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Abstract: Fe-doped ZnS films of high optical quality were fabricated using vacuum vapor
deposition. Preferential crystalline orientation and phase purity of the host ZnS films were
increased by the addition of small amounts of Fe, and the spectral shape of the 2-4 µm absorption
peak is maintained up to the highest concentration tested (9 at.% ). However, Raman shifts of
the Fe:ZnS films indicate the inclusion of disordered material at high Fe concentrations, and
below-gap optical Kerr effect measurements show an increase in χ(3) correlated with this data.
Nonlinear optical properties of the films were also measured using the Z-scan method at 532 nm,
and saturable absorption of the Fe-based intraband levels at 2.94 µm was confirmed.
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1. Introduction

Transition metal substitution in II-VI semiconductors has been a rich area of study for over 50
years [1] but new applications, including dilute magnetic semiconducting devices [2], intermediate
band solar cells [3], and mid-infrared lasers [4, 5] are driving further development of these
materials. In particular, both ZnS and ZnSe have suitable properties as hosts for passive Q-
switch and gain species in the mid-infrared region. In general, ZnS exhibits superior thermal
properties [6]. The most promising dopants are Cr2+ and Fe2+ due to their well-isolated transitions
within the semiconductor bandgap. Cr2+ doped films of high quality have recently been introduced
[7] and Fe2+ doped thin films represent a technologically important extension of these results,as
they extend the accessible wavelength range of miniature devices. Fluorescence efficiency, carrier
lifetimes and concentration quenching are critical for lasing, while in the case of saturable
absorbers, Kerr lensing and nonlinear absorption are key properties.

Recently, significant progress has been made with Cr in Zn(S,Se) single crystal, polycrystalline
ceramic and thin film hosts. Cr2+ doped ceramic ZnS has been successfully used for lasers in the
2–4 µm band [8]. Initially, confinement was provided by using femtosecond processing to define
the boundaries of a waveguide [9, 10] within a bulk sample, but new studies [11, 12] suggest
that vacuum-deposited thin films may be suitable for fabrication of waveguide or disk lasers.
Moreover, MBE-grown Cr:ZnS thin films show promise as saturable absorbers for 1.5 µm erbium
lasers [13].
There is significant interest in Fe doped Zn(S,Se) systems, as gain and saturable absorber

materials [14, 15], and both crystals and ceramic forms are commercially available. Recent work
on Fe:ZnS has demonstrated lasing in the 3–5 µm wavelength region with Er:YAG and HF pump
lasers [16–19], including operation at room temperature. Single crystals are difficult to fabricate,
and polycrystalline hot pressed ceramics are an alternative suitable for use as Q-switches [20,21].
To date, doping has been performed either during crystallization, or post-growth into single
crystal or polycrystalline samples. In the latter process, a thin film of the metal is deposited onto
the sample surface, and a high temperature annealing allows diffusion of the dopant into the bulk.
This process typically results in a rapidly varying concentration profile near the surface [14].

Fe:ZnS thin films have received less attention [22–24], but an isolated absorption (Fe2+)
peak was observed at concentrations as high as 2 at.% Fe - much higher than the level where a
well-defined peak is observed for Cr2+ doped ZnS [11]. This observaton, combined with results
on Cr-doped films, suggests that vapor deposition of Fe:ZnS may be a route to a fabrication of
thin film saturable absorbers for passive Q-switches at longer wavelengths. Thin film devices offer
compactness and the advantage that the dopant profile can be controlled during the deposition
and concentrations beyond the bulk solubility are possible. However, high concentrations are only
useful if the Fe is substitutional, and the underlying crystal structure is not degraded unduly by its
introduction. Early results on Fe- substituted ZnS films suggested that these requirements were
met, even with readily accessible vacuum levels. In order to establish the potential of the thin-film
materials, we have made detailed studies of the relationship between the optical properties and
the structure in films with up to 9 at.% Fe in ZnS. We present Raman and x-ray diffraction results,
direct imaging of the film structure by transmission electron microscopy (TEM), and results on
the nonlinear optical properties of the materials in several regimes.

2. Experimental

A series of films, 3-5 µm in thickness, with different amounts of Fe, were deposited in an
ultrahigh vacuum (UHV) chamber with a base pressure of 5 × 10−7 Pa. Fe (99.98%, Sigma
Aldrich) was e-beam evaporated, while ZnS (99.99%, Alfa Aesar) was evaporated from a Knudsen
cell. Although high vacuum levels were acheivable, the primary advantage of this deposition
system was the well-controlled deposition rates, assuring uniform doping. Single crystal (100)
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silicon (1 cm × 1 cm) and c-plane sapphire (1 cm diameter) were used as substrates to minimize
background signals during analysis, rather than to promote epitaxial growth. Before loading,
the substrates were sequentially cleaned in ultrasound baths of acetone and isopropanol and
blown dry with nitrogen. The deposition rate for Fe was varied between 0.14Å/s and 0.30Å/s,
and for ZnS, a rate between 3.11Å/s and 7.45Å/s was used. Substrates were held at room
temperature (RT) in a rotating sample holder. The physical thicknesses were confirmed using
Veeco Dektak 150 profilometer and elemental composition of the films was investigated with
an energy-dispersive X-ray spectroscopy (EDS) system of Hitachi TM3000 scanning electron
microscope.
Optical properties were assessed using linear and Raman spectrometry, Optical Kerr Effect

(OKE) and intensity-dependent laser transmission measurements. The pulses used are very
different at the different wavelengths for these preliminary results, but we are able to demonstrate
non-linear behavior over a wide spectral and temporal range. Spectral transmission information
was determined at room temperature with a double-beam UV/VIS/NIR spectrophotometer (OLIS
14, On-line Instrument Systems, Inc.) in the wavelength range 340 to 2600 nm. Fourier transform
infrared spectroscopy (FTIR) in transmission mode was carried out at room temperature (RT)
and at cryogenic temperatures with Bruker Vertex and ISF 125 HR Bruker Optic spectrometers
respectively. To extract index, absorption and thickness of the films, an analysis based on
Swanepoel et al. [25] was performed on the room temperature optical data. Due to the more
detailed structure in the data at low temperatures, modeling was also performed with an iterative
fitting procedure to get the best match to the observed spectrum, using a transfer matrix method
(TMM) to calculate the transmission [26]. Nonlinear optical properties were assessed in several
regimes. Optical Kerr effect properties of the films were measured in a standard configuration
at 795 nm, and non-linear effects were probed using both an Er:YAG laser at 2940 nm, and a
doubled YAG laser at 532 nm.
Optical Kerr Effect experiments [27, 28] were carried out using a Kerr lens mode-locked

Ti:Sapphire oscillator and a chirped pulse amplification system. The (λ=795 nm) pulses, far
enough from any resonance that the results should be representative for most energies, were 70 fs
long and had a 1 kHz repetition rate. Saturable absorption was measured using an Er:YAG laser
at 2.94µm (0.42 eV) with a pulse length of 100 µs and a repetition rate of 5Hz. The pulse energy
was 200 mJ, the peak power was 2kW and the beam radius was 1.7mm at the laser aperture and
approx. 200µm at the focus. The wavelength was chosen because it is within the linewidth of
the 5E→5T2 transition for Fe2+ ions. The intensity was varied by moving the sample along the
Gaussian beam trajectory created by a lens with focal length of 50mm.
Z-scan measurements [29–31] were performed using 11 ns laser pulses at 532 nm with a

10Hz repetition rate to determine separately the nonlinear refraction and the nonlinear absorption
of the samples, related to the real and imaginary parts of the third order nonlinear susceptibilities,
respectively (Reχ(3), Imχ(3)). At this wavelength, the linear absorption due to imperfections
is approximately a factor of two higher than at the wavelength used for OKE studies. Special
care was taken to assure that no permanent modification of the samples took place during the
measurements.
Structural properties were examined by X-ray diffraction (XRD) and transmission electron

microscopy (TEM). The crystallographic data of the films on Si substrates were collected in
θ-2θ configuration using Bruker diffractometer with a monochromator (λ = 0.15418 nm). The
cross-section TEM sample was prepared by a FEI Helios Nanolab dual-beam FIB. Prior to FIB
sample preparation, a 25 nm thick layer of Au was sputter coated on top of the wafer. To protect
the region of interest from Ga ion-beam damage, e-beam assisted deposition of a thin Pt layer
(ca. 100 nm) followed by ion-beam assisted deposition of a 2 µm thick C layer were coated on
top of the Au layer. The coarse Ga+ ion-beam thinning was done at 30 kV acceleration voltage
followed by final thinning at 5 kV. TEM was performed with a double Cs corrected cold FEG
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JEOL ARM200CF, operated at 200 kV.

3. Results and discussion

3.1. FTIR

The absorption coefficients for different concentrations of Fe in ZnS were extracted by
Swanepoel [25] analysis and iterative fitting using transfer matrix method (TMM) [26]. A
comparison of these methods for RT measurements is shown in Fig. 1 (a). The absorption peak at
2.8 µm, associated with Fe substitution on Zn lattice sites, remains well isolated, with little visible
absorption, for concentrations up to 4 at.%, in a good agreement with the DFT calculations [22]
reported by Molland et al. and similar to previous experimental results on bulk crystals [20].
Above 4 at.%, the intraband Fe levels retain their structure, but the short-wavelength absorption
increases, either due to a reduction in the bandgap of the alloyed ZnS, or due to non-substitutional
Fe - either in clusters or at grain boundaries. Although the Swanepoel analysis inherently masks
fine structure (due to the exclusive use of the transmission extrema), little structure within the
absorption peak is expected at RT due to thermal smearing. Results of both modeling techniques
are shown for comparison. The high frequency oscillations in the calculated spectra are indicative
of an imperfect fit to the index of refraction of the film.
Low temperature (35 K) spectra for the samples with the isolated Fe peaks are presented

in Fig. 1 (b) together with a single crystal absorption curve [17] measured by Frolov et al. at
77 K; temperature-depended measurements are shown in Fig. 1 (c). According to crystal field
theory, the 5D state is split into 5E ground and 5T2 excited states, which in case of tetrahedral
Fe2+ have 5 and 6 spin-orbit levels respectively. The 5E→5T2 transitions are allowed and for
Fe:ZnS system we expect to see multiple absorption lines between ≈ 2000 nm and ≈ 4000 nm.
Γ5(5T2) → Γ1(5E) transition energy was reported to be equal to 365.5 meV [2] and is thought
to be responsible for the 3396 nm peak in the absorption spectra. A satellite peak at lower
energies around 3549 nm, can be explained by a phonon assisted transition or by the defects in
the cubic/hexagonal polycrystalline films. It is remarkable that the structure of the absorption
spectrum is retained at 1.2 at.% with good fidelity, and is little changed even for 7 at.% Fe.

3.2. Optical Kerr effect

The third-order nonlinearity term χ(3) is a direct indication of the potential of a material for
Kerr lensing effects, which would enhance saturable absorption. Preliminary measurements of
the OKE response were made at 795 nm (the Kerr effect behavior should be similar for other
wavelengths in the absence of resonances). Linear absorption was significant at this wavelength
for the highest concentrations, and may be associated with non-substitutional Fe, as discussed
above.The results in Fig. 1 (d) are for 2 mW average input power, below the onset of nonlinear
absorption.
The value of the χ(3) of the films were calculated from the OKE signals using the following

equation:

χ
(3)
s = χ

(3)
r ×

(
Is
Ir

) 1
2

×
(

ns
nr

)2
×
(

Lr

Ls

)
× αLs

exp(−αLs

2 ) × [1 − exp(−αLs)]
, (1)

where I is the intensity of the OKE signal at zero delay time, α is the linear absorption coefficient
of the sample, n is the refractive index, and L is the interaction length of probe and pump beam
in the sample. The subscripts s and r denote sample and reference, respectively. Here, we used
sapphire substrate as a reference sample with a known value of χ(3) ∼ 2.2×10−14esu. A pure
ZnS film has χ(3) ∼ 4.2 × 10−11 esu. Little change is seen until the concentration of Fe reaches
∼ 7 at.%, where there is a sharp increase to 17.5 × 10−11 esu. This correlates with where the
Raman results show that significant structural changes are introduced in the ZnS by the presence
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Fig. 1. (a) Room temperature measurements, Absorption coefficient (α) of Fe:ZnS films with
different Fe concentrations extracted from transmission data using Swanepoel (dashed line)
and TMM (solid line) modeling methods. (b) Absorption coefficient (TMM) at 35K, and a
reference single crystal (concentration 0.01%) spectrum (dotted lines) [17] taken at 77 K. (c)
Temperature dependence of the absorption coefficient (TMM) for a 1.2 at.% Fe:ZnS sample.
The small peak at 3100 nm is due to a thin ice film deposited on the surface in the cryostat.
(d) χ(3) as a function of Fe content from OKE measurements at 795 nm.

of Fe. The temporal response of the OKE signal was insensitive to the inclusion of Fe, even at
high concentrations, when measured in the low power regime.

3.3. Raman

Raman spectroscopy provides insight into the structural order by probing the vibrational modes
in the material directly. Measurements were made of both the first and second-order peaks to
look for the onset of disorder in the films.
Fig. 2 shows the Raman spectra acquired at RT from ZnS films with different amount of

doping. Raman modes of both cubic zincblende (ZB) and hexagonal wurtzite (W) ZnS are well
studied. It is reported that first-order transverse optical (TO) phonons in both of the polymorphs
and similarly longitudinal optical (LO) phonons are very close in frequency [32–34]. As can be
seen in Fig. 2 (a), for pure ZnS, only one peak was observed at 351 cm−1 and it can be assigned
to either A1(LO), E1(LO) modes in W and LO in ZB [34]. None of the TO phonons expected
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Fig. 2. Room-temperature Raman spectra of Fe:ZnS for different Fe concentrations. The
sapphire substrate vibrational peaks are indicated as Y and the ZnS modes are described in
the text, including vibrational modes of A1, and F2 type symmetries, denoted here as A1 and
F2. (a) First-order peaks; (b) Second-order peaks.

around 275 cm−1 were clearly observed in our spectra, which is generally accepted as LO modes
dominate over the TO ones [32]. To distinguish between the two ZnS crystal structures we studied
the second-order Raman spectra, which are depicted in Fig. 2 (b). The three lines that appear at
615, 640 and 673 cm−1 can be identified as 2(TO), 2(LO) processes at different Brillouin zone
points. These values are in a good agreement with previously published results for cubic ZB
ZnS [32, 33]. With increasing Fe content we can see that the cubic structure is preserved, but the
peaks shift because the lattice parameter is changing. Higher disorder results in a broadening
of the peaks, which corresponds with the previous observations of FexZn1−xS crystals with
x > 0.05 [35, 36]. In theory, a perfect diatomic crystal is transparent to IR radiation between
the (TO)Γ and (LO)Γ frequencies, but substitutional impurities in ZB crystal are expected to
appear as vibrational modes of the A1, and F2 type symmetries in between TO and LO positions
[35, 37]. Fig. 2 (a) shows the appearance of all four modes with A1 type vibrations dominating,
and confirms the substitutional Fe incorporation. With the increasing concentration of Fe, we
can observe the shift of the peaks to lower frequencies in contrast to the previously reported
results [35], but similar to another zinc chalcogenide Zn1−xMnxTe [38]. Good structural order is
indicated for films up to 4% Fe content.

3.4. Nonlinear optical response

Nonlinear absorption: Transmission results at 2.94 µm for two different samples (2 and 5.8%
Fe, thicknesses 4.5 and 3.3µm respectively) are shown in Fig. 3. Possible contributions from
the sapphire substrate were excluded. While the shape of the visible spectrum for films with
more than 4% Fe changes appreciably from those with less, the spectral shape of the infrared
absorption peak does not, and the non-linear transmission did not change markedly above and
below this threshold.

For the film with 5.8 at.% Fe2+ (inset) the saturable absorption Isat was modeled to be ∼ 1.79
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Fig. 3. a) Nonlinear transmission of Fe-doped ZnS film with 2% Fe at 2.94µm . Inset is for
film with 5.8% Fe. Vertical dotted lines indicate the saturable intensity Isat .

kW/cm2 with a transmission modulation ∆T of 3.5% while for the film with 2 at% Fe2+ Isat was
1.95 kW/cm2 and the transmission modulation was 8%. The analysis was based on a two-level
model for the iron 5E→5T2 transition within the bandgap resulting in the power dependent
formula for the nonlinear part of the transmission curve [39]:

T = A exp[−∆T/(1 + I/Isat )] (2)

The sample with fewer Fe ions had a higher saturation intensity, Isat , as expected from a two-level
system. The measurements in the saturated regime did not show evidence of other nonlinear
interactions such as two-photon absorption or excited-state absorption [40].
With long pulses (µs→ ms) there is always a concern that thermal effects may contribute to

the nonlinear absorption. Thermal nonlinear absorption has been reported in ZnS films but only
for wavelengths in the blue, close to the bandgap, while the laser photon energy used here was
0.42 eV and the ZnS bandgap is 3.7 eV. Nevertheless, we performed measurements on a pure
ZnS film and no saturable absorption was observed. Thermal effects are not expected to play a
role in nonlinear absorption at this wavelength for the iron-doped samples since the energy levels
are well within the bandgap and absorption to conduction band states is forbidden by transition
rules [41].
Increasing transmission was seen with increasing intensity despite the long pulse length

(nominally 100 µs). For both films, the non-linear behavior was preceded at low intensities by
an approximately constant transmission region.The absorption values of the films are at least
50-75 times higher than commercially available Fe:ZnS materials, which makes it difficult to
extrapolate the non-linear behavior. The measurements are also made with long pulses compared
to most studies, which is likely responsible for the observed low damage threshold, and possibly
leading to the small Isat values. The two films are expected to have different properties because
they lie on opposite sides of the 4% threshold where the linear absorption properties change
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significantly, either due to defects or band gap modification, but both clearly show saturable
absorption below the damage threshold.
The green marker in the inset of Fig. 3 shows the transmission value after the film had been

optically damaged. The film with less iron had a higher damage threshold, of around 3 kW/cm2.
Possible factors in the observed damage thresholds are stresses due to grain-boundaries, the long
pulse lengths, and the fact that not all Fe2+ ions are substitutional in the ZnS lattice at these high
concentrations.

Z-scan measurements: While OKE measurements can detect refractive index modifications,
Z-scan can investigate many mechanisms including thermal effects. The difference in wavelength
between the sources and the broader sensitivity of Z-scan make these measurements an interesting
supplement to the OKE results. Z-scan measurements on a 3.3 µm thick film with a 5.8%
Fe content were performed at 532 nm, using 11 ns pulses by simultaneously measuring the
transmission after the sample in two different ways. By detecting either the total laser beam (’open-
aperture’ Z-scan) or a part of the laser beam passing through a pinhole (’closed-aperture’ Z-scan).
The open-aperture Z-scan allowed the determination of the nonlinear absorption of the samples.
The division of the closed-aperture by the open-aperture curves allowed the determination of the
nonlinear refraction by eliminating the nonlinear absorption contribution to the nonlinear optical
response (’divided’ Z-scan). The advantage of the Z-scan technique is that it can provide the
magnitude as well as the sign of the nonlinearity.

Several Z-scans were recorded at different laser energies in order to find the range which gave
a significant signal to noise ratio without permanent damage of the material. This energy range
was found to be between 1.0 µJ and 3.5 µJ per pulse. Examples of both divided and open aperture
Z-scans can be seen in Fig. 4. The divided Z-scans have a valley-peak configuration revealing
that the sample exhibits self-focusing (positive nonlinear refractive index). A transmission valley
in the case of the open-aperture Z-scan indicates a reverse saturable absorption(RSA)-type
behaviour (positive nonlinear absorption parameters) at this wavelength.

The experimental data have been analyzed following the procedure that is detailed elsewhere
[29]. From several open-aperture curves the nonlinear absorption parameter (β) and the imaginary
part of the third order nonlinear susceptibility (Imχ(3)) have been obtained as shown in Table
1. Additionally, the valley-peak transmission difference of the divided Z-scans allowed the
determination of the nonlinear refractive parameter (γ’), the nonlinear refractive index (n2), and
the real part of the third order nonlinear susceptibility (Reχ(3)) (see Table 1). While there is
considerable literature on the use of Fe:ZnS for mid-IR lasing, related materials in crystal form,
are reported for saturable absorber applications [14, 15, 42].
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Fig. 4. Nonlinear transmission of the 5.8% Fe doped film measured at 532 nm. (a) Divided
scan, and (b) an open-aperture scan.
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Table 1. Nonlinear parameters for Fe:ZnS films at 532 nm.
β Imχ(3) γ′ n2 Reχ(3) χ(3)

(×10−7m/W) (×10−8esu) (×10−13m2/W) (×10−6esu) (×10−8esu) (×10−8esu)
6.7 1.0 2.1 1.2 7.8 7.9

The experimental findings show high nonlinear refraction and nonlinear absorption parameters.
By comparing the real and imaginary part of the third order nonlinear susceptibility it can be
seen that the real part is about 8 times higher indicating that the nonlinear refraction dominates
the nonlinear optical response. These findings illustrate the significant optical nonlinearities of
the Fe:ZnS thin films, which can be utilized in a variety of applications such as optical switching
and optical limiting. The effects of the Fe content on the nonlinear refraction and absorption
merit further study - for example, shorter pulse widths will allow the elimination of thermal
effects, which may play a role in some of the current findings. The laser irradiation parameters
can be chosen to tune the nonlinearities for specific applications, with the selected excitation
wavelength anticipated to have a significant impact.

3.5. Transmission electron microscopy

High resolution transmission electron microscopy allows direct determination of the crystal
structure, and electron diffraction can differentiate cubic "zinc blende" (ZB) from wurtzite (W)
material, allowing a detailed determination of the structure of the films, at the atomic level, to
be made. Scanning TEM (STEM) images shown in Fig. 5 (a)-(c) of film surfaces with 0, 1.2
and 7.5 at.% Fe demonstrate that the lateral sizes of the crystalline grains decrease upon the
addition of Fe to the films. Bright field TEM images shown in Fig. 5 (d)-(f) reveal that the
films are comprised of nanoscale columns. Each of the nanocolumns run through the entire film

a)                    b)                    c)

d)                     e)                    f)
  

500 nm 500 nm 500 nm

Fig. 5. Electron microscopy images. Top row, STEM of the surfaces of films with a) 0 b)1.2
and c)7.5% Fe, and bottom row, cross-sectional bright field TEM images for d) 0 e)1.2 and
f)7.5% Fe
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(C)

Fig. 6. (a) Electron diffraction pattern of the undoped ZnS. Red circles indicate positions
of Bragg reflections that can be either ZB or W, the green circle indicates the unique (002)
ZB reflections, and the blue circles indicate possible positions of the unique W reflections.
(b) 7.5 at.% Fe:ZnS electron diffraction pattern. (c) High-angle annular dark-field imaging
STEM showing extreme twinning along a nanocolumn in the sample.

thickness, but the lateral dimension decreases with increasing Fe doping, possibly due to an
enhanced sticking coefficient for the ZnS during nucleation of the grains. Electron diffraction
results (Fig. 6 (a)) show that the undoped ZnS film has a random mixture of cubic ZB and
hexagonal W crystal structure with no preferred crystalline texture.

The Fe doped films (Fig. 6 (b)) have a pure ZB crystal structure with a strong preferred texture
where the [111] ZB direction tends to align perpendicular to the plane of the substrate. High
angle annular dark field (HAADF) STEM cross-sectional images of the doped samples (see
Fig. 6 (c)) show that each of the nanocolumns is heavily twinned by (111) walls and with twin
domains thicknesses ranging from a single monolayer up to a few tens of unit cells. These results
demonstrate that even large Fe doping into ZnS caused little crystalline disruption aside from
the appearance of extreme twin defect densities. (It should be noted that twin defects are also
common in pure ZnS crystals). The primary disorder observed is the increase in the number
of grain boundaries; the material within the columns for even the highest concentration films
studied had few, if any defects other than twins. No evidence of Fe clusters was observed.

3.6. XRD

The XRD data of the Fe doped samples on Si (100) substrates with collection angles of15–85° is
shown in Fig. 7. Two main peaks around 28.5° and 59.0° were observed and following TEM
analysis were attributed to cubic (111) and (222) reflections. The intensity of the (222) peak was
low and only (111) reflection was used in the analysis.
As can be seen in Fig. 7 (a), the pure ZnS film grown at the RT showed the lowest intensity

peak, which is expected for a low temperature growth due to loss of any preferred texture. The Fe
doping resulted in an increase of the signal by more than two orders of magnitudes (indicative of
a preferred crystalline texture, with the [111] direction perpendicular to the film. This change
in preferred texture is identical to the TEM observations. The Fe doping also correlates with a
shift in the position of the peaks, as shown in Fig. 7 (b). These shifts can be a result of a slight
reduction in the lattice constant due to the smaller ionic radius of Fe and a presence of the defects
in the crystal structure. The observed shifting of the main diffraction peaks suggests the decrease
of the unit cell and, therefore, substitutional incorporation of Fe, which is in the agreement with
Raman data. The mean grain size calculated by the Scherrer formula [43] was found to be around
65 nm independent of the Fe concentration, but stress and substitutional effects are known to
influence these results.
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Fig. 7. XRD spectra of samples with different amount of Fe grown on Si (100) substrate.
(a) Increased intensity of the (111) reflection after doping with Fe compared with undoped
ZnS. (b) Positions of the (111) reflection in Fe:ZnS samples.

4. Conclusion

In conclusion, we have demonstrated that Fe-doped ZnS films vapor deposited onto room
temperature substrates exhibit substitutional incorporation of the Fe up to 4 at.% without
excessive disruption of the underlying crystal structure. The iron-induced absorption peak around
2.8 µm remains well-isolated for these concentrations. Undoped ZnS films have a random mixture
of cubic zincblende and hexagonal wurtzite crystal structures, while in contrast, the Fe-doped
films have a pure zincblende crystal structure with a strongly preferred (111) texture and a high
density of twin defects. Raman and TEM analyses confirm substitutional incorporation of Fe
in these cubic ZnS films at low concentrations. Visible absorption and the Optical Kerr Effect
increase significantly for films with higher Fe content, but the spectral shape of the iron-related
infrared absorption is unchanged. Nonlinear optical behavior is observed at 532, 795 and 2940 nm,
with saturable absorption of the Fe-induced levels confirmed for Fe concentrations both above and
below 4 at .%. The Z-scans determine the real and the imaginary part of the third order nonlinear
susceptibility, which is challenging with the OKE technique. The fact that two-photon absorption
will promote carriers above the gap for the Z-scan measurements is most likely responsible for
the difference in the observed χ(3) . These results demonstrate that vapor deposited films of
Fe-doped ZnS have potential non-linear applications in mid-infrared systems.
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