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SUMMARY

Numerical challenges occur in the simulation of groundwater flow problems due to complex boundary 
conditions, varying material properties, presence of sources or sinks in the flow domain or a combination of 
these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B-
splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B-
splines are briefly presented. Galerkin’s method is applied to the standard weak formulation of the 
governing equation to derive the linear system of equations. A posteriori error estimates are calculated to 
identify which B-splines should be locally refined. The error estimates are calculated based on recovery of 
the L2-projected solution. The adaptive analysis method is first illustrated by performing simulation of 
benchmark problems with analytical solutions. Numerical applications to two-dimensional groundwater 
flow problems are then presented. The problems studied are flow around an impervious corner, flow around 
a cutoff wall and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis 
using local refinement were, in general, observed to be of optimal order in contrast to simulations with 
uniform refinement. 
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1. INTRODUCTION

Finite element modeling of groundwater flow problems has been a subject extensively studied by
several researchers over the past decades. The earliest studies which addressed this problem include
the finite element analysis of seepage through dams by Finn [1], Galerkin’s method in aquifer 
analysis by Pinder and Frind [2], finite element modeling of flow in saturated-unsaturated porous
media by Reeves and Duguid [3] and a three-dimensional finite element model for a multiaquifer
system by Gupta et al. [4]. Some studies proposed improvements to the finite element modeling of
groundwater flow based on the numerical challenges observed in previous studies. Yeh [5] 
proposed an approach to eliminate problems of discontinuity in the Darcy velocity field, which 
result when the
taking the derivatives of the finite element computed pressure field. Botha and Bakkes [6] studied
the convergence of the Galerkin finite element method when applied to groundwater flow 
problems,
with special reference to quadrature effects and the accuracy of the solution. Tharp [7] presented an
enriched finite element simulation of groundwater flow by introducing a new quadrilateral element
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to enable accurate modeling with coarse meshes. Dogrul and Kadir [8] presented a finite element
post-processing technique to compute mass conserving flow rates at element faces.

The numerical challenges that occur in the simulation of groundwater flow problems may be
induced by the complexity of the boundary conditions in the flow domain, the varying hydraulic
conductivity properties of the porous material, the presence of sources or sinks, such as an
infiltration well, or a combination of these. One of the approaches used to treat such numerical
difficulties is to superpose an analytical solution in the vicinity of the problem area with a numerical
model in the rest of the domain. Analytical solutions are, however, difficult to obtain for most
physical problems involving groundwater flow. The other approach is to use special numerical
techniques to address the singularity or discontinuity problems. We briefly look at some of the
techniques proposed by some researchers for different types of problems.

Some of the singularities that arise in the numerical simulation of groundwater flow were studied
and discussed by Lafeet al. [9]. The singularities considered are flow around a sharp corner where
the velocity goes to infinity, flow between zones of different hydraulic conductivity, flow around
a cutoff wall and the presence of sources or sinks in the flow domain. The effects of the different
singularities were studied and discussed. Weak singularities as in the case of flow between zones
of varying hydraulic conductivity were treated by concentrating integration points at the area of
the singularity. The use of special elements is recommended for stronger singularities such as flow
around a cutoff wall.

Groundwater flow with a free seepage surface is one of the problems that requires a special
treatment due to the complex boundary conditions. The derivative of the hydraulic potential goes to
infinity at the point of intersection between the free surface and the downstream face of the dam.
Even though we are not dealing with a free surface problem in the present work, we review the
numerical techniques proposed by various researchers as it is a related problem to our scope. Liang
and Zhang [10] presented a mathematical study of the finite element method for a unidimensional
single-phase nonlinear free boundary problem in groundwater flow. Neuman and Witherspoon [11]
proposed an iterative approach to steady seepage of groundwater with a free surface. Larabi and De
Smedt [12] studied the numerical solution of groundwater flow involving free boundaries by a fixed
finite element method by iteratively adjusting the moving boundaries. An adaptive finite element
approach for the free surface seepage problem was presented by Rank and Werner [13]. They used a
posteriori error estimates and adaptive mesh refinement such that the influence of singularities on the
convergence rate disappears. Sharif and Wiberg [14] used an interface capturing technique to solve
seepage flow problems with free surface in porous media and studied two and three-dimensional
seepage through dams. The performance of a finite element adaptive mesh algorithm for seepage
flow with a free surface was analyzed by Borieu and Bruch [15]. The algorithm was especially
tested in order to enable parallel computations. A slightly different approach to the free surface
problem was presented by Jieet al. [16] where they apply the natural element method (NEM)
by constructing shape functions based on Voroni diagrams. They argue that the method is more
suitable for the analysis of seepage problems with a free surface than the finite element method.
Adaptive error analysis for seepage problems was presented by Burkley and Bruch [17] based on
the Zienkiewicz-Zhu error estimator.

The other source of numerical challenges in the computation of groundwater flow problems is
the complexity of the material properties in the flow domain. Flow between zones of different
hydraulic conductivity represents a less severe discontinuity which may be treated by a finer mesh
at the intersection of the different zones. Heterogeneous aquifers on the other hand represent a
more complex case. Smaouiet al. [18] studied the modeling of groundwater flow in heterogeneous
porous media by the finite element method. Cao and Kitanidis [19] presented a methodology for the
computation of flow in a heterogeneous isotropic formation using adaptive mesh refinement. Dual
equations with hydraulic head and stream function were solved numerically. They claim that the
application of a standard finite element method requires a large number of nodes to model flow in
high-contrast formations. However, the number of unknowns to achieve a certain accuracy may be
reduced by adaptive mesh refinement procedures that rely on a posteriori error estimates to identify
areas where refinements are most needed.
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The presence of sources or sinks in the flow domain creates areas of large changes in the
hydraulic gradient. Such a problem for unconfined aquifers with an infiltration well was studied
using adaptive mesh refinement by George and Thomas [20]. They performed simulation on flow
domains with isotropic as well as heterogeneous hydraulic conductivity fields. The simulations were
performed starting with a coarse mesh and refinement/coarsening steps were applied depending on
the computed errors.

In this paper, we address some of the numerical challenges observed in computational models
for groundwater flow problems using adaptive isogeometric finite element analysis. We use LR B-
splines, first proposed by Dokkenet al. [21], and later applied to adaptive isogeometric analysis
by Johannessenet al. [22]. First, the governing equations of steady-state groundwater flow are
presented. The fundamentals of isogeometric analysis are then briefly discussed by introducing B-
splines and Non-Uniform Rational B-splines (NURBS). LR B-splines, which allow local refinement
unlike B-splines and NURBS, are then presented. In the numerical examples section, the method is
first applied to benchmark problems with analytical solutions and then to flow problems around an
impervious corner, around a cutoff wall and in a heterogeneous formation.

2. GOVERNING EQUATIONS

The governing equation for groundwater flow can be obtained by deriving the fluid mass
conservation equation for a given porous medium. The general form of the governing equation
for groundwater flow is given by:

S
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where S is the so called specific storativity,h is the unknown hydraulic head,kx, ky, kz are
the components of the hydraulic conductivity matrix along the principal axes andf represents a
source/sink term for the flow. The above equation generally represents transient groundwater flow,
i.e. the hydraulic head varies with time, and the flow may be saturated or unsaturated. Unsaturated
flow is characterized by a condition where the hydraulic conductivity is a function of the unknown
hydraulic head. In this paper, we are interested in saturated flow under steady-state conditions. For
such a case, the governing equation reduces to:
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which may be written in a more compact form as:

∇ · (k∇h) + f = 0 (3)

wherek is the hydraulic conductivity matrix for general three-dimensional condition given by:

k =





kx 0 0
0 ky 0
0 0 kz



 (4)

The hydraulic head represents the total energy driving the flow and is expressed per unit weight at
any point in the flow domain as:

h =
pw

γw
+ z +

v2

2g
(5)

wherepw/γw is the pressure head,γw is the unit weight of water,z is the elevation head andv2/2g is
the velocity head, withg being the acceleration due to gravity. The velocity head is usually neglected
since steady-state groundwater flow velocities are usually very small. It can be shown that the first
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term in Eq.3 represents the divergence of Darcy’s velocity, which is given by:

v = − 1

γw
k (∇pw − ρwg) (6)

for a flow driven by pressure gradients and gravityg = −g∇z. We can now introduce the proper
boundary conditions and write the strong form of the problem as:

∇ · v = f in Ω

pw = p̂w onΓD

v · n = qw onΓN

(7)

whereΩ represents the groundwater flow domain,p̂w is the imposed pressure on the Dirichlet
boundaryΓD, qw is the water flux on the Neumann boundaryΓN and n is the normal to the
boundary. Here, we have the overall boundary toΩ asΓ = ΓN ∪ ΓD. The pressurepw : Ω → R is
our primary unknown and the Darcy velocityv : Ω → R can be determined as a secondary solution.

3. ISOGEOMETRIC ANALYSIS

3.1. Fundamentals

Since its first introduction by Hugheset al. [23], isogeometric analysis (IGA) has been successfully
applied to several areas of engineering mechanics problems. The fundamental aim for the
introduction of IGA was the idea of bridging the gap between computer-aided design (CAD) and
finite element analysis (FEA). The main concept behind the method is the application of the same
basis functions used in CAD for performing finite element analysis. In the process of its application
to various engineering problems, IGA has shown advantages over the conventional finite element
method, for instance the ease of performing simulations using elements with higher order continuity.

The current standard basis functions in CAD are B-splines and NURBS (Non-Uniform Rational
B-splines). To overcome the limitations of B-splines and NURBS, such as water tightness in CAD
and local refinement in analysis, other spline technologies have been proposed. These include T-
Splines introduced by Sederberget al.[24] and LR B-splines by Dokkenet al. [21]. In this paper, LR
B-splines are used for the simulation of steady-state seepage problems. Prior to that, the fundamental
concepts behind IGA are briefly presented here for reference.

3.1.1. B-splines and NURBS.We start the discussion on B-splines and NURBS by first defining
a knot vector. A knot vector in one dimension is a non-decreasing set of coordinates in the
parameter space, written asΞ = {ξ1, ξ2, ..., ξn+p+1}, whereξi ∈ R is the ith knot, i is the knot
index, i = 1, 2, ..., n+ p+ 1, p is the polynomial order, andn is the number of basis functions.
Knot vectors may be uniform or non-uniform depending on whether the knots are equally spaced in
the parameter space or not.

A univariate B-spline curve is parameterized by a linear combination ofn B-spline basis
functions,{Ni,p}ni=1. The coefficients corresponding to these functions,{Bi}ni=1, are referred to as
control points. The B-spline basis functions are recursively defined starting with piecewise constants
(p = 0):

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise
(8)

For higher-order polynomial degrees (p≥ 1), the basis functions are defined by the Cox-de Boor
recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (9)

B-spline geometries, curves, surfaces and solids, are constructed from a linear combination of B-
spline basis functions. Givenn basis functionsNi,p and corresponding control pointsBi ∈ R

d, i =



ADAPTIVE ISOGEOMETRIC ANALYSIS OF STEADY-STATE GROUNDWATER FLOW 5

1, 2, ..., n, a piecewise polynomial B-spline curve is given by:

C(ξ) =

n
∑

i=1

Ni,p(ξ)Bi (10)

Similarly, for a given control netBi,j , i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial ordersp and q,
and knot vectorsΞ = {ξ1, ξ2, ..., ξn+p+1} andH = {η1, η2, ..., ηm+q+1}, a tensor product B-spline
surface is defined by:

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Bi,j (11)

B-spline solids are constructed in a similar way as B-spline surfaces from tensor products over a
control lattice.

NURBS are built from B-splines to represent a wide array of objects that cannot be exactly
represented by polynomials. A NURBS entity inRd is obtained by projective transformation of
a B-spline entity inRd+1. The control points for the NURBS geometry are found by performing
exactly the same projective transformation to the control points of the B-spline curve.

More about B-splines and NURBS in an isogeometric analysis setting can be found in [25].

3.1.2. LR B-splines.LR B-splines were proposed to overcome the limitation of B-splines and
NURBS with respect to local refinement. B-splines and NURBS are formulated as tensor products
of univariate B-splines and thus refinement in one of the univariate B-splines will cause the insertion
of an entire new row or column of knots in the bivariate spline space. LR B-splines were first used
in (adaptive) isogeometric analysis by [22].

For a short description of LR B-splines, local knot vectors are defined first. A given knot vector
Ξ can be used to constructi local knot vectorsΞi, from the components of the original knot vector.
A single B-spline of degreep may then be defined, using local knot vectors, as a separable function
defined byn nondecreasing local knot vectorsΞi and the degreespi:

BΞ(ξ) =

n
∏

i=1

BΞi
(ξi) (12)

To ensure that LR B-splines maintain the partition of unity property, a scalar weightγ ∈ [0, 1] is
introduced to define a weighted B-spline as

Bγ
Ξ(ξ) = γ

n
∏

i=1

BΞi
(ξi) (13)

Next, we define box mesh, tensor mesh and LR mesh. A box mesh is a partitioning of a two-
dimensional rectangular domain into smaller rectangles by horizontal and vertical lines. A tensor
mesh is a box mesh where there are no T-joints, i.e., all horizontal and vertical lines span the entire
length. An LR meshMn is a box mesh which results from a series of single line insertions from an
initial tensor meshM0 and each intermediate mesh is also a box mesh. A box mesh, tensor mesh or
LR mesh withmultiplicities is a mesh where each line segment has a corresponding integer value
n, called the line multiplicity. Each multiplicity must satisfy0 < n ≤ p, wherep is the polynomial
degree. These mesh types are illustrated in Figures1a,1band1c.

Thesupportof a (weighted) B-splineB(ξ, η) = γBΞ(ξ)BH(η) is the closure of all points where
it takes nonzero value, whereΞ = {ξ0, ξ1, ..., ξp1+1}, andH = {η0, η1, ..., ηp1+1}. A weighted B-
spline hasminimal supporton an LR MeshM if for every horizontal and vertical line of multiplicity
n in the meshM that traverses the support of the B-spline, there exist unique knot(s) corresponding
to the lines depending on whether the lines traverse the interior or the edge of the B-spline.

We can now define LR B-splines based on the terminologies presented earlier. For a given LR
MeshM, a functionB is called anLR B-splineon M if Bγ

Ξ(ξ) = γBΞ(ξ)BH(η) is a weighted
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(a) Tensor mesh (b) Box mesh (c) LR mesh

Figure 1. Mesh types, after [22]

B-spline where all knot lines (and the knot line multiplicities) inΞ andH are also inM, andB has
a minimal support onM.

A given B-spline basis can be enriched by knot insertion without changing the geometric
description. To insert a knot̂ξ into the knot vectorΞ between the knotsξi−1 andξi, we use the
relation:

BΞ(ξ) = α1BΞ1
(ξ) + α2BΞ2

(ξ) (14)

where

α1 =

{

1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1

, ξ1 ≤ ξ̂ ≤ ξp+1

α2 =

{

ξp+2−ξ̂
ξp+2−ξ2

, ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2

(15)

and the knot vectors are

Ξ = [ξ1, ξ2, ..., ξi−1, ξi, ..., ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2, ..., ξi−1, ξ̂, ξi, ..., ξp+1 ]

Ξ2 = [ ξ2, ..., ξi−1, ξ̂, ξi, ..., ξp+1, ξp+2]

(16)

The insertion of the knot̂ξ into Ξ yields a knot vector of sizep+ 3, generating two B-splines
described by the local knot vectorsΞ1 andΞ2, both of sizep+ 2.

Refinement by knot insertion using the above technique is illustrated on the B-splines given by
the local knot vectorsΞ2 = [0, 0, 1, 2],Ξ3 = [0, 1, 2, 3] andΞ4 = [1, 2, 3, 3], all derived from the knot
vectorΞ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. For example, if we want to insert̂ξ = 3/2 into the knot vector
Ξ3 between knotsξ2 = 1 andξ3 = 2, this implies values ofα1 = α2 = 3/4 and the resulting split is
shown in Figure2b. Similarly, the resulting B-spline splits when insertingξ̂ = 3/2 in Ξ2 andΞ4 are
shown in Figure2aand2c.

(a) Split ofΞ2 (b) Split ofΞ3 (c) Split ofΞ4

Figure 2. Knot insertion example for LR B-splines, after [22]

Bivariate functions are refined in one parametric domain at a time. If we have a knot vectorΞ in
the first parametric direction, andH in the second, we get a B-splineBΞ,H(ξ, η) = BΞ(ξ)BH(η).
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Splitting in one direction is achieved by:

BΞ(ξ, η) = BΞ(ξ)BH(η)

= (α1BΞ1
(ξ) + α2BΞ2

(ξ))BH(η)

= α1BΞ1
(ξ, η) + α2BΞ2

(ξ, η)

(17)

For a weighted B-spline, we have:

Bγ
Ξ(ξ, η) = γBΞ(ξ)BH(η)

= γ (α1BΞ1
(ξ) + α2BΞ2

(ξ))BH(η)

= Bγ1

Ξ1
(ξ, η) +Bγ2

Ξ2
(ξ, η)

(18)

whereγ1 = α1γ andγ2 = α2γ.
LR B-splines form a partition of unity, i.e.,

n
∑

i=1

γiBi(ξ) = 1 (19)

To control adaptive refinement in isogeometric analysis with LR B-splines, we introduce a
refinement parameterβ. The refinement parameterβ is defined such that two LR B-splinesLi−1

andLi satisfy
Li−1 ⊂ Li and (1 + β)|Li−1| ≤ |Li| (20)

which states thatLi should be a refinement ofLi−1 and the number of B-splines should grow by at
leastβ percent during each iteration. Thus,β in this case represents the growth rate of the number
of basis functions in the solution space i.e. if we haven degrees of freedom at refinement stepi,
we will have, at least,n× (1 + β/100) degrees of freedom at refinement stepi+ 1. We could also
chooseβ to represent the percentage of elements with the largest error contribution to be refined.
For the numerical examples in this paper,β refers to the growth rate of the basis functions. The
value ofβ in a simulation is selected such that the adaptive simulation is as efficient and as accurate
as possible. Smaller values forβ result in a more accurate adaptive refinement while larger values
reduce the number of refinement steps, and thereby the computation time. Typical values are in the
range5% ≤ β ≤ 20%, [22].

3.2. Variational formulation

In this section, we present the weak formulation of the governing equation. Our aim is to solve the
equation:

∇ ·
[

− 1

γw
k (∇pw − ρwg)

]

= f

for the pressurepw with the boundary conditions given in Eq.7. Applying a differentiable test
functionv to the previous equation and integrating over the domainΩ, we get:

∫

Ω

v∇ ·
[

− 1

γw
k (∇pw − ρwg)

]

dΩ =

∫

Ω

fv dΩ (21)

Applying Green’s theorem to the integrand with the divergence operator and choosing appropriate
test functions, we can write a proper statement of the weak form as: Findpw ∈ V such that

a(pw, v) = L(v) ∀v ∈ V̂ (22)

where

a(pw, v) =

∫

Ω

∇v · 1

γw
k · ∇pw dΩ

L(v) =

∫

Ω

fv dΩ +

∫

Ω

∇v · 1

γw
k · ρwg dΩ−

∫

ΓN

qwv dΓ

(23)
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The trial and test spacesV andV̂ are defined as:

V =
{

v ∈ H1(Ω) : v = p̂w on ΓD

}

V̂ =
{

v ∈ H1(Ω) : v = 0 on ΓD

} (24)

3.3. Galerkin finite element formulation

The finite element approximation corresponding to the variational formulation given in Eq.22reads:
Find pwh ∈ Vh such that

a(pwh , vh) = L(vh) ∀vh ∈ V̂h (25)

wherepwh is the FE approximation to the pressure field,vh is the FE test function, and for compatible
FE trial and test spaces we haveVh ⊂ V andV̂h ⊂ V̂ , respectively. Notice that the dimensions for
V̂ andV are infinite, whereas the dimensions forV̂h andVh are finite (i.e. equal to the number of
FE basis functions).

The FE pressure may be written as a linear combination of the FE basis functionsN and the nodal
values (control point values in IGA)̄pw as:

pwh = Np̄w (26)

Applying Galerkin’s method, the test functions in the weak form are chosen to be the same as the
shape functions (after the non-homogeneous Dirichlet boundary conditions are taken care of, i.e.
their effect is moved to the right hand side). Thus, when applied to the weak form in Eq.22, this
results in the linear matrix equation:

Ap̄w = b (27)

where

A =

∫

Ω

(∇N)T
1

γw
k (∇N)dΩ

b =

∫

Ω

NfdΩ +

∫

Ω

(∇N)T
1

γw
k ρwgdΩ−

∫

ΓN

NqwdΓ

(28)

4. ERROR ESTIMATES AND ADAPTIVITY

4.1. Introduction

In this section, we discuss the procedures for calculating a posteriori error estimates based on
recovery of the computed solution. The adaptive mesh refinement strategies based on the error
criteria are also discussed.

Since the 1970s several strategies have been developed to estimate the discretization error of a
Finite Element (FE) solution. Babuska and Rheinboldt presented the pioneering effort in this regard
back in 1978, see [26], [27]. Since then many different estimation procedures have been introduced;
see [28] for an overview. A popular class of error estimators denotedrecovery based estimators
consist of deriving a simple smoothing technique that yields a solution field or, more commonly,
the gradient of the solution, that converges faster than the FE solution or its gradient, respectively.
A very popular prototype for such approaches is the Zienkiewicz-Zhu error estimate (so called
ZZ estimate). Initial reference to such estimates can be found in [29], and further development with
Superconvergent Patch Recovery(SPR) in [30], [31]. The success of this approach in the engineering
community relies on an intuitive mechanical definition and a certain ease of implementation
compared to other class of available error estimates, without sacrificing the numerical effectivity.

The second author of this paper has more than two decades of experience in developing and
implementing a posteriori error estimators. First, in [32] and [33], we extended the SPR-procedure
by recovering statically admissible stress fields for plane stress and Reissner-Mindlin plates,
respectively. Then, goal oriented recovery of stresses in elasticity, and surface forces (drag and lift)
for Stokes problems were developed and presented in the papers [34], [35] and [36], respectively.
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Object oriented implementation of the SPR-recovery procedures is described in [37] and [38].
Recently, we have developed a posteriori error estimates for isogeometric analysis, see [39] and [40].
The first paper gives an extensive study of different recovery based error estimators. Furthermore, it
presents, for the first time, a truesuperconvergentpatch recovery method for adaptive isogeometric
analysis using LR B-splines.

Our main aim with the present paper is to show the possibilities that open up with adaptive
IGA using LR B-splines. An open-source package for using LR B-splines may be downloaded at
http://lrbsplines.com/. However, anyone who wants to perform adaptive IGA using LR B-splines
will have to implement an algorithm for a posteriori error estimation. Based on the experiences
mentioned above we have chosen herein to use a simple a posteriori error estimator, the Continuous
Global L2 (CGL2) projection, as first presented in [29] for FE and in [40] for IGA, as it gives
reasonably good results and is easy to implement.

4.2. A priori error estimates

Let pw and pwh represent the exact and isogeometric finite element solutions, respectively. The
discretization error in the pressure,e, and the error in the pressure gradient,eσ, are defined as:

e := pw − pwh

eσ := ∇pw −∇pwh
(29)

Introducing the error norms inL2 corresponding toe andeσ:

‖e‖L2(Ω) : = ‖pw − pwh ‖L2(Ω) =

(
∫

Ω

(pw − pwh )
2
dΩ

)1/2

‖eσ‖L2(Ω) : = ‖∇pw −∇pwh ‖L2(Ω) =

(
∫

Ω

(∇pw −∇pwh )
T
(∇pw −∇pwh ) dΩ

)1/2
(30)

Steady-state groundwater flow is a self-adjoint problem and it follows that the computed FE-solution
is optimal in energy norm. The energy norm using the bilinear form from Section3.2 is given by
(which is equivalent to seminorm of errore onH1

0 (Ω)):

‖e‖E =
√

a(e, e) = |e|H1
0 (Ω) (31)

which is the same as:

‖e‖E =

(
∫

Ω

(∇pw −∇pwh )
T 1

γw
k (∇pw −∇pwh ) dΩ

)1/2

(32)

If the analytical solution of a variational problem involving first order differentiation (as is the case
herein) is sufficiently smooth, i.e.pw ∈ Hp+1, and the FE meshM0 is regular and quasi-uniform,
the error in the approximate FE-solution on a family of uniformly refined meshes{Mk}, is bounded
by

‖pw − pwh ‖E = Chp‖pw‖Hp+1 (33)

whereC is some problem-dependent constant,h is the characteristic size of the finite elements,p is
the degree of the largest complete polynomial in the FE basis functions and||pw||Hp+1 denotes the
Sobolev norm of orderp+ 1.

For problems where the solution is not sufficiently smooth,pw 6∈ Hp+1, e.g. problems with
singular points within the solution domain or on its boundary, we have the error bound

‖pw − pwh ‖E = Chα‖pw‖Hα+1 (34)

where the value of the non-negative real parameterα depends on how the family of meshes{Mk}
are created.† Assume thatλ is a real number characterizing the strength of the singularity. For a

†As α is not necessarily an integer, ‖pw‖
Hα+1 is a a Sloboditskii norm.
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sequence of uniformly, or nearly uniformly, refined meshes we then have

α = min{p, λ}. (35)

Thus, whenλ < p the rate of convergence is limited by the strength of the singularity and not the
polynomial order.

4.3. A posteriori error estimates

The a priori error estimates do not give any quantification of the error for a simulation with a given
mesh and a spline space; we only get information about the expected convergence rate. However, in
order to perform an adaptive refinement, we need to quantify the error distribution throughout the
mesh, i.e. on each element. For this we usea posteriori error estimatesthat in one way or another
are based on the computed FE solutionpwh . A popular approach for a posteriori error estimation
is based on postprocessing the gradients of the finite element computed pressure solution, as the
finite element computed pressure gradient,∇pwh , can be improved by global projection or local
smoothing.

As mentioned above, we use herein Continuous GlobalL2 (CGL2) projection to obtain the
improved gradients∇pwr . The improved convergence rate for∇pwr is due tosuperconvergentthat
has been proven under certain conditions of the regularity of the solution and the mesh topology by
[41], both forC0 finite elements andCp−1 splines. We aim to obtain an improved pressure gradient
field:

∇pwr = Nar (36)

whereN are the shape functions for the pressure, see Eq.26, andar is the unknown vector of
new control variables determining the recovered pressure gradient∇pwr . Notice that the computed
pressure gradient reads

∇pwh = ∇Npw (37)

i.e. we are aiming to recover a pressure gradient∇pwr in a one polynomial order higher spline space
than the computed pressure gradient∇pwh .

The vector of control variablesar are determined by forcing a least square fit (i.e. globalL2

projection) of∇pwr to the computed FE pressure gradient∇pwh , i.e.

J (ar) =

∫

Ω

(∇pwr −∇pwh )
T · (∇pwr −∇pwh ) dΩ (38)

is minimized with respect toar. The minimization

∂J
∂ar

= 2

∫

Ω

(

∂∇pwr
∂ar

)T

· (∇pwr −∇pwh ) dΩ (39)

yields a linear system of equations given by

Aar = br (40)

where

A =

∫

Ω

NTNdΩ and br =

∫

Ω

NT∇pwh dΩ (41)

We now use the improved gradients to get an indication of the error in the computed pressure:

eσr
:= ∇pwr −∇pwh (42)

The corresponding energy norm associated with the bilinear form is:

‖er‖E =

(
∫

Ω

(∇pwr −∇pwh ) ·
1

γw
k · (∇pwr −∇pwh ) dΩ

)1/2

(43)
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The quality of the error estimate based on improved gradients is measured by its effectivity index,
which is defined as the ratio of the estimated error to the actual error:

θ =
‖er‖E(Ω)

‖e‖E(Ω)
(44)

The relative global error (in percentage) is a dimensionless error quantity defined for exact and
recovered error estimates, respectively, as:

ρ =
‖e‖E
‖pw‖E

× 100% and ρr =
‖er‖E
‖pwr ‖E

× 100% (45)

where‖pw‖E =
√

a(pw, pw) and‖pwr ‖E =
√

a(pwr , p
w
r ) are the energy norms of the exact andL2-

projected solutions, respectively.

4.4. Adaptive refinement

Once a posteriori error estimates are established, the elements that require refinements are identified
based on a tolerance criteria. The next step is to locally refine the elements. For a linear two
dimensional element or knotspan that requires refinements, knot insertion splits that element into
four new elements. However, for B-splines of higher polynomial order,p > 1, the splitting cross
cannot be limited to only the element in question. Thus, local refinement strategies must be selected
to have the desired refinement for a given element and its neighbors. We have three local refinement
strategies for LR B-splines, namelyfull span,minimum spanandstructured meshrefinement. The
ideas behind these strategies are briefly discussed here and for the details we refer to [22].

The full span refinement strategy refines every B-spline with support on the element identified for
refinement. The mesh line inserted in one direction will span from the minimum to the maximum
knot of all functions with support on the identified element. This strategy ensures that all B-splines
with support on the identified element are split by the refinement. This approach is illustrated in
Figure3a.

In the minimum span refinement strategy, a cross is inserted in the identified element where the
refinement footprint is limited, unlike the full span approach. The inserted mesh lines will be as
short as possible but will split at least one B-spline. The B-spline to be split maybe identified based
on which of the available B-splines has the smallest parametric support. But, in general, there is
lack of such uniqueness. Thus, a random B-spline is selected and refined. This approach is shown
in Figure3b.

Identifying which B-splines need refinement instead of which elements is another way to refine
B-splines. In [22] the error for a B-spline is defined as the sum of the errors in all the knotspans in
the support of the given B-spline. A fraction of the B-splines with the highest error are then refined
as illustrated in Figure3c resulting in a structured mesh refinement.

(a) Fullspan: Split all functions
on one element

(b) Min Span: Split one random
function on one element

(c) Structured Mesh: Split all
knot spans on one B-spline

Figure 3. Local refinement strategies for LR B-splines, after [22]
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5. NUMERICAL EXAMPLES

5.1. Aims of the numerical examples

The aim of the numerical experiments herein is to investigate whether adaptive refinement using
LR B-splines achieves optimal convergence rates for groundwater flow problems that may involve
highly varying material properties, singularities and/or rough right hand sides such that it gives
better accuracy per number of degrees of freedom compared to uniform refinement. The adaptive
strategy is based on controlling the growth rate of the basis functions in the solution space, according
to the parameterβ, and a specified error tolerance or maximum number of degrees of freedom.
Furthermore, we want to investigate the sensitivity in accuracy and convergence rates towards
polynomial orderp. We start the numerical examples with two verification problems with known
analytical solutions:

• The wavefront well problem
• The L-shape problem

These problems are used to verify the numerical implementation and study the effectivity of the
error estimates and the adaptive simulation in handling certain challenging effects. In the wavefront
well problem we study the effects of a rough right hand side and the effect of isotropy/anisotropy
in material properties, whereas the analytical solution for the L-shape problem is characterized by
having a singularity of the gradient in the re-entrant corner on the boundary. The availability of an
analytical solution allows us to calculate exact a posteriori error estimates to drive the adaptive mesh
refinement, as well as study and report the effectivity index for the presented recovery based error
estimator.

To demonstrate the potential offered by adaptive isogeometric analysis, we address the following
groundwater flow problems:

• Flow around an impervious corner
• Flow around a cutoff wall
• Flow in a heterogeneous medium

Analytical solutions are not available for these problems and we use the a posteriori error estimator
to drive the adaptive refinement. Here we compare the achieved accuracy per number of degrees of
freedom,ndof , obtained with adaptive and uniform refinement.

5.2. Verification problems with analytical solutions

5.2.1. The wavefront well problem.The first illustrative example we consider is the so called
wavefront well problem, [42], defined over a square domain.

Problem definition.The strong form of the problem in Eq.7, assuming the flow is solely driven
by pressure gradients, reduces to:

{

∇ · [−κ∇pw(x, y)] = f(x, y) (x, y) ∈ Ω

pw(x, y) = p̂w(x, y) (x, y) ∈ ∂Ω
(46)

The numerical simulation domain is defined by a square areaΩ = [0, 1]× [0, 1] where the
boundaries areΓD = ∂Ω andΓN = ∅, shown in Figure4a. The exact analytical solution for the
pressure field is given by:

pw(x, y) = arctan(50(−0.25 +
√

(x− 0.5)2 + (y − 0.5)2)) (47)

Note that the right hand sidef(x, y) is generated by taking the Laplacian (∇2) of the analytical
solution stated in Equation47, and is given in AppendixA for a variable degree of anisotropy. The
analytical solution depicted in Figure4b displays a ”front”-type of behavior where the solution is
rapidly changing across a circular band inside the domain. This problem is mathematically smooth
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(a) The domainΩ and its boundary
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(b) 3D plot of analytical solution

Figure 4.The wavefront problem: Numerical simulation domain and analytical solution plot

i.e. pw ∈ Hp+1(Ω) for any finitep. However, due to the highly varying right hand side we may
only expect an optimal convergence rate when the element sizeh is less than a given threshold
that depends on the sharpness/bandwidth of the interior layer. Hence, we may expect suboptimal
convergence rate for uniform mesh refinement when the mesh is not fine enough.

Two cases are considered for the conductivity matrixκ - isotropic and anisotropic. For simplicity
in deriving the source function, the conductivity equivalent coefficients are set equal to:

κ =

[

1 0
0 1

]

and κ =

[

10 0
0 1

]

(48)

Results - isotropic case.The adaptive simulation is performed for polynomial degrees ofp = 2
andp = 3. The refinement parameter is selected asβ = 20%. Adaptive refinement is performed upto
a specified maximum number of iterations or maximum number of degrees of freedom.

The physical meshes for selected refinement steps are shown in Figures5a-5cfor p = 2 and in
Figures5d-5f for p = 3. The structured mesh refinement strategy is used for this problem. Note that
the adaptive meshes are not perfectly symmetric, even though the solution and error distribution are
symmetric, because our refinement parameterβ only controls the growth rate of the number of basis
functions, as explained in Section3.1.2. We observe, however, that the physical meshes especially
at higher refinement steps are nearly symmetric since the error is symmetrically distributed because
of its dependence on the hydraulic conductivity matrix.

The convergence plots for this case are shown in Figure6ain terms of relative error versus number
of degrees of freedom. The effectivity index plot is shown in Figure6b for the polynomial degrees
considered. It can bee seen from the curves that an optimal convergence rate is obtained after a
sufficient number of refinements for this problem. A similar problem has been studied in [40] using
different a posteriori error estimators, of which CGL2 (used here) is one. Error recovery based on
CGL2 projection was observed to perform well for this problem.

Results - anisotropic case.The problem is simulated with the same setup as in the isotropic
case with the only difference being in the anisotropy of theκ matrix. The errors are no longer
symmetrically distributed in the domain and this is reflected in the physical meshes obtained at
different refinements steps, shown in Figures7a-7cfor p = 2 and Figures7d-7f for p = 3. The
convergence plots obtained for the anisotropic case, Figure8a, are similar to the isotropic case. The
effectivity index plot for this case is shown in Figure8b.
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(a)p = 2, ndof = 1138 (b) p = 2, ndof = 3443 (c) p = 2, ndof = 10339

(d) p = 3, ndof = 1234 (e)p = 3, ndof = 3775 (f) p = 3, ndof = 11320

Figure 5.The wavefront problem: Adaptive meshes forβ = 20% at different refinement steps for the
isotropic case. Each column represents the same refinement step for varying polynomial degrees.
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Figure 6.The wavefront problem: Convergence and effectivity index plots for the isotropic case. The dotted
lines in a) correspond to slopes of -3/2 and -2.
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(a)p = 2, ndof = 1135 (b) p = 2, ndof = 3443 (c) p = 2, ndof = 10352

(d) p = 3, ndof = 1222 (e)p = 3, ndof = 3751 (f) p = 3, ndof = 11230

Figure 7.The wavefront problem: Adaptive meshes forβ = 20% at different refinement steps for the
anisotropic case. Each column represents the same refinement step for varying polynomial degrees.
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Figure 8.The wavefront problem: Convergence and effectivity index plots for the anisotropic case. The
dotted lines in a) correspond to slopes of -3/2 and -2.
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(a) Domain (b) Analytical solution

Figure 9.The L-shape problem: Domain with boundary conditions and analytical solution plot

5.2.2. The L-shape problem.The second example with analytical solution is the L-shape problem
with domain and boundary conditions shown in Figure9a.

Problem definition.The boundary conditions are summarized as:










∇ · (−κ∇pw) = 0 in Ω

pw(r, θ) = 0 on ΓD
∂pw

∂n = qw on ΓN

(49)

We chooseκx = κy = 1 for simplicity. The exact analytical solution is given by:

pw = r2/3 sin

(

2θ − π

3

)

(50)

wherer2 = x2 + y2 andθ = arctan(y/x). The analytical solution plot is shown in Figure9b. The
expression for the Neumann boundary condition,qw, is derived based on the analytical solution and
is not included here.

For the given elliptic problem, the re-entrant corner at(0, 0) in the domain causes a singularity in
the solution. It is known that the convergence for uniform mesh refinement is limited by the strength
of the singularityλ = 2/3, aspw ∈ H5/3(Ω), i.e., the convergence rate (versus degrees of freedom)
is equal to−1/3. For problems where the solution is not sufficiently smooth,pw 6∈ Hp+1(Ω), we do
not obtain an optimal convergence rate when we perform uniform mesh refinement. In particular,
the use of higher order polynomials is then inefficient.

Results.The L-shape problem is analyzed for polynomial degrees ofp = 2 and p = 3. The
refinement parameter is selected asβ = 20%. In Figure 10a we see that we achieve optimal
convergence rates when we perform adaptive refinement, whereas for uniform refinement the
convergence rate is the same for bothp = 2 andp = 3 and limited by the strength of the singularity.
The effectivity index plots obtained are shown in Figure10band we see that we have0.9 < θ < 1.1.
We want to underline that the obtained effectivity indices are very good (i.e close to1.0) compared
to what we typically achieve for regular finite elements [32].
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Figure 10.The L-shape problem: Convergence and effectivity index plots
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Figure 11. One example of seepage around an impervious corner

5.3. Flow around an impervious corner

The next numerical example we consider is flow of water around an impervious corner e.g.
groundwater flow under the base of a concrete dam, Figure11. The presence of a sharp corner
introduces singularity in the numerical solution leading to infinite velocities.

5.3.1. Problem definition.We study a selected area of this problem with adaptive mesh refinement
by considering the appropriate boundary conditions. The problem is idealized as an L-shape problem
where the boundary conditions are applied such that they reflect the physical problem, shown in
Figure12a. Dirichlet boundary conditions are applied at the top horizontal and the right vertical
edges of the idealized numerical simulation domain. For simplicity, a homogeneous Dirichlet
boundary condition is applied at the right vertical edge, which may be slightly different in the the
physical problem depending on the boundary conditions at the downstream area. The impervious
boundaryΓN1 represents a homogeneous Neumann boundary condition. We assume the fluxes to
be negligible onΓN2. The boundary conditions are summarized as:











pw = 1000 on ΓD1

pw = 0 on ΓD2
∂pw

∂n = 0 on ΓN1 ∪ ΓN2

(51)

The equipotential lines obtained from simulations with uniform refinement using coarse and fine
meshes are shown in Figures12band12c, respectively.

5.3.2. Results.The mesh refinement parameter for this problem is selected asβ = 20% and the
adaptive simulations are performed in combination with polynomial degrees ofp = 2, p = 3 and
p = 4. The fullspan refinement strategy is used in this case.
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(a) Domain

(b) Equipotential lines,ndof = 66 (c) Equipotential lines,ndof = 3571

Figure 12.The impervious corner problem: Idealized numerical simulation domain and equipotential lines
for coarse and fine meshes.
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(a)p = 2, ndof = 158 (b) p = 2, ndof = 433 (c) p = 2, ndof = 1097

(d) p = 3, ndof = 241 (e)p = 3, ndof = 676 (f) p = 3, ndof = 1739

(g) p = 4, ndof = 290 (h) p = 4, ndof = 807 (i) p = 4, ndof = 2068

Figure 13.The impervious corner problem: Adaptive meshes at different refinement steps for the selected
β = 20%. Each column represents the same refinement step for varying polynomial degrees.
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The resulting physical meshes at selected refinement steps are shown in Figure13. The meshes
and the resulting number degrees of freedom forp = 2 at the 5th, 10th and 15th refinement steps
are shown in Figures13a-13c. Similar results forp = 3 andp = 4 are shown in Figures13d-13f
and Figures13g-13i, respectively. The convergence plots in Figure14 compare the relative errors
from simulations with local and uniform refinement for the different polynomial degrees analyzed.
Observe the significant increase of convergence order, i.e. optimal convergence rate, achieved by
the adaptive procedure. The convergence rate with local refinement in this case appears to improve
with increasing polynomial order.
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Figure 14.The impervious corner problem: Convergence plots



22 Y. W. BEKELEET AL.

5.4. Flow around a cutoff wall

Seepage cutoff walls are used in geotechnical engineering to protect structure foundations from
the damaging effects of groundwater flow or to exclude groundwater from an excavation and
thereby minimize the requirement of dewatering pumping. The cutoff walls are usually made of
an impervious or very low permeability material, such as a steel sheet-pile wall, and extend up to a
zone of low permeability. In the computational modeling of groundwater flow, the tips of such cutoff
walls represent points of singularity, [9], making the numerical solution difficult or erroneous.

5.4.1. Problem definition.We consider the flow of water around a 10m long cutoff wall installed
under the base of a dam with a cross-sectional width of 50m, see Figure15. The soil medium is
considered to be homogeneous with an isotropic hydraulic conductivity of 15 m/day.

Figure 15.The cutoff wall problem: Physical setup of dam with a cutoff wall

The simulation domain chosen for the described dam with a cutoff wall is shown in Figure16a.
The cutoff wall is included in the geometry by inserting aC−1 discontinuous knot. The base of the
dam, the cutoff wall and the boundary to the impervious layer represent homogeneous Neumann
boundaries and are respectively designated asΓN1, ΓN2 andΓN3. Non-homogeneous Dirichlet
boundary conditions are applied at the left and right boundaries of the domain,ΓD1 andΓD2. The
magnitudes for these values are chosen based on the anticipated flow field that will result from the
hydraulic head differences at the upstream and downstream faces of the dam. Pressure head values
that vary linearly with heightz are assumed and the boundary conditions can be summarized as:











pw = z + 100 on ΓD1

pw = 30− z on ΓD2
∂pw

∂n = 0 on ΓN1 ∪ ΓN2 ∪ ΓN3

(52)

The equipotential lines obtained from simulations with refinements using coarse and fine meshes
are shown in Figures16band16c, respectively. The pressure heads vary between 120 kPa, at the left
boundary, and 10 kPa, at the right boundary. These correspond to hydraulic heads of approximately
12m and 1m at the upstream and downstream faces of the dam, respectively.

5.4.2. Results.We start the adaptive simulation for the cutoff problem with a relatively coarse mesh
of around 300 degrees of freedom. The polynomial degrees are varied betweenp = 2, p = 3 and
p = 4. The problem is also simulated using standard linear finite elements,p = 1, for comparison
with FEA. The refinement parameterβ in this case is selected as10% and a structured mesh adaptive
refinement strategy is used.
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(a) Domain

(b) Equipotential lines,ndof = 315

(c) Equipotential lines,ndof = 5715

Figure 16.The cutoff wall problem: Domain with boundary conditions and equipotential lines for coarse
and fine meshes. The maximum and minimum pressure head values are 120 kPa and 10 kPa.

The pressure profiles obtained using a coarse mesh could show significant discretization errors.
This is illustrated by plotting horizontal and vertical pressure profile plots for coarse and locally
refined meshes around the cutoff wall. Figure17ashows horizontal pressure profiles 2m above the
tip of the cutoff wall, plotted over a horizontal distance of 25m, 12.5m on both sides of the cutoff
wall. Notice the significant difference in pressure drop over the cutoff wall, i.e. 71.1-58.9 = 12.2
kPa and 75.5-54.5 = 21.0 kPa for the coarse mesh and fine mesh, respectively. This corresponds to
more than 40% underestimation of the pressure drop calculated by the coarse mesh, which affects
the expected effect of water flow at the downstream base of the dam. Vertical pressure profiles at the
location of the cutoff wall, and spanning over the entire height of the domain, are shown in Figure
17b. Again, we observe significant differences in the obtained solutions.

The physical meshes obtained at selected refinement steps are shown in Figure18. The meshes
and the resulting number of degrees of freedom forp = 2 at the 4th and 12th refinement steps
are shown in Figures18aand18b. The corresponding results forp = 3 are shown in Figures18c
and18d, whereas Figures18eand18f show those forp = 4. At large refinement numbers, extra
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Figure 17.The cutoff wall problem: Horizontal and vertical pressure profile plots

refinements are observed at the boundaries where non-homogeneous Dirichlet boundary conditions
are applied since these are only approximated.

(a)p = 2, ndof = 423 (b) p = 2, ndof = 987

(c) p = 3, ndof = 523 (d) p = 3, ndof = 1201

(e)p = 4, ndof = 560 (f) p = 4, ndof = 1369

Figure 18.The cutoff wall problem: Adaptive meshes at different refinement steps for the selected
β = 10%. Each column represents the same refinement step for varying polynomial degrees.

The convergence plots comparing the relative errors from uniform and local refinement are shown
in Figure19. The results from a FEA using standard linear finite elements,p = 1, are included for
comparison. For linear elements, FEA and IGA result in similar basis functions and we use this fact
to compare the FEA results with local refinement using linear LR B-splines. We observe that local
refinement performs slightly better in this case. The uniform refinement simulations with higher
order polynomials show that the results are only marginally better in recovering errors compared
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to the FEA results. Local refinement simulation using higher order polynomials, however, show
good convergence properties. Optimal convergence rates are obtained forp = 2 andp = 3 for the
maximum number of degrees of freedom specified in the adaptive simulation. The convergence rate
appears to improve forp = 4 but requires more refinement steps to reach an optimal order, thereby
increasing the total number of degrees of freedom.
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Figure 19.The cutoff wall problem: Convergence plots
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5.5. Flow in a heterogeneous medium

The errors observed in the numerical simulation of groundwater flow in heterogeneous formations
using coarse meshes could be very significant, [19]. Using a very fine mesh for such cases helps
in reducing these errors but a uniform refinement throughout the domain implies unnecessarily
fine meshes at locations where the errors are smaller. In such cases, adaptive simulation with local
refinement could be more effective.

5.5.1. Problem definition.We consider a square domain of size1m× 1m. The heterogeneous
hydraulic conductivityk on the flow domain is assumed to follow a lognormal distribution. The
probability density function for the lognormal distribution ofk is:

f(k) =
1

σk
√
2π

e−
(ln(k)−µ)2

2σ2 (53)

whereµ is the mean andσ is the standard deviation of the normally distributed logarithm of the
hydraulic conductivity. A random field withµ = −15 andσ = 7 was generated.

For smoothing out the randomly generated data, a Gaussian filter of the form

g(x, y) = e
− 1

3

(

x2

lx
+ y2

ly

)

(54)

is applied. The filter dimensions in thex andy directions are chosen to be the same with values
of lx = ly = 20. The smoothed data was truncated such that the hydraulic conductivity values vary
between10−3m/s and10−7m/s. The realization of the stationary random field generated is shown
in Figure20 in terms of color field and 3D plots.
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Figure 20.The heterogeneous problem: Realization of the randomly generated hydraulic conductivity field.

Dirichlet boundary conditions are applied on the left and right boundaries of the heterogeneous
square domain to create a pressure gradient. The top and bottom boundaries of the domain are
represented by homogeneous Neumann (no-flux) boundary conditions. An illustration of the applied
boundary conditions is shown in Figure21a. These boundary conditions are:











pw = 1000 on ΓD1

pw = 0 on ΓD2
∂pw

∂n = 0 on ΓN1 ∪ ΓN2

(55)
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(a) Domain

(b) Equipotential lines,ndof = 169 (c) Equipotential lines,ndof = 8703

Figure 21.The heterogeneous problem: Simulation domain with boundary conditions and equipotential
lines for coarse and fine meshes.

The equipotential lines obtained from simulation with uniform refinement using coarse and fine
meshes are shown in Figures21band21c, respectively. The difference in the hydraulic conductivity
within the domain creates preferential flow paths and this results in very large changes in the
pressure gradient at some locations of the domain.

5.5.2. Results.The heterogeneous problem is simulated starting from a relatively coarse mesh
with number of degrees of freedom being around 170. Polynomial degrees ofp = 2 andp = 3 are
considered and the refinement parameterβ in this case is selected as10%. The resulting physical
meshes for selected refinement steps are shown in Figure22. In particular, Figures22a-22c show
the locally refined meshes forp = 2, whereas Figures22d-22fshow those forp = 3.

The convergence plots comparing local and uniform refinements forp = 2 andp = 3 are shown
in Figure23. The plots indicate that the convergence rate gained by using local refinement is not
very significant. The reason for this is that, unlike complex boundary conditions which could imply
strong singularities, varying material behavior is a weak discontinuity. The error recovery using local
refinement, however, could be more significant compared to uniform refinement for simulations over
large heterogeneous domains.

The random hydraulic conductivity field considered in Figure20shows a very large variability in
the conductivity values. In some cases, the hydraulic conductivity fields in heterogeneous aquifers
could show variability of a lesser magnitude within the domain. One such lognormal random field is
generated and shown in Figure24. The random field is generated by assuming a meanµ = −10 and
a varianceσ2 = 2. The filter dimensions in this case are taken aslx = 1 andly = 15. The hydraulic
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(a)p = 2, ndof = 475 (b) p = 2, ndof = 1757 (c) p = 2, ndof = 3917

(d) p = 3, ndof = 631 (e)p = 3, ndof = 2977 (f) p = 3, ndof = 7429

Figure 22.The heterogeneous problem: Adaptive meshes at different refinement steps for the selected
β = 10%. Each column represents the same refinement step for varying polynomial degrees.
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Figure 23.The heterogeneous problem: Convergence plots

conductivity values vary by an order of magnitude of 10. Adaptive simulations were performed
with p = 2 andp = 3, usingβ = 20%. The resulting adaptive meshes at selected refinement steps
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are shown in25. The difference in convergence rates between uniform and local refinement for this
case is small and is not shown here.
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Figure 24.The heterogeneous problem: Realization of the randomly generated hydraulic conductivity field.

(a)p = 2, ndof = 1582 (b) p = 2, ndof = 3313 (c) p = 2, ndof = 5735

(d) p = 3, ndof = 2791 (e)p = 3, ndof = 5860 (f) p = 3, ndof = 10156

Figure 25.The heterogeneous problem: Adaptive meshes at different refinement steps for the selected
β = 20%. Each column represents the same refinement step for varying polynomial degrees.
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Material property variation in other cases maybe of a non-homogeneous type and such a
problem may be handled depending on the strength of the discontinuity introduced by the non-
homogeneity. Weak discontinuities, such as material interfaces in a domain with layered materials,
can be simulated accurately by ensuringC0 continuity at the interfaces, without requiring adaptive
refinement. This is achieved in IGA by making the multiplicity of the knots,m, at the interfaces
equal to the polynomial degree,p, used i.e.Cp−m continuity. Strong discontinuities, such as cracks
and impervious interfaces, result in jumps in the computed solution and introduce singularities
depending on their location in the flow domain. These features can be simulated by introducing
C−1 discontinuities, which is one of the powerful features of IGA. The cutoff wall example in
Section5.4represents a special case of such strong discontinuities.

6. CONCLUDING REMARKS

Steady-state groundwater flow problems with varying numerical challenges were studied using
adaptive isogeometric analysis with locally refined (LR) B-splines. In particular, the problems
studied were flow around an impervious corner, flow around a cutoff wall, flow in a heterogeneous
medium and flow in a discontinuous material field. The simulations were performed using both local
and uniform refinement. The adaptive simulations with local refinement rely on a posteriori error
estimates as a refinement criteria where the error estimates are based on Continuous GlobalL2-
projection (CGL2) of the computed solution. The effectivity of the error estimator was verified with
benchmark problems which have analytical solutions, before being used in the application examples.
In general, adaptive simulations with local refinement were observed to outperform simulations
with uniform refinement in terms of error recovery. Optimal convergence rates were obtained
for problems with strong singularities where the rates were observed to improve with increasing
polynomial orders. Application to problems with weak discontinuities, due to material property
variation, shows that optimal convergence rates may not be achieved but adaptive refinement still
performed better than uniform refinement in error recovery. Local refinement could especially be
more useful for large scale groundwater flow problems, with singularities and/or discontinuities,
where simulations with uniform refinement could be computationally expensive.

In the present study, only two-dimensional groundwater flow problems were studied. Application
to three-dimensional problems, however, is straight forward where the mathematical procedures
are a simple extension of the formulations presented in Section3.1.2. In particular, we will have
trivariate functions for three-dimensional problems based on three knot vectors in each direction. As
in the bivariate case, the refinements are performed in one parametric domain at a time as illustrated
in Eq.17.

A. SOURCE FUNCTION AND SECONDARY SOLUTION FOR THE WAVEFRONT
PROBLEM

The source functionf corresponding to the assumed analytical solution of the wavefront problem
numerical example in Section5.2.1is given by:

f =

[

250000(a− 0.25)

a2b2
+

50

a3b

]

[

c(x− 0.5)2 + (y − 0.5)2
]

− 50(c+ 1)

ab

where:

a =
√

(x− 0.5)2 + (y − 0.5)2

b = 2500 [a− 0.25]
2
+ 1

c =
κx

κy
⇒ Degree of anisotropy
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The secondary solution, i.e. the velocity, for the wavefront problem is derived from the Darcy
equation as:

v = −50

ab

{

c(x− 0.5)
(y − 0.5)

}
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