heat map representation visualizing the use of available

stowage capacity for the entire planning horizon. Both representations will be used

through our analysis chapters to visualize results from model run.

7.1 Evenly spread constraints analysis

In this section, we will examine the behavior of the evenly spread constraints both

with low and high deviation penalty cost. Each day of deviation get multiplied by

a unit penalty cost (UPC), and the result adds to the total deviation penalty costs.

Hence, by varying the unit penalty cost (UPC), we affect how the model prioritizes its

two objectives: minimizing operational costs and spreading contract pickups evenly.

Figures 7.1 and 7.2 both shows a diagram representation for visualizing the logistics of

the resulting planning horizon, including which ports are visited, at what times they

are visited, and which speeds were used by the selected vessels during its corresponding

voyage. The figures represent the solution for the same instance with low and high
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UPC, respectively. Figure 7.1 includes a map representation of the trade route used

for this instance, the Asia to Europe trade route.

Figure 7.1: Diagram representation for instance AsE 10 150 4 4 95 1 with low UPC.

Each Figure has a row of nodes and arcs, each row corresponding to a voyage. The

nodes correspond to ports, and the arcs are between those ports that are visited

consecutively. Above each node is a label which shows what time the port was visited.

Each arc has a label, which shows at what speed the arc was sailed. At the bottom

of both figures, there is a footer which shows the time difference between port visits

to the same port for different voyages.

Fairly evenly spread restrictions are for contracts, not for port visits, and the diagrams

do not include direct information about how well the contracts are spread. However,

we can observe the restrictions in action as they indirectly affect port visits as well.
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For example, let us examine the time differences between the four port visits to port

one in Figure 7.2. Contracts with a pickup frequency of four should in accordance with

our model have a spread of 28/4 = 7± 2 days. We can see from the figure that all port

visits for the same port on different voyages have a time difference between visits which

conforms to this requirement as well. Similar observations can be made for the other

ports, with only a few days of deviation in total from the evenly spread requirements.

The deep sea leg of the trade route used for this instance is between port five and six,

which means that only contracts from the first five ports are tonnage driving contracts,

meaning that only those contracts have evenly spread restrictions. However, we can

observe from the figure that all port visits are generally fairly evenly spread in time.

The explanation for this is that all contracts have transit time restrictions which force

the goods that are picked up per the requirements of contracts to be unloaded at the

destination port of the goods within a limited amount of time after being loaded in

their origin port. These constraints in combination with the evenly spread constraints

force an approximate evenly spreading of port visits over the entire planning horizon.

Figure 7.2: Diagram representation for instance AsE 10 150 4 4 95 40 1 with high
UPC.

To get a sense of how well contracts for a given solution are evenly spread, we define a

measure called deviation per contract. The evenly spread constraints may be deviated

from by incurring penalty costs. Deviation per contract (DpC) is the sum of deviation
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time for each contract divided over the number of contracts. As an example of usage,

when we run the instance with a UPC of 0.8, the DpC is 0.98, while it is 0.92

when run with a UPC of 40. For comparison, the DpC is 1.49 when the instance

is run with no penalty costs. All though it is an aggregated measure, it gives us an

approximation of the effect on evenly spreading when increasing the UPC. Table 7.1

contains all contracts with evenly spread deviation for our example instance run with

high UPC. We can see from the table that 15% of all contracts deviate from evenly

spread constraints; 7% of all contracts deviate from the constraints by less than one

day, while 8% of all contracts severely deviates from the constraints by roughly one

week. These results are a consequence of assigning the contracts with penalty costs

which are proportional to evenly spread priority: to lower total deviation penalty costs

the model chooses to severely deviate from evenly spread constraints for the contracts

with lower penalty costs. A possible way to avoid this behavior would be to have the

slack cost be dependent on how many days the contract deviates, as well as priority.

Contract number Deviation time (days) Penalty cost
2 6.7 106%
7 0.2 247%
14 7.7 106%
21 0.22 217%
24 0.22 196%
29 6.7 103%
33 6.7 104%
39 0.22 204%
41 7.7 109%
47 6.7 106%
56 7.2 100%
63 0.88 149%
70 0.88 129%
84 7.7 102%
86 0.22 195%

Table 7.1: All contracts that deviates from evenly spread restrictions, with the number
of days they deviate from being evenly spread, and the corresponding slack cost per
day in percentage of lowest. Observe that the contracts with lower slack costs deviates
more.

Improving the DcP does come at a cost: compared to running the instance with no

penalty cost, running the instance with high UPC increases the operational costs

with 1.88%. There are two factors that affect operational costs in our model: port

visit costs which depend on the number of port visits, and sailing costs which depend
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on sailing speed. We can verify that sailing costs are the cause of cost increase in this

case by using the figures. From Figures 7.1 and 7.2 we can see that both instances

visit each port exactly the same number of times, and that the sailing speeds over

arcs generally increases rather than decreases. In fact, the average sailing speed

increases from 18.34 knots to 18.77 knots for low and high cost, respectively. This

offers us some insight into one of the mechanisms the model uses to minimizing evenly

spread deviation when the model is required to prioritize this objective sufficiently

above operational costs. That is, tactically varying sailing speeds above what would

be cost efficient with no evenly spread constraints to avoid costly deviations. Other

mechanisms to lower evenly spread deviations is to reschedule contract pickups, which

can be observed in Figure 7.5 and 7.6 in Section 7.3, as well as adding port visits to

the planning horizon.

The fact that operational costs increases with higher UPC suggest an interesting

economic use case: what is the relationship between operational costs, DpC and

UPC. In Section 8.1 we will explore this use case further, and generate trade off

curves for the two objectives of minimizing operational costs and improving evenly

spreading.

7.2 Transit time constraints analysis

In this section, we will examine the behavior of the transit time constraints, with both

low and high unit penalty cost (UPC). Each contract has a corresponding transit

time constraint which forces the goods that are picked up per the requirements of

contracts to be unloaded at the destination port of the goods within a limited amount

of time after being loaded in their origin port. For goods that are unloaded in their

destination port before they are required to be unloaded, we will use the term transit

time slack to mean the remaining period of the transit time requirement. For example,

goods loaded in connection with a contract A is loaded at day four and unloaded at

day ten. Contract A has a transit time limit of ten days. In this case, the transit time

slack would be four days.

Figures 7.3 and 7.4 both visualizes the transit time slack distribution by using a

histogram. Since transit time slack values are continuous, we have divided the entire

range of transit time slack into a series of intervals, called bins, with the length of

one day, each starting at an integer value. The horizontal axis shows bins, while the

vertical axis shows how many contract pickups have transit time slack which falls

within the interval of each bin. As an example, a contract pickup with transit time

slack of 4.4 belongs to the 4-5 bin. This increases the height of the bar belonging to
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that bin with one.

Figure 7.3: Distribution of transit time slack for instance AsE 10 150 4 4 95 1 with
low penalty cost.

We can see from the histograms that the transit time slack for all contract pickups

are positive, indicating that the transit time restrictions are functioning as expected.

Another thing to observe is that roughly 86% of contracts have three or more days

of slack, which leads to the question: why doesn’t the model exploit all the available

transit time slack and decrease speeds to improve operational costs. The answer is

that the contract pickups that has strict transit times indirectly enforce strict transit

times on the other contract pickups as well. As an example, if during a voyage the

contract with the strictest transit time requirements loads at port one and unloads at

the last port, the entire voyage affected. Even if this is strict transit time requirement

pertains to a contract with only one pickup, the evenly spread requirements of other

contracts with more pickups transfers this strict transit time requirement over all

voyages. Together these constraints limit the model’s ability to schedule contract

pickups to exploit the transit time slack available.

If we compare Figure 7.3 and Figure 7.4, we can see a slight difference when UPC

increases from low to high, respectively: a reduction in the first four bins, except bin

1-2 which increase by one, while the rest of the bins either increases or remains the

same. The results are consistent with previous results: as was shown in Section ??,

high UPC causes the model to increase speeds to avoid deviating from evenly spread

restrictions. Increases in speed mean earlier arrival for some port visits, and therefore

also larger transit time slack for some contract pickups.s.
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Figure 7.4: Distribution of transit time slack for instance AsE 10 150 4 4 95 1 with
high penalty cost.

7.3 Capacity constraints analysis

In this section, we will examine the behavior of the loading and capacity constraints,

with low and high unit penalty costs (UPC). Figures 7.1 and 7.1 visualizes the

use of available stowage capacity for the entire planning horizon using heat map

representations for low and high UPC, respectively. Each voyage of the planning

horizon has its own heat map. All cells in one row show loaded quantity of the same

product type, while all cells in the same column show loaded quantity when the vessel

for that voyage travel between two ports. Note that this does not necessarily mean

the vessel visit those two ports. Hence, each cell in the heat map shows used capacity

for the product its row represents, between the two ports its column represents.

Further more, observe from Figure 7.5 that the vessels are at peak capacity only during

a limited part of the voyage, which for most voyages is near full or full capacity. All

voyages have the highest level of used capacity over the deep sea leg: the vessels for

voyage one and four are at peak capacity between ports four and seven, while the

vessel for voyage four is at peak capacity between ports four and six. This seems

reasonable, considering that for our instances at least 70% of an instance’s contracts

are tonnage driving contracts, meaning that they are loaded before the deep sea leg,

and unloaded at some port the deep sea leg. This means that there is underutilized

capacity for parts of each voyage, which might be used to pick up more wayward

and spot contracts. Also, observe that voyage three has very low capacity utilization
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Figure 7.5: Heat map representation for instance AsE 10 150 4 4 95 1 with low
penalty cost.

during its deep sea leg. The explanation for this is that not all contracts are loaded

and stowed at the exact time; unloading goods in a port frees up space for loading new

goods in the same port and every port after that. In other words, the vessel capacity

is a measure of the quantity that can be stowed on the vessel at a specific time during

a voyage, not a measure of the total quantity of goods that can be transported in

total over the entire voyage. There are two reasons for a voyage with low capacity

utilization to be scheduled at all by the model: either the vessels available does not

have enough capacity to pick up all demand in less than the assigned number of

voyages, or one or more contracts requires a pickup for every possible voyage during

the planning horizon. In this specific instance, we know that there are 14 contracts

that require a pick up for each of the four voyages, possibly forcing the model to

schedule a low capacity voyage.

These two observations suggest two interesting economic use cases: First, examine

how feasibility and cost per unit of goods are affected by increasing the quantity of

goods transported. Second, examine if costs can be reduced by removing low capacity

voyages while keeping demand equal. In Section 8.2 and Section 8.3, respectively, we

will explore both cases.

We can also observe the effects of the evenly spread requirements on loading patterns.

For example, notice the difference in used capacity in Figure 7.5 and 7.6 in voyage one

and four, between port five and six. The explanation for these changes is that some

subset of contracts has been rescheduled to limit penalty costs for spread deviation.
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Figure 7.6: Heat map representation for instance AsE 10 150 4 4 95 1 with high
penalty cost.

7.4 Summary

In summary, we have seen that the evenly spread, transit time and loading constraints

all work as expected. The evenly spread constraints managed to spread most of the

contracts with little or no deviation, as well as indirectly and approximately spreading

port visits as well. However, the contracts that had lowest evenly spread prioritization

tended to deviate severely, as much as seven to eight days in most cases. When the

model was run with a high prioritization of evenly spread requirements, operational

costs increased with 1.88% as a result of increased sailing cost. Deviation, measured

in days of deviation per contract, decreased from 1.49 with no prioritization of spread

requirements, to 0.92. We saw that a large percentage of transit time constraints had

abundant of transit time slack, and only a few transit time constraints were close to

breaking their corresponding contracts’ requirements. However, these few constraints,

in combination with evenly spread constraints for the corresponding contracts, indi-

rectly enforced strict transit times on the other contract pickups. We also learned

that efficient scheduling of pickups led to one out of four voyages having low capacity

utilization, while the rest had near of full capacity utilization at peak capacity. The

voyage with low capacity utilization had roughly 13% capacity utilization at peak, for

an instance with a total demand quantity that was equal to 95% of available stowage

capacity.

Based on this analysis, three interesting economic cases were suggested. First, what is

the relationship between operational costs, deviation per contract and different levels
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of prioritization of evenly spread. Second, examine how feasibility and cost per unit of

good are affected by increasing the quantity of goods transported. Third, examine if

costs can be reduced by removing low capacity voyages while keeping demand equal.
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Chapter 8

Practical Use and Managerial

Insights

In this chapter, we will analyze model solutions for selected instances, with the goal of

exploring practical applications of the model and gaining managerial insights which

can be applied to real life situations.

In the four first sections we will look at the three economic use cases we proposed in

Section 7, as well as a fourth economic use case suggested by the case company. In the

first section, Section 8.1, we examine how operational costs are affected by varying how

the model prioritizes its two separate objectives: evenly spreading contract pickups

and minimizing operational costs. We do this by systematically changing the unit

penalty cost, which increases the cost of deviating from evenly spread requirements.

In Section 8.2 we systematically increase total demand to explore how sensitive the

model is to an increasing demand to capacity ratio (DCR), as well as considering

the relationship between the DCR and cost per unit of a good. In the next section,

8.3, we examine how removing low capacity voyages from a planning horizon affects

operational costs. In section, 8.4, we consider a case suggested to us by the case

company, and explore if costs can be reduced by merging two planning horizons over

the same trade route into one single planning horizon. In Section 8.5 In we will

examine if operational costs can be reduced by making transit time requirements less

strict. In the last section, 8.6, the findings of this chapter are summarized.
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8.1 Varying penalty cost of deviating from evenly

spread restrictions

In this section, we examine how operational costs are affected by varying how the

model prioritizes its two separate objectives: evenly spreading contract pickups and

minimizing operational costs. We do this by systematically changing the unit penalty

cost, which increases the cost of deviating from evenly spread requirements. We show

how the model can be used to approximate a Pareto front, which allows decision

makers to chose a preferred trade-off between the two objectives.

To make an appropriate trade-off decision we have to consider two things: improve-

ment in DcP and increase in operational costs. In Section 7.1 we studied an example

instance and examined the difference between solutions for two levels of UPC. Based

on those results we would expect DcP to decrease and operational costs to increase.

(a) (b)

Figure 8.1: (a) Demand to capacity ratio as a function of unit penalty cost (UPC)
over the interval [0,40] of the UPC domain. (b) increase in operational costs, as a
percentage of the cost with no UPC, and as a function of UPC over the interval [0,40]
of the UPC domain.

In Figure 8.1 (a) we present the DcP as a function of UPC over the interval [0,40] of

the UPC domain. By increasing UPC we have an immediate sharp decrease in DcP

between zero and four, and after that, there is an almost negligible improvement in

DcP between four and 40. Beyond 40 DcP stabilizes and shows no improvement as

UPC continues to increase. The reason for this is that the evenly spread requirements

for the contracts in this instance are incompatible, and there are no possible optimal
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solutions that fulfill every evenly spread requirement. The model has to deviate

from evenly spread requirements for a subset of contracts and selects this subset by

finding an optimal balance between minimizing the number of contracts that has

its requirements broken and prioritizing to satisfy evenly spread requirements for

contracts with higher penalty costs.

Improving deviation per contract should be considered in relation to the increasing

cost of that improvement. In Figure 8.1 (b) we present the increase in operational

costs, as a percentage of the cost with no UPC, and as a function of UPC over the

interval [0,40] of the UPC domain. By increasing UPC from zero to four, we can

see an increase in operational costs of 0.75%, which remains stable between four and

eight. From eight to 40 we can see a continues increase from 0.75% to 1.88%. Beyond

40 it stabilizes on a 1.88% increase in operational costs.

Observe that improvements in DcP are small when increasing UPC above four while

operational costs continue to increase from eight to forty. This might make a UPC

value between four and eight a natural choice of value for this instance. All though

the increase in operational cost from achieving the best possible DcP is only 1.88%,

this will still be a large increase in terms of monetary value as the magnitude of the

costs are quite large. However, depending on how much the decision maker’s clients

value having their contracts evenly spread, this might be an acceptable increase in

costs to ensure that as many of the contracts’ requirements as possible are fulfilled.

Summary

In this section the model was used to generate trade-off curves mapping the rela-

tionship between the two objectives of reducing operational costs and fairly evenly

spreading contract pickups, allowing decision makers to choose an appropriate balance

depending on profit margins and their clients needs.

8.2 Varying the demand to capacity ratio

In this section, we will examine how the cost per unit of a good is affected by increasing

total demand for a planning horizon. We will also explore how such an increase affects

the feasibility of the instance. From the example solution in Section 7.3 we saw that

even though the total demand was at a 95% of total available capacity, which is a

realistic demand to capacity ratio according to the case company, one of four voyages

had underutilized stowage space.

The explanation for this is that not all contracts are loaded and stowed at the exact

time; unloading goods in a port frees up space for loading new goods in the same
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port and in every port after that until all capacity is used again. In other words, the

vessel capacity is a measure of the quantity that can be stowed on the vessel at a

specific time during a voyage, not a measure of the total quantity of goods that can

be transported in total over the entire voyage.
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Below, we increase the total demand for a planning horizon in two different ways.

First, in Section 8.2, we increase individual contract demands while keeping the num-

ber of contracts constant. Second, in Section 8.2, we increase the number of contracts,

while keeping the contract demand for the already existing contracts constant. Both

ways will increase total demand, but the different methods can affect feasibility in

different ways by adding extra complexity to the model.

Increasing individual contract demand

In this section, we will increase individual contract demand equally, while keeping

the number of contracts constant. This will increase the total demand transported

and can decrease the cost per unit of a good. We created the instances required

for this analysis by choosing four base instances, and then iteratively increasing the

contract demand for each contract by 2%, saving the result of each iteration as a set

of new instances. The specific instances used are AsE 10 100 3 3 DCR where DCR ∈
{94%, 96%, 97%, 99%, 101%, 102%, 104%, 105%, 107%, 109%, 111%, 112%, 114%, 116%,

118%, 120%, 122%, 124%, 126%}.

Figure 8.2: The effect of increasing demand on cost per unit of good (CPU) as a
function of demand to capacity ratio (DCR). Vertical axis shows CPU as a percentage
value of the CPU at 95% DCR, while the horizontal axes shows DCR.

In Figure 8.2, we have visually presented the effect of increasing demand on cost per

unit of a good (CPU) as a function of demand to capacity ratio (DCR). The figure

is a bar chart representing CPU as a percentage value of the CPU at 95% demand to

capacity ratio. The bar chart contains one bar for each base instance, for each value

80



Chapter 8. Practical Use and Managerial Insights

of DCR in cases where a solution could be found. If a solution for a DCR level could

not be found, the bar for the corresponding instances is not included. As an example,

consider DCR value 126%, where the model was only able to find a feasible solution

for instance two.

From Figure 8.2 we can see that cost per unit of good decreases at a similar rate for all

four instances. There are however some slight differences. For example, instance four

sees less improvement than the other instances. The explanation for these differences

between instances is that in some cases the model has to reschedule contract pickups.

As we increase demand for the instance, the solution to the instance before the increase

may no longer be feasible. The model has to reschedule the contract pickups, which

in those cases leads to an increase in operational costs. Observe also that demand

can be increase to well above the 95% DCR, and first lead to infeasibility for instance

one at 118% DCR, at 120% for instance four, and at 124% for instance three, while

instance two became infeasible after 126% DCR.DCR.

Increasing the number of contracts

We created the instances required for this analysis by using four base instances and

then iteratively increasing the number of contracts by two, by adding new contracts,

saving the result of each iteration as a set of new instances. The specific instances

used are AsE 10 C 3 3 DCR where C ∈
[
100, 180

]
, with a step of two and DCR is

dependent on C.

In Figure 8.3 we have visually presented the effect of increasing demand on cost per

unit of a good (CPU) as a function of the number of contracts. The figure is a bar

chart representing (CPU) as a percentage value of the (CPU) at 100 contracts. The

bar chart contains one bar for each for base instance, for each number of contracts

in cases where a solution could be found. If a solution for a contract level could not

be found, the bar for the corresponding instances is not included. As an example,

consider number of contracts value 150, where the model was only able to find a

feasible solution for instance two and instance three.

From Figure 8.3 we can see results similar to those in Section 8.2. The CPU decreases

at a similar rate for all four instances, with slight differences caused by solutions for a

number of contracts level becoming infeasible as the number of contracts are increase

and rescheduling is required. There is a larger difference between instances here in

CPU . The explanation is that as new, randomly generated contracts are added, new

transit time and evenly spread requirements are added to the instances. Contracts

that have requirements that are not compatible with the already existing contracts

force the model to reschedule to accommodate these requirements as best as possible,

which is likely to increase cost. From Figure 8.4 we can see the demand to capacity
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Figure 8.3: The effect of increasing demand on cost per unit of good (CPU) as
a function of the number of contracts.. Vertical axis shows CPU as a percentage
value of the CPU at at 100 contracts, while the horizontal axes shows the number of
contracts.

82



Chapter 8. Practical Use and Managerial Insights

Figure 8.4: The effect of increasing demand on the demand to capacity ratio (DCR)
as a function of the number of contracts. Vertical axis shows (DCR), while the
horizontal axes shows the number of contracts.
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ratio (DCR) as a function of the number of contracts. Observe that demand can be

increase to well above the 95% DCR, and first lead to infeasibility for instance four

at 132.0% DCR, at 137.7% for instance one, and at 146.5% for instance three, while

instance two became infeasible after 154.4% DCR.

Analyzing the results

From Figure 8.2 and 8.4 we can see that increasing individual contract demand

(method one) generally results in a smaller maximum increase in DCR than when

adding more contracts (method two.) In fact, the average DCR where instances are

no longer feasible for method one is 120%, while it is 142.4% for instances where we

use method one. Hence we can increase it by 22.4% more on average when using

method two. There are relatively large differences between instances in maximum

DCR for each method, but based on the results above it seems like DCR can be

increased more with method two than method one.

The explanation for this is that when increasing demand with method one we limit the

possibility of rescheduling faster than with method two. For example, consider a set

of contracts for a port p. The individual demand can only be increased until the total

quantity to be picked up in that port exceeds the maximum available stowage capacity

at p during the voyage with the least maximum available stowage capacity. There is

some room for rescheduling, but if for example many of the contracts have a pickup

frequency equal to the maximum number of voyages this port can become a bottleneck.

This is also true for method two; however, when adding new demand we keep the

demand per contract stable, which increases the possibilities of efficiently rescheduling

to avoid bottlenecks. In addition, the new contracts can have requirements that are

compatible with the requirements of the set of already existing contracts.

The results in this section indicates that by scheduling efficiently, decision makers

can accept contracts for a total quantity of goods which takes demand to capacity

ratio well above for example a common value of 95%. However, a model is only an

approximation of reality. By blindly trusting the results of the model run, a vessel on

a voyage may end up having to leave behind large quantities of goods on port visits

as a result of overestimating available stowage space. Even if the cost of breaching

contract is out-weighted by the reduced cost per unit of a good, this would not be a

sustainable strategy, as clients are likely to value predictability. On the other hand, by

being too conservative in our estimation to avoid risk, we can end up with a planning

horizon with a lot of underutilized capacity.

In Chapter 4 we detailed how the model assumes that given the total base area xp

of all goods of each product type p, total real space use S can be predicted with a

tolerable error from Equation 8.1,
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S = F1x1 + ...+ Fpxp, (8.1)

and that the space utilization factors F1, ..., Fp can be estimated. A way of avoiding the

risk that accompanies increasing the demand to capacity ratio would be to estimate

the utilization factors and the corresponding error margins. This could be done, for

example, by statistical analysis of historical data. To estimate these values is beyond

this thesis. However, considering that a 10% increase in demand to capacity ratio can

lower the cost per unit of good with approximately as much as 10%, such a study

might be of interest to decision makers.

Summary

In this section it was demonstrated that through the models ability to estimate avail-

able stowage space, efficient routing and pickup scheduling could allow decision makers

to accept more contracts, and increase the total demand to available capacity ratio

above what is common practice, reducing costs per unit of good. Increasing the total

demand does come at a risk of overestimating available stowage space and having to

leave behind large quantities. It was outlined how estimating the utilization factors

and the corresponding error margins could lessen some of the risk.

8.3 Removing voyages with low capacity utiliza-

tion

In this section, we will examine if operational costs can be reduced by removing

voyages with underutilized stowage capacity while keeping demand constant. From

the example solution in Section 7.3 we saw that one of four voyages had underutilized

stowage space. There are two reasons for a voyage with low capacity utilization to

be scheduled at all by the model: either the vessels available does not have enough

capacity to pick up all demand in less than the assigned number of voyages, or one or

more contracts requires a pickup for every possible voyage during the planning horizon.

Therefore, by decreasing the contract pickup frequency requirements of contracts that

require the same number of pickups as the maximum number of voyages, we can run

the model again to see if we can eliminate a voyage. If the solution still creates under

utilized voyages, the process can be repeated until the instance is no longer feasible.

However, by adjusting contract frequency requirements we break the terms of the

adjusted contracts, which in turn means that we might be required to renegotiate

these contracts. Any reduction in costs gained by removing one or more voyages that

under utilize stowage capacity can be viewed as an approximation of the upper bound
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on the cost of renegotiating these contracts.

Figure 8.5: Heat map representation for instance from category group AsE 10 150 -
4 4 95 where voyage two has low capacity utilization.

In this section, we will explore removal of a voyage from a planning horizon which has

exactly one voyage with low capacity utilization. The instance is from the instance

group AsE 10 150 4 4 95, with a penalty cost of 0.8; hence we are reducing a planning

horizon with four voyages to a new planning horizon with three voyages. Figure 8.5

shows the capacity heat map representation for the original planning horizon. Observe

that voyage two has a maximum peak capacity utilization of 16%, which makes it a

good candidate for removal. In addition, we can see that voyage two is likely to have

fewer port visits than the other voyages, as the capacity ratio remains constant over

parts of the planning horizon. This can be seen directly in Figure 8.6.

By adjusting all contracts that have a maximum pickup frequency of four, we can

run the model again to see if we can eliminate the voyage with underutilized stowage

capacity. A heat map representation of the new planning horizon can be seen in 8.8,

and we can observe from the figure that the model was able to remove the target

voyage. Figure 8.6 and 8.7 shows network diagram representations of the old and new

planning horizons respectively, with vessel speeds between ports. We can see that the

voyages V 1, V 2 and V 3 in the new planning horizon are topologically identical to

voyages V 1, V 3 and V 4 in the old planning horizon. A voyage by voyage comparison

of operational costs between the two planning horizons is summarized in Table 8.1.

We can see that the total reduction in operational costs from removing one of four

voyages is 20.8%. Of this, 20.2% comes from removing one voyage, eliminating sailings

costs and port costs for that voyage, while the remaining 0.6% comes from a reduction
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Figure 8.6: Diagram representation of an instance from instance group
AsE 10 150 3 4 95, Showing arrival time in each port, as well as sailing speed between
ports.

Figure 8.7: Diagram representation of an instance from instance group AsE 10 150 -
3 4 95 where one voyage has been eliminated. Showing arrival time in each port, as
well as sailing speed between ports.

in speed on other voyages. The voyage that was eliminated has fewer port stops than

the other voyages. In addition, the vessel kept a generally lower sailing speed for that

voyage, and therefore has lower sailing costs. As a consequence, V 2 has a total cost

that is lower than the other voyages. For example, the total cost is 71.3% lower than

that of V 1. Therefore, the total reduction in costs for the entire planning horizon is
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Figure 8.8: Heat map representation for instance from category group AsE 10 150 -
4 4 95 where voyage two, a low capacity utilization, has been eliminated.

Four Voyages ∆ Operational Costs Three Voyages
Sailing Port ∆ Sailing ∆ Port New Sailing New Port

Voyage 1 18.15% 10.20% -0.30% 0.00% 17.85% 10.20%
Voyage 2 13.08% 7.14% -13.08% -7.14% 0.00% 0.00%
Voyage 3 13.92% 9.15% 0.07% 0.00% 13.99% 9.15%
Voyage 4 18.15% 10.20% -0.30% 0.00% 17.85% 10.20%
Total 63.31% 36.69% -13.62% -7.14% 49.68% 29.55%
Operational costs: 100.00% New operational cost: 79.24%

Table 8.1: A summarized voyage by voyage comparison of operational costs between
the original and reduced planning horizons.

not approximately 25% as one might expect when removing one of four voyages.

We can observe that while all port visits are removed from the eliminated voyage, V 2,

there are no changes in the number of port visits for voyages V 1, V 3 and V 4. The

reason for this can be seen in Figures 8.6 and 8.7: the ports visited on the eliminated

voyage, V 2, are all visited on every other voyage. This is as expected, as the contracts

that were serviced on the eliminated voyage are contracts that require four pickups,

and are therefore also serviced on every other voyage. Hence, no new port visits are

necessary for completing the demand requirements of the contracts, the demand is

simply shifted over to the other voyages.

In addition, we can see from the table that sailing costs have been reduced for V 1

and V 4, in addition to being completely eliminated for V 2. The main reason for
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the reduction in V 1 and V 4 is that, with the reduction, the spreading requirements

are easier to fulfill. There are now only two types of contracts with evenly spread

requirements: those that can be scheduled for a maximum two pickups, and those

that can be scheduled for a maximum three pickups. Contracts that get scheduled

with three pickups have a spread time requirement of 9.3±2, while those that have two

pickups have a spread time requirement of 14±2. For most contracts with two pickups

for a given port, the model can simply schedule the pickups for V 1 and V 3, without

breaking with those contracts that are scheduled for three pickups for the same port.

This makes it easier for the model to schedule the contract pickups without deviation

from evenly spread requirements, then when you also included contracts with four

pickups. In Table 8.2 we can see the difference in contract deviation for each planning

horizon. For the reduced planning horizon, fewer contracts deviate from evenly spread

requirements, and deviation from evenly spread requirements per contract goes from

1.2 to 0.64.

Contract number Deviation time (days) PH4 Deviation time (days) PH3

1 0.67 0.0
2 7.7 4.0
13 7.7 4.0
20 7.7 4.0
24 0.67 0.0
32 6.7 4.0
40 1.3 0.0
48 6.7 4.0
58 0.67 0.0
67 7.7 4.0
77 6.7 4.0
80 6.7 4.0
90 6.7 4.0
94 7.7 4.0
98 7.7 4.0
99 7.7 4.0
116 0.67 0.0
121 7.0 4.0
122 7.7 4.0
129 7.7 4.0
140 6.7 4.0

Table 8.2: All contracts that deviates from evenly spread restrictions, with deviation
time in days, for the original planning horizon (PH4) and the reduced planning horizon
(PH3).
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Summary

In this section a voyage with low capacity utilization were removed from a planning

horizon, in an effort to reduce costs. For our test instance, the total reduction in

operational costs from removing one of four voyages is 20.8%. Of this, 20.2% comes

from removing one voyage, eliminating sailings costs and port costs for that voyage,

while the remaining 0.6% comes from a reduction in speed on other voyages. The pro-

cess of removing one voyage also reduced deviation from evenly spread requirements.

One suggestion for decision makers based on this analysis, is to limit the maximum

contract pickup frequency to be less than the maximum number of possible voyages

if possible. In practice, this would be equivalent to the process used for eliminating

a voyage in this analysis, and would allow the model to remove unnecessary voyages

when possible. In addition, this can possibly lessen deviation from evenly spread per

contract, since it may reduce the number of contracts that have incompatible evenly

spread requirements.

8.4 Merging planning horizons with same trade

route

This thesis is done in cooperation with a case company that recently merged with

another shipping company. Both companies transport goods over some of the same

trade routes, with some differences in which ports are visited. In this section, we will

examine the effects on costs when combining two planning horizons over the same

trade route into one planning horizon, with the expected result of minimizing costs.

One reason that costs might decrease may be that the model finds a solution where

fewer voyages will be sailed than the sum of sailed voyages when the instances are

run separately, which might decrease total sailing costs as well as port visit costs. By

sailing fewer voyages we can also free up vessels which can be used to generate revenue

elsewhere.

We created two instances to simulate the case outlined above, I1 and I2, belonging to

instance group AsE 10 100 3 5 95, with a unit penalty cost of 0.8. To simulate that

the voyages have differences in which ports they visit, we generated both instances

from the same trade route, but each instance was limited to only visit seven of the

ten available ports. The set of ports not visited were different for both instances. For

each instance, a set of contracts, CI#, was generated. In addition, for each instances

a set of available vessels, KI#, was sampled from the vessel pool. A third instance,

I3, was created by combining I1 and I2, with a set of contracts CI1 ∪ CI2 and a set of

available vessels KI1 ∪ KI2.
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Figure 8.9: Heat map representation for instance I1 from category group AsE 10 -
100 3 5 95, where voyage two has low capacity utilization.

Figure 8.10: Heat map representation for instance I2 from category group AsE 10 -
100 3 5 95, where voyage two has low capacity utilization.

The model was run with all three instances. We use a simplified heat map repre-

sentation to visualize the results, were capacity percentages have been removed and

capacity utilization is shown solely by colors. Observe from Figures 8.9 and 8.10 that

I1 and I2, respectively, has one voyage with underutilized stowage capacity. We can

see that voyage one and voyage three are near full capacity while voyage two is at

approximately half capacity for both instances, all though slightly higher for I2.

Figure 8.11 shows the combination of I1 and I2’s planning horizons, with a total max-

imum voyage number of six. We can see from the figure that two voyages have been

eliminated, and that the remaining voyages have near full or full capacity utilization

at peak capacity. The effects on the cost of this merger can be seen in Table 8.3.

The effects on the cost of this merger can be seen in Table 8.3. We can see from

these results that merging the two planning horizons into one horizon has reduced

total costs by roughly 17.7%. This needs some further explaining, as the reduction

might seem lower than expected, given that two voyages were reduced. Sailing cost

per voyage for the two separate voyages were 70.5%⁄6 voyages = 11.8% of total planning

horizon cost per voyage. For the merged planning horizon, however, sailing costs

per voyage are 55.6%⁄4 voyages = 13.9% of total planning horizon cost per voyage. This
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Figure 8.11: Heat map representation of the resulting merger of I1 and I2 planning
horizons, with a total maximum voyage number of six. Two voyages has been elimi-
nated.

PH1 PH2

∑
i∈{1,2} PHi PHmerged

Sailing cost 36.02% 34.44% 70.46% 55.55%
Port cost 14.79% 14.76% 29.55% 26.71%
Total 50.81% 49.19% 100.0% 82.26%

Table 8.3: The effects on cost of the merger of the two separate planning horizons
(PH1 and PH2) to one, new planning horizon can be seen in Table

increase of sailings costs per voyage of 2.1% was caused partially by increases in vessel

speeds to keep transit time requirements and to limit a deviation from evenly spread

requirements, and partially by the model using larger more expensive vessels with

larger to decrease the number of necessary voyages, and hence, port visits. Similarly,

port cost per voyage for the two separate planning horizon was 4.9%, while port cost

per voyage for the merged planning horizons 6.7%. The 1.8% increase in port cost per

voyage is caused by the fact that the two separate planning horizons visited a different

subset of the ten ports in the trade route. When the planning horizons were merged

this increased the number of port visits which had to be performed per voyage. In

addition, the two separate planning horizons had one voyage each with further port

visits and lower sailing costs, which took the average down. In addition to reducing

the total operational cost, merging the two planning horizons also freed up two vessels

which can now be used to transport goods else where.

Summary

The thesis is done in cooperation with a case company that recently merged with
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another shipping company. Both companies transport goods over some of the same

trade routes, with some differences in which ports are visited. In this section it was

demonstrated that the model could be used to merge two planning horizons over the

same trade route, and possibly reduce costs by eliminating voyages. For the specific

instances used for this analysis, costs were reduced by 17.7%.

8.5 Relaxing strict transit time requirements

In this section, we will examine if operational costs can be reduced by making transit

time requirements less strict. In Section 7.2 we saw that a large percentage of transit

time constraints had abundant of transit time slack, and only a few transit time con-

straints were close to breaking their corresponding contracts’ requirements. However,

these few constraints, in combination with corresponding evenly spread constraints,

indirectly enforced strict transit times on the other contract pickups. Together these

constraints limit the model’s ability to schedule contract pickups to exploit the tran-

sit time slack available. This leads to an interesting question, how would it affect

operational costs if additional slack could be added to these contracts’ transit time

requirement.

The base instances used for this analysis are generated from the Asia to Europe trade

route with ten ports. Each of the instances was selected from the instance group AsE -

10 100 4 4 95. To create the instances with more lenient transit times, we increase

the transit time required for contracts that had less than or equal to four days of

transit time slack. We iteratively increased it with one, two, three, and four days for

all instances, creating in total 20 additional instances. Results are aggregated and

summarized in Table 8.4, which shows the average improvements of operational costs

in percentage compared to the solution with no additional slack, for one, two, three

and four additional days. The run time limit for this analysis is 1800 seconds.

Contracts One day Two days Three days Four days
50 0.36% 0.70% 1.01% 1.29%
100 0.37% 0.72% 1.06% 1.36%
150 0.39% 0.76% 1.09% 1.41%

Table 8.4: Reductions in cost increases as a function of the number of contracts and
the number of additional slack days added to the strictest transit time requirement.

We can see from Table 8.4 that reductions in cost increase both with the number of
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contracts, and the number of additional slack days. All though the reductions are

relatively small, the magnitude of the costs are in turn very large.

Our instance generator can generate every possible transit time between the minimum

and the maximum time it can take to sail between two ports, plus an additional

slack which in our cases was four days independent of distance. Further analysis of

individual solutions of the instances run for this analysis shows that the transit times

that benefited operational cost the most when relaxed, were those of larger distances.

This suggests that our generator could probably be improved by making slack time

distance dependent, as two ports that are far apart are more likely to have many ports

between them meaning that a vessel might need more slack for that distance. The

model helped to identify this potential problem with our instance generator. Similarly,

the model could be used by decision makers to identify lower limits for transit times

between ports, to reduce operational costs.

Summary

In this section it was demonstrated how the model could be used to learn new, appli-

cable knowledge, by studying the effects on operational cost of relaxing strict transit

time requirements. The model could be used by decision makers to identify lower

limits for transit times between ports, to reduce operational costs.

8.6 Summary

In this chapter, we analyzed solutions for selected instances, with the goal of exploring

practical applications and gaining managerial insight that can be helpful to decision

makers. The model was used to generate trade-off curves mapping the relationship

between the two objectives of reducing operational costs and fairly evenly spreading

contract pickups, allowing decision makers to choose an appropriate balance depend-

ing on profit margins and their clients needs. Several ways of reducing costs was

demonstrated. It was shown that through the models ability to estimate available

stowage space, efficient routing and pickup scheduling could allow decision makers

to accept more contracts, and increase the total demand to available capacity ratio

above what is common practice, reducing costs per unit of good. Several use cases

were shown where costs could be reduced by eliminating voyages with poor capacity

utilization to reduce costs and free up vessels for use else were. It was also demon-

strated how the model could be used to learn new, applicable knowledge, by studying

the effects on operational cost of relaxing strict transit time requirements.
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Concluding Remarks

The Single Trade Routing Problem (STRP) for RoRo shipping set out to plan routes

for several voyages over a planning horizon, as well as plan for which contracts to

service and which quantities to load and unload at scheduled port visits. These are

important operational decisions made by RoRo operators with the goal of gaining

competitive advantage in a marketplace with low demand and excess capacity. A

good decision support system is essential to help managers make informed decisions,

reduce cost and eliminating waste. The purpose of this thesis have been to develop a

better understanding of the STRP and gain valuable insights for decision makers, and

is motivated by the conviction that a good decision support system has the potential

for significant benefits also to RoRo providers in maritime transportation.

The aim of the work has been to create a model which reflects the real problem

with a practical degree of accuracy. A mathematical formulation of The Single Trade

Routing Problem has been further developed, by introducing new and comprehensive

extensions. The model take into account variable vessel speeds, a heterogeneous

fleet where vessels have different capacities and fuel usage, available stowage space

estimation, and differences in capacity and space utilization for different decks within a

single vessel. The formulation also include important features such as contract pickup

frequency requirements, fairly evenly spread requirements for contract pickups, transit

time requirements, and minimum and maximum loading quantity requirements per

pickup.

A commercial MIP solver was used to explore the difficulty of solving instances with

the model. The introduction of transit time requirements to contracts drastically in-

creased model complexity, and caused performance in terms of run time to worsen.

While the introduction of evenly spread constraints to some degree countered this

increase, the results of the computational study show that run time increases non
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linearly for all important dimensions, and that solving instances larger than the rel-

atively small test instances used in this thesis within a reasonable time limit is not

possible.

A detailed study of instance solutions were performed, to gain insight about the prob-

lem and study how sensible the solutions are in relation to the real problem. A further

study into practical application of the model was undertaken to gain managerial in-

sight that can be helpful to decision makers. The model was used to generate trade-off

curves mapping the relationship between the two objectives of reducing operational

costs and fairly evenly spreading contract pickups, allowing decision makers to choose

an appropriate balance depending on profit margins and their clients needs. Several

ways of reducing costs was demonstrated. It was shown that through the models

ability to estimate available stowage space, efficient routing and pickup scheduling

could allow decision makers to accept more contracts, and increase the total demand

to available capacity ratio above what is common practice, reducing costs per unit

of good. Several use cases were shown where costs could be reduced by eliminating

voyages with poor capacity utilization to reduce costs and free up vessels for use else

were. It was also demonstrated how the model could be used to learn new, applicable

knowledge, by studying the effects on operational cost of relaxing strict transit time

requirements.
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Future Research

The results from the computational study show that run time increase non linearly

for all dimensions and that solving instances larger than relatively small test instances

used in this thesis within a reasonable time limit is not possible. For further research,

a natural next step would, therefore, be to develop a heuristic solver for The Single

Trade Routing Problem.

The model could also be extended to better reflect the real problem. Port costs are

now constant but could be extended to reflect a more realistic situation where they

are dependent on factors that affect time in port, like for example which product types

and which quantities are loaded. In our model vessels travels unidirectionally through

a trade route. This limits the quantity vessels can transport, by limiting the ability

to visit adjacent ports in an optimal order. In addition, it put limits on how to solve

evenly spread and transit time restrictions. Even though this would add complexity

to the model, the number of additional arcs added to the network from allowing bi-

directional sailing could be limited with the use of domain knowledge and knowledge

about specific trade routes. A robustness study of the model is also interesting. Real-

world problems usually have large variations in input variables, that may in our case

depend on factors like weather, which can effect sailing speeds and arrival time, and

random events at a port, which may cause delays. The model as it is now assumes

constancy in all aspects.

In addition, we find the extension to solving multiple trade routes interesting, as

scheduling for a single trade route would be dependent on scheduling for other trade

routes. It is possible to single trade route instances separately. Using solution values

for one or more instance as input in an instance that follows it geographically and in

time can be done by planners manually. However, this would most likely not be an

optimal solution as the optimal solutions to some local single trade route instances
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might not be the best solution for global optimality.

Further more, we find a study using real data interesting. Especially in relation to

estimating utilization factors to limit the risk of over and under stowing, and as a way

to facilitate better capacity utilization and decreasing the cost per unit of a good.

Our model assumes a linear relationship between products spatial attributes and the

real space it takes when stowed, that when given the total base area xp of all goods

of each product type p, total real space used can be predicted with a tolerable error.

If this assumption holds utilization factors could be estimated using multiple linear

regression over historical data. If the relationship is more complex, a heuristic solver

could allow for more complex and accurate nonlinear statistical methods to be used.
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