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Abstract— Satisfying actuator constraints is often not consid-
ered in the academic literature on the design of ship heading
and speed controllers. This paper considers the use of a
simplified dynamic window algorithm as a way to ensure
that actuator constraints are satisfied. To accomplish this, we
use the simplified dynamic window algorithm as a dynamic
window-based controller (DWC) to guarantee that the velocities
remain within a set of feasible boundaries, while simultaneously
respecting the actuator constraints. We also develop a modified
nonlinear ship model on which to test the proposed concept.
The DWC is compared with a more traditional ship heading
and speed controller, using performance metrics which consider
both control accuracy and energy use.

I. INTRODUCTION
When a ship sails the sea, its autopilot system usually

leads the ship along the desired heading. Numerous motion
controllers and autopilots have been proposed over the years.
However, many control algorithms found in the literature
do not consider saturation constraints for the actuators.
Examples of traditional control designs for ship autopilot
systems are given in [1]. Not considering actuator constraints
may lead to unsatisfying performance or stability issues. In
[2], a gain-scheduled control law is developed and tested for
handling actuator constraints for a rudder-roll model of a
ship.

In [3], the dynamic window (DW) algorithm is suggested
as a method to perform collision avoidance and deal with
constraints imposed by limited velocities and accelerations
for mobile robots. This algorithm first generates a set of
possible trajectories. Based on these trajectories, a search
space of possible velocities can be approximated. The accel-
eration constrains are considered by limiting the search space
to reachable velocities within a next time interval. To reduce
the search space even further, all non-admissible velocities
are removed to make the vehicle stop safely before it reaches
the closest obstacle on the corresponding trajectory.

The DW algorithm is modified for AUVs in [4] and shows
promising results for handling magnitude and rate constraints
for the actuators. In this paper, we consider a simplification
of the DW algorithm in [4], by removing the collision
avoidance part of the algorithm. In particular, this DW-based
controller (DWC) will be combined with a heading controller
based on the design in [5].

The contribution of this paperis the proposal of the DWC,
which inherently satisfies actuator constraints. Furthermore,
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necessary modifications to a 3 degrees-of-freedom nonlinear
ship model based on [6] are done, in order to achieve a more
physically realistic behavior. The DWC is compared with
a traditional controller (TC) from [5], and the performance
of the controllers are compared through simulations, where
the comparison is made using performance metrics which
consider both control accuracy and energy use.

The structure of the paper is as follows: A mathematical
ship model and assumptions are presented in Section II;
Section III describes the assumptions and control objective;
Section IV presents the design of a traditional control
inspired by backstepping and constant-bearing guidance;
Section V presents the proposed DWC concept; Section VI
presents simulation results; while Section VII concludes the
paper.

II. SHIP MODEL

The motion of a ship can be represented by the pose
vector η = [x, y, ψ]

> ∈ R2 × S and the velocity vector
ν = [u, v, r]

> ∈ R3. Here, (x, y) represents the Cartesian
position in the local earth-fixed reference frame, ψ is the
yaw angle, (u, v) represents the body-fixed linear velocities
and r is the yaw rate. The 3 degrees-of-freedom dynamics
of a ship can then be stated as [1]:

η̇ = R(ψ)ν (1)
Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3 and
τ = [τ1, τ2, τ3]> represent the inertia matrix, Coriolis and
centripetal matrix, damping matrix and control input vector,
respectively. The rotation matrix R(ψ) ∈ SO(3) is given by

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (3)

The system matrices are assumed to satisfy the properties
M = M> > 0, C(ν) = −C(ν)> and D(ν) > 0.

A. Nominal Model

The model and parameters of the model-scale ship Cyber-
Ship II [6] will be used for control design and evaluation
through numerical simulations in this paper. CyberShip II
is a 1:70 scale replica of a supply ship, with a length of
L = 1.255 m. The inertia matrix is given as

M = MRB +MA, (4)



where

MRB =

m 0 0
0 m mxg
0 mxg Iz

 (5)

MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 . (6)

The mass of CyberShip II is m = 23.8 kg, while xg =
0.046 m is the distance along the x-axis in the body frame
from the centre of gravity, and Iz = 1.760 kg m2 is the
the moment of inertia about the z-axis in the body frame.
Other parameter values are listed in Table I. The Coriolis
and centripetal matrix is

C(ν) = CRB(ν) +CA(ν), (7)

with

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (8)

CA(ν) =

 0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

 , (9)

where

cA,13(ν) = −Yv̇v −
1

2
(Nv̇ + Yṙ)r (10)

cA,23(ν) = −Xu̇u. (11)

Finally, the damping matrix D(ν) is given as

D(ν) = DL +DNL(ν), (12)

where

DL =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (13)

DNL(ν) =

dNL,11(ν) 0 0
0 dNL,22(ν) dNL,23(ν)
0 dNL,32(ν) dNL,33(ν)

 , (14)

and

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (15)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|r| (16)
dNL,23(ν) = −Y|v|r|v| − Y|r|r|r| (17)
dNL,32(ν) = −N|v|v|v| −N|r|v|r| (18)
dNL,33(ν) = −N|v|r|v| −N|r|r|r|. (19)

The considered model describes a fully actuated ship.
However, heading and speed controllers are typically used
at higher speeds, where the ship is underactuated. We have
therefore excluded the bow thruster from the actuator model
since it loses its effectiveness at high speeds. Inspired by
[6], the modified ship actuator forces and moments can
be modelled using two thrusters n = [n1, n2]> ∈ R2

TABLE I: Parameters for CyberShip II [6]

Parameter Value

Xu̇ −2
Yv̇ −10
Yṙ 0
Nv̇ 0
Nṙ −1
Xu −0.72253
X|u|u −1.32742
Xuuu −5.86643
Yv −0.88965
Y|v|v −36.47287

Parameter Value

Nv 0.03130
N|v|v 3.95645
Y|r|v −0.805
Yr −7.250
Y|v|r −0.845
Y|r|r −3.450
Y|v|r 0.080
N|r|v 0.130
Nr −1.900
N|r|r −0.750

with revolutions per second (rps) and two rudder angles
δ = [δ1, δ2]> ∈ S2. These are related to the input vector
τ through the actuator model

τ (ν,n, δ) = Bτ act(ν,n, δ), (20)

where B ∈ R3×4 is an actuator configuration matrix. The
function τ act : R3 × R2 × S2 → R4 relates the actuator
variables n and δ to the input vector τ for a given velocity ν.
The actuator configuration matrix and actuator force vector
is

B =

 1 1 0 0
0 0 1 1
|lyT1
| −|lyT2

| −|lxR1
| −|lxR2

|

 . (21)

Moreover, τ act is given by

τ act = [T1, T2, L1, L2]>, (22)

with

Ti
4
= T|n|n|ni|ni − T|n|u|ni|u, for i = 1, 2 (23)

Li
4
= (Lδδi − L|δ|δ|δi|δi)|u|u, for i = 1, 2, (24)

where Ti is the thrust force from the preceding propeller
and Li is the lift force from the preceding rudder. The
constants lyT1

, lyT2
, lxR1

, lxR2
represent physical placements

of the actuators, and the parameters T|n|n, T|n|u, Lδ, L|δ|δ are
positive coefficients. It should be noted that (24) is dependent
on the surge speed, which leads to a saturation constraint of
the yaw moment having a nonlinear behavior, which is 0 if
the surge speed is 0. In [6], the actuator variable limitations
are stated as ni ∈ [0, 33.33] rps and δi ∈ [−35, 35] deg.
Based on (20)-(24), infinitely many combinations of the
actuator variables n and δ can generate the input vector τ .
Here, we assume that n1 = n2 and δ1 = δ2. We will only
consider the control of the surge and yaw motion, since our
model is underactuated.

Using this ship model, we can map the steady-state
solution of (2) associated with a given control input. In
particular, the blue asterisks in Fig. 1 represent the steady-
state solutions for a set of uniformly distributed control
inputs. Analysing the model from [6], it is concluded that
the modelled Munk moment, which is a destabilizing factor,
give rise to physically impossible motion. In this model, the
equilibrium point at r = 0 is unstable, which is not consistent
with the actual behavior of CyberShip II.
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Fig. 1: Possible combinations of surge speed and yaw rate
using the same control inputs for the nominal model [6]
(blue) and the modified model based on [7] (red).

B. Modified Model

In [7], an analysis on how to accommodate for the Munk
moment on an AUV is made. It is suggested to add damping
terms to the damping matrix that are linearly increasing
with the forward speed. Based on the observation in [7],
we change (17)-(19) to

dNL,23(ν) = −Y|v|r|v| − Y|r|r|r| − Yuru (25)
dNL,32(ν) = −N|v|v|v| −N|r|v|r| −Nuvu (26)
dNL,33(ν) = −N|v|r|v| −N|r|r|r| −Nuru, (27)

where

Yur = Xu̇ (28)
Nuv = −(Yu̇ −Xu̇) (29)
Nur = Yṙ, (30)

to get a more physically realistic model behavior. The red
circles in Fig. 1 show the steady-state solutions for the
combined [6] and [7] model using the same set of control
inputs as previously. The steady-state response of this mod-
ified model qualitatively corresponds to the experimentally
derived response of a high-speed boat in [8].

III. ASSUMPTIONS AND CONTROL OBJECTIVE

It is assumed that both the pose vector η(t) and velocity
vector ν(t) can be measured, and that no disturbances and
uncertainties affect the system.

The control objective is to make ψ̃(t)
4
= ψ(t)−ψt(t)→ 0

as t → ∞ and ũ(t)
4
= u(t) − ut(t) → 0 as t → ∞, where

ψt(t) ∈ S represents the heading associated with a target
ship and ut is the target surge speed. Furthermore, ψt(t) is
C2 and bounded. The motion of the target ship is typically
defined by a human or generated by a guidance system.

For notational simplicity, the time t is omitted in most of
this paper.

IV. TRADITIONAL CONTROL DESIGN
Using a combination of a cascaded feedback controller

[5] and a dynamic feedback controller where the dynamics
of the uncontrolled sway mode enters the yaw control law
[9], the control input can be chosen as

τ = Mα̇+C(ν)α+D(ν)α−K2(·)z2. (31)

The error variables z1 and z2 = [z2,u, z2,v, z2,r]
> are defined

as

z1
4
= ψ − ψt (32)

z2
4
= ν −α, (33)

where α = [αu, αv, αr] ∈ R3 is a vector of stabilising
functions, which can be interpreted as a desired velocity

αu = ut (34)

αr = ψ̇t −K1(·)z1, (35)

where
K1(·) = Γ1

1√
z2

1 + ∆2
ψ̃

, (36)

represents a nonlinear control gain with Γ1 > 0 and ∆ψ̃ > 0.
The nonlinear feedback term in (31) is given as

K2(·) = Γ2

 1√
z>
2,ṽz2,ṽ+∆2

ṽ

I2×2 02×1

01×2
1√

z22,r̃+∆2
r̃

 , (37)

with the control gain Γ2 > 0, where z2,ṽ is defined as z2,ṽ
4
=

[z2,u, z2,v]
>, ∆ṽ > 0 and ∆r̃ > 0. The time derivative of

the vector of stabilising functions then becomes

α̇ = [u̇t, α̇v, α̇r]
>, (38)

where u̇t is the target surge acceleration and

α̇r = ψ̈t − K̇1(z1,∆i)z1 −K1(z1,∆i)ż1, (39)

with

ż1 = −K1(·)z1 + z2,r̃, (40)

and

K̇1(·) = Γ1
z1ż1

(z2
1 + ∆2

ψ̃
)

3
2

. (41)

Based on design of the dynamics of the uncontrolled sway
mode in [9], the variable αv is a dynamic state of the
controller, and is given by

m22α̇v = −d22(ν)αv + γ(αr, α̇r, z2), (42)

where

γ(αr, α̇r, z2) = K2,22(·)z2,v −m23α̇r

− d23(ν)αr − c23(ν)αr, (43)

and mij , cij(ν), dij(ν) and K2,ij(·) are components at the
ith row and jth column of the matrices M , C(ν), D(ν)
and K2(·), while

αv =

∫ t

0

α̇v(σ)dσ, αv(0) = v(0). (44)



V. DYNAMIC WINDOW-BASED CONTROL
DESIGN

A. Simplified Dynamic Window Algorithm

Here, we describe a step-by-step design procedure for a
simplified version of the dynamic window (DW) algorithm
presented in [4] by removing the collision avoidance part of
the algorithm.

Based on the modified ship model and its actuator mag-
nitude constraints, a set of possible velocities can be found.
This set contains all velocities the ship can achieve, with
respect to the actuator constraints. The possible velocities
can be found by computing the steady-state solution of the
kinetics (2) for all possible control inputs:

τ (νss,n, δ) = C(νss)νss +D(νss)νss, (45)

within the actuator magnitude constraints

ni ∈ [0, 33.33] rps (46)
δi ∈ [−30, 30] deg. (47)

The steady-state solutions of (45)-(47) for a uniformly dis-
tributed set of the control inputs is shown in Fig. 2. By
designing an approximation of the boundaries, the set of
possible velocities can be defined as:

Vp = {(u, r) ∈ R× R|g(u, r) ≥ 0} , (48)

where g(u, r) is greater than or equal to zero for valid
solutions of (45)-(47), and negative otherwise. Given m ap-
proximated boundaries, defined by the functions ha(u, r) =
0, a ∈ {1, 2, ...,m} where ∇ha(u, r) is required to be
pointing inwards to the valid solutions, the approximated
g(u, r) is given as:

g(u, r) = min(h1(u, r), h2(u, r), ..., hm(u, r)). (49)

In Fig. 3, a plot of the function g(u, r) is shown.
Next, the space of reachable points within a time step

T needs to be defined. This is done by finding acceleration

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

Yaw rate r [deg/s]

S
u
r
g
e
sp

e
e
d
u

[m
/
s]

 

 

Boundary of possible ve loc it ie s se t

Disc rete solut ions

Fig. 2: Possible combinations of surge speed and yaw rate,
with respect to actuator magnitude limits. The approximated
boundary of Vp is shown as the red line.

Fig. 3: Function to find possible velocities.

limits, and based on these, the set of reachable velocities can
be computed. The possible ship accelerations can be found
by evaluating

ν̇ = M−1(τ (ν∗,n, δ)−C(ν∗)ν∗ −D(ν∗)ν∗), (50)

for the current velocity ν∗ = ν(t) and boundaries of the
control input vector. The acceleration limits at the current
time step can be computed as:

ν̇min = M−1(τ (ν∗,nmin, δmax)−C(ν∗)ν∗

−D(ν∗)ν∗) (51)

ν̇max = M−1(τ (ν∗,nmax, δmin)−C(ν∗)ν∗

−D(ν∗)ν∗). (52)

It should be noted that this method does not consider actuator
rate saturations. However, by introducing dynamics to the
control input vector τ , the algorithm can also be further
developed to handle rate constraints. Additionally, it is worth
noticing that a positive rudder deflection results in a negative
yaw moment.

Using T as the time allowed for acceleration during the
next time step, the dynamic velocity window is then defined
using the acceleration limits from (51) and (52) as

Vw = {(u, r) ∈ R× R|u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} . (53)

The set of dynamically feasible velocities is defined as

Vf
4
= Vp ∩ Vw. (54)

Next, the set of dynamically feasible velocities Vf is dis-
cretized uniformly to obtain a discrete set of dynamically
feasible velocity pairs.

The desired velocity is defined as

ν1d
4
= [ud, rd]

>, (55)

since the focus is on controlling the surge and yaw rate.
Given ν1t, the optimal velocity pair ν1f = [uf , rf ]> can be



selected as

ν1f = arg max
(u,r)∈Vf

G(u, ud, r, rd), (56)

where G(u, ud, r, rd) is an objective function, which is
defined as

G(u, ud, r, rd)
4
= surge(u, ud) + yawrate(r, rd), (57)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (58)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (59)

Notice that by using this objective function, we minimise
the scaled 1-norm of the entire discrete set of dynamically
feasible velocity pairs. In [3], [4] and [10], a distance
function and tuningparameters are used to achieve collision
avoidance, but this function is removed here since we only
focus on handling actuator constraints. As a result, the tuning
parameters also become redundant since the remaining two
functions are orthogonal to each other. Fig. 4 illustrates Vp,
Vw, Vf and ν1d = [0.79 m/s 4.0107 deg /s] given a current
velocity pair of [0.76 m/s 5.6723 deg /s].
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Fig. 4: The dynamically feasible velocity set, surrounded
by the boundaries of the dynamic velocity window and the
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B. Dynamic Window-based Controller

We now combine the traditional control design with the
simplified DW algorithm in order to develop a dynamic
window-based controller (DWC).

In this setup, the simplified DW algorithm will use α1 =
[αu, αr]

> as an input such that ν1d = α1. In the case where
α1 is an infeasible velocity, the simplified DW algorithm
will modify α1 to a feasible velocity α1f = [αf,u, αf,r]

>,
otherwise α1f = α1. A pseudocode of the simplified DW
algorithm is shown in Algorithm 1.

Algorithm 1 Pseudocode of the simplified DW algorithm
1: Vw is calculated using (51) to (53) and discretized

uniformly
2: if the desired velocity vector α1 ∈ Vf then
3: The closest reachable velocity row and column to α1

is shifted such that α1 is one of the reachable velocity
pairs in Vw

4: end if
5: Remove all the reachable velocity pairs in Vw which are

outside of the g(u, r) boundaries to describe the set of
dynamically feasible velocities Vf .

6: Select the optimal velocity pair α1f through maximizing
the objective function (57) over the discrete feasible
search space Vf = Vp ∩ Vw

After the optimal velocity pair α1f is found, the vector of
stabilising functions is given as

αf = [αf,u, αf,v, αf,r]
>, (60)

where αf,v is given as

αf,v =

∫ t

0

α̇f,v(σ)dσ, αf,v(0) = v(0), (61)

where

m22α̇f,v = −d22(ν)αf,v + γ(αr, α̇r) (62)
γ(αr, α̇r) = −m23α̇r − d23(ν)αr − c23(ν)αr. (63)

We want the ship to reach αf after time T , hence the desired
acceleration is chosen to be

α̇DWC =
αf − ν
T

, (64)

which means that

αDWC =

∫ t

0

α̇DWCdσ. (65)

Both αDWC and α̇DWC are used in the kinetic controller
which is modified to

τ = Mα̇DWC +C(ν)αDWC +D(ν)αDWC . (66)

The DWC uses the heading controller given in (35) together
with the target speed ut as inputs to the simplified DW
algorithm, which is described in Algorithm 1, in order to
determine the vector of stabilizing functions given in (60)-
(63). Based on (60), the desired acceleration and velocity
vectors are found using (64)-(65), which are used to construct
the control input (66).

A block diagram of the new dynamic window-based
controller is shown in Fig. 5.

C. Discussion

When comparing the control law in (66) against (31),
it can be seen that the feedback term −K2(·)z2 in (31)
is not included in (66) since the DWC makes the optimal
velocity pair track the target velocity by using (64)-(65).
However, (66) can only fulfil the control objective when the
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controller.

model is correct. In practice, when the model is not perfectly
known, the control law (66) should also include a feedback
term. This feedback term will also accommodate for internal
uncertainties and external disturbances, instead of just con-
trolling the surge speed and yaw rate. When the system is
affected by internal uncertainties and external disturbances,
the DWC will attempt to compensate for them since the
DWC tries to find the optimal velocity pair. However, the
performance in terms of robustness for the DWC is limited
by the actuator constraints, which give a maximum bound on
the uncertainties and disturbances which the controller can
compensate for. This is similar to many robust controllers.

VI. SIMULATION AND EVALUATION

In this section, we present numerical simulation results of
the considered heading and speed controllers using the model
and actuator constraints of CyberShip II presented in Section
II. In addition, performance metrics are used to evaluate the
controller behavior.

The control target is defined as a constant heading ψt = 30
deg and a constant surge speed ut = 0.9 m/s. Furthermore,
the initial ship states are chosen to be η(0) = 0 and ν(0) =
0. The chosen control gains are listed in Table II.

TABLE II: Control gains

TC DWC

Γ1 0.0873 0.0873
Γ2 diag([4, 4, 0.1745])M −
∆ψ̃ 0.3 0.3

∆ṽ 10 −
∆r̃ 4 −

A. Performance Metrics

To evaluate and compare the performance of the two
controllers, performance metrics are used. We define

e1(t)
4
=

√
ψ̃2 (67)

e2(t)
4
=

√
ũ2
n + r̃2

n, (68)

as the error inputs for the performance metrics, with ũn
4
=

un − ut,n and r̃n
4
= rn − rt,n. Here, since the surge speed
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Fig. 6: Tracking the target heading.

and yaw rate have different units, we define the normalized
signals un, ut,n, rn and rt,n in the intervals [0, 1] and
[−0.5, 0.5] in the expected operational space of the ship [8].
In addition, these signals represent the instantaneous control
errors, while we would like to consider the accumulated
errors over time. Hence, we use the performance metric IAE
(integral of the absolute error)

IAE(ei, t)
4
=

∫ t

0

|ei(σ)|dσ, (69)

which integrates the temporal evolution of the absolute error.
We also consider the integral of the absolute error multiplied
by the energy consumption (IAEW), which was proposed
earlier in [11] as

IAEW (ei, t)
4
=

∫ t

0

|ei(σ)|dσ
∫ t

0

P (σ)dσ, (70)

where

P (t) = |ν(t)>τ (t)| (71)

represents the mechanical power. IAEW thus indicates which
controller has the best combined control accuracy and energy
use in one single metric.

B. Simulation Results

In Fig. 6, the ship and target heading is plotted to show
the transient convergence behavior. It can be seen that both
control laws manage to converge the target heading in about
25 seconds, but the DWC gives a slightly faster convergence.

Fig. 7 shows the surge speed and yaw rate of the ship
together with the target surge speed and yaw rate. It can
be seen that both control laws are able to track the target
speed and yaw rate even though the DWC does not have
a traditional velocity feedback term. Additionally, it can be
seen that there is a difference in how fast the controllers are
able to make the surge speed and yaw rate converge to the
target since the DWC makes the surge speed converge in less
than 5 seconds but it takes about 10 seconds for the surge
speed to converge using the TC. Notice that the trajectory
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of αr is different for the two controllers since it depends on
the tracking performance of the heading.

Fig. 8 shows that the DWC commands the control inputs to
stay at the maximum magnitude constraints of the actuators
for a longer time than the control inputs from TC. These
constraints (red lines) are calculated by using (20)-(24) and
the limits of ni and δi given in (46)-(47). The DWC keeps
the control inputs at the maximum magnitude constraints
of the actuators as long as possible, since the DWC tracks
the optimal velocity pair α1f which is on the boundaries
for the window unless the target velocity pair α1 is inside
the velocity window, while the control inputs from TC have
a more conservative behavior. The oscillations in the yaw
moment control input of the TC is a side-effect the TC is
because it tries to compensate for the nonlinear magnitude
constraint in the yaw moment.

Fig. 9 illustrates how the surge speed and yaw rate moves
in the velocity space in order to track the target heading and
surge speed. Note that the considered controllers move along
two different trajectories inside Vp in order to solve the same
control problem.
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Fig. 8: The commanded surge force and yaw moment with
magnitude limits.
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Fig. 9: Velocity trajectories in the set of possible velocities
Vp, where the target heading and target speed are ψt = 30
deg and ut = 0.9 m/s.

In Fig. 10, the performance metrics IAE and IAEW with
e1 as the error input are shown. In particular, the IAE
trajectory in the top of Fig. 10 confirms that the DWC
has a faster transient response since it converges faster to
a stationary value. The IAEW trajectory in the bottom of
Fig. 10 shows that the DWC uses a larger amount of energy
to fulfil the control objective. However, the DWC has a faster
transient response, which makes the DWC have a better
overall performance.
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Fig. 10: IAE and IAEW performance metrics with e1 =√
ψ̃2 as the error input.

Fig. 11 displays the performance metrics IAE and IAEW
with e2 as the error input, where a similar result as in
Fig. 10 can be seen. Based on Fig. 10 and Fig. 11, it
can be concluded that DWC has the better overall control
performance for this scenario.

The presented results show that both the TC and the
DWC stay within the boundaries in Fig. 9 and the tracking
performance of the DWC is slightly faster, even though the
DWC has fewer tuning parameters than the TC. It should
be stated that the TC has been extensively tuned to get
the optimal performance for this scenario and remain inside
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Fig. 11: IAE and IAEW performance metrics with e2 =√
ũ2
n + r̃2

n as the error input.

velocity boundaries, but it still falls short. For experimental
purposes, it is suggested to add a feedback term to (66) in
order to accommodate for model uncertainties and external
disturbances.

One of the advantages of using DWC can be shown by
changing the target heading and target speed to ψt = 90 deg
and ut = 0.6 m/s, but keeping the control gains unchanged.
Fig. 12 shows the velocity trajectories for this scenario,
where it can be seen that the TC yields velocities outside
the boundaries, which means that the TC does not inherently
satisfy the actuator constraints, while the DWC continues
to stay inside the boundaries. Additionally, the TC also has
some unwanted oscillations.

VII. CONCLUSION
This paper has proposed the use of a simplified dynamic

window algorithm as a way to ensure that the actuator con-
straints of a ship are satisfied. This algorithm has been used
as a dynamic window-based controller (DWC) to guarantee
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Fig. 12: Velocity trajectories in the set of possible velocities
Vp, where the target heading and target speed are changed
to ψt = 90 deg and ut = 0.6 m/s while keeping the control
gains unchanged..

that that ship velocities remain within a feasible set. An
existing nonlinear dynamic model of a ship was modified
to make it more physically realistic. Additionally, a DWC
was evaluated against a heading and speed controller using
a traditional design approach. Both methods were compared
through numerical simulations. Two performance metrics
were used to compare the behaviour of the controllers. The
simulation results showed good tracking performance of the
considered controllers, and that the dynamic window-based
controller was able to inherently handle actuator magnitude
constraints.

Future work will include introducing model uncertainties
and unknown disturbances. It is also relevant to consider
actuator rate constraints in addition to magnitude constraints.
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