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Abstract. This paper considers the static bicycle repositioning problem
(SBRP), which deals with optimally re-balancing bike sharing systems
(BSS) overnight, i.e. using service vehicles to move bikes from (nearly)
full stations to (nearly) empty stations. An exhaustive literature survey
comparing existing models is presented, and a new and improved math-
ematical formulation for the SBRP is proposed. The model is tested on
a number of instances generated based on data from a real BSS.

1 Introduction

As urbanization proceeds throughout the world, public decision makers are look-
ing for e�ective, a�ordable, and environmentally friendly means of transporta-
tion. Bike sharing ful�lls these criteria for short distance traveling within city
centres, and consequently bike sharing is getting increased attention from both
governments and the public. Currently there are 948 cities with an active Bike
Sharing System (BSS) and 273 with a system under planning or construction
[10]. Figure 1 shows the expansion of bike sharing the recent years, expressed as
number of cities in the world with a public BSS. For an extensive review of the
historical development of BSSs, the reader is referred to [9], [35], and [24].

Fig. 1. Worldwide development in number of cities with a public BSS, 2000-2014 [10]
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Bike sharing is a public system for automatic or semi-automatic lending of
bicycles for use within a restricted time period and area. A bike can be lent at



one station and delivered at another. Note that during the night most systems
are either closed or in limited use. For the system to function well, it is crucial
that there are bikes available at a station when someone wants to pick up a
bike and that there are free slots available when someone wants to return one.
To achieve this, most BSSs use service vehicles to re-balance the system, i.e. to
move bikes from (nearly) full stations to (nearly) empty stations. This paper
studies one important aspect of the operation of BSSs, namely the logistics of
the service vehicles used to re-balance the system overnight.

The planning problems arising from BSSs are divided into three levels in ac-
cordance with [37]; a strategic, a tactical, and an operational level, as illustrated
in Figure 2. The strategic level contains problems that arise when designing the
system, e.g. determining the optimal number of bikes and locations of stations.
On the tactical level the objective is to �nd an optimal distribution of bikes be-
tween the stations at a speci�c time, while �nding optimal routes for the service
vehicles to re-balance the system is the objective at the operational level.

Fig. 2. Planning levels of BSS optimization
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It is common to divide the operational level in two: static and dynamic
problems. In line with [31], the problems are named static bicycle reposition-

ing problem (SBRP) and dynamic bicycle repositioning problem (DBRP). The
SBRP is typically used for overnight balancing, when the demand forecast for the
operating period is not considered; the problem is static and deterministic. To
describe the SBRP we introduce the concept of states, i.e. a distribution of bikes
throughout the system, expressed as a speci�c number of bikes at each station.
The optimal state is the desired distribution of bikes at the end of the planning
period, i.e. early in the morning, while the initial state is the distribution at
the beginning of the planning period, i.e. late in the evening. After solving the
model, we get the �nal state. The di�erence between the �nal state and optimal
state is called deviation. All stations and vehicles have restricted capacities, and
the �eet of service vehicles may be either homogeneous or heterogeneous. For
every vehicle, a complete route and the number of bikes to pick up or deliver
at each station must be decided. Hence the SBRP can be classi�ed as a static

many-to-many one-commodity pickup and delivery problem with selective pick-

ups and selective deliveries, in accordance with [3]. The DBRP is on the other
hand used for intraday re-balancing, as the demand during the operating time
is taken into account. Hence, the DBRP is both dynamic and stochastic.

In this paper we focus on the SBRP. In the literature survey, we identify a
need for a new formulation of the problem including more real-life aspects im-
portant for system planners. Our contributions are 1) to present an exhaustive



literature survey on the SBRP, including a systematic comparison of the existing
models, and 2) to propose a new mathematical model of the problem that cap-
tures more real-life aspects. We also propose symmetry-breaking constraints and
valid inequalities to tighten the formulation. The model is tested on a number
of test instances based on data from a real BSS.

Section 2 provides the literature survey on the SBRP, while a new mathe-
matical model for the SBRP is introduced in Section 3. A computational study
is presented in Section 4 and concluding remarks are given in Section 5.

2 Literature Survey

In this literature survey we focus on the static bicycle repositioning problem
(SBRP). For studies on the strategic level, we refer to [16], [23], and [33] that
determine the number of stations and their locations, and to [15] that �nds the
optimal number of bikes in the system and the number of slots at each station. At
the tactical level we can refer to [30], [34], and [38] for analyses of the placement
of bikes, while [20] studies the detection of broken bikes in the system. There
are also a number of studies regarding the DBRP, see for example [1], [4], [5],
[7], [21], [26], [27], [32], and [39]. An overview of planning problems arising in
shared mobility systems, for example a bike-sharing system, is given in [22].

The SBRP was �rst studied in [2]. They describe the system using graph-
theory. The objective is to move bikes along the arcs so each station is perfectly
re-balanced at minimal cost. One of the main �ndings is that the SBRP is NP-
hard. In [6], the work from [2] is continued. An optimization model is presented,
but shows to be hard to solve, so they relax the problem by removing the se-
quential dimension and solve it using a branch-and-cut (B&C) algorithm.

In [31], two di�erent mixed integer programming formulations are introduced;
an arc-indexed and a time-indexed. The objective is to minimize a weighted
sum of the stations' penalty costs for deviations and the operating cost. The
authors conclude that the arc-indexed model provides the best results for most
instances, but the time-indexed formulation is easier to adapt to the DBRP. Valid
inequalities and dominance rules are proposed to strengthen the formulations.

The arc-indexed formulation from [31] is enhanced in [19] and [14], both
proposing methods for solving larger instances. In [19], the formulation is sim-
pli�ed by allowing only one vehicle, stating that a station is either a pickup or
delivery station and assuming that each station only can be visited once. The
objective is to minimize a penalty function depending on the number of bikes
at each station. The authors present a construction heuristic used to generate
an initial solution followed by a tabu search. On the other hand, the model is
expanded in [14] by using a three-step algorithm. In the �rst step, stations are
clustered using a saving heuristic. In the second step, vehicles are assigned to
clusters, while the routes for each vehicle are determined in the third step.

The SBRP is represented using a complete directed graph in [28] and [29].
Further, several metaheuristics are presented and tested. The authors conclude
that Variable Neighborhood Search (VNS) yields the best results on instances of



moderate size, while a PILOT/GRASP hybrid turns out to be superior on large
instances. A neighborhood search is also used in [17]. Two formulations for the
SBRP are also developed; a routing model and a step model, both incorporated
in a Large Neighborhood Search (LNS). The routing model uses an arc-indexed
formulation, while the step model allocates all station visits to routes.

In [34], the SBRP is solved in combination with the tactical level problem of
�nding the optimal states. The routes from the SBRP must satisfy the service
level requirements from an inventory problem. The objective is to minimize the
maximal route length, hence it is formulated as a makespan problem. To solve
the model the authors propose a cluster �rst route second heuristic.

Four possible formulations of the SBRP are tested and discussed in [8]. To
handle the exponential number of subtour eliminating constraints, a B&C algo-
rithm is proposed in addition to both valid inequalities and separation proce-
dures. The authors conclude that the subtour elimination and separation tech-
niques proposed by [18] for the 1-PDTSP give the best computational results.

A decomposition method is introduced in [36], consisting of a request gen-
eration algorithm and a bike request scheduling problem (BRSP). The request
generation algorithm uses various data to generate repositioning requests. A re-
quest includes the location and number of bikes to be picked up or delivered, a
time window and an importance weight. The BRSP determines which requests
to execute and assigns them to vehicles. The objective is to minimize the total
weight of rejected requests.

The objective of the SBRP-model in [27] is to maximize the number of re-
balanced stations, only allowing pickup and delivery of full truckloads of bikes.
The authors use a heuristic that solves the one-vehicle problem for each vehicle.

In [13], the SBRP is decomposed using a Benders decomposition scheme. The
subproblem determines the pickup and delivery quantities along a �xed route
of station visits, while the master problem �nds new routes visiting all stations
with too few or too many bikes. In a later study, [12], the authors use insights
from [13] to solve the SBRP formulation from [6]. Whilst [6] could only �nd
heuristic solutions for realistically sized instances, the method from [12] yield
optimal solutions.

Table 1 shows a comparison of the main characteristics of the SBRP models
in the studies surveyed above, as well as some key information about the solu-
tion methods. Note that the mathematical model proposed in Section 3 is also
included in the table. The numbers in the top row correspond to the numbers
in Table 2.

From the table it becomes evident that half of the studies solve the problem
with only one service vehicle, even though most problems of realistic size use
several. Note that many articles use clustering algorithms. By assigning each
cluster to a vehicle, the SBRP could be solved once for each vehicle. Among
the studies allowing multiple vehicles, two assume the �eet to be homogeneous.
Half of the studies allow multiple visits to a station, while the other half does
not. When the deviation between the optimal and initial state is larger than the
vehicle capacity, allowing multiple visits to each station seems most reasonable.
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Table 2. Articles overview for Table 1

1 Benchimol et al. [2] 8 Sörensen and Dilip [36]
2 Chemla et al. [6] 9 Gaspero et al. [17]
3 Raviv et al. [31] 10 Erdo§an et al. [13]
4 Rainer-Harbach et al. [28] & [29] 11 Erdo§an et al. [12]
5 Schuijbroek et al. [34] 12 O'Mahony and Shmoys [27]
6 Ho and Szeto [19] 13 Forma et al. [14]
7 Dell'Amico et al. [8] 14 Espegren et al. (this study)

Five studies assume that there is no time usage or cost associated with the
loading and unloading operations at the stations, three use an average time and
�ve studies let the time usage depend on the number of bikes handled. Note that
none of the studies take tra�c congestion into account, but presume the driving
time between two stations to be constant. Just one study, [27], allows only full
truckloads.

The studies by [2], [6], [34], [8], [13], and [12] minimize the time and/or cost
associated with repositioning the bikes. In these studies, the solutions are only
valid if the number of deviations is zero, i.e. the system is perfectly re-balanced.
The remaining studies use objective functions that in various ways minimize the
number of deviations.

All but two studies ([2] and [36]) include computational experiments on either
theoretical or real instances. The majority use some kind of heuristics to solve
the instances. All studies that use exact methods fail to �nd the optimal solution
when the problem size increases and only yield upper and lower bounds. Since the
problems include binary and/or integer variables, a common approach is to use
B&C algorithms. The cuts can be generated using inequalities from [18] or using
Benders decomposition [12]. Popular heuristics are tabu search and VNS/LNS.
In [14] the problem is decomposed, and one part is solved by a heuristic and
another part using exact methods.

The studies using a time-variable do not need subtour eliminating constraints.
Among the remaining articles, the MTZ-formulation [25] is widely used to avoid
subtours, while three studies, [8], [13], and [12], eliminate subtours using sepa-
ration algorithms and cuts.

3 Mathematical Formulation

In this section, we propose a new mathematical model for the SBRP. The objec-
tive of the model is to minimize a weighted combination of the total deviation
in the number of bikes at each station from the optimal state at the time limit
and the time used. We assume a heterogeneous �eet of service vehicles that start
and �nish their routes empty at the depot. Several vehicles can visit the same
station and a single vehicle can visit the same station several times. We presume
the driving time between stations to be constant and independent of the hour.
In addition to the driving time, each vehicle uses a �xed parking time at each



station visit. Time used to load and unload bikes at a station is proportional to
the number of bikes handled plus a given parking time. All stations are de�ned
as either pickup stations or delivery stations depending on their initial state rel-
ative to their optimal state. It is not possible to pick up bicycles at a delivery
station or deliver them at pickup station.

Each station i ∈ N has a set of possible visits Mi. Note that the depot
is included in this set. Our formulation uses arc �ow variables ximjnv, i ∈ N ,
m ∈Mi, j ∈ N , n ∈Mj , v ∈ V indicating whether vehicle v drives from station
visit (i,m) to station visit (j,n) or not, where m and n are the station visit
numbers. The entire notation is presented in Table 3.

Table 3. Notation used in the mathematical formulation

Sets

N Set of stations, indexed by i, j
V Set of vehicles, indexed by v
Mi Set of possible visits at station i, indexed by m, n
Parameters

TD
ij Driving time between stations i and j
TP Time used for parking a vehicle
TH Handling time used for loading or unloading a bike

T Time limit for operation of service vehicles
Qv Capacity of vehicle v
Ji 1 if station i is a pickup station, and -1 if it is a delivery station
α Weight on deviations in the objective function relative to time usage

A Maximum number of station visits for a vehicle
Ii Initial state, number of bikes at station i
Oi Optimal state, number of bikes at station i
Variables

ximjnv 1 if vehicle v is driving directly from station visit (i, m) to station
visit (j, n), 0 otherwise

fijv Total number of bikes carried by vehicle v between stations i and j
qiv Number of bikes either picked up or delivered at station i by vehicle v
yi Final state, number of bikes at station i
uimv The sequence number in which station visit (i,m) is made by vehicle v

min α
∑
i∈N

Ji(yi −Oi)

+(1− α)

∑
i∈N

∑
m∈Mi

∑
j∈N

∑
n∈Mj

∑
v∈V

(
TD
ij + TP

)
ximjnv +

∑
i∈N

∑
v∈V

THqiv

 (1)

subject to: ∑
j∈N

∑
n∈Mj

xdvjnv = 1 v ∈ V (2)

∑
i∈N

∑
m∈Mi

ximd(v+|V|)v = 1 v ∈ V (3)



∑
j∈N

∑
n∈Mj

xjnimv −
∑
j∈N

∑
n∈Mj

ximjnv = 0 i ∈ N \ {d},m ∈Mi, v ∈ V (4)

∑
j∈N

∑
n∈Mj

∑
v∈V

ximjnv ≤ 1 i ∈ N ,m ∈Mi (5)

∑
j∈N

fjiv + Jiqiv −
∑
j∈N

fijv = 0 i ∈ N , v ∈ V (6)

yi +
∑
v∈V

Jiqiv = Ii i ∈ N (7)∑
v∈V

qiv − Ji(Ii −Oi) ≤ 0 i ∈ N (8)

fijv −
∑

m∈Mi

∑
n∈Mj

Qvximjnv ≤ 0 i, j ∈ N , v ∈ V (9)

∑
j∈N

fdjv = 0 v ∈ V (10)

∑
i∈N

fidv = 0 v ∈ V (11)∑
i∈N

∑
m∈Mi

∑
j∈N

∑
n∈Mj

(
TD
ij + TP

)
ximjnv +

∑
i∈N

THqiv ≤ T v ∈ V (12)

uimv − ujnv + (A− 1)ximjnv + (A− 3)xjnimv ≤ A− 2

i, j ∈ N ,m ∈Mi, n ∈Mj , v ∈ V
(13)

ximjnv ∈ {0, 1} i, j ∈ N ,m ∈Mi, n ∈Mj , v ∈ V (14)

fijv ≥ 0, integer i, j ∈ N , v ∈ V (15)

qiv ≥ 0, integer i ∈ N , v ∈ V (16)

yi ≥ 0, integer i ∈ N (17)

uimv ≥ 0, integer i ∈ N ,m ∈Mi, v ∈ V (18)

The objective function (1) consists of two terms that are to be minimized.
The �rst term is the deviation in number of bikes between the �nal state, yi,
and the optimal state, Oi, for all stations. Having too many and too few bikes
are equally penalized. The second term is the total time used to obtain the �nal
state. Total time corresponds to the sum of driving time, TD

ij , parking time, TP ,

and handling time, TH . By setting α slightly below one, the most e�ective routes
minimizing the deviation are found.

Constraints (2) and (3) force the vehicles to start and end at the depot, d.
Symmetry at the depot is handled by stating that vehicle v uses visit numbers
v and v + |V| when leaving and arriving at the depot, respectively. Constraints
(4) ensure that a vehicle that enters a station visit, leaves the same station visit,
while constraints (5) make sure all station visits happen at most once.

The loading and unloading constraints (6) ensure that the �ow of bikes into
station i, fjiv, equals the �ow out of the station, fijv, plus the net pickup, qiv.
Since the problem is static, only the total net pickup is considered. Constraints



(7) and (8) assign values to the �nal state, yi. In addition, constraints (8) give
an upper bound on the net pickup at station i by vehicle v, qiv.

The vehicle capacity constraints (9) make sure that a vehicle never carries
more bikes along an arc than the vehicle's capacity multiplied by the number of
times the arc is traversed. Constraints (10) and (11) state that the service vehicles
must be empty when leaving and returning to the depot. Capacity constraints
for the stations are handled implicitly. The total time spent for each vehicle is
limited to T by constraints (12).

Subtours are handled in constraints (13), similar to the Miller-Tucker-Zemlin
(MTZ) constraints [25], but with a strengthening proposed in [11]. Various meth-
ods for eliminating subtours have been tested, and these constraints showed to
perform best.

Symmetry breaking constraints remove solutions that are mathematically
di�erent, but practically identical, while adding valid inequalities is a way of
improving the solution of the linear relaxation. Various symmetry breaking con-
straints and valid inequalities have been tested, and the ones presented here are
those found most e�ective.∑

j∈N

∑
n∈Mj

∑
v∈V

(
ximjnv − xi(m−1)jnv

)
≤ 0 i ∈ N \ {d},m ∈Mi \ {1} (19)

∑
i∈N

∑
m∈Mi

∑
j∈N

∑
n∈Mj

(
TD
ij + TP

) (
ximjnv − ximjn(v+1)

)
+
∑
i∈N

TH
(
qiv − qi(v+1)v

)
≥ 0 v ∈ V \ {|V|}

∣∣∣ Qv = Q(v+1)

(20)

Constraints (19) reduce symmetry by handling the station visits, so that they
appear in the right sequence. By introducing constraints (20), symmetry that
occurs when using a homogeneous �eet of service vehicles is reduced.∑

v∈V
qiv − | (Ii −Oi) |

∑
m∈Mi

∑
j∈N

∑
n∈Mj

∑
v∈V

ximjnv ≤ 0 i ∈ N (21)

∑
v∈V

∑
m∈Mi

∑
n∈Mj

ximjnv +
∑
v∈V

∑
m∈Mi

∑
n∈Mj

xjnimv ≤ 1 i, j ∈ N
∣∣∣Ji = Jj (22)

Constraints (21) force the ximjnv-variables to take values closer to one or zero
in the linear relaxation. For instance, for a station to be perfectly rebalanced,
the sum over the ximjnv-variables associated with that station must equal one.
In [6] it is shown that the arcs between two stations of similar type need not be
traversed more than once, resulting in constraints (22).

Table 1 includes a comparison of this mathematical model with the models
in previous studies.

4 Computational Study

The mathematical model presented in Section 3 has been implemented in Xpress-
IVE 1.24.06 using the Mosel programming language. The computational exper-



iments have been executed on a computer with Intel Core i7-3770 3.40 GHz
processor, 16 GB of RAM and running Windows 7.

4.1 Test Instances

Based on the BSS in Oslo, Norway, six test areas (geographical regions) have
been identi�ed. Details about the areas can be found in Table 4. The areas have
an estimated optimal state for each station and a driving time matrix, TD

ij . A

parking time, TP , set to one minute, is added for each station, while the handling
time for each bike, TH , is set to 30 seconds. All areas have two service vehicles.
For each area, three instances are created by varying the initial states, while all
other parameters are unchanged. Note that we assume perfect re-balancing for
the third instance in each area, making the instances easier to solve because of
a simpler structure.

Table 4. Test areas

Area |N | Avg. driving time T |V| Cap. v = 1 Cap. v = 2

1 6 2 min 16 min 2 10 10
2 8 6 min 30 min 2 10 15
3 10 6 min 40 min 2 12 12
4 12 5 min 30 min 2 10 10
5 14 7 min 45 min 2 12 12

4.2 Computational Results

Various parameters in the model a�ect the computational time; the time limit,
T , the number of stations, |N |, the maximum possible number of visits to each
station, |Mi|, and the number of service vehicles, |V|. Among these, the time
limit and the maximum possible number of visits are studied here.

Figure 3 shows that the computational time peaks when the time limit is
set so that the total deviation is slightly above zero. By only changing the time
limit, the computational time varies from less than one second to more than 35
minutes. The same pattern is seen for all instances.

The use of station visit numbers,m,n ∈Mi, is a new approach for the SBRP,
allowing multiple station visits without a time-index. Though this formulation
has some advantages, both the solution and the computational time depends on
the value of |Mi|, i.e. the maximum possible number of visits to each station.
Each possible station visit (i,m) could be considered a distinct node in the graph.
Hence, adding one element to the setMi for one station i, is equivalent to adding
a node to the graph.

Consequences of using di�erent values for |Mi| is illustrated in Table 5.
The lower bound method is the smallest number of visits to each station to
allow perfect re-balancing, de�ned as: |Mi| =

⌈
|Ii−Oi|

minv∈V CV
v

⌉
. The lower bound +1



Fig. 3. The computational time depicted for di�erent time limits, T , for instance 4.1,
i.e. the �rst instance from area 4. The numbers beside the markers indicate the total
deviation between the initial and optimal state in the solution.
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method allows one more visit to each station than the lower bound method. The
upper bound method is de�ned as |Mi| = |Ii − Oi|. For all our test instances
the total number of deviations at the stations were the same for every method,
independent of |Mi|, hence only improvement in driving time is recorded in the
table. Consequently, the lower bound method is recommended as it yields near
optimal solutions with much less computational e�ort.

Depending on the input parameters, the mathematical model from Section
3 can be solved to optimality for instances of about 15 stations. Combined with
some form of clustering, this could be enough to solve many realistically sized
instances.

4.3 Comparison with Rules of Thumb

Today, in the Oslo BSS, the operators utilize their experience and common sense
to decide the routes and the pickup and delivery quantities. Here, two greedy
rules of thumb are created to imitate the operators behavior. The �rst rule of
thumb states that the service vehicle should visit the nearest pickup and delivery
stations in sequence, unless it is able to meet the demand at two subsequent
stations of the same type. The vehicle should serve the entire demand of bikes at
the stations, but is restricted by its capacity and the time limit for re-balancing.
The second rule of thumb works quite similar, but the vehicle always goes to the
station with the largest deviation.

A comparison is made between the results obtained with these rules of thumb
and the ones obtained by solving the model from Section 3. The comparison is
only made for instances 2.1 and 3.1, and to simplify only one vehicle is used.
With regard to deviations, the SBRP-model �nds solutions that are between 20.0
and 56.6% better than the two rules of thumb. A characteristic for the optimal
solution is that it has less slack in the time restriction than the rules of thumb.



Table 5. Comparison of number of nodes in the graph, computational times, and
quality of solution for three di�erent methods for setting the maximum possible number
of visits,Mi. The improvement in solution is relative to the lower bound method. Note
that the deviation between the initial and optimal state is equal for all methods, hence
improvement in solution only refers to driving time.

Lower bound Lower bound +1 Upper bound

Instance
∑
i∈N
|Mi| Comp.

∑
i∈N
|Mi| Comp. Imprv.

∑
i∈N
|Mi| Comp. Imprv.

time time in sol. time in sol.

1.1 6 0.19s 12 5.60s 0.0 % 24 139.70s 0.0 %
1.2 8 0.34s 14 1.91s 0.0 % 38 47.40s 0.0 %
1.3 8 0.20s 14 0.23s 0.0 % 48 >3000s ≥0.0 %

2.1 8 0.64s 16 697.00s 0.0 % 32 >3000s ≥0.0 %
2.2 9 0.44s 17 1.51s 0.0 % 46 >3000s ≥0.0 %
2.3 10 0.62s 18 7.81s 3.6 % 48 462.00s 3.6 %

3.1 10 1.25s 20 279.50s 0.0 % 56 >3000s ≥0.0 %
3.2 12 7.00s 22 281.00s 0.0 % 64 >3000s ≥0.0 %
3.3 12 1.25s 22 74.70s 0.0 % 58 >3000s ≥0.0 %

4.1 12 8.40s 24 >3000s ≥0.0 % 52 >3000s ≥0.0 %
4.2 15 17.00s 27 2089.00s 0.0 % 74 >3000s ≥0.0 %
4.3 12 0.40s 24 20.30s 3.3 % 62 286.50s 3.3 %

5.1 14 69.00s 28 >3000s ≥0.0 % 70 >3000s ≥0.0 %
5.2 16 15.30s 30 2708.00s 0.0 % 86 >3000s ≥0.0 %
5.3 16 1.07s 30 57.70s 7.7 % 106 >3000s ≥7.7 %

Average n/a 8.21s n/a >814.95 s ≥1.6 % n/a >2262.00 s ≥1.6 %

4.4 Practical Use of the Model

Six of the 13 articles listed in Table 1 minimize time usage or cost, given that the
system will be perfectly re-balanced. By assuming zero deviation, several sim-
pli�cations can be made, and the computational time will decrease signi�cantly,
as indicated in Figure 3.

It is possible to utilize intervals, rather than a �xed number, to describe the
optimal state. This provides more �exibility to the model, presumably making it
harder to solve, but it may be more realistic. An alternative to use intervals, is
to punish large deviations relatively more than small, for example by punishing
the square of the deviation.

In addition to serving as a tool for operational planning, the SBRP-model
could be used to support both strategic and tactical decisions. Analyzing changes
in parameter values can be done by re-solving the problem for di�erent values. By
increasing the time limit for re-balancing operations, the number of deviations
could go down. The operator may use this information to decide whether to
expand the time limit or not. To support the decision of whether to acquire or
dispose a service vehicle, the SBRP-model may be used to quantify the e�ect.



Increased vehicle capacity leads, as expected, to a reduced objective value. At
a certain point, the objective value reaches its lowest point, where the total
deviation is zero or the time limit restricts the objective value from decreasing
further. To compare a change in the objective value with the cost of changing a
parameter, the system operator is referred to a cost�bene�t analysis.

5 Concluding Remarks

As the SBRP is a relatively novel problem, a review of the research made on the
topic is missing in the literature. An extensive literature survey, consisting of the
review and systematic comparison of 13 studies, has therefore been conducted.
As can be seen from Table 1, many studies make assumptions that are unrealistic
for most practical problems. We have proposed a new mathematical model for
the SBRP that makes fewer assumptions and allows more possibilities than many
existing models. For instance, this model allow a heterogeneous �eet, multiple
visits to each station, and non-perfect re-balancing.

Since we have focused on the modeling and not on solution algorithms in
this study, we are only able to solve relatively small instances. The model should
however provide a good starting point for proposing more advanced solution
methods, for instance as an important part of a clustering algorithm for solving
realistically sized instances.
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