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Preface

This thesis explores approaches for optimizing the communication between ser-
vices in a microservice architecture. Limitations of the REST architectural pattern
within the microservice pattern is investigated through a literature review, and al-
ternative protocols to HTTP/1.1 are explored for communication between services.

This work was conducted during fall semester in 2017 under Department of
Computer Science (IDI) at the Norwegian University for Science and Technology
(NTNU).

The readers of this thesis are expected to have a background in information
technology and should be familiar with the basics of computer networking and ar-
chitecture.

15-12-2017
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Abstract

The microservice pattern is a new alternative to architecting back-end systems. In-
stead of building large, monolithic systems that lead to issues related to scalability,
maintainability and extensibility, systems are built as a set of small, independent
services – microservices. Even though these services operate independently to a
certain degree, there is often communication between them. Going from a mono-
lithic system to a distributed system, the networking communication becomes a
challenge.

Representational State Transfer (REST) is a commonly used architectural pat-
tern for designing service interfaces. While REST promotes generalization of end-
points through uniform interface, this leads to more overhead when transferring
documents. This thesis discuss issues of REST and discusses them in context of mi-
croservices through a literature review. Some of the discussed issues relates to how
concepts under REST should be approached where much discussion relates to how
the linking between representations should be approached. There are also other
issues relating to service discovery, transactions, security, and reliability.

HTTP is often being used as a fundamental transfer protocol to implement a sys-
tem following the REST architectural pattern. Other protocols have been explored
in this thesis to determine their behavior in a microservice architecture. HTTP/1.1,
HTTP/2 without encryption, and Constrained Application Protocol (CoAP) were
tested under different latencies (0ms, 5ms, 10ms) as the messaging protocol be-
tween microservices in the AcmeAir benchmarking system. Results show that HTTP-
/1.1 was able to provide higher throughput compared to HTTP/2, whereas CoAP
had a lower request throughput under all latencies. The differences in the latencies
did, however, even out between the protocols under higher latencies. Considering
bandwidth, HTTP/2 used least bandwidth followed by CoAP and HTTP/1.1. Some
of the behavior of the CoAP protocol can be explained by framework limitations.
This has resulted in contributions to the Californium Java CoAP framework by
avoiding thread creation during request processing and introducing asynchronous
APIs in the framework for HTTP messaging. Furthermore, CoAP required some re-
quest headers to be implemented as they were not present in the framework or the
protocol. It is argued this leads to higher coupling compared to the other protocols.
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1 Introduction

1.1 Topic

The microservice architecture pattern is an emerging architectural pattern that has
gained much popularity in the industry for architecting backend systems. Typically,
server-side applications are often built in one or several large code-bases, often de-
veloped as monoliths. Multiple tech companies such as Amazon, LinkedIn, Netflix,
and SoundCloud had large, monolithic architectures which limited their abilities in
terms of scalability and extensibility [1, 2]. These monoliths were then refactored
into a set of smaller, independent services that communicate together. These ser-
vices are often referred to as "loosely coupled services with bounded context" [3].
Being forefronted, and popularized by the previously mentioned tech companies,
there is no consensus on a concrete definition of the microservice pattern itself.
However, the pattern can be described as a way to develop a system consisting
of small, independent services that are centered around business capabilities and
run in isolation from each other [1, 4, 5]. Despite the services being independent
from one another to a certain degree, the services can still communicate in a syn-
chronous or asynchronous fashion, typically using messaging queues or through
Application Programming Interfaces (APIs) following concepts from the Represen-
tational State Transfer (REST) pattern, typically using Hyper Text Transfer Protocol
(HTTP) [1, 4].

Some of the benefits of the microservice architecture comes from the indepen-
dent nature of the services: each service can be developed, tested, and deployed
independently. The services are then typically developed by independent teams
which allows services to be more specialized towards their use-case and being im-
plemented in different languages (polyglot programming). Considering that the
system is made up of loosely coupled, ideally independent services, if one service
would become unavailable, this would have a limited effect on the whole system
availability by utilizing patterns such as circuit breakers and designing services for
failure [6].

Microservices on the other hand, introduce several challenges. Additional costs
are required in terms of operational costs and administrating a larger set of services
compared to fewer monolithic services. Complexity is rather shifted from the ap-
plication towards the infrastructure [7]. Small-scale systems may not benefit from
the pattern due to additional overhead and administration of the services. There
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is also extra cost in terms of network communication which can negatively affect
performance. Other challenges relate to service discovery, security, service granu-
larity (how large should a service be), transactions, logging, API versioning among
the various services, and general issues from implementing a distributed system.

A much discussed topic regarding microservices is its relationship with Service-
Oriented Architectures (SOA). Some consider SOA and the microservice architec-
ture two distinct patterns due to how the two patterns assert problems related to
communication heterogeneity, service granularity, security, transactions, and ser-
vice ownership [8]. However, others argue that the microservice pattern is a way
to do SOA, much like scrum is an agile development methodology [9]. Addition-
ally, Zimmermann argues that microservices do not violate any SOA principle, but
rather embrace existing patterns [10].

1.2 Keywords

Microservices, web services, REST, RPC, web, HTTP, CoAP, inter-service commu-
nication, service-oriented computing, distributed computing, architecture, service-
oriented architecture

1.3 Problem Description

Inter-service communication (ISC) refers to the communication between microser-
vices. The additional network overhead is largely recognized as one of the ma-
jor bottlenecks that negatively affects performance when communicating between
multiple services [8, 5, 11, 12, 13]. Zimmermann does also raise the question
whether there are alternatives to using REST in the context of microservices and
whether web protocols are sufficient for communication [10].

As mentioned earlier, communication can be either synchronous or asynchronous
[14]. Synchronous communication means a call will block from the service con-
sumer until the requested operation has completed. With asynchronous communi-
cation, on the other hand, the requests may be queued e.g. in a messaging queue
and processed at a later point in time. This makes it possible for the client to start
working on other tasks independently of when the request is further processed.

This work aims at examining the overhead in inter-service communication,
proposing several methods for mitigating the extra overhead in addition to bench-
marking several protocols for inter-service communication. The adoption of REST
within the microservice pattern to identify limitations and challenges of REST is
also explored.

2
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1.4 Justification, Motivation and Benefits

Microservices is an emerging architectural pattern and thus has a limited amount
of research and literature [2, 15]. This project would contribute to the overall un-
derstanding of the microservice pattern. Additionally, it would contribute to the
industry by giving advice to new microservice implementations, in addition to pro-
posals of new network protocols. Potentially, existing systems may benefit from
the findings of this project and can use the results in order to achieve better per-
formance. The reduced response time may also lead to less computing resources
being used. As a result of this, systems can save energy and contribute to greener
systems. Microservices is a pattern that is often used in context of cloud computing
[1], and many cloud vendors use a pay-as-you-go model where users of the cloud
platforms are billed, e.g. for bandwidth usage. Reducing the amount of bandwidth
one service uses would also lead to less costs for hosting the microservices.

Stakeholders that can potentially benefit from the results in this work would
include: system architects seeking guidance and advice on microservices, proto-
col developers designing the protocols being used for ISC, service-providers that
provide platforms and support for microservices, and developers and researchers
looking for related work, and knowledge regarding microservices.

1.5 Research Questions

This project will aim at answering the following research questions:

• R1: REST limitations: What are the architectural limitations of using REST in
microservices?

• R2: Benefits and limitations of HTTP/2: For ISC, what are the benefits and
limitations of HTTP/2 compared to HTTP/1.1 in terms of performance and
latency?

• R3: How does CoAP compare to HTTP: How can CoAP be applied in a mi-
croservice system, and what are the challenges of using CoAP instead of
HTTP?

• R4: Latency in ISC: Which factors impact latency in ISC and how can these
be reduced?

1.6 Planned Contributions

This project will contribute to the area of microservices, a rather new research area
with limited literature [2, 15]. It will provide more knowledge and insight into
the microservice pattern and can act as a resource for how to approach certain
problems within microservices and service orientation. Ultimately, the project may
find better approaches for performing ISC that can result in lower response times.

3
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These results may also be generalized and used outside the microservice area, and
can potentially inform the creation of newer protocols. The results of this thesis
has already lead to contributions to the Californium Java CoAP framework.

1.7 Outline

A general introduction is given to the reader in the topic of REST, microservices,
and inter-service communication in Chapter 2. The research question regarding
architectural limitations of REST in microservices is first discussed by a literature
review in Chapter 3. After this, on a concrete level, HTTP/1.1, HTTP/2, and CoAP
are compared in AcmeAir under different latencies in Chapter 4 to answer the re-
search questions regarding latency and protocols. A conclusion is given in Chapter
5 where each research question is summarized based on the findings in the previ-
ous chapters.

4
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2 Background

2.1 Microservices

Microservices is an emerging research topic in academia. Alshuqayran et al. [15]
present a systematic literature review of the topic, and found that the term mi-
croservices was first used in 2010. The term was, however, used for a framework
for automatic service description instead of an architectural pattern [16]. The sur-
vey by Alshuqayran et al. argue that the term was first defined by Fowler and Lewis
in 2014 [1], although Fowler states that the term was first discussed by a group
of architects in a workshop near Venice, May 2011, in order to describe a new
architectural style the participants had observed.

A systematic mapping survey by Vural et al. [2] discusses challenges and defi-
nitions of microservices. They found that much of the published formal literature
are solution proposals or evaluation research, and that there is a lack of opinion
papers and experience reports. Furthermore, they discovered challenges related to
integration and deployment, are most frequently discussed in the literature.

There is much discussion related to the actual definition of microservices. While
Fowler describes microservices as an architectural pattern [1], Zimmermann [10]
discusses whether microservices is a concrete approach to SOA or whether it can
be considered as a new, novel architectural pattern. He argues based on a literature
review comparing positions in the industry and academia, that microservices does
not bring any conceptually new properties compared to SOA, but as an approach
towards SOA using "state-of-the-art software engineering practices" [10]. He also
mentions that definitions of microservices include terms such as development pro-
cess and organization related terms, whereas other architectural patterns such as
REST are defined as a set of constraints on a more abstract level [17]. For example,
Aderaldo et al. [18] propose a set of requirements for a microservice benchmarking
system, where version control of source code is one of the proposed requirements.

The debate of the different definitions of microservices can be seen in the discus-
sion with Pautasso et al. [19], that emphasized that each of the discussing parties
have a different concrete definition of microservices.

Considering REST and SOA being defined as a set of principles or constraints,
many microservice definitions include for examples that light-weight containers
are used to deploy the applications, in addition to embracing DevOps1 and au-

1A paradigm or culture where there is close relationship between development and operations of a

5
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tomatization paradigms to simplify deployment. It would be reasonable to assume
that these practices comes as a result of having to deploy a system consisting of
multiple autonomous services and that they are not directly tied to any particular
development process or methodology.

2.1.1 Microservice definition

In order to simplify discussion in this thesis, the term microservice being used in
this thesis is defined as:

Microservices is an architectural pattern where an application is composed of
small, loosely coupled, ideally independent (micro)services. The unity of these
services form through the concept of emergence, the whole application itself.
The independent nature of each service isolates application failure to a smaller
segment of the application.

A particular microservice is defined as:

A service within a microservice system which is typically designed around, but
not limited to a particular business use case. This service communicate using a
standardized, light-weight messaging mechanism that promotes loose coupling
with other services.

As a result of the independence of microservices, these services can be written
in different programming languages, thus enabling polyglot programming. The iso-
lation of the different services comes at the cost of increased network traffic and
increased application complexity. Caching or data duplication between services can
be used to reduce the network communication and dependency of other services.
Paradigms such as continuous delivery (CD), containerization, and DevOps can be
introduced to simplify the development and deployment efforts of the application.

The earlier definition specifies that a microservice should be small. However,
having a too small of a microservice can result in an increase of network communi-
cation and architectural complexity, also referred to as a nanoservice [20]. On the
other hand, a large enough service would result in a monolith that becomes less
agile and is difficult to maintain in the long run. The difference between a nanoser-
vice and a microservice would be that the nanoservice outweighs its utility due to
overhead from the additional efforts required to develop, maintain, and operate the
service. Some practitioners argue that a microservice size should be determined in
terms of amount of lines written, the amount of weeks it should take to write a
new service, or centered around the two-pizza rule proposed by Amazon [21, 1].
The proposed definition of microservice size being used in this thesis is defined as
follows:

computer system.

6
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The size of a microservice should be centered around one single business capa-
bility where the utility of the service should outweigh the overhead associated
with architectural complexity, operational costs, and network overhead, but not
result in a generalized, monolithic service which leads to a service with high
complexity.

The previously mentioned metrics (code size, team size, etc.) can be considered
as appropriate tools as an attempt to follow this definition.

Furthermore, this thesis uses the terms service consumer and service provider.
Both of these can be microservices but are used in a more abstract context where
the service consumer is a client making a request to the service provider, which is
a server providing some service to the service consumer.

2.1.2 Open issues in microservices

Microservices being a distributed system, inherit the problems of distributed com-
puting. Complexity of the application is (compared to a monolithic architecture)
shifted from the application itself towards the supporting infrastructure of the ap-
plication. There are however various strategies to mitigate these issues. To summa-
rize, these are the following typical issues associated with microservices:

• General issues with a distributed system (Latency, data management, inter-
face design, logging, infrastructure supporting the system) [10, 22].

• Formalization-specific issues (Service size, design, relationship with SOA)
[10].

• Moving from a monolith (one service or application) to multiple microser-
vices leads to an increase of administrating and orchestrating these services
[4].

• A general lack of "best-practices" (e.g. how a monolith should be decomposed
to microservices) [10, 23].

• Increased architectural complexity (higher cognitive load) and development
costs (sometimes referred to as the "microservice premium") [19].

• Security (larger attack area, trust, heterogeneity) [5].

Fazio et al. [24] describe some of the major challenges when deploying a mi-
croservice application to the cloud. One challenge being discussed is the hetero-
geneity of different deployment frameworks in different clouds. They also mention
that one research challenge in microservices is knowing how microservices should
be most efficiently deployed, either in the same container, on the same virtual ma-
chine, the same physical host, or in the same network. This is also supported by
Salah et al. [25] who investigated the performance differences of deploying an ap-
plication on a Amazon Elastic Cloud Computing (EC2) instance compared to the
EC2 Container Service (ECS).

7
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Klock et al. [21] propose a model for clustering together microservices based on
workload on the services. Their solution enables gathering operational data from
existing running microservices and based on this data they suggest a deployment
model for optimizing the location of the different microservices. Using their model,
they managed to optimize an existing microservice system which resulted in 23%
higher request throughput. Their proposal also makes it possible to group together
microservices based on different types. Some microservices may be CPU-intensive
by optimizing an artificial neural network, or GPU-intensive by rendering video
files.

In Microservice Tenets, Zimmermann [10] argues based on a review of industry
practices and formal literature some of the major challenges when applying the
microservice architecture. The most recurring ones are the issues related to dis-
tributed computing: "data integrity and consistency management, service interface
design and evolution, and application/service management (including application
and infrastructure security management)" [10]. As mentioned earlier, he touches
the debate regarding the particular definition of microservices. Many practitioners
define the architectural pattern together with implementation-specific details such
as that the microservices needs to be deployed using a continuous integration (CI)
pipeline, etc.

Another debated topic in terms of the microservice pattern is its relationship
with SOA. Zimmerman argue that the microservice pattern is not a new novel
architectural pattern, but can be considered as an approach towards SOA while also
embracing new development strategies such as test-driven development (TDD),
and extreme programming (XP) [10].

2.2 Inter-Service Communication

As mentioned earlier, there are various strategies for inter-service communication.
Communication can be synchronous or asynchronous. This communication can be
between one (one-to-one) or several (one-to-many) services.

Richardson [14] describes various patterns in inter-service communication (Sum-
marized in Table 1). Synchronous communication is used when the call from the
service consumer is blocked until the operation of the requested task has completed
and the result is provided back as a result. This is a typical behaviour for RESTful
HTTP APIs where the entire operation is completed once the service consumer
receives the response (Request/Response). Compared to synchronous communica-
tion, with asynchronous, the request is processed at a later point in time, outside
the request-response cycle by the service consumer. It may for example be put in
a message queue and later processed by a worker service. The service consumer
may or may not receive any notification of the completion of the task. It is possi-
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ble to incorporate asynchronous communication using REST APIs (request/asyn-
chronous response), where the worker node could perform a request back to the
service consumer through a push mechanism, or by having the service consumer
pull for updates. This may however introduce the notion of state on the service
which would break the principle of statelessness within REST [17]. The service
consumer may also not care about the result (notification), which is more of a
fire-and-forget approach. Services can also subscribe to events happening in other
services. One service can push out a message to several other subscribed services
(publish/asynchronous responses).

One-to-one One-to-many
Synchronous Request/response -
Asynchronous Notification Publish/subscribe

Request/async. response Publish/async. responses

Table 1: Inter-service communication patterns [14].

However, Bonèr [26] argues that synchronous communication should be avoided,
and is by some considered as an anti-pattern within microservices. This is due to
the fact it creates a higher coupling between the different microservices. West-
hide [27] claims it violates the concept of having services working in isolation.
Although there are cases where services may need information from other ser-
vices, and these dependencies are resolved through synchronous calls, it should be
avoided. Instead, data should be replicated across different services through noti-
fication mechanisms or events, often referred to as event-driven messaging [28, 4].

S1

S2

S3

onInvoke:  
  callS2();
  callS3();

Figure 1: Orchestration between services. When the service S1 is invoked, it will
directly call the services S2 and S3.
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The collaboration between services is typically described as either orchestration
(Figure 1) or choreography (Figure 2) [4, 5]. In orchestration, a central mediator is
responsible for telling each service what should happen. This could for example be
a service directly invoking other services through synchronous calls. With choreog-
raphy, there is no common mediator. Instead, the publish/subscribe pattern is used
for invoking other services. Contrary to the previous example regarding orchestra-
tion, the service does not directly know which services to invoke. Instead, services
that need to be invoked register themselves – or subscribe, to events from the
service. Within microservices, choreography is preferred over orchestration due to
how choreography leads to a lower coupling between the services [10, 4]. Dragoni
et al. [5] argue orchestration leads to tighter service coupling and uneven distri-
bution of responsibilities. Richards [8] describes this as "high efferent" coupling,
which means a service is highly dependent on other services to perform its task. He
also mentions that choreography can lead to worse application performance due
to the extra cost of network communication between different services.

S1

S2

S3

onInvoke:  
  publish(event);

<<subscribe>>

<<subscribe>>

startup:  
  subscribe(s1);

startup:   
  subscribe(s1);

Figure 2: Choreography between services using the publish/subscribe pattern.

Villamizar et al. have investigated the performance impact and costs on a mono-
lithic system compared to a microservice system through a use-case in the Amazon
cloud [12]. Their system consists of two parts: One performing a heavily compu-
tational operation in order to determine a payment plan according to a provided
set of parameters, while the other part would interact with a relational database in
order to obtain stored records of user data. Performance analysis was done using
Apache JMeter2 in order to generate and analyze responses from the two setups.
They find that the monolithic architecture was performing about 1000ms faster

2https://jmeter.apache.org/
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than using microservices on the computationally heavy service, due to the addi-
tional networking cost. The differences were however far lower on the service
interacting with the database (about 80ms difference), where the microservices
performed faster. They conclude that due to the granularity introduced by mi-
croservices, it makes it possible to specialize configuration of different services, and
therefore potentially reduce cost but can also in some cases lead to faster response
times. They acknowledge the additional complexity introduced by microservices,
but also how issues that are typically dealt with on application level must be han-
dled on a higher level, for example by the infrastructure. Their use-case, however,
is rather limited in terms of complexity regarding amount of services and the col-
laboration between those.

The literature suggests various approaches for reducing latency between mi-
croservices. Richards [8] suggests to combine services to more coarse-grained ser-
vices whenever a set of services has to communicate and this negatively impacts
performance. Bass [11] suggests deploying the microservices in close approxima-
tion, either in same data-center or rack, or within the same virtual host/container.
This ensures that the network round-trip-time (RTT) is low between the services
that need to communicate.

2.3 REST limitations

Zimmermann poses the question regarding whether there are alternatives to using
REST and web protocols within microservices [10]. One of the reasons REST with
HTTP being frequently used between microservices is due to the ubiquity of the
protocol; developers are often familiar with the protocol, and how the architectural
style creates weaker coupling between services [10]. However, Ranney [29] argues
that REST does not scale well for a system consisting of, for example, thousands of
microservices, where issues arise regarding service contracts, documentation, and
the lack of type-checking in JavaScript Object Notation (JSON). He does also argue
that the usage of caching is not as relevant between services as it is in for example
a browser. Although REST is not limited to using JSON as transport format, it is
considered more common in context of REST due to its platform independence,
lightweight nature, and readability [30, 31]. eXtensible Markup Language (XML)
is another much used format, but is considered as more heavy-weight in terms
of size and parsing time [32]. Other alternatives to JSON, such as binary JSON
(BSON) [33] have emerged in order to address these issues.

Huang et al. [34] discuss some of the limitations of REST-style APIs in context of
mobile devices. They make a set of observations regarding the limitations of REST.
One of their observations is regarding dependency between API calls. If a call that
would obtain the latest orders by a customer only accepts an ID of the customer,
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but the service consumer does only have the registered email, the service con-
sumer would have to make an additional request in order to obtain the customer
ID. Another identified limitation is the extra overhead caused by unused fields or
attributes in the exchanged documents. When a set of different services rely on
one service and the different services require a slightly different set of information,
one approach is to generalize this into the same document being exchanged. They
also observe that REST makes APIs less flexible for multi-image retrieval both due
to the additional required requests and the limitation of image size/quality. This
observation can be generalized in how REST limits clients from requesting multi-
ple resources. They propose an API query language (AQL) in order to avoid the
limitations by REST. However, their architecture introduces a central component
between the service consumer and the service for request aggregation which makes
it less suitable for microservices. The AQL does also introduce a higher coupling be-
tween client and server as the client is required to know more about the domain
model considering attributes of the retrieved documents needs to be specified in
the request.

2.4 Benefits and limitations of HTTP/2 and QUIC

HTTP is by many considered as the primary choice of protocol in combination with
REST [1, 8]. HTTP/1.1 was developed in 1999 [35], and the last revision of the
protocol was introduced with HTTP/2 in 2015 [36]. Compared with HTTP/1.1,
HTTP/2 is a binary protocol that enables faster parsing of messages and more effi-
cient bandwidth usage by having smaller requests in addition to header compres-
sion. It also introduces multiplexing which allows clients to send multiple requests
through the same Transmission Control Protocol (TCP) connection before any re-
sponse is received. HTTP/2 was based on the SPDY protocol, an experimental pro-
tocol developed by Google in order to obtain faster page load times [37]. Quick
UDP Internet Connection QUIC [38] is also developed by Google, however, unlike
HTTP, uses User Datagram Protocol (UDP) instead of TCP and acts as a transport
protocol for HTTP/2.

Megyesi et al. [39] compares how SPDY, HTTP/1.1, and QUIC perform un-
der simulated networking conditions with various RTTs, bandwidths, and packet
loss. Their analysis involved running requests towards websites hosted officially
by Google. In order to simulate networking conditions, a server intercepting the
traffic was set up in order to simulate various types of networking conditions us-
ing NetEm [40], a tool for emulating networking latency. They found that QUIC
performed poorly compared to the other protocols when downloading large object
sizes. The protocol did however provide better performance compared to HTTP/1.1
and SPDY with high RTT and during high packet loss. Since SPDY and QUIC en-
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ables multiplexing, the protocols did also perform better regarding small object
sizes. In the context of microservices, the exchanged objects are typically consid-
ered small. However, the main finding is that the latency has the biggest impact
on which protocol should be used. Their findings shows that HTTP/1.1 performed
best with large object sizes, high RTT and packet loss. This supports that SPDY
and QUIC could be considered a reliable alternative to HTTP/1.1 in the context
of microservices, considering the services communicate through a more or less
reliable network. Although SPDY was used as a baseline for HTTP/2, there are
various number of changes in the two protocols which may limit the amount of
generalizations that can be made from this study towards HTTP/2. However, their
study does nevertheless highlight how multiplexing impacts performance for small
object-sizes, which is essential for microservice communication.

Carlucci et al. [41] found similar results. However, their setup used on-site
servers and NetShaper3 to simulate networking conditions. They also demonstrate
how TCP and QUIC handles congestion and packet loss using the Forward Error
Correction (FEC) in QUIC. Their results show that FEC has a negative impact on
performance and TCP was able to provide better response times during heavy
packet loss. QUIC did also perform worse on a high-speed link compared to the
two other protocols due to how it deals with congestion window.

There are a few publications focusing on HTTP/2 performance in particular,
but these focus on browser interaction with web-pages and not web APIs. Their
results can nevertheless be generalized towards web APIs as the protocols are used
together with REST. Sill [42] does for example argues that future API architectures
would shift away from human-readable protocols towards machine-optimized pro-
tocols. This can be seen in how HTTP/2 is a binary protocol and is more optimized
for machine interaction and not primarily browser-interaction. He also gives the
example of gRPC4, which is an RPC framework by Google that enables developers
to declare interfaces in a language-agnostic language that can then be compiled
to other languages. Although HTTP/2 offers newer features such as multiplexing
that can mitigate some of the issues of the HTTP protocol identified by Huang et
al. [34], it is an interesting area showing how multiplexing may affect congestion
and response times. The additional header compression would lead to smaller re-
quests/responses, thus reducing traffic between services. QUIC does additionally
reduce the network interaction by avoiding the TCP handshake and the additional
traffic caused by TCP ACK-ing. Performance impact of the newer HTTP protocols
in context of RESTful APIs does, however, remain an unexplored area within the
literature.

3http://netshaper.sourceforge.net/
4http://www.grpc.io/
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2.5 How does CoAP compare to HTTP

The Constrained Application Protocol (CoAP) [43] emerged as an alternative to
HTTP in the Internet of Things (IoT) field where resource-constrained devices are
limited in terms of processing and energy capabilities [44]. HTTP is considered as
too heavy for some of these devices, especially HTTP/2 which has also received
criticism regarding its complexity and violation of the protocol layering principle
[45]. Unlike HTTP/1.1, CoAP is a binary protocol running on UDP. The simplic-
ity of the protocol does also restrict verbs to CRUD operations (GET, PUT, POST,
DELETE).

Shi et al. [46] investigate using CoAP for communication between mobile and
IoT devices where their backend is implemented as microservices. In their work,
they perform performance tests on the CoAP protocol between a Raspberry Pi and
a laptop through a wireless network and BLE 4.1 (Bluetooth Low Energy). Their
tests are executed on an isolated private network in addition to a public network,
that being a Starbucks network. Their results are however questionable due to
external validity concerns in respect to of their network configuration. There is
also no comparison with other protocols such as HTTP or raw UDP, which would
provide a baseline for validation of the protocol performance. Their results show
that the average round trip time caps at approximately 16ms for >73 concurrent
clients, which may not be reasonable in a real world scenario where the round trip
time should continue to increase beyond 16ms as more requests are created.

Kovatsch et al. [47] present a CoAP Java framework with additional improve-
ments towards a multi-threaded architecture and perform performance compar-
isons against "state-of-the-art" HTTP servers. Their framework named Californium5

is available under the Eclipse open source umbrella and targets devices that are not
directly considered as resource constrained, thus prioritizing performance over re-
source usage. In their performance analysis, they compare sending a simple "Hello
world" message over CoAP using Californium, compared with several other CoAP
frameworks. They argue that there is a lack of a benchmarking tool for load-testing
CoAP solutions, thus developing their own benchmarking tool named CoAPBench.
ApacheBench6 is used for benchmarking the HTTP servers. Both of these tools are
distributed over several computers in order to achieve high concurrency load to-
wards the tested server. Their results show that Californium provides about the
same performance as HTTP/1.1 using the keep-alive flag, however, demonstrates
better scalability for a high number of concurrent clients (>80 clients). Without
the keep-alive flag, a new TCP connection has to be established for each HTTP
request. Their results demonstrate a 33-60 times increase factor for this scenario.

5https://eclipse.org/californium
6https://httpd.apache.org/docs/2.4/programs/ab.html
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It is argued that this is due to the extra overhead caused by the TCP protocol in
addition to overhead from the additional headers added to each request, which
CoAP avoids.

The work by Kovatsch et al. [47] demonstrates that CoAP may perform better
than the HTTP protocol, but their experiments are however limited to a narrow use-
case scenario with a small requests payload size. Additionally, although their design
for testing the HTTP servers is distributed among several computers, ApacheBench
uses a blocking, single-threaded design to send HTTP requests which may limit
HTTP/1.1 from demonstrating its actual performance. Even though CoAPBench
adheres to the same congestion control by waiting for the response for each re-
quest before sending next request, it relies on an entirely different threading model
which may have an impact on the results. Their publication is nevertheless novel
in comparing CoAP and HTTP on servers instead of resource-constrained devices.

Daniel et al. have explored the performance differences between SPDY, HTTP/
1.1, and CoAP [48] which demonstrates that CoAP performs significantly better
performance–wise compared to both SPDY and HTTP/1.1 in terms of download
time and transferred bytes. They do also suggest improvements to SPDY and HTTP
by reducing the amount of headers sent and using TCP Fast Open, which enables
sending data during the TCP handshake. Their performance evaluation is done in
various simulated networking environments using Netem [40]. Compared to the
work by Kovatsch [47] which has a focus on performance in the context of con-
currency, this study focuses on response times and identifying protocol overhead.
However, this study is done in a more constrained environment with a bandwidth
limit of 20Kbps and latency of 20ms. Due to the added network latency, CoAP per-
forms significantly better due to avoiding the overhead from TCP. Additionally, this
study demonstrates how the various protocols perform with different object sizes.
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3 Limitations of REST in microservices

This chapter aims to address the research question regarding limitations of REST
within microservices (R1) by identifying limitations of REST in the existing litera-
ture, then discussing their relevance and applicability in the microservice pattern.
A general introduction to the history of distributed computing and REST is given
before the results of the literature search is presented, followed by a discussion
towards microservices and the findings.

3.1 Background

In the work "A note on Distributed Computing" [49] by Waldo et al., the authors
discuss some of the central issues regarding the view of unified objects across a
distributed system. These issues were specific to network latency, coordination of
shared address space, handling of failures, quality of service, and concurrency. It
was argued that the interfaces do not give a good enough indication that a certain
method call would invoke a function on another machine. This could lead to large
performance problems: a system with a large amount of remote procedure calls
would suffer from network latency when the system started communicating across
larger distances. Furthermore, a brief summary was given by the authors on the
history of distributed computing with a new paradigm emerging approximately
each decade: message-orientation in the 70s, procedure-orientation in the 80s, and
object-orientation in the 90s.

REST was introduced by Fielding in 2000 [17]. Within REST, the idea is that
parties exchange documents through resources through a unified interface. The
architectural pattern is used to describe many of the components that allow the
web to scale, where in the mid-90s the Internet faced scaling problems due to
exponential growth. One of the problems at this time was the lack of protocols that
would allow caching of information [50]. REST was developed together with HTTP
1.1 and is often used as an example how the web became successful through the
use of caches and Uniform Resource Identifiers (URIs). There are six constraints in
REST: Client-server, stateless, cache, uniform interface, layered system, and code
on demand.

3.1.1 Client-server

The client (service consumer) is accessing services, provided by a server (service
provider). By having a clear separation of concerns regarding the client and the
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server, it leads to simplification of the system and makes it easier scalable. For
example, all the user-interface functionality can remain on the client, while all
business-logic can be implemented on the server. These two can then be scaled and
developed independently to a certain extent.

3.1.2 Stateless

All information required to process one request between the server and the client
should be in one request only. Application state is maintained by the client and
there should not be any context on the server that needs to be taken into account
when processing the request.

3.1.3 Cache

It should be possible to express what information can be cached between the server
and clients. This mitigates the problem of network latency as information can be
cached on the client or on an intermediary (proxy) before reaching the server.

3.1.4 Uniform interface

An important feature of REST is that all clients are using the same interface on
the server. Although the clients may use different libraries supporting the commu-
nication towards the server, the actual interface in order to exchange information
remains the same. Fielding states that this constraint is "optimizing for the common
case of the Web" [17].

In order for a interface to be uniform, Fielding describes four constraints:

Identification of resources

Each interaction towards the system happens towards a resource. A resource could
be a web-site, an image, or a document listing customer orders. These are then
accessed through a URI scheme where the scheme is based on entities and the
naming of the scheme use nouns for the resource names.

Manipulation of resources through representations

When being accessed, each resources provides a representation of themselves (i.e.
an HTML or JSON document). When a client wants to update a particular property
of a resource, a representation of the updated resource is provided to the server. For
example, to update the name of a particular user, a representation of that resource
is sent to the serer with the updated name. Clients may however specify what
format they want representations in, for example JSON or XML.

Self-descriptive messages

One single request should contain enough information to process the certain re-
quest. The semantics of the resource is apparent through the URI, and how it
should be processed is expressed through the content-type of the representation.
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Clients can also manipulate resources using a common set of actions on the re-
source, for example the verbs in HTTP; POST, GET, PUT, and DELETE for CRUD
(create, read, update, delete) operations.

Hypermedia as the engine of application state (HATEOAS)

Much like how hypermedia plays a central role of how information is linked to-
gether, application state should be driven by the same principle. Each representa-
tion would then provide a set of URIs for valid state transitions that the client can
make. The client should then rely on the URIs provided in the representations in-
stead of relying on hard-coded URIs on the client itself. An example of this is how
users are interacting with the web. The user can click on hyperlinks to perform a
state transition in the browser. These links are specified in the obtained HTML doc-
uments or dynamic scripts from the web server and are not crafted by the browser
itself.

3.1.5 Layered system

The layered system constraint can be compared to the client-server constraint, but
takes the idea further by indicating each component (or layer) should only be con-
cerned about its own responsibility and interact with other components through
higher levels of abstraction that they provide. As an example, a client would in-
teract towards the interface exposed by the server, and is not concerned about the
implementation of what the client is trying to access, nor any intermediaries the
request reaches before reaching the server.

3.1.6 Code on demand

Code on demand is an optional constraint in REST. The purpose of this constraint
is that the server is able to provide code that will extend the functionality of the
client. One example is how a browser may access a web-page that uses JavaScript
for dynamically rendering the contents of a web-page. The HTML document of the
website would reference a JavaScript file that would then instruct the client how
to render the web page.

In the area of services, one service consumer may use code provided by another
service to interpret or execute logic required to process a certain request. However,
this may be in contradiction to the client-server and layered system constrain as
responsibility leaks outside the service consumer and introduces higher coupling
since the code provided by the server is tied to one particular language or platform.

3.1.7 Richardson Maturity Model

There has been much discussion regarding how RESTful a certain service is, and
how to quantify the actual RESTfulness of a service. The Richardson Maturity Model
(RMM) [51] is a model that identifies four levels of RESTfulness for services using
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HTTP, each level is required before being applicable to the next one:

0. Applications use HTTP as a tunnelling protocol for remote interactions.
1. The application model is exposed as a set of resources.
2. Appropriate use of verbs, response types, codes.
3. Exchanged documents follow the HATEOAS constraint.

Level 1 is a typical level that can distinguish e.g. Simple Object Access Protocol
(SOAP) services from REST services. A REST service may expose a user document
on the URI /users/1, while an RPC-based service would accept requests on for
example /userService. Level 2 indicates the service use the mechanisms pro-
vided by HTTP such as response codes to indicate what happened during the pro-
cessing of the request, and response types to express how requests and responses
should be interpreted. The last level indicates the service should be compliant with
the HATEOAS constraint in REST.

3.1.8 RPC-Style and REST

After REST was introduced in 2000 [17], there was much discussion regarding
how REST would be applicable to enterprise systems. In that area, services often
used RPC-style APIs such as SOAP and other technology in the web service stack
(WS-*). Many argued that REST was too immature to handle enterprise require-
ments such as reliable message transferring and ACID1 transaction support [52].
In the work by Pautasso et al. [52], the strengths and weaknesses between RESTful
HTTP APIs and WS-* APIs are discussed. The focus is on how WS-* and REST com-
pares in terms of technology and on a conceptual level. The paper concludes that
WS-* is more appropriate for enterprise applications that may require integration
with heterogeneous systems and strict Quality of Service (QoS) requirements (i.e.
transactions).

While REST is an architectural pattern, WS-* is a standardized technology stack.
There is a lot of discussion comparing WS-* and REST where some describe the
discussion as "biased and religious" [52], which lead to Fielding make a post to
clarify some of the confusion around REST as an architectural pattern and concrete
technologies [53].

3.1.9 Resource Oriented Architecture (ROA)

As REST is an architectural pattern, ROA is an architecture that follows RESTful
principles, being described by Richardson et al. in 2007 [54]. ROA can be summa-
rized that a system is modelled as resources (specified by a URI), where the re-
sources are accessed through CRUD operations using the HTTP verbs POST, GET,

1Atomicity, Consistency, Isolation, Durability, a set of requirements often used in context of transac-
tions.

20



Optimizing Inter-Service Communication Between Microservices

PUT, DELETE as part of the uniform interface. These resources provides represen-
tations that are linked, following the HATEOAS constraint. Additionally, the same
concept of statelessness is mentioned by Richardson et al.

3.1.10 The place of REST within microservices

REST is often considered as the go-to strategy when architecting distributed sys-
tems as developers are often familiar with the web technologies, even though there
are RPC-frameworks being actively developed such as Apache Thrift2 and gRPC3

[4]. As stated earlier, microservices should communicate using light-weight proto-
cols and encourage loose coupling. How REST is approached would greatly impact
the coupling towards other services. For example, if a service consumer is integrat-
ing towards a service that is level 3 on the RMM, it would be higher coupled if all
the URIs are hard-coded rather than embracing the capabilities of HATEOAS.

3.2 Methodology

This chapter contains a literature survey in order to answer the research question
regarding limitations of REST within microservices. The keywords REST AND (lim-
itations OR challenges) AND (web OR services OR architecture) were used across
the databases ACM, IEEExplore, ScienceDirect, Springer Link, together with a high-
level search in Google Scholar. The most relevant papers were selected and those
papers who did not mention limitations or challenges of applying REST were not
investigated. Relevant references were also taken into account while performing
the literature survey. The papers were grouped according to the problems or limi-
tations identified to REST in the papers.

3.3 Results

3.3.1 Limitations in REST constraints

In his dissertation describing REST [17], Fielding describes some drawbacks re-
garding the different architectural constraints. With the stateless constraint, repeti-
tive data may be introduced in messages can result in decreased application perfor-
mance since no shared context is stored on the server across requests. Additionally,
he mentions this constraint relies on correct implementation across various clients
of the semantics used by the system in order to achieve consistent application be-
havior across heterogeneous clients. One downside with the caching constraint is if
data is updated frequently, it could introduce a delay between when clients are able
to observe the updated data. The downsides he mentions regarding the uniform in-
terface refer to how each client would receive the same representation regardless

2https://thrift.apache.org/
3https://grpc.io/

21

https://thrift.apache.org/
https://grpc.io/


Optimizing Inter-Service Communication Between Microservices

of its needs. In other words, it limits specialization of representations for differ-
ent clients. This would also introduce extra overhead in the transferred messages.
In the optional constraint code on demand, there may be trust issues regarding
the provided code that clients would execute. Fielding also mentions that this can
increase the complexity of the system.

In another work by Fielding et al. [55], a description of REST is given, similar
to [17]. However, it is more focused on its relationship with the HTTP protocol. It
is also mentioned that REST was developed for "large-grain data transfers rather
than computation-intensive tasks" [55]. Under future work, the authors mention
that REST could be extended to include QoS and continuous data streams (e.g.
video streaming). However, the main focus of future development of REST would
be in support of newer versions of the HTTP protocol.

3.3.2 The one "true" REST API

There has been much discussion regarding when an API should be considered
RESTful or not, or how RESTful it is. Fielding argues that in order for an API to
be considered RESTful, they must be hypertext-driven [56]. Failing to do so would
result in higher coupling between client and server, and would be similar to how
the coupling is in RPC-style APIs where the client are more tied due to coupling
either through service descriptions or hard-coded URIs. An example can be how
users typically interact with websites. When accessing a website, a user would typ-
ically enter the domain name of the website, then follow links to discover new
information on other pages and possibly other websites. The user could bookmark
webpages within that particular website to make it easier to find information. How-
ever, doing so would result in higher coupling as if the URI scheme changes and
the old URL does not redirect to the new URL, the bookmark would result in a "not
found" page.

Davis [57] argues many practitioners of RESTful implementations fails to fol-
low several of the REST constraints in addition to a general lack of understanding
of them. He uses the analogy of how the web works in order to describe how REST
could be implemented and compare it against implementations that violates REST
principles. In terms of the adressabillity of resources, he argues that many imple-
mentation of search functionalities rely on the use of POST, e.g. to search for avail-
able products on a website. These search implementations keep the search criteria
inside the request body instead of the resource URI, thus breaking bookmarkability
and caching of the search results. Another discussed challenge is related to uni-
form interface is where clients may submit partial representations of a resource
through the HTTP PUT verb, making it possible for two clients to submit partial
representation of a resource where the result could be an inconsistent state of the
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resource.
Davis does also mention the issue related to how HTTP verbs are supported in

various frameworks, and how firewalls and proxies may sometimes prevent those
requests from being processed as they do not recognize the HTTP verb being used.
A common workaround is to instead rely on an HTTP POST request which has the
HTTP verb specified in a header, e.g. x-HTTP-method-override.

Another issue being discussed by Davis is the question related to whether wrap-
per frameworks should be developed in parallel with the REST API itself. It is
argued that the creation of wrapper APIs often lead to deficiencies in the inter-
face itself due to higher coupling between the wrapper framework and the REST
interface. Another argument is that the wrapper frameworks only acts as object
serializers and promotes RPC-style interaction where the REST interface is hidden.
Davis does also highlight the problem of processing semantics in relation to the
media type. He use the example of Atom, where the media type both expresses the
actual type of the transmitted representation together with how it should be pro-
cessed. This leads to service consumers having to explicitly know how links should
be processed, thus leading to higher coupling between the service and the service
consumer. Furthermore, he brings up the issue related to HATEOAS and argue few
implementations follows this constraint. He brings up the argument that hyper-
links are an essential part of how the web works. Users do for the most part not
craft links when surfing the web, but follow hyperlinks to make transitions between
web pages. The same way should APIs interact under HATEOAS; URIs should not
be hard-coded in the service consumer but be crafted based on possible state tran-
sitions from the representations provided by the service. Failing to do so leads to a
higher coupling between the service and service consumer as the URIs needs to be
hard-coded.

Davis concludes that many REST services fails to follow many of the constraints
defined by Fielding [17] and that many of the developers lack a general under-
standing of these principles.

Fernandez et al. [58] build a model based on the work by Fielding [17] in order
to gain a better understanding and make it easier to extend the architectural pat-
tern. They found that scalability, simplicity, and extensibility are central properties
within the pattern. They also argue that security is an aspect that is not described
by REST, but will be handled by implementation details of the pattern, for example
using HTTPS as the transport layer. Another property being discussed is regarding
HATEOAS. They argue REST was designed for human interactions, and not ma-
chines. Creating a service that would conform with the HATEOAS constrain would
lead to providing semantic hypermedia, which they argue would increase the com-
plexity of the service implementation.
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Vinoski [59] discuss how REST encourages low coupling through uniform in-
terface. He does also mention some of the challenges of using REST opposed to an
RPC-style API. The payloads may be larger, as the interfaces should be generalized
due to the uniform interface constraint. RPC does on the other hand allow devel-
opers to specialize the interfaces, effectively reducing the payload size at the cost
of higher coupling. Vinoski does also bring up an issue related to limitations in re-
gards to MIME-types (Multipurpose Internet Mail Extensions) when using HTTP as
the transport protocol. MIME-types are used in the Accept and Content-Type

headers to express what formats the client can understand and to specify what
format is being transmitted. These are limited to a certain set of MIME-types speci-
fied by Internet Assigned Numbers Authority (IANA) [60]. It is possible to propose
new MIME-types to IANA, or even implement these explicitly. However, doing so
would require all service consumers to support the proposed MIME-type, which in
some cases may not be possible either due to political or technical reasons. An-
other limitation of MIME-types are composite types where a representation may
relate to multiple content types, for example an XML-wrapped JSON document.
He concludes that RPC-style APIs attempts to extend programming paradigms for
the sake of simplicity into distributed computing at the cost of higher coupling,
maintainability, extensibility, and scalability.

In another article, Vinoski [61] continues the discussion regarding RPC and dis-
tributed computing. He also discusses the work by Waldo et al. [62] which refers
to how distributed computing impose an entirely different requirement on func-
tion calls compared to having those calls in the same process or module. The goal
of many RPC-oriented frameworks is to make the invocation of a function on a
remote location as simple as calling a function. The function will serialize the re-
quired arguments, and invoke the remote function. When the remote function is
invoked, the call stack may also include the frames from the original caller, mak-
ing it possible for exceptions to be caught on the client. The main problem being
discussed by Waldo and Vinoski is that this can make the developer writing code
less aware that a specific function call leads to a remote invocation. Costs related
to network latency, handling of shared memory, concurrency, and partial failures
are large problems associated with RPC-style approaches. Vinoski does state that
while developers are leaning more towards REST-style approaches, many imple-
mentations are closely related to RPC and distributed objects since many ignore
the hypermedia constraint in REST.

3.3.3 Transactions

In the work by Mihindukulasooriya et al. [63], some of the major challenges re-
lated to REST and transactions are discussed. Their paper lists patterns that support
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transactional support within REST, however they conclude many of these patterns
contradict properties within REST. One of the major challenges is how transactions
impose the notion of state throughout a system, which is a violation of the stateless
constraint in REST. In a decentralized system, the particular services involved in a
transaction need a mechanism for coordination, agreement, and failure-recovery.
Some implementations attempt to solve the notion of state through the creation of
temporary resources. It is argued these resources are expressing application state
and not resource state, and is therefore not entirely RESTful. Furthermore, the
same data in a service may be exposed through different resources. This does fur-
ther complicate how synchronization should be approached. In some models, the
aspect of resource locking is used. They mention issues regarding resource locking
would be related to deadlocks, clients not adhering to appropriate usage of locks,
and availability of resources. The paper concludes that the major challenge would
be to define a simple and efficient protocol that allows transactions while at the
same time adhering to the constraints under REST.

Pautasso et al. propose a Try-Confirm/Cancel (TCC) pattern where transactions
are implemented by the use of confirmation links to achieve atomicity across a
transaction [64]. In their prototype, they take the example of booking of flights be-
tween two different airlines. After creating the booking, the resource would return
a document containing a link for payment. Each booking would have a deadline
of 24 hours for payment, and in this period the client can make a DELETE on the
booking resource to delete it, or a PUT to confirm it with the appropriate con-
firmation details after having processed the payment. An example of a successful
booking using the TCC pattern can be seen in Listing 3.1. The requests prefixed
with 1 would involve seat reservations. Requests prefixed with 2 is the creation of
the actual booking, while request 3 is confirming the booking. Their example is,
however, limited in that it does not show how rollbacks should be handled e.g. if a
user does no longer have any money left in their account between 3a and 3b and is
therefore unable to confirm the payment of the second flight. One approach would
be to confirm to the booking resource after the payment for both flights have been
performed. It could be considered unreasonable for a flight company to always roll
back payments on DELETE of a confirmed booking. A more appropriate solution
could be that a payment would return a reference number or code that can be used
as a confirmation token to the booking resource.

1 GET swiss.com/flight/LX101/seat -> HTTP 200 - OK
1 GET easyjet.com/flight/EZ999/seat -> HTTP 200 - OK
2 POST swiss.com/booking -> HTTP 302 - FOUND,

Location: /booking/A
2 POST easyjet.com/booking -> HTTP 302 - FOUND,

Location: /booking/B
2 GET swiss.com/booking/A -> HTTP 200 - OK,
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Confirm URI: /payment/A
2 GET easyjet.com/booking/B -> HTTP 200 - OK,

Confirm URI: /payment/B
3a PUT swiss.com/payment/A -> HTTP 200 - OK
3b PUT easyjet.com/payment/B -> HTTP 200 - OK

Listing 3.1: A list of the involved requests and responses involved while performing
a booking between two airlines using the TCC pattern proposed by Paytasso et al.
[64]

da Silva Maciel et al. [65] propose a transaction model for REST named Opti-
mistic Concurrency Control in order to solve the lost update problem in which two
clients overwrite each others changes. It uses a version number on representations
in order to validate whether the resource state has changed between calls. These
version numbers are attached to the representations. A service can then reject a
request to update a resource if the version number is not equal to the one that
the service is holding. For each modification to the resource, the version number
is incremented. The case where a request between two parties is denied due to
conflicting state is shown in Figure 3. In this example, Alice and Bob want to make
sure that some resource has the value "foo", then update it accordingly. Alice wants
to update the resource to "bar", while Bob wants to update it to "don". Alice does
first make a request, and sees that the resource returns a representation with the
content "foo" which is version 1. Bob is very eager to make the update and makes
another request and receives the same response as Alice. Before Bob manages to
make the update, Alice makes a request to update the resource to "bar" together
with the current version number of the resource. The resource accepts the update,
and returns an OK to Alice. Bob, unaware of Alice having updated the resource
thinks the resource is still at version 1 and makes a request to update the version
1 resource to "don". The resource sees that Bob is not aware of the update being
done by Alice due to the old version number, and rejects the update request with
a CONFLICT. This pattern is considered optimistic since it assumes that conflicts
rarely occur.

3.3.4 Service discovery

One of the discussed differences regarding WS-* compared to REST by Pautasso
et al. [52] is that REST does not describe how service discovery should be imple-
mented. In the work by Shang et al. [66], the various challenges of IoT devices
using TCP/IP are discussed. In particular REST together with HTTP is discussed.
IoT devices often communicate through a RESTful API using either HTTP or CoAP.
These are often typically secured using Transport Layer Security (TLS) and Data-
gram TLS (DTLS). They argue the encryption together with overhead from using
REST introduces extra overhead. In a dynamic environment, the proxies may often
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ResourceResourceAliceAlice BobBob

GET

OK: v1: foo

GET

OK: v1: foo

PUT: v1: bar

OK

PUT: v1: don

CONFLICT

Figure 3: How a conflicting state is handled in the Optimistic Concurrency Control
pattern.

not be able to cache a significant enough amount of requests in order for the clients
to benefit from it. Furthermore, the stack for supporting HTTP can be considered
too much from too resource-constrained devices. One approach for service discov-
ery being discussed is Domain Name System Service Discovery (DNS-SD) which
enables discovering other devices on a local network, such as printers and other
computers. This approach is criticized for not taking into account that IoT devices
are often considered resource-constrained and that they lack the necessary infras-
tructure required for supporting DNS-SD. An alternative to DNS-SD being discussed
is Constrained RESTful Resource Discovery (CoRE-RD) [67]. CoRE-RD has a dif-
ferent approach to service discovery compared to DNS-SD by discovering resources
and their capabilities instead of actual services. Furthermore, it is implemented on
top of the CoAP protocol.

Stanik et al. propose a messaging protocol using Extensible Messaging and Pres-
ence Protocol (XMPP) [68] for inter-cloud communication [69]. The purpose of
using XMPP instead of HTTP is to avoid some of the limitations by using HTML
with REST, being the lack of service discovery and a limit of verbs that can be used
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on resources. Their protocol defines two XML documents: One for interacting with
resources, and one for describing the capabilities of resources using XMPP Web
Application Description Language (XWADL). XWADL makes it possible to gener-
ate code stubs for remote interaction as it provides a description of the resources.
Interactions with resources happen through XML documents (XML-REST schema)
that wraps the actual representations. An example of this can be seen in Listing
3.2.

<iq type="result"
from="company-a.com/openstack"
to="requester@company-b.com/rest-client"
id="rest2">

<resource xmlns="urn:xmpp:xml-rest" path="/compute">
<method type="POST">

<response mediaType="text/uri">
<representation>

xmpp://company-a.com/openstack#/vm1
</representation>

</response>
</method>

</resource>
</iq>

Listing 3.2: An example of a resource representation in XML-REST by Stanik et
al. as a result of creating a virtual machine in OpenStack through a POST request
[69].

One of the important differences between their proposal [69] and REST with
HTTP is how resources accept an arbitrary number of actions to be performed on
them together with a method. While the methods in their implementation is limited
to CRUD operations, the particular action allows fine-grained operation invocation
on resources. The authors state that this enables RPC-style invocation of methods
similar to SOAP and XML-RPC.

3.3.5 Extensions of REST

In the work by Khare et al. [70, 71], several patterns are proposed to deal with
various issues regarding REST in a distributed system. The biggest problem being
discussed is how latency becomes a problem in distributed problems. Considering
a system running on one local machine, although there may be forms of thread
synchronization mechanisms to deal with concurrency issues, business logic may
rely on direct memory to access values in the system. This can become challeng-
ing when a system relying on low response times becomes distributed, as network
latency can make processes take much longer time. One example being discussed
is how the observed value of resources change over time, e.g. stock prices. The
issue of latency complicates how simultaneous agreement where all parties need
to agree on a certain criteria is performed between different services. The authors
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do also mention one limitation of REST is messaging is limited to a synchronous
request-response protocol. One particular problem being discussed is the "lost up-
date" problem, where if two clients would write their changes to a resource simul-
taneously, the changes of one client would overwrite the other client resulting in
lost data.

In order to mitigate these limitations within a distributed system, additional
patterns have been proposed to extend REST by Khare:

A+REST (Events)

The A+REST (Asynchronous REST) pattern can be described with the publish-
subscribe pattern under Section 2.2. A client would "watch" for updates on a specific
resource, then the resource would notify the client when the update occurs. This
solves the problem where a client has to poll at a certain interval to synchronize its
understanding of a resource.

R+REST (Message routing)

The R+REST pattern attempts to solve the issue where one request needs to reach
multiple services before reaching a final service. An example given by Khare in [71]
is how a printer service may require a printing request to reach multiple other ser-
vices before reaching the final printer service. When printing, a user may want to
attach a cryptographic watermark on the printed papers. After being printed, the
amount of pages needs to be reported to a payment accounting service for billing
the user about how many pages have been printed. Typically, each of these steps
are presented as intermediary servers that acts as proxy servers before reaching
the printing service. The message routing pattern eliminates some of the response
links, reducing the amount of roundtrips each message must make in order to per-
form a print operation. Instead of waiting for a response from the next service to
perform its operation, the service would route the request to the next service. The
next service then sends the response back directly to the client making the request.
When the printer service is done printing, it can notify the payment accounting
service about the amount of printed pages (which then in turn notifies the user)
instead of sending responses through a nested chain of intermediary services that
would wait for a response. This can be compared to how asynchronous messag-
ing is performed with microservices where a service-provider may notify another
service other than the service consumer when a certain request is processed.

REST+D (Delegation)

The delegation pattern attempts to deal with the "lost update problem" mentioned
earlier by introducing an intermediary synchronization service (mutex lock object)
that encapsulates an origin service. The synchronization service guarantees mutu-
ally exclusive access to the encapsulating service by maintaining a registry of which
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clients are accessing which resource. The resource can be considered as locked once
a request goes through it until it is instructed to be unlocked, or until it times out.

REST+E (Estimation)

REST+E describes how REST estimates current values using caches or lower level
protocol mechanisms. A value is considered to be the current value when it is
present in a cache until the cache is invalidated.

3.3.6 Linked documents

Liskin et al. [72] propose a system for adding hyperlinks to resources using a proxy,
enabling existing level 2 systems to reach level 3 on the RMM scale. They argue
many practitioners often do not implement HATEOAS in their system as it involves
duplicating business logic and URI schemes. Their proxy server would rely on a
modeling language that describes which state transitions the representations would
be in. Their proposal is however limited to XML documents and relies on a heavy
use of XPath24 for parsing the transmitted documents. In their conclusion, they
reiterate how HATEOAS results in weaker coupling as clients do not need to know
the entire domain model of the system. In addition, clients become more robust for
changes in URI schemes.

With RESTler, Alarcon et al. [73] presents a crawler for REST services. The
crawler would rely on a metamodel named Resource Linking Language (ReLL)
that describes how the different representations provided by a resource are linked
together. RESTler would then produce a typed graph of the various representations
it obtained and their relations. As an example, they traverse the webpage of UC
Bakerly and parts of the Twitter API. They conclude by stating their solution is
limited in terms of acting as a service descriptor by means of not being able to
express context of use of the resources and authentication.

3.4 Authorization and authentication

The work by Zou et al. [74] discusses the relationship between REST and Service
Level Agreement (SLA) in terms of accountability. They argue REST was not de-
signed to fit enterprise requirements such as who should be accountable when a
SLA is breached, which is crucial in cloud environments. In their work, they pro-
pose Accountable State Transfer (AST), which is an architecture to solve the issues
REST has in relation to accountability. In AST, service contracts are identified by
an URI which is referenced in metadata fields in requests/responses. They define
a service contract as follows: "an electronic representation of a traditional contract

4https://www.w3.org/TR/xpath20/
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that captures the essential contractual information including involved parties, do-
main specific terms, obligations for each party, contract execution states and rules
that determine those states" [74]. Furthermore, they argue that the major chal-
lenge of REST is knowing which contract relates to a service in addition to tracking
progress of contract execution and breaches. The AST introduces two new archi-
tectural components: The contract manager and a contract monitor. The contract
monitor is responsible for monitoring the interaction between service and service-
consumers, and communicates with the contract manager which determines the
state of a contract execution. While AST is proposed as an extension of REST, it pro-
vides a framework for managing contracts between services and service-consumers.

RestACL by Huffmeyer et al. propose an Access Control Language (ACL) for
REST services [75]. RestACL provides a solution for dealing with access control
in REST, as according to the authors, REST does not specify how this should be
handled. Their solution use Attribute Based Access Control (ABAC), which allows
rules to be based upon attributes of objects. Their implementation is using JSON
for expressing the ACL rules and consists of domains, templates, parameters, and
policies. The domain is used for expressing the resource model being used in the
REST services. This enables associating policies with each resource. Parameters en-
ables providing policies for resource attributes in a similar manner, and templates
provides a generalization of access rules where multiple resources may use the
same access rules.

Field et al. [76] proposes a framework for obligation fulfillment. An obligation
is defined as non-functional or a cross-cutting system requirement. One example
being used is handling of electronic health records. When a doctor is accessing
the records of a certain patient, said patient should receive a notification about
who and when accessed their health records through a secure channel. Those obli-
gations can be imposed by policies or requirements that are introduced after the
system has started operating. Their work describes how this can be implemented
within a REST architecture without coupling the necessary logic of obligation ful-
fillment together with business logic in addition to a proposal to extend the security
module in the Java Spring framework to support their approach. In their imple-
mentation, the various obligations are modelled as resources available through a
REST API. These resources can then be referenced in metadata fields and config-
uration files. In their implementation for the Spring framework, the configuration
files can reference the obligations during configuration time of the application. Fil-
ters in the application will intercept requests before they get processed can then
act appropriately depending on the referenced obligation.

WS-Agreement is a specification that enables two parties to agree on a SLA in
context of service consumption. The work by Kubert et al. [77] explores how the
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WS-Agreement standard can be implemented together with REST. WS-Agreement
is also relying on other WS-* standards that relates with SOAP. Their work aims
to re-implement the WS-Agreement and make adjustments to the standard such
that it is more appropriate in context of REST. They found that it is not possible to
directly port the standard directly to REST considering the standard as-is leads to
an RPC-style implementations that use technologies such as SOAP for communi-
cation. In their implementation, they implement the various concepts of the spec-
ification as resources (Templates, agreements, and their associated states). The
authors have a discussion regarding the implementation of application state. They
argue having application state on the client is "kind of misleading" [77] consider-
ing how resources can also represent state. The discussion seems rather confusing
considering they bring up the argument regarding whether clients should maintain
the resource state and specify these in the requests. Given the example where a
browser is requesting a web-page from a web server in a RESTful fashion, the web
server does not care about the processing of the request in context of the previous
requests. The client may, however, keep a list of the previous URIs visited and their
representations for caching in order to prevent requesting them again. The actual
web-page itself being requested may however, be changed over time. If it is a news-
page, it may change multiple time in an hour. The client will then capture the state
of the resource through a representation at the moment in time when a request is
made.

3.5 Discussion and future work

3.5.1 Discussion

An architectural pattern can be described by a set of constraints. These constraints
are then applied to a system in order to have a certain (positively) desired outcome.
In a presentation by Fielding on the REST architecture [50] he reiterates that the
constraints in an architectural pattern is not mandatory but only used to achieve
the desired outcome that the particular constraint would impose on the system.
It is therefore important to question whether the certain constraint would be in
violation of other parts or requirements of the system and how these problems
could be solved.

Compared with RPC-style APIs, REST can provide a weaker coupling between
service-consumer and the service provider. However, one challenge is how much
of an impact HATEOAS would have on coupling between clients. It is argued that
HATEOAS may become challenging to implement due to duplication of business
and URI schemes [72]. However, there are standards that specify how this can be
achieved through for example HAL (Hypertext Application Language) [78].

Some of the surveyed papers argue the lack of service discovery is a limitation
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of REST. It might be arguable that HATEOAS and the uniform interface constraint
does however provide mechanisms that can partially be used for service discovery.
In HTTP, it is possible to access resource metadata through the HEAD verb, and
which HTTP verbs the resource can accept using the OPTIONS verb [54] (Uni-
form interface). Which state transitions can be made from one resource can be
expressed in the representation (HATEOAS) [56]. Clients who have a hard-coded
URI scheme would have a higher coupling in addition to a certain understanding of
the domain model that the API exposes. Those clients are required to rely on some
documentation (either before run-time, or as a list of URIs loaded at run-time) that
would describe how the service-consumer would interact with the service-provider.
Another challenge regarding HATEOAS would be the coupling on the exchanged
documents themselves and how much domain-specific knowledge should remain
in the service-consumer as discussed by Vinoski [59].

Perhaps the most significant limitation of REST for microservices would be how
REST limits specialization of interfaces in relation to performance. The uniform
resource constraints states: "The REST interface is designed to be efficient for large
grain hypermedia data transfer, optimizing for the common case of the Web, but
resulting in an interface that is not optimal for other forms of architectural inter-
action." [17]. This would prevent specialization of the interface where for example
specific type of clients would receive trimmed-down documents to prevent addi-
tional data transfer overhead. Another question would be whether microservices
should be optimized for common usage, or specialize themselves towards other
services. Having specialized services would lead to higher coupling and reduce the
flexibility and ability to replace a certain service.

Considering microservices as a way of approaching SOA, many of the problems
of applying REST in a microservice system would be inherent from previous dis-
cussions where REST was compared with RPC-style APIs such as the WS-* stack.
Even though many of the discussions were considered as heated and that they
were comparing two conceptually different entities (a standardized implementa-
tion to an architectural style) [53, 12], many of the challenges remain important
from that discussion. Issues regarding QoS and transactions are still relevant when
considering a REST architecture.

In the microservice architecture, REST would be limited to the synchronous
one-to-one ISC pattern. The additional patterns proposed by Khare [70, 71] de-
scribe how RESTful interaction can be used in synchronous in addition to one-
to-many communication. These are patterns similar to the ones described under
Section 2.2. Furthermore, the message routing pattern can be compared to how
microservices would use message queuing for asynchronous message passing. Im-
plementing asynchronous calls does on the other hand introduce an implicit state
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between requests in terms of the request-response lifecycle.
Transactions remain a challenge in RESTful systems, and is perhaps even more

of an issue in a microservice architecture due to how services should have low cou-
pling between them. Many of the patterns attempting to implement transactions in
a RESTful fashion often lean towards the creation of temporarily resources, which
is argued should not be considered RESTful as the resources themselves represent
application state in order to not be in violation of the stateful constraint [63].

In context of microservices, transactions could be considered an anti-pattern
due to how they lead to high coupling between services. Instead, it might be worth
considering to combine services that are required in a transactions. However, if this
is not possible, other patterns such as eventual consistency is a much considered
alternative to ACID transactions [4].

There were multiple issues being discussed in relation to using HTTP as the
transport protocol. Although none of the mentioned papers specified any partic-
ular HTTP version, most of them mentioned limitations from max URI lengths,
extensibility of MIME and content types, and lack of support of various HTTP verbs
in proxies and firewalls. It would be questionable whether some of these limitations
could be considered anti-patterns. Having a HTTP header that is large enough it
is rejected by the server could be a symptom that there is too much meta-data
(headers) or the URI is too long, and some of this information should be moved to
the HTTP body instead. This is on the other hand not possible with certain verbs
such as GET, which does not allow a HTTP body. The issue regarding extensibility
of MIME and content types may only be related to specific use-cases. Microser-
vices should rely on a commonly used (and understood) exchange formats, such
as JSON or XML. Introducing entirely new MIME or content types would lead to
significantly higher coupling between client and server. It may also require special-
ized implementations of parsers for those types in addition to implementing the
MIME and content-types themselves.

Others have proposed to use alternative protocols such as the XMPP protocol
[69] by Stanik et al. The goal of their proposal was to solve limitations introduced
by the HTTP protocol in regards to limitations of HTTP verbs and lack of service
discovery. Their proposal does however enable developers to implement RPC-style
APIs in the form of action elements in the requests that can be performed on the
target resource. Although their proposal involves using the GET, PUT, POST, and
DELETE verbs for CRUD operations in order to comply with the uniform interface
constraints, the fact they are introducing an arbitrary set of operations through
actions is a violation of the uniform interface constraint. This approach can be
compared with how functions are executed on distributed objects in for example
SOAP RPC-style APIs, and is heavily criticized by Fielding in [53].
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While there are multiple proposals for how to implement HATEOAS, the main
challenge when applying it is providing a simple and efficient framework for de-
velopers to implement the services. As stated by Davis [57] and Fielding [56], the
lack of HATEOAS in REST services limits clients from acting as thin clients, leading
to knowledge of the domain model being implemented on clients through the ex-
pression of hard-coded URIs. Davis further argues that one of the reasons for this
may be that REST frameworks does little to promote the HATEOAS constraint in
particular.

As stated earlier, microservices that embrace HATEOAS lead to a lower coupled
system. It makes it simpler to change the URI scheme in services and reduces the
amount of domain logic being implemented in the service consumer. It does also
lead to a higher chain of responsibility due to how the service consumers sees which
state transitions it can make through hypertext. This embraces the principle that
each microservice should be a self-containing service with low coupling towards
other services. Davis makes the example of a web without hypertext [57], making
it much more difficult for users to browse the web as they are required to manually
craft the URI for each website. This can also be said for other media that a web page
may require, such as style sheets, scripts, images, and videos. Instead of using a
browser, alternatively, the user would have to use applications that contain domain-
specific knowledge for each web area that they would want to explore. In other
words, hypertext is fundamental to how users browse the web: The browser does
not contain any domain-specific logic. Instead, it makes requests on behalf of the
user and displays the available state transitions that can be made by the use of
hypertext.

Services using REST using inter-service communication are on the other hand
required to be aware of a certain level of the domain model being exposed by a
service in order to act appropriately. Even though the URIs are crafted based on
hypertext from responses, the service consumer does still require an entry-point to
make the first request in order to see which state transitions are available from a
service. The service consumer would still be bound to the service contract in terms
of the document structure and contextual use of the calls to the service.

3.5.2 Future work

Following the HATEOAS discussion, one field of research that was not investigated
was how frameworks could further embrace HATEOAS in application design. Davis
[57] argues not only the lack of understandability but also the support for HA-
TEOAS in REST frameworks is a major factor keeping back developers from em-
bracing HATEOAS in their applications. This is further supported by Liskin [72]
who argue developers would have to duplicate URI schemes and business logic in
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order to expose state transitions. Websites is a much used example of an imple-
mentation of HATEOAS. One research topic would be investigating which and how
programming paradigms and patterns can be taken from the creation of dynamic
webpages and applied to the expression of hypermedia in REST APIs.

Another question in terms of HATEOAS is how many state transitions should
be expressed in each document. It may also not be known at implementation-
time which URIs a service consumer may request. One of the goals of SOA is to
provide new business capabilities through the sum of other services [4]. Relying
on HATEOAS to forge URIs could in some cases lead to additional requests in order
to obtain a link for the intended state transition. Having too many links in the
representation would lead to larger representations, while too few would lead to
multiple requests being involved to discover the appropriate state transition.
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4 Protocol Comparison in Acme Air

This chapter addresses the research question regarding benefits and limitations of
HTTP/2 as an alternative to HTTP/1.1 for ISC (R2), whether CoAP can be consid-
ered as an alternative protocol to HTTP for ISC (R3), and investigates approaches
for optimizing existing implementations (R4). This is done by using the CoAP and
HTTP/2 protocol in the Acme Air benchmarking system [79] and investigating
their behavior under different latencies. The latencies would simulate the distance
between two microservices.

4.1 Background

The work by Ueda et al. [79] investigates an open-source bench-marking tool for
analyzing the behavior of web services. They argue this is the first study being done
on microservice performance in particular. This is done together with a monolithic
reference implementation to see the impact of moving a system to a microservice
architecture. In their findings, they found that their microservice implementation
performed significantly slower in terms of response time (79.2%) than the mono-
lithic implementation. Furthermore, they compare the microservices implemented
in Java and NodeJS. Additionally, the authors investigate the performance on both
hardware (cycles per instruction and code path lengths) and software level (time
being spent in modules/layers). The authors also seek to investigate the impact
of container virtualizaton by testing different Docker networking configurations
and comparing running the services on the host against running the services inside
Docker containers.

Their work is based on AcmeAir, which is a fictitious airline website for bench-
marking web services. This has then been extended to microservices by splitting
up the service into separate services. Their Java implementation is using IBM Web-
sphere Liberty as an application container where the REST API is implemented
using JAX-RS, a Java Enterprise framework for building REST APIs. The NodeJS
implementation uses the Express framework for implementing the REST API. The
AcmeAir website is a static website that interacts with a REST API using JavaScript
for dynamic loading of information. There are six services involved in AcmeAir:
main-service, auth-service, booking-service, customer-service, flight-service, and
support-service. These services are encapsulated by one common nginx server which
acts as the API-gateway in AcmeAir.
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Figure 4: Overview of the involved hosts/services in the experimental setup. The
host with gray background are not covered by any of the test cases in the acmeair-
driver.

Requests towards the AcmeAir system are made using the acmeair-driver which
is a set of test cases configured in Apache JMeter. These test cases simulate a work-
flow throughout the system, but target only certain services through the exposed
API and not the website of the system. The different services involved in the test
cases are represented as the white services highlighted in Figure 4. Typically, the
test cases requires a signed-in user. The different test cases can be listed as follows:

• Login
POST /auth/acmeair-as/rest/api/login

Logs in a user.
• Query Flight
POST /flight/acmeair-fs/rest/api/flights/queryflights

List available flights from airport X to airport Y at a certain date.
• List Bookings
GET /booking/acmeair-bs/rest/api/bookings/byuser/<email>:
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List the different flight bookings a user identified by the email has registered.
• Logout
GET /auth/acmeair-as/rest/api/login/logout:

Logs out the user.
• Book Flight
POST /booking/acmeair-bs/rest/api/bookings/bookflights:

Books a flight for a user.
• View Profile Information
GET /customer/acmeair-cs/rest/api/customer/byid/<email>:

Views profile information for a user.
• Update Customer
POST /customer/acmeair-cs/rest/api/customer/byid/<email>:

Updates information about a certain user.
• Cancel Booking
POST /booking/acmeair-bs/rest/api/bookings/cancelbooking:

Cancels an existing booking.

The different endpoints that each test targets differ in both content type and the
length of the response. The login endpoint accepts login credentials in the content
type application/x-www-form-urlencoded, while logout does not accept
any input data. They both produce a response in text/plain with the content
"logged in" or "logged out". The queryflights resource can produce longer JSON
documents (content type application/json) which can be multiple kilobytes
long.

These tests are declared in a JMX script together with internal components in
Java for JMeter to build and parse requests. The JMX script contains parameters
for the various requests, expressing how the different tests should be executed,
and how the result of the tests should be processed after their execution. When
JMeter starts, it will use the JMX script together with the compiled Java classes
containing handling of the retrieved responses and run for 10 minutes. During this
period of time, there is a small ramp-up window in which 10 threads are spawned
for sending/processing requests. The result of each request is written to a CSV file.

Cycles per instruction (CPI) is the average number of clock cycles per CPU in-
struction. It is determined using an in-house tool. A high CPI would indicate that
more time is being spent per instruction. This may the case because of cache misses
and other hardware-level bottlenecks. The code path length is also determined us-
ing an in-house tool and is the amount of CPU instructions required to process one
HTTP request to the AcmeAir system. This metric was used to determine if the code
path would change across different configurations in their benchmarking.

The AcmeAir system is deployed in Docker containers on an IBM z13 main-
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frame. The mainframe allows partitioning of the hardware using logical-partition
mechanism (LPAR) that enables isolating running operating systems. The partition
for running the acmeair-driver was allocated to 64 cores with 1TB of RAM, while
the partition for hosting the AcmeAir system had 16 cores with 2TB RAM. Each
partition ran SUSE Linux Enterprise Server 12 SP1.

In their results, they found that the overhead from the Docker bridge network-
ing infrastructure had a significant impact on performance with a 33.8% hit on
performance compared to processes running on the host. The code paths were on
average about 3 times as long in the microservice system compared to the mono-
lithic architecture. One major difference was observed between the NodeJS and
Java process. The NodeJS microservices used a higher amount of time in the na-
tive parts of the runtime compared to Java, where the reason being that Java has
more of its networking stack implemented in Java, whereas NodeJS rely more on
native implementations in C++. Regarding CPI, the authors saw a trend of NodeJS
having a smaller CPI compared to Java. Furthermore, the NodeJS implementation
had a higher cache-miss rate in the microservice implementation compared to Java
which was different from the monolithic implementation where Java had a higher
miss rate.

In context of the microservice architecture, the work by Ueda et al. is rather
limited. The microservices in AcmeAir communicate using synchronous API calls
using HTTP/1.1 over a RESTful API. There is no asynchronous messaging through
message queues or publish/subscribe patterns being used. Some of the microser-
vices also interact with each other, for example service that require authentication
rely on sending an HTTP call to the auth-service for each request they process. As
argued earlier (Section 2.1.1), an alternative would be to duplicate information
across services to avoid the communication overhead. Furthermore, in terms of the
Richardson maturity model, the REST API provided in AcmeAir does not rely on
HATEOAS, but use hard-coded URIs for the resources that are being used. Some
of the REST endpoints are also leaning more towards RPC style that uses verbs
for resource names (e.g. cancelbooking). The API does also use cookies for au-
thentication, which has been criticized by Fielding for violating several constraints
of REST [17]. The test cases in the acmeair-driver is also only limited to GET and
POST requests.

While Acme Air does not focus on comparing protocols, it provides a reference
and a base for analyzing microservices during runtime. Furthermore, how the dif-
ferent requests are structured in both size and content type makes it possible to see
more in detail how different protocols scale across different payload sizes.
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Figure 5: In container-based virtualization, instances shares the same kernel as the
host, enabling more efficient resource usage at the expense of isolation compared
to traditional virtualization.

4.1.1 Container virtualization

Docker is a container virtualization technology that enables encapsulations of ap-
plications from each other and lets these run in what they see as an isolated envi-
ronment. It can be compared to virtual machines where Docker does not virtualize
the kernel per Docker instance, which enables faster start-up times of containers
and lower resource footprint compared to full virtualization (Figure 5). This does
however come at the cost of isolation and security. A compromised virtual machine
requires escaping the virtual machine and the hypervisor (the software managing
virtual machines) in order to get access to the host kernel. Some methods of better
securing Docker containers can be using control groups, SELinux and avoid running
privileged/elevated containers [80]. Processes running in Docker containers will
see their own isolated file system and will be able to access and execute processes
available in that particular container. The containers are often stripped-down ver-
sions of a certain operating system as the containers should only contain what is
required to execute the particular process. Docker has received much attention as
it simplifies development and deployment of applications. Container virtualization
is also limited to certain platforms. For example, Docker only supports Windows
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and Linux containers1. Running a Linux container on Windows requires a hypervi-
sor (e.g. Hyper-V) that then would virtualize the shared Linux kernel since a Linux
container cannot directly interact with the Windows kernel. [81]

In Docker, there are three central concepts: Volumes, images, and containers.
Docker images are used as templates to spawn containers. Compared to how reg-
ular applications run, the image can be thought of as the binary files for a process,
where the process itself is the container in Docker. The images are built from a
Dockerfile, which is a text file declaring which image it should be based on, where
applications should be stored within the image, and what happens when the con-
tainer starts. The images are built by using layers. This means that one image is
the base image together with the changes introduced by a Dockerfile on top. This
makes it possible to re-use layers across different images. If multiple images use the
same base-image, they would just reference the layer instead of copying it for each
image. Docker volumes are storage areas for Docker containers to persist data.

The Docker networking stack allows containers to communicate using two modes:
bridge or host networking. With the bridge mode, the containers will communicate
with a virtualized networking adapter compared to host networking where the
container will use the same networking stack as the host. Bridge networking al-
lows containers to listen on ports that would otherwise collide with other ports in
other processes on the host or Docker networks.

In the work by Ueda et al. [79], the Docker infrastructure did not lead to any
significant impact on the input/output (I/O) performance with the exception of
bridge mode which degraded performance by 33.8% in throughput together with
a higher number of cache misses. This is due to the extra overhead introduced by
the virtualized networking interface. They argue that developers should carefully
consider which networking mode is being used with Docker, and argue that the
bridge mode should only be used if it is not possible to use host networking.

4.1.2 Protocols

In AcmeAir, the HTTP/1.1 protocol is used for inter-service communication [79].
Additionally, the keep-alive flag is used to reduce the amount of TCP handshakes
across requests made within the system (see Figure 6a). In comparison, HTTP/2
has the keep-alive functionality built into the protocol and performs connection re-
use by default [36]. HTTP/2 does also allow multiplexing which avoids the prob-
lem of ahead-of-time blocking in HTTP/1.1 (see Figure 6b). CoAP, on the other
hand, does not have any initial hand shake as it is an UDP-based protocol [43].

1https://blog.docker.com/2016/09/dockerforws2016/
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(a) How keep-alive is used in HTTP/1.1 to re-
use TCP connections.

ClientClient ServerServer
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Request
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(b) How multiplexing also enables parallel re-
quests in HTTP/2.

Figure 6: Comparison of how two requests may interact with a server in HTTP/1.1
and HTTP/2.

4.1.3 nginx

nginx (pronounced "engine X") is a web server that is also used as reverse-proxy in
front of web applications. It has gained much attraction during the past decade for
providing simple configuration and high performance [82]. nginx supports both
HTTP/1.1 and HTTP/2 for front-end connections, however is limited to HTTP/1.1
on forwarded connections. In nginx, each request is processed by a single-threaded
worker process. This worker process uses asynchronous non-blocking I/O to com-
municate. This solves the problem of slow connections affecting the processing of
other connections and enables more efficient processing of requests under high
load. [83]

4.1.4 nghttp2

nghttp2 is a C-library for the HTTP/2 protocol. The authors of the library has also
implemented a web proxy utilizing the library named nghttpx2. One of the special
properties of nghttpx is how it can operate as a translator between two proto-
cols. It can, for example, accept incoming HTTP/1.1 requests and forward them to
a HTTP/2 server using HTTP/2. nghttpx uses an event-driven, non-blocking I/O
model similar to nginx. However, nghttpx is only a proxy and does not enable
hosting of web services.

4.1.5 Californium

As mentioned in Chapter 2, Californium is a Java framework under the Eclipse
open source umbrella for building applications using the CoAP protocol [47]. It

2https://nghttp2.org/documentation/nghttpx.1.html
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uses a multi-threaded model with a blocking socket for I/O communication. One
of the modules in Califorium is Californium-Proxy which acts as a proxy that can
translate messages between CoAP and HTTP. Californium is licensed under the
EPL+EDL dual license. It was first introduced by Kovatsch et al. in 2012 [84]
and has then later received attention regarding optimization such as the thread-
ing model described in [47].

4.2 Methodology

4.2.1 Infrastructure

The AcmeAir system is deployed on an OpenStack3 private cloud. This involved 7
separate instances for hosting AcmeAir services, and one instance for the acmeair-
driver. All of these hosts are instances running CentOS 74 which have 4GB RAM,
2 vCPUs, and 40GB of disk storage. Each of the components in AcmeAir are ex-
ecuted in Docker containers, each on their respective host. The different services
in AcmeAir are for the most part Java applications with the exception of nginx1,
which acts as the API gateway. The Java applications are hosted in a WebSphere
Liberty application server.

In order to achieve a higher level of isolation between the services to simplify
latency simulation, each service is deployed on a separate host with the exception
of the database belonging to each service. Considering a more real-world scenario
might have a database on a separate host optimized for database services, this ex-
periment is investigating the impact of different protocols for inter-service commu-
nication under different latencies. Having the database on the same host as their
belonging service makes it easier to see the impact of different protocols under
different latencies as database interaction does not appear on the outgoing traffic
from the host. Orchestration of these services was done using automated scripts
that connect to each host and start the services. An overview of the different hosts
together with their interaction can be seen in Figure 4.

4.2.2 Simulating networking latency

Latency between each service is simulated using the tc (Traffic Control) utility pro-
gram in Linux5. The following command is used in order to add a latency of 5ms
to the interface eth0 for outgoing traffic:

# tc qdisc add dev eth0 root netem delay 5ms

This adds a traffic rule to the queuing discipline (qdisc) for the eth0 interface.
When applications are sending packets on the network, those packets are queued
to the qdisc for that particular interface. The kernel will then attempt to forward

3https://www.openstack.org/
4https://www.centos.org/
5https://linux.die.net/man/8/tc

44

https://www.openstack.org/
https://www.centos.org/
https://linux.die.net/man/8/tc


Optimizing Inter-Service Communication Between Microservices

these packets from the qdisc to the network interface driver. In the command above,
root will refer to the root of the networking interface since traffic class rules are
not used for configuring the traffic.

The netem keyword in the command above is a networking emulation tool for
the purpose of testing applications and protocols under different conditions such
as latency and packet loss [40].

As the command only introduce delay on outgoing traffic, it is executed across
all service hosts, including the acmeair-jmeter1 host to achieve simulated latency
on both inbound and outbound traffic. As a result of this, introducing 5ms simu-
lated latency then results in 10ms additional round trip time between two service
hosts.

4.2.3 Experimental setup

The AcmeAir system is executed under 0ms, 2ms, and 5ms simulated latency with
the protocols CoAP, HTTP/1.1 with keep-alive, and h2c (HTTP/2 over TCP with-
out encryption). Each test run would involve a warm-up period of 2 minutes before
sending requests for 10 minutes using one of the previously mentioned protocols
being used. The reason for this warm-up period is to reduce the chance of classes
and instances, since this would require lazy-loading or JITing (Just in Time Com-
pilation) introduce noise or high response times that are not representative for the
protocols. The version numbers of each server and framework being used is listed
in Appendix A.

The acme-air driver is configured to send requests for 10 minutes across 10
threads with a ramp-up period of 30 seconds. The 30 seconds ramp-up period leads
to the threads starting up gradually and leads to a gradual increase of work load
on the system. Each request sent from acmeair-driver towards the acmeair system
use HTTP/1.1 independently of which protocol is being tested. Furthermore, these
requests use the keep-alive flag to avoid creating new TCP connections between
requests.

During each test run, JMeter will write response meta-data such as timestamp,
request URL, response time to a CSV file. Additionally, a background process will
query each of the service hosts each second about their status to gather information
about network and CPU usage. This monitoring service is implemented as a Java
JAX-RS REST API that exposes information from the Linux command ifconfig

for network statistics, and uses the Java function
ManagementFactory.getOperatingSystemMXBean()6 to get information
about CPU usage. These are made available from two separate URIs
/systemStatus and /systemStatus/network on each service host. Each time

6https://docs.oracle.com/javase/7/docs/api/java/lang/management/
ManagementFactory.html
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these are queried, their JSON representation is saved to a file together with the
timestamp of when they were queried. At the end of each test run, these JSON files
together with the request log from JMeter are parsed and imported into a MariaDB
database for archival and data analysis.

The network utility command ifconfig in Linux lists the available network-
ing interfaces in Linux. This command lists statistics for each interface, such as
packets and bytes received, sent, dropped, together with the current status of the
interface such as the associated IP address and hardware address. Docker allows
the creation of networks on the local host. This enables for example the ability of
containers to communicate using the name of the containers as the hostname in
HTTP requests. In Acmeair, this is a commonly used strategy for communication
across containers where each host has its own Docker network. On each host, a
Docker network is created using the --network flag in docker run. This net-
work is then represented as a separate interface in ifconfig. In the experimental
setup for AcmeAir, the eth0 interface is the interface for outgoing traffic. lo is for
local loopback which typically handles traffic to localhost.

The monitoring service will expose network statistics for all of the interfaces
listed by ifconfig. However, only the eth0 interface is paid attention to when
analyzing the results. This is due to the external communication out from the node
will happen on the eth0 interface where the simulated latency is also added.

4.2.4 Protocol adapters

acmeair-host1

nginx1

Californium

acmeair-host1

nginx1

Californium

acmeair-host3

auth-service-

liberty1

Californium

acmeair-host3

auth-service-

liberty1

Californium<CoAP>

<HTTP/1.1>

Protocol Adapter

<HTTP/1.1>

Figure 7: How requests are translated by intermediary proxies for the CoAP proto-
col. For h2c and HTTP/1.1, nghttp2 and nginx are used instead of Californium.
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The Acmeair system use HTTP/1.1 for inter-service communication. In order to
test different protocols without having to modify the implementation of AcmeAir
services, the requests are forwarded to a proxy server that will then translate the
requests to the protocol being tested (CoAP, h2c, or HTTP/1.1) on the same host.
The request is then sent to the host for the target service where another proxy
will translate the request back to HTTP/1.1 and forwarded to the target service.
This flow is illustrated in Figure 7 for CoAP, where Californium is used to translate
between HTTP/1.1 and CoAP for requests to the auth service. nghttp2 is used for
h2c, and nginx for HTTP/1.1.

4.2.5 Changes to Californium

The HTTP proxy feature is used in Californium for translating requests between
CoAP and HTTP. Initially, this feature demonstrated much worse performance com-
pared to HTTP. By investigating the code of Californium, it became apparent that
for each incoming HTTP request, Californium would create two new threads: One
thread for the creation of the CoAP request, and one for sending a HTTP response
back to the client, awaiting a CoAP response from the first thread. Conceptually,
these two threads perform their work sequentially as the second thread is waiting
for the response from the first one. Additionally, the Californium threading model
uses the concept of worker threads for both sending and receiving messages on a
blocking UDP socket API [47]. These two threads were eliminated by refactoring
the code such that the code is executed sequentially without having to create two
new threads.

Another problem regarding performance was the blocking API being used for
sending HTTP requests. This had a negative impact on performance as it would
block one thread until the HTTP response is received. It may also limit the ability
to do data processing before TCP ACKs are being sent (depending on the frame-
work being used) [85]. The API originally being used for creating outbound HTTP
calls from the Californium framework was org.apache.http.impl.client-
.DefaultHttpClient. Instead, the Apache HttpAsyncClient7 was introduced to
make outbound HTTP requests.

After introducing the asynchronous HTTP API and removing unnecessary threads,
a few race conditions appeared. One issue was related to how two requests could
receive parts of the response of another request if sent through the same connec-
tion. In Californium, the interaction between a client and a server is represented
as an Exchange object [47]. This object has an UDP endpoint associated with it
that handles incoming and outgoing traffic. The problem was that two exchanges
would use the same endpoint for outgoing CoAP requests, leading to concurrent

7https://hc.apache.org/httpcomponents-asyncclient-4.1.x/index.html
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responses getting intermixed with the original HTTP request. To solve this issue,
a pool of EndPointManager instances were used to take endpoints from upon a
CoAP request creation. These were returned to the pool once the CoAP response
was received.

Request generator
HTTP-Gateway

(Californium)

CoAP-Gateway

(Californium)

Local webserver

(nginx)
HTTP/1.1 CoAP HTTP/1.1

Figure 8: Experimental setup for profiling the Californium framework.

In order to avoid setting up the entire AcmeAir system to analyze the perfor-
mance issues in Californium discussed earlier, a smaller setup was used on a lo-
cal machine. It involves a C# .NET Core application sending HTTP requests to a
Californium HTTP gateway which sends a CoAP request to a Californium CoAP-
gateway, which in turn requests a HTTP resource on a local nginx HTTP server
(Figure 8). This enables an simplified analysis of the behavior of the different com-
ponents. Alternatively, one could have attached to the containers and remotely
analyze those in the AcmeAir system during benchmarking. The C# .NET Core ap-
plication would time the request and produce an average of the total request time.
Additionally, the lightweight-java-profiler8 by Jeremy Manson was used to capture
stack traces at certain intervals. A flame graph is then produced using the Flame-
Graph9 library by Brendan Gregg to visualize which stack traces occurred most fre-
quently. Although this method simplifies setup for faster analyzing the performance
behavior, there is only one type of request being sent through the system. The sys-
tem is also running on a different environment than the one AcmeAir system was
deployed on, which could introduce bias in terms of framework differences and
interrupts from other processes.

The lightweight-java-profiler is implemented as an agent that is loaded together
with the Java application being profiled through the -agentpath argument to the
Java process. This agent will capture stack traces of all running threads in the Java
VM and write those to a file at a certain interval which defaults to 100ms. The stack
traces are then written to a file. Jeremy Manson argues that this profiler does not
introduce as much overhead as other profilers, since it does not require to stop the
entire JVM to capture stack traces and operates asynchronously. [86]

A flame graph is a visualization of how frequent code paths occurred within a
set of stack traces. Flame graphs are produced by providing the set of stack traces
from light-weight-java-profiler to FlameGraph. Figure 9 shows a small segment of

8https://code.google.com/archive/p/lightweight-java-profiler/
9https://github.com/brendangregg/FlameGraph
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Figure 9: An excerpt of a flame graph of the CoAP gateway.

the result of profiling a Californium Proxy that is focused on the sendResponse
frame. The y-axis indicates the size of the stack, while the x-axis indicates the
amount of samples that particular frame has within the runtime of the application.
The colors of the frames are only to distinguish them and do not carry any further
meaning. A wider stack is an indication that a larger amount of time was spent
within that particular graph. In Figure 9, a large amount of the stacks took place
in java.lang.StringBuilder.append and java.lang.String.valueOf,
which was called from the Matcher.sendResponse function inside the Cali-
fornium framework.

The Californium framework uses the java.util.Logging API for logging
status messages. Logging happens by providing a message together with a level in-
dicating how important the log message is. Some examples of log levels are "fine",
"info", "warning", "severe" (from lowest level to highest). An application is config-
ured to log messages above a certain log level. That means all messages below the
level is discarded. For example, if the application has set its log level to "warning",
the send() function in Listing 4.1 does not write any messages.

class Response {
private static final LOGGER

= Logger.getLogger(Response.class.getName());
...

public void send() {
LOGGER.log(Level.INFO, "Sending response");
...

}

public void write(Parameter param) {
LOGGER.log(Level.INFO,
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"Adding param: " + param.toString());
...

}
}

Listing 4.1: Example of how messages can be logged with java.util.Logging.

The implementation of the log function will first attempt to check if the log level
permits writing the log message. If it does, it will do additional operations on the
log message (e.g. string formatting or object serialization) before writing the log
message to a configured destination (e.g. file, network, or standard output).

One problem was the use of string concatenation instead of log formatting for
constructing log messages in the Californium framework. An example of this can be
seen in the write(Parameter) function in Listing 4.1. In this case, toString()
is called on the Parameter object param, the string is concatenated with the
"Adding param: " string, and is then passed to the log function. If the log level is
set to a higher level than info, the log message is discarded. It would then not have
been necessary to call the toString() function on the param object. Further-
more, the toString() function may be an expensive call in terms of CPU cycles
or memory usage in order to construct the string depending on the implementation
of the toString() method.

The java.util.Logging API allows log messages to be provided with pa-
rameters. This makes it possible to pass a parameter that is then formatted into
the log message before stored, allowing to check if the log level allows writing to
log before the log message is constructed and toString() is called on the pro-
vided parameters. An example of the write function from Listing 4.1 can be seen in
Listing 4.2 where param is passed as an argument to the log function.

public void write(Parameter param) {
LOGGER.log(Level.INFO, "Adding param: {0}", param);
...

}

Listing 4.2: A refactored version of write in Listing 4.1 where the param object is
passed as a parameter to the log function.

A large number of functions in the Californium framework used the logging
API without using log formatting which resulted in many frames related to the
toString() method appear on the flame graph discussed earlier. This issue was
largely related to incoming and outgoing requests where the request/response ob-
ject was attached to the log message. By using passing log parameters as param-
eters instead of relying on string concatenation, the toString() method did no
longer appear on the flame-graphs as they were no longer called.

Another encountered issue after changing to asynchronous HTTP connection
handling was that session states became intermixed between requests. If one user
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signed in, all other users would have that particular session, and if the user signed
out, all users would be signed out. In AcmeAir, the authentication mechanism is
implemented by the use of session cookies. When the CoAP-gateway would make a
request and a state was introduced through cookies, all other request would receive
this state. By disabling cookie management in the HttpClient API, this issue became
resolved.

These improvements to the Californium has been submitted upstream and merged
in a pull request [87]. The performance impact was measured to double the through-
put capacity on the master branch of Californium by one of the maintainers. To
summarize, these issues were encountered while optimizing the Californium Proxy:

• Unnecessary thread creation when forwarding HTTP requests to CoAP re-
quests.

• While the Californium framework has an asynchronous API based on worker
threads, the HTTP requests made from the Californium used a blocking syn-
chronous API.

• As an effect of higher request throughput, some requests could attempt to
use the same message exchange for messaging, causing some response data
to appear in the wrong responses.

• Sessions set using cookies became set across all requests due to cookie man-
agement not being turned off by default in the asynchronous HTTP API.

• Lack of log formatting caused a high number of objects to be serialized to
string when they were not needed, leading to resources being spent on un-
necessary object and string serialization.

In CoAP, header names are represented as options associated by an option num-
ber instead of strings. This makes the amount of headers that can be sent through
the CoAP proxy limited to only the ones defined by the CoAP specification in Sec-
tion 12.2 [43]. It is on the other hand possible to introduce new options. However,
these options would lead to a higher coupling between client and server as these
are communicating using option numbers that is not set by the CoAP specifica-
tion. The same issue as with header goes with content types. These are also imple-
mented as numbers. Only the content types for application/x-javascript,
text/css and application/x-www-form-urlencoded had to be introduced.
Additional introduced headers were related to cookie management through the
set-cookie and cookie header.

The Californium framework use a threading model with several worker threads
that are involved in processing a request. Incoming requests are handled with the
class UDPConnector which use a blocking call on a DatagramSocket for receiv-
ing UDP datagrams. A pool of worker threads (network stage threads) are awaiting
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for incoming messages on this call, which is default to 1 worker thread. The in-
coming messages are copied off the message buffer and given to the InboxImpl,
which will execute the incoming data on thread from a pool of workers threads.
This stage is called the "protocol stage" which will handle protocol-related work
such as parsing of CoAP messages. The same thread will be used for any logic that
is running on top of Californium. When creating a response, the response is queued
in a BlockingQueue of outgoing messages where another set of networking stage
threads are waiting to send messages out on the DatagramSocket.

It might be questionable whether this threading model has a positive impact on
performance in context of this work, as the two stages are doing for the most part
CPU-intensive work that is related to protocol-parsing and business logic. However,
this might be beneficial if expensive CPU-intensive operations such as encryption
that would require more CPU work for processing compared to simple parsing
operations, or if the business logic would use blocking API calls. It is also beneficial
at higher concurrency load, as discussed by Kovatsch et al.. [47]. While the setup
in this experiment used 10 concurrent clients from the same host, the work by
Kovatsch et al. used multiple hosts to gain a higher workload on the target server.

4.3 Results

Protocol Lat. Requests Mean Max Min Std.dev.
coap 0 ms 895542 6.4042 ms 245 ms 2 ms 4.0090 ms
h2c 0 ms 1030060 5.5625 ms 108 ms 1 ms 2.8164 ms
http1.1 0 ms 1152871 4.9634 ms 89 ms 1 ms 2.8448 ms
coap 2 ms 381152 15.2300 ms 108 ms 10 ms 4.2328 ms
h2c 2 ms 386191 15.0327 ms 103 ms 10 ms 4.1621 ms
http1.1 2 ms 397553 14.5938 ms 85 ms 9 ms 4.1093 ms
coap 5 ms 195262 29.8653 ms 118 ms 22 ms 6.8693 ms
h2c 5 ms 197126 29.5732 ms 133 ms 22 ms 6.9712 ms
http1.1 5 ms 199428 29.2244 ms 117 ms 22 ms 7.0784 ms

Table 2: Summary of the requests.

4.3.1 Response times

The response times per service is summarized in Figure 10 and Table 2. CoAP is
standing out from h2c and HTTP/1.1 in terms of standard deviation and average
response time under no latency. HTTP/1.1 and h2c performed more equally where
HTTP/1.1 had a lower average response time for all cases.

When the system is delaying each packet with 2ms, the differences start to even
out between the different protocols (Figure 10). From having the highest standard
deviation on no simulated latency, CoAP has a lower standard deviation under

52



Optimizing Inter-Service Communication Between Microservices

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Login
QueryFlight

List Bookings

logout

BookFlight

View Profile Information

Update Customer

Cancel Booking

R
es

po
ns

e 
tim

e 
(m

s)
Response time per service

coap (0 ms)
h2c (0 ms)

http1.1 (0 ms)

coap (2 ms)
h2c (2 ms)

http1.1 (2 ms)

coap (5 ms)
h2c (5 ms)

http1.1 (5 ms)

Figure 10: Response times across the different simulated latencies.

5ms simulated latency. As seen between no simulated latency and 2ms simulated
latency, the differences across all protocols become more even with 5ms simulated
latency (in terms of mean response time, std. dev., and amount of requests).

4.3.2 Network usage

The network usage is summarized in Figures 11, 12, 13, and 14. The nginx1 service
was excluded from these graphs and added as Appendix B. The services main-
service and support-service were excluded as they are not involved in any of the
benchmarking test cases.
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Figure 11: Amount of bytes sent per service.
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Figure 12: Amount of received bytes per service.
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Figure 13: Amount of sent packets per service.
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Figure 14: Amount of received packets per service.
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To summarize, the differences in response times between the protocols even out
towards 5ms simulated latency. This shows that the amount roundtrips involved in
each protocol to process a request does not differ much between the three pro-
tocols. By dividing the total amount of bytes and packets on each protocol under
each simulated latency by the total amount of requests, it is possible to see a more
detailed picture of how the protocols compare:

Protocol Latency Bytes/request Packets/request Bytes/packet
coap 0 ms 3224.6675 B 12.1271 265.9063 B
h2c 0 ms 3143.6767 B 8.6052 365.3242 B
http1.1 0 ms 3782.2935 B 8.4253 448.9194 B
coap 2 ms 3273.4470 B 12.6509 258.7531 B
h2c 2 ms 3213.5299 B 9.4182 341.2046 B
http1.1 2 ms 3849.4307 B 9.2052 418.1797 B
coap 5 ms 3303.8630 B 12.8083 257.9475 B
h2c 5 ms 3248.9165 B 9.6372 337.1219 B
http1.1 5 ms 3896.4796 B 9.5806 406.7032 B

Table 3: Overview of packet count and transferred bytes per request.

Table 3 shows how the protocols compare per request. While CoAP sends more
packets per request, the packets are considerably smaller compared to h2c and
HTTP/1.1. This does not affect the response time as these packets are sent in se-
quence and do therefore not result in waiting for a response before sending the
next packet. h2c does, on the other hand, have a similar behavior compared to
HTTP/1.1 when it comes to packets per request, but is resulting in fewer trans-
ferred bytes per request under all latencies.

4.3.3 CPU usage

The CPU usage on each service under each latency and protocol is summarized
in Figure 15 with the average CPU usage together with the standard deviation as
error bars. It becomes apparent that across all latencies, CoAP is producing most
CPU load under all latencies on the API-gateway (nginx1). One possible cause for
this is that the Californium framework may be less performant on translating HTTP
requests to CoAP requests compared handling incoming CoAP requests and trans-
lating them to HTTP requests. This trend changes on the other services where the
differences are marginal, for example on the customer-service where the protocols
had a much lower difference across the different latencies. A common trend, how-
ever, is that the differences in the protocols in terms of CPU and response times
decrease as the simulated latency increases.
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Figure 15: CPU utilization across services per latency and protocol.

4.4 Inspecting Californium performance
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Figure 16: Frequency of CoAP requests with response times in the range <80ms,
200ms>.
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CoAP with no simulated latency is standing out from the other configurations
in terms of CPU usage on nginx1 and standard deviation for response times. Com-
pared to other protocols and latencies, the protocol has a high number of requests
that are clustered together with high response time. This can be seen in the fre-
quency diagram on Figure 16.

4.4.1 Profiling

The clustering of the request occurrence indicates that a recurring process might be
delaying the response processing, thus resulting in the clustered requests in Figure
16. Java is a managed programming language in which memory is managed by
the runtime in terms of garbage collection (GC). GC is a process that starts at
given intervals or when memory usage reaches a given threshold, such as heap
size. In order to investigate whether GC has a significant impact on the system
performance, a smaller setup is used on a local machine where a HTTP gateway
accepts HTTP requests, translates them to CoAP requests and forwards them to
another CoAP proxy which will then forward the request to an nginx server (Figure
8). A program will send HTTP requests through the system as long as it receives a
response. Java Visual VM10 is then used for inspecting the runtime behavior of the
system in terms of memory usage.

Figure 17: Memory usage of the HTTP gateway using Californium in Java Visual
VM.

Figure 17 shows the memory usage of the HTTP gateway over time as requests
are passing through. Heap size is the maximum allowed memory the application
can use of the allocated memory to the Java process (similar to how much memory
the Java process is using), while used heap is the amount of memory that is being
used at each time. The used heap does also include garbage, which is memory that

10https://visualvm.github.io/
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is no longer used or pointed to.
Objects in the Java VM can be either short or long-lived. Once there are enough

short-lived object, a minor GC will begin and go through the young generation
of short-lived objects. The minor GC will cause a so-called stop the world event,
which will pause the Java VM until the GC is done, causing a full stop of the
executing program. Typically, the minor GC is short and does typically not have
a big performance impact. However, if the short-lived objects exists long enough,
they will typically be marked long-lived and put in the old generation. A major GC
is required to remove allocated memory from the old generation, which will also
cause a stop the world event. Considering the old generation is in most cases much
larger than the young generation, a major GC will take much more time than a
minor GC. [88]

Figure 18: List of objects during runtime and their resource usage in a heap dump.

Figure 18 shows a heap dump of the HTTP gateway. The type which occu-
pies the most memory in the heap is byte[] which use 72.2% of the heap, fol-
lowed by char[] (3.8%) and java.lang.String (2%). Most of the char[]

instances are internal representations of java.lang.String. A large amount of
the allocated strings are segments of the HTTP query string, which is being split
up to determine where the request should be forwarded. Most of the instances
of byte[] are used in instances such as UDPFragment, Request, Response,
LinkedList$Node (internal structure of java.util.LinkedList, where most
references are from the OptionSet class), and in Exchange$KeyMID to repre-
sent addresses. UDPFragment is being used to hold data about a received UDP
fragment. Request and Response are classes that deal with request/response
handling inside the Californium framework. The OptionSet class represents meta-
data about a request. All of these classes inside the Californium framework actively
allocates new byte arrays once required for sending, receiving, and processing re-
quests. This results in excessive garbage which the GC will clean up in certain
intervals, resulting in the frequent allocation/deallocation seen in the graph on
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Figure 17.

4.4.2 Impact of GC events on response times

In order to accurately determine whether the impact of major GC events has a
significant impact on the response time, the same proxy-setup as described ear-
lier in Section 4.2.5 is used. Additionally, the request time together with their
response time is saved to a CSV file from a request generator. In the two Java
processes running the Californium framework for translating messages between
HTTP and CoAP, a timestamp is written to a CSV file for each major GC event
using the com.sun.management.GarbageCollectionNotificationInfo

class for GC notifications. The request generator is a C# .NET Core application
that will send requests as long as it receives a response for 5 minutes. A warmup
period of 30 seconds is used for making sure all components are fully loaded, and
to make sure a larger amount of the heap memory size is being used leading to
more frequent GC events than once the system is started.
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Figure 19: Major GC events and response time extremes (greater than or equal to
30ms).

Figure 19 shows the all request response time extremes above a certain thresh-
old (more than or equal to 30ms) based on the distribution of response times. In
total, the response time average was 1.18ms with a standard deviation of 0.96ms
with a total of 252636 requests. The HTTP gateway had 29 major GC events, while
the CoAP-gateway had 25 events. It can be seen on the graph that each GC event
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has a corresponding request extreme. Of the 53 identified extremes, one did not
have a corresponding GC event (response time of 38ms). This extreme may have
been caused by other factors such as system interrupts.

Considering the large amount of memory being freed by GC (see Figure 17) and
its occurrence with response extremes, the excessive garbage caused by frequent
memory allocation of short-lived objects would be a major factor leading to spikes
in response times.

4.5 Discussion and future work

4.5.1 Discussion

The results shows that both HTTP/2 and CoAP performed worse than HTTP/1.1
in terms of response time. However, HTTP/2 used least bandwidth, followed by
CoAP. One reason HTTP/1.1 resulting in such low latencies could be due to how
optimized nginx is compared with nghttp2. Despite the attempts to optimize the
Californium framework, there is a significant difference in response times between
Californium compared to nghttp2 and nginx. One possible cause would be the lack
of memory buffer re-usage for sending, receiving, and processing data which then
in turns leads to excessive GC.

One major differences between CoAP and HTTP is if headers are not supported
by the CoAP standard or the CoAP framework, some development effort is required
to properly map the unsupported headers. Considering that application-specific
changes are required on protocol level, it would also lead to higher coupling be-
tween the business logic and the protocol.

To answer the research question R3 regarding CoAP and HTTP, based on the
experience from using CoAP in AcmeAir, CoAP can easily be implemented between
microservices without changing URI schemes by the use of proxies. However, due
to how CoAP implements headers as IDs instead of using string like in HTTP, some
effort may be required to set up an appropriate mapping between the two prox-
ies for correct header translation. Unknown headers would not be automatically
mapped, and therefore rejected.

Regarding research question R2 that questions the differences between h2 and
HTTP/1.1, the major observed difference in this experiment was the bandwidth
usage between the two protocols. The differences (latency) between the two pro-
tocols decreases with higher latencies, which may be an indication that there is an
optimization opportunity in nghttp2. Considering performance limitations with no
latency tend to be framework-related, it might be said that framework bottlenecks
become dominant with no simulated latency. With a higher amount of latency be-
tween each request, the resource provider is able to perform other tasks. This can
be seen in how also the CPU usage is reduced on higher latencies. That the proto-
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cols gets more even in terms of latency is an indication that there is no difference
in amount of round-trips required to process each message.

However, this study is limited to the architecture of AcmeAir. The service in
AcmeAir use only synchronous messaging and no asynchronus messaging is in-
volved. Furthermore, these messages use a limited set of HTTP verbs and some of
the interfaces may not be entirely RESTful due to the use of cookies, lack of HA-
TEOAS, and use of verbs instead of nouns for the resource names. The protocol
being used for direct service-to-service (e.g. between booking-service and auth-
service) did however use HTTP/1.1 regardless of what protocol was tested. This
lead to more traffic unrelated to the tested protocol become reflected in the mea-
sured traffic. This does however not get reflected in the results as HTTP/1.1 is used
regardless of simulated latency and tested protocol between these services.

4.5.2 Future work

Future work would involve optimizing the Californium framework to reuse buffers.
It would be expected that this leads to less time being spent on garbage collection
and memory allocation, which would lead to a less skewed normal distribution of
the response times and less peaks/extremes in response times.

Considering the performance impact of blocking vs. non-blocking, it would be
worth further investigate the impact of using an asynchronous model for message
processing in Californium instead of relying on thread pools. In a post by Stephen
Cleary [89], he explains how the async keyword in .NET avoids using any thread
for waiting on application level in a pure asynchronous threading model. Instead of
a thread waiting for a reply, the operating system relies on Direct Memory Access
(DMA) for the device to read directly from the application memory, then signal
using a system interrupt back to the operating system and then back to the appli-
cation indicating the I/O operation is complete. It would be interesting to see how
much of a performance impact this model has compared with the threading model
being used in Californium.

SPDY was not benchmarked in this setup due to how it is still considered an
experimental protocol by Google and the only reference implementations during
the time of writing is a Go library and the Chromium browser. When a major server
vendor such as nginx would provide support for SPDY for backend communication, it
would be interesting to see how the protocol would compare with HTTP/2 in terms of
both latency and bandwidth usage. It would however be expected that the protocol
behaves similar to HTTP/2 in terms of response times and bandwidth usage due to
their relation.

The reason for using nghttp2 instead of nginx for h2c was due to nginx not sup-
porting HTTP/2 for backend communication. While it is still supported for front-
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end communication, it is yet to be implemented since it would involve significant
changes to the internals of nginx11.

One aspect that was not much investigated was profiling and analyzing the run-
time of nghttp2. Even though nghttp2 supports HTTP/1.1 like nginx, the implemen-
tation of h2c was not investigated together with the threading model being used.
nginx was also not investigated.

Another aspect that would be worth investigating would be the effect of encryp-
tion on the different protocols and how this would impact their behavioral charac-
teristics. The different protocols were not tested with any encryption in this ex-
periment due to time constraints, but would be worth investigating considering
how microservices would often be deployed in a public cloud environment and the
wide-spread usage of encrypted HTTP channels in general.

CoAP provides a publish/subscribe implementation on protocol level to observe
when resources change their state [43] in addition to a mechanism for service
discovery [67]. Other future work would investigate whether the publish/subscribe
mechanism in CoAP can be applied in a microservice system.

The HTTP/2 protocol allows multiplexing where multiple response/requests
can occur over the same TCP-connection. Another aspect for future work would
be how can multiplexing be utilized for efficient service consumption of APIs.

The AcmeAir system does only use synchronous communication. Future work
would involve extending the AcmeAir system to also use asynchronous messaging (e.g.
message queues and publish/subscribe pattern) for ISC.

11https://trac.nginx.org/nginx/ticket/923
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5 Conclusion and future work

5.1 Conclusion

The microservice architecture pattern emerges as a new alternative to architect-
ing applications for large-scale deployments. The emergence of newer tools for
developing and orchestrating these services made it possible to develop services
of more granular size. While many applications were implemented as monoliths,
the need for faster scaling in terms of throughput and introduction of new fea-
tures together with the introduction of ubiquitous cloud computing formed the
fundamental needs for microservices. Monoliths became difficult to scale and de-
ploy in cloud environments, where computing resources became more accessible
compared to hosting a system in-house.

Implementing a microservice system does however come at the cost of increased
architectural complexity, increased network traffic, and efforts of orchestrating and
maintaining this distributed system.

R1: REST limitations: What are the architectural limitations of using REST
in microservices?

While REST appears as an alternative to RPC-style APIs that brings lower cou-
pling between service consumers and service providers, the limitations of the ar-
chitecture are still the same from previous discussions of the architectural style
regarding REST and RPC. These limitations relate to transaction support, secu-
rity, reliable message transfer, together with how HATEOAS should be practiced.
Although there are patterns that extend REST in an attempt to introduce transac-
tions, these patterns are often criticized for introducing application state through
the semantics of the interface. It may on the other hand be questionable whether
microservices should introduce transactions at all as many argue a microservice
system should instead rely on eventual consistency [4].

As the literature survey in Chapter 3 show, there are some side-effects of us-
ing REST. One of the constraints in REST (Uniform interface) states that requests
should be "optimized for the common use of the web" [17]. In a microservice sys-
tem, this would mean that a service should not provide specialized interfaces to-
wards other services but provide one, common, generalized interface towards each
service. Prohibiting interface specialization increased the overhead in the trans-
ferred messages, negatively affecting performance. On the other hand, this leads
to a lower coupling between services.
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Many of the discussed problems together with REST was related to the trans-
port protocol and not the architectural pattern itself. HTTP being one of the most
commonly associated protocols with REST, there are several issues being related
to the use of HTTP together with REST such as service discovery and that it is a
synchronous request-response protocol that does not enable asynchronous com-
munication without the use of web hooks or introducing application state through
temporarily resources.

R2: Benefits and limitations of HTTP/2: For ISC, what are the benefits and
limitations of HTTP/2 compared to HTTP/1.1 in terms of performance and
latency?

The results from using h2c in AcmeAir show that the protocol itself does not im-
prove the response time, but lead to a lower bandwidth usage. HTTP/1.1 had on
the other hand a lower response time than h2c with a higher bandwidth usage. The
difference between these two protocols in terms of latency became smaller as the
latency increased. One possible reason HTTP/1.1 was able to outperform in terms
of response time across all latencies may be due to HTTP/1.1 have been existing
for a longer time than HTTP/2, which gives more time for web-server developers
to optimize the protocol implementations for both throughput and resource effi-
ciencieness.

HTTP/2 introduces a number of mechanisms for message transmission over
HTTP/1.1. While HTTP/1.1 requires the use of the keep-alive flag in order to re-
use connection, HTTP/2 maintains this natively. The protocol also introduce mul-
tiplexing which enables multiple requests/responses to be in-flight over the same
TCP-connection. Fundamentally on protocol level, HTTP/2 is a binary protocol op-
posed to previous standards which were ASCII based. Even though this makes the
protocol less readable for humans, the binary protocol enables more efficient pars-
ing of messages.

R3: How does CoAP compare to HTTP: How can CoAP be applied in a
microservice system, and what are the challenges of using CoAP instead of
HTTP?

One of the major limitations when using CoAP over HTTP is the amount of
frameworks being available at hand. CoAP being developed for constrained IoT
devices does pose some fundamental differences compared to HTTP. Although the
protocol provide GET, PUT, POST, DELETE verbs similar to HTTP, the protocol
use a high degree of flags instead of using strings for presenting verbs, headers,
and content-types. This limits the supported headers and content-types to the ones
being provided in the protocol specification. In a microservice system, this intro-
duces higher coupling between two communicating end-points, where application-
specific headers and content-types must be implemented in the proxies on both the
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sender and receiver end.
The approach towards introducing CoAP in AcmeAir use intermediary proxies to

translate requests between HTTP and CoAP. By using these proxies, the frameworks
for the protocols are not restricted to one language or platform. On the other hand,
CoAP does still have fewer implementations compared to HTTP due to the wide-
spread adoption and maturity of the HTTP protocol. This approach does also lead
to more architectural complexity by introducing new intermediaries that process
requests and may also reduce response times compared to direct communication.

Compared with h2c and HTTP/1.1, CoAP provided a much lower request through-
put without any simulated latency, possibly due to framework limitations. It did
however lean towards similar response times as HTTP/1.1 and h2c. Despite efforts
to optimize the framework in terms of asynchronous communication, threading,
and synchronization, the protocol remains behind both h2c and HTTP/1.1. One of
the reasons may be due to memory fragmentation as a result of frequent allocation
of temporarily message buffers which remains a possible aspect for optimization.

Although CoAP appears as a light-weight alternative to HTTP, the use of header
flags can possibly lead to higher coupling between endpoints if the application
use headers not present in the CoAP standard specification. It does on the other
hand provide mechanisms beneficial in a microservice system that HTTP does not
provide such as service discovery and a publish/subscribe mechanism.

R4: Latency in ISC: Which factors impact latency in ISC and how can these
be reduced?

While it is possible to place two services in close approximation (e.g. on the
same host or same data center opposed to two server regions), the actual way the
services communicates also has an affect on the latency. Which protocol, interface
design (in terms of granularity), and implementation are all factors in the latency
of messages processing.

A protocol may for example promote loose coupling by providing a set of widely
used semantics and standards. It could also provide efficient message transferring
by the use of compression algorithms or a binary protocol. However, even though
the messages can be relatively small in one protocol, the impact on latency based
solely on message size may not have an effect on the latency depending on the
Maximum Transmission Unit (MTU) size allowed on the network. HTTP/1.1 being
a much used protocol for service-consumption, newer protocols such as HTTP/2
is designed to be more machine-readable and efficient. Surprisingly, HTTP/1.1 did
however outperform HTTP/2 in terms of response times, where the differences
evened out as latency increased.

There are also implementation-specific details that affect the latency. Under-
standing the run-time in order to allow high throughput of requests is a key ele-
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ment. Analysis through profiling and application resource usage data (CPU, mem-
ory usage, etc.) can help developers get a better understanding of how their ap-
plication is behaving like it is. The analysis of the performance in the Californium
framework highlighted the importance of efficient resource usage in terms of threads
and asynchronicity. This analysis lead to implementation improvements that has
been submitted and merged into the Californium project. However, the architec-
ture of the run-time may be a limit in how rapid an application is able to respond
to a request. Too much switching between threads can lead to a higher cache-
miss. Other models such as asynchronous/non-blocking programming models has
become more ubiquitous and a necessity for high-performance networking appli-
cations like nginx.

Understanding the implications of the architectural decisions being made in a
microservice system is important in order to create an efficient distributed appli-
cation. Considering the microservice pattern introduce more complexity compared
to monoliths, a small change to one component may have a larger effect on the
overall system picture. Being able to monitor the behavior of the microservices in
addition to carefully design and test them becomes an increased challenge due to
the nature of distributed systems.

5.1.1 Future work

Some limitations regarding latency is much blamed on the Californium framework.
Future work would then be to further explore the effects of performance optimiza-
tions on the framework itself, and the side effects it would have on the experimen-
tal setup in AcmeAir. It is argued some of the limitations is due to inefficient use
of memory buffers, this may also affect both CPU utilization and response times.
Further optimizations of the Californium framework can make the protocol more
attractive for backend Java systems as the protocol provides other mechanisms
suitable in a microservice system such as service discovery and support for the
publish/subscribe pattern.

Another research area would be the inter-linked set of services as a result of
applying the HATEOAS constraint. Much like how the web emerged, HATEOAS
would enable a similar set of inter-linked services to emerge, but designed for
machines and not directly humans. There are multiple challenges that needs to
be faced in order to allow such a network of services to merge: How are service
boundaries defined between the services, service life-cycle, authorization, context
of use, service contracts, service discovery, and how to define the correct level
of available state transitions. HATEOAS does also not express for example how a
document should be formed that a resource would accept e.g. through POST. This
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can be compared to one of the main objectives in SOA; although services are inter-
linked today, embracing HATEOAS would enable a more loosely coupled network
of exchanging services. This would enable a client to explore and browse services
without having to refer to a set of documentation in order to understand how to
interact with them.
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A List of frameworks and servers

nginx 1.13.7
nghttp2 1.12.0
Californium 1.0.6
httpasyncclient 4.1.3

Table 4: Servers, frameworks and versions being used.
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Figure 20: Amount of bytes sent in nginx1.
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Figure 21: Amount of received bytes in nginx1.
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Figure 22: Amount of sent packets in nginx1.
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Figure 23: Amount of received packets in nginx1.
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