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Abstract— DC distribution power systems are vulnerable to
instability because of the destabilizing effect of converter-
controlled constant power loads (CPLs) and input filters.
Standard stability analysis tools based on averaging linearization
techniques can be used only when the switching frequency of the
converter is significantly higher than the cutoff frequency of the
filter. However, DC distribution systems with a reduced size
filter, and consequently a high cutoff frequency, are common in
transportation applications. Conventional methods fail to detect
instabilities in the system because they do not take into account
the switching effect. To overcome this drawback, this paper
proposes a discrete-time method to analyze the stability of DC
distribution systems. This model is applied here to a DC power
system with a constant power load. The switching effects and
nonlinearities of the system model are taken into account with a
simple discretization approach. The proposed method is able to
predict the dynamic properties of the system, such as slow scale
and fast scale instabilities. An active stabilizer is also included in
the system model in order to extend the stability margin of the
system. Finally, these observations are validated experimentally
on a laboratory test-bench.

Index Terms—Dc microgrids, stability, discrete-time modeling,
digital control, nonlinear systems, bifurcation, dc-dc converters.

I. INTRODUCTION

EVELOPMENTS in power electronics technologies have

resulted in an increasing use of electronically controlled
power generations and loads in both AC and DC networks [1-
5]. Despite the trends in AC microgrids during the past
decade, DC distribution has become of special interest for
electric and hybrid electric vehicles, electric ships and more
electric aircraft (MEA) [6-8]. However, instability is still a
major issue in the design of DC power systems. It arises from
the nonlinear characteristics of power electronics systems,
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which can lead to unstable oscillations and potential routes to
chaos [9-11]. These oscillations may be initiated either by the
interactions between the controllers and the nonlinear
switching effect of the converters, or by the constant power
dynamics of tightly regulated active loads [11]. Such loads are
usually controlled by pulse width modulated (PWM)
converters, where the control bandwidth of the load converters
is sufficiently high to ensure that the regulated load power is
not influenced by fluctuations in DC bus voltage [6]. This
introduces a negative impedance characteristic at the load
terminal [12]. In stability studies, the load converters are
usually modeled as constant power loads (CPLs) [12-22].
Interaction between DC power systems and the nonlinear
characteristics of CPLs can lead to instability [12, 13]. CPL
instability has been studied using small-signal stability
analysis, such as modal analysis and participation factor
analysis [14-16]. Linear and nonlinear controllers have been
compared based on their trajectories in phase portraits, and
this approach was used to study limit cycle oscillations in a
simplified DC system with CPL [17]. CPL instability has also
been studied by large signal stability analysis involving
estimation of the domain of attraction using Lyapunov
linearization and mixed potential theory [18-21]. In addition,
the existence of equilibrium has been studied for an N-port
system with CPLs in [22].

Most research on the stability of DC power systems is based
on averaged linearization techniques: an averaged model of
the individual converters is used in the model of the system
[23-25]. The resulting averaged models are then used to obtain
a small signal model of the system, usually as impedance
expression. The impedance-based method was first proposed
to study the dynamic behavior of DC-DC converters in [26],
and became the first step in the stability analysis of distributed
power systems. In this method, the system is divided into a
source and a load sub-system, and the stability of the system is
determined by the ratio of the source output impedance to the
load input impedance for the interconnected source-load
system [27-29]. Although specifying the impedance usually
guarantees the stable design of an individual load, such
methods cannot give an accurate stability region, because of
the interactive dynamics of the system [30]. Moreover, the
resulting model is nonlinear not only because of the nonlinear
nature of switching converters, but also because of the load
dynamics. Therefore, if small-signal linearization is used, the
dynamic characteristics of the system are neglected.

To avoid small-signal linearization, numerical simulation is
used to study the behavior of the system with nonlinear tools
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including phase portraits, Lyapunov, and bifurcation [31].
Nevertheless, qualitative studies, such as analyzing the
sensitivity of the system’s state to the variation of parameters
and predicting the stability margin, necessitate system
modeling. On the other hand, the continuous-time averaging
or averaged models, which are the basis of classical methods,
neglect the impact of the switching frequency. For this reason,
such models are valid only if the switching frequency is much
higher than the natural resonant frequencies of the system
[32]. However, when the size of the filter is reduced, the
resonant frequency increases. Therefore, classical tools cannot
accurately study the stability margin, neither the dynamic
behavior of the system.

Discrete-time models are a reliable solution to study the
dynamic behavior of switching converters [33-39]. The
discritization approach has been mainly used for control
design. An improvement in the application of discretization
approach was made in [33], and the method was developed to
design an optimal control for a DC converter in [34]: the
switching period was divided intov subperiods, namely v-
resolution hybrid model; the exponential matrices were
calculated over each subperiod; the accuracy of the v-
resolution was then investigated by changing v (Fig. 3 in
[34]). In that work, the physical system was formulated by a
hybrid function comprised of piecewise functions. This is a
solution to take into account the discrete properties of the
controller. Lyapunov stability analysis was also performed for
the presented controller using a piecewise quadratic Lyapunov
as a function of the state trajectory (Fig. 6 in [33]). That
method was advantageous over the previous techniques, since
the exponential terms were calculated for each subperiod and
the accuracy of the model was increased. Discrete-time
solutions are a successful approach to study the nonlinear
dynamics of a single converter [35-38]. However, previous
discrete-time models are very complex because the
exponential matrices and integral terms are involved in the
formulation of the physical model. Hence, the use of such
methods has not been extended to practical applications with
CPLs. One study combined discrete-time and averaging
approach to avoid exact discrete modeling [39]. However, the
model was partially frequency-dependent because of the
averaging integrals, and discretization was still based on the
time-series solution.

In this paper, an exact discrete-time tool is proposed to
analyze the stability of such DC distribution systems in
different operation modes of the system. In the proposed
method, the switching frequency and the nonlinear dynamics
of the system model are taken into account by developing a
discrete-time model of the complete system. The switching
period is really discretized using a general and nonlinear
discretization method, which is applicable to various types of
PWM converters. The digital PWM controller is then taken
into the system model using two series of state variables such
as physical variables and control variables. After obtaining the
discrete-time model, stability of the system can be investigated
by calculating the eigenvalues of the discrete-time Jacobian
matrix, and by constructing bifurcation diagram [40, 41].

The proposed method is applied to predict the system’s
instability using the eigenvalues, and to study the dynamic
behavior of the system using bifurcation analysis. We prove

that the instability can occur on both slow and fast scales.
Fast-scale bifurcations cannot be predicted by conventional
averaged models, because of the nature of high-frequency and
chaotic dynamics [35]. However, we demonstrate the practical
control examples of the studied system, for which the
conventional method cannot accurately identify slow scale
instabilities. To this end, we compare the proposed method
with the conventional averaging-based method and discuss the
potential advantages of our method. Furthermore, the
eigenvalues are utilized to analyze the sensitivity and the
robustness of the system’s state to parameter variations [41].
The proposed model is advantageous over the conventional
methods because: 1) It is not based on the time-series, and
hence, the exponential terms are removed. Consequently, the
method can be generalized to multi-unit microgrids. 2) The
possible transition of the switching command in one switching
period is taken into the system model using an additional
variable, called a “virtual duty cycle”. 3) Stability pattern of
the system is constructed using the discrete-time eigenvalues,
which can predict the accurate stability margin of the system
with different controllers.

Finally, an active stabilizer is applied to the studied system
to improve the asymptotic stability of the system. The
stabilizer is used to damp the voltage oscillations associated
with the low damped LC filter. Fig. 1 (a) shows a typical DC
distributed power architecture that is applicable to onboard
energy systems for electric transportation [21]. The source-
connected converter provides a regulated DC voltage on the
distribution bus, and the load converters transfer the DC bus
voltage to tightly regulated power, which is desired for electric
actuators. An LC filter is also added to the point of load
converter. This input filter is used to reject the current and
voltage harmonics and to limit electromagnetic interference
(EMI) [18]. Such filters are usually poorly damped for
reducing losses as well as optimizing size/weight and cost of
the total system. A basic model for the stability analysis of DC
distribution systems is shown in Fig. 1 (b), comprising of the
source and the load subsystems, which is regarded as a generic
system configuration. In such a system, from the stability
point of view, the load converters can be represented by an
instantaneous CPL.
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Fig. 1. (a) Schematic of the DC distributed system, (b) Basic model for
stability studies.
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To deal with the destabilizing effect of low damped DC
systems, several techniques have been proposed such as
passive damping, virtual capacitor and resistor, and active
stabilization [42-46]. Passive methods are not an optimal
solution for the on-board electrification, as these techniques
increase the size of the system with additional passive
components [42, 43]. Linear and nonlinear active stabilization
methods are reported in previous research [44-46]. All of these
stabilizers are based on the load-side approach, in which the
stabilizing commands are applied to the reference power of the
load converters.

In this paper, the stabilizer is implemented on the source
converter. This method is advantageous over the load-side
techniques, because the performance of the stabilizer is not
affected by the load controllers. Unlike the centralized
approach, with this scheme, the stabilizer does not need
additional data. Moreover, this method does not change or
modify the control structure, and thus, it can be added as a
simple stabilizing block to different types of controllers (i.e.
linear or nonlinear). The performance of the stabilizing system
is investigated theoretically and experimentally.

The rest of the paper is organized as follows: the studied
system and the controller are presented in Section Il. The
proposed discrete-time model is described in Section Ill, in
which the Jacobian matrix of the system is achieved with
minimal calculation by using an intermediary variable. In
Section 1V, the stability of the system is analyzed, and slow
scale and fast scale phenomena are identified. In Section V,
the stability analysis of the system is validated experimentally;
the experimental results and time domain simulations are put
side by side to show the effectiveness of the proposed system
analysis.

Il. SYSTEM REPRESENTATION AND CONTROLLER

The studied system is presented in this section, including
the physical system and the controller. In subsection I1.A, the
system model is introduced. The controller and stabilizer are
presented in I1.B.

A. System Model

An electric diagram of the studied system, as a basic system
model for the stability analysis, is shown in Fig. 2. The CPL is
connected to the DC grid through an input filter. The source
converter is a PWM buck DC-DC converter. L and ry, are the
series inductance and the resistance of the source converter,
respectively. C is the DC bus capacitance. The parameters rr,
Cs, and L¢ are the resistance, capacitance, and inductance of
the input filter, respectively. The DC source provides the DC
voltage V.. The system model is established in the state-space
form.

Filter
fac(Q) 1 et icpi(t)=P/Ver

e

Four physical state variables describe the physical
components such as the inductor current i, the DC bus
voltage Vg, the DC current iy and the filter voltage V... Here,
u is the switching command of the source converter. For the
stability analysis, the load converter is modeled as a CPL, in
which variations in the load current i.,, are associated with
variations in the filter voltage V., in a constant power

(icpt =VL). Consequently, the system model has intrinsic
cf

Source converter
WML

Fig. 2. Schematic of the studied dc power system.
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nonlinearity because of the load profile of the CPL. In fact, an
instantaneous CPL can represent several load converters
connected in parallel to the point of load. In this case, the load
converters are supposed to be much faster than the source
converter. The system model is then described by the state
equations:

di, 1 _
E=Z(uv‘f = Vi —miy) O
av 1.
T E(lL —lac)
dig. 1

O]

B. Control System

Fig. 3 shows the block diagram of the control system, which
comprises a voltage control loop and a current control loop.
The voltage controller uses a linear proportional-integral (PI)
compensator. The current controller is established based on
the digital pulse width modulation, and the control law results
from the equivalent control approach [47-49]. Digital control
variables are considered, since the experimental setup is based
on a digital controller. The control variables are thus sampled

by a rate of the switching frequency (T =fi , fsi switching
frequency), and are used in the controller. The measured and
sampled values of the DC current (i, ), output voltage (V;),

and inductor current (i) are presented as ijcmes Vemes and
iLmes » respectively.
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Fig. 3. Block diagram of the control system.
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1) Voltage controller

The voltage controller provides a reference current for the
inner-loop control. The controller regulates the dc bus voltage
by controlling the electric charge in the dc bus capacitor (C).
Here, the electric charge has the same dynamics as the
voltage, and its derivative is directly related to a current.
Therefore, the control law is defined by charge regulation in a
digital form, which is presented as a block diagram in Fig. 3,
in which the derivative of the electric charge results from a
classical PI compensator. In this schematic, q(t) = C . Vipes,
where q is the electric charge, and q,.¢(t) = C.Vg..r, Where
Jrer IS the reference charge.

The control parameters K, and K;, are the proportional
gain and the integral gain of the voltage controller,
respectively, and determine the poles of the closed-loop
system. These parameters are defined by K, = 2w, and
K, = w,?, where, w, is the desired cut-off frequency and £ is
the damping factor. The reference current i..¢ thus corresponds
to the derivative of the electric charge, and results in (3).

lref = () + lacmes

- iref = Qre/;(t) - va (Q(t) - qref(t))

— Ko f (@(0) = Gre ()@
0

+ lacmes

2) Current controller
The current controller regulates the inductor current using a
control law defined by function S as given in (4).

S(8) = ipmes(t) — iref ®)

+ Kxf (iLmes(t) - iref(t))(‘[)d‘[
0

where K, corresponds to the current control bandwidth. This
coefficient enables the dynamic response of the controller to
be tuned. Then, if the reaching condition § = —AS is enforced,
the control law including the current error and an integral term
is derived. The equation to calculate the control coefficients is
detailed in [50]. By applying the resulting control law, the
duty cycle of the source converter D, results from the system
equation, as indicated in (5).

1
Dy =— (Vsmes + Tlimes

@)

v,
41 [rer = times) Ko + 2) 5)
— KA f (iLmes(t)
i ©) @) d])

3) Stabilizer

To increase stability margin of the system, an additional
control command is added to the controller, as a stabilizer.
This allows a higher amount of power to be supplied by the
source into the DC grid. The stabilizer is implemented with a
simple structure: using a proportional compensator followed
by a low-pass filter. This filter allows preserving the system
dynamics at low frequencies and rejects measurement noise.

An additional duty cycle is produced by the stabilizer, to be
added to the main duty cycle. By this approach, the
stabilization block could be added to different types of
controllers. The stabilization block is shown in Fig. 3, where
Vs results from the low-pass filter as follows:

Vs
dt

= wsf(V;,mes - st) (6)
Here, w,s is an angular frequency corresponding to the
voltage oscillations. By applying the stabilization signal, the
modified duty cycle D,, results in (7).

1
Dstab = _VKstab (Vsmes - st)t Dn = DO + Dstab (7)
e

In this equation, K, is the stabilizer’s gain, which is chosen
with respect to the dynamic performance of the system. The
switching signal (u) is then generated through a PWM.

I11. PROPOSED DISCRETE TIME MODELLING

In this section, a nonlinear discrete-time model will be
obtained. In the proposed discrete-time modeling, two types of
state-space  representation are considered: continuous
representation and sampled representation. The state variables
are then divided into two state vectors: continuous variables
and sampled variables. The continuous variables are used to
describe the physical characteristics of the system, which is
detailed in 11I.A. The sampled vector is defined according to
the digital control variables, which are used to calculate the
duty cycle, presented in IIl.B. The digital variables are
updated once per switching period (T) and the control
variables are sampled and synchronized with the PWM carrier.
Consequently, the duty cycle D,, is updated once per switching
period for a pulse-width modulation. The state-space model of
the system is then completely discretized with the proposed
discretization technique in 111.C. At this stage, the sampling
period (T) is discretized into small sequences, called the
discretization period T,. The Jacobian matrix of the system is
calculated in 111.D.

A. Physical System Representation

The state vector of the system consists of three sub-vectors:
the continuous vector X, the control vector X, and the
measurement vector X,,,., defined as follows:

X= [X;r; Xg; XT’IY‘LES T1ox1 (8)

In this definition, X, contains the physical variables,
whereas X, and X,,,., are comprised of the sampled variables.
Indeed, all the sampled variables are calculated from the
continuous variables, and thus, the continuous state-space
form is the basis of the discretization. For the continuous

form, the state-space equation is formed as indicated in (9), in
which c refers to continuous mode.

Xc(t) =A; - X:(0) + Bc[Xc(t)] “u+ Nc[Xc(t)] )

where 4., B., and N, are the state matrices of the system. The
vector of the physical variables X, € R* is defined as follows:
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X1 iL
X, Vs
X]= =].
el =1 =i, (10)
X, Ver 4x1
Using the system model, the state matrices A., B, and N,
are obtained in (11).

- 1 0 0\
L L

1 o =t

L

Ve
c0z o) 8
c c
AC=|0 ‘_’f-_1|'3c= 0,
l Ly Ly Lfl \8/
1
\0 0 c_f 0/ (11)
0
0
N, = OP

The linear terms are regrouped in the matrices A, and B,,
whereas N, contains the nonlinearity of the system model.

B. Representation of Sampled Variables

The sampled variables include the measured variables and
the control variables ([X} ; Xt.eslexi), and are updated once
per sampling period T. It should be noted that T is equal to the
switching period, and is different from the discretization
period T,. The measured variables are the system variables,
which are measured and sampled to calculate the control
command. The state-space form of the control variables is
defined in (12), where d refers to the digital form. In this
equation, X, and X,,., are digital vectors representing control
variables and measured variables, respectively.

. Xd(n+1) _Xd(n)
Xay=——F7
=44 Xd(n) + My +E,- Xmes(n)

Matrix A, is the digital state matrix, applied to the control
state-variables, M, is the matrix of constant parameters, and
E,, is the control matrix applied on the measured variables.
The control state vector Xd(n)e]R3 is defined as follows:

(12)

Vsr
[X4] = | int(D)
int(q)|,,,

(13)

where int(q) is the discrete-time integral of the electric charge
error (q(t) — gres(t)), and int(i) is the discrete-time integral
of the inductor current error (ipmes(t) = irep(t)). Xmes€R®
contains the measured values of the variables:

iLmes
(14)

Vsmes

[Ximes] =

ldcmes 3x1

Using the control equations, the state space form of X; from
(12) can then be expressed as:

Xam) =
wf (Vsmes - st)

Imes T Klv(C ) V;mes -C- Vsref) + K2v ) int(Q) — ldcmes
C Vimes —C- Vsref

(15)

Finally, (15) can be used
matrices A4,M, and E,, in (16).

Ad=< 0 0 sz),

to deduce the digital

0 0 O
0 0 w 0y (16
M, = =Ky - € Virer JE, = <1 K, - C —1)
—C- Vsref 0 C 0

It should be noted that the digital derivative of the control
variables will not result from the Euler approximation.
Instead, it will be calculated at the end of each period.

C. Discretization of the System Model

The objective of this section is to establish a relationship
between the state vector X, at instant nT and the vector X, 4
at instant (n+ 1)T, without linearization. Consequently, a
discrete-time Poincare map can be defined by X,,, =
F(X,,nT). The switching command u is generated with a
symmetric PWM. The PWM period T is then divided into N,

small sequences, as illustrated in Fig. 4. (T, = Ni). All the
14

continuous state variables are sampled and updated N, times
per switching period. The rate of N,, is called the discretization
rate, and the resulting period T, is called the discretization
period, which is used as a sequence in the Euler
approximation.

Then, using the Euler approximation, the state-space form
of the continuous sub-model in (9) results in:

Xe(esvr) ~ Xewer
T, B 17)
Ace Xc(k Te) + B, [Xc(k Te)] ‘u+ M.+ N, [Xc(k Te)]

where k is a counter for the discretization sequences during
each switching period (k = 1: N,).

In each switching period T, the switching command u
changes from one to zero during one discretization period (T,),
and changes back to one during another sequence (see Fig. 4.
). It should be noted that every sequence is equal to T. In this
method, the instant at which the change of u is assumed to be
unknown. Thus, the performance of the model does not
depend on the instant at which the command changes, and
hence, the model can be applied to either digital controllers or
analog controllers.

Carrier
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D AV N 0 g o Mo o
I AT kT, b T+ DT, b i
LT | ——
‘sz ulms (A—-d)Te q,T,
o \(+ DT T T
et G T -
4 H, H, H Hy T~
*Hk/'g"x L N 77‘\
W ATAT, nT42r, T onT4KT, L TGk AT TN
X AT, {(1+d)T,
" e KXot
T o\ AT\
(1) ()
tu % & u
i
ol D.T/2
nr nT + D,T/2 nT + (1-D,)T/2 i+ DT

Fig. 4. Discretization in each switching period of the symmetric PWM.
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An additional nonlinear variable is then added to the state-
space model, called a virtual duty cycle d,, to take into
account the change of the command (u). This variable is later
used in the Jacobian calculation. The virtual duty cycle d;
determines the instant at which u changes during a
discretization period T, (see Fig. 4). Using d,, each
discretization period, such as the interval [a, c], can be divided
into two sub-intervals, as indicated in Fig. 4. The duration of
the first sub-interval is equal to d,T,. The variable d, is
defined by an intermediary variable dj. Then, d;, is obtained
by the saturation of the variable d;, between [0, 1], using
function Sat defined as follows:

dy = Sat(d) = (1 — d}) (o.s , atan(a(d; - 1)))
$ (18)

atan(ad;,
+d; (0.5 + +")>

As mentioned before, d, will be used to calculate the
Jacobian matrix. The function sat(dy) is then defined as
continuous and differentiable at all points, and also the
dynamic properties of the system are preserved [11]. Here, a
standard saturation is not preferred as its derivative is
discontinuous at the singular points. Therefore, we tuned a
nonlinear saturation function to fit as accurately as possible
into the singularities of the original function (d},).

The intermediary variable dj is defined in two sections.
Consequently, two different discrete functions are defined: H,
and H,, for k < NZ—” and k > NZ—” respectively (see Fig. 4). The
function Hj is also defined to update the digital variables. The
discrete functions are established by defining dj, as follows:

1) Fork< % (t <nT + g), u changes from 1 to 0, and

dy, is defined by (19).

T

Dy —kT,

Te
At this stage, a recurring function is needed to map the state
variables at time n T, + (k + 1)T, to those at the previous
instant n Ty + k T,. For the sake of clarity, an interval [a, c] is
considered, with two sub-intervals [a, b], and [b, c], to obtain
the recurring function. In the first sub-interval [a, b], the time
variable changes fromnT+ kT, to nT+ (k+d,)T..
According to Fig. 4, the Euler approximation can then be

rewritten as follows:

Xc[b] _Xc[a]
b—a
where b —a = d; T,, then:

d; = (19)

=Ac'Xc[a]+Bc'g+Mc+Nc[a] (20)
1

Xc[b] = Xc[a] + dkTe "Ac 'Xc[a] + dkTe "B,

(21)
+ dkTe * Nc[a] + dkTe " MC

In the second subinterval [b,c], the time variable changes
from nT + (k + d,)T, to nT + (k+1)T,. According to Fig.
4, the Euler approximation is formulated as follows:

XC[C] - Xc[b]
c—b
where b — a = d; T,, then:
c—b=0-d)T, = X.[c]

= Xc[b] + (1 - dk)Te “Ac
“X[b] + (1 — d;)T, - N[b]
+ (1 —dT, M,

The two equations (21) and (23) enable the discrete function

H, (see Fig. 4), to be established within the interval [nT,nT +

g] as follows:

X(k+1)Te = Hl(Xk Ter dk)
= (4 Xerapr, + M
+ N[Xgerapr,]) (1 = d)T.
+ (A Xyr, + B[ X1, | + M
+ N[Xer,]) - diTo + Xper,

= Ac* Xc[b] + B u+ M + N[b] (22)
0

(23)

(24)

2) For kz%, u changes from 0 to 1 during the

interval [a’, ¢']. The intermediary variable dj, is then
calculated in each discretizing period T, as follows:

D, L _T+@+DT,
_ -

d; (25)

The duty cycle verifies dj, = Sat(dy), and the Euler
equation is calculated again in two sub-interval for each
sequence and the discrete function H, is defined:

T
Xy, = Ho(Xier, di); fork > T (26)
e

It should be noted that the functions H, and H, are a
function of X, and d,. However, in each step, d; can be
derived from (19) and (25) with the saturation function of
(18). Therefore, the discrete function relate X(;.qyr, with an
implicit function to X, r,. The recurring function is then
established for all points during the switching period. In the
last sequence of each switching period (k = N,,), the function
H; is defined to update the two digital vectors at the instant
(n+ 1)T. Hence, H; is called the update function. It then
gives the new digital vector [X} Xmeslm+nyr, and the new
state vector then results in:

Xny1 = Hs (Xk Te'XnT) (27)

Finally, the measured vector X, is calculated using the
continuous vector at the end of the switching period:

T
Xmes(n+1)T = [X(k+1)Te(1) 'X(k+1)Te (2) :X(k+1)Te (3)]

We would like to emphasize that the update function H; is
applied to the digital vector only in the last sequence of each
period, and during the rest of the period these variables are
constant. The proposed discrete model is summarized, for one
switching period, in (29). Here, H;, H,, and H; are predefined
discrete functions.

(28)
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Xam)
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| Ximes(n) |
L Zmes()]

Xnk Xnke+dy, Xnk+1

[Xck+1)T, ]

Xam
| Xmes(n) |
L Ames(m) |

[Xck+a)T, |
X u=1
d(n)
- -
| Xmes(n) |
L “mestn) 1

[ Xckr,) |
Hy: | Xam)

| Ximes(n) |
LPmesn) ]

(29)

Xnk Xn k+dy, Xnk+1

Xc (n,sze)\ Xc(n+1)

Xam+1)

Hs:| Xam
Xmes(n)
- 2

Xnk Xn+1
Using the presented discretization method, a system
function G (see Fig. 4) composed of the discrete functions can
be defined. The system function G°Mr is calculated and

updated N, times in each period. By introducing k; = % , and
k, =N, —1, G°Mr can be expressed as follows:

X(n+1)T = GONP(XnT)
= H3,Np ° Hz,k2 o0 H2,k1+1 ° H1,k1

oo Hyy(Xnr)
where H;, is the discrete function H; calculated at instant

nT + kT,. The resulting system function contains the system
dynamics.

PWM time delay

In digital controllers, usually a time delay is introduced by
the PWM. In this case, the duty cycle will be updated after a
delay which depends on the hardware. The time delay can be
considered in the proposed model by modifying the digital
representation. For the case in which one sample delay (T) is
introduced, X, will be replaced by X,_;)r in the definition
of D,.

Xmes(n+1)
- 2

(30)

D. Calculation of Jacobian Matrix

The Jacobian matrix of the complete system can be
calculated from the resulting system model [41]. For the time-
domain expression, a time variable nT + kT, is introduced
comprised of the switching period and the discretization
sequence. The new space-vector X, eR!? is defined as follows:

X = [XE5 XG5 Xiess nT +k Tolina (31)

As mentioned before, H; is a function of X, and d;, while
d, relates to the intermediary variable dj. Partial differential
equations (PDEs) can then be established for H; with the
variation of dj. Following a small perturbation around an
equilibrium point (X,, dy), a first order approximation of H;
results in:

H;(Xo, dyo + ddy) = Hi(Xo'a‘fIko) + dH;(Xo, dko)
where: dH;(Xo, dyo) = (a_xl)(x 0 )ka +
(2 e

ddy

ddy
(Xo0,dko)
In this stage, partial derivative of d,, (dd;) is to be defined
using the variable dj. For this objective, a control variable is
introduced as a function of the index k and the variable d;, in:

T
Sk = dk* - <D7LE —k Te)/Te (33)

(32)

Using the control variable s, being equal to zero, a partial
derivative of dj, is defined as follows:

95 1w + 9% qat =0 = dd,’
X, K load, ¢~ k

9s,\ "t /05,
=-(5a) (%) x
With the saturation function introduced in (18) and the relation
(34), we obtain dd,, by:
dsat(d,”) =,
=————"dd
k adk* k

_ 0sat(dy”) (s " (O
ddy = ad,” (a—dk) (ﬁ) dXi

By replacing (35) in (32), the PDEs can then be expressed as
follows:

(34)

(3%)

dH;(Xo, dio)

_ <6Hi) X

“\ox,) K (36)
(6Hi> dsat(d,™) (ask)'l (ask) X
ad,) ad,” \ad,) \ax,) "k

The Jacobian matrix of the complete system is then calculated
using the three sub-systems H;, given before. The arguments
of the Jacobian of the sub-system H; are obtain by:

dH; 0H; dsat(d,”) (65k)_1 (65k> 27

ad, ad,” \ad, X, (37)
Finally, the Jacobian matrix of the composed system function
G, named J,;, can be calculated as follows:

Je =]H3,1vp X Jtpky X X Jhppey+1 X Jrgey X X Juy, (38)
where Jy, . is the Jacobian matrix of the function H; calculated

at instant nT + kT,. By calculating J;, the eigenvalues of the
complete system are obtained. The composed function G
contains the nonlinear system dynamics.

The asymptotic stability of the system can be studied using
the eigenvalues of the Jacobian matrix at an equilibrium point.
Eigenvalues of the discrete-time system are also called
Floguet multipliers [40]. In the next section, Floquet
multipliers are used to identify instabilities in the system.

IV. STABILITY ANALYSIS USING THE PROPOSED MODEL

The stability of the studied system can be analyzed by the
proposed method: the system eigenvalues are calculated from
the Jacobian matrices of the system, and system bifurcations
are studied using a discrete Poincare formulation. The
dynamic behavior of the system can then be studied using
bifurcation diagrams, and the asymptotic stability of the
system is investigated using the eigenvalues. A background of
the system analysis is given in IV. A. The stability analysis
and dynamic performance evaluation of the studied system are
then performed with the proposed method, in IV. B. Different
case studies have been performed with different filter
parameters and control parameters. In each case, the stable and
unstable operating points are identified using the pattern of the
system’s eigenvalues. The performance of the stabilizer is
evaluated in 1V. C; the robustness of the stabilizer to the
parameter variations is also studied in this subsection. The
proposed method is compared with the conventional method
inlVv.D.
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A. Description of the System Analysis

The asymptotic stability of the system can be studied using
the eigenvalues of the system model at the equilibrium point.
Eigenvalues of the discrete-time system are also called
Floguet multipliers. In the discrete-time systems, the loss of
stability of the periodic solution corresponds to the unit circle
crossed by one or more eigenvalues of the Jacobian matrix.
The system is stable if all the multipliers have a magnitude of
less than 1. In the complex plane, the classification of
bifurcations depends on where the eigenvalues cross the unit
circle. In this illustration, as a bifurcation parameter changes,
the eigenvalues move in the complex plane. If an eigenvalue
moves outside the unit circle, three possible bifurcations can
occur, namely, flip (or period-doubling), Neimark-Sacker (or
Hopf bifurcation), or Saddle-node bifurcation [40, 41]. The
first two types of the instabilities, Neimark and flip, are
common in power electronic systems [9]. When a complex
conjugate pair of eigenvalues simultaneously crosses the unit
circle, a Neimark-Sacker bifurcation is obtained, which results
in a periodic limit cycle or a quasi-periodic solution. A flip
bifurcation type occurs if at least one eigenvalue crosses the
unit circle on the negative real axis [51].

The nature of instabilities is also studied with bifurcation
diagrams. The term “bifurcation” is used to describe the loss
of stability at a given operating point called the “bifurcation
point” [40]. Beyond this point, the system variables bifurcate
into unstable states, and thus, it is important to detect the
bifurcation point to prevent catastrophic consequences.
Bifurcation diagrams have been used in qualitative studies
examining how the characteristics of the system change as a
function of a parameter in the system called a “bifurcation
parameter”, such as a passive element or a control parameter
[32]. Here, the power absorbed by CPL (P) is considered to be
the bifurcation parameter. The system loses stability at a
bifurcation point, which is associated with a specific power.
The diagrams are plotted using sufficient data sets of the state
variables resulting from the discrete-time model of the system.
This is repeated for the different values of the bifurcation
parameter (P). Each bifurcation diagram illustrates the system
dynamics associated with a specific system configuration.

B. Stability Analysis of the Studied System With the Proposed
Method

In this study, two cases with different system parameters,
and thus different dynamic behaviors, are investigated. The
values of the filter parameters for the two cases are given in
Table I. Parameters of the outer-loop control such as K, and
K;, are also listed in Table I. These control parameters are
designed such that the bandwidth of the voltage controller is
sufficiently lower than that of the current controller (w, <

K"i—’g"n). If the minimum bandwidth of the current controller is

considered to be K, = 1000, the bandwidth of the outer-
loop is set to w, = 70 rad - s~1. The outer-loop control is
fixed for all of the case studies. In this section, the bandwidth
of the current controller is set to K, = 2000, and the
stabilizer’s gain K4, = 0. However, these parameters will be
changed during the case studies.

TABLE |
VALUES OF PASSIVE COMPONENTS AND CONTROL PARAMETRS
Parameter Value Parameter Value
L 2mH K;, 98
C 435 uF Ky 4900
I 0.13Q Ky min 1000
fe 10 kHz A 1000
Vsrer 150 V Wy 630 rad - st
Filter parameters
Parameter Case | Case Il
Ly 525 uH 120 uH
Cr 38 uF 8.5 uF
75 0.16 Q 0.12 Q
1) Casel

First, the system model is simulated with the parameters
from case I, with the discrete-time model. The bifurcation
diagram of the filter voltage V.((t) and the DC current iy (t)
are presented in Fig. 5, where the CPL power (P) is the
bifurcation parameter [41]. The system model is established
for each value of P. The bifurcation occurs when the load
power is P = P, = 680W, and this point (P,) is called critical
power. Beyond this point, slow-scale bifurcation occurs, and
the dynamics of the system can be described by Neimark—
Sacker bifurcation [41]. However, quasi-periodic orbits appear
in higher ranges of power. Two different system dynamics are
observed from the bifurcation: quasi-periodic orbits (ex: P
=800 W) and limit cycles (ex: P =1200 W).

The discrete-time eigenvalues or Floquet multipliers are
calculated from the Jacobian matrix of the system, and are
indicated in Fig. 6, for different values of P from 100 W to
1000 W. Arrows in Fig. 6 (a) show the trajectories of the
eigenvalues as P is increased. The multipliers leave the unit
circle when P > P,.

The maximum magnitudes of the eigenvalues are also
indicated in Fig. 6 (b): if the eigenvalues cross the horizontal
line (magnitude =1), the system loses stability. The critical
power or the stability margin, resulting from the pattern of the
eigenvalues, is consistent with the bifurcation point calculated
from the bifurcation diagram (P, = 680W). This proves the
Jacobian matrix calculation, which is the basis for the stability
analysis.

180

170

160

< 150

140

130

120

| | |
1000 1200 1400 1600 1800 2000
P(W)

(b)
Fig. 5. Bifurcation diagrams with changes in CPL power (P) for the
parameters case |, and K,,;, = 0: (a) filter voltage V. ,; (b) dc current i..



TPEL-Reg-2015-10-1744 9

1 —— — -
//// .
= P
g / \
[=% ~ J
5] 05r / e \
E 01t -
s N\
g 0 0 [ S a—
| / H
1! 4 Ji
g |\ -o