
1

Impact of Power Flow Direction on the

Stability of VSC-HVDC seen from the

Impedances Nyquist Plot
Mohammad Amin, Student Member, IEEE, Marta Molinas, Member, IEEE, Jing Lyu, Student

Member, IEEE, and Xu Cai, Member, IEEE

Abstract

The high voltage dc (HVDC) systems are appearing more and more, and it is becoming a requirement that the

HVDC voltage source converters (VSCs) operate both as an inverter and a rectifier without changing the controls to

provide the flexibility of having power flows in both directions. It is observed that the HVDC system operates stably

when the power flow direction is from the power controlled-converter to the dc voltage controlled-converter and it

becomes unstable when the power flow direction has been altered. In order to analyze such instability problem and to

design the local control, an impedance-based method is proposed. Identifying the source and the load impedance are

prerequisite to apply the impedance-based method. Existing method of determining the source and the load impedance

cannot predict the stability when the power flow direction is altered; therefore a method based on the power flow

direction has been presented to determine the source and the load impedance. The converter which injects power to

the dc system is the current source represented with its Norton equivalent parallel impedance while the other converter

impedance is considered as the load impedance. The stability of the system is determined by the ratio of the load

impedance to the current source impedance. Once the source and the load impedance are analytically obtained, the

impedance-based Generalized Nyquist Stability Criteria is applied to determine the stability. The system stability for

the two power flow directions is well predicted from the Nyquist plot of impedance ratio. A two-terminal HVDC

system has been developed in MATLAB/Simulink to demonstrate the application of this method and the results are

compared with the experimental results.
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I. INTRODUCTION

The Voltage Source Converter (VSC)-based High Voltage dc (HVDC) transmission system has received consid-

erable attention due to development of the power electronics converter [1], [2]. A Large range of modeling and

control of the VSC-based HVDC system have been published in the last few years [3]- [11]. From these studies it

becomes clear that the control and the system impedance can have the impact on the stability of the system. It is

therefore necessary to pre-asses their impact on the system stability before connecting to the main grid. Continuous

efforts have been made to investigate the stability of such system by different approaches. Existing approaches for

the stability study of the VSC-HVDC system are based on the controller dynamics which do not include the system

impedance and the dc line dynamics. Another approach is based on the state-space model and eigenvalue analysis

[12]- [18]. The eigenvalue-based approach requires the design of each components of the HVDC system and does

not support the local control development at individual terminals. Impedance-based approach is a simple method

for stability analysis and supports the local control development [19]- [33].

A common practice when designing the control of an HVDC is: the dc voltage controlled-converter operates

as an inverter and the power controlled-converter operates as a rectifier [34]. Thus, the active power flows in one

direction from the power control to the dc voltage controlled-converter. If it is necessary to change the power

flow direction, the control mode between the converters needs to be changed. However, the HVDC systems are

appearing more and more and it is becoming a requirement that the VSCs operate both as an inverter and a rectifier

without changing the controls to provide the flexibility of having power flows both directions, as an ac transmission

system in which two ac networks support each other. It has been observed that the HVDC system operates stably

when the power flow direction is from the power controlled-converter to the dc voltage controlled-converter and

it becomes unstable when the power flow direction has been altered. Existing impedance-based stability method

cannot determine the stability when the power flow direction has been altered. This paper has proposed a method

based on impedances Nyquist plot to investigate such instability problem.

In order to determine the stability based on the impedance-based approach, the impedance model derivation is

the prerequisite. In the literature most researcher have so far focused on the ac impedance modeling either in the

positive-negative sequence [25], [26] or in the dq-frame [27]- [30] and considered to have an ideal voltage source

or a current source in the dc side in which the dc lines/cables impedance are neglected. However in a VSC-based

HVDC system the dc side dynamics have a significant impact on the system stability. Therefore, the impact of

the dc line impedance must be considered in the stability analysis. A dc impedance-based resonance analysis for

the VSC-HVDC system is investigated for different value of the dc link capacitance in [34]; however it doesn’t

include the detailed stability analysis. Another dc impedance-based stability method has been presented in [22],

[24]; however these papers have not discussed the impact of the power flow direction on the stability.

In this study, a dc impedance-based approach is adopted to analyze the stability of the VSC-based HVDC

transmission system. An analytical method is derived to calculate the dc impedance, which refers to the impedance

of the VSC including the controller dynamics and the dc line impedance. The derived model is validated by

comparing the frequency response of the analytical impedance and the impedance measured at the dc terminal from
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Fig. 1: Point-to-point connection VSC-based HVDC system

a detailed switching model of the VSC-HVDC system. The impedance of the VSCs not only depends on the passive

components, but also on the converter control dynamics.

In order to apply the impedance-based stability method, it is necessary to determine the source and the load

impedances. A method for determining the current source and the voltage source for the dc system has been

presented in [35] in which the subsystem connected in series with an inductor is assumed to be the current source

while the converter connected in parallel with a capacitor is assumed to be the voltage source. Moreover, in the

literature the subsystem which regulates the voltage is assumed to be the voltage source and other converter is

assumed to be the current source regardless of the direction of the current (power flow) [20]. Hence, the system

can be represented by an equivalent small-signal impedance model consisting of both the voltage source and the

current source, and the stability can be determined from the minor loop gain which is the ratio of the voltage

source to the current source impedance [20]. However, the stability of a system consisting of a current source and

a voltage source system cannot be determined for both directions of the active power flow. A method based on

the Generalized Inverse Nyquist Criteria (GINC) has been presented in [28] which could be useful to analyze such

instability problem but it does not have any indication when should be used the Generalized Nyquist Criteria (GNC)

or GINC for a case when the power flow direction has been altered.

It is therefore important to design the control which makes the system stable for both directions of power flow.

To design the appropriate control, the instability problem needs to be defined analytically. In an attempt to do that,

an impedance based method is proposed and the HVDC converter stations are represented by its Norton equivalent

current source with parallel connected impedance, and the source and the load impedance are determined based

on the power flow direction. The identification of the source and the load impedance is based on the power flow

direction which is a new method presented in this paper. The stability analysis has been performed for two different

directions of power flow where the method can determine the stability for both directions of power flow and the

theoretical analysis has been verified by time domain simulation and by experiments.

The rest of the paper is organized as follows: Section II describes the modeling and control of the HVDC

system. The developed HVDC system is tested by time domain simulation and experiment in Section III. Section

IV presents the impedance based stability method. Moreover, An impedance model is derived analytically and the

derived impedance model is verified with the frequency response of the impedance obtained from simulation. The

stability analysis method based on the power flow direction is described in Section V. Finally the results of this

study are concluded in section VI.
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Fig. 2: Overview of VSC-HVDC converter station

II. HVDC SYSTEM MODELING AND CONTROL

The two-terminal VSC-based HVDC system under this study is depicted in Fig. 1. The HVDC system consists of

the converter transformers, ac filters, two VSC HVDC converters named VSC-A and VSC-B, and the dc cable. Both

the VSC-A and VSC-B are assumed to be identical in structure. The electrical circuit of a VSC-HVDC converter

for analytical modeling is shown in Fig. 2 where Lc and Rc are the total series inductance and resistance of the

VSC, Cf is the filter capacitance, and Lg and Rg are the inductance and resistance of the grid. The modeling,

analysis and control of the system will be presented in a synchronous reference frame (SRF). The transformation

of the three phase quantity from stationary reference frame to the SRF is based on the amplitude-invariant Park

transformation, with the d-axis aligned with the voltage vector vo and q-axis leading the d-axis by 900. The dynamic

equations of the converter in per unit (pu) can be given by (1), the filter by (2) and the grid by (3) where ωb is

base angular grid frequency; ωg is the grid frequency in per unit (pu); voltage and current of these equations are

indicated in Fig. 2 [36], [37].
diL
dt

=
ωb

Lc
vcv −

ωb

Lc
vo − ωb(

Rc

Lc
+ jωg)iL (1)

dvo
dt

=
ωb

Cf
iL −

ωb

Cf
io − jωbωgvo (2)

dio
dt

=
ωb

Lg
vo −

ωb

Lg
vg − ωb(

Rg

Lg
+ jωg)io (3)

A. Current Controller

The inner loop current controller is assumed to be the widely used SRF Proportional-Integral (PI) controller of

the VSC with a decoupling term. The output voltage references, vcvdq,ref =
(
vcvd,ref vcvq,ref

)T
obtained from

the current controller including the feed-forward terms can be given by

vcvdq,ref = GcciLdq,ref − (Gcc + Gdel)iL,dq + vo,dq (4)

and defined

Gcc =

Hcc(s) 0

0 Hcc(s)

 ,

Gdel =

 0 ωPLLLc

−ωPLLLc 0


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Fig. 3: The control structure of the power control converter, VSC-A.

where iLdq,ref =
(
iLd,ref iLq,ref

)T
; iLd,ref and iLq,ref are the reference active and reactive current compo-

nents obtained from the outer loop controller of the VSCs; Hcc(s) = kpc+kic/s is the current compensator transfer

function where kpc and kic are the proportional and the integral gain of the current compensator, respectively and

ωPLL is the frequency of the PLL in pu. The analytical modeling of the current controller remains the same for

both VSC-A and VSC-B.

B. The Power Controlled-converter, VSC-A

VSC-A controls the active power. The outer loop PI controller gives the d-axis current reference and the q-axis

current reference is set to a constant value according to the reactive power requirements; in this case it is zero. The

control structure of the power controlled-converter is shown in Fig. 3. The current reference for the active power

controller can be defined by

iLd,ref = Hp(s)(Pref − Pmeas) (5)

and the measured power

Pmeas = vodAiLdA + voqAiLqA (6)

where Hp(s) = kpp +kip/s is the power compensator transfer function where kpp and kip are the proportional and

integral gain of the power controller, respectively. The subscript, ’A’ denotes VSC-A.

C. The dc voltage controlled-converter, VSC-B

The control structure of VSC-B is shown in Fig. 4. VSC-B regulates the HVDC link voltage. The outer loop PI

controller gives the d-axis current reference to the current controller. The q-axis current is set to constant value.
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Fig. 4: The control structure of dc voltage control converter, VSC-B.

The d-axis current reference, iLd,refB can be given by,

iLd,refB = Hvdc(s)(vdc,refB − vdcB)(−1) (7)

where Hvdc(s) = kpvdc +kivdc/s is the dc voltage controller transfer function; kpvdc and kivdc are the proportional

and integral gain of the PI controller, respectively and Vdc,refB is the reference dc voltage. The subscript, ’B’

denotes VSC-B.

III. SIMULATION AND EXPERIMENTS

The analytical model of a two-terminal VSC-HVDC system discussed in previous section is implemented in

MATLAB/Simulink with detailed switching model of the VSCs. In addition, the simulation results are also compared

with the set-up of a two-terminal system built in laboratory. The theoretical analysis and simulations have been

performed for a low voltage level in order to compare with the same voltage and system parameters in the

experiments. The electrical circuit parameters of the system are given in Table I in Appendix. The inner-loop

current controller of VSC-A is tuned at HccA(s) = 4 + 800/s and the close-loop control bandwidth is 160 Hz

with 150 degree phase margin. The active power compensator transfer function is HP (s) = 0.005 + 1/s, and

the close-loop control bandwidth is 27 Hz with 75 degree phase margin. The current compensator of VSC-B is

HccB(s) = 5 + 1000/s and the close-loop control bandwidth is 157 Hz with 150 degree phase margin, and the

dc voltage compensator transfer function is Hvdc(s) = 4.5 + 3/s and the control bandwidth 8 Hz with 170 degree

phase margin. The control tunings satisfy the standard bandwidth requirements and the system is expected to operate

stably.

The dc voltage reference to VSC-B is set to 500 V. The active power reference to VSC-A is set -10 kW. The

negative power reference to VSC-A means that VSC-A is exporting active power to the dc system and is operating

as a rectifier. Thus, VSC-B is extracting power from the dc system and operates as an inverter. A time domain
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Fig. 5: Simulation results for -10 kW power reference to the VSC-A (Stable case): (a) Three-phase ac voltage and

current at PCC of VSC-A, (b) Three-phase ac voltage and current at PCC of VSC-B and (c) dc link voltage and

current of VSC HVDC system.

simulation has been carried out for these tuning and setting, and the resulting time domain responses are shown

in Fig. 5 which shows that the system operates stably. Fig. 6 shows the experimental results. The system operates

stably in both the time domain simulation and the experiment.

The HVDC system is expected to operate stably for both directions of the power flow. Therefore, the opposite

direction of the power flow is tested for the same control tuning. The active power reference is now set to +10

kW which is the opposite to the previous direction. For this power reference, VSC-A is extracting the power from

the dc system and operates as an inverter and VSC-B is exporting power to the dc system. The power reference

has been altered from the negative reference to the positive while the controls of the VSCs remain the same. A

time domain simulation has been carried out and the resulting time domain responses are shown in Fig. 7. As
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Fig. 6: Experimental results for -10 kW power reference to the VSC-A (Stable case): dc link voltage, voltage at

PCC of VSC (phase-a), current of VSC-A (phase-a) and VSC-B (phase-a).
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Fig. 7: Simulation results for +10 kW power reference to the VSC-A (Unstable case): The three-phase voltage and

current at PCC of VSC-B.

can be seen in Fig. 7, the system has become unstable and the PCC voltage and current are polluted by different

harmonic. An experiment has been carried out for the same set up and power reference. Fig. 8 shows the results

from the experiment. The experimental result has confirmed that the system is unstable and has polluted by the

different harmonic. Moreover, it cannot be continued the operation in the experiment since protection system has

been tripped.

The system operates stably when the power flow direction is from the power controlled-converter to the dc voltage

controlled-converter and becomes unstable when the power flow direction has been altered. To analyze the stability

and find the causes of this instability, an impedance based-stability method is adopted. The next two Sections have

presented the stability analysis of the system and the possible solution to overcome this instability.
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Fig. 8: Experimental results for +10 kW power reference to the VSC-A (Unstable case): dc link voltage, voltage

at PCC of VSC (phase-a), current of VSC-A (phase-a) and VSC-B (phase-a).

IV. STABILITY ANALYSIS

A. Impedance Modeling and Verification

In order to apply the impedance-based stability method deriving the impedance model is prerequisite. The stability

of the system is analyzed based on the dc impedance. A dc impedance model is derived for a switching model of

the VSC including the PWM delay based on the method presented in [24]. The details impedance model derivation

is described below.

The impedance model will be derived based on the analytical model of the VSC-HVDC system described in sec-

tion II. Applying the small-signal deviation and Laplace transformation and let ∆vcv,dq =
(

∆vcvd ∆vcvq

)T
,∆vo,dq =(

∆vod ∆voq

)T
and ∆iL,dq =

(
∆iLd ∆iLq

)T
, Eqn. (1) can be written in matrix form by

∆vcv,dq = ∆vo,dq + Zc∆iL,dq (8)

where

Zc =

Rc + sLc/ωb −ωgLc

ωgLc Rc + sLc/ωb

 .

Assume that the grid voltage vg is stable and ∆vg,dq=0, Eqn. (3) gives the relation between ∆io,dq and ∆vo,dq

and can be given by

∆io,dq = Yg∆vo,dq (9)

where

Yg =

Rg + sLg/ωb −ωgLg

ωgLg Rg + sLg/ωb

−1
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and ∆io,dq =
(

∆iod ∆ioq

)T
. The relation between the PCC voltage, ∆vo,dq and converter current, ∆iL,dq can

be found by applying Laplace transformation, linearization and inserting (9) into (2) and can be written by

∆vo,dq =

Ωg︷ ︸︸ ︷
(YCf + Yg)

−1
∆iL,dq (10)

where

YCf =

sCf/ωb −ωgCf

ωgC sCf/ωb

 .

Inserting (10) into (8) gives the relation between converter ac voltage, vcvdq and ac current, iLdq and can be

expressed by (11).

∆vcv,dq = (Ωg + Z0)∆iL,dq (11)

Throughout this paper, it is assumed that the PLL is operating satisfactory and we neglect the impacts of the PLL

dynamics. Now applying small-signal deviation and neglecting the higher order term, (4) with small perturbations

with vcvdq,ref = Vdc,0(vcvdq/vdc) can be written by

GPWMGcc∆idq,ref = (Zc + GPWM (Gcc + Gdel)) ∆iL,dq −

md0

mq0

∆vdc (12)

where mdq0=Vcvdq0/Vdc0 is the modulation index at a operating point and the PWM delay is modeled as

GPWM =
1

1 + 1.5Tsws

where Tsw = 1/fsw; fsw is the switching frequency. If the converter is assumed to have only the current

controller, ∆iLdq,ref will be zero.

By neglecting the losses due to switching, the power balance constraint between the dc and the ac side can be

given by (13) and linearized equation of (13) is given by (14).

P = vdcidc = iLdvcvd + iLqvcvq (13)

Idc0

Vdc0

T ∆vdc

∆idc

 =

ILd0

ILq0

T

∆vcv,dq +

Vcvd0

Vcvq0

T

∆iLdq (14)

The dc impedance of the converters can be calculated as ∆vdc/∆idc. In (14), the variables ∆vcv,dq and ∆iLdq are

ac side quantities which implies that the derivation should involve both ac and dc side [34], therefore the ac side

quantities have to be expressed in terms of the dc side quantities in order to get an expression of the dc impedance,

Zdc = ∆vdc/∆idc.

Equation (14) can be simplified by inserting (11) asIdc0

Vdc0

T ∆vdc

∆idc

 =


ILd0

ILq0

T

(Ωg + Zc) +

Vcvd0

Vcvq0

T
∆iLdq. (15)

To get the expression of the dc impedance, the ac quantity, ∆iLdq of (15) have to be expressed with the dc

quantity by the dc voltage or the dc current. The investigated HVDC system has the outer-loop active power control
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in VSC-A and outer loop dc voltage control in VSC-B. Hence, it is necessary to find an expression of ∆iLdq,ref

in terms of either ∆iLdq or ∆vdc in (12) to include the impact of the outer-loop on the stability.

1) Impedance model of the Power Controlled-Converter (VSC-A): The analytical modeling of the control of

VSC-A is presented in section II and the impedance modeling of the VSC-A including the outer-loop is presented

in the following subsection. The reference current, ∆idq,refA can be obtained in terms of ∆iLdqA by linearizing

(5) and (6) and inserting (10) and rearranging (12), and can be given by

∆iLdq,refA =

GA︷ ︸︸ ︷
(−GiA −GvAΩg) ∆iLdq (16)

where

GvA = HP (s)

Vod0A Voq0A

0 0


GiA = HP (s)

ILd0A ILq0A

0 0

 .

Inserting (16) into (12) and solving together with (15), the dc impedance of VSC-A is obtained as

ZdcA(s) =
∆vdcA
∆idcA

=
−Vdc0A

Idc0A −

ILd0A

ILq0A

T

(Ωg + Zc) +

Vcvd0A

Vcvq0A

T

GidcA

(17)

where

GidcA = (ZcA + GPWM (GccA + Gdel)−GPWMGccAGA)
−1

md0A

mq0A

 .

2) Impedance model of the dc voltage controlled-converter (VSC-B): The impedance model of the dc voltage

controlled-converter is described in this subsection. The current reference, ∆iLdq,refB can be expressed in terms

of the dc voltage by linearizing (7) and can be given by

∆iLdq,refB =

Hvdc(s)

0

∆vdcB . (18)

Inserting (18) into (12) gives the relation between the dc voltage, ∆vdcB and ac currents ∆iLdq . Now solving (12),

(15) and (18) together and rearranging, the dc impedance model of VSC-B can be obtained and is given by

ZdcB(s) =
∆vdcB
∆idcB

=
−Vdc0B

Idc0B −

ILd0B

ILq0B

T

(Ωg + Zc) +

Vcvd0B

Vcvq0B

T

GidcB

(19)

where

GidcB = (ZcB + GPWM (GccB + Gdel))
−1

md0B

mq0B

+ GPWMGccB

Hvdc(s)

0

 .
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Fig. 9: Investigated point-to-point VSC-based HVDC system including current injection structure for impedance

model verification

Fig. 10: Equivalent small-signal impedance model of VSC-HVDC system consisting of both the voltage source and

the current source.

B. Stability Analysis based on the literature

The investigated two-terminal VSC-HVDC system including the shunt current injection structure for the impedance

model verification is depicted in Fig. 9. For stability analysis, the equivalent small-signal impedance model of the

VSC-HVDC system is shown in Fig. 10. The power controlled-converter subsystem including the dc-line impedance

is modeled by its Norton equivalent circuit consisting of an ideal current source, IP in parallel with equivalent

impedance, ZP (s) while the dc voltage controlled-converter subsystem is modeled by its Thevenin equivalent

consisting of a voltage source with a series equivalent impedance, ZV dc(s).

The current source impedance can be given by

ZP (s) =
ZdcA(s)

1 + sCdcAZdcA(s)
+ Zdc,cable(s) (20)

and the voltage source impedance is

ZV dc(s) =
ZdcB(s)

1 + sCdcBZdcB(s)
. (21)

The analytical impedance model developed for the VSCs in (20) and (21) are validated by simulation with

detailed switching model of the VSCs. A perturbation current (1% of rated dc steady-state current) at different

frequency from 1 Hz to 1 kHz is injected as shown in Fig. 9 and the voltage is measured. The Fast Fourier

Transformation (FFT) tool from the SimPower System is used to analyze the different frequency voltage and

current, and the impedance is calculated by dividing the voltage by current at each frequency. The analytical and
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Fig. 11: Frequency response of the impedance: (a) the impedance of the current source subsystem and (b) the

impedance of the voltage source subsystem (solid-line is from model prediction and the red-points are from detailed

simulation).
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Fig. 12: Negative power reference: (a) Impedance frequency response of the voltage source and current source

subsystem and (b) the Nyquist plot of the impedance ratio (ZV dc(s)/ZP (s)).

simulation impedance is shown in Fig. 11 and the electrical circuit parameters of this system are given in Table I in

Appendix. The solid-line is the analytical impedance and the red-points show the results from detailed simulation.

Both analytical and simulation impedance magnitude and phase have good agreement which validates correctness

of the impedance model derivation.

The equivalent small-signal impedance model of the VSC-HVDC shown in Fig. 10 is a hybrid system consisting
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Fig. 13: Positive power reference: (a) Impedance frequency response of the voltage source and current source

subsystem and (b) the Nyquist plot of the impedance ratio (ZV dc(s)/ZP (s)).

of both a voltage source and a current source. Therefore, the dc voltage at interconnection of Fig. 10 can be given

by

v(s) = (vdc(s) + iP (s)Zvdc(s))
1

1 + ZV dc(s)
ZP (s)

(22)

where the second part of the equation resembles a closed loop transfer function and the stability of the system can

be determined by checking the Nyquist plot of the voltage source to the current source impedance ratio regardless

of the current source behaves as a source or a sink. Moreover, this criteria indicates that a point-to-point connection

VSC-HVDC system should be designed to have high output impedance as possible in the current source subsystem

and low input impedance in the voltage source in order to operate stable under a wide range of frequencies.

Fig. 12 (a) shows the impedance frequency response of the voltage source and the current source subsystem for the

negative power reference of the power controlled-converter. As can be seen, the impedance of the current source

subsystem, (ZP (s)) is higher than the impedance of the voltage source subsystem, (ZV dc(s)) at all frequencies

which is desirable to have the stable system. Fig. 12 (b) shows the Nyquist plot of the impedance ratio. Since

the magnitude of the ZP (s) is higher than the magnitude of the ZV dc(s) at all frequencies, the Nyquist plot stays

inside the unit circle and it never encircles the point (-1, j0); therefore the system is stable for the negative power

reference. The system is found to be stable in time domain simulation and in the experiment.

Since the impedance also depends on the steady-state operating point, the impedance is calculated for the +10 kW

power reference to VSC-A (which is the new operating point). Fig. 13 (a) shows the impedance frequency response

for the positive (+10 kW) power reference. As can be seen in Fig. 13 (a), the impedance of the current source

subsystem, (ZP (s)) is higher than the impedance of the voltage source subsystem, (ZV dc(s)) at all frequencies,

therefore, the Nyquist plot of the impedance ratio stays inside the unit circle and it never encircles the point (-1,
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Fig. 14: Equivalent small-signal impedance model of VSC-HVDC system: current source equivalent model.

j0) as shown in Fig. 13 (b). Therefore, the system is predicted to be stable from frequency domain analysis by

the existing impedance based stability method; however, the system is found to be unstable in the time domain

simulation and the experiments. Therefore, existing method can not determine the stability of the system when the

power flow direction has been altered.

V. PROPOSED STABILITY ANALYSIS METHOD

In previous section it has been observed that the existing impedance-based method can not determine the stability

of the system when the power flow direction has been altered. Therefore, to overcome this limitation in this paper

an impedance-based stability method is proposed where the subsystems are represented by only a Norton equivalent

current source instead of representing them by a hybrid system consisting of both a voltage source and a current

source. This assumption is valid, since the voltage controlled-subsystem can be represented by its Norton equivalent

current-source with parallel connected impedance [20]. The modified equivalent small-signal impedance-model of

the two-terminal HVDC system is shown in Fig. 14.

Now we assume that the power reference of the power controlled-converter, VSC-A is negative, this means that

VSC-A injects power into the dc system and works as a current source and the dc voltage controlled-converter,

VSC-B operates as an inverter and extracts active power from the dc system. Therefore, VSC-A is operates as a

current source while VSC-B is a current sink or load. For this condition, the current, I(s) at interconnection in

Fig. 14 can be given by

I(s) =

(
IP (s)− IV (s)

ZV dc(s)

ZP (s)

)
1

1 + ZV dc(s)
ZP (s)

. (23)

Note that the second part of (23) resembles the close-loop transfer function of a negative feedback control system

with a forward gain of unity and the feedback gain is ZV dc(s)/ZP (s). Hence based on (23), the HVDC system

will operate stably if the ratio of the dc voltage controlled-converter impedance to the power controlled-converter

impedance, ZV dc(s)/ZP (s) satisfies the Nyquist Stability Criteria. Fig. 12 shows the impedance frequency response

and the Nyquist plot of the impedance ratio for the negative power reference and the system is predicted to be

stable. The system operates stably in the time domain simulation and the experiments as shown in Fig. 5 and 6,

respectively.
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Now the reference power of VSC-A is set to +10 kW, this means that VSC-A is extracting power from the dc

system and working as a current sink or load, while VSC-B is working as a current source. In that case, the current

I(s) at interconnection can be given by

I(s) =

(
IV (s)− IP (s)

ZP (s)

ZV dc(s)

)
1

1 + ZP (s)
ZV dc(s)

. (24)

Therefore, based on (24) the stability of the HVDC system depends on the impedance ratio of the input impedance

of the power controlled-subsystem to the output impedance of the dc voltage controlled-subsystem, ZP (s)/ZV dc(s)

which is the inverse of the previous assumption of (23). The system operates stably if ZP (s)/ZV dc(s) satisfies the

Nyquist Stability Criteria.

Fig. 15 shows the Nyquist plot of the impedance ratio, ZP (s)/ZV dc(s) for the positive power reference of VSC-

A. As can be seen in Fig. 13, the magnitude of the ZP (s) is higher than the magnitude of the ZV dc(s) and the

Nyquist plot of ZP (s)/ZV dc(s) (Fig. 15) does not cross the unit circle; however it encircles the point (-1, j0),

hence the system is predicted to be unstable. Therefore, the system has become unstable in the simulation and

experiments as shown in Fig. 7 and 8, respectively.

Eqn. (24) indicates that the system stability can be improved by increasing the magnitude of ZV dc(s) which can

be done by modifying the converter passive components and the controller bandwidth. It is not a feasible way to

modify the passive components instead it is better to modify the controller gain. Hence, the voltage controller

gain is re-tuned at HV dc(s) = 1 + 3/s and the close-loop crossover frequency is 7.2 Hz with 172 degree phase

margin. Fig. 16 shows the impedance frequency response of the subsystems for the negative power reference. The

impedance magnitude crosses each other at frequency of 30.6 Hz and 65.8 Hz with a phase margin of 1600 and

66.50, respectively. Fig. 17 depicts the Nyquist plot of impedance ratio, ZV dc(s)/ZP (s). As can be seen in Fig. 17

(a), the Nyquist plot does not encircle the point (-1, j0). Therefore, it has been predicted that the system operates
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Fig. 15: Nyquist plot of impedance ratio, ZP (s)/ZV dc(s).



17

−40

−20

0

20

40

M
a

g
n

it
u

d
e

 (
d

B
)

10
0

10
1

10
2

10
3

−200

−100

0

100

Frequency (Hz)

P
h

a
s
e

 (
d

e
g

)

Z
P

Z
Vdc

Fig. 16: Frequency response of the impedance model at interfacing point for modified control tuning (the solid-line

is from model prediction and the red-points are from detailed simulation).

−1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
a

g
in

a
ry

 A
x
is

(a)

−300 −250 −200 −150 −100 −50 0
−8

−6

−4

−2

0

2

4

6

Real Axis

Im
a
g
in

e
ry

 A
x
is

−1 0 1

−1

0

1

(b)

Fig. 17: Nyquist plot of impedance ratio for modified control tuning: (a) Negative power reference: ZV dc(s)/ZP (s)

and (b) Positive power reference: ZP (s)/ZV dc(s).

stably for the negative power reference. Now stability analysis is performed for the positive power reference, and

the resulting Nyquist plot of the impedance ratio, ZP (s)/ZV dc(s) is shown in Fig. 17 (b) and the Nyquist plot

predicts that the system will operate stably. The system is predicted to be stable for both directions of the power

flow.

A time domain simulation has been carried out for a step of active power reference from -10 kW to +10 kW and

the resulting time domain simulation is shown in Fig. 18. The system operates stably for both direction of power
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flow which is further confirmed in the experiments. Both the simulation and the experiments have validated the

theoretical analysis.

Moreover, the impact of the controller dynamics on the stability has been investigated to further validate the

effectiveness of the dc impedance-based method. The proportional gain of the dc voltage controller further reduces

to 0.03 with the close-loop crossover frequency of 7.13 Hz and 148 degree phase margin. The impedance frequency

response and the Nyquist plot for this tuning is shown in Fig. 19. As can be seen in Fig. 19 (a), the dc voltage

controlled-subsystem impedance becomes larger at low frequency for lower value of proportional gain and it crosses

the unit circle at frequency of 2.96 Hz with low phase margin (200) as shown in Fig. 19 (b). Since Nyquist plot

does not encircle the point (-1, j0), the system is stable. However, the phase margin is low, the system would have

a low frequency oscillation at around 2.96 Hz in transient condition. A time domain simulation has been carried

out and the time domain response of the dc voltage and the current and FFT of the dc current are shown in Fig.

20 (a). As can be seen, the system has a stable pole with oscillation frequency around 3 Hz as predicted in the

frequency domain analysis by the Nyquist plot in Fig. 19 (b). This oscillation is also observed in the ac side as

shown in Fig. 20 (b) which is reflected by 50 Hz fundamental frequency, f1 as ±(f − f1) [26].
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Fig. 19: (a) Impedance of the subsystem for dc voltage control proportional gain of 0.03 and (b) Nyquist plot of

impedance ratio, ZV dc(s)/ZP (s).
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Fig. 20: Simulation results: (a) The dc link voltage and current and FFT of dc current for dc voltage controller

proportional gain of 0.03, (b)The three-phase current at PCC of VSC-B for dc voltage controller proportional gain

of 0.03.

An example case is also presented to show the impact of the power controller dynamics on the system stability.

The power controller proportional gain is purposely increased to 2x0.005 and the close-loop cross-over frequency is

27 Hz and 116 degree phase margin. The corresponding impedance frequency response defined in (20) is shown in

Fig. 21. As can be seen, the increased gain does not have significant impact on the impedance frequency response.
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Fig. 22: Point-to-point VSC-based HVDC system to study the impact of power controller dynamics.

It is because the dc link capacitance and the dc line inductance are together behaving as a low pass filter and the

high frequency oscillations has been filtered by this low pass filter. Therefore, it cannot predict the instability which

results the high frequency oscillation from the source and load impedance defined at the interfacing point of Fig.

9. In order to determine instability caused by the power controller dynamics, the impedance-based analysis needs

to be performed at the interfacing point as shown in Fig. 22 where the subsystem impedances are defined as

Z∗
P (s) = ZdcA(s) (25)

Z∗
V dc(s) =

1

sCdcA
‖
(
Zdc,cable(s) +

ZdcB(s)

1 + sCdcBZdcB(s)

)
. (26)

The system is represented by the small-signal equivalent impedance model as depicted in Fig. 14 and the stability is

predicted by the GNC. The Nyquist plot of Z∗
V dc(s)/Z

∗
P (s) is shown Fig. 23 for two different values of proportional

gain of power controller. As can be seen in Fig. 23, the system is stable for kpp = 0.005 and unstable for

kpp = 2x0.005. A time domain simulation has been carried out to verify the theoretical analysis and the resulting

time domain response is shown in Fig. 24. The proportional gain of the power control has been increased at 0.5

s. As can be seen in Fig. 24, the system operates stably for kpp = 0.005 and it introduces harmonic instability for
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gain from 0.005 to 2x0.005 at 0.5 s.

kpp = 2x0.005 at 0.5 s. The simulation result is further verified in the experiment. The experimental results are

shown in Fig. 25. As can be seen, the system has been polluted by the harmonic oscillation. Both the simulation

and experiment results have the harmonic oscillation which has been predicted from the Nyquist plot of impedance

ratio as shown in Fig. 23.

A weakness of the dc impedance based method is that it cannot determine the instability that results for a

weak network, because variation of the ac grid impedance does not reflect significantly on the dc impedance [34].

Therefore, the dc impedance-based analysis is used to analyze the stability in the dc side. On the other hand, the ac

impedance based analysis cannot determine the instability caused by the dc line dynamics, since we calculate the ac
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Fig. 25: Experimental results for power controller proportional gain of 2x0.005: (i) dc link voltage, (ii) voltage at

PCC of VSC-A (phase-a), current of (iii) VSC-B (phase-a) and (iv) VSC-A (phase-a).

impedance assuming the dc side a constant voltage source because of large dc link capacitor. Therefore to determine

the instability resulting for the weak grid/network, the stability analysis should be performed in the ac side based

on the ac impedance either in positive-negative sequence impedance [25], [26] or the d-q frame impedance [27]-

[29].

VI. CONCLUSION

This paper has presented the impact of the power flow direction on the stability for a two-terminal VSC-HVDC

system. It has been observed that the system operates stably when the power flow direction is from the power

controlled-converter to the dc voltage controlled-converter and it becomes unstable when the power flow direction

has been altered. To overcome this problem an impedance based method is proposed. Existing method of determining

the source and the load impedances cannot predict the stability when the power flow direction has been altered;

therefore a method based on the power flow direction has been presented to determine the source and the load

impedance. The converter which is injecting power to the dc system is the current source represented with its Norton

equivalent parallel impedance while the other converter impedance is considered as the load impedance. The stability

of the system has been determined by the ratio of the load impedance to the current source impedance. Once the

source and the load impedance are analytically obtained, the impedance-based Generalized Nyquist Stability Criteria

has been applied to predict the stability of the interconnected system. The control has been redesigned based on the

proposed method such that the power flows both directions without changing the control between the converters.

The system stability for the two power flow directions is well predicted from the Nyquist plot of impedance ratio.

A two terminal HVDC system has been developed in MATLAB/Simulink to demonstrate the application of this

method and the results have been compared with the experimental results.
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APPENDIX

TABLE I: The investigated system parameters

Parameter Value Parameter Value

Rated Power, Sb 150 kVA Lc 2.1 mH

Rated ac voltage 380 V Rc 0.01 Ω

Rated frequecy 50 Hz Cf 50 uF

Trans. inductance 0.04 pu Vdc 500 V

Trans. resistance 0.005 pu Ldc 1.66 mH

Grid inductance 0.1 pu Rdc 0.2 Ω

Grid resistance 0.0229 pu Cdc 3 mF
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