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Abstract: The performance of the driving simulator depends on the efficiency of the motion
cueing algorithm. An explicit model predictive control was established recently for the motion
cueing algorithm. The complexity of the explicit solution increases manifold when the human
vestibular model is considered. This paper focuses on the complexity reduction of explicit
solution using low complexity contractive sets for the motion cueing algorithm. The low-
complexity explicit controller is formulated for the efficient control of the motion cueing
algorithm for the ULTIMATE driving simulator at Renault.
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1. INTRODUCTION

The automobile manufacturers are focusing on the devel-
opment of high performance driving simulators in order to
optimize the vehicle design (Fang,2016). The performance
of a driving simulator can be improved by increasing the
efficiency of the motion cueing algorithm (MCA). The
motion cueing algorithm is used to reproduce the motion
of a simulated vehicle by computing input commands to
the simulator, subject to workspace limits and perfor-
mance constraints. The efficiency of the MCA can be given
in terms of performance to track the vehicle’s accelera-
tions and rotational speeds without perceived undesirable
motion, safe and stable control of the driving simulator
(Fang,2016).

Different kinds of motion cueing algorithms have been
used in flight and driving simulators over the years. Many
modern MCAs use some variant of MPC, while in the
past various filter-based MCA strategies were common
(Maran,2015). The classical filter based motion cueing
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algorithm is a combination of frequency filters. A high
pass filter is used to remove the low frequency compo-
nents of the acceleration signal in order to keep the linear
motion system working within its bounds, whereas a low
frequency filter is used to extract the low frequency signal
of the acceleration which is then converted to the tilt
angle. However, the classical filter must be designed by
considering the worst case, i.e. the step signal. In con-
sequence, the classical filter usually does not use all the
available workspace. Another defect is its backlash effect
at the end of the step signal which can result in simulator
sickness (Reymond,2000). To overcome the shortcomings
of the classical filter, adaptive filter (a classical filter with
variable gain) and optimal filters(based on optimal control
theory) are used to design the motion cueing algorithm. In
these approaches, a cost function is defined and optimized
without considering the system constraints, which may
give the sub-optimal performance. Model predictive con-
trol overcomes these limitations as it performs optimiza-
tion accounting for the system constraints. However, MPC
is generally limited to the systems with slow dynamics
and non-safety critical nature due to its computational
complexity. Explicit MPC overcomes these limitations of
standard MPC by formulating the optimization problem



Fig. 1. ULTMIATE driving simulator

as a multi-parametric problem. The optimization problem
can be solved offline and the control law can be given as
a piecewise affine (PWA) function of the current state.
This transforms the online MPC computations into simple
evaluation of a PWA function. Explicit MPC has been
used for MCA in (Fang,2012). A braking condition has
been introduced in (Fang,2016) which helps in reducing
the complexity of the explicit solution. The explicit MPC
is feasible for systems with a modest number of states,
as its complexity increases very fast with an increase in
the number of system states. The explicit solution for the
motion cueing algorithm is very complex when the effect of
the human vestibular system is considered. In this paper,
contractive sets are used to compute an explicit solution
with reduced complexity. This makes it feasible to use a
more detailed model with an increased number of states
in the motion cueing algorithm.

In section 2, a model for the ULTIMATE driving simula-
tor of Renault is established. Two models are presented
for the perceived acceleration in the driving simulator;
one accounting for the specific force only (gravito-linear
acceleration inertial force) and the other one taking into
account the human vestibular model. A contractive set is
formulated which is then used in the designed controller for
motion cueing algorithm in section 3. Section 4 presents
the results obtained by applying the controller designed
in section 3 to the models given in section 2 and the
conclusion is drawn in section 5.

2. SYSTEM MODEL

The VR and Immersive Simulation Center of Renault has
developed a 8 degree of freedom (DOF) driving simulator
named ULTIMATE. The simulator comprises of a hexapod
(Bosch-Rexroth) and an X-Y rail actuator. The software
SCANeR uses a motion cueing algorithm to control the
motion system in ULTIMATE.

The longitudinal or lateral acceleration of the vehicle is
reproduced using the motion of hexapod tilt or rail trans-
lation which is termed as tilt-coordination. It is based on
the fact that the linear motion sensors, the otolith organs
in the human vestibular system cannot differentiate be-
tween gravity and translational acceleration without other

motion cues. The projected gravity component due to the
hexapod tilt angle is considered as a linear acceleration
by the otolith organs if the rotational motion is below the
sense threshold. The motion cueing algorithm is designed
to limit the rotational motion in the driving simulator
below the sense threshold, so that the stimulated vehicle’s
motion feeling is perceived in the simulator as closely as
possible to a real car by using the linear motion of the rail
and tilt angle of the hexapod.

The continuous time simulator model is given as:

ẋsim = Asimxsim +Bsimu (1)

where,

xsim =

pvθ
ω

 , Asim =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



Bsim =

0 0
1 0
0 0
0 1

 , u =

[
uacc
utilt

]

Here p, v, θ and ω represent linear position, linear velocity,
tilt angle and tilt velocity respectively, whereas uacc and
utilt represent the linear and tilt acceleration respectively
of the driving simulator. The state and input constraints
are given below:

−2.6 < p < 2.6 − 3 < v < 3 − 5 < uacc < 5

−10 < θ < 10 − 6 < ω < 6 − 15 < utilt < 15

where p, v, uacc, θ, ω and utilt are expressed in m, m/s,
m/s2, degree, degree/s and degree/s2 respectively.

The driving simulator model can be designed in two
ways: using only the specific force to represent perceived
acceleration or using the complete human vestibular model
to formulate the perceived acceleration.

2.1 Driving simulator model with the effect of gravity

Generally the effect of gravity is taken into account while
formulating the motion cueing algorithm. In this case, the
perceived acceleration can be given as:

uper = uacc + θg (2)

Here uacc is the linear acceleration of the driving simulator
while θ and g represent the tilt angle and the constant of
gravity respectively. Note that in (2) the approximation
sin(θ) ≈ θ is used, which is acceptable within the range of
operation of the simulator.

If the perceived acceleration is considered as one of the
states then the discrete time simulator model can be given
as:

xsim,k = Asim,kxsim,k +Bsim,kuk (3)

where,

xsim,k =


pk
vk
θk
ωk
uper

 , Asim,k =


1 dt 0 0 0
0 1 0 0 0
0 0 1 dt 0
0 0 0 1 0
0 0 g 0 0





Bsim,k =


0.5dt2 0
dt 0
0 0.5dt2

0 dt
1 0

 , uk =

[
uacc
utilt

]

Here uper is the perceived acceleration (specific force) and
dt is the sampling time.

A controller is formulated in section 3 and the results
obtained with this model are given in section 4.1.

2.2 Driving simulator with human vestibular system model

The vestibular system situated in the inner ear of a human,
consists of two parts, i.e. the semicircular canal and the
otolith. The acceleration perceived is the combination of
these two parts. The human sensation models were first
used in the motion cueing algorithm in (Sivan,1982) which
were useful for motion reproduction in driving simulators.
The methods described in (Sivan,1982) were improved
by (Telban,2000) and (Telban,2005) with the help of an
in-line Riccarti equation solver in order to optimize the
feedback control law for motion cueing algorithms. The
otolith and semicircular canal models are given below:

Otolith Model The otolith model is responsible for sens-
ing linear motion in human beings. The state space repre-
sentation of the otolith model explained in (Fang,2016) is
given below:

ẋoto = Aotoxoto +Botou (4)

where,

Aoto =


−τL + τS

τLτS
1 0 0

− 1

τLτS
0 1 0

0 0 0 1
0 0 0 0

 , Boto =



kotoτa
τLτS

0

koto
τLτS

0

0
kotoτa.g

τLτS

0
kotog

τLτS


xoto = [xoto1 xoto2 xoto3 xoto4]

T
, u = [uacc utilt]

T

The first state of the otolith model xoto1 is the perceived
acceleration in the driving simulator.

Parameters Value

τL 6.1
τs 0.1
τa 30
koto 0.4

Table 1. Otolith parameter values

Semi-Circular Canal Model The semi-circular canal
model is related to sensing rotational motion in human
beings, and can be represented in state space form as
described in (Fang,2016). The model given below is the
state space representation of the semi-circular canal model.

ẋscc = Asccxscc +Bsccu (5)

where,

Ascc =

0 1 0 0
0 −T2 1 0
0 −T1 0 1
0 −T0 0 0

 , Bscc =

0 0
0 T3
0 0
0 0

 ,

xscc = [xscc1 xscc2 xscc3 xscc4]
T
, u = [uacc utilt]

T

T0 =
1

TLTSTa
, T1 =

TL + Ts + Ta
TLTSTa

T2 =
TLTS + TLTa + TsTa

TLTSTa
, T3 =

kscc
TS

The values of the semicircular canal model parameters
mentioned in (Telban,2000) and (Reymond,2000) are
used here which are given in table 2.

Parameters Value

TL 6.1
TS 0.1
Ta 30
kscc 1.0

Table 2. Semicircular canal parameters values

Combined model taking into account the vestibular system
By considering the impact of human vestibular system

and combining the models in systems (1), (4) and (5), the
combined model can be given as:

ẋ =

[
Ascc 0 0

0 Aoto 0
0 0 Asim

]
x+

[
Bscc
Boto
Bsim

]
u (6)

It is a continuous time model with redundant states. A
9-state model can be obtained by model reduction.

The braking conditions described in (Fang,2016) makes
sure that the linear velocity v and the tilt velocity ω are
reduced when linear position p and angular position θ
approach their limits so that it always remain inside the
constraints. The braking conditions are given as follows:

pmin < p+ cvvTbrk,p + 0.5cuuaccT
2
brk,p ≤ pmax (7)

θmin < θ + cωωTbrk,θ + 0.5cuutiltT
2
brk,θ ≤ θmax (8)

where, pmin, θmin, pmax and θmax represent minimum and
maximum values of p and θ.

3. CONTROLLER DESIGN

Explicit model predictive control has been used in (Fang,2016)
for MCA. The problem occurs when human vestibular
model is considered, as the complexity of explicit model
predictive control (MPC) increases rapidly with an in-
crease in the number of states. A simpler approach is to
formulate explicit MPC using controlled contractive set as
explained in (Munir,2016). In that case, the complexity
of explicit solution depends on the complexity of the con-
tractive set.

Let a discrete time system with state and input constraints
given by X = {x|Hx ≤ h} and U = {u|Huu ≤ hu}
respectively, then the contractive set can be defined as
follows:

Definition 1: A compact polytopic set P ∈ X having the
origin in the interior is called controlled γ-contractive, with
contraction factor γ ∈ [0, 1) if for all x ∈ P there exists an
u ∈ U such that Axk +Buk ∈ γP.



3.1 Contractive set formulation

A contractive set of desired complexity can be obtained by
the procedure described in (Munir,2016).

It can be noticed from the models in (3) and (6) that the
system is asymptotically stable except for the simulator
states [p v θ ω]. Therefore, a contractive set is needed for
simulator states only, as the overall system will be stable
if the simulator states are forced to converge to the origin.

Contractive Constraints The braking constraints from
eq (7) eq (8) are added to the contractive constraints
described in (Munir,2016). The maximum contraction
factor for the contractive set P = {x ∈ Rn|Fx ≤ f} is
given as:

max
x

γ∗ (9a)

subject to
Hxk ≤ h (9b)

Fxk ≤ f (9c)

γ∗ = min
u,γ

γ (9d)

subject to

Abrakexk +Bbrakeuk ≤ fbrake (9e)

F (Axk +Buk) ≤ γf (9f)

Huuk ≤ hu (9g)

Here the pairs [H,h] and [Hu, hu] represent the state and
the input constraints respectively. The bilevel optimization
problem mentioned here can be transformed into single
level optimization problem as described in (Hovd,2014).

Therefore, the contractive set given by pair of [F, f ]
can be obtained by modifying the problem mentioned in
(Munir,2016).

max
C,d,F,f,M

log(det(C)) (10a)

subject to
C = CT > 0 (10b)[

(fi − Fid)I CFTi
FiC fi − Fid

]
� 0∀i = 1, ...m (10c)

MF = H (10d)

Mf ≤ h (10e)

max
x,u,γ,λ,s

γ∗ (10f)

subject to

Hxk ≤ h (10g)

Fxk ≤ f (10h)

λa ≥ 0 (10i)

λb ≥ 0 (10j)

λc ≥ 0 (10k)

λa ≤Mλ
a s (10`)

λb ≤Mλ
b s (10m)

λc ≤Mλ
c s (10n)

F (Axk +Buk)− γf ≤ 0 (10o)

λ(F (Axk +Buk)− γf) ≥ −Mu
a (1− s) (10p)

Huuk ≤ hu (10q)

Huuk − hu ≥ −Mu
b (1− s) (10r)

Abrakexk +Bbrakeuk − fbrake ≤ 0 (10s)

λ(Abrakexk +Bbrakeuk − fbrake) ≥ −Mu
c (1− s) (10t)

∇u,γL(u, γ) = 0 (10u)

where,

L = γ∗ + λTa (FAxk + FBuk − γf) + λTb (Huuk − hu)

+λTc (Abrakexk +Bbrakeuk − fbrake)

A =

1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

 , B =

 0 0
dt 0
0 0
0 dt

 , x =

pvθ
ω



Abrake =

 1 Tbrk,p 0 0
−1 −Tbrk,p 0 0
0 0 1 Tbrk,θ
0 0 −1 −Tbrk,θ



Bbrake =

 TGp 0
−TGp 0

0 TGθ
0 −TGθ

 , fbrake =

 pmax−pmin
θmax
−θmin


TGp =

1

2
cuT

2
brk,p, TGθ =

1

2
cuT

2
brk,θ

where cu =0.45, Tbrk,p=2.5 and Tbrk,θ =0.5

This is a highly non-convex problem. Particle swarm
optimization (PSO) can be used to solve this problem as
explained in (Munir,2016). It can be noted here that the
simulator model consists of two independent systems, [x, p]
and [θ, ω]. Therefore, the contractive sets for these two
systems can be formulated separately and merged together
later. This can be done to achieve better results (larger
contractive set) with the PSO.

3.2 Controller design for reference tracking using contractive
sets

Once the contractive set is found, it can be used in
the controller formulation as described in (Hovd,2014)
and (Munir,2016). By adding the reference tracking and
braking condition, the controller is designed as follows.

min
uk

(xk+1 − xref )TQ(xk+1 − xref ) + uTkRuk (11a)

subject to
xk+1 = Axk +Buk (11b)

Huu ≤ hu (11c)

Abrakexk +Bbrakeuk ≤ fbrake (11d)

F (xk+1 − xref ) ≤ γαf (11e)

where

α = max{Fi(xk,i − xref )/fi},∀i = 1, · · · ,m (11f)

This formulation ensures that the α will be reduced by
factor γ at each time step, which will force the state tra-
jectories to converge to the origin, consequently ensuring
the stability of the system. The explicit solution to the
formulation mentioned above can be obtained by solving
it parametrically, with xk and α as the parameters. If a
parametric solution with only xk as a parameter is desired
then the contractive set can be subdivided. Each subdivi-
sion is defined by the origin and one of the facets of the
contractive set. Inside each subdivision, α then depends
linearly on x, and the parametric solution can be obtained
with only x as a parameter (Koduri,2016).
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Fig. 2. 2-DOF motion rendering results using model (3)
for step reference
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Fig. 3. 2-DOF motion rendering results using model (3)
for sine reference

The number of different combinations of the constraints
which may be active at the optimum determines the
complexity of the explicit solution. The formulations with
longer prediction horizons are expected to have a high
number of constraints and typically more combinations of
the constraints. The prediction horizon for the formulation
mentioned above is 1, therefore the complexity of the
explicit solution is expected to be low.

The contractive set considers the reference as origin and
tries to converge the trajectories towards its origin which
implies that the contractive is moved to a new origin
whenever reference changes. There may arise a case that
the current state is outside the contractive set when it
is moved to the new origin in order to follow a certain
reference. In that case, a sub-optimal reference must be
selected such that the current state remains within the
moved contractive set for some α ∈ [0, 1].

4. RESULTS

The explicit controller is designed for the models (3) and
(6).

4.1 Simulator model with effect of the gravity

Consider the system described in (3). The contractive
set is obtained for simulator states using the method
described in section 3.1. The contractive set obtained is
used in controller design in order to obtain the explicit
solutions as discussed in section 3.2. Figure 2) shows
that the braking/acceleration (step) reference signal is
reproduced by driving simulator and Figure 3 shows the
tracking of a sinusoidal reference signal. In these figures,
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Fig. 4. 2-DOF motion rendering results using the method
described in (Fang,2016) for step reference
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Fig. 5. 2-DOF motion rendering results using the method
described in (Fang,2016) for sine reference

the top sub-figure shows the vehicle acceleration(red) and
the perceived acceleration (blue) in the driving simulator.
The remaining two sub-figures shows the linear and tilt
motion of the simulator. The total number of regions of
the explicit solution comes out to be 137 by employing the
method described in section 3.

By using the technique explained in (Fang,2016), the
number of regions of the explicit solution comes out to be
796. Figures 4 and 5 show the perceived acceleration and
the reference signal. It can be noted that the reference
tracking is similar in both techniques but the complexity
of the motion cueing algorithm in terms of the number of
regions of the explicit solution has decreased significantly
by using the controller described in section 3.

4.2 Simulator model with human vestibuar model

The contractive set is obtained for simulator states using
the method described in section 3.1 for the model (6).
The contractive set obtained is used in controller design
in order to obtain the explicit solutions as discussed in
3.2. The acceleration perceived by the driving simulator
is shown in the Figure 6 for step reference while Figure
7 shows the tracking of a sinusoidal reference signal. The
reference signal (magenta) is the vehicle’s reference accel-
eration. The human vestibular model perceives (perceived
reference) it as the red signal shown in the top subfigures,
while blue signal shows the tracking of perceived reference.

The total number of regions of the explicit solution comes
out to be 130 by the method described in section 3.

The total number of regions of the explicit solution using
the method described in (Fang,2016) comes out to be
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Fig. 6. 2-DOF motion rendering results using model (6)
for step reference
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Fig. 7. 2-DOF motion rendering results using model (6)
for sine reference

29843 for a control horizon of 1 which shows there is
a significant reduction in complexity of the solution of
explicit MPC in terms of the number of regions.

5. CONCLUSION

The contractive sets are used to formulate the explicit
controller for motion cueing algorithm in this paper. Two
models are given which describe the dynamics of perceived
acceleration in Renault’s driving simulator ULTIMATE.
The proposed technique significantly reduces the complex-
ity of the explicit solution without sacrificing performance.

REFERENCES

R. Sivan, J. Ish-Shalom and J.K. Huang An Optimal
Control Approach to the Design of Moving Flight Sim-
ulators, IEEE transactions on systems, man and cy-
bernetics volume. SMC-12, no. 6, November/December
1982

R.J. Telban, Weimin Wu, and F.M. Cardullo Motion
cueing algorithm development: Initial investigation and
redesign of the algorithms, NASA /CR-2000-209863

R.J. Telban and F.M. Cardullo Motion cueing algorithm
development: Human-centered linear and nonlinear ap-
proaches, NASA /CR-2005-213747

Z. Fang and A. Kemeny An efficient Model Predictive
Control-based motion cueing algorithm for the driving
simulator, Simulation: Transactions of the Society for
Modeling and Simulation International, October 19,
2016.

S. Munir, M. Hovd, G. Sandou and S. Olaru Con-
trolled contractive sets for low-complexity constrained

control, IEEE Multi-conference on Systems and Control,
September 2016.

M. Hovd and F. Stoican On the design of exact
penalty functions for MPC using mixed integer pro-
gramming, Computers Chemical Engineering, Volume
70, 5 November 2014, Pages 104–113

G. Reymond and A. Kemeny Motion cueing in the Renault
driving simulator Vehicle System Dynamics 34(2000),
pp. 249-259

Z. Fang and A. Kemeny Explicit MPC motion cueing
algorithm for real-time driving simulator, 7th Interna-
tional Power Electronics and Motion Control Confer-
ence , Harbin, 2012

M. Hovd, S. Olaru and G. Bitsoris Low Complexity
Constraint Control Using Contractive Sets, Preprints of
the 19th World Congress,The International Federation
of Automatic Control Cape Town, South Africa. August
24-29, 2014

F. Maran, M. Bruschetta, A. Beghi, D. Minen Improve-
ment of an MPC-based Motion Cueing Algorithm with
Time-Varying Prediction and Driver Behaviour Estima-
tion, Driving Simulation Conference Exhibition, Europe
Germany, 2015

R. Koduri, P. Rodriguez-Ayerbe, S. Olaru and M. Hovd
Explicit Robustness Margin for Contractive Piecewise
Affine Control Laws, 20th International Conference on
System Theory, Control and Computing October 13-15,
2016, Sinaia - Romania


