
1 
 

 A Comparative Study of the Stochastic Averaging Method and the Path 

Integration Method for Nonlinear Ship Roll Motion in Random Beam Seas 

Wei Chaia, Leo Dostalb, Arvid Naessc, d, Bernt J. Leiraa 
a Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway 

b Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Hamburg, Germany 

c Centre for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim, Norway 

d Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway 

 

Abstract: In this paper, the energy-based stochastic averaging method and the path integration (PI) method are 

applied to study the stochastic response of the nonlinear roll motion in random beam seas. Specifically, the 

Markov diffusion theory is applied to describe the random roll motion such that the probabilistic properties of the 

ship roll motion are governed by the Fokker-Planck (FP) equation. The stochastic averaging method focuses on 

the roll energy envelope process and reduces the difficulty in calculating the stochastic response via a dimensional 

reduction of the original system. In contrast, the path integration method is based on the Markov property of the 

original dynamical system and provides approximate solutions to the FP equation by linking the explicitly known 

local solutions. Although the stochastic averaging technique is well established in the study of the stochastic 

responses of various dynamical systems, its accuracy for determining the high-level roll response has not yet been 

a focus of study. This paper aims to provide a comparative study for the performance of the two abovementioned 

methods, additionally, the advantages and shortcomings of using each method for studying the nonlinear roll 

motion in beam seas are demonstrated by practical calculations.       
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1. Introduction  

The danger of severe roll motions to vessels sailing in the open seas has been known to seafarers for millennia. 

Although scientific descriptions of this classical problem have been dated to Euler’s time in the 18th century [1], 

this problem has received attention in the past decades from the fields of ship stability [2, 3], nonlinear dynamics 

[4, 5], stochastic dynamics [6], etc. For ships rolling in random seas, challenges have been reported in determining 

the stochastic responses of such nonlinear systems [7].    

A methodology based on a Markov model for the nonlinear roll motion in random beam seas has popular for 
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analyzing the corresponding stochastic response [6, 8-10], mainly because the probabilistic properties and the 

stochastic evolutions of Markov dynamical systems are governed by the Fokker-Planck (FP) equation. In this 

work, the roll motion in random beam seas is decoupled from the other motion modes and governed by a 

single-degree-of-freedom (SDOF) model, where the associated wave excitation moment is assumed to be a 

non-white Gaussian process described by a specific spectrum. Subsequently, the stationary random wave 

excitation process is approximated as filtered (colored) white noise by introducing a second-order linear filter [11]. 

Therefore, the original SDOF model, also a second order differential equation, is extended into a four-dimensional 

(4D) Markov dynamical system. 

Generally, for such nonlinear systems, numerical methods based on a direct solution of the FP equation are 

hardly feasible. Therefore, several alternative techniques have been developed to provide approximation solutions 

of the FP equation, such as the statistical linearization method [9], the cumulant-neglect closure method [12, 13], 

the stochastic averaging method [14-16] and the path integration (PI) method [17, 18]. Since our focus is on the 

nonlinear stochastic response of the roll motion, the former two methods are not considered as they cannot 

provide accurate information of the high-level responses. The principles of the stochastic averaging method and 

the PI method are described as follows.   

The stochastic averaging method has been extensively used in the field of random vibration and serves as a 

convenient tool to obtain the (approximate) stationary or non-stationary responses of stochastic dynamical 

systems. This method simplifies the problem by introducing a dimensional reduction of the original system, but 

the essential behavior of the system is retained. Then, a numerical solution or even analytical solution of the 

low-dimensional FP equation can be obtained. Roberts was the pioneer and introduced the stochastic averaging 

technique to study the stochastic roll response [19, 20]. Instead of basing the stochastic averaging method on 

generalized harmonic functions with the assumption that the amplitude and phase of the roll response are slowly 

varying functions with respect to time [21], in his studies, the roll energy envelope process was considered in an 

energy-based stochastic averaging method. The drift and diffusion coefficients of the subsequent one-dimensional 

FP equation were approximated by a Fourier series, then, the governing equation was solved numerically. In 

recent years, Dostal et al. [14, 22] applied the energy-based stochastic averaging method to ship roll dynamics in 

order to find the closed-form solutions as well as the numerical solutions of the averaged roll energy process. By 

applying this procedure, they have obtained analytical results for the roll motion behavior in random seas. 

The path integration (PI) method is an efficient approximation for solving the FP equation of the original 

system and providing the stationary or non-stationary response statistics of the dynamical system. This method is 
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based on the Markov property of the original system and the global solution, i.e., the evolution of the response 

statistics is calculated by linking the explicitly known local solutions by a step-by-step solution technique [18] 

according to the basic Chapman-Kolmogorov equation. The PI method has been applied to a variety of problems 

in the discipline of engineering [17, 18, 23-25]. Recently, a 4D PI procedure has been formulated in order to study 

the stochastic roll response of a vessel in random beam seas [7]. The rationality for using the 4D extended system 

to describe the roll motion in random beam seas and the efficiency and accuracy of the 4D PI procedure were 

reported in Ref. [11]. 

In this work, both the energy-based stochastic averaging method and the PI method are applied in order to 

calculate the stochastic roll response, in particular, the high-level response in the tail region, since this response is 

important for the safety of the vessel. Although the energy-based stochastic averaging method has been applied to 

the random roll motion in beam seas [6, 10] and also for high-dimensional dynamical systems [14], its accuracy 

and performance for the high-level response of the roll motion in random beam seas have not yet been studied. 

This work provides a comparative study for the performance of the two abovementioned methods that are based 

on different principles. Furthermore, a straightforward Monte Carlo simulation (MCS) is introduced as a 

verification tool for the comparative study. 

 

2. Mathematical Model of Roll Motion 

Under the dead ship condition, i.e., a ship with zero speed (or low speed) under unidirectional beam seas, the 

roll motion can be represented by the following SDOF equation [6, 26]: 

  3
44 44 1 3( ) ( ) ( ) ( ) ( ) ( ) ( )qt b t b t t c t c t m t                                                          (1) 

where θ(t) and ( )t are the roll angle and roll velocity, respectively. The parameters b44 and b44q are the linear and 

quadratic damping coefficients, c1 and c3 are the linear and cubic roll restoring coefficients, and m(t) is the relative 

roll excitation moment.  

The roll motion has a softening stiffness characteristic since the cubic restoring term in Eq. (1) is negative. For 

the softening cases, the response trajectories eventually deviate from the region of stability in the phase plane, i.e., 

ship capsizing would occur when the roll angle exceeds a certain limit (such as the angle of vanishing stability) 

and the roll response is non-stationary by nature [21]. Nevertheless, the roll response can be treated as a stationary 

diffusion process when the mean time to capsize is very long and the rationality of this approximation has been 

noted in Ref. [6]. On the other hand, many ships exhibit hardening behavior up to critical angles (e.g., 30-40 
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degrees and more), and this would produce different features in the roll motion, such as bifurcations and jumps, 

especially for the narrow-band excitation. Moreover, it should be noted that the SDOF model in Eq. (1) and the 

associated linear-plus-cubic restoring term are valid for qualitative studies and for understanding the nonlinear 

behavior of the roll motion under random excitation.   

The random wave excitation moment m(t) is a stationary Gaussian process and described by the spectrum 

Smm(ω), which is expressed as: 

  
2 2

44 44( ) ( ) ( ) ( )mm rollS F S I A                                                           (2) 

in which I44 denotes the moment of inertia in the roll and A44 is the added mass moment term. |Froll(ω)| represents 

the roll moment amplitude per unit wave height at frequency ω. Sξξ(ω) is the wave spectrum and is given as a 

modified Pierson-Moskowitz spectrum with a significant wave height Hs and peak period Tp [27].    

Subsequently, the linear filter technique is introduced in order to approximate the driving process m(t) in Eq. (1) 

as a filtered white noise, then, the original SDOF model will be extended into a Markov dynamical system. In this 

work, the target spectrum, Smm(ω) is approximated by a second-order linear filter, which is presented as follows: 

  3 4 3

4 3

( )dx x x dt dW

dx x dt

 


  
  

                                                                (3) 

where x3 and x4 are the state variables in the filter equation with x3 representing the output m(t). 

dW(t)=W(t+dt)-W(t) represents an infinitesimal increment of a standard Wiener process with E{dW(t)}=0 and 

E{dW(t)dW(s)}=0 for t ≠ s and E{dW(t)2}=dt. The spectrum generated by the second-order linear filter (3) is 

denoted as SFilter(ω) and given as flowws: 

  
2 2

2 2 2

1
( )

2 ( ) ( )FilterS
 

   


 
                                                            (4) 

where α, β and γ are the parameters of the linear filter.  

By combining Eq. (1) with Eq. (3), the nonlinear roll motion in random beam seas is described by the 

following 4D state-space equation: 

  

1 2

3
2 44 2 44 2 2 1 1 3 1 3

3 4 3

4 3

( | | )

( )

q

dx x dt

dx b x b x x c x c x x dt

dx x x dt dW

dx x dt

 





     


  
  

                                                 (5) 

where x1= θ(t), x2= ( )t and x3= m(t).  

Furthermore, Eq. (5) can be constructed as an Itô stochastic differential equation (SDE), which is given as: 

  ( , ) ( ) ( )d t dt t d t x a x b W                                                                  (6) 
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where x(t)=(x1(t),…, x4(t))T is a 4D state-space vector process, the vector a(x,t) is the drift term and b(t)dW(t) 

represents the diffusion term. The vector dW(t)=W(t+dt)-W(t) denotes the independent increments of a standard 

Wiener process. For the Markov process x(t), its transition probability density function (PDF), p(x,t | x′,t′), 

satisfies the FP equation that is expressed as [28]: 

  
  24 4 4

1 1 1

( ( ) ( ))( , ) 1
( , | , ) ( , | , ) ( , | , )

2

T
iji

i i ji i j

b t b ta t
p t t p t t p t t

t x x x  

           
    

x
x x x x x x                    (7) 

where x' denotes the state-space vector at time t' and t' < t. 

The response statistics of the nonlinear roll motion in random beam seas can be obtained by solving the 

governing FP equation, Eq. (7) and the principles of the two numerical methods for providing approximate 

solutions of the FP equation are presented in the following sections. 

 

3. Energy based Stochastic Averaging Method  

The stochastic averaging method has been well established as a powerful approximate technique for predicting 

of the response statistics of nonlinear dynamical systems. Instead of solving the FP equation of the original system, 

this method is focused on the energy envelope process of the roll dynamics, and a one-dimensional SDE is 

established to describe the distribution of the roll energy process [19]. Therefore, the problem is simplified as a 

calculation of the relevant PDFs for the low-dimensional cases.  

Generally, the damping coefficients of the roll motion are smaller than the restoring coefficients and a 

perturbation parameter ε <<1 is introduced in the SDOF model, Eq. (1), in order to provide a scaled system for the 

stochastic averaging procedure. The scaled system with tε = εt is given as follows [14]: 

  
3

1 3 1 2( ) ( )s

d
x y

dt

d
y x x y y y m t

dt






     

 

      


                                             (8) 

where
5
21 2 2 2 1

1 2 1 1 3 3 1 44 3 44, , , , , ,qx x y x c c b b                      and ( ) ( )sm t m t  .                  

Since we are interested in the total energy of the roll dynamics, the Hamilton function H(x, y) is introduced: 

  
2 2 4

1 3( , )
2 2 4

y x x
H x y                                                                    (9) 

The contour lines of the Hamilton function, H(x, y) are shown in Fig. 1. The fixed points of the system in Eq. 

(8) without dissipation and random perturbation (i.e., ε=0) are as follows: P1= 1 3( ,0)  , P2= 1 3( ,0)  and 

S=(0, 0). Furthermore, the change in the total energy is the time derivate of the Hamilton function: 
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  2
1 2( ) ( )s

d
H y y y m t

dt 


                                                              (10) 

From the Hamiltonian, we introduce the following relationship: 

  
4

2 2
1 3( , ) 2

2

x
Q x H y H x                                                               (11) 

Then, combing the first equation of Eq. (8) with Eq. (10), the following system is obtained  

  

1 2

( , )

( , )( ( , )) ( , ) ( )s

d
x Q x H

dt

d
H Q x H Q x H Q x H m t

dt






    

 

    


                                    (12) 

in which the variable y was eliminated by defining the function Q(x,H).  

The scaling (perturbation) parameter in Eq. (8) helps to indicate the relative order of magnitude of the roll 

damping term and the external excitation term. An important property of the reformulated system in Eq. (13) is 

that the energy level H changes slowly compared to the oscillations of the variable x. This enables the application 

of the stochastic averaging method to this system since the fast oscillatory dynamics of the roll motion can be 

averaged over the roll period. For the multiple scale model in Eq. (12), the period T(H) at the energy level H (0≤ 

H ≤ Hc) of one oscillation of the fast variable x in the absence of noise and damping (i.e., ε=0), is given as [20]:  

  
( ) ( )

0 ( )

4
( ) 2 ( )

( , )

T H b H

b H

dx
T H dt K k

qQ x H
                                                      (13) 

where Hc is the energy level corresponding to the roll angle of vanishing stability, which is 

  2
1 34cH                                                                              (14) 

with  

  3
2

3

4
,

2

H
q a a

b




                                                                     (15) 

and the function K(k) is the complete elliptic integral of the first kind with elliptic modulus k given by k=b/a [29]. 

The limits of integration of  b(H) are the points where ( , ) 0y Q x H  , and the periodic orbit interacts with the 

x-axis. In other words, b(H) is the maximum value, i.e., the roll amplitude, of x for each energy level H and is 

given by the following equation: 

  
2

1 1 3

3

4 H
b

  


  
                                                                  (16)   

It should be noted that the roll amplitude b for each level of H is independent of the scaling parameter ε.    
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The process H converges weakly to a diffusion Markov process as the perturbation parameter ε→0, then, the 

corresponding one-dimensional Itô equation for the Markov process is expressed as follows: 

  ( ) ( ) ( )dH m H dt H dW t                                                                (17) 

where the drift and diffusion coefficient are as follows [14, 30]: 

  
0 ( )2

1 20 0

4 1
( ) ( ) ( ( ), )( ( ( ), ) )

s s

K k Tt t

m m
t t

cn dn
m H R dud Q x t H Q x t H dt

Tq cn dn T
 

 

 
       


                  (18) 

  
2

( )2 2

0

4
( ) ( )

s s

K k

m m t t t t

b q
H R cn dn cn dn dud

T        


 
                                           (19) 

where
s sm mR is the autocorrelation function of the stochastic process ms(tε) and cn(·, k) and dn(·, k) are the Jacobian 

elliptic functions and the following abbreviations are used: 

  : ( , ); : ( , ) and :cn cn qt k dn dn qt k u qt                                                         (20) 

in which, if the substitute τ or tε + τ is used, we refer to the argument qτ or q(tε + τ), respectively. 

As mentioned in Section 2, the roll response can be assumed to be an approximately stationary diffusion 

process when the mean time to capsize is very long. Therefore, a stationary solution of the one-dimensional FP 

equation that governs the SDE (17) can be obtained and expressed as [8, 30]: 

  
2 20

( )
( ) exp 2

( ) ( )

HC m h
f H dh

H h 
 

  
 
                                                          (21) 

where C is a non-dimensional parameter that can be obtained by a normality condition. 

In addition, the autocorrelation function
s sm mR , which is important for calculating the drift and diffusion 

coefficients for Eq. (17) is given as: 

  

2 2
2

21

2
1,2

( ) ( )
(2 )( )

2 ( 2)

i

s s

i
m m mm i

i i i

R R e   
 

    

   


  

  

   


                                         (22) 

Based on Eq. (16), the stationary PDF of the maximum roll amplitude b(H) corresponding to different levels of 

H is expressed as:                                                

  
2

1 1 32
1 3

3

4
( ) ( ) 4st

H
p b f H H

  
 


  

                                                (23) 

Furthermore, the stationary joint PDF of x, y in Eq. (8) can be obtained from f(H) as follows: 

  2 2 4

1 3( , )
2 2 4

( )
( , )

( )XY y x x
H x y

f H
f x y

T H    
                                                          (24) 

and then the joint PDF of the roll angle and roll velocity can be calculated by applying the following relationship : 
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x = x1 = θ, y = ε-1x2 = ε-1 . The relevant derivations for Eq. 24 are presented in Appendix A. 

 

4. PI Method  

The PI method is based on the Markov property of the response process x(t) and provides approximate 

solutions to the FP equation, Eq. (7), of the original system, Eq. (5), by applying an iterative scheme which 

follows the basic Chapman-Kolmogorov equation:  

   
4

( , ) ( , | , ) ( , )
R

p t p t t p t d     x x x x x                                                          (25) 

 where
4

1
i

i
d dx


  x .   

For the numerical solution of the time-continuous process x(t), a time-discrete approximation should be 

introduced. In this regard, Naess and Moe [17] proposed a fourth-order Runge-Kutta-Maruyama approximation: 

  ( ) ( ) ( ( ), , ) ( ) ( )t t t t t t t        x x r x b W                                                      (26) 

where Δt = t-t′ is the time increment and the vector r(x(t'), t', Δt) denotes the explicit fourth-order Runge-Kutta 

increment. Since W(t) is a Wiener process, the independent increment ΔW(t')= W(t)-W(t') is a Gaussian variable 

for every t' when the time increment Δt is sufficiently small. Time sequence 0{ ( )}ii t 
 x  is a Markov chain and 

can be used to approximate the time-continuous Markov process x(t) when Δt is sufficiently small.  

Furthermore, the transition PDF, p(x,t | x′,t′), follows a (degenerate) Gaussian distribution, which is written as: 

  1 1 1 2 2 2 3 3 4 4 4( , | , ) ( ( , , )) ( ( , , )) ( , | , ) ( ( , , ))p t t x x r t t x x r t t p x t x t x x r t t                          x x x x x      (27) 

where 3 3( , | , )p x t x t  is given as:  

  
2

3 3 3
3 3 22

( ( , , ))1
( , | , ) exp

22

x x r t t
p x t x t

tt 

          
  

x                                        (28) 

in which x′= x(t′) and ri(x′, t′, Δt) = ri(x(t′), t′, Δt), where i=1,2,3,4 are the Runge-Kutta increments for the state 

space variables.                          

The time evolution of the PDF of x(t) can be determined by the following iterative scheme when the initial 

PDF, p(x(0), t0) is given: 

  
4 4

( ) ( 1) (0) (0) ( 1)
1 0

1
( , ) ( , | , ) ( , )

n
s s n

s sR R i
p t p t t p t d d 




   x x x x x x                                     (29) 

where x= x(n) = x(tn), t = tn = t0+n·Δt, x(s) = x(ts) and ts= t0+s·Δt.     
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The numerical iterative algorithm, i.e., Eq. (29) describes the mathematical principle of the PI method and the 

associated numerical implementations have been systematically described in Refs. [7, 18]. The PDF of the energy 

level H can be obtained by applying the transformation (30). 

  

2
1 1 3

3

4
( )

0 0

1 1
( ) 4 ( , ( , ) ) 4 ( , ( , ) )

( , ) ( , )

H
b H

XY XYf H f x Q x H dx f x Q x H dx
Q x H Q x H

  


  


           (30) 

in which fXY(x,y) is provided by the joint PDF of the roll angle and roll velocity. The relevant derivations for Eq. 

(30) are given in Appendix B. Subsequently, the distribution of the maximum roll amplitude b(H) can be obtained 

by using Eq. (23). 

 

5. Numerical Results   

In this work, a fishing research vessel is selected to study the rolling behavior in random beam seas. The main 

parameters of the ship model are given in Table 1, and it is seen that the damping coefficients are small when 

compared with the restoring coefficients. In order to conduct a detailed study of the performance for the stochastic 

averaging method and the PI method, Gaussian white noise and filtered white noise are applied as the driving 

processes for the SDOF model, Eq. (1).    

5.1 System excited by Gaussian white noise    

Under the excitation of pure Gaussian white noise, the 4D state-space equation, Eq. (5), is simplified as: 

  
1 2

3
2 44 2 44 2 2 1 1 3 1 0( | | )q

dx x dt

dx b x b x x c x c x dt dW


      

                                             (31) 

where σ0 is the noise level. 

For the two-dimensional (2D) system in Eq. (31), the corresponding numerical implementation for the PI 

method and the derivations of the drift and diffusion coefficients for the one-dimensional Itô equation, Eq. (17) in 

the stochastic averaging method have been described in Chai et al. [11] and Dostal et al. [14], respectively. In this 

study, the noise level σ0 is 0.067. For the stochastic averaging method, the drift coefficients and diffusion 

coefficients for different levels of roll amplitude b are plotted in Figs. 2 and 3, respectively. Subsequently, the 

distribution for the roll amplitude b can be obtained by applying Eqs. (22) and (23) and the result is presented in 

Fig. 4. A simple MCS based on the fourth-order Runge-Kutta-Maruyama method [7] is applied to check the 

performance of the stochastic averaging method and the result is also plotted in Fig. 4. 
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Furthermore, the joint PDF of the roll angle process and the roll velocity process obtained by applying the 

stochastic averaging method is shown in Fig. 5. Correspondingly, Fig. 6 presents the joint PDF of the roll 

response for the 2D system in Eq. (31) calculated by the PI method. It is observed in Figs. 4-6 that the stochastic 

averaging method provides satisfactory results of the response statistics for the 2D system when compared with 

the response statistics calculated by the PI method and MCS. In order to study the accuracy and performance of 

the stochastic averaging method and the PI method for the high-level roll response, a logarithmic scale is applied 

to the vertical axis of Fig. 4. Subsequently, the PDFs of the roll amplitude b with a logarithmic scale, provided by 

the stochastic averaging method, the PI method and the MCS are presented in Fig. 7. It is seen in Fig. 7 that both 

the stochastic averaging method and the PI method can provide satisfactory and reliable results of the response 

statistics, even in the tail region. The straightforward MCS can present stable results to only approximately to the 

10-6 level. Nevertheless, the MCS can provide a reasonable evaluation for the performance of the stochastic 

averaging method and the PI method.   

5.2 System excited by filtered white noise    

In this section, the performance of the stochastic averaging method and the PI method for the 4D system in Eq. 

(5) is studied. For the random wave excitation, the information for the roll moment amplitude per unit wave height 

at frequency ω is given in Ref. [31]. The sea state with Hs=4.0 m and Tp=11.0 s is selected for this study. The 

parameters α, β and γ in the linear filter Eq. (3) are obtained by the least square error method. 

For the 4D system in Eq. (5), the stochastic averaging method is applied in order to provide the PDF of the roll 

amplitude b. The drift and diffusion coefficients for different levels are shown in Figs. 8 and 9. The PDF of b 

obtained by the stochastic averaging method is presented in Fig. 10 and the distribution of the roll amplitude b, 

calculated by the MCS, is also plotted. In addition, the joint PDF of the roll angle process and the roll velocity 

process, provided by the stochastic averaging method and the PI method, are presented in Figs. 11 and 12, 

respectively. Fig. 10 shows that the stochastic averaging method slightly overestimates the peak value of the PDF 

for the roll amplitude b and underestimates the response statistics for the region with b > 15 degrees. Moreover, in 

the central regions of Figs. 11 and 12, it is observed that the values of the joint PDF of the roll response calculated 

by the stochastic averaging method are slightly higher than the joint PDF obtained by the PI method.  

Furthermore, the vertical axis of Fig. 13 is given a logarithmic scale in order to study the performance of the 

stochastic averaging method and the PI method regarding the response statistics in the tail region. Fig. 13 shows 

that when compared with the result provided by MCS, the PI method is able to provide accurate and reliable result 



11 
 

in the tail region with very low probability levels. However, the stochastic averaging method underestimates the 

response statistics in the tail region for the current system that corresponds to the sea state with Hs=4.0 m and 

Tp=11.0 s.     

Based on the above studies, differences have been observed in the performance of the stochastic averaging 

method applied for calculating the response statistics of the systems excited by Gaussian white noises and random 

wave excitation (approximated as filtered white noise). The basic assumption of the stochastic averaging method 

lies in the fact that the ship has light roll damping and then the spectrum of the roll response is narrow-banded and 

peaked near the natural roll frequency. In particular, for the sea state with Hs=4.0 m and Tp=11.0 s, the filtered 

spectrum, the equivalent white noise with the spectrum S0 and the spectrum of the roll response due to the random 

wave excitation are shown in Fig. 14. It is seen that the input spectrum is much broader than the output spectrum 

due to the light roll damping. In addition, for the sea state with Hs=4.0 m and Tp=11.0 s, the corresponding noise 

level used in the 2D system, Eq. (31), for the equivalent white noise is 0.067 [32]. 

For the current sea state with Hs=4.0 m and Tp=11.0 s, the stochastic averaging method could not provide 

reliable and satisfactory results for the high-level roll response in the tail region. Therefore, it would be interesting 

to find an index or the relevant requirements under which the stochastic averaging method would provide 

satisfactory results, especially in the tail region. Based on the fact that the stochastic averaging method performs 

accurately for the system with light damping and broad-banded excitation, such as the roll motion excited by 

Gaussian white noise, Roberts et al. [20] suggested that the ratio between the bandwidth of the excitation process 

and the bandwidth of the response process could serve as an index for the performance of the stochastic averaging 

method. However, it is still very difficult to determine, theoretically, a definite range of ratios for which the 

stochastic averaging method will provide acceptable results. 

On the other hand, according to the fundamental work of Stratonovich [30], a requirement for a good 

approximation by the stochastic averaging scheme is that the correlation time τcor of the random excitation process 

m(t) should be much smaller than the relaxation time τ0 of the dynamical system, i.e., τcor << τ0. The correlation 

time of the stationary excitation process is defined with its autocorrelation function Rmm(τ) as follows: 

  0

0

( )

( )

mm

cor

mm

R d

R d

  


 



 


                                                                   (32) 

Since the relaxation time τ0 is defined for only a linear system, the stochastic linearization technique [33] is 

introduced in order to obtain the corresponding linearized damping term. The relaxation time is approximated as: 

  0 2 lin                                                                               (33) 

where βlin is the linearized damping coefficient provided by the stochastic linearization method.  
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For the dynamical system excited by Gaussian white noise, the correlation time is zero (i.e., there is no 

correlation in time space), and the requirement τcor << τ0 is easy to meet. From Eqs. (32) and (33), when the 

dynamical system has smaller damping coefficients or a smaller correlation time τcor, the stochastic averaging 

method is expected to offer more accurate approximations of the response statistics. Furthermore, for the 

effectiveness of the correlation index τcor/ τ0 applied as an index for the performance of the stochastic averaging 

method can be investigated by evaluating more numerical cases corresponding to different sea states.        

5.3 Comparisons and discussions    

The principles of the stochastic averaging method and the PI method are quite different: the former method is 

based on the fact that the fast oscillatory roll motion can be averaged over the roll period due to the light roll 

damping and wide-banded external excitation terms, however, the latter is based on the Markov property of the 

original dynamical system and the response statistics are obtained by solving the governing FP equation of the 

original system. Based on the abovementioned numerical results and comparisons, the advantages and 

shortcomings of these two methods are summarized in this section.  

First, both the stochastic averaging method and the PI method can provide sufficient response statistics. In 

addition to the joint PDF of the roll response, the distribution of the roll amplitude b shown in the above examples, 

the mean upcrossing rate, and the exceedance probability, as well as some characteristic extreme values that are 

used for the reliability evaluation of the system can also be obtained. Therefore, the accuracy and computational 

cost of the two numerical methods would be the most important aspects with which to evaluate for their 

applications.  

Regarding the accuracy of these methods, it is seen in Sections 5.1 and 5.2 that the PI method can provide 

satisfactory results of the response statistics, both for the system excited by Gaussian white noise and for the 

system driven by filtered white noises. On the other hand, the accuracy of the stochastic averaging method 

depends on the system and the excitation terms. Specifically, the stochastic averaging method exhibits a reliable 

performance for the system in Eq. (38) excited by Gaussian white noise, however, for the 4D system with filtered 

white noise corresponding to the sea state with Hs=4.0 m and Tp=11.0 s, its performance for the high-level roll 

response is not satisfactory. 

Furthermore, the PI method suffers the dimensionality problem. The PI method solves the FP equation of the 

original system, and the computational cost increases dramatically with the dimension of the system and the grid 

number in each dimension. For the 2D system in Eq. (31), there are 128 grid nodes in each direction, and the 
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computational time for one simulation is less than 1 minute, while for the 4D system in Eq. (5), the computational  

time of the PI procedure with 64×64×32×32 nodes (i.e., the grid number is 64 for the first two dimensions and 32 

for the third and fourth dimensions) for each simulation is approximately 1.5 hours on a laptop. On the other hand, 

the MCS method does not critically suffer from the dimensionality problem since the statistics of the response are 

obtained directly from the realizations. For the 2D and 4D systems, 3000 realizations with a predetermined 3-hour 

simulation time (approximately 1840 natural roll periods) for each realization are included in the direct MCS. 

Approximately 15-20 minutes are required to obtain the response statistics shown in Figs. 7 and 13. Therefore, 

regarding the computational cost, the MCS method has a large advantage over the 4D PI method. Nevertheless, 

the straightforward MCS can provide stable response statistics to the level only approximately equal or lower than 

10-6. For a stable result at a level lower than 10-7, the computational cost for the conventional MCS is nearly 

formidable.    

The stochastic averaging method reduces the original 2D and 4D systems into one-dimensional systems, and 

the results are then given by analytical formulas, rather than numerical calculations. For the computational 

efficiency of the stochastic averaging method, the drift coefficient and diffusion coefficient of the one-dimensional 

Markov process in Eq. (17), i.e., Eqs. (18) and (19), are obtained analytically [16]. The computational times to 

obtain the response statistics of the dynamical system excited by Gaussian white noise and filtered white noise  

are 20 seconds and 7 minutes for the stochastic averaging method, respectively. In addition, the drift and diffusion 

coefficients can also be calculated by direct numerical integration, which takes a longer time than the analytical 

solutions. 

 

6. Conclusions 

In this work, two approaches with different principles, the stochastic averaging method and the PI method, 

were applied in order to calculate the response statistics of the roll motion excited by Gaussian white noise and 

filtered white noise. Comparative studies for the accuracy and computational cost of the two methods have been 

performed with the assistance of the conventional MCS.   

The advantages and shortcomings of the two abovementioned methods have been demonstrated via practical 

calculations and comparisons in Section 5. Based on the comparisons and discussions above, it is seen that the PI 

method can provide more accurate estimations of the roll response statistics than those of the stochastic averaging 

method, especially for the high-level responses with low probability levels. Since the high-level response is 

directly related to the safety of the vessel for the nonlinear roll motion in random seas, the PI method is 
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recommended since its accuracy in the tail region is always reliable. However, the stochastic averaging method 

has the advantage of lesser computational time since this method simplifies the problem of solving the FP 

equation of the original system by applying a dimension-reduction technique. On the other hand, the PI method 

does suffer from the dimensionality problem. Therefore the computational cost would increase dramatically with 

the dimensionality of the system.  

Furthermore, the performance of the stochastic averaging method depends on the excitation term and the 

damping terms of the dynamical system. In order to obtain satisfactory results by the time-saving stochastic 

averaging method, a reliable index for the performance of the stochastic averaging method could be introduced. 

Verification and application of such an index could be a valuable area of work after current study.   
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Appendix A    

Firstly, the following functional relation is introduced: 

1

2 2 4

1 3 2

( , )

( , )
2 2 4

X X g X Y

Y X X
H g X Y 

 



   

 (A.1) 

where X and Y are random variables corresponds to x, y defined by Eq. (8), respectively. Following Stratonovich 

[30], the PDF of the displacement x given an energy level value H is inversely proportional to the velocity y and 

thus 

1 1
( | )

( ) ( , )
X Hf x H

T H Q x H
  (A.2) 

Using fXH(x, H)=fX|H(x|H)f(H), the joint PDF of x and y is obtained as: 

1 1

2 2
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x y f H
f x y f x H f x H y f H Q x H

g g T H T HQ x H
x y

 
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     
 
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 (A.3) 

where the Hamilton function H(x, y) is given in Eq. (9) and the period function T(H) is obtained from Eq. (13).       
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Appendix B    

  In order to get the expression of f(H) (Eq. 30) and the corresponding PDF of roll amplitude b (Eq. 23) by using 

the joint PDF of the roll response obtained by the PI method, the following transformation will be applied. 

Firstly, according to Eq. (A.1), we have the function: 

 
1

1

1
2

( , )

( , ) ( , )

X g X H X

Y g X H Q X H





  


  
 (B.1) 

and the function Q(X,H) is presented in Eq. (11). By introducing the Jacobian determinant, the following 

distributions can be obtained. 

 1 1
1 2( , ) ( ( , ), ( , ))XH XYf x H f x g x H y g x H J      (B.2) 

and the Jacobian determinant is given by: 
1 1
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1

2

1 1
2 2

g g
gx HJ
Hg g

x H

 



 
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 (B.3) 

Thereby, the distribution of the energy level H is expressed as: 

 
1

( ) ( , ) ( , )XH XYf H f x H dx f x y dx
y

    (B.4) 

In addition, from Eq. (11), the following relationship is obtained: 

 ( , )y Q x H  (B.5) 

According to the Fig. 1, which presents the contour lines of the Hamilton function H(x, y), Eq. (B.5) can be 

simplified by the following expression considering the symmetry in the integration with respect to the x-axis for 

each H level:      
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Tables: 

 

Table 1 List of ship parameters  

Parameters Dimensional value 

I44+A44      5.540×107 kg∙m2 

Δ      2.017×107 N 

b44      0.095s-1 

b44q      0.0519 

c1      1.153 s-2 

c3      0.915 s-2 
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Figures  
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Fig. 1 Contour lines of H(x,y) 

 
 
 

 

Fig. 2 Drift coefficients for the 2D system in Eq. (31) with σ0=0.067  
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Fig. 3 Diffusion coefficients for the 2D system in Eq. (31) with σ0=0.067  
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Fig. 4 PDFs for the maximum roll amplitude b for the 2D system with σ0=0.067, provided by the stochastic 

averaging method and MCS 
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Fig. 5 Joint PDF of the roll angle and roll velocity for the 2D system in Eq. (31) with σ0=0.067, obtained by the 

stochastic averaging method 

 

 
Fig. 6 Joint PDF of the roll angle and roll velocity for the 2D system in Eq. (31) with σ0=0.067, calculated by the 

PI method 
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Fig. 7 PDFs for the maximum roll amplitude b for the 2D system with σ0=0.067, plotted with a logarithmic scale 

 

 

 

 

 

Fig. 8 Drift coefficients for the 4D system in Eq. (5) with the sea state Hs=4.0 m and Tp=11.0 s 
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Fig. 9 Diffusion coefficients for the 4D system in Eq. (5) with the sea state Hs=4.0 m and Tp=11.0 s 
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Fig. 10 Stationary PDF for the maximum roll amplitude b for the 4D dynamical system in Eq. (5) with the sea 

state Hs=4.0 m and Tp=11.0 s   
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Fig. 11 Joint PDF of the roll angle and roll velocity for the 4D system in Eq. (5) with the sea state with Hs=4.0 m 

and Tp=11.0 s, obtained by the stochastic averaging method 

 

 

 

 
Fig. 12 Joint PDF of the roll angle and roll velocity for the 4D system in Eq. (5) with the sea state with Hs=4.0 m, 

Tp=11.0 s, obtained by the PI method 

 
 
 
 
 
 
 

 



25 
 

 
Fig. 13 Logarithmic scale of the stationary PDF for the maximum roll amplitude b for the 4D system in Eq. (5) 

with the sea state Hs=4.0 m and Tp=11.0 s   

 

 

 
Fig. 14 Filtered spectrum for the input process m(t), spectrum of the equivalent Gaussian white noise and 

spectrum of the output process θ(t) for the sea state with Hs=4.0 m and Tp=11.0 s   

 


